Motorless Type


Electric Actuators

Your motor and driver can be used together!

Manufacturers of compatible motors: 15 companies

Mitsubishi Electric Corporation	YASKAWA Electric Corporation	
SANYO DENKI CO., LTD.	OMRON Corporation	
Panasonic Corporation	FANUC CORPORATION	
NIDEC SANKYO CORPORATION	KEYENCE CORPORATION	
FUJI ELECTRIC CO., LTD.	New ORIENTAL MOTOR Co., Ltd.	
FASTECH Co., Ltd.	Rockwell Automation, Inc. (Allen-Bradley)	
Beckhoff Automation GmbH	Siemens AG	
Dalla Flacturation Inc.		

New Delta Electronics, Inc.

Slider Type Series LEF

Ball Screw	Drive/Series	LEFS

Size	Stroke	
25	50 to 800	
32	50 to 1000	
40	150 to 1200	

Belt Drive/Series LE	FΒ
----------------------	----

Size	Stroke
25	300 to 2000
32	300 to 2500
40	300 to 3000

High Rigidity Slider Type Series LEJ

Ball Screw Drive/Series LEJS

Size	Stroke	
40	200 to 1200	
63	300 to 1500	

Rod Type Series LEY

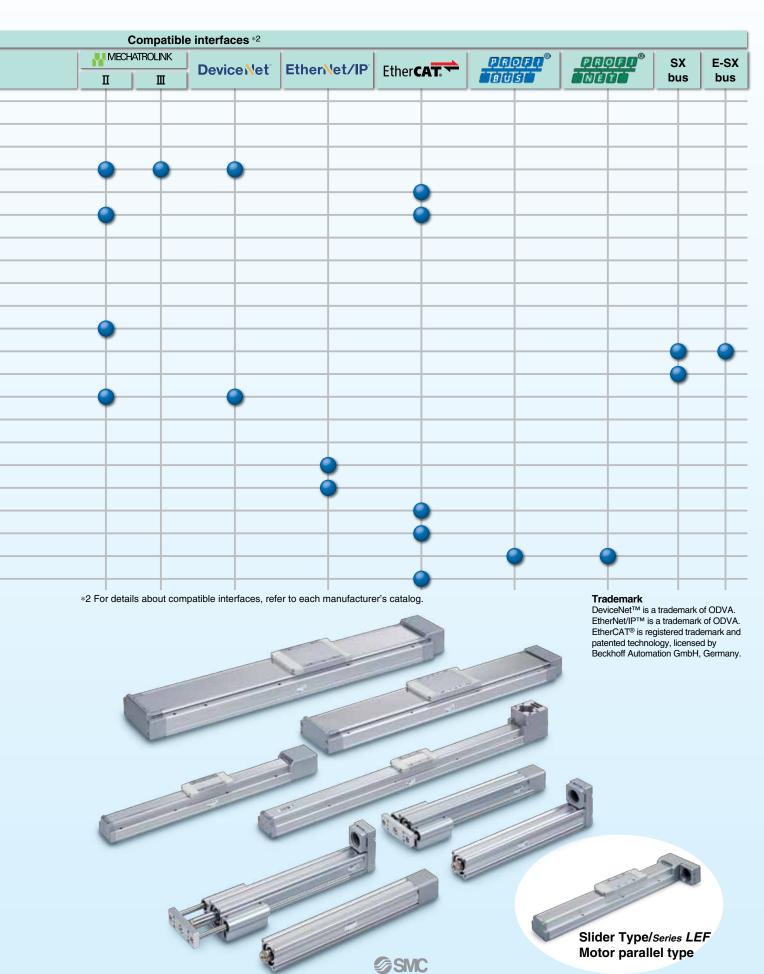
Guide Rod Type Series LEYG

Size	Stroke		
25	30 to 300		
32	30 10 300		-
	. Als		
		19,	
		10	
		40	

CAT.NAS100-111C

Motorless Type Electric Actuators

■ Compatible Motors by Manufacturer (100 W/200 W/400 W equivalent)


^{*1} Motors should be applicable to the mounting dimensions and compatible motor types. Select a motor after checking the specifications of each model.

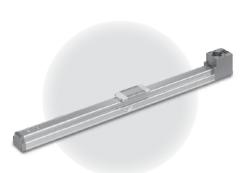
Additionally, when considering a motor other than those shown above, select a motor within the range of the specifications after checking the mounting dimensions.

Series Variations

Model Selection

Motor Mounting

LEY



Motorless Type Electric Actuators

■ Electric Actuator/Slider Type	Ball Screw Drive
Series LEFS	

Model Selection	Page 5
How to Order	Page 13
Specifications	Page 14
Dimensions	Page 15
Motor Mounting	Page 21
Motor Mounting Parts	Page 23

■ Electric Actuator/Slider Type Belt Drive Series LEFB

Model Selection	Page 26
How to Order	Page 31
Specifications	Page 32
Dimensions	Page 33
Motor Mounting	Page 39
Motor Mounting Parts	Page 40
Specific Product Precautions	Page 42

■ Electric Actuator/High Rigidity Slider Type Ball Screw Drive Series LEJS

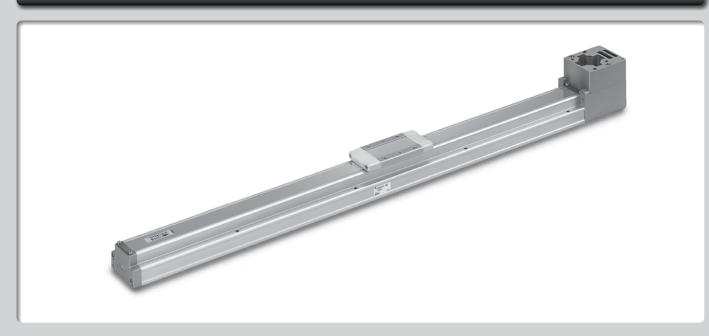
Model Selection	Page 45
How to Order	Page 55
Specifications	Page 56
Dimensions	Page 57
Motor Mounting	Page 59
Motor Mounting Parts	Page 60
Auto Switch	Page 62
Specific Product Precautions	Page 65

■ Electric Actuator/Rod Type Series LEY

Model Selection	Page 69
How to Order	Page 75
Specifications	Page 76

Dimensions Page 78

■ Electric Actuator/Guide Rod Type


Series LEYG	
Model Selection	Page 85
How to Order	Page 89
Specifications	Page 90
Dimensions	Page 91
Motor Mounting	Page 93
Motor Mounting Parts	Page 97
Auto Switch	Page 10
Specific Product Precautions	Page 10

Slider Type

Ball Screw Drive Series LEFS

Belt Drive Series LEFB

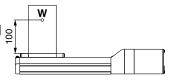
Motorless Type

Electric Actuator/Slider Type Ball Screw Drive/Series LEFS

Model Selection

Series LEFS ▶ Page 13

Selection Procedure


Step 3 Check the allowable moment.

Selection Example

Operating conditions

- Workpiece mass: 55 [kg]
- Speed: 300 [mm/s]
- Acceleration/Deceleration: 3000 [mm/s²]
- Stroke: 200 [mm]
- Mounting position: Horizontal upward
- Incremental encoder

Workpiece mounting condition:

Settling time

Check the work load-speed. <Speed-Work Load Graph>

Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications with reference to the "Speed-Work Load Graph (Guide)" on page 6.

Selection example) The **LEFS** 40 B-200 is temporarily selected based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Check the cycle time.

Calculate the cycle time using the following calculation method.

Cycle time:

T can be found from the following equation.

• T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

 T2: Constant speed time can be found from the following equation.

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}[s]$$

• T4: Settling time varies depending on the motor type and load. The value below is recommended.

$$T4 = 0.05 [s]$$

Calculation example)

T1 to T4 can be calculated as follows.

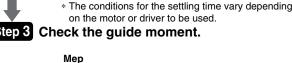
$$T1 = V/a1 = 300/3000 = 0.1 [s],$$

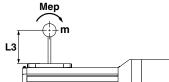
$$T3 = V/a2 = 300/3000 = 0.1 [s]$$

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}$$

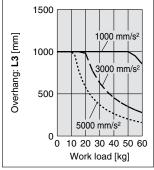
$$=\frac{200-0.5\cdot 300\cdot (0.1+0.1)}{300}$$

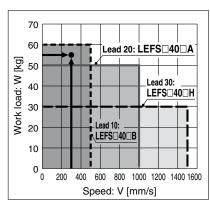
$$= 0.57 [s]$$

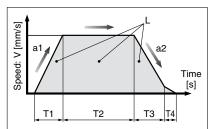

$$T4 = 0.05 [s]$$


Therefore, the cycle time can be obtained as follows.

$$T = T1 + T2 + T3 + T4$$


$$= 0.1 + 0.57 + 0.1 + 0.05$$


$$= 0.82 [s]$$

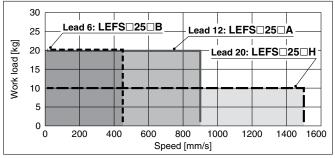


Based on the above calculation result, the LEFS 40 B-200 is selected.

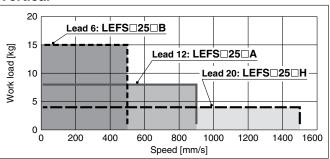
<Speed-Work Load Graph>

- L: Stroke [mm]
 - ··· (Operating condition)
- V : Speed [mm/s]
 - ... (Operating condition)
- a1: Acceleration [mm/s2]
- ··· (Operating condition)
- a2: Deceleration [mm/s2] ··· (Operating condition)
- T1: Acceleration time [s] Time until reaching the set speed
- T2: Constant speed time [s] Time while the actuator is operating at a constant speed
- T3: Deceleration time [s] Time from the beginning of the constant speed operation to stop
- T4: Settling time [s]

Time until positioning is completed

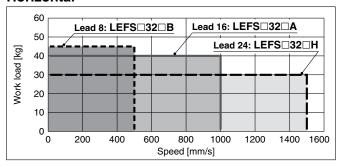

Model Selection Series LEFS Motorless Type

- * The values shown below are allowable values of the actuator body. Do not use the actuator so that it exceeds these specification ranges.
- * The allowable speed is restricted depending on the stroke. Select it by referring to the "Allowable Stroke Speed" below.

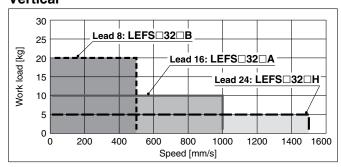

LEFS□25/Ball Screw Drive

Speed-Work Load Graph (Guide)

Horizontal

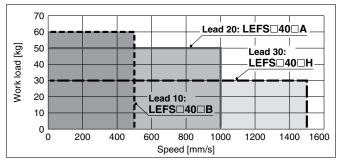


Vertical

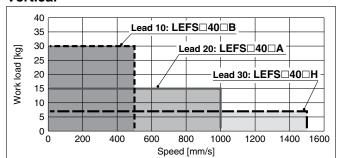


LEFS□32/Ball Screw Drive

Horizontal



Vertical



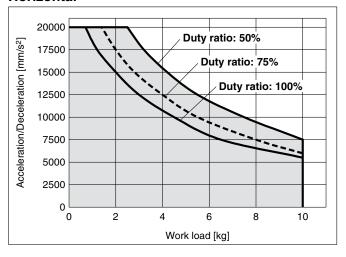
LEFS□40/Ball Screw Drive

Horizontal

Vertical

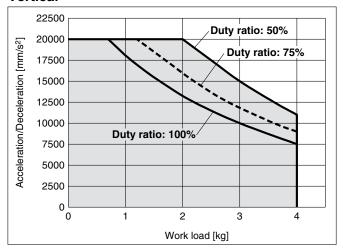
Allowable Stroke Speed

															[mm/s]
Model	AC servo	I	Lead						Stroke	e [mm]					
Model	motor	Symbol	[mm]	Up to 100	Up to 200	Up to 300	Up to 400	Up to 500	Up to 600	Up to 700	Up to 800	Up to 900	Up to 1000	Up to 1100	Up to 1200
		Н	20		150	00		1200	900	700	550	_	_	_	_
LEFS25	100 W	Α	12		90	0		720	540	420	330	_	_	_	_
LEF323	equivalent	В	6		45	0		360	270	210	160	_	_	1	_
		(Motor re	otation speed)		(4500	rpm)		(3650 rpm)	(2700 rpm)	(2100 rpm)	(1650 rpm)	_	_		_
		Н	24		1500				1200	930	750	610	510	_	_
LEFS32	200 W	Α	16			1000			800	620	500	410	340	_	_
LEF332	equivalent	В	8			500			400	310	250	200	170	_	_
		(Motor re	otation speed)		(3	3750 rpm)		(3000 rpm)	(2325 rpm)	(1875 rpm)	(1537 rpm)	(1275 rpm)	1	_
		Н	30	_			1500			1410	1140	930	780	500	500
LEFS40	400 W	Α	20	— 1000						940	760	620	520	440	380
LEF340	equivalent	В	10	_			500			470	380	310	260	220	190
		(Motor re	otation speed)	_		(3000 rpm)		(2820 rpm)	(2280 rpm)	(1860 rpm)	(1560 rpm)	(1320 rpm)	(1140 rpm)

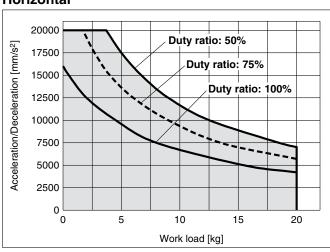


Series LEFS Motorless Type

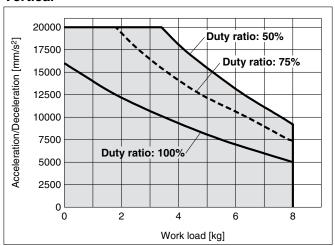
Work Load-Acceleration/Deceleration Graph (Guide)


LEFS□25□H/Ball Screw Drive

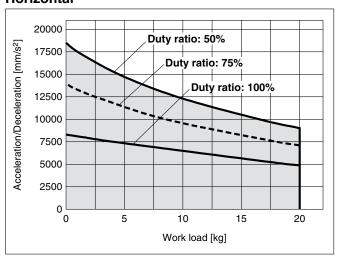
Horizontal


LEFS□25□H/Ball Screw Drive

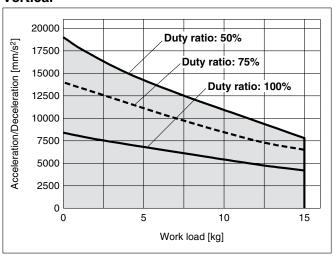
Vertical


LEFS□25□A/Ball Screw Drive

Horizontal


LEFS□25□A/Ball Screw Drive

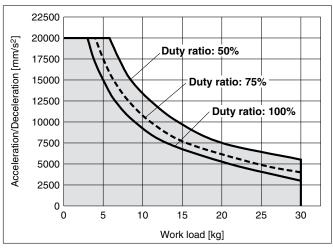
Vertical


LEFS□25□B/Ball Screw Drive

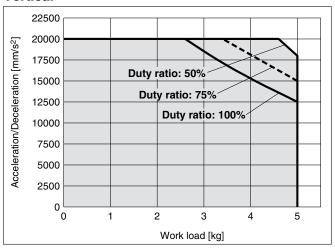
Horizontal

LEFS□25□B/Ball Screw Drive

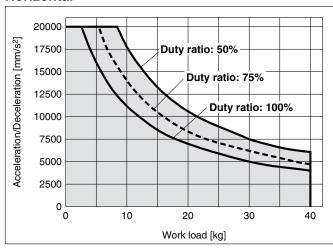
Vertical



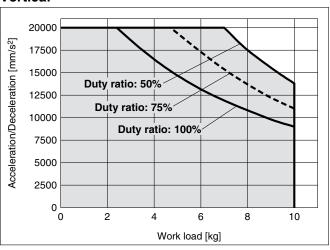
Work Load-Acceleration/Deceleration Graph (Guide)


LEFS□32□H/Ball Screw Drive

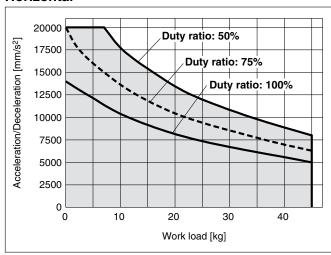
Horizontal


LEFS□32□H/Ball Screw Drive

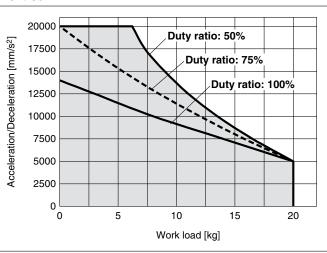
Vertical


LEFS□32□A/Ball Screw Drive

Horizontal


LEFS□32□A/Ball Screw Drive

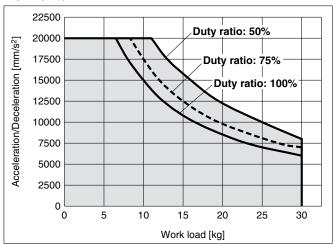
Vertical


LEFS□32□B/Ball Screw Drive

Horizontal

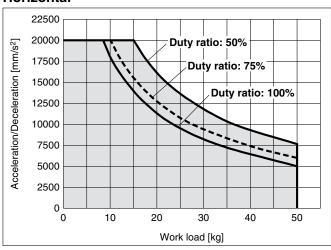
LEFS□32□B/Ball Screw Drive

Vertical

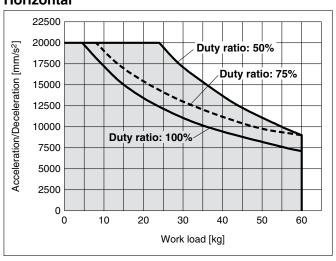


Series LEFS Motorless Type

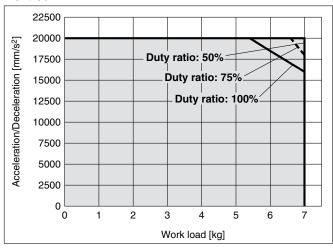
Work Load-Acceleration/Deceleration Graph (Guide)


LEFS□40□H/Ball Screw Drive

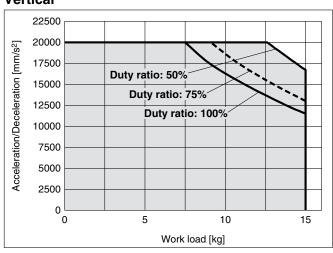
Horizontal


LEFS□40□A/Ball Screw Drive

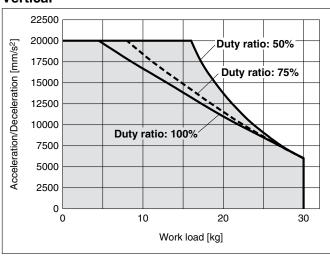
Horizontal


LEFS□40□B/Ball Screw Drive

Horizontal


LEFS□40□H/Ball Screw Drive

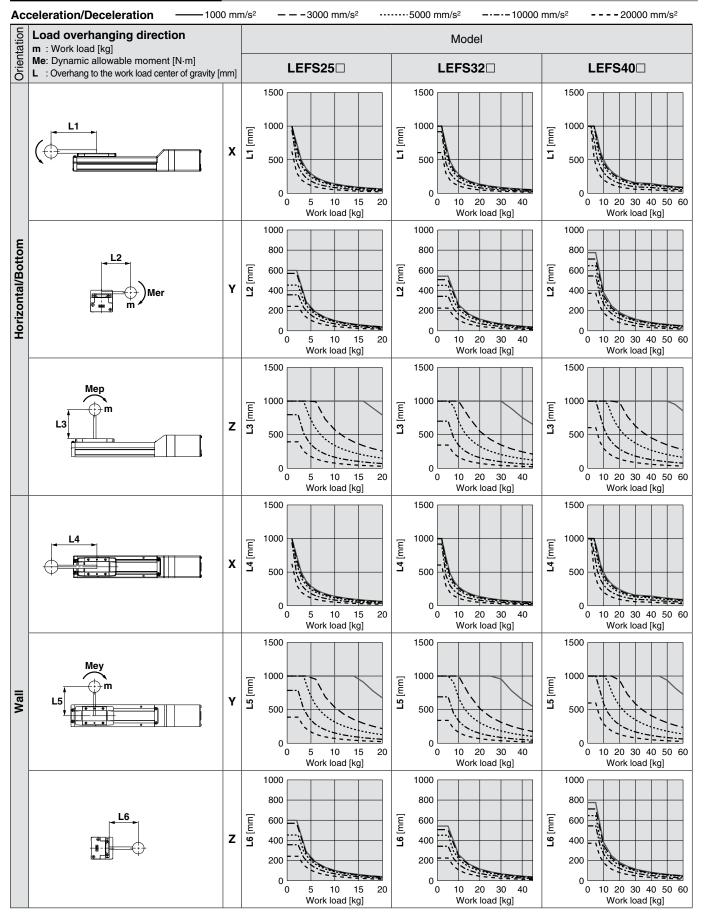
Vertical


LEFS□40□A/Ball Screw Drive

Vertical

LEFS□40□B/Ball Screw Drive

Vertical


These graphs are examples of when the standard motor is mounted.

Determine the duty ratio after taking into account the load factor of the motor or driver to be used.

Model Selection Series LEFS Motorless Type

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to "Calculation of Guide Load Factor" or the Electric Actuator Selection Software for confirmation, http://www.smcworld.com

Dynamic Allowable Moment

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to "Calculation of Guide Load Factor" or the Electric Actuator Selection Software for confirmation, http://www.smcworld.com

Acceleration/Deceleration -1000 mm/s² -----5000 mm/s² ---- 10000 mm/s² — — — 3000 mm/s² --- 20000 mm/s² Load overhanging direction Model m: Work load [kg] Me: Dynamic allowable moment [N·m] LEFS32□ LEFS25□ LEFS40□ L : Overhang to the work load center of gravity [mm] 1500 1500 1500 1000 1000 1000 [mm] [mm] **L7** [mm] Υ 7 7 500 500 500 0 0 10 15 10 20 30 20 30 40 50 60 Vertical Work load [kg] Work load [kg] Work load [kg] 1500 1500 1500 1000 1000 1000 [mm] [mm] [mm] Z 8 8 8 500 500 6 8 10 Work load [kg] Work load [kg] Work load [kg]

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEFS

Size: 25/32/40

Mounting orientation: Horizontal/Bottom/Wall/Vertical

Acceleration [mm/s2]: a Work load [kg]: m

Work load center position [mm]: Xc/Yc/Zc

- 2. Select the target graph with reference to the model, size and mounting orientation.
- 3. Based on the acceleration and work load, obtain the overhang [mm]: Lx/Ly/Lz from the graph.
- 4. Calculate the load factor for each direction.

 $\alpha x = Xc/Lx$, $\alpha y = Yc/Ly$, $\alpha z = Zc/Lz$

5. Confirm the total of αx , αy and αz is 1 or less.

 $\alpha x + \alpha y + \alpha z \le 1$

When 1 is exceeded, consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LEFS40 Size: 40

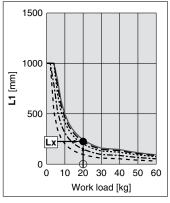
Mounting orientation: Horizontal Acceleration [mm/s2]: 3000

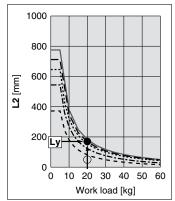
Work load [kg]: 20

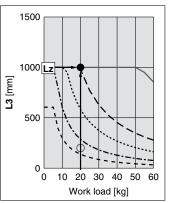
Work load center position [mm]: Xc = 0, Yc = 50, Zc = 200

2. Select the graphs for horizontal of the LEFS40 on page 10.

3. Lx = 250 mm, Ly = 180 mm, Lz = 1000 mm 4. The load factor for each direction can be obtained as follows.

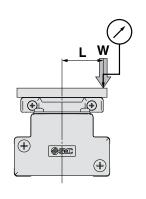

1. Horizontal

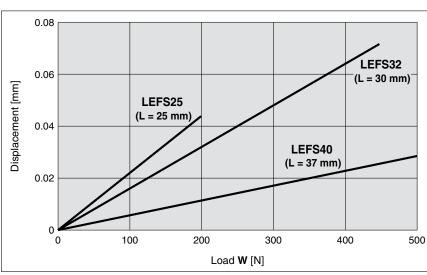

2. Bottom


----- Mounting Orientation -----

 $\alpha x = 0/250 = 0$ α **y** = 50/180 = 0.27 $\alpha z = 200/1000 = 0.2$

 $\alpha x + \alpha y + \alpha z = 0.47 \le 1$

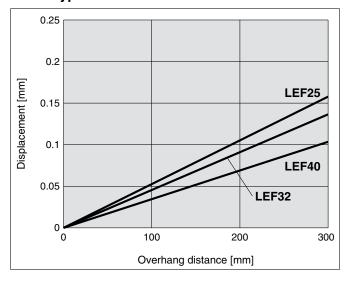




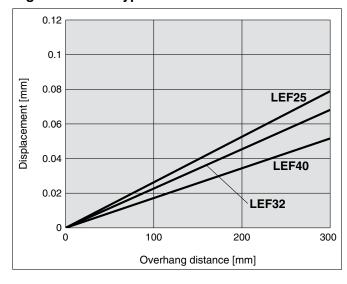
	Traveling parallelism	[mm] (Every 300 mm)
Model	C side traveling parallelism to A side	② D side traveling parallelism to B side
LEFS25	0.05	0.03
LEFS32	0.05	0.03
LEFS40	0.05	0.03

Note) Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

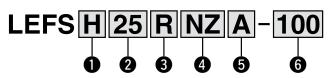


Note 1) This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table.


Note 2) Check the clearance and play of the guide separately.

Overhang Displacement Due to Table Clearance

Basic Type


High Precision Type

Electric Actuator/Slider Type Ball Screw Drive

Series LEFS LEFS 25, 32, 40

How to Order

Accuracy

Nil Basic type High precision type

3 Motor mounting position 4 Motor type

Nil	In-line
R	Right side parallel
L	Left side parallel

Symbol	Туре
NZ	Mounting type Z
NY	Mounting type Y
NX	Mounting type X
NW	Mounting type W
NV	Mounting type V
NU	Mounting type U
NT	Mounting type T
NM1	Mounting type M1
NM2	Mounting type M2

6 Lead [mm]

	<u> </u>		
Symbol	LEFS25	LEFS32	LEFS40
Н	20	24	30
Α	12	16	20
В	6	8	10

6 Stroke [mm]

50	50
to	to
1200	1200

RoHS

* Refer to the applicable stroke table.

Applicable Stroke Table

Applicable S	troke	Tabl	е																		●: Sta	andard
Stroke Model [mm]	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1100	1200
LEFS25	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	_	_	_	_	_
LEFS32	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	_	_
LEFS40	_	_	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

^{*} Please consult with SMC for non-standard strokes as they are produced as special orders.

Compatible Motors

Compatible Motors																
Applicable	motor model		Size/Motor type													
					25							32/40				
Manufacturer	Series	Type	NZ Mounting type Z	NY Mounting type Y	NX Mounting type X	NM1 Mounting type M1	NM2 Mounting type M2	NZ Mounting type Z	NY Mounting type Y	NX Mounting type X	NW Mounting type W	NV Mounting type V	NU Mounting type U	NT Mounting type T	NM1 Mounting type M1	NM2 Mounting type M2
Mia	MELSERVO-JN	HF-KN	•	_	_	_	_	•	_	_	_	_	_	_	_	_
Mitsubishi Electric Corporation	MELSERVO-J3	HF-KP	•	_	_	_	_	•	_	_	_	_	_	_	_	_
Обгрогаціон	MELSERVO-J4	HG-KR	•	_	_	_	_	•	_	_	_	_	_	_	_	_
YASKAWA Electric Corporation	Σ-V	SGMJV	•	_	_	_	_	•	_	_	_	_	_	_	_	_
SANYO DENKI CO., LTD.	SANMOTION R	R2	•	_	_	_	_	•	_	_	_	_	_	_	_	_
OMRON Corporation	Sysmac G5	R88M-K	•		_	_	_	_	•	_	_	_	_	_	_	_
Panasonic Corporation	MINAS-A4	MSMD	_	•	_	1		_	•	_	-	-	_	_	_	_
Tunusonio Corporation	MINAS-A5	MSMD/MHMD	_	•	_	_	_	_	•	_	_	_		_		
FANUC CORPORATION	βis	β	•	_	_	-	_	(β1 only)	_	_	•	_	_	_	_	_
NIDEC SANKYO CORPORATION	S-FLAG	MA/MH/MM	•	_	_	_	_	•	_	_	_	_	_	_	_	_
KEYENCE CORPORATION	SV	SV-M/SV-B	•	_	_	_	_	•	_	_	_	_	_	_	_	_
FUJI ELECTRIC CO., LTD.	ALPHA5	GYS/GYB	•	_	_	_	_	•	_	_	_	_	_	_	_	_
1 001 LLLCTRIC CO., LTD.	FALDIC- α	GYS	•	_	_	_	_	•	_	_	_	_	_	_	_	_
ORIENTAL MOTOR Co., Ltd.	AR/AZ	AR/AZ	_	_	_	_	•	_	_	_	_	_	_	_	_	●*2
FASTECH Co., Ltd.	Ezi-SERVO	EzM	_	_	_	•		_	_	_	-		_	_	●*2	_
Rockwell Automation, Inc.	MP-/VP-	MP/VP	_	_	_	_	_	_	_	●*1	_	_	_	_	_	_
(Allen-Bradley)	TL	TLY-A	•	_	_	_	_	_	_	_	_	_		•	_	_
Beckhoff Automation	AM	AM30	•	_	_	_	_	_	_	_	_	●*1	_	_	_	_
GmbH	AM	AM31	•	_	_	_	_	_	_	_	_	_	●*2	_	_	_
	AM	AM80/AM81	•	_	_	_	_	_	_	●*1	_	_		_	_	_
Siemens AG	1FK7	1FK7	_	_	•	_	_	_	_	●*1	_	_	_	_	_	_
Delta Electronics, Inc.	ASDA-A2	ECMA	•	_	_	_	_	•	_	_	_	_	_	_	_	_

^{*1} Motor mounting position: In-line only

^{*2} Only size 32 is available when the motor mounting position is right (or left) side parallel.

Electric Actuator/Slider Type Ball Screw Drive Series LEFS

Specifications Note 2)

- Values in this specification table are the allowable values of the actuator body with the standard motor mounted.
- Do not use the actuator so that it exceeds these values.

		Model			LEFS25			LEFS32			LEFS40						
	Stroke [mn	n] Note 1)			50 to 800			50 to 1000			150 to 1200						
	Work load	[leal]	Horizontal	10	20	20	30	40	45	30	50	60					
	work load	[kg]	Vertical	4	8	15	5	10	20	7	15	30					
			Up to 400	1500	900	450	1500	1000	500	1500	1000	500					
			401 to 500	1200	720	360	1500	1000	500	1500	1000	500					
			501 to 600	900	540	270	1200	800	400	1500	1000	500					
			601 to 700	700	420	210	930	620	310	1410	940	470					
	Speed [mm/s]	Stroke range	701 to 800	550	330	160	750	500	250	1140	760	380					
	[11111/9]	lange	801 to 900	_	_	_	610	410	200	930	620	310					
ક			901 to 1000	_	_	_	510	340	170	780	520	260					
ţi			1001 to 1100	_	_	_	_	_	_	500	440	220					
lica			1101 to 1200	_	_	_	_	_	_	500	380	190					
Actuator specifications	Pushing ret	urn to origii	n speed [mm/s]														
ds.	Positioning		Basic type					±0.02									
ıto	repeatabili	ty [mm]	High precision type														
ξĘ	Lost motio	n Note 3)	Basic type	0.1 or less													
¥	[mm]		High precision type														
	Ball screw		Thread size [mm]		ø10			ø12			ø15						
	specification	ons	Lead [mm]	20	12	6	24	16	8	30	20	10					
			Shaft length [mm]		Stroke + 150)		Stroke + 185			Stroke + 235						
			eration [mm/s ²]	20000 Note 4)													
	•		nce [m/s ²] Note 6)	-													
	Actuation			Ball screw (LEFS□), Ball screw + Belt (LEFS□ ^R)													
	Guide type							Linear guide									
	Operating							104°F [5 to									
			ange [%RH]				90 or les	ss (No conde	nsation)								
	Actuation	unit weight	[kg]		0.2			0.3			0.55						
	Other inert	ia [kg.cm²]).02 (LEFS25			0.08 (LEFS32	,		.08 (LEFS40	·					
ē				0	.02 (LEFS25	R)	0.	.06 (LEFS32	E)	0	.17 (LEFS40	3)					
Other	Friction co							0.05									
Note 5)	Mechanica		'					0.8									
	Motor shap				□40					60							
9	Motor type						AC servo	motor (100	V/200 V)								
ren r	Rated outp										400						
Reference motor	Rated torq		·m]		0.24 [0.32]			0.47 [0.64]			0.96 [1.3]						
ŒΕ	Rated rota	tion [rpm]						3000									

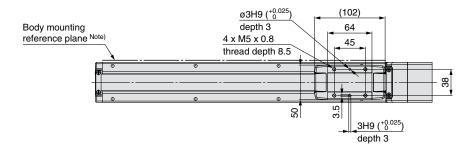
- Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders.
- Note 2) Do not allow collisions at either end of the table traveling distance at a speed exceeding "pushing return to origin speed." Additionally, when running the positioning operation, do not set within 2 mm of both ends.
- Note 3) A reference value for correcting an error in reciprocal operation.
- Note 4) Maximum acceleration/deceleration changes according to the work load.
 - Refer to the "Work Load-Acceleration/Deceleration Graph (Guide)" for ball screw drive on pages 7 to 9.
- Note 5) Each value is a guide. Use such value to select a motor capacity.
- Note 6) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)

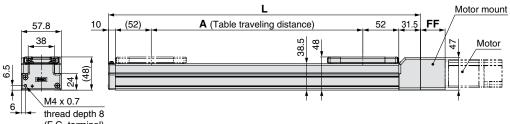
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)

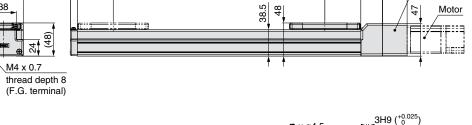
Weight

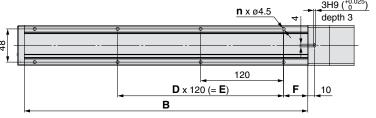
Model		LEFS25														
Stroke [mm]	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
Product weight [kg]	1.50	1.70	1.80	2.00	2.10	2.25	2.40	2.55	2.70	2.80	2.90	3.10	3.35	3.50	3.65	3.80

Model		LEFS32																		
Stroke [mm]	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
Product weight [kg]	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20	4.40	4.60	4.80	5.00	5.20	5.40	5.60	5.80	6.00	6.20

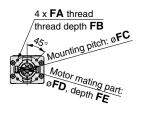

Model		LEFS40																		
Stroke [mm]	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1100	1200
Product weight [kg]	4.60	4.80	5.20	5.35	5.70	5.95	6.30	6.50	6.80	6.95	7.40	7.60	8.00	8.15	8.50	8.75	9.10	9.30	9.76	10.32

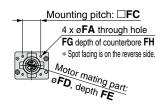



Dimensions: Ball Screw Drive


Refer to the "Motor Mounting" on page 21 for details about motor mounting and included parts.

LEFS25





Motor type: NZ, NY, NX

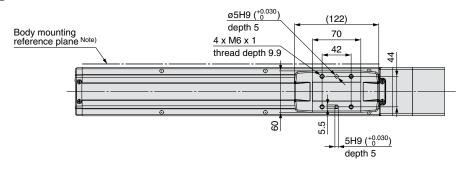
Motor type: NM1, NM2

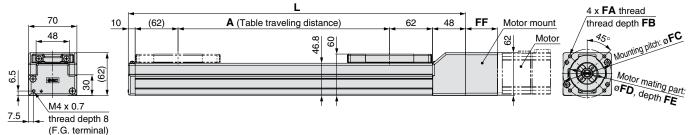
Note) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

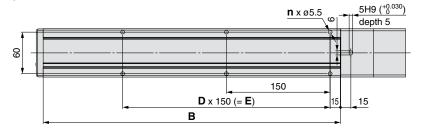
Dimensions [m												
Stroke	L	Α	В	n	D	E	F					
50	201.5	56	160	4	_	_	20					
100	251.5	106	210	4	_	_	35					
150	301.5	156	260	4	_	_	35					
200	351.5	206	310	6	2	240	35					
250	401.5	256	360	6	2	240	35					
300	451.5	306	410	8	3	360	35					
350	501.5	356	460	8	3	360	35					
400	551.5	406	510	8	3	360	35					
450	601.5	456	560	10	4	480	35					
500	651.5	506	610	10	4	480	35					
550	701.5	556	660	12	5	600	35					
600	751.5	606	710	12	5	600	35					
650	801.5	656	760	12	5	600	35					
700	851.5	706	810	14	6	720	35					
750	901.5	756	860	14	6	720	35					
800	951.5	806	910	16	7	840	35					

Motor Mounting Dimensions												
Motor type FA FB FC FD FE FF FG												
NZ/NX	M4 x 0.7	8	46	30	3.5	35.5	_	_				
NY	M3 x 0.5	8	45	30	3.5	35.5	_	_				
NM1	3.4	_	31	22*	2.5*	24	6.5	13.5				
NM2	3.4	_	31	22*	2.5*	33.1	6.5	22.6				

^{*} Dimensions after mounting a ring spacer (Refer to page 21.)




Motorless Type


Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 21 for details about motor mounting and included parts.

