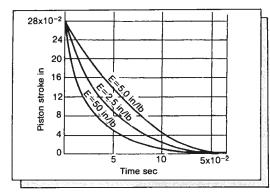


Shock Absorber

Self Compensating Model

Maximum Energy Absorption: 25~500 In.Lbs/Cycle Resistant to Load Deviation Six Sizes Available Withstands Impact Speeds of 16 ft./sec. Double Seal Enclosure Eliminates Oil Leakage


Impact absorption and noise damping to meet the high speed requirements of the modern world.

Shock Absorber Series NRB

Automatic adjustment to the most appropriate absorption performance

Specially designed orifice can absorb energy comprehensively and most appropriately in many different applications. These range from high speed low load, to low speed high load; without requiring additional adjustment of the shock absorber.

Piston stroke/displacement wave pattern (Example : NRBC050)

Double seal enclosure ensures no oil leakage

Scraper and rod seal combine to form a double seal enclosure preventing oil leakage, thus maintaining the long life of the shock absorber.

Improved resistance against deviation of load

Due to a newly designed high load capability bearing, resistance against deviation of load is improved considerably.

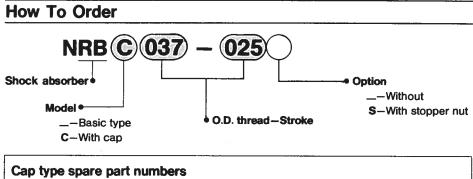
Even more compact size realized

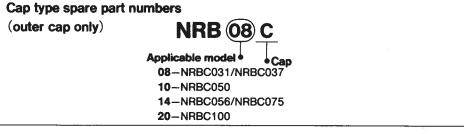
Due to the increase in tube strength and a considerable increase in energy absorption capability an even more compact size has been possible.

Absorption capability maintains its performance regardless of temperature change

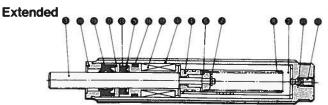
The shock absorber will always maintain the most appropriate absorption performance within the temperature range specified.

O SMC





Specifications


Spec	ic Model			NRB037-025	NR8050-030	NR8056-045	NR9075-045	NR8100-060
Capacity in. lb/cycle(kgf•m/cycle)		25(0.3)	25(0.3)	50(0.6)	170(2)	170(2)	500(6)	
Stroke in. (mm)		0.26(6)	0.25(6)	0.30(7)	0.45(12)	0.45(12)	0.50(15)	
Velocity ft/s(m/s)					16	(5)		
Frequency cycle/min		80	80	70	45	45	25	
Temperature °F(°C)			14~176(-10~80)					
Spring force lbs	kan	extended	0.77(0.35)	0.77(0.35)	1.43(0.65)	1.54(0.70)	1.54(0.70)	1.87(0.85)
Spring loice los	ryij	compressed	1.65(0.75)	1.65(0.75)	2.12(0.96)	3.59(1.63)	3.59(1.63)	4.59(2.08)
Weight Ibs (gf)		0.03(15)	0.04(20)	0.08(35)	0.13(60)	0.26(120)	0.53(240)	
Optional	Sto	op nut	NRB031S	NRB037S	NRB050S	NRB056S	NRB075S	NRB100S
Optional	Мс	ounting nuts (2)	STD	STD	STD	STD	STD	STD

Construction / Parts List

Compressed

1 >>< h	
Served Barriel	

Parts List

No.	Description	Material	Note
0	Outer tube	Rolled steel	Black coating
0	Inner tube	Special steel	Heat treatment
6	Piston rod	Special steel	Hard chrome plating
0	Piston	Special steel	Heat treatment
6	Bearing	Special bearing material	
6	Spring guide	Rolled steel	Zinc chromate
0	Retaining ring	Stainless steel	
8	Return spring	Piano wire	Zinc chromate

No.	Description	Material	Note
9	Seal holder	Copper alloy	1
0	Stopper	Carbon steel	Zinc chromate
0	Steel ball	Bearing steel	
•	Set screw	Special steel	
0	Accumulator	NBR	Foam rubber
•	Rod seal	NBR	
•	Scraper	NBR	
1	Gasket	NBR	

ന

Series NRB How To Select An Applicable Model

Steps of selection

1 Classification of impact

Cylinder with load (
Cylinder with load (
Cylinder with load (upward)	
Free horizontal imp	act	
Free falling impact		
Rotational impact (with torque)	· · · · ·
Details of applica	tions	
Symbol	Condition of application	Unit
W	Weight of object	lb
V	Impact velocity	in/sec
н	Dropping height	in
W	Angular Velocity	rad/sec
r l	Radius of gyration	in
d	Bore size	in
Р	Cylinder operation pressure	PSI
	Torque	in∙lbs
n	Operation cycle	cycle/min
	Ambient temperature	°F

Graph (A) Kinetic energy (E1) or Total energy (E)

lb.

