Technical Operation Manual

Serial Interface Unit
ISO Plug-in Manifold Valve
Rev 1.004 21.Aug.2000
SI Unit Model No. : EX230-SDN1

Contents

Summary 3
2. Structure 3
O-1 System structure. 3
2-2 S I unit structure 3
3. Specification5
$0-1$ General specification... 5
3-2 Communication specification. 5

4. Parts description and function7

- 4-1 LED display 8
- 4-2 SW function 8
- 4-3 Connector function 8

5. How to set up S W 9
6. Connectin method 11
$6-1$ Connection of communication cable 11
6-2 Connection of power supply cable 12

- $6-3$ Connection of sensor 13

7. Actuation and LED display 14

- 7-1 Actuation of S I unit 14
- 7-2 Actuation of output excessive current protection 15

8. Maintenance 16

- 8-1 Procedure of S I unit exchange 16
- 8-2 Procedure of fuse exchange 16

9. MAP for system control 17

- 9-1 I / O assign 17
- 9-2 Bit mapping 17
- 9-3 EDS file 19

1. Summary

EX230-SDN1 is SI (Serial Interface) unit for ISO plug-in manifold valve, that can connect to Device Net. Followings are the specification and the operation manual.

2. Structure

-2-1 Systemstructure

SI unit connect to Device Net of system in the parts manufacturing line with ISO plug-in manifold, and the unit is used as component inside system.
Fig 2. 1 is connection example of SI unit. Connect SI unit at the node on the fig.

Fig 2. 1 System structure

2-2 S I unitstrudure

SI unit consists of micro computer, CAN transceiver, Sensor input control gate ally, output driver circuit, LED, SW and DC-DC converter.

Fig 2.2 shows Si unit internal block.

Fig 2. 2 S I unit internal block

3. Specification

-3-1 General specification

item	Specification
Protection class	I P 6 5 (N EMA 4)
Operating ambient temperature	$+5 \sim+45^{\circ} \mathrm{C}$
Operating ambient moisture	$35 \sim 85 \% \mathrm{RH}$ (no dewing)
Vibration resistance	$5 \mathrm{G} \quad(10 \sim 55 \mathrm{~Hz}$ all amplitude 0. 50mm)
Shock resistance	Peak acceleration 10G
Noise resistance	$1000 \mathrm{Vp-p} \mathrm{\quad} \mathrm{Pulse} \mathrm{width} \mathrm{100ns} \mathrm{\sim 1} \mathrm{\mu S} \mathrm{\quad} \mathrm{leading} \mathrm{edge} \mathrm{1ns} \mathrm{pulse}$
Voltage resistance	Between external terminal package and case, AC1000V, 50/60Hz 1 minute
isolation resistance	Between external terminal package and case, 10M Ω
Environment	No corrosive gas. No dust.

-3-2 Communication spedification

Item	specification				
Applicable system	Devi cenet				
Node address	$0 \sim 63$				
Communication speed	$125 \mathrm{k}, 250 \mathrm{k}, 500 \mathrm{kbit} / \mathrm{sec}$				
Max cable length	communicat ion speed	Network max	length	Branch line length	All branch line length
		thick cable	Thin cable		
	500 kbps	$\begin{array}{lc} \hline 100 \mathrm{~m} & \text { or } \\ \text { less } & \\ \hline \end{array}$	100 m1 less	6 m or less	39m or less
	250kbps	250 m or 1 ess			78 m or 1ess
	125 kbps	$\begin{array}{ll} \hline 500 \mathrm{~m} & \text { or } \\ 1 \mathrm{ess} \end{array}$			156 m or less

3-3 S I unit spedification

Item	Specification
Output points	16 points
Output type	PNP transistor, open collector type (with the function of excessive current protection)
Connection load	Solenoid valve with DC24V, 2.8W or less lamp•serge voltage protection circuit
Input points	32 points
Input contents	$0 \sim 15$: Excessive current detecting status 16 : PWR VLV status $17 \sim 21$: Sensor input 22, 23 : EPR input $24 \sim 31$: NOT USE
Power supplyvoltage,consumption current	DC11~25V (For DeviceNet) , 0.5A (Max) : When sensor not use.
	DC20~25V (For DeviceNet) , 0.5A (Max) : When sensor use.
	DC20~26.4V (For solenoid valve) , 2.0A (Max)
Weight	600 g or less
$\begin{gathered} \hline \text { external dimensions } \\ (\mathrm{D} \times \mathrm{W} \times \mathrm{H}) \end{gathered}$	(71) $\times(167) \times(57)$

4. Parts description and function

Fig4. 1 shows SI unit appearance.

Fig4. 1 SI unit appearance

Name	Function
MOD / NET	Display the status of cormunication to Device Net
AUTORESET	When shorted at the output toward solenoid valve, turn the output OFF. When set as the recovery is done automatically, this LED become steady.
PWR BUS	Display source status. The source is inputted from DeviceNet.
PWR IN	Display status of the source for sensor, which is outputted.
PWR EPR	Display status of the source for EPR, which is outputted.
PWR VLV	Display status of the source for solenoid valve, which is inputted.
IN $17 \sim 21$	Display the status of sensor input.
IN 22,23	Display the status of EPR input.
OUT 0~F	Display the status of output .