LEFS32

Note) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensi	ons					[mm]
Stroke	L	Α	В	n	D	E
50	238	56	180	4	_	_
100	288	106	230	4		_
150	338	156	280	4	_	_
200	388	206	330	6	2	300
250	438	256	380	6	2	300
300	488	306	430	6	2	300
350	538	356	480	8	3	450
400	588	406	530	8	3	450
450	638	456	580	8	3	450
500	688	506	630	10	4	600
550	738	556	680	10	4	600
600	788	606	730	10	4	600
650	838	656	780	12	5	750
700	888	706	830	12	5	750
750	938	756	880	12	5	750
800	988	806	930	14	6	900
850	1038	856	980	14	6	900
900	1088	906	1030	14	6	900
950	1138	956	1080	16	7	1050
1000	1188	1006	1130	16	7	1050

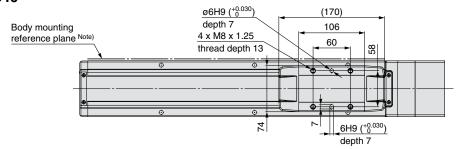
Motor Mounting Dimensions [mi												
Motor type	FA	FB	FC	FD	FE	FF						
NZ/NT	M5 x 0.8	9	70	50	5	46						
NY	M4 x 0.7	8	70	50	5	46						
NX	M5 x 0.8	9	63	40*	4.5*	49.7						
NW/NU	M5 x 0.8	9	70	50	5	47.5						
NV	M4 x 0.7	8	63	40*	4.5*	49.7						
NM1	M4 x 0.7	8	□47.14	38.1*	4.5*	21						
NM2	M4 x 0.7	8	□50	36*	4.5*	40.1						

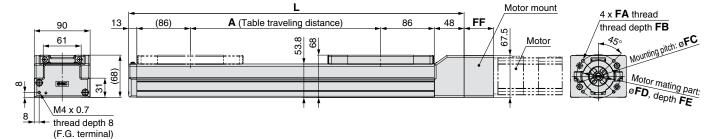
^{*} Dimensions after mounting a ring spacer (Refer to page 21.)

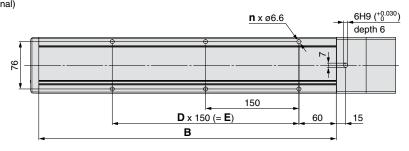
Model Selection

LEFB

LEJS


LEY




Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 21 for details about motor mounting and included parts.

LEFS40

Note) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimension	ons					[mm
Stroke	L	Α	В	n	D	E
150	389	156	328	4	_	150
200	439	206	378	6	2	300
250	489	256	428	6	2	300
300	539	306	478	6	2	300
350	589	356	528	8	3	450
400	639	406	578	8	3	450
450	689	456	628	8	3	450
500	739	506	678	10	4	600
550	789	556	728	10	4	600
600	839	606	778	10	4	600
650	889	656	828	12	5	750
700	939	706	878	12	5	750
750	989	756	928	12	5	750
800	1039	806	978	14	6	900
850	1089	856	1028	14	6	900
900	1139	906	1078	14	6	900
950	1189	956	1128	16	7	1050
1000	1239	1006	1178	16	7	1050
1100	1339	1106	1278	18	8	1200
1200	1439	1206	1378	18	8	1200

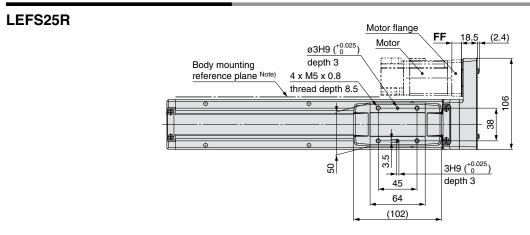
Motor Mou	Motor Mounting Dimensions [mm]												
Motor type	FA	FB	FC	FD	FE	FF							
NZ/NT	M5 x 0.8	9	70	50	5	47.5							
NY	M4 x 0.7	8	70	50	5	47.5							
NX	M5 x 0.8	9	63	40*	4.5*	51							
NW/NU	M5 x 0.8	9	70	50	5	48.8							
NV	M4 x 0.7	8	63	40*	4.5*	51							
NM1	M4 x 0.7	8	□47.14	38.1*	4.5*	22							
NM2	M4 x 0.7	8	□50	36*	4.5*	41.4							

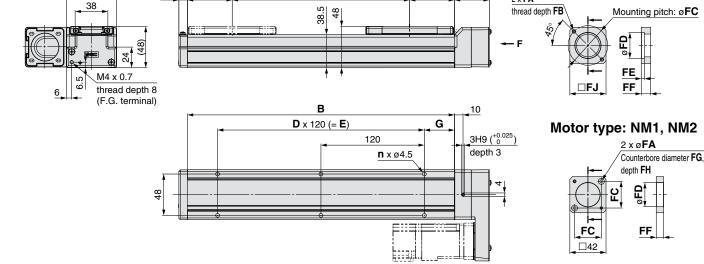
^{*} Dimensions after mounting a ring spacer (Refer to page 21.)

Motor side stroke end

40.5

2 x **FA**


Motor type: NZ, NY, NX


Dimensions: Ball Screw Drive

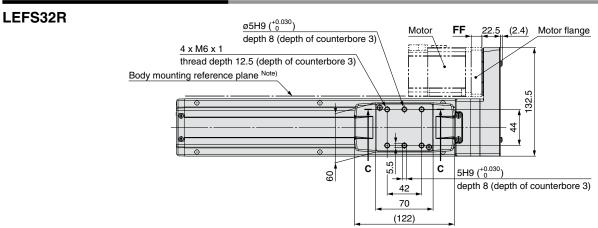
58

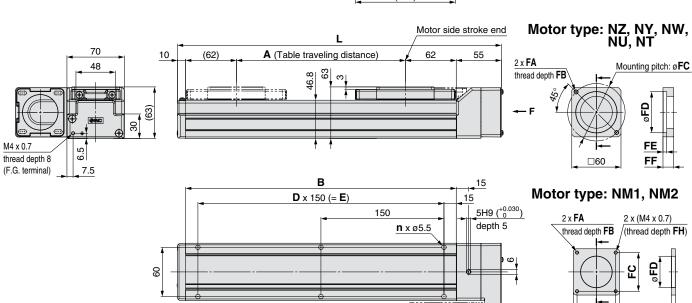
10

Refer to the "Motor Mounting" on page 22 for details about motor mounting and included parts.

A (Table traveling distance)

Note) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)


Dimensions							[mm]
Model	L	Α	В	n	D	E	G
LEFS25□□□-50	210.5	56	160	4	_	_	20
LEFS25□□□-100	260.5	106	210	4	_	_	35
LEFS25□□□-150	310.5	156	260	4	_	_	35
LEFS25□□□-200	360.5	206	310	6	2	240	35
LEFS25□□□-250	410.5	256	360	6	2	240	35
LEFS25□□□-300	460.5	306	410	8	3	360	35
LEFS25□□□-350	510.5	356	460	8	3	360	35
LEFS25□□□-400	560.5	406	510	8	3	360	35
LEFS25□□□-450	610.5	456	560	10	4	480	35
LEFS25□□□-500	660.5	506	610	10	4	480	35
LEFS25□□□-550	710.5	556	660	12	5	600	35
LEFS25□□□-600	760.5	606	710	12	5	600	35
LEFS25□□□-650	810.5	656	760	12	5	600	35
LEFS25□□□-700	860.5	706	810	14	6	720	35
LEFS25□□□-750	910.5	756	860	14	6	720	35
LEFS25□□□-800	960.5	806	910	16	7	840	35


Motor Mo	unting	Dime	ensid	ons					[mm]
Motor type	FA	FB	FC	FD	FE	FF	FG	FH	FJ
NZ	M4 x 0.7	7.5	46	30	3.7	11	_	_	42
NY	M3 x 0.5	5.5	45	30	5	11	_	_	38
NX	M4 x 0.7	7	46	30	3.7	8	_	_	42
NM1/NM2	ø3.4	_	31	28	_	8.5	7	3.5	_

Refer to the "Motor Mounting" on page 22 for details about motor mounting and included parts.

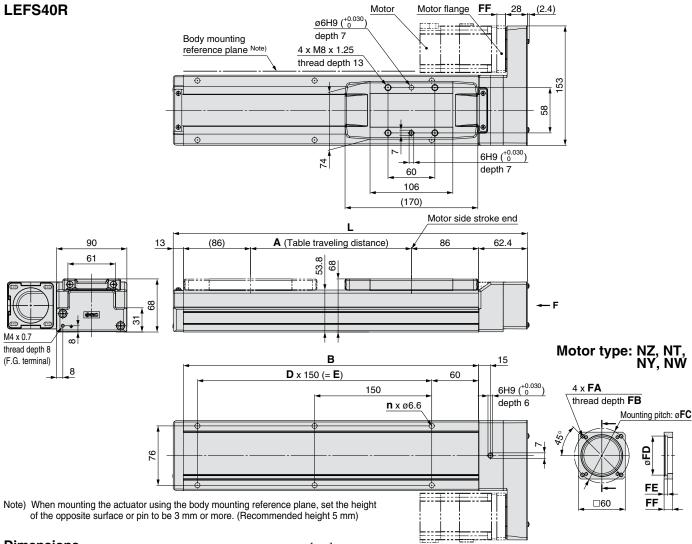
Dimensions: Ball Screw Drive

Dimensions						[mm]
Model	L	Α	В	n	D	E
LEFS32□□□-50	245	56	180	4	_	_
LEFS32□□□-100	295	106	230	4	_	_
LEFS32□□□-150	345	156	280	4	_	_
LEFS32□□□-200	395	206	330	6	2	300
LEFS32□□□-250	445	256	380	6	2	300
LEFS32□□□-300	495	306	430	6	2	300
LEFS32□□□-350	545	356	480	8	3	450
LEFS32□□□-400	595	406	530	8	3	450
LEFS32□□□-450	645	456	580	8	3	450
LEFS32□□□-500	695	506	630	10	4	600
LEFS32□□□-550	745	556	680	10	4	600
LEFS32□□□-600	795	606	730	10	4	600
LEFS32□□□-650	845	656	780	12	5	750
LEFS32□□□-700	895	706	830	12	5	750
LEFS32□□□-750	945	756	880	12	5	750
LEFS32□□□-800	995	806	930	14	6	900
LEFS32□□□-850	1045	856	980	14	6	900
LEFS32□□□-900	1095	906	1030	14	6	900
LEFS32□□□-950	1145	956	1080	16	7	1050
LEFS32□□□-1000	1195	1006	1130	16	7	1050

Note) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Motor M	Motor Mounting Dimensions												
Motor type	FA	FB	FC	FD	FE	FF	FJ	FH					
NZ/NW	M5 x 0.8	8.5	70	50	4.6	13	_	_					
NY	M4 x 0.7	8	70	50	4.6	13	_	_					
NU	M5 x 0.8	8.5	70	50	4.6	10.6	_	_					
NT	M5 x 0.8	8.5	70	50	4.6	17	_	_					
NM1	M4 x 0.7	5	47.14	38.2	_	5	56.4	5					
NM2	M4 x 0.7	8	50	38.2	_	11.5	60	7					

FC

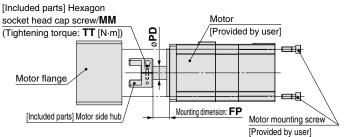

□FJ

FF_.

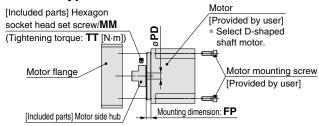
Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 22 for details about motor mounting and included parts.

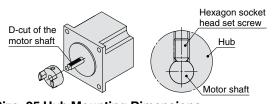
Dimensions						[mm]
Model	D	E				
LEFS40□□□-150	403.4	156	328	4	_	150
LEFS40□□□-200	453.4	206	378	6	2	300
LEFS40□□□-250	503.4	256	428	6	2	300
LEFS40□□□-300	553.4	306	478	6	2	300
LEFS40□□□-350	603.4	356	528	8	3	450
LEFS40□□□-400	653.4	406	578	8	3	450
LEFS40□□□-450	703.4	456	628	8	3	450
LEFS40□□□-500	753.4	506	678	10	4	600
LEFS40□□□-550	803.4	556	728	10	4	600
LEFS40□□□-600	853.4	606	778	10	4	600
LEFS40□□□-650	903.4	656	828	12	5	750
LEFS40□□□-700	953.4	706	878	12	5	750
LEFS40□□□-750	1003.4	756	928	12	5	750
LEFS40□□□-800	1053.4	806	978	14	6	900
LEFS40□□□-850	1103.4	856	1028	14	6	900
LEFS40□□-900	1153.4	906	1078	14	6	900
LEFS40□□□-950	1203.4	956	1128	16	7	1050
LEFS40□□□-1000	1253.4	1006	1178	16	7	1050
LEFS40□□□-1100	1353.4	1106	1278	18	8	1200
LEFS40□□□-1200	1453.4	1206	1378	18	8	1200


Motor Mounting Dimensions [mr								
Motor type	FA	FB	FC	FD	FE	FF		
NZ/NW	M5 x 0.8	8.5	70	50	4.6	11		
NY	M4 x 0.7	8	70	50	4.6	11		
NT	M5 x 0.8	8.5	70	50	4.6	14.5		

Motor Mounting: In-line


- When mounting a hub, remove the oil content, dust, or dirt sticking to the shaft and hub inside diameter.
- This product does not include the motor and motor mounting screws. (Provided by user) For the shaft-end shape of the motor, prepare the round type.
- Take loose prevention measures for the motor mounting screws.

■ Motor type: NZ, NY, NX, NW, NV, NU, NT, NM2



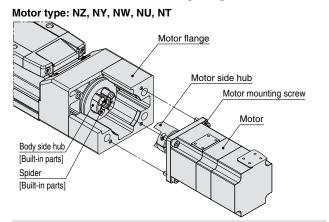
* Note for mounting a motor to the NM2 motor type Motor mounting screws for the LEFS25 are fixed starting from the motor flange side. (Opposite of the drawing)

■ Motor type: NM1

- * Note for mounting a hub to the NM1 motor type When mounting the hub to the motor, make sure to position the set screw vertical to the D-cut surface of the motor shaft. (Refer to the figure shown below.)
- * Motor mounting screws for the LEFS25 are fixed starting from the motor flange side. (Opposite of the drawing)

Size: 25 Hub Mounting Dimensions [mm]

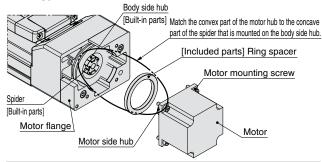
Motor type	MM	TT	PD	FP
NZ	M2.5 x 10	1.00	8	12.4
NY	M2.5 x 10	1.00	8	12.4
NX	M2.5 x 10	1.00	8	6.9
NM1	M3 x 4	0.63	5	11.9
NM2	M2.5 x 10	1.00	6	10


Size: 32 Hub Mounting Dimensions [mm]

<u> </u>								
Motor type	MM	TT	PD	FP				
NZ	M3 x 12	1.5	14	17.5				
NY	M4 x 12	2.5	11	17.5				
NX	M4 x 12	2.5	9	5.2				
NW	M4 x 12	2.5	9	13				
NV	M4 x 12	2.5	9	5.2				
NU	M4 x 12	2.5	11	13				
NT	M3 x 12	1.5	12	17.5				
NM1	M4 x 5	1.5	6.35	5.4				
NM2	M4 x 12	2.5	10	12				

Size: 40 Hub Mounting Dimensions [mm]

MM	TT	PD	FP			
M3 x 12	1.5	14	17.5			
M3 x 12	1.5	14	17.5			
M4 x 12	2.5	9	5.2			
M4 x 12	2.5	9	13			
M4 x 12	2.5	9	5.2			
M4 x 12	2.5	11	13			
M3 x 12	1.5	12	17.5			
M4 x 5	1.5	6.35	5.1			
M4 x 12	2.5	10	12			
	M3 x 12 M3 x 12 M4 x 12 M4 x 12 M4 x 12 M4 x 12 M3 x 12 M4 x 5	M3 x 12 1.5 M3 x 12 1.5 M4 x 12 2.5 M4 x 12 2.5 M4 x 12 2.5 M4 x 12 2.5 M4 x 12 2.5 M3 x 12 1.5 M4 x 5 1.5	M3 x 12 1.5 14 M3 x 12 1.5 14 M4 x 12 2.5 9 M4 x 12 2.5 9 M4 x 12 2.5 9 M4 x 12 2.5 9 M4 x 12 2.5 11 M3 x 12 1.5 12 M4 x 5 1.5 6.35			


Motor Mounting Diagram

Mounting procedure

- 1) Fix the motor (provided by user) and the "motor hub" with the "MM hexagon socket head cap screw."
- 2) Check the "motor hub position", and then insert it. (Refer to the mounting diagram.)
- 3) Fix the motor and the "motor flange" with the motor mounting screws (provided by user).

Motor type: NX, NV, NM1, NM2

Mounting procedure

- 1) Fix the motor (provided by user) and the "motor hub" with the "MM hexagon socket head cap screw (Motor type: NX, NM2)" or "MM hexagon socket head set screw (Motor type: NM1)."
- 2) Check the "motor hub position", and then insert it. (Refer to the mounting diagram.)
- 3) Mount the "ring spacer" to the motor.
- 4) Fix the motor and the "motor flange" with the motor mounting screws (provided by user). * For the LEFS25
- 4) Remove the "motor flange", which has been temporarily mounted, from the housing B, and secure the motor to the "motor flange" using the motor mounting screws (that are to be prepared by user).
- 5) Tighten the "motor flange" to the "housing B" using motor flange fixing screws (included parts).

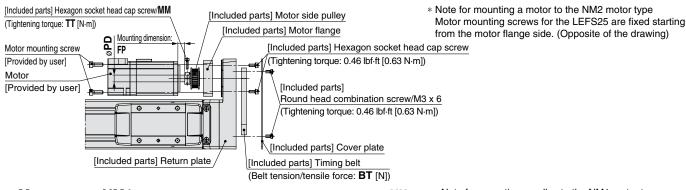
Included Parts List

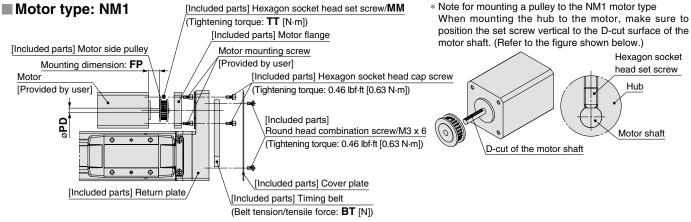
Size: 25

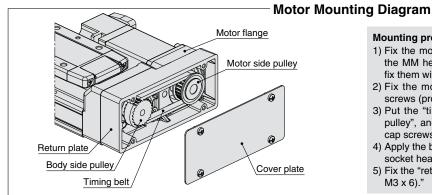
	Quantity					
Description	Motor type					
	ΝZ	NY	NX	NM1	NM2	
Motor side hub	1	1	1	1	1	
Hexagon socket head cap screw/set screw (for hub fixing)*	1	1	1	1	1	
Hexagon socket head cap screw (for motor flange fixing)*	_	_	_	2	2	
Ring spacer	_	_	_	1	1	
			-			

* For screw sizes, refer to the hub mounting dimensions.

Size: 32, 40


		Quantity								
	Description	Motor type			Motor type					
		ΝZ	NY	NX	NW	N۷	NU	NT	NM1	NM2
	Motor side hub	1	1	1	1	1	1	1	1	1
	Hexagon socket head cap screw/set screw (for hub fixing)*	1	1	1	1	1	1	1	1	1
	Ring spacer	_	_	1	_	1	_	_	1	1
				. —			. —			


* For screw sizes, refer to the hub mounting dimensions.



Motor Mounting: Motor Parallel

■ Motor type: NZ, NY, NX, NW, NU, NT, NM2

Mounting procedure

- 1) Fix the motor (provided by user) and the "motor side pulley" with the MM hexagon socket head cap screw. For motor type "NM1", fix them with the MM hexagon socket head set screw.
- 2) Fix the motor and the "motor flange" with the motor mounting screws (provided by user).
- 3) Put the "timing belt" on the "motor side pulley" and "body side pulley", and then fix it temporarily with the "hexagon socket head cap screws (2 x M3 x 8)." (Refer to the left diagram.)
- 4) Apply the belt tension and tighten the timing belt with the "hexagon socket head cap screws (2 x M3 x 8)."
- 5) Fix the "return plate" with the "round head combination screws (4 x M3 x 6)."

Size: 25 Hub Mounting Dimensions [mm]

Motor type	MM	TT	PD	FP	BT
NZ/NY	M2.5 x 10	1.00	8	8	19.6
NX	M2.5 x 10	1.00	8	5	19.6
NM1	M3 x 4	0.63	5	12.5	19.6
NM2	M2.5 x 10	1.00	6	5.5	19.6

Size: 32 Hub Mounting Dimensions [mm]

	_					
Motor type	MM	TT	PD	FP	ВТ	
NZ	M3 x 12	1.50	14	6.6	49	
NY	M3 x 12	1.50	11	6.6	49	
NW	M4 x 12	2.50	9	6.6	49	
NU	M3 x 12	1.50	11	4.2	49	
NT	M3 x 12	1.50	12	10.6	49	
NM1	M3 x 4	0.63	6.35	10.6	49	
NM2	M3 x 12	1.50	10	5.1	49	

Size: 40 Hub Mounting Dimensions [mm]

			- []		
Motor type	MM	TT	PD	FP	BT
NZ/NY	M4 x 12	2.5	14	4.5	98.1
NW	M4 x 12	2.5	9	4.5	98.1
NT	M4 x 12	2.5	12	8	98.1

Included Parts List

Size: 25

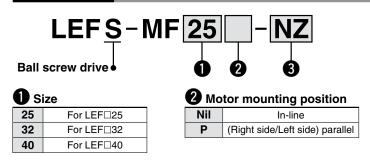
Description	Quantity
Motor flange	1
Motor side pulley	1
Cover plate	1
Timing belt	1
Hexagon socket head cap screw/set screw (for pulley fixing)*	1
Hexagon socket head cap screw M3 x 8 (for motor flange fixing)	2
Round head combination screw M3 x 6	4

* For screw sizes, refer to the hub mounting dimensions.

Size: 32. 40

Qua	ntity
32	40
1	1
1	1
1	1
1	1
^{ew} 1	1
2	4
4	4
	32 1 1 1 1 1

* For screw sizes, refer to the hub mounting dimensions.



Series LEFS Motor Mounting Parts

Motor Flange Option

After purchasing the product, the motor can be changed to the motor types shown below by replacing with this option. (Except NM1) Use the following part numbers to select a compatible motor flange option and place an order.

How to Order

3 Motor type

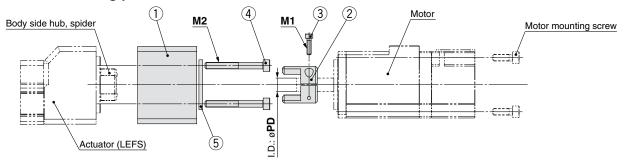
Symbol	Туре	Symbol	Type					
NZ	Mounting type Z	NV	Mounting type V					
NY	Mounting type Y	NU	Mounting type U					
NX	Mounting type X	NT	Mounting type T					
NW	Mounting type W	NM2	Mounting type M2					

^{*} Select only NZ, NY, NX or NM2 for the LEFS-MF25.

Compatible Motors

Applicable	Applicable motor model				Size/Motor type									
Applicable motor model														
				2	5		32/40							
Manufacturer	Series	Туре	NZ Mounting type Z	NY Mounting type Y	NX Mounting type X	NM2 Mounting type M2	NZ Mounting type Z	NY Mounting type Y	NX Mounting type X	NW Mounting type W	NV Mounting type V	NU Mounting type U	NT Mounting type T	NM2 Mounting type M2
	MELSERVO-JN	HF-KN	•	_	_	_	•	_	_	_	_	_	_	_
Mitsubishi Electric Corporation	MELSERVO-J3	KF-KP	•	_		_	•	_	_	_	_		_	_
Corporation	MELSERVO-J4	HG-KR	•	_	_	_	•	_	_	_	_	_	_	_
YASKAWA Electric Corporation	Σ-V	SGMJV	•	_	_	_	•	_	_	_	_	_	_	_
SANYO DENKI CO., LTD.	SANMOTION R	R2	•	_	_	_	•	_	_	_	_	_	_	_
OMRON Corporation	Sysmac G5	R88M-K	•	_	_	_	_	•	_	_	_	_	_	_
Panasonic	MINAS-A4	MSMD	_	•	_	_	_	•	_	_	_	_	_	_
Corporation	MINAS-A5	MSMD/MHMD	_	•	_	_	_	•	_	_	_	_	_	_
FANUC CORPORATION	βis	β	•	_	-	_	• (β1 only)	_	_	•	_	1	_	_
NIDEC SANKYO CORPORATION	S-FLAG	MA/MH/MM	•	_	_	_	•	_	_	_	_	_	_	_
KEYENCE CORPORATION	SV	SV-M/SV-B	•	_	_	_	•	_	_	_	_	_	_	_
FUJI ELECTRIC CO.,	ALPHA5	GYS/GYB	•	_	_	_	•	_	_	_	_	_	_	_
LTD.	FALDIC-α	GYS	•	_	_	_	•	_	_	_	_	_	_	_
ORIENTAL MOTOR Co., Ltd.	AR/AZ	AR/AZ	_	_	_	•	_	_	_	_	_	-	_	●*2
Rockwell Automation,	MP-/VP-	MP/VP		_		_	_	_	●*1	_	_	1		_
Inc. (Allen-Bradley)	TL	TLY-A	•	_	_	_	_	_	_	_	_	_	•	_
Beckhoff Automation	AM	AM30	•	_	_	_	_	_	_	_	●*1	_	_	_
GmbH	AM	AM31	•	_	_	_	_	_	_	_	_	●*2	_	_
	AM	AM80/AM81	•	_	_	_	_	_	●*1	_	_	_	_	_
Siemens AG	1FK7	1FK7	_	_	•	_	_	_	● *1	_	_		_	_
Delta Electronics, Inc.	ASDA-A2	ECMA	•	_	_	_	•	_	_	_	_	_	_	_

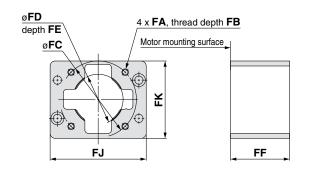
Note) When the LEF□□□NM1□-□ is purchased, it is not possible to change to other motor types.



^{*1} Motor mounting position: In-line only

^{*2} Only size 32 is available when the motor mounting position is right (or left) side parallel.

Dimensions: Motor Flange Option


Motor mounting position: In-line

Component Parts

No.	Description	Quantity
1	Motor flange	1
2	Hub (Motor side)	1
3	Hexagon socket head cap screw (for hub fixing)	1
4	Hexagon socket head cap screw (for motor flange mounting)	2
5	Ring spacer (Only for NX, NV and NM2 of size 32, 40)	1

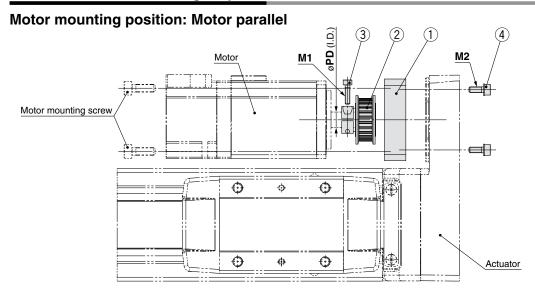
Motor flange details

For NM2

4 x FA through hole, Counterbore diameter FG, depth FH * Spot facing is on the reverse side. Motor mounting surface ### Motor mounting surface ### Motor mounting surface	
□FC FJ	FF

Dimens	sions													[mm]
Size	Motor type	FA	FB	FC	FD	FE	FF	FG	FH	FJ	FK	M1	M2	PD
	NZ/NX	M4 x 0.7	8	46	30	3.5	35.5	_	_	57.8	46.5	M2.5 x 10	M4 x 35	8
25	NY	M3 x 0.5	8	45	30	3.5	35.5	_	_	57.8	46.5	M2.5 x 10	M4 x 35	8
	NM2	ø3.4	_	31	22*	2.5*	33.1	6.5	22.6	57.8	46.5	M2.5 x 10	M4 x 18	6
	NZ	M5 x 0.8	9	70	50	5	46	_	_	69.8	61.4	M3 x 12	M5 x 40	14
	NY	M4 x 0.7	8	70	50	5	46	_	_	69.8	61.4	M4 x 12	M5 x 40	11
	NX	M5 x 0.8	9	63	50	5	49.7	_	_	69.8	61.4	M4 x 12	M5 x 40	9
32	NW	M5 x 0.8	9	70	50	5	47.5	_	_	69.8	61.4	M4 x 12	M5 x 40	9
32	NV	M4 x 0.7	8	63	50	5	49.7	_	_	69.8	61.4	M4 x 12	M5 x 40	9
	NU	M5 x 0.8	9	70	50	5	47.5	_	_	69.8	61.4	M4 x 12	M5 x 40	11
	NT	M5 x 0.8	9	70	50	5	46	_	_	69.8	61.4	M3 x 12	M5 x 40	12
	NM2	M4 x 0.7	8	50	36*	4.5*	40.1	_	_	69.8	61.4	M4 x 12	M5 x 25	10
	NZ	M5 x 0.8	9	70	50	5	47.5	_	_	89.8	66.9	M3 x 12	M5 x 40	14
	NY	M4 x 0.7	8	70	50	5	47.5	_	_	89.8	66.9	M3 x 12	M5 x 40	14
	NX	M5 x 0.8	9	63	50	5	51	_	_	89.8	66.9	M4 x 12	M5 x 40	9
40	NW	M5 x 0.8	9	70	50	5	48.8	_	_	89.8	66.9	M4 x 12	M5 x 40	9
40	NV	M4 x 0.7	8	63	50	5	51	_	_	89.8	66.9	M4 x 12	M5 x 40	9
	NU	M5 x 0.8	9	70	50	5	48.8	_	_	89.8	66.9	M4 x 12	M5 x 40	11
	NT	M5 x 0.8	9	70	50	5	47.5	_	_	89.8	66.9	M3 x 12	M5 x 40	12
	NM2	M4 x 0.7	8	50	36*	4.5*	41.4	_	_	89.8	66.9	M4 x 12	M5 x 25	10

^{*} Dimensions after mounting a ring spacer


Model Selection

LEFB

LEY

Series LEFS

Dimensions: Motor Flange Option

Component Parts

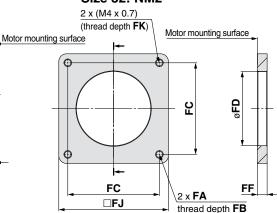
øΕD

FF

		Quantity			
No.	Description	Si	ze		
		25, 32	40		
1	Motor flange	1	1		
2	Motor pulley	1	1		
3	Hexagon socket head cap screw (for pulley fixing)	1	1		
4	Hexagon socket head cap screw (for motor flange mounting)	2	4		

Motor flange details

Motor mounting surface


FF

FA thread depth FB

2 x øFA
Counterbore diameter FG,
depth FH

Size 32: NM2

Dimensions

□FJ

Dimens	sions													[mm]
Size	Motor type	FA	FB	FC	FD	FE	FF	FG	FH	FJ	FK	M1	M2	PD
	NZ	2 x M4 x 0.7	7.5	46	30	3.7	11	_	_	42	_	M2.5 x 10	M3 x 8	8
25	NY	2 x M3 x 0.5	5.5	45	30	5	11	_	_	38	_	M2.5 x 10	M3 x 8	8
25	NX	2 x M4 x 0.7	7	46	30	3.7	8	_	-	42	_	M2.5 x 10	M3 x 8	8
	NM2	ø3.4	_	31	28	_	8.5	7	3.5	42	_	M2.5 x 10	M3 x 8	6
	NZ	2 x M5 x 0.8	8.5	70	50	4.6	13	_	_	60	_	M3 x 12	M4 x 12	14
	NY	2 x M4 x 0.7	8	70	50	4.6	13	_	_	60	_	M3 x 12	M4 x 12	11
32	NW	2 x M5 x 0.8	8.5	70	50	4.6	13	_	_	60	_	M4 x 12	M4 x 12	9
32	NU	2 x M5 x 0.8	8.5	70	50	4.6	10.6	_	_	60	_	M3 x 12	M4 x 12	11
	NT	2 x M5 x 0.8	8.5	70	50	4.6	17	_	_	60	_	M3 x 12	M4 x 12	12
	NM2	M4 x 0.7	8	50	38.2	_	11.5	_	_	60	7	M3 x 12	M4 x 12	10
	NZ	4 x M5 x 0.8	8.5	70	50	4.6	11	_	_	60	_	M4 x 12	M4 x 12	14
40	NY	4 x M4 x 0.7	8	70	50	4.6	11	_	_	60	_	M4 x 12	M4 x 12	14
40	NW	4 x M5 x 0.8	8.5	70	50	4.6	11	_	_	60	_	M4 x 12	M4 x 12	9
	NT	4 x M5 x 0.8	8.5	70	50	4.6	14.5	_		60	_	M4 x 12	M4 x 12	12

Electric Actuator/Slider Type Ball Screw Drive/Series LEFB

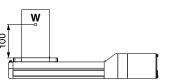
Model Selection

Series LEFB ▶ Page 31

Selection Procedure

Step 1 Check the work load-speed.

Step 2 Check the cycle time.


Check the allowable moment.

Selection Example

Operating conditions

- Workpiece mass: 20 [kg]
- Speed: 1500 [mm/s]
- Acceleration/Deceleration: 3000 [mm/s²]
- Stroke: 2000 [mm]
- Mounting position: Horizontal upward

Step 1 Check the work load-speed. <Speed-Work Load Graph>

Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications with reference to the "Speed-Work Load Graph (Guide)" on page 27.

Selection example) The **LEFB40**□**S-2000** is temporarily selected based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.

Cycle time:

T can be found from the following equation.

$$T = T1 + T2 + T3 + T4 [s]$$

 T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

• T2: Constant speed time can be found from the following equation.

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}[s]$$

• T4: Settling time varies depending on the motor type and load. The value below is recommended.

$$T4 = 0.05 [s]$$

* The conditions for the settling time vary depending on the motor or driver to be used.

Calculation example)

T1 to T4 can be calculated as follows.

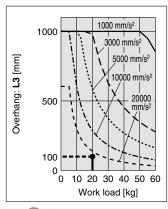
$$T1 = V/a1 = 1500/3000 = 0.5$$
 [s],

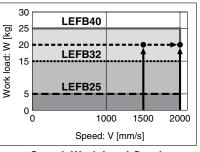
$$T3 = V/a2 = 1500/3000 = 0.5 [s]$$

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}$$

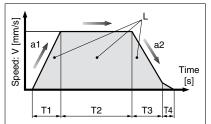
$$=\frac{2000-0.5\cdot 1500\cdot (0.5+0.5)}{1500}$$

$$= 0.83 [s]$$


$$T4 = 0.05 [s]$$


Therefore, the cycle time can be obtained as follows.

$$T = T1 + T2 + T3 + T4$$


$$= 0.5 + 0.83 + 0.5 + 0.05$$

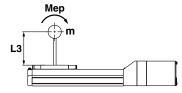
= 1.88 [s]

<Speed-Work Load Graph>

- L: Stroke [mm]
 - ··· (Operating condition)
- V : Speed [mm/s]
 - ··· (Operating condition)
- a1: Acceleration [mm/s2]
 - ··· (Operating condition)
- a2: Deceleration [mm/s²]
 - ··· (Operating condition)

T1: Acceleration time [s]

Time until reaching the set speed

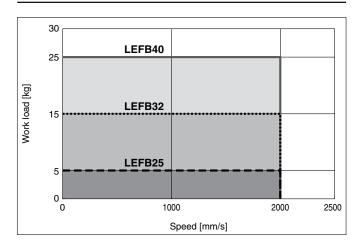

T2: Constant speed time [s] Time while the actuator is operating at a constant speed

T3: Deceleration time [s] Time from the beginning of the constant speed operation to stop

T4: Settling time [s]

Time until positioning is completed

Step 3 Check the guide moment.

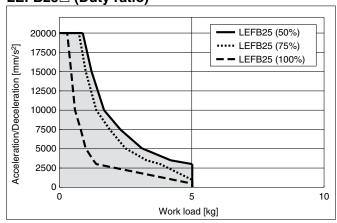

Based on the above calculation result, the LEFB40□S-2000 is selected.

Nodel Selection

EFS

Speed-Work Load Graph (Guide)

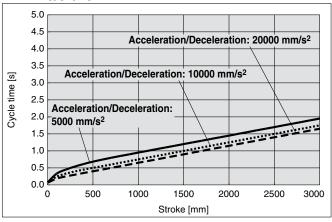
LEFB□/Belt Drive



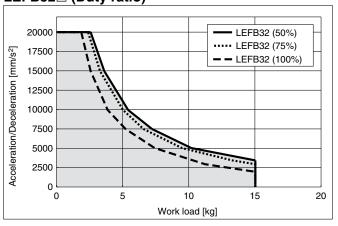
* The values shown below are allowable values of the actuator body. Do not use the actuator so that it exceeds these specification ranges.

Work Load-Acceleration/Deceleration Graph (Guide)

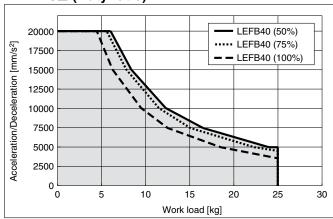
LEFB□/Belt Drive


LEFB25□ (Duty ratio)

Cycle Time Graph (Guide)


LEFB□/Belt Drive

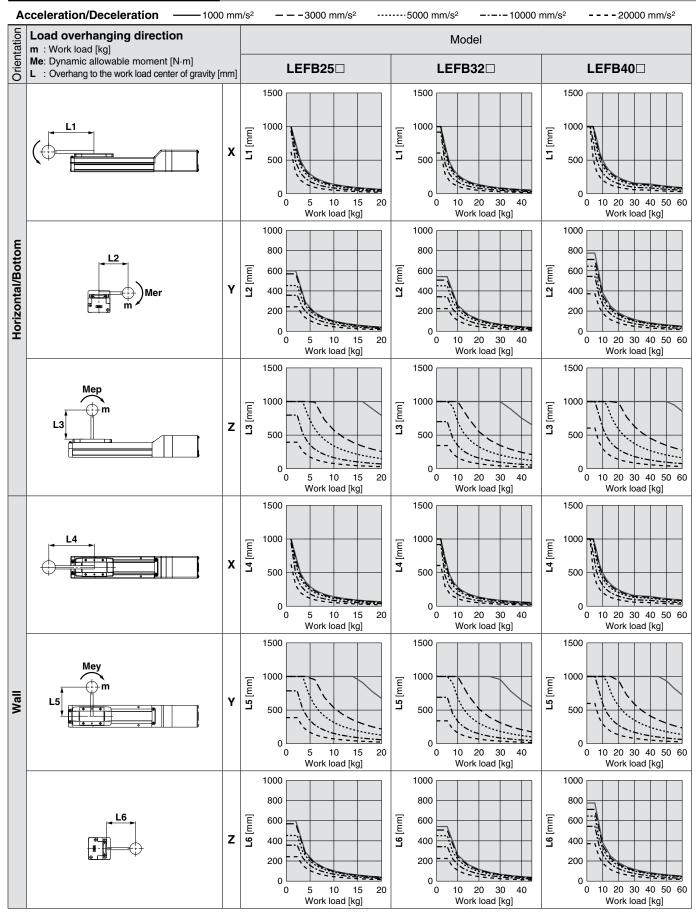
LEFB25/32/40



- * Cycle time is for when maximum speed.
- * Maximum stroke: LEFB25: 2000 mm LEFB32: 2500 mm LEFB40: 3000 mm

LEFB32□ (Duty ratio)

LEFB40□ (Duty ratio)


These graphs are examples of when the standard motor is mounted.