ݠ

3 Specifications

Ensure that both the impact velocity and the ambient temperature fall within the specifications of the Shock Absorber.

4 Calculation of kinetic energy (E₁)

Calculate kinetic energy E₁ using the equation suitable for the classification of impact.

In the case of cylinder with load and free horizontal impact, substitute respective figures for graph A in order to calculate E_1 .

5 Calculation of work energy (E₂)

Select any shock absorber as a provisional model and calculate work energy E2.

In the case of work energy of cylinder, substitute respective figures for table (B) or graph (C).

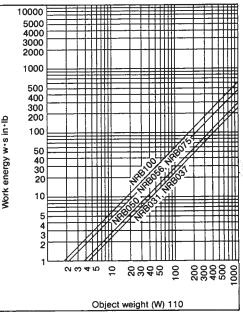
6 Calculation of effective weight of object (We)

Energy absorption E=E1+E2

Effective weight $We = \frac{2g}{V^2} E$ of object

Substitute both energy absorption E and impact velocity V for graph (A) in order to calculate the effective weight of the impacting object.

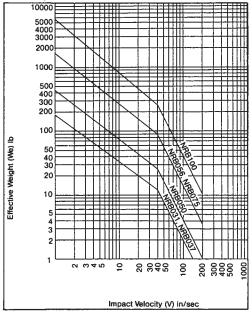
7 Selection of applicable model


Taking into consideration the effective weight of the object (We) calculated using graph D and impact velocity (V), check provisional model compatibility with the condition of application. For added precaution, once again check the operational cycle/min(n).

≪Symbol table≫

Symbol	Specifications	Unit
E	Total energy	in∙lb
E1	Kinetic energy	in∙lb
E2	Work energy	in∙lb
F	Cylinder Force	lb
g	Acceleration of gravity	in/sec ²
J	Moment of inertia about the center of gravity	in•lb•sec ²

Symbol	Specifications	Unit
S	Shock absorber stroke	in
We	Effective weight	lb


Table Work energy of cylinder (F•S)

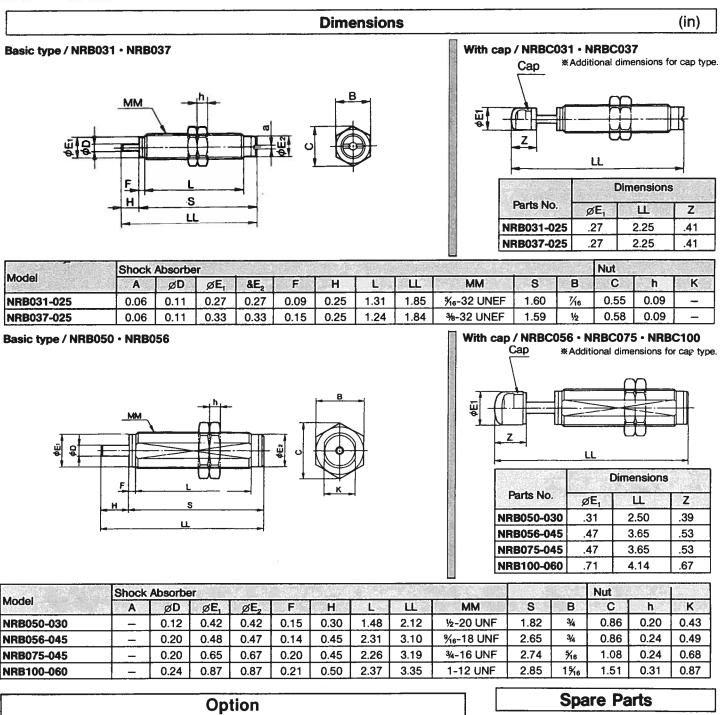
in/ib	in/ib (Operating pressure 80 psi)					
	Model			NR8050-030	NR8058-045 NR8075-045	NRB100-000
Effe	Effective Stroke in			0.30	0.45	0.60
		0.75	8.8	10.6	15.9	21.2
		0.88	12.2	14.6	21.9	29.2
	NCM	106	17.6	21.2	31.8	42.4
		125	24.5	29.5	44.2	58.9
Bore		150	35.3	42.4	63.6	84.8
		200	62.8	75.4	113	151
	NCA1	250	98.2	118	177	236
		325	166	199	299	398
		400	251	302	452	603
		6	0.88	1.05	1.58	2.10
		10	2.43	2.92	4.38	5.84
		12	3.51	4.21	6.31	8.41
	NCJ2	15	5.48	6.57	9.86	13.1
	NCJP	20	9.74	11.7	17.5	23.4
Bore	NCQ2	25	15.2	18.3	27.4	36.5
	NCY2	32	24.9	29.9	44.9	59.8
	NCX2	40	39.0	46.7	70.0	93.5
		50	60.9	73.0	109.6	146
		63	96.6	116	174	232
		80	156	187	280	374
		100	243	292	438	584