Determine the duty ratio after taking into account the load factor of the motor or driver to be used.

Model Selection Series LEFB Motorless Type

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to "Calculation of Guide Load Factor" or the Electric Actuator Selection Software for confirmation, http://www.smcworld.com

Dynamic Allowable Moment

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEFB Acceleration [mm/s 2]: **a** Size: 25/32/40 Work load [kg]: **m**

Mounting orientation: Horizontal/Bottom/Wall/Vertical Work load center position [mm]: Xc/Yc/Zc

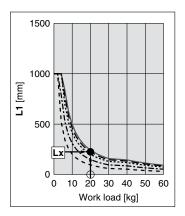
- 2. Select the target graph with reference to the model, size and mounting orientation.
- 3. Based on the acceleration and work load, obtain the overhang [mm]: Lx/Ly/Lz from the graph.
- 4. Calculate the load factor for each direction.

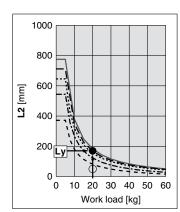
 $\alpha x = Xc/Lx$, $\alpha y = Yc/Ly$, $\alpha z = Zc/Lz$

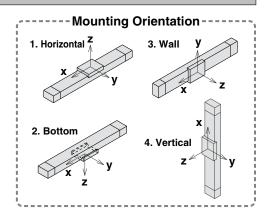
5. Confirm the total of $\alpha \mathbf{x}$, $\alpha \mathbf{y}$ and $\alpha \mathbf{z}$ is 1 or less.

 $\alpha \mathbf{x} + \alpha \mathbf{y} + \alpha \mathbf{z} \leq \mathbf{1}$

When 1 is exceeded, consider a reduction of acceleration and work load, or a change of the work load center position and series.

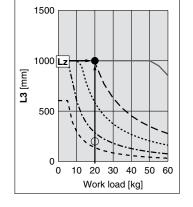

 Operating conditions Model: LEFB40 Size: 40

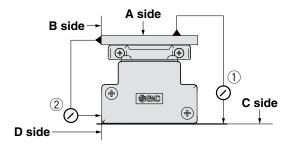

Mounting orientation: Horizontal Acceleration [mm/s²]: 3000


Work load [kg]: 20

Work load center position [mm]: Xc = 0, Yc = 50, Zc = 200

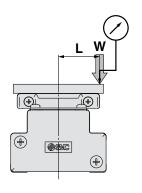
2. Select the graphs for horizontal of the LEFB40 on page 28.

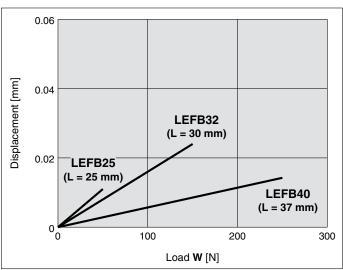



- 3. Lx = 250 mm, Ly = 180 mm, Lz = 1000 mm
- 4. The load factor for each direction can be obtained as follows.

 $\alpha x = 0/250 = 0$ $\alpha y = 50/180 = 0.27$ $\alpha z = 200/1000 = 0.2$

5. $\alpha x + \alpha y + \alpha z = 0.47 \le 1$


Table Accuracy

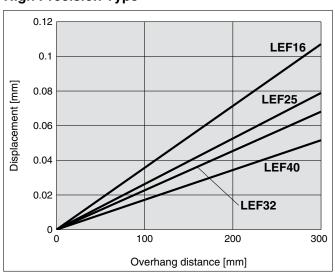


	Traveling parallelism [mm] (Every 300 mm)					
Model	① C side traveling parallelism to A side	② D side traveling parallelism to B side				
LEFB25	0.05	0.03				
LEFB32	0.05	0.03				
LEFB40	0.05	0.03				

Note) Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

Note 1) This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table.


Note 2) Check the clearance and play of the guide separately.

Overhang Displacement Due to Table Clearance

Basic Type

High Precision Type

Model Selection

LEFS

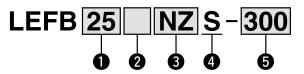
LEFB

LEJS

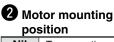
LEY

_EYG

Motor Mounting


Motorless Type

Electric Actuator/Slider Type Belt Drive


Series **LEFB** LEFB25, 32, 40

How to Order

position					
Nil	Top mounting				
U	Bottom mounting				

8	Motor	type
---	-------	------

Symbol	Type
NZ	Mounting type Z
NY	Mounting type Y
NX	Mounting type X
NW	Mounting type W
NV	Mounting type V
NU	Mounting type U
NT	Mounting type T
NM1	Mounting type M1
NM2	Mounting type M2

4 Equivalent lead [mm] S

Stroke [mm]							
300	300						
to	to						
3000	3000						

* Refer to the applicable stroke table.

Applicable Stroke Table

●: Standard/○: Produced upon receipt of order 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2500 3000 LEFB25

LEFB32 0 0 0 • • lacktriangle0 0 0 0 0 0

* Please consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.

Compatible Motors

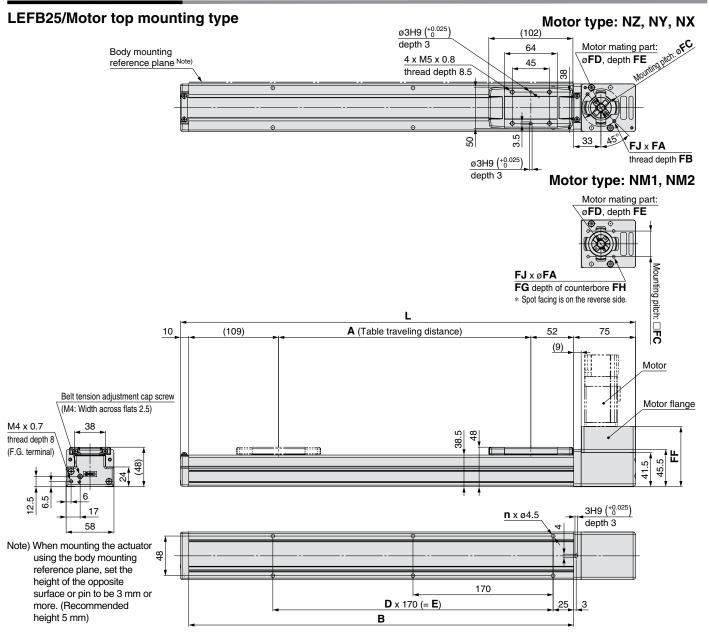
	ompatible motors															
Applicable	motor model								Size/Mo	otor type)					
					25							32/40				
Manufacturer	Series	Туре	NZ Mounting type Z	NY Mounting type Y	NX Mounting type X		NM2 Mounting type M2		NY Mounting type Y	NX Mounting type X	NW Mounting type W	NV Mounting type V	NU Mounting type U	NT Mounting type T		NM2 Mounting type M2
	MELSERVO-JN	HF-KN	•	_	_	_	_	•	_	_	_	_	_	_	_	_
Mitsubishi Electric Corporation	MELSERVO-J3	HF-KP	•	_	_	_	_	•	_	_	_	_	_	_	_	_
Corporation	MELSERVO-J4	HG-KR	•	_	_	_	_	•	_	_	_	_	_	_	_	_
YASKAWA Electric Corporation	Σ-V	SGMJV	•	_	_	_	_	•	_	_	_	_	_	_	_	_
SANYO DENKI CO., LTD.	SANMOTION R	R2	•	_	_	_	_	•	_	_	_	_	_	_	_	_
OMRON Corporation	Sysmac G5	R88M-K	•	_	_	_	_	_	•	_	_	_	_	_	_	_
Panasonic	MINAS-A4	MSMD	_	•	_	_	_	_	•	_	_	_	_	_	_	_
Corporation	MINAS-A5	MSMD/MHMD	_	•	_	_	_	_	•	_	_	_	_	_	_	_
FANUC CORPORATION	βis	β	•	_	_	_	_	(β1 only)	_	_	•	_	_	_	_	_
NIDEC SANKYO CORPORATION	S-FLAG	MA/MH/MM	•	_	_	_	_	•	_	_	_	_	_	_	_	
KEYENCE CORPORATION	SV	SV-M/SV-B	•	_	_	_	_	•	_	_	_	_	_	_	_	_
FUJI ELECTRIC CO.,	ALPHA5	GYS/GYB	•	_	_	_	_	•	_	_	_	_	_	_	_	_
LTD.	FALDIC- α	GYS	•	_	_	_	_	•	_	_	_	_	_	_	_	_
ORIENTAL MOTOR Co., Ltd.	AR/AZ	AR/AZ	_	_	_	_	•	_	_	_	_	_	_	_	_	•
FASTECH Co., Ltd.	Ezi-SERVO	EzM	_	_	_	•	_	_	_	_	_	_	_	_	•	_
Rockwell Automation, Inc.	MP-/VP-	MP/VP	_	_	_	_	_	_	_	•	_	_	_	_	_	_
(Allen-Bradley)	TL	TLY-A	•	_	_	_	_	_	_	_	_	_	_	•	_	_
Beckhoff Automation	AM	AM30	•	_	_	_	_	_	_	_	_	•	_	_	_	_
GmbH	AM	AM31	•	_	_	_	_	_	_	_	_	_	•	_	_	_
	AM	AM80/AM81	•	_	_	_	_	_	_	•	_	_	_	_	_	_
Siemens AG	1FK7	1FK7	_	_	•	_	_	_		•	_	_	_	_	_	_
Delta Electronics, Inc.	ASDA-A2	ECMA	•	-	_	_	-	•	_	_	_	_	_	-	_	_

Specifications Note 2)

- Electric Actuator/Slider Type
 Belt Drive Series LEFB • Values in this specification table are the allowable values of the actuator body with the standard motor mounted.
- Do not use the actuator so that it exceeds these values.

	Model		LEFB25	LEFB32	LEFB40					
SI	Stroke [mm] Note 1)		300, 400, 500 600, 700, 800 900, 1000, (1100) 1200, (1300, 1400) 1500, (1600, 1700) (1800, 1900), 2000	300, 400, 500 600, 700, 800 900, 1000, (1100) 1200, (1300, 1400) 1500, (1600, 1700) (1800, 1900), 2000 2500	300, 400, 500 600, 700, 800 900, 1000, (1100) 1200, (1300, 1400) 1500, (1600, 1700) (1800, 1900), 2000 2500, 3000					
specifications	Work load [kg]	Horizontal	5	15	25					
lics	Speed [mm/s]			2000						
eci.	Pushing return to origin	speed [mm/s]		30 or less						
g	Positioning repeatabil			±0.06						
Actuator	Lost motion [mm] Note	3)		0.1 or less						
c til	Equivalent lead [mm]			54						
Ă	Max. acceleration/decele	eration [mm/s ²]		20000 Note 4)						
	Impact/Vibration resis	tance [m/s ²]		50/20						
	Actuation type		Belt							
	Guide type		Linear guide							
	Operating temperature	e range	41 to 104°F [5 to 40°C]							
	Operating humidity ra	nge [%RH]	90 or less (No condensation)							
Suo	Actuation unit weight	[kg]	0.2	0.3	0.55					
licati	Other inertia [kg·cm²]		0.1	0.2	0.25					
Other specifications	Friction coefficient			0.05						
Note 5)	Mechanical efficiency			0.8						
Į į	Motor shape		□40		60					
Reference motor specifications	Motor type			AC servo motor (100 V/200 V)						
cati	Rated output capacity	/ [W]	100	200	400					
fere	Rated torque lbf-ft [N	l·m]	0.24 [0.32]	0.47 [0.64]	0.96 [1.3]					
S S	Rated rotation [rpm]			3000						

- Note 1) Please consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.
- Note 2) Do not allow collisions at either end of the table traveling distance at a speed exceeding "pushing return to origin speed." Additionally, when running the positioning operation, do not set within 3 mm of both ends.
- Note 3) A reference value for correcting an error in reciprocal operation.
- Note 4) Maximum acceleration/deceleration changes according to the work load.
 - Refer to the "Work Load-Acceleration/Deceleration Graph (Guide)" for belt drive on page 27.
- Note 5) Each value is a guide. Use such value to select a motor capacity.


Weight

Model									LEF	B25									
Stroke [mm]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	
Product weight [kg]	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	5.5	5.75	6	6.25	6.5	6.75	
Model		LEFB32																	
Stroke [mm]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500
Product weight [kg]	4.00	4.35	4.70	5.05	5.40	5.75	6.10	6.45	6.80	7.15	7.50	7.85	8.20	8.55	8.90	9.25	9.60	9.95	11.70
Model		LEFB40																	
Stroke [mm]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500
Product weight [kg]	5.70	6.15	6.60	7.05	7.50	7.95	8.40	8.85	9.30	9.75	10.20	10.65	11.10	11.55	12.00	12.45	12.90	13.35	15.60

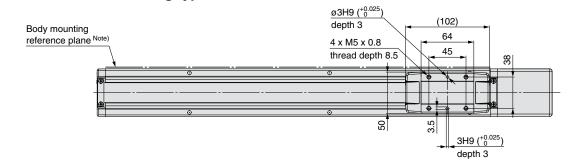
Dimensions: Belt Drive

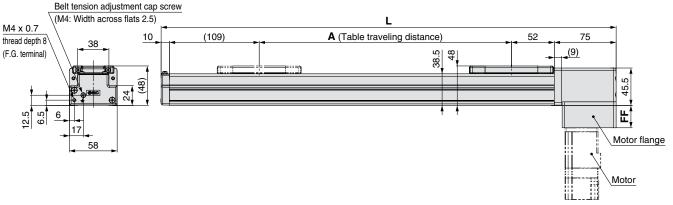
Refer to the "Motor Mounting" on page 39 for details about motor mounting and included parts.

Dimension	Dimensions [mm													
Stroke	L	Α	В	n	D	Е								
300	552	306	467	6	2	340								
400	652	406	567	8	3	510								
500	752	506	667	8	3	510								
600	852	606	767	10	4	680								
700	952	706	867	10	4	680								
800	1052	806	967	12	5	850								
900	1152	906	1067	14	6	1020								
1000	1252	1006	1167	14	6	1020								
1100	1352	1106	1267	16	7	1190								
1200	1452	1206	1367	16	7	1190								
1300	1552	1306	1467	18	8	1360								
1400	1652	1406	1567	20	9	1530								
1500	1752	1506	1667	20	9	1530								
1600	1852	1606	1767	22	10	1700								
1700	1952	1706	1867	22	10	1700								
1800	2052	1806	1967	24	11	1870								
1900	2152	1906	2067	24	11	1870								
2000	2252	2006	2167	26	12	2040								

Motor Mo	Motor Mounting Dimensions												
Motor type	FA	FB	FC	FD	FE	FF	FG	FH	FJ				
NZ	M4 x 0.7	8	46	30	3.5	73	_	_	2				
NY	M3 x 0.5	8	45	30	3.5	73	_	_	4				
NX	M4 x 0.7	8	46	30	3.5	73	_	_	2				
NM1/NM2	3.4	_	31	22*	2.5*	73	6	21	4				

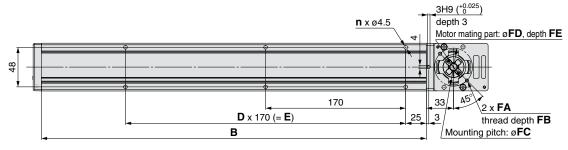
^{*} Dimensions after mounting a ring spacer (Refer to page 39.)




Belt Drive Series LEFB

Refer to the "Motor Mounting" on page 39 for details about motor mounting and included parts.

Dimensions: Belt Drive


LEFB25U/Motor bottom mounting type

Motor type: NZ, NY, NX

Note) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Motor type: NM1, NM2

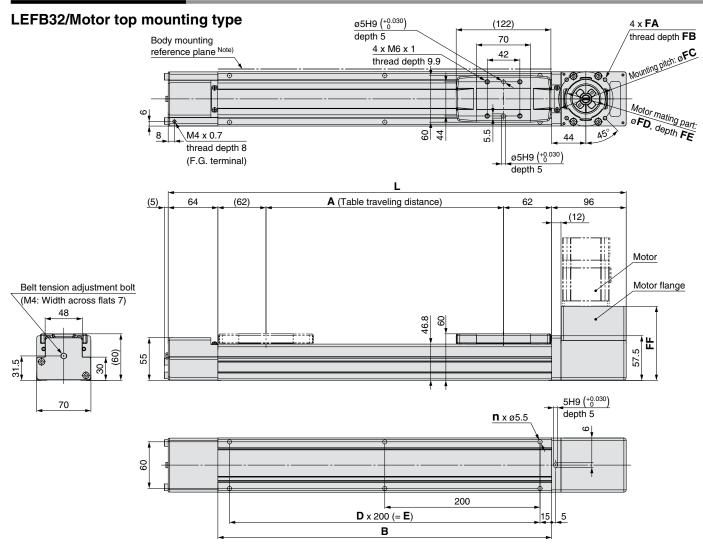
Motor mating part: øFD, depth FE

Stroke L A B n 300 552 306 467 6 400 652 406 567 8 500 752 506 667 8 600 852 606 767 10 700 952 706 867 10 800 1052 806 967 12	2 3 3 4	340 510 510
400 652 406 567 8 500 752 506 667 8 600 852 606 767 10 700 952 706 867 10 800 1052 806 967 12	3 3 4	510
500 752 506 667 8 600 852 606 767 10 700 952 706 867 10 800 1052 806 967 12	3	
600 852 606 767 10 700 952 706 867 10 800 1052 806 967 12	4	510
700 952 706 867 10 800 1052 806 967 12		
800 1052 806 967 12		680
	4	680
	5	850
900 1152 906 1067 14	6	1020
1000 1252 1006 1167 14	6	1020
1100 1352 1106 1267 16	7	1190
1200 1452 1206 1367 16	7	1190
1300 1552 1306 1467 18	8	1360
1400 1652 1406 1567 20	9	1530
1500 1752 1506 1667 20	9	1530
1600 1852 1606 1767 22	10	1700
1700 1952 1706 1867 22	10	1700
1800 2052 1806 1967 24	11	1870
1900 2152 1906 2067 24	11	1870
2000 2252 2006 2167 26	12	2040

Mounting pitch: øFC

©_ ○

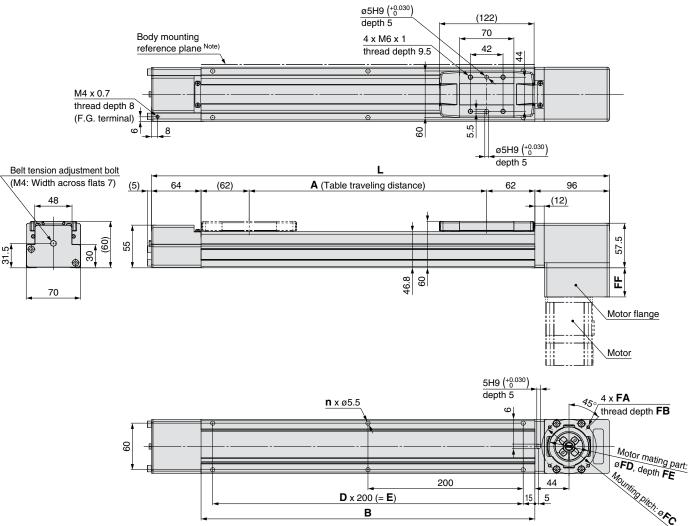
Motor Mounting Dimensions												
Motor type	FA	FB	FC	FD	FE	FF	FG	FH	FJ			
NZ	M4 x 0.7	8	46	30	3.5	27	_	_	2			
NY	M3 x 0.5	8	45	30	3.5	27	_	_	4			
NX	M4 x 0.7	8	46	30	3.5	27	_	_	2			
NM1/NM2	3.4	_	31	22*	2.5*	27	6	21	4			


^{*} Dimensions after mounting a ring spacer (Refer to page 39.)

Dimensions: Belt Drive

Refer to the "Motor Mounting" on page 39 for details about motor mounting and included parts.

Note) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)


Dimension	ıs					[mm]
Stroke	L	Α	В	n	D	Е
300	590	306	430	6	2	400
400	690	406	530	6	2	400
500	790	506	630	8	3	600
600	890	606	730	8	3	600
700	990	706	830	10	4	800
800	1090	806	930	10	4	800
900	1190	906	1030	12	5	1000
1000	1290	1006	1130	12	5	1000
1100	1390	1106	1230	14	6	1200
1200	1490	1206	1330	14	6	1200
1300	1590	1306	1430	16	7	1400
1400	1690	1406	1530	16	7	1400
1500	1790	1506	1630	18	8	1600
1600	1890	1606	1730	18	8	1600
1700	1990	1706	1830	20	9	1800
1800	2090	1806	1930	20	9	1800
1900	2190	1906	2030	22	10	2000
2000	2290	2006	2130	22	10	2000
2500	2790	2506	2630	28	13	2600

Motor Me	Motor Mounting Dimensions [mm												
Motor type	FA	FB	FC	FD	FE	FF							
NZ	M5 x 0.8	9	70	50	4	95.5							
NY	M4 x 0.7	8	70	50	4	95.5							
NX	M5 x 0.8	9	63	40*	4.5*	99.2							
NW	M5 x 0.8	9	70	50	5	96.5							
NV	M4 x 0.7	8	63	40*	4.5*	99.2							
NU	M5 x 0.8	9	70	50	5	96.5							
NT	M5 x 0.8	9	70	50	4	95.5							
NM1	M4 x 0.7	8	□47.14	38.1*	4.5*	82.5							
NM2	M4 x 0.7	8	□50	36*	4.5*	90.0							

^{*} Dimensions after mounting a ring spacer (Refer to page 39.)

LEFB32U/Motor bottom mounting type

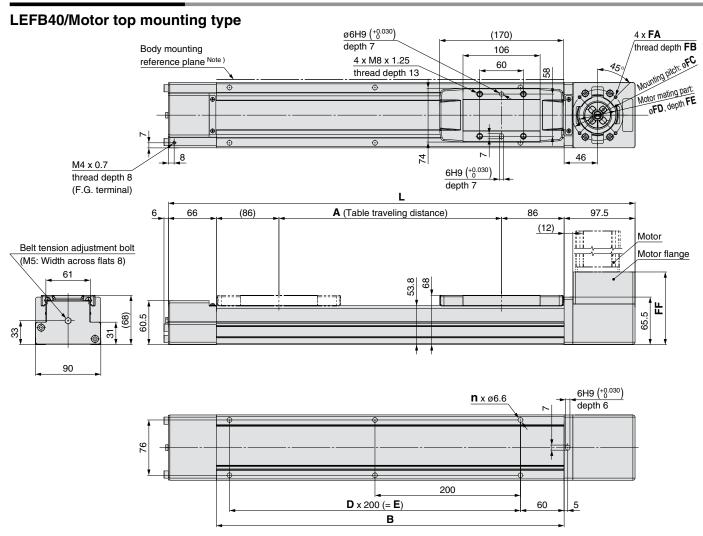
Note) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimension	s					[mm]
Stroke	L	Α	В	n	D	Е
300	590	306	430	6	2	400
400	690	406	530	6	2	400
500	790	506	630	8	3	600
600	890	606	730	8	3	600
700	990	706	830	10	4	800
800	1090	806	930	10	4	800
900	1190	906	1030	12	5	1000
1000	1290	1006	1130	12	5	1000
1100	1390	1106	1230	14	6	1200
1200	1490	1206	1330	14	6	1200
1300	1590	1306	1430	16	7	1400
1400	1690	1406	1530	16	7	1400
1500	1790	1506	1630	18	8	1600
1600	1890	1606	1730	18	8	1600
1700	1990	1706	1830	20	9	1800
1800	2090	1806	1930	20	9	1800
1900	2190	1906	2030	22	10	2000
2000	2290	2006	2130	22	10	2000
2500	2790	2506	2630	28	13	2600

Motor Mo	Notor Mounting Dimensions					
Motor type	FA	FB	FC	FD	FE	FF
NZ	M5 x 0.8	9	70	50	4	37.5
NY	M4 x 0.7	8	70	50	4	37.5
NX	M5 x 0.8	9	63	40*	4.5*	41.2
NW	M5 x 0.8	9	70	50	5	38.5
NV	M4 x 0.7	8	63	40*	4.5*	41.2
NU	M5 x 0.8	9	70	50	5	38.5
NT	M5 x 0.8	9	70	50	4	37.5
NM1	M4 x 0.7	8	□47.14	38.1*	4.5*	24.5
NM2	M4 x 0.7	8	□50	36*	4.5*	32

^{*} Dimensions after mounting a ring spacer (Refer to page 39.)

36


LEFB

LEJS

LEY

Dimensions: Belt Drive

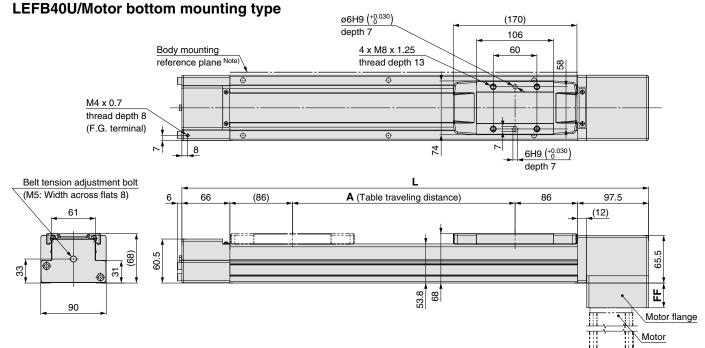
Refer to the "Motor Mounting" on page 39 for details about motor mounting and included parts.

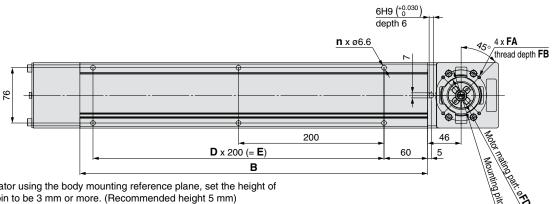
Note) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimension	s					[mm]
Stroke	L	Α	В	n	D	Е
300	641.5	306	478	6	2	400
400	741.5	406	578	6	2	400
500	841.5	506	678	8	3	600
600	941.5	606	778	8	3	600
700	1041.5	706	878	10	4	800
800	1141.5	806	978	10	4	800
900	1241.5	906	1078	12	5	1000
1000	1341.5	1006	1178	12	5	1000
1100	1441.5	1106	1278	14	6	1200
1200	1541.5	1206	1378	14	6	1200
1300	1641.5	1306	1478	16	7	1400
1400	1741.5	1406	1578	16	7	1400
1500	1841.5	1506	1678	18	8	1600
1600	1941.5	1606	1778	18	8	1600
1700	2041.5	1706	1878	20	9	1800
1800	2141.5	1806	1978	20	9	1800
1900	2241.5	1906	2078	22	10	2000
2000	2341.5	2006	2178	22	10	2000
2500	2841.5	2506	2678	28	13	2600
3000	3341.5	3006	3178	32	15	3000

Motor Mo	Motor Mounting Dimensions [mm					
Motor type	FA	FB	FC	FD	FE	FF
NZ	M5 x 0.8	9	70	50	4	100
NY	M4 x 0.7	8	70	50	4	100
NX	M5 x 0.8	9	63	40*	4.5*	103.2
NW	M5 x 0.8	9	70	50	5	101
NV	M4 x 0.7	8	63	40	4.5*	103.2
NU	M5 x 0.8	9	70	50	5	101
NT	M5 x 0.8	9	70	50	4	100
NM1	M4 x 0.7	8	□47.14	38.1*	4.5*	87
NM2	M4 x 0.7	8	□50	36*	4.5*	94

^{*} Dimensions after mounting a ring spacer (Refer to page 39.)


Model Selection


LEFS

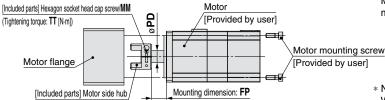
LEFB

ΓEY

Motor Mounting

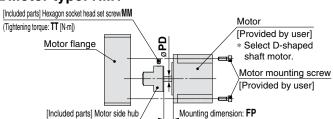
Note) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimension	S					[mm]
Stroke	L	Α	В	n	D	E
300	641.5	306	478	6	2	400
400	741.5	406	578	6	2	400
500	841.5	506	678	8	3	600
600	941.5	606	778	8	3	600
700	1041.5	706	878	10	4	800
800	1141.5	806	978	10	4	800
900	1241.5	906	1078	12	5	1000
1000	1341.5	1006	1178	12	5	1000
1100	1441.5	1106	1278	14	6	1200
1200	1541.5	1206	1378	14	6	1200
1300	1641.5	1306	1478	16	7	1400
1400	1741.5	1406	1578	16	7	1400
1500	1841.5	1506	1678	18	8	1600
1600	1941.5	1606	1778	18	8	1600
1700	2041.5	1706	1878	20	9	1800
1800	2141.5	1806	1978	20	9	1800
1900	2241.5	1906	2078	22	10	2000
2000	2341.5	2006	2178	22	10	2000
2500	2841.5	2506	2678	28	13	2600
3000	3341.5	3006	3178	32	15	3000

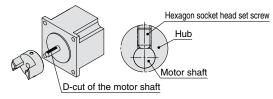

Motor Mo	Motor Mounting Dimensions					
Motor type	FA	FB	FC	FD	FE	FF
NZ	M5 x 0.8	9	70	50	4	34
NY	M4 x 0.7	8	70	50	4	34
NX	M5 x 0.8	9	63	40*	4.5*	37.2
NW	M5 x 0.8	9	70	50	5	35
NV	M4 x 0.7	8	63	40*	4.5*	37.2
NU	M5 x 0.8	9	70	50	5	35
NT	M5 x 0.8	9	70	50	4	34
NM1	M4 x 0.7	8	□47.14	38.1*	4.5*	21
NM2	M4 x 0.7	8	□50	36*	4.5*	28

^{*} Dimensions after mounting a ring spacer (Refer to page 39.)

Motor Mounting


- When mounting a hub, remove the oil content, dust, or dirt sticking to the shaft and hub inside diameter.
- This product does not include the motor and motor mounting screws. (Provided by user) For the shaft-end shape of the motor, prepare the round type.
- Take loose prevention measures for the motor mounting screws.

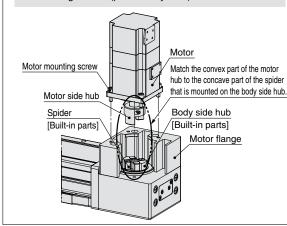
■ Motor type: NZ, NY, NX, NW, NV, NU, NT, NM2



* Note for mounting a motor to the NM2 motor type Motor mounting screws for the LEFS25 are fixed starting from the motor flange side. (Opposite of the drawing)

■ Motor type: NM1

- * Note for mounting a hub to the NM1 motor type When mounting the hub to the motor, make sure to position the set screw vertical to the D-cut surface of the motor shaft. (Refer to the figure shown below)
- * Motor mounting screws for the LEFB25 are fixed starting from the motor flange side. (Opposite of the drawing)

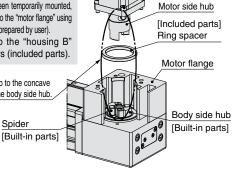


Motor Mounting Diagram

Motor type: NZ, NY, NW, NU, NT

Mounting procedure

- 1) Fix the motor (provided by user) and the motor hub with the "MM hexagon socket head cap screw."
- 2) Check the "motor hub position", and then insert it. (Refer to the mounting diagram.)
- 3) Fix the motor and the "motor flange" with the motor mounting screws (provided by user).


Motor type: NX, NV, NM1, NM2

Mounting procedure 1) Fix the motor (provided by user) and the "motor hub" with the "MM hexagon socket head cap screw (Motor type: NX, NM2)" or "MM hexagon socket head set screw (Motor type: NM1)."

- 2) Check the "motor hub position", and then insert it. (Refer to the mounting diagram.)
- 3) Mount the "ring spacer" to the motor.
- 4) Fix the motor and the "motor flange" with the motor mounting screws (provided by user).
- * For the LEFB25
- 4) Remove the "motor flange", which has been temporarily mounted, from the housing B, and secure the motor to the "motor flange" using the motor mounting screws (that are to be prepared by user).
- 5) Tighten the "motor flange" to the "housing B" using motor flange fixing screws (included parts).

Match the convex part of the motor hub to the concave part of the spider that is mounted on the body side hub.

Spider

Motor mounting screw

Size: 25 Hub Mounting Dimensions [mm]

Motor type	MM	TT	PD	FP
NZ	M2.5 x 10	1.00	8	11
NY	M2.5 x 10	1.00	8	11
NX	M2.5 x 10	1.00	8	5.5
NM1	M3 x 4	0.63	5	11
NM2	M2.5 x 10	1.00	6	11

Size: 32 Hub Mounting Dimensions [mm]

Motor type	MM	TT	PD	FP
NZ	M3 x 12	1.5	14	17.5
NY	M4 x 12	2.5	11	17.5
NX	M4 x 12	2.5	9	5.2
NW	M4 x 12	2.5	9	12.5
NV	M4 x 12	2.5	9	5.2
NU	M4 x 12	2.5	11	12.5
NT	M3 x 12	1.5	12	17.5
NM1	M4 x 5	1.5	6.35	4.5
NM2	M4 x 12	2.5	10	12

Size: 40 Hub Mounting Dimensions [mm]

Motor type	MM	TT	PD	FP
NZ	M3 x 12	1.5	14	17.5
NY	M3 x 12	1.5	14	17.5
NX	M4 x 12	2.5	9	5.2
NW	M4 x 12	2.5	9	13
NV	M4 x 12	2.5	9	5.2
NU	M4 x 12	2.5	11	13
NT	M3 x 12	1.5	12	17.5
NM1	M4 x 5	1.5	6.35	5
NM2	M4 x 12	2.5	10	12

Included Parts List

Size: 25

	Quantity						
Description			tor ty				
	NZ	NY	NX	NM1	NM2		
Motor side hub	1	1	1	1	1		
Hexagon socket head cap screw/set screw (for hub fixing)*	1	1	1	1	1		
Hexagon socket head cap screw (for motor flange fixing)*	_	_	_	2	2		
Ring spacer	_	_		1	1		

* For screw sizes, refer to the hub mounting dimensions.

Size: 32, 40

Description				Q	uanti	ty			
					tor ty				
	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Motor side hub		1	1	1	1	1	1	1	1
Hexagon socket head cap screw/set screw (for hub fixing)*		1	1	1	1	1	1	1	1
Ring spacer		—	1	—	1	_	_	1	1

^{*} For screw sizes, refer to the hub mounting dimensions.

Series LEFB

Motor Mounting Parts

Motor Flange Option

After purchasing the product, the motor can be changed to the motor types shown below by replacing with this option. (Except NM1) Use the following part numbers to select a compatible motor flange option and place an order.

How to Order

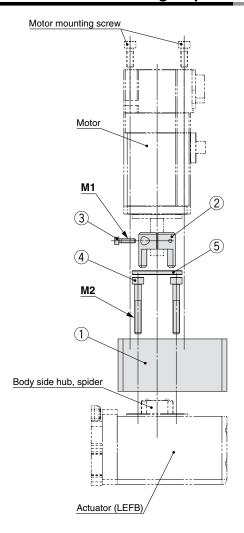
1 Size

25	For LEF□25
32	For LEF□32
40	For LEF□40

2 Motor type

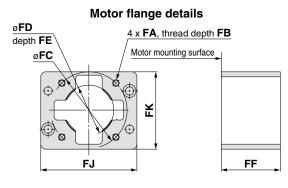
Symbol	Туре	Symbol	Туре
NZ	Mounting type Z	NV	Mounting type V
NY	Mounting type Y	NU	Mounting type U
NX	Mounting type X	NT	Mounting type T
NW	Mounting type W	NM2	Mounting type M2

^{*} Select only NZ, NY, NX or NM2 for the LEFB-MF25.

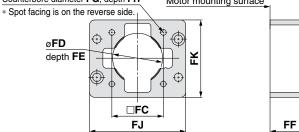

Compatible Motors

Applicable i	motor model		Size/Motor type											
				2	5					32	/40			
Manufacturer	Series	Туре	NZ Mounting type Z	NY Mounting type Y	NX Mounting type X	NM2 Mounting type M2	NZ Mounting type Z	NY Mounting type Y	NX Mounting type X	NW Mounting type W	NV Mounting type V	NU Mounting type U	NT Mounting type T	NM2 Mounting type M2
	MELSERVO-JN	HF-KN	•	_	_	_	•	_	_	_	_	_	_	_
Mitsubishi Electric Corporation	MELSERVO-J3	HF-KP	•	_	_	_	•	_	_	_	_	_	_	_
Corporation	MELSERVO-J4	HG-KR	•	_	_	_	•	_	_	_	_	_	_	_
YASKAWA Electric Corporation	Σ-V	SGMJV	•	_	_	_	•	_	_	_	_	_	_	_
SANYO DENKI CO., LTD.	SANMOTION R	R2	•	_	_	_	•	_	_	_	_	_	_	_
OMRON Corporation	Sysmac G5	R88M-K	•	_	_	_	_	•	_	_	_	_	_	_
Panasonic Corporation	MINAS-A4	MSMD	_	•	_		_	•	_	_	_	_	_	_
ranasonic Corporation	MINAS-A5	MSMD/MHMD	_	•	_		_	•		_	_	_		_
FANUC CORPORATION	βis	β	•	_	_	-	• (β1 only)	_	_	•	_	_	_	_
NIDEC SANKYO CORPORATION	S-FLAG	MA/MH/MM	•	_	_	_	•	_	_	_	_	_	_	_
KEYENCE CORPORATION	SV	SV-M/SV-B	•	_	_	_	•	_	_	_	_	_	_	_
FUJI ELECTRIC CO., LTD.	ALPHA5	GYS/GYB	•	_	_	_	•	_	_	_	_	_	_	_
FUJI ELECTRIC CO., LTD.	FALDIC-α	GYS	•	_	_	_	•	_	_	_	_	_	_	_
ORIENTAL MOTOR Co., Ltd.	AR/AZ	AR/AZ	_		_	•	_	_		_	_	_		•
Rockwell Automation, Inc.	MP-/VP-	MP/VP	_	_	_		_	_	•	_	_	_	_	_
(Allen-Bradley)	TL	TLY-A	•	_	_	_		_		_		_	•	_
Beckhoff Automation	AM	AM30	•	_	_	_	_	_	_	_	•	_	_	_
GmbH	AM	AM31	•	_	_	_	_	_	_	_	_	•	_	_
	AM	AM80/AM81	•	_	_	_	_	_	•	_	_	_	_	_
Siemens AG	1FK7	1FK7	_	_	•	_	_	_	•	_	_	_	_	_
Delta Electronics, Inc.	ASDA-A2	ECMA	•		_		•	_		_	_	_		_

Note) When the LEF \square 25NM1 \square - \square is purchased, it is not possible to change to other motor types.


Series LEFB

Dimensions: Motor Flange Option


Component Parts

No.	Description	Quantity
1	Motor flange	1
2	Hub (Motor side)	1
3	Hexagon socket head cap screw (for hub fixing)	1
4	Hexagon socket head cap screw (for motor flange mounting)	2
5	Ring spacer (Only for NX, NV and NM2 of size 32, 40)	1

For NM2

4 x **FA** through hole, Counterbore diameter **FG**, depth **FH** Motor mounting surface

Dimens	sions											
Size	Motor type	FΔ	FR	FC	FD	FF	FF	FG	FH	F.I	FK	

Size Motor type FA FB FC FD FE FF FG FH FJ FK M1 M2 PD													
Motor type	FA	FB	FC	FD	FE	FF	FG	FH	FJ	FK	M1	M2	PD
NZ/NX	M4 x 0.7	8	46	30	3.5	31.5	_	_	57.8	65.5	M2.5 x 10	M4 x 30	8
NY	M3 x 0.5	8	45	30	3.5	31.5	_	_	57.8	65.5	M2.5 x 10	M4 x 30	8
NM2	ø3.4	_	31	22*	2.5*	31.5	6	21	57.8	65.5	M2.5 x 10	M4 x 30	6
NZ	M5 x 0.8	9	70	50	4	44	_	_	69.8	83.5	M3 x 12	M5 x 45	14
NY	M4 x 0.7	8	70	50	4	44	_	_	69.8	83.5	M4 x 12	M5 x 45	11
NX	M5 x 0.8	9	63	50	5	47.7	_	_	69.8	83.5	M4 x 12	M5 x 45	9
NW	M5 x 0.8	9	70	50	5	45	_	_	69.8	83.5	M4 x 12	M5 x 45	9
NV	M4 x 0.7	8	63	50	5	47.7	_	_	69.8	83.5	M4 x 12	M5 x 45	9
NU	M5 x 0.8	9	70	50	5	45	_	_	69.8	83.5	M4 x 12	M5 x 45	11
NT	M5 x 0.8	9	70	50	4	44	_	_	69.8	83.5	M3 x 12	M5 x 45	12
NM2	M4 x 0.7	8	50	36*	4.5*	38.5	_	_	69.8	83.5	M4 x 12	M5 x 25	10
NZ	M5 x 0.8	9	70	50	4	44	_	_	89.8	85	M3 x 12	M5 x 45	14
NY	M4 x 0.7	8	70	50	4	44	_	_	89.8	85	M3 x 12	M5 x 45	14
NX	M5 x 0.8	9	63	50	5	47.2	_	_	89.8	85	M4 x 12	M5 x 45	9
NW	M5 x 0.8	9	70	50	5	45	_	_	89.8	85	M4 x 12	M5 x 45	9
NV	M4 x 0.7	8	63	50	5	47.2	_	_	89.8	85	M4 x 12	M5 x 45	9
NU	M5 x 0.8	9	70	50	5	45	_	_	89.8	85	M4 x 12	M5 x 45	11
NT	M5 x 0.8	9	70	50	4	44	_	_	89.8	85	M3 x 12	M5 x 45	12
NM2	M4 x 0.7	8	50	36*	4.5*	38	_	_	89.8	85	M4 x 12	M5 x 25	10
	Motor type NZ/NX NY NM2 NZ NY NX NW NV NU NT NM2 NZ NY NU NT NM0 NT NM1 NM2 NZ NY	Motor type FA NZ/NX M4 x 0.7 NY M3 x 0.5 NM2 Ø3.4 NZ M5 x 0.8 NY M4 x 0.7 NX M5 x 0.8 NV M4 x 0.7 NU M5 x 0.8 NT M5 x 0.8 NT M5 x 0.8 NM2 M4 x 0.7 NZ M5 x 0.8 NY M4 x 0.7 NX M5 x 0.8 NV M4 x 0.7 NU M5 x 0.8 NV M4 x 0.7 NU M5 x 0.8 NT M5 x 0.8	Motor type FA FB NZ/NX M4 x 0.7 8 NY M3 x 0.5 8 NM2 Ø3.4 — NZ M5 x 0.8 9 NY M4 x 0.7 8 NW M5 x 0.8 9 NV M4 x 0.7 8 NU M5 x 0.8 9 NT M5 x 0.8 9 NM2 M4 x 0.7 8 NZ M5 x 0.8 9 NY M4 x 0.7 8 NX M5 x 0.8 9 NW M5 x 0.8 9 NV M4 x 0.7 8 NU M5 x 0.8 9 NV M4 x 0.7 8 NU M5 x 0.8 9 NT M5 x 0.8 9	Motor type FA FB FC NZ/NX M4 x 0.7 8 46 NY M3 x 0.5 8 45 NM2 Ø3.4 — 31 NZ M5 x 0.8 9 70 NY M4 x 0.7 8 70 NX M5 x 0.8 9 63 NW M5 x 0.8 9 70 NV M4 x 0.7 8 63 NU M5 x 0.8 9 70 NT M5 x 0.8 9 70 NM2 M4 x 0.7 8 50 NZ M5 x 0.8 9 70 NY M4 x 0.7 8 70 NX M5 x 0.8 9 70 NW M5 x 0.8 9 70 NV M4 x 0.7 8 63 NW M5 x 0.8 9 70 NV M4 x 0.7 8 63 NU M5 x 0.8 <	Motor type FA FB FC FD NZ/NX M4 x 0.7 8 46 30 NY M3 x 0.5 8 45 30 NM2 Ø3.4 — 31 22* NZ M5 x 0.8 9 70 50 NY M4 x 0.7 8 70 50 NX M5 x 0.8 9 70 50 NV M4 x 0.7 8 63 50 NU M5 x 0.8 9 70 50 NT M5 x 0.8 9 70 50 NM2 M4 x 0.7 8 50 36* NZ M5 x 0.8 9 70 50 NY M4 x 0.7 8 70 50 NY M4 x 0.7 8 70 50 NX M5 x 0.8 9 70 50 NX M5 x 0.8 9 70 50 NY M4 x 0.7	Motor type FA FB FC FD FE NZ/NX M4 x 0.7 8 46 30 3.5 NY M3 x 0.5 8 45 30 3.5 NM2 Ø3.4 — 31 22* 2.5* NZ M5 x 0.8 9 70 50 4 NY M4 x 0.7 8 70 50 4 NX M5 x 0.8 9 70 50 5 NW M5 x 0.8 9 70 50 5 NU M5 x 0.8 9 70 50 5 NU M5 x 0.8 9 70 50 5 NT M5 x 0.8 9 70 50 4 NM2 M4 x 0.7 8 50 36* 4.5* NZ M5 x 0.8 9 70 50 4 NY M4 x 0.7 8 70 50 4 NY </th <th>Motor type FA FB FC FD FE FF NZ/NX M4 x 0.7 8 46 30 3.5 31.5 NY M3 x 0.5 8 45 30 3.5 31.5 NM2 Ø3.4 — 31 22* 2.5* 31.5 NZ M5 x 0.8 9 70 50 4 44 NY M4 x 0.7 8 70 50 4 44 NX M5 x 0.8 9 70 50 5 47.7 NW M5 x 0.8 9 70 50 5 45 NV M4 x 0.7 8 63 50 5 47.7 NU M5 x 0.8 9 70 50 5 45 NT M5 x 0.8 9 70 50 4 44 NM2 M4 x 0.7 8 50 36* 4.5* 38.5 NZ M5 x 0.8</th> <th>Motor type FA FB FC FD FE FF FG NZ/NX M4 x 0.7 8 46 30 3.5 31.5 — NY M3 x 0.5 8 45 30 3.5 31.5 — NM2 Ø3.4 — 31 22* 2.5* 31.5 6 NZ M5 x 0.8 9 70 50 4 44 — NY M4 x 0.7 8 70 50 4 44 — NW M5 x 0.8 9 70 50 5 47.7 — NW M5 x 0.8 9 70 50 5 45 — NU M5 x 0.8 9 70 50 5 45 — NM M5 x 0.8 9 70 50 4 44 — NM2 M4 x 0.7 8 50 36* 4.5* 38.5 —</th> <th>Motor type FA FB FC FD FE FF FG FH NZ/NX M4 x 0.7 8 46 30 3.5 31.5 — — NY M3 x 0.5 8 45 30 3.5 31.5 — — NM2 Ø3.4 — 31 22* 2.5* 31.5 6 21 NZ M5 x 0.8 9 70 50 4 44 — — NY M4 x 0.7 8 70 50 4 44 — — NW M5 x 0.8 9 70 50 5 47.7 — — NW M5 x 0.8 9 70 50 5 45 — — NU M5 x 0.8 9 70 50 5 45 — — NM M5 x 0.8 9 70 50 4 44 — —</th> <th>Motor type FA FB FC FD FE FF FG FH FJ NZ/NX M4 x 0.7 8 46 30 3.5 31.5 — — 57.8 NY M3 x 0.5 8 45 30 3.5 31.5 — — 57.8 NM2 Ø3.4 — 31 22* 2.5* 31.5 6 21 57.8 NZ M5 x 0.8 9 70 50 4 44 — — 69.8 NY M4 x 0.7 8 70 50 4 44 — — 69.8 NW M5 x 0.8 9 70 50 5 47.7 — — 69.8 NV M4 x 0.7 8 63 50 5 47.7 — — 69.8 NU M5 x 0.8 9 70 50 5 45 — — 69.8</th> <th>Motor type FA FB FC FD FE FF FG FH FJ FK NZ/NX M4 x 0.7 8 46 30 3.5 31.5 — 57.8 65.5 NY M3 x 0.5 8 45 30 3.5 31.5 — 57.8 65.5 NM2 Ø3.4 — 31 22* 2.5* 31.5 6 21 57.8 65.5 NZ M5 x 0.8 9 70 50 4 44 — — 69.8 83.5 NY M4 x 0.7 8 70 50 4 44 — — 69.8 83.5 NW M5 x 0.8 9 70 50 5 47.7 — — 69.8 83.5 NV M4 x 0.7 8 63 50 5 47.7 — — 69.8 83.5 NU M5 x 0.8 9 70</th> <th>Motor type FA FB FC FD FE FF FG FH FJ FK M1 NZ/NX M4 x 0.7 8 46 30 3.5 31.5 — 57.8 65.5 M2.5 x 10 NY M3 x 0.5 8 45 30 3.5 31.5 — 57.8 65.5 M2.5 x 10 NM2 Ø3.4 — 31 22* 2.5* 31.5 6 21 57.8 65.5 M2.5 x 10 NZ M5 x 0.8 9 70 50 4 44 — — 69.8 83.5 M3 x 12 NY M4 x 0.7 8 70 50 4 44 — — 69.8 83.5 M4 x 12 NW M5 x 0.8 9 70 50 5 47.7 — — 69.8 83.5 M4 x 12 NU M5 x 0.8 9 70 50 5 45 —</th> <th>Motor type FA FB FC FD FE FF FG FH FJ FK M1 M2 NZ/NX M4 x 0.7 8 46 30 3.5 31.5 — 57.8 65.5 M2.5 x 10 M4 x 30 NY M3 x 0.5 8 45 30 3.5 31.5 — 57.8 65.5 M2.5 x 10 M4 x 30 NM2 Ø3.4 — 31 22* 2.5* 31.5 6 21 57.8 65.5 M2.5 x 10 M4 x 30 NZ M5 x 0.8 9 70 50 4 44 — — 69.8 83.5 M3 x 12 M5 x 45 NY M4 x 0.7 8 70 50 4 44 — — 69.8 83.5 M4 x 12 M5 x 45 NX M5 x 0.8 9 70 50 5 47.7 — 69.8 83.5 M4 x 12 M5 x 45</th>	Motor type FA FB FC FD FE FF NZ/NX M4 x 0.7 8 46 30 3.5 31.5 NY M3 x 0.5 8 45 30 3.5 31.5 NM2 Ø3.4 — 31 22* 2.5* 31.5 NZ M5 x 0.8 9 70 50 4 44 NY M4 x 0.7 8 70 50 4 44 NX M5 x 0.8 9 70 50 5 47.7 NW M5 x 0.8 9 70 50 5 45 NV M4 x 0.7 8 63 50 5 47.7 NU M5 x 0.8 9 70 50 5 45 NT M5 x 0.8 9 70 50 4 44 NM2 M4 x 0.7 8 50 36* 4.5* 38.5 NZ M5 x 0.8	Motor type FA FB FC FD FE FF FG NZ/NX M4 x 0.7 8 46 30 3.5 31.5 — NY M3 x 0.5 8 45 30 3.5 31.5 — NM2 Ø3.4 — 31 22* 2.5* 31.5 6 NZ M5 x 0.8 9 70 50 4 44 — NY M4 x 0.7 8 70 50 4 44 — NW M5 x 0.8 9 70 50 5 47.7 — NW M5 x 0.8 9 70 50 5 45 — NU M5 x 0.8 9 70 50 5 45 — NM M5 x 0.8 9 70 50 4 44 — NM2 M4 x 0.7 8 50 36* 4.5* 38.5 —	Motor type FA FB FC FD FE FF FG FH NZ/NX M4 x 0.7 8 46 30 3.5 31.5 — — NY M3 x 0.5 8 45 30 3.5 31.5 — — NM2 Ø3.4 — 31 22* 2.5* 31.5 6 21 NZ M5 x 0.8 9 70 50 4 44 — — NY M4 x 0.7 8 70 50 4 44 — — NW M5 x 0.8 9 70 50 5 47.7 — — NW M5 x 0.8 9 70 50 5 45 — — NU M5 x 0.8 9 70 50 5 45 — — NM M5 x 0.8 9 70 50 4 44 — —	Motor type FA FB FC FD FE FF FG FH FJ NZ/NX M4 x 0.7 8 46 30 3.5 31.5 — — 57.8 NY M3 x 0.5 8 45 30 3.5 31.5 — — 57.8 NM2 Ø3.4 — 31 22* 2.5* 31.5 6 21 57.8 NZ M5 x 0.8 9 70 50 4 44 — — 69.8 NY M4 x 0.7 8 70 50 4 44 — — 69.8 NW M5 x 0.8 9 70 50 5 47.7 — — 69.8 NV M4 x 0.7 8 63 50 5 47.7 — — 69.8 NU M5 x 0.8 9 70 50 5 45 — — 69.8	Motor type FA FB FC FD FE FF FG FH FJ FK NZ/NX M4 x 0.7 8 46 30 3.5 31.5 — 57.8 65.5 NY M3 x 0.5 8 45 30 3.5 31.5 — 57.8 65.5 NM2 Ø3.4 — 31 22* 2.5* 31.5 6 21 57.8 65.5 NZ M5 x 0.8 9 70 50 4 44 — — 69.8 83.5 NY M4 x 0.7 8 70 50 4 44 — — 69.8 83.5 NW M5 x 0.8 9 70 50 5 47.7 — — 69.8 83.5 NV M4 x 0.7 8 63 50 5 47.7 — — 69.8 83.5 NU M5 x 0.8 9 70	Motor type FA FB FC FD FE FF FG FH FJ FK M1 NZ/NX M4 x 0.7 8 46 30 3.5 31.5 — 57.8 65.5 M2.5 x 10 NY M3 x 0.5 8 45 30 3.5 31.5 — 57.8 65.5 M2.5 x 10 NM2 Ø3.4 — 31 22* 2.5* 31.5 6 21 57.8 65.5 M2.5 x 10 NZ M5 x 0.8 9 70 50 4 44 — — 69.8 83.5 M3 x 12 NY M4 x 0.7 8 70 50 4 44 — — 69.8 83.5 M4 x 12 NW M5 x 0.8 9 70 50 5 47.7 — — 69.8 83.5 M4 x 12 NU M5 x 0.8 9 70 50 5 45 —	Motor type FA FB FC FD FE FF FG FH FJ FK M1 M2 NZ/NX M4 x 0.7 8 46 30 3.5 31.5 — 57.8 65.5 M2.5 x 10 M4 x 30 NY M3 x 0.5 8 45 30 3.5 31.5 — 57.8 65.5 M2.5 x 10 M4 x 30 NM2 Ø3.4 — 31 22* 2.5* 31.5 6 21 57.8 65.5 M2.5 x 10 M4 x 30 NZ M5 x 0.8 9 70 50 4 44 — — 69.8 83.5 M3 x 12 M5 x 45 NY M4 x 0.7 8 70 50 4 44 — — 69.8 83.5 M4 x 12 M5 x 45 NX M5 x 0.8 9 70 50 5 47.7 — 69.8 83.5 M4 x 12 M5 x 45

Series LEF Electric Actuator Specific Product Precautions 1

Be sure to read this before handling. Refer to the back cover for Safety Instructions. For Electric Actuator Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on the SMC website, http://www.smcworld.com

Design

⚠ Caution

1. Do not apply a load in excess of the specification limits.

Select a suitable actuator by work load and allowable moment. If the product is used outside of the specification limits, the eccentric load applied to the guide will be excessive and have adverse effects such as creating play on the guide, degrading accuracy and shortening the life of the product.

2. Do not use the product in applications where excessive external force or impact force is applied to it.

This can cause a failure.

Selection

△ Warning

 Do not increase the speed in excess of the specification limits.

Select a suitable actuator by the relationship of the allowable work load and speed, and the allowable speed of each stroke. If the product is used outside of the specification limits, it will have adverse effects such as creating noise, degrading accuracy and shortening the life of the product.

2. Do not use the product in applications where excessive external force or impact force is applied to it.

This can cause a failure.

3. When the product repeatedly cycles with partial strokes (see the table below), operate it at a full stroke at least once every dozens of cycles.

Otherwise, lubrication can run out.

Model	Partial stroke
LEF□25	65 mm or less
LEF□32	70 mm or less
LEF□40	105 mm or less

4. When external force is applied to the table, it is necessary to add external force to the work load as the total carried load for the sizing.

When a cable duct or flexible moving tube is attached to the actuator, the sliding resistance of the table increases and may lead to operational failure of the product.

Handling

⚠ Caution

1. Do not allow the table to hit the end of stroke.

When the driver parameters, origin or programs are set incorrectly, the table may collide against the stroke end of the actuator during operation. Check these points before use.

If the table collides against the stroke end of the actuator, the guide, ball screw, belt or internal stopper can be broken. This may lead to abnormal operation.

Handle the actuator with care when it is used in the vertical direction as the workpiece will fall freely from its own weight.

The actual speed of this actuator is affected by the work load and stroke.

Check the specifications with reference to the model selection section of the catalog.

- 3. Do not apply a load, impact or resistance in addition to the transferred load during return to origin.
- Do not dent, scratch or cause other damage to the body and table mounting surfaces.

This may cause unevenness in the mounting surface, play in the guide or an increase in the sliding resistance.

5. Do not apply strong impact or an excessive moment while mounting a workpiece.

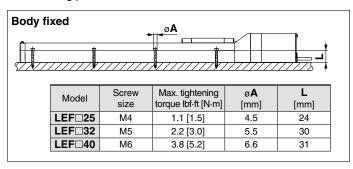
If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.

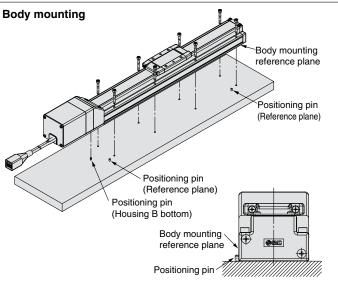
6. Keep the flatness of mounting surface 0.1 mm or less.

Unevenness of a workpiece or base mounted on the body of the product may cause play in the guide and an increase in the sliding resistance.

- Do not hit the table with the workpiece in the positioning operation and positioning range.
- 8. Grease is applied to the dust seal band for sliding. When wiping off the grease to remove foreign matter etc., be sure to apply it again.
- 9. For bottom mounting, the dust seal band may be deflected.

Series LEF Electric Actuator Specific Product Precautions 2


Be sure to read this before handling. Refer to the back cover for Safety Instructions. For Electric Actuator Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on the SMC website, http://www.smcworld.com


Handling

When mounting the product, use screws with adequate length and tighten them with adequate torque.

Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

The traveling parallelism is the reference plane for the body mounting reference plane. If the traveling parallelism for a table is required, set the reference plane against parallel pins etc.

Workpiece fixed

Model	Screw size	Max. tightening torque lbf-ft [N-m]	L(Max. screw-in depth) [mm]
LEF□25	M5 x 0.8	2.2 [3.0]	8
LEF□32	M6 x 1	3.8 [5.2]	9
LEF□40	M8 x 1.25	9.2 [12.5]	13

To prevent the workpiece retaining screws from touching the body, use screws that are 0.5 mm or shorter than the maximum screw-in depth. If long screws are used, they can touch the body and cause a malfunction.

- Do not operate by fixing the table and moving the actuator body.
- 12.The belt drive actuator cannot be used vertically for applications.
- Check the specifications for the minimum speed of each actuator.

Otherwise, unexpected malfunctions, such as knocking, may occur.

14. In the case of the belt drive actuator, vibration may occur during operation at speeds within the actuator specifications, this could be caused by the operating conditions. Change the speed setting to a speed that does not cause vibration.

Maintenance

△ Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check
Inspection before daily operation	0	
Inspection every 6 months/1000 km/ 5 million cycles*	0	0

* Select whichever comes first.

Items for visual appearance check

- 1. Loose set screws, Abnormal dirt
- 2. Check of flaw and cable joint
- 3. Vibration, Noise

• Items for internal check

- 1. Lubricant condition on moving parts.
- 2. Loose or mechanical play in fixed parts or fixing screws.

High Rigidity Slider Type

Ball Screw Drive Series LEJS

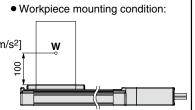
Motorless Type

Electric Actuator/High Rigidity Slider Type

Ball Screw Drive/Series LEJS

Model Selection

Series LEJS▶Page 55


Selection Procedure

Step 2 Check the cycle time. Step 3 Check the allowable moment. Step 1 Check the speed—work load.

Selection Example

Operating conditions

- Work load: 60 [kg]
- Speed: 300 [mm/s]
- Acceleration/Deceleration: 3000 [mm/s²]
- Stroke: 300 [mm]
- Mounting orientation: Horizontal
- External force: 10 [N]

Step 1 Check the speed—work load.

Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications with reference to the "Speed-Work Load Graph (Guide)" on page 46. Selection example) The LEJS63 B-300 is temporarily selected based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2 Check the cycle time.

Refer to method 1 for a rough estimate, and method 2 for a more precise value.

Method 1: Check the cycle time graph. (Page 47)

The graph is based on the maximum speed of each size.

Method 2: Calculation

Cycle time T can be found from the following equation.

• T1 and T3 can be obtained by the following equation.

The acceleration and deceleration values have upper limits depending on the workpiece mass and the duty

Confirm that they do not exceed the upper limit, by referring to the "Work load-Acceleration/Deceleration Graph (Guide)" on pages 48 and 49.

For the ball screw type, there is an upper limit of the speed depending on the stroke. Confirm that it does not exceed the upper limit, by referring to the specifications on page 56.

• T2 can be found from the following equation.

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V} [s]$$

• T4 varies depending on the motor type and load. The value below is recommended.

Calculation example)

T1 to T4 can be calculated as

$$T1 = V/a1 = 300/3000 = 0.1 [s],$$

$$T3 = V/a2 = 300/3000 = 0.1 [s]$$

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{L - 0.5 \cdot V \cdot (T1 + T3)}$$

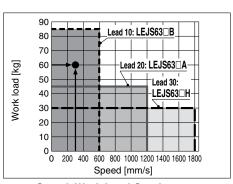
$$=\frac{300-0.5\cdot300\cdot(0.1+0.1)}{300}$$

$$= 0.90 [s]$$

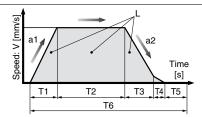
$$T4 = 0.05 [s]$$

Therefore, the cycle time can be obtained as follows.

$$T = T1 + T2 + T3 + T4$$
$$= 0.1 + 0.90 + 0.1 + 0.05$$


* The conditions for the settling time vary depending on the motor or driver to be used.

Step 3 Check the allowable moment.


Refer to the "Dynamic Allowable Moment" graphs on pages 50 and 51.

Selection example) Select the **LEJS63** B-300 from the graph on the right side. Confirm that the external force is within the allowable external force (20 [N]). (The external force is the resistance due to cable duct, flexible trunking or air tubing.)

<Speed-Work Load Graph> (LEJS63)

- L: Stroke [mm]
- V: Speed [mm/s]
- a1: Acc eleration [mm/s2]
- a2: Deceleration [mm/s2]
- T1: Acceleration tim e [s]

Time until rea ching the set speed

T2: Constant speed t ime [s]

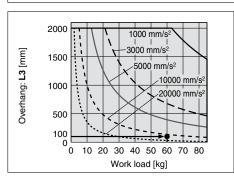
Time while the actuator is operating at a constant speed

T3: Deceleratio n time [s]

Time from the beginning of the constant speed operation to stop

T4: Settling time [s]

Time until positioning is completed

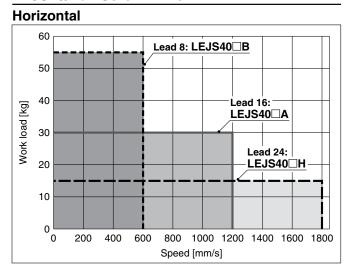

T5: Res ting time [s]

Time the product is not running

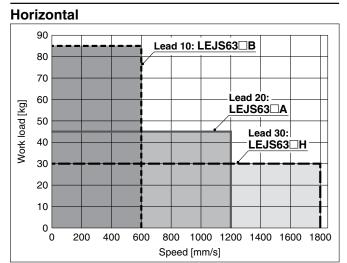
T6: Total time [s]

Total time from T1 to T5

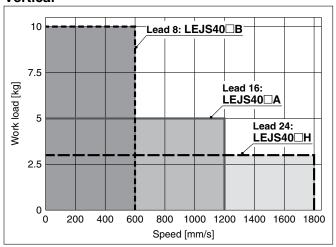
Duty ratio: Ratio of T to T6 T ÷ T6 x 100

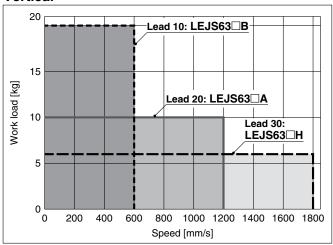

<Dynamic Allowable Moment> (LEJS63)

Model Selection Series LEJS (Motorless Type


- * The values shown below are allowable values of the actuator body. Do not use the actuator so that it exceeds these specification ranges.
- * The allowable speed is restricted depending on the stroke. Select it by referring to the "Allowable Stroke Speed."

LEJS40/Ball Screw Drive

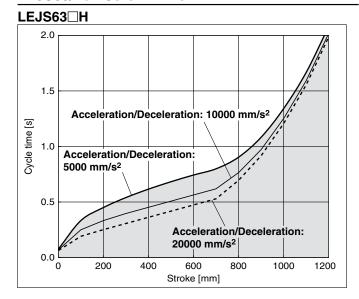

Speed-Work Load Graph (Guide)


LEJS63/Ball Screw Drive

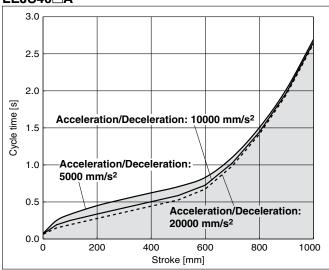
Vertical

Allowable Stroke Speed

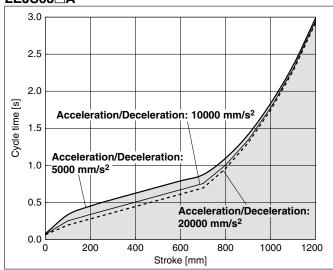
																[mm/s]
Model Motor Lead						Stroke [mm]										
Model	IVIOLOI	Symbol	[mm]	Up to 200	Up to 300 Up to 400	Up to 500	Up to 600	Up to 700	Up to 800	Up to 900	Up to 1000	Up to 1100	Up to 1200	Up to 1300	Up to 1400	Up to 1500
		H 24			1800		1580	1170	910	720	580	480	410	_	_	
	100 W	Α	16		1200		1050	780	600	480	390	320	270	_	_	_
LEJS40	equivalent	В	8		600		520	390	300	240	190	160	130	_	_	
	(Motor rotation speed)		(4500 rpm)		(3938 rpm)	(2925 rpm)	(2250 rpm)	(1800 rpm)	(1463 rpm)	(1200 rpm)	(1013 rpm)	_	_			
		Н	30	_		1800			1390	1110	900	750	630	540	470	410
	200 W	Α	20	_		1200			930	740	600	500	420	360	310	270
LEJS63	equivalent	В	10	_	— 600			600		370	300	250	210	180	150	130
			r rotation peed)	_	(;	3600 rpn	n)		(2790 rpm)	(2220 rpm)	(1800 rpm)	(1500 rpm)	(1260 rpm)	(1080 rpm)	(930 rpm)	(810 rpm)

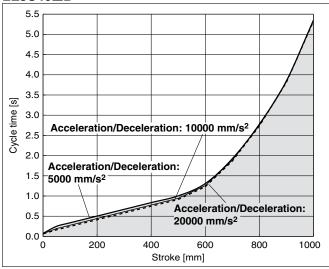

Series LEJS Motorless Type

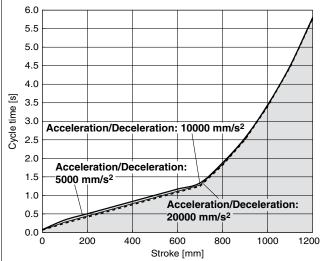
Cycle Time Graph (Guide)


LEJS40/Ball Screw Drive

LEJS40□H 2.0 Cycle time [s] Acceleration/Deceleration: 10000 mm/s² 1.0 Acceleration/Deceleration: 5000 mm/s² 0.5 Acceleration/Deceleration: 20000 mm/s² 0.0 400 600 800 1000 Stroke [mm]


LEJS63/Ball Screw Drive

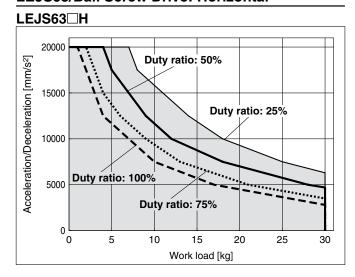


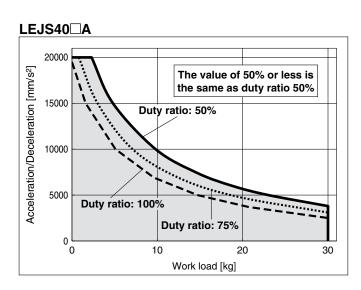

LEJS63□A

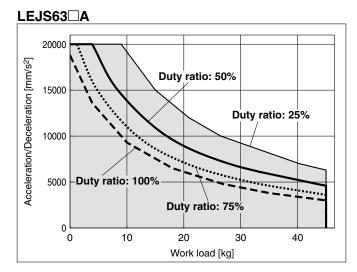
LEJS40□B

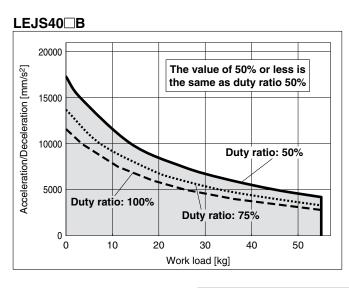
LEJS63□B

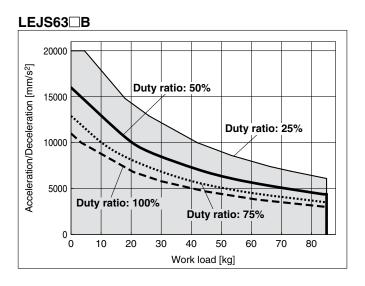
^{*} These graphs show the cycle time for each acceleration/deceleration.


^{*} These graphs show the cycle time for each stroke at the maximum speed.


Work Load-Acceleration/Deceleration Graph (Guide)


LEJS40/Ball Screw Drive: Horizontal


The value of 50% or less is the same as duty ratio: 50% Duty ratio: 75% Duty ratio: 75% Work load [kg]


LEJS63/Ball Screw Drive: Horizontal

These graphs are examples of when the standard motor is mounted.

Determine the duty ratio after taking into account the load factor of the motor or driver to be used.

Model Selection

LEFS

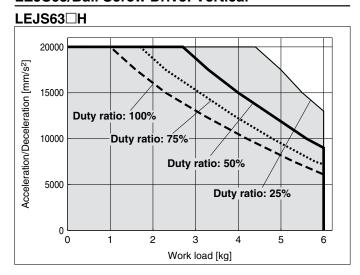
LEFB

LEJS

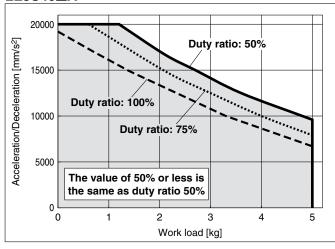
LΕΥ

EYG

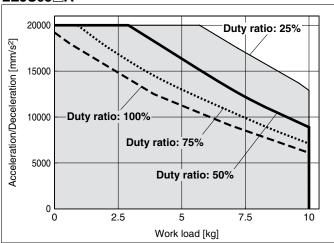
Motor Mounting

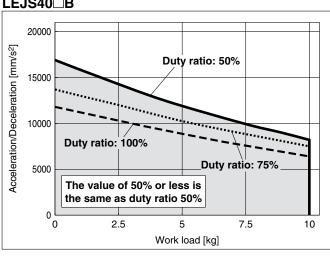


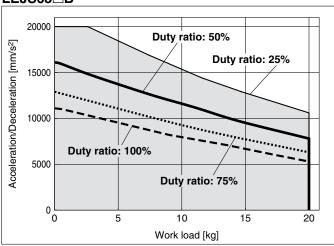
Work Load-Acceleration/Deceleration Graph (Guide)


LEJS40/Ball Screw Drive: Vertical

LEJS40□H 20000 Acceleration/Deceleration [mm/s²] Duty ratio: 50% 15000 Duty ratio: 100% 10000 Duty ratio: 75% 5000 The value of 50% or less is the same as duty ratio 50% 3 Work load [kg]


LEJS63/Ball Screw Drive: Vertical


LEJS40□A

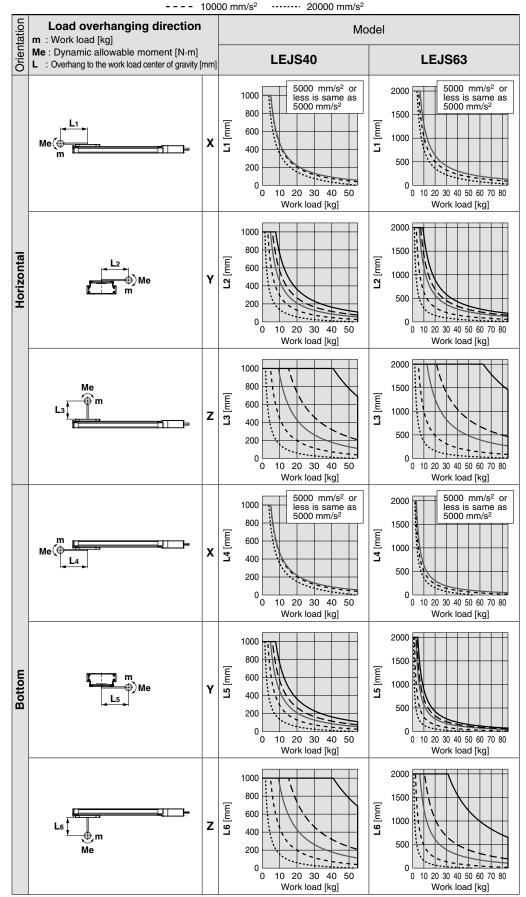

LEJS63□A

LEJS40□B

LEJS63□B

These graphs are examples of when the standard motor is mounted. Determine the duty ratio after taking into account the load factor of the motor or driver to be used.