Operation pressure other than 80 PSI :multiply by following coefficient

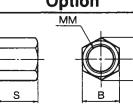
Operating Pressure PS									
Coefficient	0.25	0.5	0.75	1	1.25	1.5	1.88	2.5	3.2

Graph (D) Operation Range

	Cylinder with load (Horizontal)	Cylinder with load (Downward)
1 Classification of impact	Cylinder Load Shock absorber	Load F Cylinder
Impact Velocity Note 1) V	v	v
Kinetic energy E ₁	₩.V ²	<u>₩</u> .v²
Work energy E ₂	F•S	F•S+W•S
Total energy E	E1+E2	E ₁ +E ₂
Effective Weight Note 2) We	<u>2</u> д.Е v ² •Е	<u>2</u> g.Е v ² ·Е
2 Details of applications	W=20 lb v=40 in/sec d=2 in p=60 psi n=30 cycle/min t=70°F	W=10 lbs v=120 in/sec d=2 in p=80 psi n=20 cycle/min t=70°F
3 Specifications	 Confirmation of specifications v=>40<200 in/sec t=>14<70<176°F 	Confirmation of specifications v=>120<200 in/sec t=>14<70<176°F
	YES	YES
4 Calculation of kinetic energy E ₁	• Kinetic Energy (E ₁) Use graph (and obtain E ₁ using W=20 lbs and v=40 in/sec	• Kinetic Energy (E ₁) Use graph (a) and obtain E ₁ using W=10 lbs and v=120 in/sec
Killetic energy L1	$E_1 \approx 45 \text{ in} \cdot \text{lbs}$	E ₁ ≈200 in •lbs
5 Calculation of Work Energy E ₂	• Work Energy (E_2) Choose NRB056, based on E_1 Use table (and obtain E_2 E_2 (80 psi)=113 in · lbs Since operating pressure=60 psi E_2 =113x.75=85 in · lbs	• Work Energy Choose NRB100, based on E_1 Use table () and graph () and obta F·S and W·S F·S=151 in·lbs W·S=6 in·lbs E_2 =F·S+W·S=151+6=157 in·ll
	E ₂ =85 in lbs	E ₂ =157 in lbs
6 Calculation of effective weight of object We	• Effective Weight (We) Total energy E=E ₁ +E ₂ = 45+85=130 in•lbs Use graph () and obtain We using E and V.	• Effective Weight (We) Total energy E=E ₁ +E ₂ = 200+157=375 in · lbs Use graph @ and obtain We using E and V.
	We≈70 lbs	We≈22 lbs
7 Selection of applicable model	 Selection of applicable model Using graph D, substitute We and V to confirm initial choice is applicable 	 Selection of applicable model Using graph D, substitute We and to confirm initial choice is applica
	YES Select NRB056	YES Select NRB100


Note 1: Impacting object speed is momentary velocity at which object is impacting against shock a Note 2: All energy of object being equal with all of kinetic energy, the weight of object is equal with Note 2: All energy of object being equal with an or kinetic charge, are the equation. $E = \frac{We}{2g} V^2$