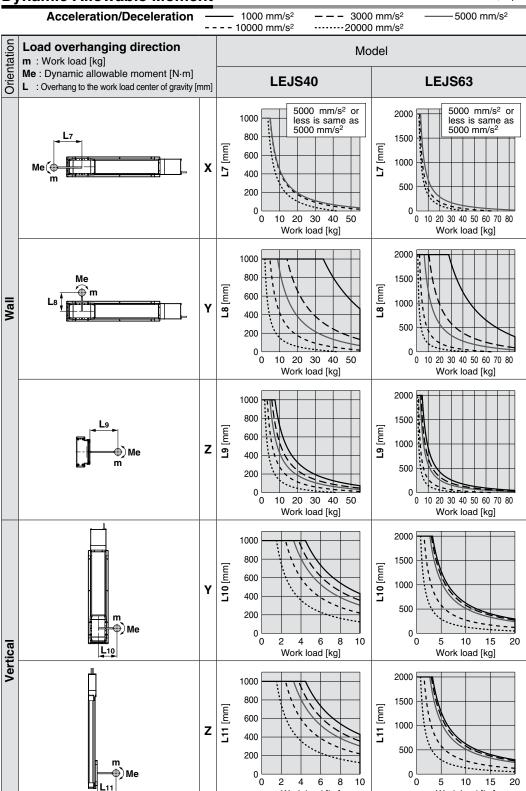
Model Selection Series LEJS Motorless Type * This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece


overhangs in one direction. When selecting the overhang, refer to "Calculation of Guide Load Factor" or the

Dynamic Allowable Moment

Acceleration/Deceleration

s² ——5000 mm/s²


Electric Actuator Selection Software for confirmation, http://www.smcworld.com

Dynamic Allowable Moment

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to "Calculation of Guide Load Factor" or the Electric Actuator Selection Software for confirmation, http://www.smcworld.com

Work load [kg]

Work load [kg]

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEJS Size: 40/63

Acceleration [mm/s2]: a Work load [kg]: m

Mounting orientation: Horizontal/Bottom/Wall/Vertical

Work load center position [mm]: Xc/Yc/Zc

- 2. Select the target graph with reference to the model, size and mounting orientation.
- 3. Based on the acceleration and work load, obtain the overhang [mm]: Lx/Ly/Lz from the graph.
- 4. Calculate the load factor for each direction.

$$\alpha x = Xc/Lx$$
, $\alpha y = Yc/Ly$, $\alpha z = Zc/Lz$

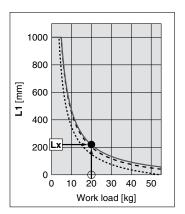
5. Confirm the total of $\alpha \mathbf{x}$, $\alpha \mathbf{y}$ and $\alpha \mathbf{z}$ is 1 or less.

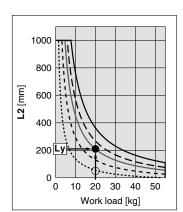
$$\alpha x + \alpha y + \alpha z \le 1$$

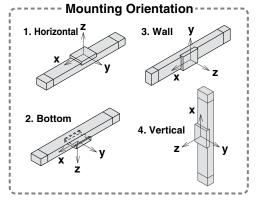
When 1 is exceeded, consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

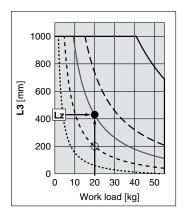

Model: LEJS Size: 40


Mounting orientation: Horizontal Acceleration [mm/s2]: 5000

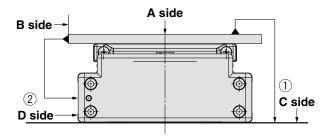

Work load [kg]: 20

Work load center position [mm]: Xc = 0, Yc = 50, Zc = 200

2. Select the graph on page 50, top and left side first row.

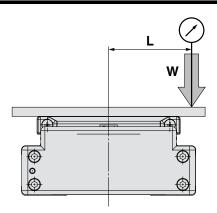


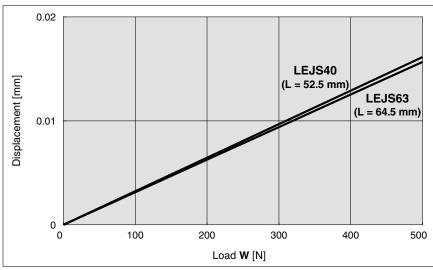
- 3. Lx = 220 mm, Ly = 210 mm, Lz = 430 mm
- 4. The load factor for each direction can be obtained as follows.


$$\alpha x = 0/220 = 0$$

 $\alpha y = 50/210 = 0.24$
 $\alpha z = 200/430 = 0.47$

5. $\alpha x + \alpha y + \alpha z = 0.71 \le 1$


Table Accuracy (Reference Value)

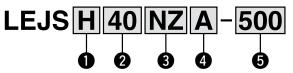


	Traveling parallelism [mm] (Every 300 mm)							
Model	C side traveling parallelism to A side	② D side traveling parallelism to B side						
LEJS40	0.05	0.03						
LEJS63	0.05	0.03						

Note) Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

Note) This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table. (Table clearance is included.)


Motorless Type

Electric Actuator/High Rigidity Slider Type

Ball Screw Drive Series LEJS LEJS40, 63

How to Order

A Accuracy

Accuracy								
Nil	Basic type							
Н	High precision type							

2 Siz	е
40	
63	

•		

3 Motor type							
Symbol	Type						
NZ	Mounting type Z						
NY	Mounting type Y						
NX	Mounting type X						
NW*	Mounting type W						
NV*	Mounting type V						
NU^*	Mounting type U						
NT*	Mounting type T						

* Size 63 only

43	Lead	[mm]

Lead [mm]									
Symbol	LEJS40	LEJS63							
Н	24	30							
Α	16	20							
В	8	10							

5 Stroke [mm]

200
to
1500

* For details, refer to the table below.

Applicable Stroke Table •: Standar										andard	
Stroke Model [mm]		300	400	500	600	700	800	900	1000	1200	1500
LEJS40	•	•	•	•	•	•	•	•	•	•	_
LEJS63	_	•	•	•	•	•	•	•	•	•	

^{*} Please consult with SMC for non-standard strokes as they are produced as special orders.

For auto switches, refer to pages 62 to 64.

Compatible Motors

Compatible Motors												
Applica	able motor model		Size/Motor type									
				40					63			
Manufacturer	Series	Туре	NZ Mounting type Z	NY Mounting type Y	NX Mounting type X	NZ Mounting type Z	NY Mounting type Y	NX Mounting type X	NW Mounting type W	NV Mounting type V	NU Mounting type U	NT Mounting type T
	MELSERVO-JN	HF-KN	•	_	_	•	_	_	_	_	_	_
Mitsubishi Electric Corporation	MELSERVO-J3	KF-KP	•	_	_	•	_	_	_	<u> </u>	_	_
Corporation	MELSERVO-J4	HG-KR	•	_	_	•	_	_	_	_	_	_
YASKAWA Electric Corporation	Σ-V	SGMJV	•	_	_	•	_	_	_	_	_	_
SANYO DENKI CO., LTD.	SANMOTION R	R2	•	_	_	•	_	_	_	_	_	_
OMRON Corporation	Sysmac G5	R88M-K	•	_	_	_	•	_	_	_	_	_
Panasonic	MINAS-A4	MSMD	_	•	_	_	•	_	_	_	_	_
Corporation	MINAS-A5	MSMD/MHMD	_	•	_	_	•	_	_	_	_	_
FANUC CORPORATION	βis	β	•	_	_	(β1 only)	_	_	•	_	_	_
NIDEC SANKYO CORPORATION	S-FLAG	MA/MH/MM	•	_	_	•	_	_	_	_	_	_
KEYENCE CORPORATION	SV	SV-M/SV-B	•	_	_	•	_	_	_	_	_	_
FUJI ELECTRIC CO.,	ALPHA5	GYS/GYB	•	_	_	•	_	_	_	_	_	_
LTD.	FALDIC-α	GYS	•	_	_	•	_	_	_	_	_	_
Rockwell Automation, Inc.	MP-/VP-	MP/VP	_	_	_	_	_	•	_	_	_	_
(Allen-Bradley)	TL	TLY-A	•	_	_	_	_	_	_	_	_	•
Beckhoff Automation	AM	AM30	•	_	_	_	_	_	_	•	_	_
GmbH	AM	AM31	•	_	_	_	_	_	_	_	•	_
	AM	AM80/AM81	•	_	_	_	_	•	_	_	_	_
Siemens AG	1FK7	1FK7	_	_	•	_	_	•	_	_	_	_
Delta Electronics, Inc.	ASDA-A2	ECMA	•	_		•	_	_	_	_	_	_

Specifications

- Values in this specification table are the allowable values of the actuator body with the standard motor mounted.
- Do not use the actuator so that it exceeds these values.

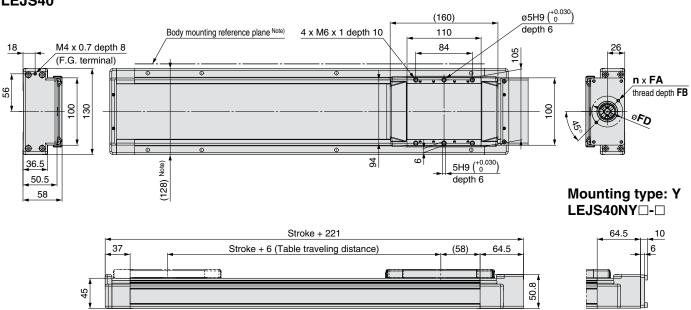
		Model			LEJS40			LEJS63				
	Stroke [mm	Note 1)		200, 300	0, 400, 500, 600, 7 900, 1000, 1200	700, 800	300, 400, 500, 600, 700, 800, 900 1000, 1200, 1500					
	Work load [Ica I Note 2)	Horizontal	15	30	55	30	45	85			
	WOIK IOAU [kg] ''ele z/	Vertical	3	5	10	6	10	20			
			Up to 500	1800	1200	600						
			501 to 600	1580	1050	520	1800	1200	600			
			601 to 700	1170	780	390						
			701 to 800	910	600	300	1390	930	460			
	Note 3)	. .	801 to 900	720	480	240	1110	740	370			
	Speed [mm/s]	Stroke range	901 to 1000	580	390	190	900	600	300			
SL	[11111/3]	lange	1001 to 1100	480	320	160	750	500	250			
tio		1101 to 1200	410	270	130	630	420	210				
fica			1201 to 1300	_	_	_	540	360	180			
ecií			1301 to 1400	_	_	_	470	310	150			
Actuator specifications			1401 to 1500	_	_	_	410	270	130			
tor	Max. accele	ration/decele	eration [mm/s ²]			200	000					
tus	Positioning		Basic type			±0	.02					
AC	repeatability	/ [mm]	High precision type			±0	.01					
	Lost motion	Imm1 Note 4)	Basic type			0.1 o	r less					
	LOST IIIOLIOI	i [iiiiii]	High precision type	0.05 or less								
	Ball screw		Thread size [mm]		ø12			ø15				
	specificatio	ns	Lead [mm]	24	16	8	30	20	10			
			Shaft length [mm]		Stroke + 118.5		Stroke + 126.5					
	Impact/Vibr	ation resista	nce [m/s²] Note 5)	50/20								
	Actuation ty	/pe				Balls	screw					
	Guide type					Linear	guide					
		emperature r				41 to 104°F						
	Operating h	umidity rang	je [%RH]			90 or less (No	condensation)					
Other specifications	Actuation u	nit weight [k	g]		0.86			1.37				
ficat	Other inertia				0.031			0.129				
The peci	Friction coe					0.	05					
Note 6)	Mechanical	efficiency		0.8								
stor	Motor shape	9			□40			□60				
ions	Motor type					AC servo moto	r (100 V/200 V)	200				
ence	<u>-</u>	it capacity [\		100								
Reference motor specifications		e lbf·ft [N·m	1]		0.24 [0.32]			0.47 [0.64]				
S ds	Rated rotati	on [rpm]			3000			3000				

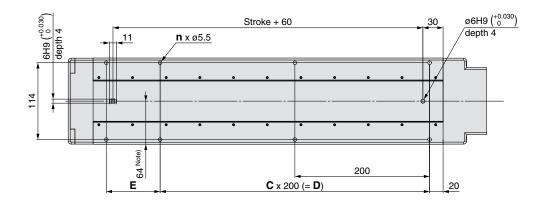
- Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders.
- Note 2) Check the "Speed-Work Load Graph (Guide)" on page 46.
- Note 3) The allowable speed changes according to the stroke.
- Note 4) A reference value for correcting an error in reciprocal operation.
- Note 5) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
- Note 6) Each value is a guide. Use such value to select a motor capacity.
- Note 7) Sensor magnet position is located in the table center. For detailed dimensions, refer to the "Auto Switch Mounting Position."
- Note 8) Do not allow collisions at either end of the table traveling distance. Additionally, when running the positioning operation, do not set within 2 mm of both ends.
- Note 9) Please consult with SMC for the manufacture of intermediate strokes. (LEJS40/Manufacturable stroke range: 200 to 1200 mm, LEJS63/Manufacturable stroke range: 300 to 1500 mm)

Weight

Model					LEJ	S40				
Stroke [mm]	200	300	400	500	600	700	800	900	1000	1200
Product weight [kg]	5.0	5.8	6.5	7.3	8.1	8.8	9.6	10.4	11.1	12.7

Model		LEJS63								
Stroke [mm]	300	400	500	600	700	800	900	1000	1200	1500
Product weight [kg]	10.4	11.7	12.9	14.2	15.4	16.7	17.9	19.1	21.6	25.4





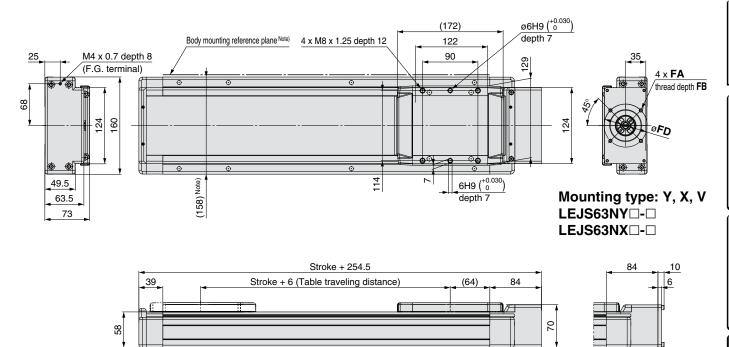
Dimensions: Ball Screw Drive

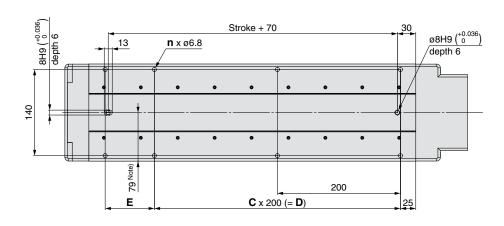
Refer to the "Motor Mounting" on page 59 for details about motor mounting and included parts.

LEJS40

Note) When mounting the actuator using the body mounting reference plane, use a pin. Set the height of the pin to be 5 mm or more because of round chamfering. (Recommended height 6 mm)

Dimensions				[mm]
Model	n	С	D	Е
LEJS40N□□-200	6	1	200	80
LEJS40N□□-300	6	1	200	180
LEJS40N□□-400	8	2	400	80
LEJS40N□□-500	8	2	400	180
LEJS40N□□-600	10	3	600	80
LEJS40N□□-700	10	3	600	180
LEJS40N□□-800	12	4	800	80
LEJS40N□□-900	12	4	800	180
LEJS40N□□-1000	14	5	1000	80
LEJS40N□□-1200	16	6	1200	80


Motor Mounting Dimensions [mm]									
Motor type	n	FA	FB	FD					
NZ/Mounting type Z	2	M4 x 0.7	7	46					
NY/Mounting type Y	4	M3 x 0.5	6	45					
NX/Mounting type X	2	M4 x 0.7	7	46					



Dimensions: Ball Screw Drive

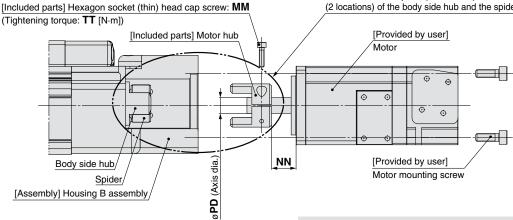
Refer to the "Motor Mounting" on page 59 for details about motor mounting and included parts.

LEJS63

Note) When mounting the actuator using the body mounting reference plane, use a pin. Set the height of the pin to be 5 mm or more because of round chamfering. (Recommended height 6 mm)

Dimensions				_[mm]
Model	n	С	D	E
LEJS63N□□-300	6	1	200	180
LEJS63N□□-400	8	2	400	80
LEJS63N□□-500	8	2	400	180
LEJS63N□□-600	10	3	600	80
LEJS63N□□-700	10	3	600	180
LEJS63N□□-800	12	4	800	80
LEJS63N□□-900	12	4	800	180
LEJS63N□□-1000	14	5	1000	80
LEJS63N□□-1200	16	6	1200	80
LEJS63N□□-1500	18	7	1400	180
•				

Dimensions


Motor Mounting Dimensions [mn											
Motor type FA F											
M5 x 0.8	7	70									
M4 x 0.7	6	70									
M5 x 0.8	6	63									
M5 x 0.8	7	70									
M4 x 0.7	6	63									
M5 x 0.8	7	70									
M5 x 0.8	7	70									
	FA M5 x 0.8 M4 x 0.7 M5 x 0.8 M5 x 0.8 M4 x 0.7 M5 x 0.8	FA FB M5 x 0.8 7 M4 x 0.7 6 M5 x 0.8 6 M5 x 0.8 7 M4 x 0.7 6 M5 x 0.8 7									

Motor Mounting

- When mounting a hub, remove the oil content, dust, or dirt sticking to the shaft and hub inside diameter.
- This product does not include the motor and motor mounting screws. (Provided by user) For the shaft-end shape of the motor, prepare the round type.
- Take loose prevention measures for the motor mounting screws.

Match the convex parts (2 locations) of the motor hub to the concave parts (2 locations) of the body side hub and the spider in the orientation to be fitted.

Mounting procedure

- 1) Fix the motor (provided by user) and the "motor hub" with the "MM hexagon socket head cap screw."
- 2) Check the "motor hub position", and then insert it.
- 3) Fix the motor and the "housing B assembly" with the motor mounting screws (provided by user).

Dimensions [mm]													
Size	Motor type	MM	TT	NN	PD								
	NZ/Mounting type Z	M2.5 x 10	0.65	12.5	8								
40	NY/Mounting type Y	M2.5 x 10	0.65	12.5	8								
	NX/Mounting type X	M2.5 x 10	0.65	7	8								
	NZ/Mounting type Z	M3 x 12	1.5	18	14								
	NY/Mounting type Y	M4 x 12	2.7	18	11								
	NX/Mounting type X	M4 x 12	2.7	8	9								
63	NW/Mounting type W	M4 x 12	2.7	12	9								
	NV/Mounting type V	M4 x 12	2.7	8	9								
	NU/Mounting type U	M4 x 12	2.7	12	11								
	NT/Mounting type T	M3 x 12	1.5	18	12								

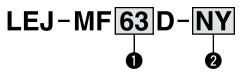
Included Parts List

Size: 40

Description	Quantity	Note
Motor hub	1	_
Hexagon socket head cap screw (for hub fixing)	1	M2.5 x 10: Motor type "NZ", "NY", "NX"

Size: 63

Description	Quantity	Note
Motor hub	1	_
Hexagon socket head cap screw (for hub fixing)	1	M3 x 12: Motor type "NZ", "NT"
Hexagon socket thin head cap screw (for hub fixing)	1	M4 x 12: Motor type "NY", "NX", "NW", "NV", "NU"


Series LEJS

Motor Mounting Parts

Motor Flange Option

As the motor type "NZ" is selected for the model and this option is mounted, the motor types that can be used are shown below.

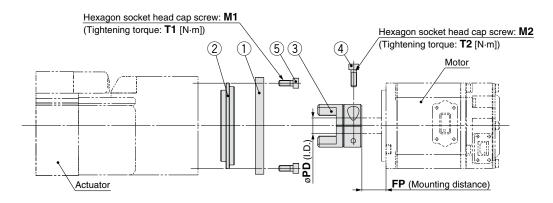
How to Order

1 Size

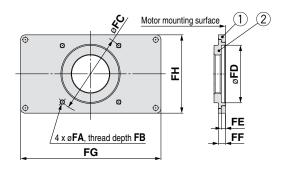
40	For LEJ40
63	For LEJ63

2 Motor type

Symbol	Туре
NY	Mounting type Y
NX	Mounting type X
NW	Mounting type W
NV	Mounting type V
NU	Mounting type U
NT	Mounting type T


^{*} Component parts vary depending on the motor type. Refer to "Component Parts" on page 61.

Compatible Motors


Compatible Motors														
Applicable motor model				Size/Motor type										
				40 63										
Manufacturer	Series	Туре	NZ Mounting type Z	NY Mounting type Y	NX Mounting type X	NZ Mounting type Z	NY Mounting type Y	NX Mounting type X	NW Mounting type W	NV Mounting type V	NU Mounting type U	NT Mounting type T		
	MELSERVO-JN	HF-KN	•	_	_	•	_	_	_	_	_	_		
Mitsubishi Electric Corporation	MELSERVO-J3	KF-KP	•	_	_	•	_	_	_	_	_	_		
Corporation	MELSERVO-J4	HG-KR	•	_	_	•	_	_	_	_	_	_		
YASKAWA Electric Corporation	Σ-V	SGMJV	•	_	_	•	_	_	_	_	_	_		
SANYO DENKI CO., LTD.	SANMOTION R	R2	•	_	_	•	_	_	_	_	_	_		
OMRON Corporation	Sysmac G5	R88M-K	•	_	_	_	•	_	_	_	_	_		
Panasonic	MINAS-A4	MSMD	_	•	_	_	•	_	_	_	_	_		
Corporation	MINAS-A5	MSMD/MHMD	_	•	_	_	•	_	_	_	_	_		
FANUC CORPORATION	βis	β	•	_	_	(β1 only)	_	_	•	_	_	_		
NIDEC SANKYO CORPORATION	S-FLAG	MA/MH/MM	•	_	_	•	_	_	_	_	_	_		
KEYENCE CORPORATION	SV	SV-M/SV-B	•	_	_	•	_	_	_	_	_	_		
FUJI ELECTRIC CO.,	ALPHA5	GYS/GYB	•	_	_	•	_	_	_	_	_	_		
LTD.	FALDIC-α	GYS	•	_	_	•	_	_	_	_	_	_		
Rockwell Automation, Inc.	MP-/VP-	MP/VP	_	_	_	_	_	•	_	_	_	_		
(Allen-Bradley)	TL	TLY-A	•	_	_	_	_	_	_	_	_	•		
D1.1# A	AM	AM30	•	_	_	_	_	_	_	•	_	_		
Beckhoff Automation GmbH	AM	AM31	•	_	_	_	_	_	_	_	•	_		
dilibit	AM	AM80/AM81	•	_	_	_	_	•	_	_	_	_		
Siemens AG	1FK7	1FK7	_	_	•	_	_	•	_	_	_	_		
Delta Electronics, Inc.	ASDA-A2	ECMA	•	_	_	•	_	_	_	_	_	_		

Dimensions: Motor Flange Option

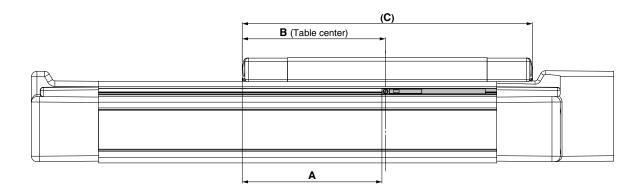
Motor plate details

Dimen	Dimensions										[mm]				
Size	Motor type	FA	FB	FC	FD	FE	FF	FG	FH	M1	T1	M2	T2	PD	FP
40	NY	M3 x 0.5	6	45	30	3.5	6	99	49	M4 x 12	2.7	M2.5 x 10	0.65	8	12.5
40	NX	_	_	_	_	_	_	_	_	_	_	M2.5 x 10	0.65	8	7
	NY	M4 x 0.7	6	70	50	3.5	6	123	68	M4 x 12	2.7	M4 x 12	2.7	11	18
	NX	M5 x 0.8	6	63	40	3.5	6	123	68	M4 x 12	2.7	M4 x 12	2.7	9	8
63	NW	_	_	_	_	_	_	_	_	_	_	M4 x 12	2.7	9	12
03	NV	M4 x 0.7	6	63	40	3.5	6	123	68	M4 x 12	2.7	M4 x 12	2.7	9	8
	NU	_		_	_	_	_	_	_	_	_	M4 x 12	2.7	11	12
	NT	_				_	_		_	_	_	M3 x 12	1.5	12	18

Component Parts

Size: 40

		Quantity					
No.	Description	Moto	r type				
		NY	NX				
1	Motor plate	1	_				
2	Ring	1	_				
3	Hub (Motor side)	1	1				
4	Hexagon socket thin head cap screw	1	1				
5	Hexagon socket head cap screw	4	_				


Size: 63

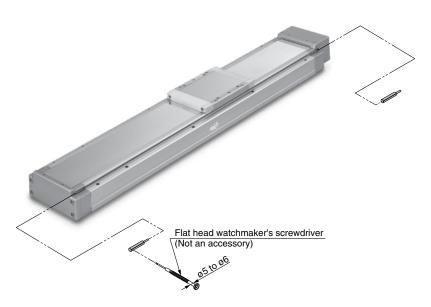
		Quantity										
No.	Description		Motor type									
		NY	NX	NW	NV	NU	NT					
1	Motor plate	1	1	_	1	_	_					
2	Ring	1	1	_	1	_	_					
3	Hub (Motor side)	1	1	1	1	1	1					
4	Hexagon socket thin head cap screw	1	1	1	1	1	1					
5	Hexagon socket head cap screw	4	4	_	4	_	_					

Series LEJS

Auto Switch Mounting

Auto Switch Mounting Position

					[mm]
Model	Size	Α	В	С	Operating range
LEJS	40	77	80	160	5.5
LEJS	63	83	86	172	7.0


Note) Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approximately $\pm 30\%$ dispersion). It may change substantially depending on the ambient environment.

Auto Switch Mounting

When mounting the auto switches, they should be inserted into the actuator's auto switch mounting groove as shown in the drawing below. After setting in the mounting position, use a flat head watchmaker's screwdriver to tighten the auto switch mounting screw that is included.

Auto Switch Mounting Screw Tightening Torque

3 1 3 1 1	
Auto switch model	Tightening torque
D-M9□(V) D-M9□W(V)	0.07 to 0.11 lbf-ft [0.10 to 0.15 [N·m]

Note) When tightening the auto switch mounting screw (included with auto switch), use a watchmaker's screwdriver with a handle diameter of about 5 to 6 mm.

Solid State Auto Switch Direct Mounting Style D-M9N(V)/D-M9P(V)/D-M9B(V)

Refer to SMC website for the details about products conforming to the international standards.

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the former model (SMC comparison).
- Using flexible cable as standard.

⚠Caution

Precautions

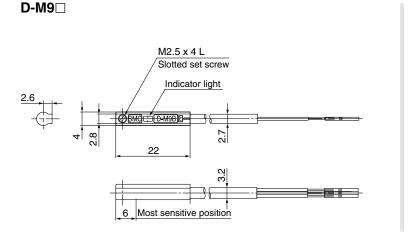
Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

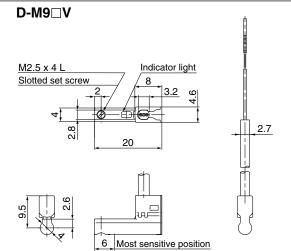
Auto Switch Specifications

				PLC: Progr	rammable Lo	gic Controller
D-M9□, D-M9□V (With indicator light)						
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type		3-w	/ire		2-1	vire
Output type	NI	PN	PI	VP.	-	_
Applicable load		IC circuit, Relay, PLC			24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)			_		
Current consumption	10 mA or less			_		
Load v oltage	28 VDC or less —			24 VDC (10 to 28 VDC)		
Load cu rrent	40 mA or less 2.5 to			40 mA		
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA) 4 V or less			r less		
Leakag e current	100 μA or less at 24 VDC 0.8 mA or less			or less		
Indicator light	Red LED lights up when turned ON.					
Standards	CE marking, RoHS					

Oilproof Heavy-duty Lead Wire Specifications

Auto sw	Auto switch model		D-M9P□	D-M9B□
Sheath	Outside diameter [mm]	2.7 x 3.2 (ellipse)		
Insulator	Number of cores	3 cores (Brown/Blue/Black) 2 cores (Brown/B		
Ilisulatoi	Outside diameter [mm]	m] ø0.9		
Conductor	Effective area [mm2]	0.15		
Strand diameter [mm]		ø0.05		
Minimum bending radius [mm] (Reference value)			20	


Note 1) Refer to the Best Pneumatics No. 2 catalog for solid state auto switch common specifications. Note 2) Refer to the Best Pneumatics No. 2 catalog for lead wire lengths.


Weight

[g]

Auto switch model		D-M9N(V)	D-M9N(V) D-M9P(V)	
	0.5 m (Nil)	8		7
Lead wire length	1 m (M)	14		13
	3 m (L)	41		38
	5 m (Z)	68		63

Dimensions [mm]

[g]

2-Color Indication Solid State Auto Switch **Direct Mounting Style** D-M9NW(V)/D-M9PW(V)/D-M9BW(V)

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the former model (SMC comparison).
- Using flexible cable as standard.
- The optimum operating range can be determined by the color of the

D-M9□W

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other

than the one supplied is used.

Precautions

Auto Switch Specifications

Refer to SMC website for the details about products conforming to the international standards.

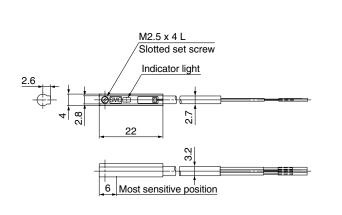
PLC: Programmable Logic Controller

D-M9□W, D-M9□WV (With indicator light)							
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV	
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular	
Wiring type		3-w	/ire		2-wire		
Output type	NF	PN	PI	NΡ	_		
Applicable load		IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	Ę	5, 12, 24 VDC (4.5 to 28 V)				_	
Current consumption	10 mA or less			_			
Load voltage	28 VDC or less —			24 VDC (10 to 28 VDC)			
Load current	40 mA or less			2.5 to	40 mA		
Internal voltage drop	0.8 V or le	0.8 V or less at 10 mA (2 V or less at 40 mA)			4 V or less		
Leakage current	100 μA or less at 24 VDC 0.8 mA of				or less		
Indicator light	Operating range Red LED lights up. Optimum operating range Green LED lights up.						
Standards	CE marking, RoHS						

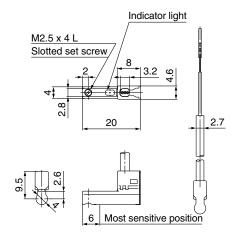
Oilproof Flexible Heavy-duty Lead Wire Specifications

· · · · · · · · · · · · · · · · · · ·					
Auto swi	tch model	D-M9NW□ D-M9PW□ I		D-M9BW□	
Sheath	Outside diameter [mm]	2.7 x 3.2 (ellipse)			
lasulatas	Number of cores	3 cores (Brown/Blue/Black) 2 cores (Brown/B			
Insulator Outside diameter [mm]			ø0.9		
Conductor	Effective area [mm²]	0.15			
Conductor	Strand diameter [mm]	ter [mm] Ø0.05			
Minimum bending radiu	s [mm] (Reference value)	ue) 20			

Note 1) Refer to the Best Pneumatics No. 2 catalog for solid state auto switch common


Note 2) Refer to the Best Pneumatics No. 2 catalog for lead wire lengths.

Weight


Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
	0.5 m (Nil)	8		7
Lead wire length ⊢——	1 m (M)	14		13
	3 m (L)	4	1	38
	5 m (Z)	6	68	63

Dimensions [mm]

SMC

D-M9□WV

Series LEJS Electric Actuator Specific Product Precautions 1

Be sure to read this before handling. Refer to the back cover for Safety Instructions. For Electric Actuator Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on the SMC website, http://www.smcworld.com

Design

1. Do not apply a load in excess of the specification limits.

Select a suitable actuator by work load and allowable moment. If the product is used outside of the specification limits, the eccentric load applied to the guide will be excessive and have adverse effects such as creating play on the guide, degrading accuracy and shortening the life of the product.

2. Do not use the product in applications where excessive external force or impact force is applied to it.

The product can be damaged.

The components including the motor are manufactured to precise tolerances. So that even a slight deformation may cause a malfunction or seizure.

Selection

△ Warning

 Do not increase the speed in excess of the specification limits.

Select a suitable actuator by the relationship of the allowable work load and speed, and the allowable speed of each stroke. If the product is used outside of the specification limits, it will have adverse effects such as creating noise, degrading accuracy and shortening the life of the product.

- When the product repeatedly cycles with partial strokes (100 mm or less), lubrication can run out. Operate it at a full stroke at least once a day or every a thousand cycles.
- When external force is applied to the table, it is necessary to add external force to the work load as the total carried load for the sizing.

When a cable duct or flexible moving tube is attached to the actuator, the sliding resistance of the table increases and may lead to operational failure of the product.

Handling

⚠ Caution

1. Do not allow the table to hit the end of stroke.

When the driver parameters, origin or programs are set incorrectly, the table may collide against the stroke end of the actuator during operation. Check these points before use.

If the table collides against the stroke end of the actuator, the guide, ball screw, belt or internal stopper can be broken. This may lead to abnormal operation.

Handle the actuator with care when it is used in the vertical direction as the workpiece will fall freely from its own weight.

The actual speed of this actuator is affected by the work load and stroke.

Check the specifications with reference to the model selection section of the catalog.

- Do not apply a load, impact or resistance in addition to the transferred load during return to origin.
- Do not dent, scratch or cause other damage to the body and table mounting surfaces.

This may cause unevenness in the mounting surface, play in the guide or an increase in the sliding resistance.

Do not apply strong impact or an excessive moment while mounting the product or a workpiece.

If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.

6. Keep the flatness of mounting surface 0.1 mm or less.

Unevenness of a workpiece or base mounted on the body of the product may cause play in the guide and an increase in the sliding resistance.

In the case of overhang mounting (including cantilever), use a support plate or support guide to avoid deflection of the actuator body.

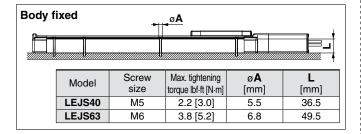
7. When mounting the actuator, use all mounting holes.

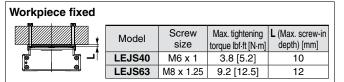
If all mounting holes are not used, it influences the specifications, e.g., the amount of displacement of the table increases.

- 8. Do not hit the table with the workpiece in the positioning operation and positioning range.
- 9. Do not apply external force to the dust seal band.

Particularly during the transportation

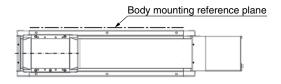
Series LEJS Electric Actuator Specific Product Precautions 2


Be sure to read this before handling. Refer to the back cover for Safety Instructions. For Electric Actuator Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on the SMC website, http://www.smcworld.com


Handling

⚠ Caution

10. When mounting the product, use screws with adequate length and tighten them with adequate torque.

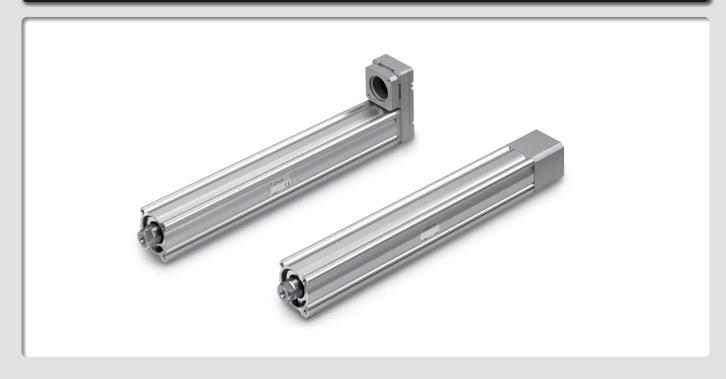

Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

To prevent the workpiece retaining screws from touching the body, use screws that are 0.5 mm or shorter than the maximum screw-in depth. If long screws are used, they can touch the body and cause a malfunction.

- 11. Do not operate by fixing the table and moving the actuator body.
- 12. When mounting the actuator using the body mounting reference plane, use a pin. Set the height of the pin to be 5 mm or more because of round chamfering. (Recommended height 6 mm)

Maintenance

⚠ Warning


Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check
Inspection before daily operation	0	_
Inspection every 6 months/1000 km/5 million cycles*	0	0

- * Select whichever comes first.
- Items for visual appearance check
- 1. Loose set screws, Abnormal dirt
- 2. Check of flaw and cable joint
- 3. Vibration, Noise
- Items for internal check
- 1. Lubricant condition on moving parts.
 - * For lubrication, use lithium grease No. 2.
- 2. Loose or mechanical play in fixed parts or fixing screws.

Rod Type Series LEY

Guide Rod Type Series LEYG

Motorless Type

Electric Actuator/Rod Type

Series LEY

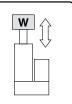
Model Selection Size 25, 32, 63

Series LEY ▶ Page 75

Selection Procedure

Positioning Control Selection Procedure

Check the work load-speed. (Vertical transfer)

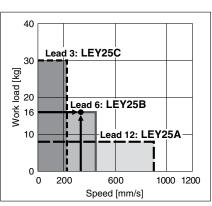

Step 2 Check the cycle time.

Selection Example

Operating conditions

- •Work load: 16 [kg] •Speed: 300 [mm/s]
- Acceleration/Deceleration: 5000 [mm/s²]
- •Stroke: 300 [mm]
- Workpiece mounting condition: Vertical upward

downward transfer


Step 1 Check the work load-speed. <Speed-Vertical Work Load Graph>

Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications with reference to the "Speed-Vertical Work Load Graph" on page 71.

Selection example) The **LEY25B** is temporarily selected based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer. When selecting the target model, refer to pages 76 and 77 for the horizontal work load in the specifications, and page

Refer to the selection method of motor manufacturers for regeneration resistance.

<Speed-Vertical Work Load Graph> (LEY25)

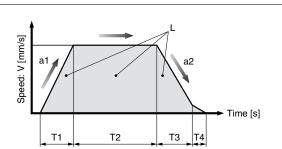
Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.