		·
Cylinder with load (Upward)	Free horizontal impact	
لمعط بالس F		1 Classification of impact
v	v	Impact Velocity Note 1) V
$\frac{W}{2g} \cdot V^2$	<u>W</u> .v ²	Kinetic energy E ₁
F•S–W•S	-	Work energy E ₂
E ₁ +E ₂	E1	Total energy E
2g.E	2g v2·E=W	Effective Weight Note 2) We
W=10 lb v=120 in/sec d=2 in p=80 psi n=20 cycle/min t=70°F	W=20 lb v=4 in/sec n=20 cycles/min t=70°F	2 Details of applications
 Confirmation of specifications v=>120<200 in/sec t=>14<70<176°F 	• Confirmation of specifications v=>40<200 in/sec t=>14<70<176°F	3 Specifications
YES	YES	
• Kinetic Energy (E_1) Use graph (A) and obtain E_1 using W=10 lb and v=120 in/sec $E_1 \approx 200$ in lbs		[4] Calculation of kinetic energy E ₁
• Work Energy (E_2) Choose NRB100, based on E_1 Use table (and graph (c) and obtain F·S and W·S F·S=151 in·lbs W·S=6 in·lbs E_2 =F·S-W·S=151-6=145 in·lbs E_2 =145 in·lbs		5 Calculation of Work Energy E ₂
• Effective Weight (We) Total energy $E=E_1+E_2=$ $200+145=345 \text{ in} \cdot \text{lbs}$ Use graph (A) and obtain We using E and V.	• Effective Weight (We) We=W=20 lbs	6 Calculation of effective weight of object We
We≈20 lbs	We≈20 lbs	
• Selection of applicable model Using graph Ø, substitute We and V to confirm initial choice is applicable	• Selection of applicable model Using graph D , substitute We=20 lb and V=40 in/sec, choose NRB050	7 Selection of applicable model
YES	YES	
Select NRB100	Select NRB050	


orber.

	Free Falling impact	Rotational Impact (With Torque)
1 Classification of impact	Load v H	
		Andreas - Andreas
Impact Velocity Note 1) V	✓2gH	<u>ω·R</u>
Kinetic energy E ₁	₩∙н	$\frac{J \cdot \omega^2}{2} = \frac{W}{2g} \cdot v^2$
Work energy E ₂	W·S	T·SR
Total energy E	E ₁ +E ₂	E ₁ +E ₂
Effective Weight Note 2) We	<u>2g</u> ∙E	<u>2</u> д.Е
2 Details of applications	W=50 lb H=8 in n=5 cycle/min t=>0°F	W=6 lbs ω=1 rad/sec r=20 in T=90 in • lbs n=10 cycle/min t=80°F
3 Specifications	• Confirmation of specifications $v=V^{2}gH=V^{2}$ (386 in/sec ²) (8 in) v=80 in/sec v=>80<200 in/sec $t=>14<70<176^{\circ}F$	• Confirmation of specifications $v=\omega R=20$ inch x 1 rad/sec=20 in/sec v=>20<200 in/sec t=>14<80<176
	YES	YES
4 Calculation of kinetic energy E ₁	● Kinetic Energy (E ₁) E ₁ =W•H=50 lb (8 in)=400 in•lbs	• Kinetic Energy (E ₁) Use graph (& and obtain E ₁ using W=6 lbs and v=120 in/sec
Kinetic energy E1	E ₁ =400 in∙lbs	E ₁ =4 in•lbs
5 Calculation of Work Energy E ₂	● Work Energy (E ₂) Choose NRB100, based on E ₁ Use graphic © and obtain W·S W·S=30 in •Ibs	• Work Energy (E ₂) Choose NRB037, based on E ₁ $E_2=T \cdot \frac{S}{R}=90 \text{ in} \cdot \text{lbs} \frac{.25 \text{ in}}{20 \text{ in}}=1.1 \text{ in} \cdot \text{lbs}$
	E ₂ =30 in•lbs	E ₂ =1.1 in•lbs
6 Calculation of effective weight of object We	• Effective Weight (We) Total energy E=E ₁ +E ₂ = 400+30 in · Ibs Use graph (A) and obtain We using E=430 in · Ibs and V=80 in/sec	• Effective Weight (We) Total energy E=E ₁ +E ₂ = 4+1.1=5.1 in·lbs Use graph (and obtain We using E and V.
1	We≈60 lbs	We≈9 lbs
7 Selection of applicable model	• Selection of applicable model Using graph D substitute We and V to confirm initial choice is applicable	• Selection of applicable model Using graph D, substitute We and V to confirm initial choice is applicable
	YES	YES
	Select NRB100	Select NRB037

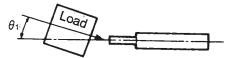
Series NRB

Stopper Nut

Part No.		Di			
	В	С	S	MM	Applicable Model
NRB031S	7/16	(.51)	⁵ /16	%₅-32 UNEF	NRB031-025
NRB037S	1/2	(.56)	1%4	3-32 UNEF	NRB037-025
NRB050S	3/4	(.86)	27/64	½-20 UNF	NRB050-030
NRB056S	3/4	(.86)	1/2	%₁₅-18 UNF	NRB056-045
NRB075S	15/16	(1.08)	%	%-16 UNF	NRB075-045
NRB100S	·	(1.51)	₹4	1-12 UNF	NRB100-060

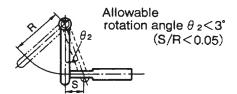
Cap

Material : Polyurethane


	Dimensions				
Parts No.	Α	øB	R1		
RB08C	.26	.27	.24		
RB10C	.35	.34	.29		
RB14C	.49	.47	.39		
RB20C	.63	.71	.79		

4

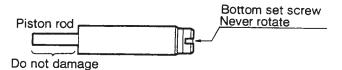
5


Precautions

Load should always be aligned with the axis of piston rod. (In the case of eccentricity of 3° or more, please contact SMC representative.)

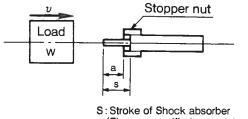
Allowable eccentricity $\theta_1 < 3^\circ$

②For rotational impact, load should always be aligned perpendicular to the axis of shock absorber and allowable rotation angle at stroke end should always be $\theta_2 < 3^{\circ}$ (In the case of rotation angle of 3° or more, please contact SMC agent.)

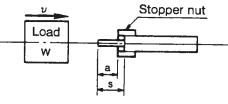


Shock absorber nut/tightening torque should be as follows.

Model	NRB031	NRB037	NRB050	NRB056	NRB075	NRB100
O.D. thread in	∮‰-32	3⁄4-32	1⁄2-20	%16-18	3⁄4-16	1-12
Nut/Tightening torque in/lb	15	15	28	95	95	210


(Dead on mounting plate can be worked out as follows. Load on mounting plate $|b| \sim 2 \frac{E (Energy absorption in/lb)}{S (Stroke in)}$

• Never rotate set screw on the bottom of body (Remember it is not a regulation set screw.) Rotation can cause oil leakage.


Make sure that the seal surface does not receive any kind of damage. Damage will reduce the durability of the piston rod and cause unsatisfactory operation.

Adjustment of the stopper nut (to adjust the length a) will control the suspension time of the impacting object.

(Figures specified on catalogue)

Adjustment of the stopper nut (to adjust the length a) will control the suspension time of the impacting object.

S: Stroke of Shock absorber (Figures specified on cataioaue)

Ovoid applications where the shock absorber rod is in direct contact with cutting oil, water etc.

World Wide SMC Support...

North American Branch Offices

SMC Pneumatics Inc. (Atlanta) 1750 Corporate Drive, Suite 740 Norcross, GA 30093 Tel: (770) 717-8191 FAX: (770) 717-5113

SMC Pneumatics Inc. (Austin) 2324-D Ridgepoint Drive Austin, TX 78754 Tel: (512) 926-2646 FAX: (512) 926-7055

SMC Pneumatics Inc. (Boston) 461 Boston Street, Suite B6 Topsfield, MA 01983 Tel: (508) 887-3653 FAX: (508) 887-6662

SMC Pneumatics Inc. (Charlotte) 5015-C West W.T. Harris Blvd. Charlotte, NC 28269 Tel: (704) 597-9292 Fax: (704) 596-9561

SMC Pneumatics Inc. (Chicago) 555 Kirk Road, Suite A St. Charles, IL 60174 Tel: (708) 377-0080 FAX: (708) 377-3369

SMC Pneumatics Inc. (Cincinnati) 4800 Olympic Blvd. Erlanger, KY 41018 Tel: (606) 647-5600 FAX: (606) 647-5609

Europe ENGLAND SMC Pneumatics (U.K.) Ltd. GERMANY SMC Pneumatik GmbH ITALY SMC Italia SpA FRANCE **SMC Pneumatique SA** HOLLAND SMC Controls BV SWEDEN SMC Pneumatics Sweden AB SWITZERLAND SMC Pneumatik AG **AUSTRIA SMC Pneumatik GmbH** SPAIN SMC España, S.A. IRELAND SMC Pneumatics (Ireland) Ltd.