• Cycle time T can be found from the following equation.

• T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

• T2: Constant speed time can be found from the following equation.


$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}$$
 [s]

• T4: Settling time varies depending on the motor type and load. The value below is recommended.

* The conditions for the settling time vary depending on the motor or driver to be used.

Calculation example)

T1 to T4 can be calculated as follows.

- L : Stroke [mm] (Operating condition)
- V : Speed [mm/s] (Operating condition)
- a1: Acceleration [mm/s²] ··· (Operating condition)
- a2: Deceleration [mm/s²] ··· (Operating condition)

T1: Acceleration time [s] ··· Time until reaching the set speed

- T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
- T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop
- T4: Settling time [s] ··· Time until positioning is completed

T1 = V/a1 = 300/5000 = 0.06 [s], T3 = V/a2 = 300/5000 = 0.06 [s]

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V} = \frac{300 - 0.5 \cdot 300 \cdot (0.06 + 0.06)}{300} = 0.94 [s]$$

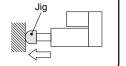
Therefore, the cycle time can be obtained as follows.

$$T = T1 + T2 + T3 + T4 = 0.06 + 0.94 + 0.06 + 0.05 = 1.11$$
 [s]

Based on the above calculation result, the LEY25B-300 is selected.

Selection Procedure

Pushing Control Selection Procedure


Selection Example

Operating conditions

- Mounting condition: Horizontal (pushing)
 Speed: 100 [mm/s]
- Jig weight: 0.5 [kg]

• Force: 255 [N]

• Stroke: 300 [mm]

Step 1 Check the force. <Force Conversion Graph>

Select the target model based on the "Ratio to rated torque" and force with reference to the "Force Conversion Graph."

Selection example)

Based on the graph shown on the right side,

- Ratio to rated torque: 30 [%]
- Force: 255 [N]

Therefore, the **LEY25B** is temporarily selected.

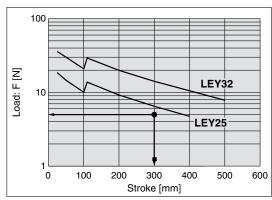
Step 2 Check the lateral load on the rod end.

<Graph of Allowable Lateral Load on the Rod End>

Confirm the allowable lateral load on the rod end of the actuator: LEY25B, which has been selected temporarily with reference to the "Graph of Allowable Lateral Load on the Rod End."

Selection example)

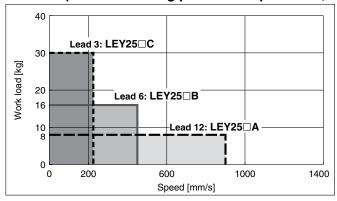
Based on the graph shown on the right side,


- Jig weight: 0.5 [kg] ≈ 5 [N]
- Product stroke: 300 [mm]

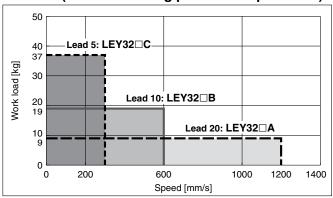
Therefore, the lateral load on the rod end is in the allowable range.

Based on the above calculation result, the LEY25B-300 is selected.

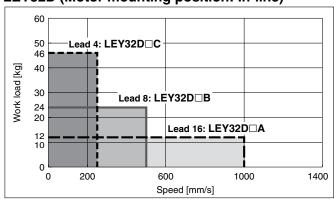
<Force Conversion Graph>

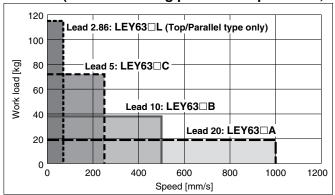


<Graph of Allowable Lateral Load on the Rod End>

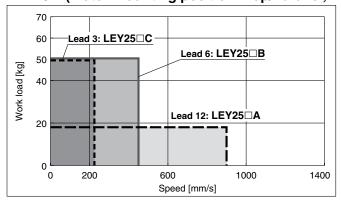

Speed-Vertical Work Load Graph

- * The values shown below are allowable values of the actuator body. Do not use the actuator so that it exceeds these specification ranges.
- * The allowable speed is restricted depending on the stroke. Select it by referring to the "Allowable Stroke Speed."

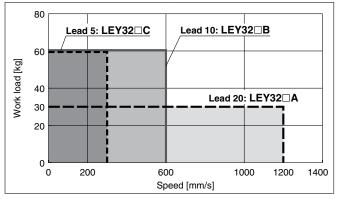

LEY25□ (Motor mounting position: Top/Parallel, In-line)

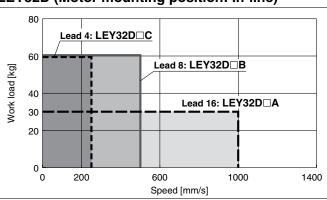

LEY32□ (Motor mounting position: Top/Parallel)

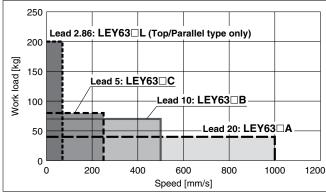
LEY32D (Motor mounting position: In-line)



LEY63□ (Motor mounting position: Top/Parallel, In-line)




LEY25□ (Motor mounting position: Top/Parallel, In-line)

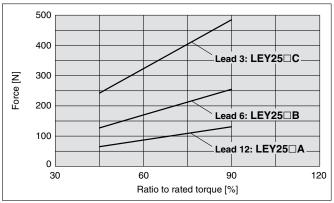

LEY32□ (Motor mounting position: Top/Parallel)

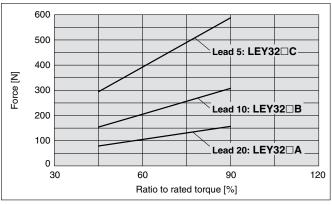
LEY32D (Motor mounting position: In-line)

LEY63□ (Motor mounting position: Top/Parallel, In-line)

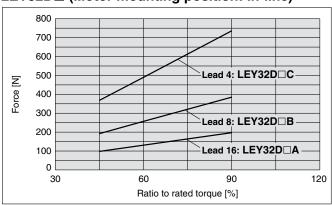
Allowable Stroke Speed

ı	mm/s1	
- 1	111111/3	


		Le	ead				Stroke	[mm]			[,0]
Model	Motor	Symbol	[mm]	Up to 100	Up to 200	Up to 300	Up to 400	Up to 500	Up to 600	Up to 700	Up to 800
LEVOE		Α	12		900		600	_	_	_	
LEY25	100 W	В	6		450		300	_	_	_	_
Motor mounting position: Top/Parallel, In-line	equivalent	С	3		225		150	_	_		
Top/r araller, in-line		(Motor rot	ation speed)		(4500 rpm)		(3000 rpm)	1	_	_	_
LEY32□		Α	20		12	00		800	_	_	_
Motor mounting position:	200 W	В	10		60	00		400	_	_	_
Top/Parallel	equivalent	С	5		30	00		200	_	_	_
Top/r drailer		(Motor rota	ation speed)		(3600	rpm)		(2400 rpm)	_	_	_
LEY32D		Α	16		10	00		640	_	_	_
Motor mounting position:	200 W	В	8		50	00		320	_	_	_
In-line	equivalent	С	4		2	50		160	_	_	_
(III-IIIIe)		(Motor rota	ation speed)		(3750	rpm)		(2400 rpm)	_	_	_
		Α	20			1000			800	600	500
		В	10			500			400	300	250
LEY63□	400 W	С	5			250			200	150	125
LETOS	equivalent	(Motor rota	ation speed)			(3000 rpm)		(2400 rpm)	(1800 rpm)	(1500 rpm)	
		Ĺ	2.86*				7	0			
		(Motor rota	ation speed)				(1470	rpm)			

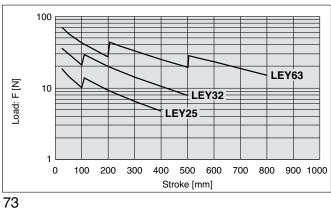

Force Conversion Graph (Guide)

* These graphs show an example of when the standard motor is mounted. Calculate the force based on used motor and driver.

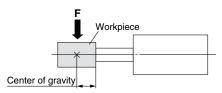

LEY25□ (Motor mounting position: Top/Parallel, In-line)

LEY32□ (Motor mounting position: Top/Parallel)

LEY32D (Motor mounting position: In-line)

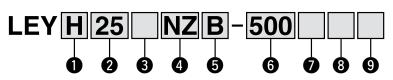


^{*} When using the force control or speed control, set the maximum value to be no more than 90% of the rated torque.


LEY63□ (Motor mounting position: Top/Parallel, In-line)

Graph of Allowable Lateral Load on the Rod End (Guide)

[Stroke] = [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]



Electric Actuator/Rod Type

Series LEYLEY25, 32, 63

How to Order

Accuracy

NII	Basic type
Н	High precision type

2 Size

Size	4 Mo	tor type
25	Symbol	Type
32	NZ	Mounting type Z
33	NY	Mounting type Y
	NX	Mounting type X
	NW	Mounting type W
	NV	Mounting type V
	NU	Mounting type U
	NT	Mounting type T
	NM1	Mounting type M1
	NM2	Mounting type M2

6 Lead [mm]

	<u> </u>		
Symbol	LEY25	LEY32	LEY63
Α	12	16 (20)	20
В	6	8 (10)	10
С	3	4 (5)	5
L	_	_	2.86*2

- *1 The values shown in () are the lead for top mounting, right/left side parallel types. Except motor type NM1. (Equivalent lead which includes the pulley ratio [1.25:1])
- *2 Only available for top mounting and right/left side parallel types. (Equivalent lead which includes the pulley ratio [4:7])

6 Stroke [mm]

<u> </u>	one [
30	30
to	to
800	800

RoHS

* Refer to the applicable stroke table.

Motor mounting position

Nil	Top mounting
R	Right side parallel
L	Left side parallel
D	In-line

Dust-tight/Water-jet-proof <Only available for LEY63>

Symbol	LEY25/32	LEY63
Nil	IP4x equivalent	IP5x equivalent (Dust-protected)
Р	_	IP65 equivalent (Dust-tight/Water-jet-proof)/ With vent hole tap

- * When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water.
- * The fitting and tubing should be provided separately by user. Select [Applicable tubing O.D.: ø4 or more, Connection thread: Rc1/8].
- * Cannot be used in environments exposed to cutting oil etc. Take suitable protective measures.
- * For details about enclosure, refer to "Enclosure" on pages 104 and 105.

8 Rod end thread

Nil	Rod end female thread
M	Rod end male thread (1 rod end nut is included.)

: Standard

9 Mounting*1

<u> </u>	anting								
Symbol	Typo	Motor mounting position							
Symbol	Type	Top/Parallel	In-line						
Nil	Ends tapped/ Body bottom tapped *2	•	•						
L	Foot	•	_						
F	Rod flange*2	●*4	•						
G	Head flange*2	●*5	_						
D	Double clevis*3	•	_						

- *1 Mounting bracket is shipped together, (but not assembled).
- *2 For horizontal cantilever mounting with the ends tapped, rod flange and head flange, use the actuator within the following stroke range.
 - · LEY25: 200 mm or less, LEY32: 100 mm or less, LEY63: 400 mm or less
- *3 For mounting with the double clevis, use the actuator within the following stroke range.

 LEY25: 200 mm or less, LEY32: 200 mm or less
- *4 If the stroke of the LEY25 is "30 mm or less", the rod flange may interfere with the motor.
- *5 Head flange is not applicable to the in-line type and the LEY32/63.

Stroke Model [mm]		50	100	150	200	250	300	350	400	450	500	600	700	800
LEY25	•	•	•	•	•	•	•	•	•	_	_	_	_	_
LEY32	•	•	•	•	•	•	•	•	•	•	•	_	_	_
LEY63	_	_	•	_	•	_	•	_	•	_	•	•	•	•

* Please consult with SMC for non-standard strokes as they are produced as special orders.

For auto switches, refer to pages 101 to 103.

Compatible Motors

Applicable Stroke Table

Applicat	ole motor mode											Size/	Moto	r type				20											
7.55					25							32		1,000						63									
Manufacturer	Series	Туре	NZ Mounting type Z	NY Mounting type Y	NX Mounting	NM1 Mounting type M1	Mounting	NZ Mounting type Z	NY Mounting type Y	NX Mounting type X	NW Mounting type W	NV Mounting type V	NU Mounting type U	NT Mounting type T	NM1 Mounting type M1		NZ Mounting type Z	NY Mounting type Y	NX Mounting type X	NW Mounting type W	NV Mounting type V	NU Mounting type U	NT Mounting type T						
Mitsubishi Electric	MELSERVO-JN	HF-KN	•	_			_			_		_	_	_	_	_	•	_			_	_	_						
	MELSERVO-J3	KF-KP	•	_	_	_	_	•	_	_	_	_	_	_	_	_	•	<u> </u>	_	_	_	_	_						
Corporation	MELSERVO-J4	HG-KR	•	_	_	—	_	•	_	_	_	_	_	_	_	_	•	_	_	_	_	_	—						
YASKAWA Electric Corporation	Σ-V	SGMJV	•	_	_	_	_	•	_	_	_	_	_	_	_	_	•	_	_	_	_	_	_						
SANYO DENKI CO., LTD.	SANMOTION R	R2	•	_	_	—	_	•	_	_	_	_	_	_	_	_	•	_	_	_	_	_	—						
OMRON Corporation	Sysmac G5	R88M-K	•	_	_	_	_	_	•	_	_	_	_	_	_	_	—	•	_	_	_	_	_						
Panasonic	MINAS-A4	MSMD	_	•	_	—	_	_	•	_	_	_	_	_	_	_	_	•	_	_	_	_	_						
Corporation	MINAS-A5	MSMD/MHMD	_	•	_	_	_	_	•	_	_	_	_	_	_	_	—	•	_	_	_	_	_						
FANUC CORPORATION	βis	β	•	_	_	_		(β1 only)	_	_	•	_	_	_	_	_	(β1 only)	_		•	_	_	_						
NIDEC SANKYO CORPORATION	S-FLAG	MA/MH/MM	•	_	_	<u> </u>	_	•	_	_	_	_	_	_	_	_	•	_	_	_	_	_	T —						
KEYENCE CORPORATION	SV	SV-M/SV-B	•	_	_	_	_	•	_	_	_	_	_	_	_	_	•	_		_	_	_	_						
FUJI ELECTRIC	ALPHA5	GYS/GYB	•	_	_	_	_	•	_	_	_	_	_	_	_	_	•	_		_	_	_	_						
CO., LTD.	FALDIC-α	GYS	•	_	_	_	_	•	_	_	_	_	_	_	_	_	•	_	_	_	_	_	_						
ORIENTAL MOTOR Co., Ltd.	AR/AZ	AR/AZ	_	_	_	—	•	_	_	_	_	_	_	_	_	•	—	<u> </u>	_	_	_	_	_						
FASTECH Co., Ltd.	Ezi-SERVO	EzM	_	_	_	•		_	_	_	_	_	_	_	•	_	—	—	_	_	_	_	—						
Rockwell Automation, Inc.	MP-/VP-	MP/VP	_	_	_	_	_	_	_	•*	_	_	_	_	_	_	—	—	*	_	_	_	—						
(Allen-Bradley)	TL	TLY-A	•	_	_	_		_	_		_	—	—		_	_	—	—		_	_	_							
Beckhoff	AM	AM30	•	_	-	_	_		l	_		•*	_		_	_	_	_	_		•*	-	—						
Automation	AM	AM31	•	_	_	_	_		_	_	_	_			_	_	_	_	_	_	_	•*	_						
GmbH	AM	AM80/AM81	•	_			_	_		•*	_	_		_		_	_		•*		_								
Siemens AG	1FK7	1FK7				_				•*		_				_	_		•*		_	_	_						
Delta Electronics, Inc.	ASDA-A2	ECMA	•	_	_			•		_	_	_			_	_				_	_	_							

Specifications

- Values in this specification table are the allowable values of the actuator body with the standard motor mounted.
- Do not use the actuator so that it exceeds these values.

		Mode	el			25 (Top/Par Y25D (In-li	•	LEY	/32 (Top/Par	allel)	LE	EY32D (In-li	ne)		
	Stroke [m	ım] ^{Note}	1)			, 100, 150, 20 300, 350, 400			, 100, 150, 20 350, 400, 450			, 100, 150, 20 350, 400, 450	,		
	Wark last	d Fleat		Horizontal	18	50	50	30	60	60	30	60	60		
	Work load	a [Kg]		Vertical	8	16	30	9	19	37	12	24	46		
	Force [N] (Set value		torque	45 to 90%)	65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736		
	Note 4)	a		Up to 300	900	450	225	1000	600	200	1000	500	050		
	speed	Stroke range	· [305 to 400	600	300	150	1200	600	300	1000	500	250		
S	[mm/s]	range		405 to 500	_	_	_	800	400	200	640	320	160		
o	Pushing s					35 or less				30 o	rless		•		
cati	Max. accele	eration/de	ecelerat	tion [mm/s ²]					5000						
specifications	Positioning	1	Bas	sic type					±0.02						
be	repeatabilit	y [mm]	High pr	recision type					±0.01	,					
	Lost motio	n Note 6)	Bas	sic type					0.1 or less						
atc	[mm]		High pr	recision type					0.05 or less						
Actuator				d size [mm]		ø10				ø.	12				
1	specifications (includ			ad [mm] ng pulley ratio)	12	6	3	16 (20)	8 (10)	4 (5)	16	8	4		
				ength [mm]	Stroke + 93.5 Stroke + 104.5										
	Impact/Vibr	ation res	istance	[m/s ²] Note 7)	50/20										
	Actuation	type				w + Belt (Top II screw (In-li	,	[Pu	all screw + B Illey ratio 1.2	5:1]		Ball screw			
	Guide typ	е						Sliding	bushing (Pis	ton rod)					
	Operating	tempe	rature	range				41 to	104°F [5 to	40°C]					
	Operating	g humid	lity rar	nge [%RH]				90 or le	ss (No conde	nsation)					
@Other specifications	Actuation (*[ST]: St		eight [[kg]		x 10 ⁻³) x [ST]: x 10 ⁻³) x [ST]:				(1.40 x 10 ⁻³) (1.40 x 10 ⁻³)					
pecif	Other ine	rtia [kg	·cm²]		0.012 (LE	Y25), 0.015	(LEY25D)		0.0	35 (LEY32),	0.061 (LEY3	2D)			
her s	Friction c	oefficie	ent		0.05										
Note 8	Mechanic	al effic	iency					0.8							
pec.	Motor sha	аре			□40 □60										
Reference motor spec.	Motor typ	е						А	C servo moto	or					
e mo	Rated output capacity [W]					100				20	00				
renc	Rated torque lbf-ft [N-m]					0.24 [0.32]				0.47	[0.64]				
Refe	Rated rot	ation [r	pm]		3000										

Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders. Note 2) The maximum value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according

to the condition of the external guide. Confirm using actual device.

Note 3) The force setting range for the force control (Speed control mode, Torque control mode). The force changes according to the set value. Set it with reference to the "Force Conversion Graph (Guide)" on page 73.

Note 4) The allowable speed changes according to the stroke. Note 5) The allowable collision speed for collision with the workpiece.

Note 6) A reference value for correcting an error in reciprocal operation.

Note 7) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)

Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. Test was performed in both an axial direction and a perpendicular direction to the lead screw.

(Test was performed with the actuator in the initial state.)
Note 8) Each value is a guide. Use such value to select a motor capacity.

Weight

Product Weight

	i roddot morgrit																				
Series LEY25 (Motor mounting position: Top/Parallel)									allel) LEY32 (Motor mounting position: Top/Parallel)												
	Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
	Product weight [kg]	0.8	0.9	1.1	1.3	1.5	1.7	1.8	2.0	2.2	1.4	1.5	1.8	2.3	2.6	2.9	3.1	3.4	3.7	4.0	4.3

Series	L	LEY2	D (Mo	otor m	ountir	ng pos	ition:	In-line	:)	LEY32D (Motor mounting position: In-line)										
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product weight [kg]	0.8	0.9	1.1	1.3	1.5	1.7	1.9	2.0	2.2	1.4	1.6	1.8	2.3	2.6	2.9	3.2	3.4	3.7	4.0	4.3

Additional	Weight

Additional Weig	Jiil		[kg]
	Size	25	32
Rod end male thread	Male thread	0.03	0.03
nou enu maie inreau	Nut	0.02	0.02
Foot (2 sets including	mounting bolt)	0.08	0.14
Rod flange (including	mounting bolt)	0.17	0.20
Head flange (includin	0.17	0.20	
Double clevis (including	pin, retaining ring and mounting bolt)	0.16	0.22

Specifications

- Values in this specification table are the allowable values of the actuator body with the standard motor mounted.
- Do not use the actuator so that it exceeds these values.

		Model		I	EY63D (In-line	e)		LEY63 (To	op/Parallel)							
	Stroke [mm]	Note 1)				100, 200, 3	00, 400, 500, 60	0, 700, 800								
	Work load [kg	1	Horizontal	40	70	80	40	70	80	200						
	WOIK IOAU [Kg	J	Vertical	19	38	72	19	38	72	115						
	Force Ibf [N] (Set value: Rat		45 to 150%)	35 to 117 [156 to 521]	68 to 228 [304 to 1012]	129 to 429 [573 to 1910]	35 to 117 [156 to 521]	68 to 228 [304 to 1012]	128 to 429 [573 to 1910]	225 to 752 [1003 to 3343]						
	_ Note 4)		Up to 500	1000	500	250	1000	500	250							
	Max. speed	Stroke	505 to 600	800	400	200	800	400	200	70						
	[mm/s]	range	605 to 700	600	300	150	600	300	150] /0						
S	[]		705 to 800	500	250	125	500	250	125							
specifications	Pushing spee		Note 5)				30 or less									
lica	Max. accelerat	ion/decele	ration [mm/s ²]			50	00			3000						
eci	Positioning		Basic type				±0.02									
	repeatability [mm]	High precision type				±0.01									
Actuator	Lost motion	Note 6)	Basic type		0.1 or less											
cţr	[mm]		High precision type		0.05 or less											
ă	Pall carow	Thread size [r					ø20									
	specifications	pecifications Le		20	10	5	20	10	5	5 (2.86)						
	•		Shaft length [mm]				Stroke + 147									
	Impact/Vibration	on resistar	nce [m/s²] Note 7)				50/20									
	Actuation type	9		Ball screw + Belt Ball screw + Belt [Pulley ratio 1:1] Ball screw + Belt [Pulley ratio 4:7]												
	Guide type			Sliding bushing (Piston rod)												
	Operating tem	perature r	ange			41	to 104°F [5 to 40)°C]								
	Operating hur	nidity ran	ge [%RH]			90 or I	ess (No conden	sation)								
specifications	Actuation unit		(g]	0.84 + (2.77 x 10 ⁻³) x [ST]: 200 st or less 0.94 + (2.77 x 10 ⁻³) x [ST]: Over 200 st, 500 st or less 1.03 + (2.77 x 10 ⁻³) x [ST]: Over 500 st												
sbe	Other inertia [kg·cm²]		0.056 (LEY63D) 0.110 0.053												
Other	Friction coeffi	cient		0.05												
O Note 8)	Mechanical ef	ficiency		0.8												
oec.	Motor shape			□60												
tor s	Motor type						AC servo motor									
e mo	Rated output	capacity [W]				400									
Reference motor spec.	Rated torque	lbf·ft [N·r	n]				0.94 [1.27]									
Refe	Rated rotation	[rpm]					3000									

Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders.

Note 2) The maximum value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according to the condition of the external guide. Confirm using actual device.

Note 3) The force setting range for the force control (Speed control mode, Torque control mode).

The force changes according to the set value. Set it with reference to the "Force Conversion Graph (Guide)" on page 73.

Note 4) The allowable speed changes according to the stroke.

Note 5) The allowable collision speed for collision with the workpiece.

Note 6) A reference value for correcting an error in reciprocal operation.

Note 7) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)

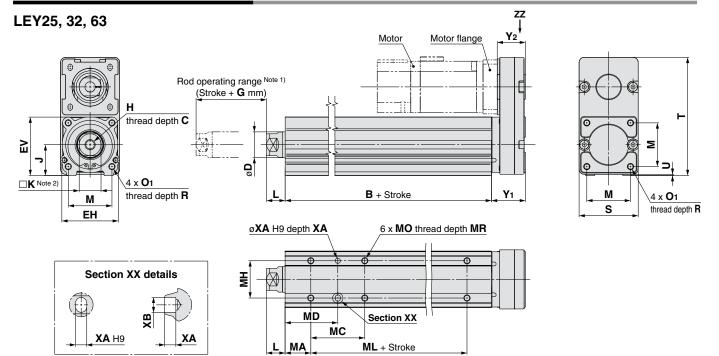
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)

Note 8) Each value is a guide. Use such value to select a motor capacity.

Weight

Product Weight

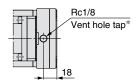
Model	LE'	/63D	(Moto	r mou	nting	ositic	n: In-l	ine)	LEY	3 (Mo	tor mo	ountin	g posi	tion: T	op/Pa	rallel)
Stroke [mm]	100	200	300	400	500	600	700	800	100	200	300	400	500	600	700	800
Product weight [kg]	4.2	5.3	7.0	8.2	9.3	11.0	12.1	13.3	4.0	5.2	6.9	8.0	9.1	10.8	12.0	13.1


Additional Weight

Additional Weigh	L	[kg]					
S	ize	63					
Rod end male thread	Male thread	0.12					
nou enu male inteau	Nut	0.04					
Rod flange (including m	Rod flange (including mounting bolt)						
Foot (2 sets including mounting bolt)							
Double clevis (including pin, retaining ring and mounting bolt)							

Refer to the "Motor Mounting" on pages 93 and 95 for details about motor mounting and included parts.

Dimensions: Motor Top/Parallel



Note 1) Do not allow collisions at either end of the rod operating range at a speed exceeding "pushing speed."

Additionally, when running the positioning operation, do not set within 2 mm of both ends for size 25, 32, and do not set within 4 mm of both ends for size 63.

Note 2) The direction of rod end width across flats (□K) differs depending on the products.

IP65 equivalent (Dust-tight/Water-jet-proof):

* When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by user.

Select [Applicable tubing O.D.: ø4 or more, Connection thread: Rc1/8].

_					
1	m	Δr		\sim	ne
_		CI	ıəı	u	ns

	DIMENSIONS [mm]																					
Ì	Size	Stroke range [mm]	В	С	D	EH	EV	Н	J	K	L	M	O ₁	R	S	T	U	Y 1	Y 2	G		
	25	15 to 100	89.5	13	20	44	45.5	M8 x 1.25	24	17	12.5	34	M5 x 0.8	8	46	92	1	26.5	22	4		
	25	105 to 400	114.5	13	20	44	45.5	1010 X 1.23	24	17	12.5	34	WIS X 0.0	0	40	32	'	20.5	22			
	22	20 to 100	96	13	25	51	56.5	M8 x 1.25	31	22	16.5	40	M6 x 1.0	10	60	118	4	34	27	4		
32	105 to 500	126	13	25	31	36.5	IVIO X 1.23	31	22	10.5	40	IVIO X 1.0	10	00	110	'	34	21	4			
		Up to 200	123																			
63	205 to 500	158	21 40	76	82	M16 x 2	44	36	33.4	60	M8 x 1.25	16	80	146	4	32.2	29	8				
	505 to 800	193																				

* The L measurement is when the unit is at the retracted stroke end position.

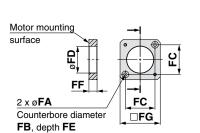
- 1110 E	measurement is w	/IICII II	ie uriit	13 61 111	o retrai	cieu sii	oke end pos	illorr.		[mm]
Size	Stroke range [mm]	MA	MC	MD	МН	ML	MO	MR	XA	XB
	15 to 39		24	32		50				
	40 to 100		42	41		50				
25	101 to 124	20	42	41	29		M5 x 0.8	6.5	4	5
	125 to 200		59	49.5		75				
	201 to 400		76	58						
	20 to 39	25	22	36		50				
	40 to 100		36	43 51.5		30	M6 x 1			
32	101 to 124				30			8.5	5	6
	125 to 200		53			80				
	201 to 500		70	60						
	50 to 70		24	50						
	75 to 120	38	45	60.5		65				
63	125 to 200		58	67	44		M8 x 1.25	10	6	7
	205 to 500		86	Ω1		100	00			
	505 to 800			81		135				

Model Selection

LEFS

LEJS

旧

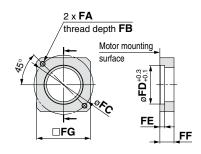

Motor Mounting

Dimensions: Motor Top/Parallel

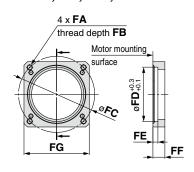

Refer to the "Motor Mounting" on pages 93 and 95 for details about motor mounting and included parts.

Motor flange dimensions

LEY25: NM1, NM2

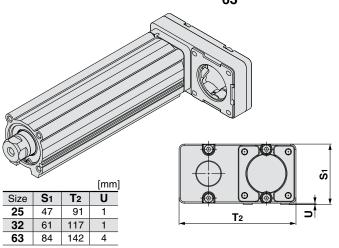


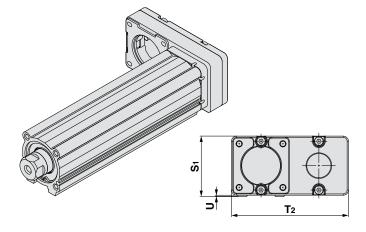
LEY32: NM1, NM2



LEY25: NZ, NY, NX

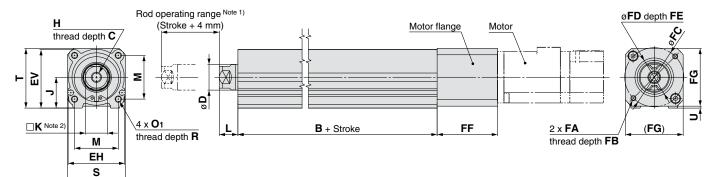
LEY32: NZ, NY, NW, NU, NT

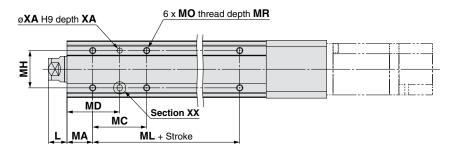

LEY63: NZ, NY, NW, NT

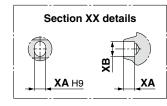

Dimensions

Dimer	Dimensions [mm]													
Size	Motor type	FA	FB	FC	FD	FE	FF	FG						
	NZ	M4 x 0.7	7.5	46	30	3.7	11	42						
25	NY	M3 x 0.5	5.5	45	30	5	11	38						
23	NX	M4 x 0.7	7	46	30	3.7	8	42						
	NM1, NM2	ø3.4	7	31	28	3.5	8.5	42						
	NZ, NW, NU	M5 x 0.8	8.5	70	50	4.6	13	60						
	NY	M4 x 0.7	7	70	50	4.6	13	60						
32	NT	M5 x 0.8	8.5	70	50	4.6	17	60						
	NM1	M4 x 0.7	(5)	47.1	38.2	_	5	56.4						
	NM2	M4 x 0.7	8	50	38.2	_	11.5	60						
	NZ, NW	M5 x 0.8	8.5	70	50	4.6	11	60						
63	NY	M4 x 0.7	8	70	50	4.6	11	60						
	NT	M5 x 0.8	8.5	70	50	4.6	14.5	60						

Motor left side parallel type: LEY 32 L


Motor right side parallel type: LEY32R




Note) When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden.

LEY25, 32

Dimensions: In-line Motor

Note 1) Do not allow collisions at either end of the rod operating range at a speed exceeding "pushing speed." Additionally, when running the positioning operation, do not set within 2 mm of both ends. Note 2) The direction of rod end width across flats (IK) differs depending on the products.

Dimer	nsions															[mm]
Size	Stroke range [mm]	В	С	D	EH	EV	н	J	K	L	M	O 1	R	S	Т	U
25	15 to 100	89.5	13	20	44	45.5	M8 x 1.25	24	17	12.5	34	M5 x 0.8	g.	45	46.5	1.5
23	105 to 400	114.5	13	20	44	45.5	WIO X 1.23	24	'/	12.5	34	WIS X 0.0	0	45	40.5	1.5
32	20 to 100	96	13	25	51	56.5	M8 x 1.25	31	22	16.5	40	M6 x 1.0	10	60	61	1
32	105 to 500	126	13	25	31	30.5	IVIO X 1.25	31		10.5	40	IVIO X 1.0	10	00	01	•

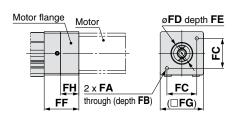
^{*} The L measurement is when the unit is at the retracted stroke end position.

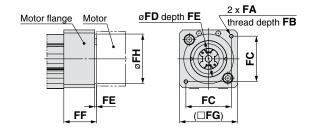
										[mm]
Size	Stroke range [mm]	MA	МС	MD	МН	ML	МО	MR	XA	ХВ
	15 to 35		24	32		50				
	40 to 100		42	41		30		6.5	4	5
25	105 to 120	20	42	41	29		M5 x 0.8			
	125 to 200		59	49.5		75				
	205 to 400		76	58						
	20 to 35		22	36		50				
	40 to 100		36	43		30				
32	105 to 120	25	30	40	30		M6 x 1.0	8.5	5	6
	125 to 200		53	51.5		80				
	205 to 500		70	60						

Model Selection

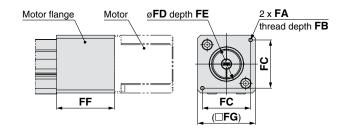
LEFB

匠

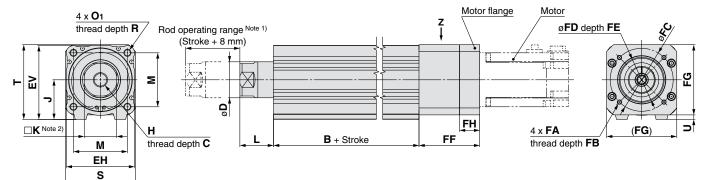

Motor Mounting

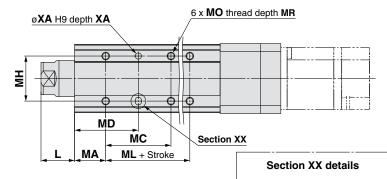


Dimensions: In-line Motor


Refer to the "Motor Mounting" on page 94 for details about motor mounting and included parts.

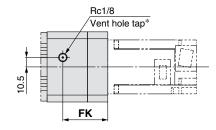
LEY25: NM1, NM2 LEY32: NM1




LEY32: NM2

Dimer	nsions								[mm]
Size	Motor type	FA	FB	FC	FD	FE	FF	FG	FH
	NZ, NX	M4 x 0.7	7.5	46	30	3.7	47	45	
25	NY	M3 x 0.5	6	45	30	4.2	47	45	_
25	NM1	ø3.4	17	31	22	2.5	36	45	19
	NM2	ø3.4	28	31	30	3.5	56	45	30
	NZ, NW, NU, NT	M5 x 0.8	8.5	70	50	3.3	60	60	_
	NY	M4 x 0.7	8	70	50	3.3	60	60	_
32	NX	M5 x 0.8	8.5	63	40	3.5	63	60	_
32	NV	M4 x 0.7	8	63	40	3.5	63	60	_
	NM1	M4 x 0.7	8	47.14	38.1	2	34	60	51.5
	NM2	M4 x 0.7	8	50	36	3.3	60	60	_

LEY63



Note 1) Do not allow collisions at either end of the rod operating range at a speed exceeding "pushing speed."

Additionally, when running the positioning operation, do not set within 4 mm of both ends. Note 2) The direction of rod end width across flats (IK) differs depending on the products.

IP65 equivalent (Dust-tight/Water-jet-proof): LEY63DN□□-□P (View Z)

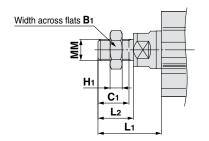
* When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by user.

XA H9

Select [Applicable tubing O.D.: ø4 or more, Connection thread: Rc1/8].

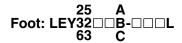
Dimer	nsions															[mm]
Size	Stroke range [mm]	В	С	D	EH	EV	Н	J	K	L	М	O ₁	R	S	Т	U
	50 to 200	123														
63	205 to 500	158	21	40	76	82	M16 x 2	44	36	33.4	60	M8 x 1.25	16	78	83	5
	505 to 800	193													!	

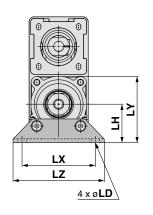
* The L measurement is when the unit is at the retracted stroke end position.

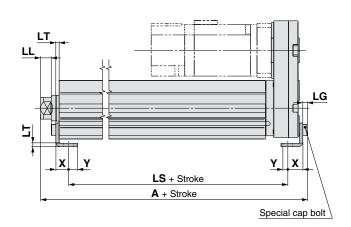

										[mm]
Size	Stroke range	MA	МС	MD	МН	ML	МО	MR	XA	ХВ
	50 to 70		24	50						
	75 to 120		45	60.5		65				
63	125 to	38	58	67	44		M8 x 1.25	10	6	7
	205 to		86	81		100				
	505 to		80	01		135				

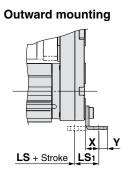
Size	Motor type	FA	FB	FC	FD	FE	FF	FG	FH	FK
	NZ, NW, NU, NT	M5 x 0.8	10	70	50	3.5	67.7	78	22.5	50
63	NY	M4 x 0.7	8	70	50	3.5	67.7	78	22.5	50
	NX	M5 x 0.8	10	63	40	3.5	72.7	78	27.5	55
	NV	M4 x 0.7	10	63	40	3.5	72.7	78	27.5	55

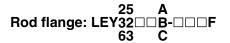
Dimensions

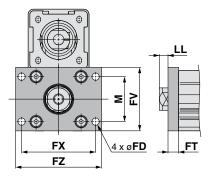

25 A Rod end male thread: LEY32□□B-□□M 63 C


- * Refer to the WEB catalog or the "Electric Actuators" catalog (CAT.E102) for details about the rod end nut and mounting bracket.
- Note) Refer to the precautions on pages 105 and 106 when mounting end brackets such as knuckle joint or workpieces.

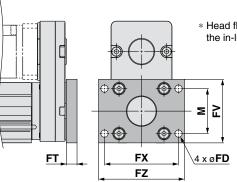

							[mm]
Ī	Size	B ₁	C ₁	H ₁	L ₁	L2	MM
	25	22	20.5	8	36	23.5	M14 x 1.5
	32	22	20.5	8	40	23.5	M14 x 1.5
	63	27	26	11	72.4	39	M18 x 1.5


* The L1 measurement is when the unit is at the retracted stroke end position.


F	oot	t													[mm]
	Size	Stroke range [mm]	A	LS	LS ₁	LL	LD	LG	LH	LT	LX	LY	LZ	х	Y
	25	15 to 100	134.6	98.8	19.8	6.4	6.6	3.5	30	2.6	57	51.5	71	11.2	5.8
	25	105 to 400	159.6	123.8	19.0	0.4	0.0	3.5	30	2.0	57	51.5	/ 1	11.2	5.6
	32	20 to 100	153.7	114	19.2	9.3	6.6	4	36	3.2	76	61.5	90	11.2	7
	32	105 to 500	183.7	144	19.2	9.3	0.0	4	30	3.2	70	01.5	90	11.2	,
		50 to 200	196.8	133.2											
	63	205 to 500	231.8	168.2	25.2	25.2	9	5	50	3.2	95	88	110	14.2	8
		505 to 800	266.8	203.2											


Material: Carbon steel (Chromated)

Note) When the motor mounting is the right or left side parallel type, the head side foot should be mounted outward.

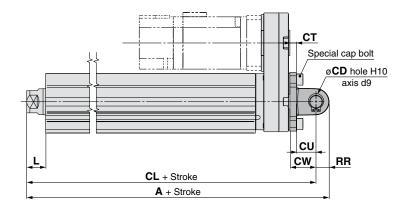

^{*} The A and LL measurements are when the unit is at the retracted stroke end position.

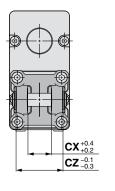
Dimensions

Head flange: LEY25□□B-□□□G

* Head flange is not applicable to the in-line type and the LEY32/63.

> Included parts ·Flange


· Body mounting bolt


Rod/F	Rod/Head Flange [mm]									
Size	FD	FT	FV	FX	FZ	LL	M			
25	5.5	8	48	56	65	4.5	34			
32	5.5	8	54	62	72	8.5	40			
63	9	9	80	92	108	24.4	60			

Material: Carbon steel (Nickel plating)

* The LL measurement is when the unit is at the retracted stroke end position.

Double clevis: LEY32□□B-□□□D

Included parts

· Double clevis

· Body mounting bolt

· Clevis pin · Retaining ring

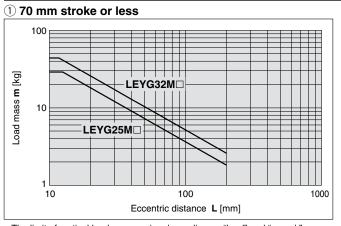
* Refer to the WEB catalog or the "Electric Actuators" catalog (CAT.E102) for details about the rod end nut and mounting bracket.

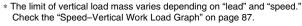
Doub	le Clevis										[mm]
Size	Stroke range [mm]	A	CL	CD	СТ	CU	cw	сх	cz	L	RR
25	15 to 100	158.5	148.5	10	5	14	20	18	36	12.5	10
25	105 to 200	183.5	173.5	10	3	14	20	10	30	12.5	10
32	20 to 100	178.5	168.5	10	6	14	22	18	36	16.5	10
32	105 to 200	208.5	198.5	10		14	22	10	30	10.5	10
63	50 to 200	232.6	218.6	14	8	22	30	22	44	33.4	14
00	205 to 300	267.6	253.6	'4	0	~~	30		44	55.4	14

Material: Cast iron (Coating)

* The A, CL and L measurements are when the unit is at the retracted stroke end position.

Series LEYG ▶ Page 89

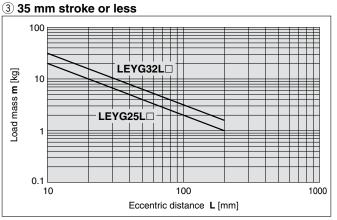

Moment Load Graph

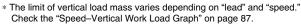

Selection Conditions

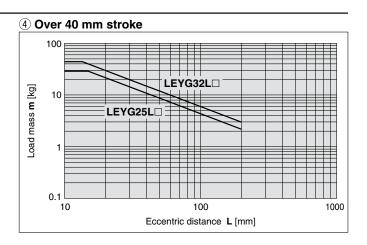
	Vertical	Horiz	ontal
Mounting orientation	L L .m	·m	L · m
Max. speed [mm/s]	"Speed-Vertical Work Load Graph"	200 or less	Over 200
Graph (Sliding bearing type)	①,②	5, 6*	7,8
Graph (Ball bushing bearing type)	3, 4	9, 10	①, ②

^{*} For the sliding bearing type, the speed is restricted with a horizontal/moment load.

Vertical Mounting, Sliding Bearing

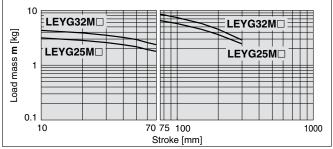


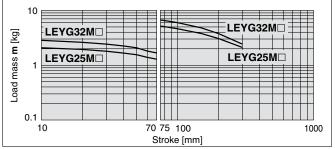




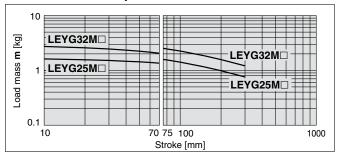
Eccentric distance L [mm]

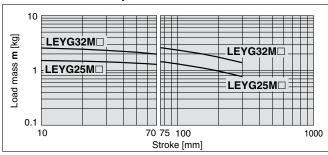
Vertical Mounting, Ball Bushing Bearing



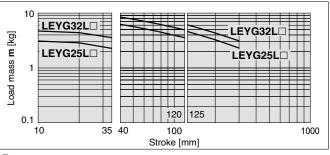

Moment Load Graph

Horizontal Mounting, Sliding Bearing

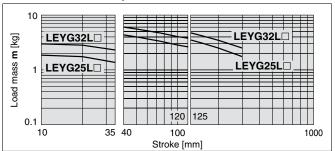

(5) L = 50 mm Max. speed = 200 mm/s or less


6 L = 100 mm Max. speed = 200 mm/s or less

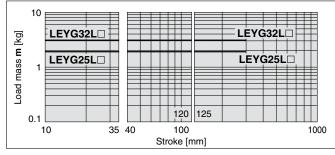
7 L = 50 mm Max. sped = Over 200 mm/s

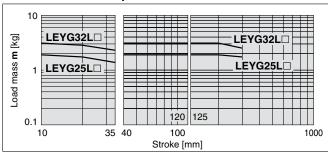


8 L = 100 mm Max. peed = Over 200 mm/s

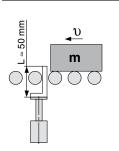


Horizontal Mounting, Ball Bushing Bearing


9 L = 50 mm Max. sped = 200 mm/s or less


① L = 100 mm Maxspeed = 200 mm/s or less

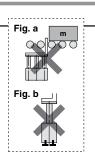
1) L = 50 mm Max. peed = Over 200 mm/s

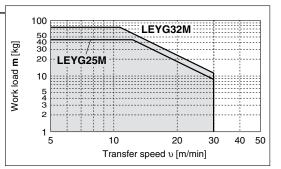


① L = 100 mm Maxspeed = Over 200 mm/s

Operating Range when Used as Stopper

LEYG□M (Sliding bearing)

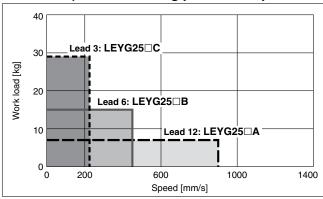

⚠ Caution Handling Precautions

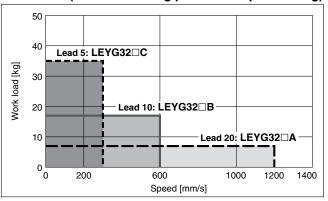

Note 1) When used as a stopper, select a model with 30 mm stroke or less.

Note 2) LEYG□L (ball bushing bearing) cannot be used as a stopper.

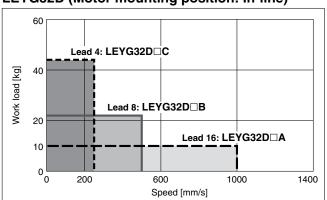
Note 3) Workpiece collision in series with guide rod cannot be permitted (**Fig. a**).

Note 4) The body should not be mounted on the end. It must be mounted on the top or bottom (**Fig. b**).

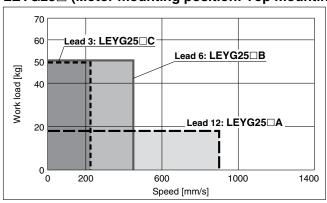



Speed-Vertical Work Load Graph

* The values shown below are allowable values of the actuator body. Do not use the actuator so that it exceeds these specification ranges.

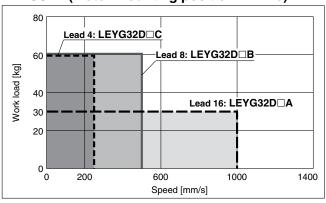

LEYG25□ (Motor mounting position: Top mounting/In-line)

LEYG32□ (Motor mounting position: Top mounting)



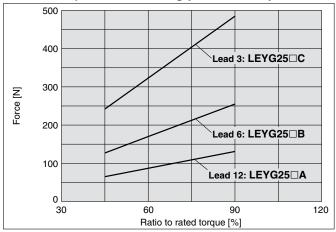
LEYG32D (Motor mounting position: In-line)

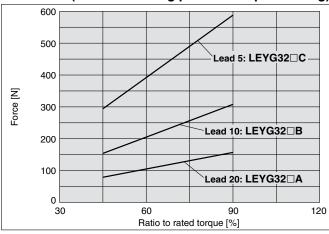
Speed-Horizontal Work Load Graph


LEYG25 (Motor mounting position: Top mounting/In-line)

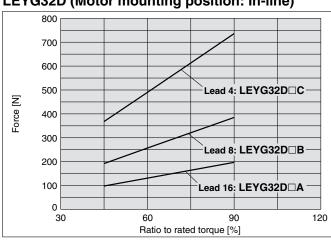
LEYG32 (Motor mounting position: Top mounting)

LEYG32D (Motor mounting position: In-line)




Force Conversion Graph

* These graphs show an example of when the standard motor is mounted. Calculate the force based on used motor and driver.


LEYG25□ (Motor mounting position: Top mounting/In-line)

LEYG32□ (Motor mounting position: Top mounting)

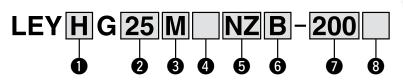
LEYG32D (Motor mounting position: In-line)

^{*} When using the force control or speed control, set the maximum value to be no more than 90% of the rated torque.

LEFB

ΓE

Motor Mounting



Electric Actuator/Guide Rod Type

Series LEYG LEYG25, 32

How to Order

Accuracy

Nil	Basic type
Н	High precision type

G SIZ
25
32

3 Bearing type

M	Sliding bearing
L	Ball bushing bearing

4 Motor mounting position

Nil	Top mounting
D	In-line

6 Lead [mm]

Symbol	LEYG25	LEYG32*
Α	12	16 (20)
В	6	8 (10)
С	3	4 (5)

* The values shown in () are the lead for size 32 top mounting type. Except motor type NM1. (Equivalent lead which includes the pulley ratio [1.25:1])

7 Stroke [mm]

30
to
300

* Refer to the applicable stroke table.

8 Guide option

I	Nil	Without option
	F	With grease retaining function

* Only available for sliding bearing.

O IVIO	ioi type
Symbol	Type
NZ	Mounting type Z
NY	Mounting type Y
NX	Mounting type X
NW	Mounting type W
NV	Mounting type V
NU	Mounting type U
NT	Mounting type T
NM1	Mounting type M1
NM2	Mounting type M2

* Refer to the "Compatible Motors."

Applicable Stroke Table

Applicable St	roke	Table				●: St	andard
Stroke Model [mm]	30	50	100	150	200	250	300
LEYG25	•	•	•	•	•	•	•
LEYG32	•	•	•	•	•	•	•

* Please consult with SMC for non-standard strokes as they are produced as special orders.

When using auto switch with the guide rod type LEYG series

- · Insert the auto switch from the front side with rod (plate) sticking out.
- · For the parts hidden behind the guide attachment (Rod stick out side), the auto switch cannot be fixed.
- · Please consult with SMC when using auto switch on the rod stick out side, as it is produced as a special order.

For auto switches, refer to pages 101 to 103.

Compatible Motors

Applicable n	notor model							:	Size/Mo	tor type	•					
					25							32				
Manufacturer	Series	Туре	NZ Mounting type Z	NY Mounting type Y	NX Mounting type X		NM2 Mounting type M2	NZ Mounting type Z	NY Mounting type Y	NX Mounting type X	NW Mounting type W	NV Mounting type V	NU Mounting type U	NT Mounting type T	NM1 Mounting type M1	
	MELSERVO-JN	HF-KN	•	_	_	_	_	•	_	_	_	_	_	_	_	_
Mitsubishi Electric	MELSERVO-J3	KF-KP	•	_	<u> </u>	_	_	•			_	_	<u> </u>	_	_	_
Corporation	MELSERVO-J4	HG-KR	•	_	_	_	_	•	_	-	_	_	_	_	_	_
YASKAWA Electric Corporation	Σ-V	SGMJV	•	_	_	_	_	•	_	_	_	_	_	_	_	_
SANYO DENKI CO., LTD.	SANMOTION R	R2	•	_	_	_	_	•	_	_	_	_	_	_	_	_
OMRON Corporation	Sysmac G5	R88M-K	•	_	_	_	_	_	•	-	_	_	_	_	_	_
Panasonic	MINAS-A4	MSMD	_	•	-	_	_	_	•	_	_	_	_	_	_	_
Corporation	MINAS-A5	MSMD/MHMD	_	•	_	_	_	_	•	_	_	_	_	_	_	_
FANUC CORPORATION	βis	β	•	_	_	_	_	•	_	_	•	_	_	_	_	_
NIDEC SANKYO CORPORATION	S-FLAG	MA/MH/MM	•	_	_	_	_	•	_	1	_	_	_	_	_	_
KEYENCE CORPORATION	SV	SV-M/SV-B	•	_	-	_	_	•	-	l	_	_	_	_	_	_
FUJI ELECTRIC CO.,	ALPHA5	GYS/GYB	•	_	_	_	_	•	—	_	_	<u> </u>	_	_	_	_
LTD.	FALDIC-α	GYS	•	_	_	_	_	•	_	-	_	_	_	_	_	_
ORIENTAL MOTOR Co., Ltd.	AR/AZ	AR/AZ	_	_	_	_	•	_	_	1	_	_	_	_	_	•
FASTECH Co., Ltd.	Ezi-SERVO	EzM	_	_	_	•	_	_	—	_	_	_	_	_	•	_
Rockwell Automation, Inc.	MP-/VP-	MP/VP	_	_	_	_	_	_	_	•*	_	_	_	_	_	_
(Allen-Bradley)	TL	TLY-A	•	_	_	_	_	_	_	1	_	_	_	•	_	_
Beckhoff Automation	AM	AM30	•	_	_	_	_	_	_	_	_	•*	_	_	_	_
GmbH	AM	AM31	•	_	_	_	_	_	_	_	_	_	•	_	_	_
WIIIDI I	AM	AM80/AM81	•	_	_	_	_	_	_	•*	_	_	_	_	_	_
Siemens AG	1FK7	1FK7		_	•	_	_	_	_	•*	_	_	_	_	_	_
Delta Electronics, Inc.	ASDA-A2	ECMA			_	_	_		_		_	_		_	_	

^{*} Motor mounting position: In-line only

Motorless Type Electirc Actuator/Guide Rod Type Series LEYG

Specifications

• Values in this specification table are the allowable values of the actuator body with the standard motor mounted.

 Do not use the actuator so that it exceeds these values. 	

	Mode	əl	LEYG:	25 [™] (Top mo ∕G25 [™] D (In-I	unting) ine)	LEYG	32 ^M (Top mo	unting)	LEYG32 ^M D (In-line)						
motorspee. GOther specifications Actuator specifications	Stroke [mm] No		30, 50, 100, 150, 200, 250, 300		250, 300	30, 50, 10	00, 150, 200,	250, 300	30, 50, 100, 150, 200, 250, 300						
	Work load [kg]	Horizontal	18	50	50	30	60	60	30	60	60				
	Work load [kg]	Vertical	7	15	29	7	17	35	10	22	44				
	Force Ibf [N]	Note 3)	14 to 29	29 to 57	54 to 109	18 to 35	35 to 69	66 to 123	22 to 44	43 to 87	83 to 165				
	(Set value: Rated	torque 30 to 90%)	[65 to 131]	[127 to 255]	[242 to 485]	[79 to 157]	[154 to 308]	[294 to 588]	[98 to 197]	[192 to 385]	[368 to 736]				
	(Set value: Rated torque 30 to 90% Max. speed [mm/s] Pushing speed [mm/s] Note 4) Max. acceleration/deceleration [mm/s] Positioning Basic type High precision type Lost motion Note 5) [mm] Thread size [mm] Ball screw specifications Ball screw Specifications Shaft length [mn] Impact/Vibration resistance [m/s²] Note Actuation type		900	450	225	1200	600	300	1000	500	250				
0 1 2				35 or less 30 or less											
ns	Max. acceleration/d	eceleration [mm/s ²]					5000								
ţ				±0.02											
fice		High precision type					±0.01								
eci		Basic type					0.1 or less								
	[mm]	High precision type				(0.05 or less								
ato.		Thread size [mm]		ø10				ø	12						
Actua		Lead [mm] (including pulley ratio)	12	6	3	16 (20)	8 (10)	4 (5)	16	8	4				
		Shaft length [mm]		+ 104.5											
	Impact/Vibration res	sistance [m/s ²] Note 6)	50/20												
	Actuation type			crew + Belt (L I screw (LEY		elt 5:1]	Ball screw								
	Guide type		Sliding bearing (LEYG□M), Ball bushing bearing (LEYG□L)												
	Operating temp	erature range	41 to 104°F [5 to 40°C]												
	Operating humic	dity range [%RH]	90 or less (No condensation)												
ions	Actuation unit	Sliding bearing LEYG□M		(10 ⁻³) x [ST]: (10 ⁻³) x [ST]:				2.91 x 10 ⁻³) 2.62 x 10 ⁻³)							
cificat	(*[ST]: Stroke)	Ball bushing bearing LEYG □ L	,	(10 ⁻³) x [ST]: (10 ⁻³) x [ST]:					x [ST]: 110 st or less x [ST]: Over 110 st						
er spe	Other inertia [k	g·cm²]		.012 (LEYG25 015 (LEYG25		0.035 (LEYG32) 0.061 (LEYG32D)									
ğ	Friction coeffic	ient					0.05			,					
Note 7	Impact/Vibration resistance [m/s²] Note Actuation type Guide type Operating temperature range Operating humidity range [%RI Actuation unit weight [kg] (*ISTI: Stroke) Ball bushing bearing Ball bushing bearing						0.8								
ec.	Motor shape			□40					60						
tors	Motor type					AC	servo motor	•							
e mo	Rated output c	apacity [W]		100				20	00						
irenc	Rated torque	lbf·ft [N·m]		0.24 [0.32]				0.47	[0.64]						
Refe	Rated rotation	[rpm]					3000								

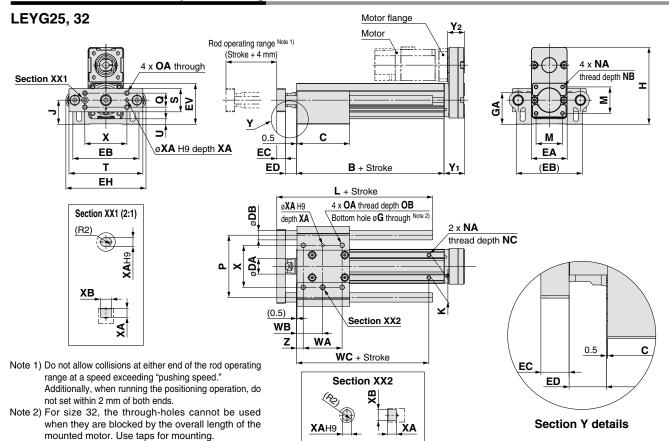
- Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders.
- Note 2) The maximum value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according to the condition of the external guide. Confirm using actual device.
- changes according to the condition of the external guide. Confirm using actual devic Note 3) The force setting range for the force control (Speed control mode, Torque control mode).
 - The force changes according to the set value. Set it with reference to the "Force Conversion Graph" on page 88.
- Note 4) The allowable collision speed for collision with the workpiece.
- Note 5) A reference value for correcting an error in reciprocal operation.
- Note 6) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)

 Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000

 Hz. Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
- Note 7) Each value is a guide. Use such value to select a motor capacity.

Weight

Product Weight [kg														[kg]
Model	LEYG	LEYG25 ^M (Motor mounting position: Top mounting)							punting) LEYG32 ^M (Motor mounting position: Top mounting					
Stroke [mm]	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Sliding bearing LEYG□M	1.3	1.5	1.8	2.2	2.6	2.9	3.2	2.2	2.5	3.1	3.8	4.4	4.8	5.3
Ball bushing bearing LEYG□L	1.3	1.5	1.8	2.2	2.5	2.8	3.0	2.2	2.5	2.9	3.6	4.1	4.6	5.0


Model	LEYG	i25 <u>M</u> D ((Motor	mount	ing pos	ition: I	n-line)	LEYG	32½D	(Motor	mount	ing pos	sition: I	n-line)
Stroke [mm]	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Sliding bearing LEYG⊟M	1.3	1.5	1.8	2.3	2.6	2.9	3.2	2.3	2.5	3.1	3.8	4.4	4.9	5.3
Ball bushing bearing LEYG□L	1.3	1.6	1.8	2.2	2.5	2.8	3.0	2.3	2.5	2.9	3.7	4.1	4.6	5.0

Series LEYG Motorless Type

Dimensions: Motor Top Mounting

Refer to the "Motor Mounting" on page 93 for details about motor mounting and included parts.

LEYG L (Ball bushing bearing)								
Size	Stroke range [mm]	L	DB					
	Up to 110	91						
25	115 to 190	115	10					
	195 to 300	133						
	Up to 110	97.5						
32	115 to 190	116.5	13					
	195 to 300	134						

LEYG□M (Sliding bearing) [m									
Size	Stroke range [mm]	L	DB						
	Up to 55	67.5							
25	60 to 185	12							
	190 to 300	138							
	Up to 55	74							
32	60 to 185	107	16						
	190 to 300	144							

* Refer to page 93 for the dimensions of motor flange.

LEY	G□M, LEY	G□L (Comm	on														[mm]
Size	Stroke range [mm]	В	С	DA	EA	ЕВ	EH	EV	EC	ED	G	GA	Н	J	K	М	NA	NB
-	Up to 35	89.5	50															
	40 to 100	09.5	67.5															
25	105 to 120			20	46	85	103	52.3	11	12.5	5.4	40.3	98.8	30.8	29	34	M5 x 0.8	8
	125 to 200	114.5	84.5															
	205 to 300		102															
	Up to 35	96	55															
	40 to 100		68															
32	105 to 120			25	60	101	123	63.8	12	16.5	5.4	50.3	125.3	38.3	30	40	M6 x 1.0	10
	125 to 200	126	85															
	205 to 300		102															
Size	Stroke range [mm]	NC	ОА	ОВ	Р	Q	S	Т	U	WA	WB	wc	Х	ХА	ХВ	Y 1	Y 2	Z
	Up to 35									35	26	70						
	40 to 100									50	33.5	/0						
25	105 to 120	6.5	M6 x 1.0	12	80	18	30	95	6.8	50	33.5		54	4	5	26.5	22	8.5
	125 to 200									70	43.5	95						
	205 to 300									85	51							
	Up to 35									40	28.5	75						
	40 to 100									50	33.5	/5						
32	105 to 120	8.5	M6 x 1.0	12	95	28	40	117	7.3	50	33.3		64	5	6	34	27	8.5
	125 to 200									70	43.5	105						
	205 to 300									85	51							

^{*} The ED measurement is when the unit is at the retracted stroke end position.

0

WB

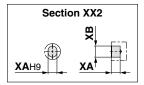
WA

øDA

(0.5)

Z

0.5


Dimensions: In-line Motor

LEYG□**L** (Ball bushing bearing)

Size	Stroke range [mm]	L	DB
	Up to 114	91	
25	115 to 190	115	10
	191 to 300	133	
	Up to 114	97.5	
32	115 to 190	116.5	13
	191 to 300	134	

LEYG M (Sliding bearing) [m										
Size	Stroke range [mm]	L	DB							
	Up to 55	67.5								
25	60 to 185	12								
	190 to 300	138								
	Up to 55	74								
32	60 to 185	107	16							
	190 to 300	144								

WC + Stroke

Section XX2

Note) Do not allow collisions at either end of the rod operating range at a speed exceeding "pushing speed." Additionally, when running the positioning operation, do not set within 2 mm of both ends.

EC

ED

Section Y details

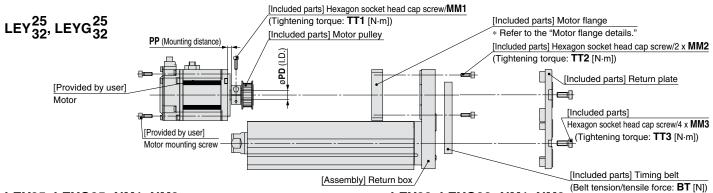
* Refer to page 93 for the dimensions of motor flange NM1/NM2.

Dime	ensions								[mm]
Size	Motor type	FA	FB	FC	FD	FE	FF	FG	FH
	NZ, NX	M4 x 0.7	7.5	46	30	3.7	47	45	_
25	NY	M3 x 0.5	6	45	30	4.2	47	45	_
25	NM1	ø3.4	17	31	22	2.5	36	45	19
	NM2	ø3.4	28	31	30	3.5	56	45	30
	NZ, NW, NU, NT	M5 x 0.8	8.5	70	50	3.3	60	60	_
	NY	M4 x 0.7	8	70	50	3.3	60	60	_
32	NX	M5 x 0.8	8.5	63	40	3.5	63	60	_
32	NV	M4 x 0.7	8	63	40	3.5	63	60	_
	NM1	M4 x 0.7	8	47.14	38.1	2	34	60	51.5
	NM2	M4 x 0.7	8	50	36	3.3	60	60	

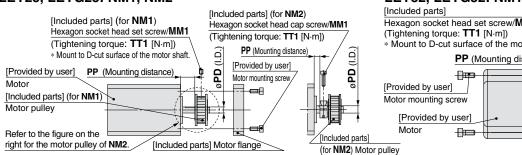
LEYG \square M	, LEYG□L	Common
-------------------------	----------	--------

LEY	G□M, LEYO	à□LC	ommo	n												[mm]
Size	Stroke range [mm]	В	С	DA	ЕВ	EH	EV	EC	ED	G	GA	Н	J	K	N	A
	Up to 35	89.5	50													
	40 to 100	00.0	67.5													
25	105 to 120			20	85	103	52.3	11	12.5	5.4	40.3	53.3	30.8	29	M5 >	k 0.8
	125 to 200	114.5	84.5													
	205 to 300		102													
	Up to 35	96	55													
	40 to 100		68													
32	105 to 120			25	101	123	63.8	12	16.5	5.4	50.3	68.3	38.3	30	M6 >	¢ 1.0
	125 to 200	126	85													
	205 to 300		102													
Size	Stroke range	NC	OA	ОВ	Р	Q	s	Т	U	WA	WB	wc	Х	XA	ХВ	z
Size	[mm]	INC	UA	ОВ	Г	u	3	•	U	WA	WD	WC	^	AA	VD	
	Up to 35									35	26	70				
	40 to 100									50	33.5	70				
25	105 to 120	6.5	M6 x 1.0	12	80	18	30	95	6.8				54	4	5	8.5
	125 to 200									70	43.5	95				
	205 to 300									85	51					
	Up to 35									40	28.5	75				
	40 to 100									50	33.5	,,,				
32	105 to 120	8.5	M6 x 1.0	12	95	28	40	117	7.3				64	5	6	8.5
	125 to 200									70	43.5	105				
	205 to 300									85	51					

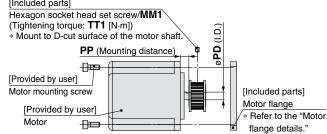
^{*} The ED measurement is when the unit is at the retracted stroke end position.



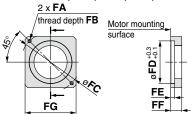
Series LEY/LEYG


Motorless Type

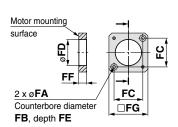
Motor Mounting: Top/Parallel


- The motor and motor mounting screws should be provided by user.
- Motor shaft style should be cylindrical for the NZ, NY, NW, NM2 motor types, and D-cut style for the NM1 motor type.
- When mounting a pulley, remove the oil content, dust, or dirt sticking to the shaft and pulley inside diameter.
- Take loose prevention measures for the motor mounting screws and hexagon socket head set screws.

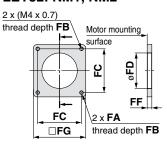
LEY25, LEYG25: NM1, NM2



LEY32, LEYG32: NM1, NM2



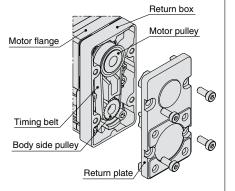
Motor flange details


LEY25: NZ, NY, NX LEY32: NZ, NY, NW, NU, NT

LEY25: NM1, NM2

LEY32: NM1, NM2

[mm]


			_
Dim	nم	ein	ne

Size	Motor type	MM1	TT1	MM2	TT2	MM3	TT3	PD	PP	ВТ	FA	FB	FC	FD	FE	FF	FG
	NZ	M2.5 x 10	1.0	M3 x 8	0.63	M4 x 10	1.5	8	7.5	19	M4 x 0.7	7.5	46	30	3.7	11	42
	NY	M2.5 x 10	1.0	M3 x 8	0.63	M4 x 10	1.5	8	7.5	19	M3 x 0.5	5.5	45	30	5	11	38
25	NX	M2.5 x 10	1.0	M3 x 8	0.63	M4 x 10	1.5	8	4.5	19	M4 x 0.7	7.5	46	30	3.7	11	42
	NM1	M3 x 5	0.63	M3 x 8	0.63	M4 x 10	1.5	5	11.8	19	ø3.4	7.0	31	28	3.5	8.5	42
	NM2	M2.5 x 10	1.0	M3 x 8	0.63	M4 x 10	1.5	6	48	19	ø3.4	7.0	31	28	3.5	8.5	42
	NZ	M3 x 12	1.5	M4 x 12	1.5	M6 x 14	5.2	14	4.5	30	M5 x 0.8	8.5	70	50	4.6	13	60
	NY	M3 x 12	1.5	M4 x 12	1.5	M6 x 14	5.2	11	4.5	30	M4 x 0.7	7	70	50	4.6	13	60
	NW	M4 x 12	3.6	M4 x 12	1.5	M6 x 14	5.2	9	4.5	30	M5 x 0.8	8.5	70	50	4.6	13	60
32	NU	M3 x 12	1.5	M4 x 12	1.5	M6 x 14	5.2	11	4.5	30	M5 x 0.8	8.5	70	50	4.6	13	60
	NT	M3 x 12	1.5	M4 x 12	1.5	M6 x 14	5.2	12	8.5	30	M5 x 0.8	8.5	70	50	4.6	17	60
	NM1	M3 x 5	0.63	M4 x 12	1.5	M6 x 14	5.2	6.35	7.1	30	M4 x 0.7	(5)	47.1	38.2	_	5	56.4
	NM2	M3 x 12	1.5	M4 x 12	1.5	M6 x 14	5.2	10	12	30	M4 x 0.7	8	50	38.2	_	11.5	60

Motor Mounting Diagram

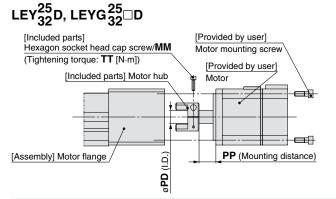
Mounting procedure

- Fix the motor (provided by user) and the "motor pulley" with the "MM1 hexagon socket head cap screw or hexagon socket head set screw."
- 2) Fix the motor and the "motor flange" with the motor mounting screws (provided by user).
- 3) Put the "timing belt" on the "motor pulley" and "body side pulley", and then fix it temporarily with the "MM2 hexagon socket head cap screws." (Refer to the mounting diagram.)
- Apply the belt tension and tighten the timing belt with the "MM2 hexagon socket head cap screws." (The reference level is the elimination of the belt deflection.)
- 5) Fix the "return plate" with the "MM3 hexagon socket head cap screws."

Included Parts List

Size: 25.32

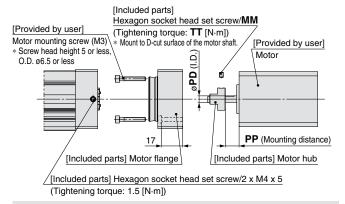
0120. 20, 02							
	Quantity						
Description	Motor type						
	NZ, NY, NW, NT, NM2	NM1					
Motor flange	1	1					
Motor pulley	1	1					
Return plate	1	1					
Timing belt	1	1					
Hexagon socket head cap screw (for return plate mounting)	4	4					
Hexagon socket head cap screw (for motor flange mounting)	2	2					
Hexagon socket head cap screw (for pulley fixing)	1	_					
Hexagon socket head set screw (for pulley fixing)	_	1					



Electirc Actuators/Rod Type/Guide Rod Type Series LEY/LEYG

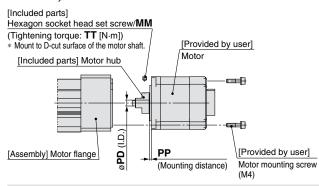
• The motor and motor mounting screws should be provided by user.

- Motor shaft style should be cylindrical for the NZ, NY, NX, NW, NM2 motor types, and D-cut style for the NM1 motor type.
- When mounting a hub, remove the oil content, dust, or dirt sticking to the shaft and hub inside diameter.
- Take loose prevention measures for the motor mounting screws and hexagon socket head set screws.


Motor Mounting: In-line

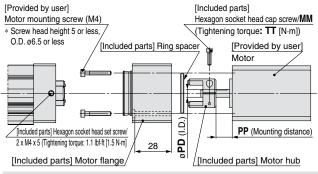
Mounting procedure

- 1) Fix the motor (provided by user) and the "motor hub" with the "MM hexagon socket head cap screw."
- 2) Check the "motor hub" position, and then insert it. (Refer to the mounting diagram.)
- 3) Fix the motor and the "motor flange" with the motor mounting screws (provided by user).

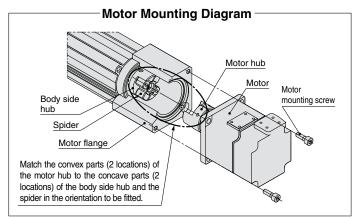

LEY25D, LEYG25□D: NM1

Mounting procedure

- Fix the motor (provided by user) and the "motor hub" with the M3 x 4 hexagon socket head set screw.
- 2) Fix the motor and the "motor flange" with the motor mounting screws (provided by user).
- 3) Check the "motor hub position", and then insert it. (Refer to the mounting diagram.)
- 4) Fix the "motor flange" with the "M4 x 5 hexagon socket head set screws."


LEY32D, LEYG32□D: NM1

Mounting procedure


- Fix the motor (provided by user) and the motor hub with the "MM hexagon socket head set screw."
- Check the "motor hub" position, and then insert it. (Refer to the mounting diagram.)
- Fix the motor and the "motor block" with the motor mounting screws (provided by user).

LEY25D, LEYG25□D: NM2

Mounting procedure

- 1) Insert the "ring spacer" into the motor (provided by user).
- 2) Fix the motor (provided by user) and the "motor hub" with the M2.5 x 10 hexagon socket head cap screw.
- 3) Fix the motor and the "motor flange" with the motor mounting screws (provided by user).
- 4) Check the "motor hub" position, and then insert it. (Refer to the mounting diagram.)
- 5) Fix the "motor flange" with the "M4 x 5 hexagon socket head set screws."

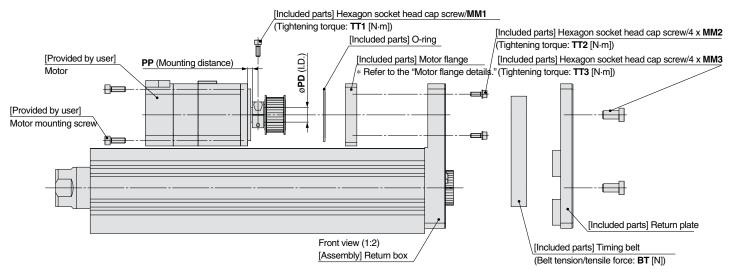
Dimensions [mm]										
Size	Motor type	MM	TT	PD	PP					
	NZ	M2.5 x 10	1.0	8	12.5					
	NY	M2.5 x 10	1.0	8	12.5					
25	NX	M2.5 x 10	1.0	8	7					
	NM1	M3 x 5	0.63	5	10.5					
	NM2	M2.5 x 10	1.0	6	12.4					
	NZ	M3 x 12	1.5	14	18					
	NY	M4 x 12	3.6	11	18					
	NX	M4 x 12	3.6	9	5					
	NW	M4 x 12	3.6	9	12					
32	NV	M4 x 12	3.6	9	5					
	NU	M4 x 12	3.6	11	12					
	NT	M3 x 12	1.5	12	18					
	NM1	M4 x 5	1.5	6.35	2.1					
	NM2	M4 x 12	3.6	10	3					

Included Parts List

Size: 25

Size: 25							
	Quantity						
Description	Moto	r typ	e				
	NZ, NY, NX	NM1	NM2				
Motor hub	1	1	1				
Hexagon socket head	-1		4				
cap screw (for hub fixing)	'	_	'				
Motor flange	_	1	1				
Hexagon socket head		4					
set screw (for hub fixing)		' '					
Hexagon socket head set	_	2	2				
screw (for motor flange fixing)		-					
Ring spacer	_	_	1				

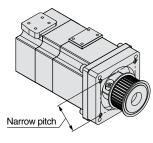
Size: 32


Quant	ity
Motor t	уре
NZ, NY, NX, NW, NV, NU, NT, NM2	NM1
1	1
1	_
_	1
	1

Series LEY/LEYG Motorless Type

Motor Mounting: Top/Parallel

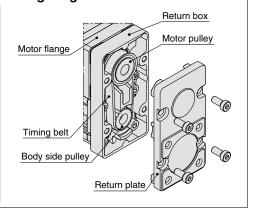
LEY63



Motor flange details

LEY63: NZ, NY, NW, NT

⚠ Be careful about the motor flange mounting direction.