Valves

Proportional Valves

Mechanical Valves

Miniature Valves

Fluid Valves

SMC Pneumatics Inc. (Cleveland) 2305 East Aurora Road Twinsburg, OH 44087 Tel: (216) 963-2727 FAX: (216) 963-2730

SMC Pneumatics Inc. (Columbus) 3687 Corporate Drive Columbus, OH 43231 Tel: (614) 895-9765 FAX: (614) 895-9780

SMC Pneumatics Inc. (Dallas) 12801 N. Stemmons Frwy, Ste. 815 Dallas, TX 75234 Tel: (214) 406-0082 FAX: (214) 406-9904

SMC Pneumatics Inc. (Detroit) 44345 Macomb Industrial Dr. Clinton Township, MI 48036 Tel: (810) 463-2300 FAX: (810) 463-2344

SMC Pneumatics Inc. (Houston) 9001 Jameel, Suite 180 Houston, TX 77040 Tel: (713) 460-0762 FAX: (713) 460-1510

SMC Pneumatics Inc. (Indpls.) 3011 N. Franklin Rd. Indianapolis, IN 46226 Tel: (317) 899-4743 FAX: (317) 898-4808

Asia JAPAN **SMC** Corporation KOREA SMC Pneumatics Korea Co., Ltd. CHINA SMC (China) Co., Ltd. HONG KONG SMC Pneumatics (Hong Kong) Ltd. SINGAPORE SMC Pneumatics (S.E.A.) Pte. Ltd. PHILIPPINES SMC Pneumatics (Philippines), Inc. MALAYSIA SMC Pneumatics (S.E.A.) Sdn. Bhd. TAIWAN SMC Pneumatics (Taiwan) Co., Ltd. THAILAND SMC Thailand Ltd. INDIA SMC Pneumatics (India) Pvt., Ltd.

SMC offers the same quality and engineering expertise in many other pneumatic components

Cylinders/Actuators

Compact Cylinders

Miniature Cylinders

Pneumatic Grippers

Rodless Cylinders

Rotary Actuators

SMC Pneumatics Inc. (L.A.) 14191 Myford Road Tustin, CA 92680 Tel: (714) 669-1701 FAX: (714) 669-1715

SMC Pneumatics Inc. (Mnpls.) 990 Lone Oak Road, Suite 162 Eagan, MN 55121 Tel: (612) 688-3490 FAX: (612) 688-9013

SMC Pneumatics Inc. (Newark) 131 Ethel Rd. W., Bld. A, Suite 4 Piscataway, NJ 08854 Tel: (908) 572-4600 FAX: (908) 572-0522

SMC Pneumatics Inc. (Phoenix) 21608 N. 20th Ave. Phoenix, AZ 85027 Tel: (602) 492-0908 FAX: (602) 492-9493

SMC Pneumatics Inc. (Portland) 6707 N.E. 59th Place Portland, OR 97218 Tel: (503) 288-0644 FAX: (503) 288-5198

SMC Pneumatics Inc. (Richmond) 5377 Glen Alden Drive Richmond, VA 23231 Tel: (804) 222-2762 FAX: (804) 222-5221

SMC Pneumatics (Canada) Ltd.

SMC Pneumatics (Chile) Ltda.

SMC Pneumatics (N.Z.) Ltd.

SMC Pneumatics (Australia) Pty. Ltd.

SMC Corporation (Mexico) S.A. de C.V.

North America

South America

NEW ZEALAND

Vacuum

Vacuum Electors

Instrumentation

Vacuum Accessories

Pneumatic Positioners

Pneumatic Transducers

SMC Argentina S.A.

ARGENTINA

Canada

Mexico

CHILE

Oceania AUSTRALIA SMC Pneumatics Inc. (Rochester) 336 Summit Point Drive Henrietta, NY 14467 Tel: (716) 321-1300 FAX: (716) 321-1865

SMC Pneumatics Inc. (S.F.) 85 Nicholson Lane San Jose, CA 95134 Tel: (408) 943-9600 FAX: (408) 943-9111

SMC Pneumatics Inc. (Tampa) 8507-H Benjamin Road Tampa, FL 33634 Tel: (813) 243-8350 FAX: (813)243-8621

SMC Pneumatics Inc. (Tulsa) 10203 A East 61st Street Tulsa, OK 74146 Tel: (918) 252-7820 FAX: (918) 252-9511

SMC Pneumatics Inc.

Directional Control Valves

Valves

Mufflers

Manual Valves

Exhaust Cleaners

Quick Exhaust Valves

١.

Air Preparation Equipment

Filters-Regulators-Lubricators

Coalescing Filters

Fittings

Air Fittings

Micro Mist Separators