Dimensions [mr													[mm]			
Motor type	MM1	TT1	MM2	TT2	MM3	TT3	PD	PP	BT	FA	FB	FC	FD	FE	FF	FG
NZ	M4 x 12	3.6	M4 x 12	2.7	M8 x 16	12.5	14	4.5	98	M5 x 0.8	8.5	70	50	4.6	11	60
NY	M4 x 12	3.6	M4 x 12	2.7	M8 x 16	12.5	14	4.5	98	M4 x 0.7	8	70	50	4.6	11	60
NW	M4 x 12	3.6	M4 x 12	2.7	M8 x 16	12.5	14	4.5	98	M5 x 0.8	8.5	70	50	4.6	11	60
NT	M4 v 12	3.6	M4 v 12	27	M8 v 16	12.5	12	8	98	M5 x 0.8	8.5	70	50	4.6	14.5	60

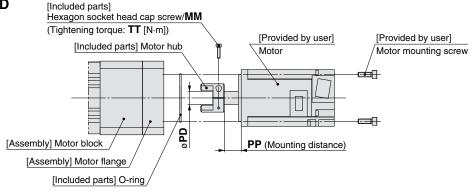
Motor Mounting Diagram

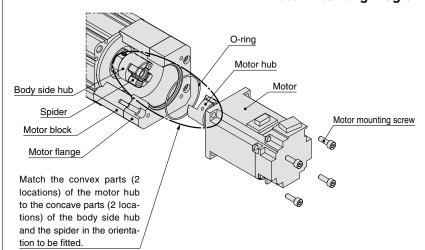
Mounting procedure

- Fix the motor (provided by user) and the "motor pulley" with the "MM1 hexagon socket head cap screw."
- 2) Fix the motor and the "motor flange" with the motor mounting screws (provided by user).
- Put the "timing belt" on the "motor pulley" and "body side pulley", and then fix it temporarily with the "MM2 hexagon socket head cap screws." (Refer to the mounting diagram.)
- 4) Apply the belt tension and tighten the timing belt with the "MM2 hexagon socket head cap screws." (The reference level is the elimination of the belt deflection.)
- 5) Fix the "return plate" with the "MM3 hexagon socket head cap screws."

Included Parts List

Size: 63


Quantity
Motor type
NZ, NY, NW, NT
1
1
1
1
4
4
1
'
1


Motor Mounting: In-line

- \bullet The motor and motor mounting screws should be provided by user.
- For the shaft-end shape of the motor, prepare the round type.
- When mounting a hub, remove the oil content, dust, or dirt sticking to the shaft and hub inside diameter.
- Take loose prevention measures for the motor mounting screws.

LEY63D

Motor Mounting Diagram

Mounting procedure

- Fix the motor (provided by user) and the "motor hub" with the "MM hexagon socket head cap screw"
- 2) Put the "O-ring" on the mating part of the motor, and check the "motor hub position" and then insert it. (Refer to the mounting diagram.)
- 3) Fix the motor and the "motor flange" with the motor mounting screws (provided by user).

Dimensions

Size	Motor type	MM	TT	PD	PP	
63	NZ	M3 x 12	1.5	14	17.7	
	NY	IVIO X 12	1.5	14	17.7	
	NX	M4 x 12	3.6	9	6.7	
	NW	1014 X 12	3.0	9	11.7	
	NV	M4 x 12	3.6	9	6.7	
	NU	M4 x 12	3.6	11	11.7	
	NT	M3 x 12	1.5	12	17.7	

Included Parts List

Size: 63

[mm]

	Quantity
Description	Motor type
	NZ, NY, NX, NW, NV, NU, NT
Motor hub	1
Hexagon socket head cap screw (for hub fixing)	1
O-ring	1

Model Selection

Series LEY

Motor Mounting Parts

Motor Flange Option

After purchasing the product, the motor can be changed to the motor types shown below by replacing with this option. (Except NM1) Use the following part numbers to select a compatible motor flange option and place an order.

How to Order

1 Size

25	For LEY25/LEYG25
32	For LEY32/LEYG32
63	For LEY63

2 Motor mounting position

Р	Top/Parallel
PL*	Top/Parallel (Lead L)
D	In-line

^{*} Size 63 only

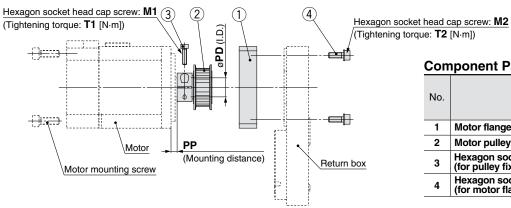
3 Motor type

Symbol	Туре	Symbol	Type
NZ	Mounting type Z	NV	Mounting type V
NY	Mounting type Y	NU	Mounting type U
NX	Mounting type X	NT	Mounting type T
NW	Mounting type W	NM2	Mounting type M2

^{*} Refer to the "Compatible Motors."

Compatible Motors

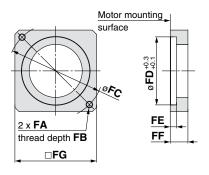
Applicable motor model			Size/Motor type											
				25 32/63										
Manufacturer	Series	Туре	NZ Mounting type Z	NY Mounting type Y	NX Mounting type X	NX2 Mounting type M2	NZ Mounting type Z	NY Mounting type Y	NX Mounting type X	NW Mounting type W	NV Mounting type V	NU Mounting type U	NT Mounting type T	NM2 Mounting type M2
	MELSERVO-JN	HF-KN	•	_	_	_	•	_	_	_	_	_	_	_
Mitsubishi Electric Corporation	MELSERVO-J3	HF-KP	•	_	_	_	•	_	_	_	_	_	_	_
Corporation	MELSERVO-J4	HG-KR	•	_	_	_	•	_	_	_	_	_	_	_
YASKAWA Electric Corporation	Σ-V	SGMJV	•	_	_	_	•	_	_	_	_	_	_	_
SANYO DENKI CO., LTD.	SANMOTION R	R2	•	_	_	_	•	_	_	_	_	_	_	_
OMRON Corporation	Sysmac G5	R88M-K	•	_	1	_	_	•		1	_	_	1	_
Panasonic	MINAS-A4	MSMD	_	•	_	_	_	•	_	_	_	_	_	_
Corporation	MINAS-A5	MSMD/MHMD	_	•		_	_	•	_		_	_		_
FANUC CORPORATION	βis	β	•	_	_	_	• (β1 only)	_	_	•	_	_	_	_
NIDEC SANKYO CORPORATION	S-FLAG	MA/MH/MM	•	_	_	_	•	_	_	_	_	_	_	_
KEYENCE CORPORATION	SV	SV-M/SV-B	•	_	_	_	•	_	_	_	_	_	_	_
FUJI ELECTRIC CO.,	ALPHA5	GYS/GYB	•	_	_	_	•	_	_	_	_	_	_	_
LTD.	FALDIC-α	GYS	•	_	_	_	•	_	_	_	_	_	_	_
ORIENTAL MOTOR Co., Ltd.	AR/AZ	AR/AZ	_		_	•	_	_	_	_		_	_	●*3
Rockwell Automation,	MP-/VP-	MP/VP	_	_	_	_	_	_	●*1	_	_	_	_	_
Inc. (Allen-Bradley)	TL	TLY-A	•	_		_	_	_	_	_	_		•	_
Beckhoff Automation	AM	AM30	•	_	_	_	_	_	_	_	●*1	_	_	_
GmbH	AM	AM31	•	_	_	_	_	_	_	_	_	●*2	_	_
		AM80/AM81	•		_	_	_	_	●*1	_	_	_	_	_
Siemens AG	1FK7	1FK7			•		_	_	●*1		_			_
Delta Electronics, Inc.	ASDA-A2	ECMA	•	_		_	•	_	_		_	_		_


Note) When the LEY□²⁵/₃₂□NM1□-□ or LEY□G²⁵/₂₂□□NM1□-□ is purchased, it is not possible to change to other motor types.

- *1 Motor mounting position: In-line only
- *2 Only in-line type is available for size 63.
- *3 Except size 63

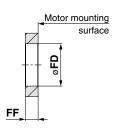
Dimensions: Motor Flange Option

Motor mounting position: Top/Parallel

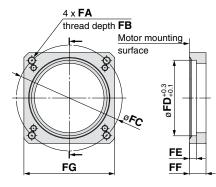


Component Parts

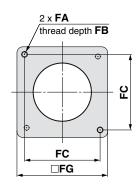
00											
		Quantity									
No.	Description	Size									
		25, 32	63								
1	Motor flange	1	1								
2	Motor pulley	1	1								
3	Hexagon socket head cap screw (for pulley fixing)	1	1								
4	Hexagon socket head cap screw (for motor flange mounting)	2	4								

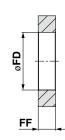

Motor flange details

Size: 25, 32



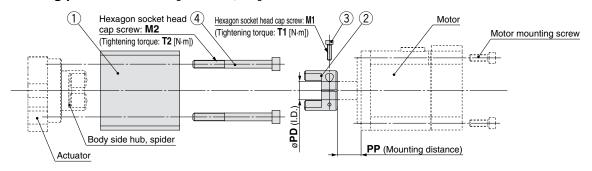
Size 25: NM2


2 x **FA** depth of counterbore FB FC □FG

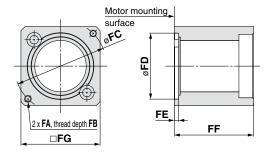


Size: 63

Size 32: NM2

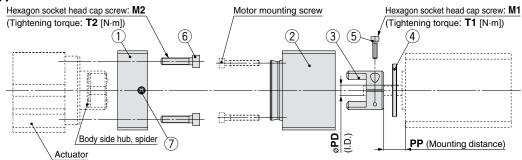

Dimens	sions													[mm]
Size	Motor type	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
	NZ	M4 x 0.7	7.5	46	30	3.7	11	42	M2.5 x 10	1.0	M3 x 8	0.63	8	7.5
05	NY	M3 x 0.5	5.5	45	30	5	11	42	M2.5 x 10	1.0	M3 x 8	0.63	8	7.5
25	NX	M4 x 0.7	7	46	30	3.7	11	42	M2.5 x 10	1.0	M3 x 8	0.63	8	4.5
	NM2	ø3.4	7	31	30	3.7	8.5	42	M2.5 x 10	1.0	M3 x 8	0.63	6	4.8
	NZ	M5 x 0.8	8.5	70	50	4.6	13	60	M3 x 12	1.5	M4 x 12	1.5	14	4.5
	NY	M4 x 0.7	7	70	50	4.6	13	60	M3 x 12	1.5	M4 x 12	1.5	11	4.5
32	NW	M5 x 0.8	8.5	70	50	4.6	13	60	M4 x 12	2.5	M4 x 12	1.5	9	4.5
32	NU	M5 x 0.8	8.5	70	50	4.6	13	60	M3 x 12	1.5	M4 x 12	1.5	11	4.5
	NT	M5 x 0.8	8.5	70	50	4.6	17	60	M3 x 12	1.5	M4 x 12	1.5	12	8.5
	NM2	M4 x 0.7	8	50	38.2	_	11.5	60	M3 x 12	1.5	M4 x 12	2.7	10	12
	NZ	M5 x 0.8	9	70	50	4.6	11	60	M4 x 12	3.6	M4 x 12	2.7	14	4.5
63	NY	M4 x 0.7	8	70	50	4.6	11	60	M4 x 12	3.6	M4 x 12	2.7	14	4.5
03	NW	M5 x 0.8	9	70	50	4.6	11	60	M4 x 12	3.6	M4 x 12	2.7	9	4.5
	NT	M5 x 0.8	9	70	50	4.6	14.5	60	M4 x 12	3.6	M4 x 12	2.7	12	8

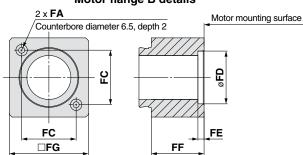
LΕΥ


Series LEY

Dimensions: Motor Flange Option

Motor mounting position: In-line [Size: 25, 32]

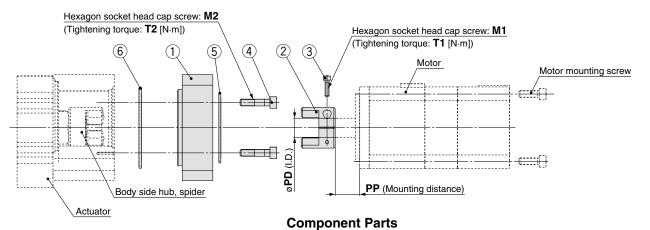

Motor flange details


Component Parts

No.	Description	Quantity
1	Motor flange	1
2	Motor hub	1
3	Hexagon socket head cap screw (for hub fixing)	1
4	Hexagon socket head cap screw (for motor block mounting)	2

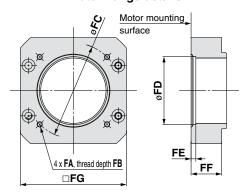
Motor type: NM2

Motor flange B details



Component Parts

No.	Description	Quantity
1	Motor flange A	1
2	Motor flange B	1
3	Motor hub	1
4	Ring spacer	1
5	Hexagon socket head cap screw (for hub fixing)	1
6	Hexagon socket head cap screw (for motor flange A mounting)	2
7	Hexagon socket head set screw (for motor flange B fixing)	2


Dimens	sions													[mm]
Size	Motor type	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
	NZ	M4 x 0.7	7.5	46	30	3.7	47	45	M2.5 x 10	1.0	M4 x 40	1.5	8	12.5
25	NY	M3 x 0.5	6	45	30	4.2	47	45	M2.5 x 10	1.0	M4 x 40	1.5	8	12.5
23	NX	M4 x 0.7	7.5	46	30	3.7	47	45	M2.5 x 10	1.0	M4 x 40	1.5	8	7
	NM2	ø3.4	28	31	30	3.5	50	45	M2.5 x 10	1.0	M4 x 40	1.5	6	12.4
	NZ	M5 x 0.8	8.5	70	50	3.3	60	60	M3 x 12	1.5	M6 x 60	5.2	14	18
	NY	M4 x 0.7	8	70	50	3.3	60	60	M4 x 12	3.6	M6 x 60	5.2	11	18
	NX	M5 x 0.8	8.5	63	40	3.5	63	60	M4 x 12	3.6	M6 x 60	5.2	9	5
32	NW	M5 x 0.8	8.5	70	50	3.3	60	60	M4 x 12	3.6	M6 x 60	5.2	11	12
32	NV	M4 x 0.7	8	63	40	3.3	63	60	M4 x 12	3.6	M6 x 60	5.2	9	5
	NU	M5 x 0.8	8.5	70	50	3.3	60	60	M4 x 12	3.6	M6 x 60	5.2	11	12
	NT	M5 x 0.8	8.5	70	50	3.3	60	60	M3 x 12	1.5	M6 x 60	5.2	12	18
	NM2	M4 x 0.7	8	50	36	3.3	60	60	M4 x 12	3.6	M6 x 60	5.2	10	3

Motor mounting position: In-line [Size: 63]

O-ring (Wire diameter ø1.5) O-ring (Wire diameter ø2.0)

Motor flange details

No.	Description	Quantity					
1	Motor flange	1					
2	Motor hub	1					
3	Hexagon socket head cap screw (for hub fixing)						
4	Hexagon socket head cap screw (for motor adapter mounting)	4					

Dimens	Dimensions [mm]											[mm]		
Size	Motor type	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
	NZ	M5 x 0.8	10	70	50	3.5	22.5	78	M3 x 12	1.5	M5 x 22	3	14	17.7
	NY	M4 x 0.7	8	70	50	3.5	22.5	78	M3 x 12	3.6	M5 x 22	3	14	17.7
	NX	M5 x 0.8	10	63	40	3.5	27.5	78	M4 x 12	3.6	M5 x 22	3	9	6.7
63	NW	M5 x 0.8	10	70	50	3.5	22.5	78	M4 x 12	3.6	M5 x 22	3	9	11.7
	NV	M4 x 0.7	8	63	40	3.5	27.5	78	M4 x 12	3.6	M5 x 22	3	9	6.7
	NU	M5 x 0.8	10	70	50	3.5	22.5	78	M4 x 12	3.6	M5 x 22	3	11	11.7
	NT	M5 x 0.8	10	70	50	3.5	22.5	78	M3 x 12	1.5	M5 x 22	3	12	17.7

Solid State Auto Switch Direct Mounting Style D-M9N(V)/D-M9P(V)/D-M9B(V)

Refer to SMC website for the details about products conforming to the international standards.

[g]

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the former model (SMC comparison).
- Using flexible cable as standard.

⚠Caution

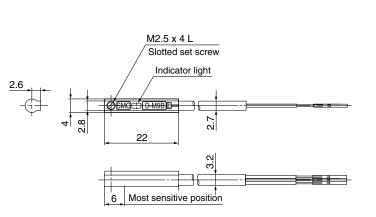
Precautions

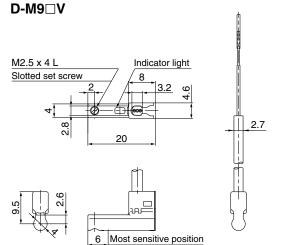
Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

				PLC: Progi	rammable Lo	gic Controller			
D-M9 □, D-M9 □ V (D-M9□, D-M9 □V (With indicator light)								
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV			
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular			
Wiring type		3-w	/ire		2-\	vire			
Output type	NPN PNP				-	_			
Applicable load		IC circuit, F	24 VDC relay, PLC						
Power supply voltage	5	5, 12, 24 VDC	_						
Current consumption		10 mA	or less		_				
Load voltage	28 VDC	or less	-	_	24 VDC (10 to 28 VDC)				
Load current		40 mA	or less		2.5 to 40 mA				
Internal voltage dpo	0.8 V or le	ess at 10 mA	(2 V or less	at 40 mA)	4 V or less				
Leakage current		100 μA or les	0.8 mA	or less					
Indicator light	Red LED lights up when turned ON.								
Standards			CE marki	ng, RoHS					

Oilproof Heavy-duty Lead Wire Specifications


Aut	o switch model	D-M9N□	D-M9P□	D-M9B□			
Sheath	Outside diameter [mm]	2.7 x 3.2 (ellipse)					
Insulator	Number of cores	3 cores (Brow	2 cores (Brown/Blue)				
Ilisulatoi	Outside diameter [mm]						
Conductor	Effective area [mm²]		0.15				
Conductor	Strand diameter [mm]						
Minimum bending	radius [mm] (Reference value)		20				


Note 1) Refer to the Best Pneumatics No. 2 catalog for solid state auto switch common specifications. Note 2) Refer to the Best Pneumatics No. 2 catalog for lead wire lengths.

Weight

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)		
0.5 m (Nil)			8			
Lood wire length	1 m (M)	1	13			
Lead wire length	3 m (L)	4	38			
	5 m (Z)	6	63			

Dimensions [mm]
D-M9□ D-M9□V

2-Color Indication Solid State Auto Switch **Direct Mounting Style**

D-M9NW(V)/D-M9PW(V)/D-M9BW(V) **(€**

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the former model (SMC comparison).
- Using flexible cable as standard.
- The optimum operating range can be determined by the color of the

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Precautions

Auto Switch Specifications

Refer to SMC website for the details about products conforming to the international standards.

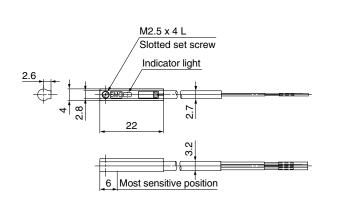
PLC: Programmable Logic Controller

D-M9□W, D-M	D-M9□W, D-M9□WV (With indicator light)								
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV			
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular			
Wiring type		3-w	2-v	vire					
Output type	NPN PNP			_					
Applicable load		IC circuit, F	24 VDC r	elay, PLC					
Power supply voltage		5, 12, 24 VDC	')	_					
Current consumption		10 mA		_					
Load voltage	28 VDC	or less	-	_	24 VDC (10 to 28 VDC)				
Load current		40 mA	or less		2.5 to 40 mA				
Internal voltage drop	0.8 V or l	ess at 10 mA	(2 V or less	at 40 mA)	4 V o	r less			
Leakage current		100 μA or les	ss at 24 VDC	,	0.8 mA	or less			
Indicator light		perating rang		n					
Standards				ng, RoHS	go u	۲.			

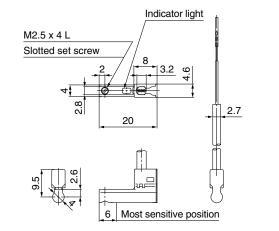
Oilproof Flexible Heavy-duty Lead Wire Specifications

		- · · · · · · · · · · · · · · · · · · ·				
Auto sw	itch model	D-M9NW□	D-M9PW□	D-M9BW□		
Sheath	Outside diameter [mm]	2.7 x 3.2 (ellipse)				
Insulator	Number of cores	3 cores (Brow	3 cores (Brown/Blue/Black) 2			
irisulatoi	Outside diameter [mm]	ø0.9				
Conductor	Effective area [mm²]	0.15				
Conductor	Strand diameter [mm]					
Minimum bending radiu	us [mm] (Reference value)	20				

Note 1) Refer to the Best Pneumatics No. 2 catalog for solid state auto switch common


Note 2) Refer to the Best Pneumatics No. 2 catalog for lead wire lengths.

Weight [g]


Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
	0.5 m (Nil)		8	7
Lead wire length	1 m (M)	14		13
	3 m (L)	41		38
	5 m (Z)	68		63

Dimensions [mm]

D-M9□WV

Water Resistant 2-Color Indication Solid State Auto Switch: Direct Mounting Style D-M9NA(V)/D-M9PA(V)/D-M9BA(V)

Grommet

- Water (coolant) resistant type
- 2-wire load current is reduced (2.5 to 40 mA).
- The optimum operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)
- Using flexible cable as standard.

. Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Please consult with SMC if using coolant liquid other than water based solution.

Auto Switch Specifications

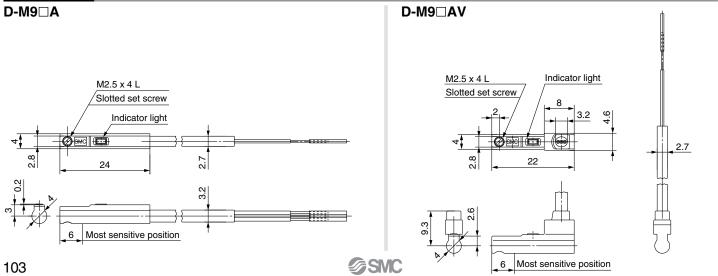
Refer to SMC website for the details about products conforming to the international standards.

PLC: Programmable Logic Controller

[g]

D-M9 □ A , D-M9 □ A	D-M9□ A, D-M9 □AV (With indicator light)						
Auto switch model	D-M9NA	D-M9NAV	D-M9PA	D-M9PAV	D-M9BA	D-M9BAV	
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular	
Wiring type		3-v	vire		2-v	vire	
Output type	NF	PN	PI	NΡ	-	_	
Applicable load	IC circuit, Relay, PLC 24 VDC relay, F			elay, PLC			
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)		_				
Current consumption	10 mA or less			-	_		
Load voltage	28 VDC or less —		24 VDC (10 to 28 VDC)				
Load curren t		40 mA	or less		2.5 to	40 mA	
Internal voltage drop	0.8 V or l	ess at 10 mA	(2 V or less	at 40 mA)	4 V or less		
Leakag e current	100 μA or less at 24 VDC 0.8 mA or le		or less				
Indicator light	Operating range Red LED lights up. Optimum operating range Green LED lights up.						
<u> </u>		pumum oper			LED lights u	ρ.	
Standards			CE marki	ng, RoHS			

Oilproof Flexible Heavy-duty Lead Wire Specifications


Auto switch model		D-M9NA□	D-M9PA□	D-M9BA□	
Sheath	Outside diameter [mm]	2.7 x 3.2 (ellipse)			
Insulator	Number of cores		/n/Blue/Black)	2 cores (Brown/Blue)	
IIISulatoi	Outside diameter [mm]	ø0.9			
Conductor	Effective area [mm²]		0.15		
Strand diameter [mm]		ø0.05			
Minimum bending ra	adius [mm] (Reference value)	20			

Note 1) Refer to the Best Pneumatics No. 2 catalog for solid state auto switch common specifications. Note 2) Refer to the Best Pneumatics No. 2 catalog for lead wire lengths.

Weight

Auto switch model		D-M9NA(V)	D-M9PA(V)	D-M9BA(V)
0.5 m (Nil)		8		7
Lead wire length	1 m (M)	14		13
	3 m (L)	41		38
	5 m (Z)	68		63

Dimensions [mm]

Series LEY/LEYG Electric Actuators Specific Product Precautions 1

Be sure to read this before handling. Refer to the back cover for Safety Instructions. For Electric Actuator Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on the SMC website, http://www.smcworld.com

Design / Selection

⚠ Warning

- 1. Do not apply a load in excess of the specification limits. Select a suitable actuator by work load and allowable lateral load on the rod end. If the product is used outside of the specification limits, the eccentric load applied to the piston rod will be excessive and have adverse effects such as creating play on the sliding parts of the piston rod, degrading accuracy and shortening the life of the product.
- Do not use the product in applications where excessive external force or impact force is applied to it.
 This can cause a failure.
- 3. When used as a stopper, select the LEYG series "Sliding bearing" for a stroke of 30 mm or less.
- 4. When used as a stopper, fix the main body with a guide attachment ("Top mounting" or "Bottom mounting"). If the end of the actuator is used to fix the main body (end mounting), the excessive load acts on the actuator, which adversely affects the operation and life of the product.

Handling

∧ Caution

1. When using the pushing operation, be sure to set to force/speed control, and use within the specified pushing speed range for each series.

Do not allow the piston rod to hit the workpiece and end of the stroke in the position control. The lead screw, bearing and internal stopper may be damaged and lead to malfunction.

For pushing operation, the maximum torque value of the motor to be used should be set to 90% or less of the rated torque of the reference motor. For the LEY63, 150% or less.

It may lead to damage and malfunction.

3. The maximum speed of this actuator is affected by the product stroke.

Check the model selection section of the catalog.

4. Do not apply a load, impact or resistance in addition to the transferred load during return to origin.

Additional force will cause the displacement of the origin position.

5. Do not scratch or dent the sliding parts of the piston rod, by striking or attaching objects.

The piston rod and guide rod are manufactured to precise tolerances, even a slight deformation may cause a malfunction.

6. When an external guide is used, connect it in such a way that no impact or load is applied to it.

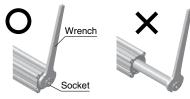
Use a freely moving connector (such as a floating joint).

7. Do not operate by fixing the piston rod and moving the actuator body.

Excessive load will be applied to the piston rod, leading to damage to the actuator and reduced the life of the product.

Handling

⚠ Caution


- 8. When an actuator is operated with one end fixed and the other free (ends tapped or flange type), a bending moment may act on the actuator due to vibration generated at the stroke end, which can damage the actuator. In such a case, install a mounting bracket to suppress the vibration of the actuator body or reduce the speed so that the actuator does not vibrate at the stroke end. Also, use a mounting bracket when moving the actuator body or when a long stroke actuator is mounted horizontally and fixed at one end.
- 9. Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod.

This may cause deformation of the non-rotating guide, abnormal responses of the auto switch, play in the internal guide or an increase in the sliding resistance.

Refer to the table below for the approximate values of the allowable range of rotational torque.

Allowable rotational	LEY25□	LEY32	LEY63
torque or less	0.25 lbf-ft [1.1 N·m]	0.31 lbf-ft [1.4 N·m]	0.63 lbf-ft [2.8 N·m]

When screwing in a bracket or nut to the piston rod end, hold the flats of the end of the "socket" with a wrench (the piston rod should be fully retracted). Do not apply tightening torque to the non-rotating mechanism.

- 10. When using auto switch with the guide rod type LEYG series, the following limits will be in effect.
 Select the product while paying attention to this.
 - Insert the auto switch from the front side with rod (plate) sticking
 - out.

 The auto switches with perpendicular electrical entry cannot be
 - used.

 For the parts hidden behind the guide attachment (Rod stick out side), the auto switch cannot be fixed.
 - Please consult with SMC when using auto switch on the rod stick out side.

Enclosure

First characteristic numeral • Se

Second characteristic numeral

• First Characteristics: Degrees of protection against solid foreign objects

	<u> </u>
0	Non-protected
1	Protected against solid foreign objects of 50 mmø and greater
2	Protected against solid foreign objects of 12 mmø and greater
3	Protected against solid foreign objects of 2.5 mmø and greater
4	Protected against solid foreign objects of 1.0 mmø and greater
5	Dust-protected
6	Dust-tight

Series LEY/LEYG **Electric Actuators** Specific Product Precautions 2

Be sure to read this before handling. Refer to the back cover for Safety Instructions. For Electric Actuator Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on the SMC website, http://www.smcworld.com

Enclosure

Second Characteristics: Degrees of protection against water

0	Non-protected	_
1	Protected against vertically falling water drops	Dripproof type 1
2	Protected against vertically falling water drops when enclosure tilted up to 15°	Dripproof type 2
3	Protected against rainfall when enclosure tilted up to 60°	Rainproof type
4	Protected against splashing water	Splashproof type
5	Protected against water jets	Water-jet-proof type
6	Protected against powerful water jets	Powerful water-jet- proof type
7	Protected against the effects of temporary immersion in water	Immersible type
8	Protected against the effects of continuous immersion in water	Submersible type

Example) IP65: Dust-tight, Water-jet-proof type

"Water-jet-proof type" means that no water intrudes inside an equipment that could hinder from operating normally by means of applying water for 3 minutes in the prescribed manner. Take appropriate protection measures, since a device is not usable in an environment where a droplet of water is splashed constantly.

Mounting

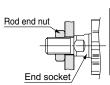
⚠ Caution

1. When mounting workpieces or jigs to the piston rod end "socket," hold the flats of the "socket" with a wrench so that the piston rod does not rotate. The bolt should be tightened within the specified torque range.

This may cause abnormal responses of the auto switch, play in the internal guide or an increase in the sliding resistance.

2. When mounting the product and/or a workpiece, tighten the mounting screws within the specified torque range.

Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.


<Series LEY>

Workpiece fixed/Rod end female thread

Model	Screw size	Max. tightening torque lbf-ft [N-m]		
LEY25	M8 x 1.25	9.2 [12.5]	13	17
LEY32	M8 x 1.25	9.2 [12.5]	13	22
LEY63	M16 x 2	78 [106]	21	36

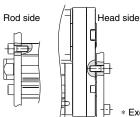
Workpiece fixed/Rod end male thread (When "Rod end male thread" is selected.)

Model	Thread	Max. tightening	Effective thread	End socket width
iviodei	size	torque lbf-ft [N-m]	length [mm]	across flats [mm]
LEY25	M14 x 1.5	48 [65.0]	20.5	17
LEY32	M14 x 1.5	48 [65.0]	20.5	22
LEY63	M18 x 1.5	72 [97.0]	26	36

screw-in depth

Rod end nut End bracket Model Width across flats [mm] Length [mm] screw-in depth [mm] LEY25 22 8 8 or more LEY32 22 8 8 or more LEY63 27 11 or more

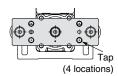
Mounting


⚠ Caution

Body fixed/Body bottom tapped style (When "Body bottom tapped" is selected.)

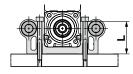
Model	Screw size	Max. tightening torque lbf-ft [N-m]	Max. screw-in depth [mm]
LEY25	M5 x 0.8	2.2 [3.0]	6.5
LEY32	M6 x 1.0	3.8 [5.2]	8.8
LEY63	M8 x 1.25	9.2 [12.5]	10

Body fixed/Rod side/Head side tapped style

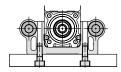


*	Model	Screw size	Max. tightening torque lbf-ft [N-m]	Max. screw-in depth [mm]
	LEY25	M5 x 0.8	2.2 [3.0]	8
	LEY32	M6 x 1.0	3.8 [5.2]	10
	LEY63	M8 x 1.25	9.2 [12.5]	14

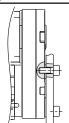
* Except the LEY□D


<Series LEYG>

Workpiece fixed/Plate tapped style


Model	0.20	Max. tightening torque lbf-ft [N-m]	Max. screw-in depth [mm]
LEYG25 [™]	M6 x 1.0	3.8 [5.2]	11
LEYG32 [™]	M6 x 1.0	3.8 [5.2]	12
.		[-·]	

Body fixed/Top mounting


Model	Screw size	Max. tightening torque lbf-ft [N-m]	
LEYG25 ^M		2.2 [3.0]	40.5
LEYG32 ^M	M5 x 0.8	2.2 [3.0]	50.5

Body fixed/Bottom mounting

Screw size	Max. tightening torque lbf-ft [N·m]	
M6 x 1.0		12
M6 x 1.0	3.8 [5.2]	12
	size M6 x 1.0	size torque lbf-ft [N·m] M6 x 1.0 3.8 [5.2]

Body fixed/Head side tapped style

Model	Screw size	Max. tightening torque lbf-ft [N-m]	Max. screw-in depth [mm]
LEYG25 ^M	M5 x 0.8	2.2 [3.0]	8
LEYG32 ^M	M6 x 1.0	3.8 [5.2]	10

^{*} Rod end nut is an accessory.

Series LEY/LEYG Electric Actuators Specific Product Precautions 3

Be sure to read this before handling. Refer to the back cover for Safety Instructions. For Electric Actuator Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on the SMC website, http://www.smcworld.com

Mounting

⚠ Caution

3. Keep the flatness of the mounting surface within the following ranges when mounting the actuator body and workpiece.

Unevenness of a workpiece or base mounted on the body of the product may cause an increase in the sliding resistance.

Model	Mounting position	Flatness
LEY	Body/Body bottom	0.1 mm or less
	Top mounting/Bottom mounting	
LEYG□		0.05 mm or less
LETGL	Workpiece/Plate mounting	0.05 mm or less

Maintenance

⚠ Warning

- Ensure that the power supply is stopped and the workpiece is removed before starting maintenance work or replacement of the product.
- Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Belt check
Inspection before daily operation	0	_
Inspection every 6 months/ 250 km/5 million cycles*	0	0

- * Select whichever comes first.
- Items for visual appearance check
- 1. Loose set screws, Abnormal dirt
- 2. Check of flaw and cable joint
- 3. Vibration, Noise
- Items for belt check

Stop operation immediately and replace the belt when belt appear to be below. Further, ensure your operating environment and conditions satisfy the requirements specified for the product.

a. Tooth shape canvas is worn out.

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.

b. Peeling off or wearing of the side of the belt

Belt corner becomes round and frayed thread sticks out.

c. Belt partially cut

Belt is partially cut. Foreign objects caught in teeth other than cut part causes flaw.

d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.

- e. Rubber back of the belt is softened and sticky.
- f. Crack on the back of the belt
- For IP65 equivalent type, apply grease on the piston rod periodically. Grease should be applied at 1 million cycles or 200 km, whichever comes first.
 - · Grease pack order number: GR-S-010 (10 g)/GR-S-020 (20 g)

⚠ Safety Instructions

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

Caution: Caution indicates a hazard with a low level of risk which, If not avoided, could result in minor or moderate injury.

⚠ Warning: Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.

⚠ Danger: Danger indicates a hazard with a high level of risk which, if not avoided, will result in death or serious injury.

*1) ISO 4414: Pneumatic fluid power – General rules relating to systems. ISO 4413: Hydraulic fluid power – General rules relating to systems.

IEC 60204-1: Safety of machinery – Electrical equipment of machines.

(Part 1: General requirements) ISO 10218-1: Manipulating industrial robots - Safety.

⚠ Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications.

Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.

2. Only personnel with appropriate training should operate machinery and equipment.

The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained

- 3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
 - 1. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
 - 2. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
 - 3. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
- 4. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
 - 1. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
 - 2. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
 - 3. An application which could have negative effects on people, property, or animals requiring special safety analysis.
 - 4. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.

⚠ Caution

1. The product is provided for use in manufacturing industries.

The product herein described is basically provided for peaceful use in manufacturing industries.

If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary.

If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ **Compliance Requirements**

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".

Read and accept them before using the product.

Limited warranty and Disclaimer

- 1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first.*2) Also, the product may have specified durability, running distance or
 - replacement parts. Please consult your nearest sales branch.
- 2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided. This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
- 3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
 - *2) Vacuum pads are excluded from this 1 year warranty.

A vacuum pad is a consumable part, so it is warranted for a year after it is delivered. Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

- 1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
- 2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

⚠ Caution

SMC products are not intended for use as instruments for legal metrology.

Measurement instruments that SMC manufactures or sells have not been qualified by type approval tests relevant to the metrology (measurement) laws of each country. Therefore, SMC products cannot be used for business or certification ordained by the metrology (measurement) laws of each country.

Revision history

- Edition B * Added compatible motor manufacturers.
 - * Added motor parallel type to the LEF series.
 - * Added motor top mounting and motor parallel types to the LEY63
 - * Number of pages increased from 88 to 108.

TW

Edition C * Added a compatible motor manufacturer

UO

A Safety Instructions Be sure to read the "Handling Precautions for SMC Products" (M-E03-3) and "Operation Manual" before use.