4-2 SW function

Fig 4.2.1 shows SW1 function. Fig 4.2.2 shows SW2 function.
Fig 4.2.1 SW1 function

SW No.	function
$1 \sim 6$	Select node address from 0~63, and set.
7,8	Select cormunication speed from 125k, 250k, and 500k, and set.
9	When communication error occur, select CLEAR or HOLD at the output of solenoid valve, and set.
10	Select HW mode (actuation by SW1-1 to 8 setting) or SW mode (actuation by network setting) at the setting of cormunication speed and node address, and set

Fig 4.2.2 SW2 function

SW No.	Function
1	When shorted at the status of solenoid valve output, select HOLD with output OFF or output automatic recovery when short status was removed and output OFF, and then set.
2	-
3	-
4	

-4-3 Connector function

No.	Name	function
1	BUS I N	connect to Device Net cable
2	VLV PWR I N	connect to source cable
3	I N $18 / 17$	connect to sensor cable
4	I N 19	connect to sensor cable
5	I N $20 / 21$	connect to sensor cable

5. How toset upSW

2 of DIP SW (SW1:10bit, SW2:4bit) are mounted on the display of SI unit.
To set SW, loosen fix screw for SW cover, open cover and set the each bit.
fig5. 1 How to set SW1

Fig. 5.2 How to set SW2

SW2 No.		1	2	3	4
AUTORESET	OFF	0			
	ON	1			
RESERVE	OFF		0		
RESERVE	OFF			0	
RESERVE	OFF				

Setting of recovery from excessive
current protection
\(\left.\qquad \begin{array}{lr}\operatorname{SW} 2 \& \mathrm{ON}(1)

\& \mathrm{OFF}(0)\end{array}\right] \quad\)| ON^{2} | \square | \square | \square |
| ---: | ---: | ---: | ---: |
| | \square | \square | \square |

6. Connection method

- 6-1 Connection of communication cable
- Device Net can connect as T point, branch line point and multi drop.
- Truck and Branch line max length change depending on communication speed and communication cable material. So please refer to table.6.1.1.
- SI unit can connect at node position of fig. 6.1.1.
- Connect Device net cable to BUS connector of SI unit.

Table 6.1.1 Wire length

note. One branch line max length is up to 6 m .

Table 6.1.2 Cable specification

Item	Thick line	Thin line
Conductor cross section	$0.82 \mathrm{~m} \mathrm{~m}^{2}$	$0.20 \mathrm{~m} \mathrm{~m}^{2}$
Impedance	$120 \Omega \pm 10 \%$	$120 \Omega \pm 10 \%$
propagation delay	$1.36 \mathrm{n} \mathrm{s} / \mathrm{ft}$	$1.36 \mathrm{n} \mathrm{s} / \mathrm{ft}$
damping ratio	$500 \mathrm{KHz}: 0.25 \mathrm{~dB} / \mathrm{ft}$	$500 \mathrm{KHz}: 0.50 \mathrm{~dB} / \mathrm{ft}$
	$125 \mathrm{KHz}: 0.13 \mathrm{~dB} / \mathrm{ft}$	
$1.00 \mathrm{MHz}: 0.40 \mathrm{~dB} / \mathrm{ft}$	$125 \mathrm{KHz}: 0.29 \mathrm{~dB} / \mathrm{ft}$ $1.00 \mathrm{MHz}: 0.70 \mathrm{~dB} / \mathrm{ft}$ Conductor resistance $6.9 \Omega / 1000 \mathrm{ft}$	$28 \Omega / 1000 \mathrm{ft}$

Caution on wiring

1) User need to provide plug connector for T type point in order to do multidrop connection. (Example: TMSTBP 2.5...-STF-5. 08 made by Fenix contact Co.)
2) Please use the special cable for DeviceNet as communication cable.
3) Please connect surely the special terminating resistance at the trunk line both ends.

Table 6.1.3 BUS connector specification

Name	Function
	Connect to Device Net cable Connector description : 5-pin connector (Mini style) Male Connector type : equivalent to 84854-9101 (MOLEX) Signal description : 1. Drain / Shield BUS IN

```
-6-2 connection of power supply cable
- Connect power supply cable to PWR connector of SI unit.
```

Table 6.2.1 VLV PWR IN connector specification

Name	Function
VLV PWR IN	Connect to power supply cable Connector description : 4-pin connector (Mini style) Male Connector type : equivalent to 84854-9104(MOLEX) Signal description :1. 24V 2. NC 3. NC 4. OV

6-3 Connection of sensor
(1) Connection of sensor

SI unit can directly connect to sensor for 5 points. Connect to sensor cable to IN18/17, IN19 and IN20/21 connector of SI unit.

Table 6.3.1 input connector specification

Name	Function	
		lonnect to sensor cable Connector description : 5-pin connector (M12) Female Signal description : 1. 24V DC (for sensor) 2. IN 17

7. Actuation and LED display

-7-1 Actuation of SI unit
SI unit actuate as follows normally.
Table 7.1 shows LED display specification.
(1) When DeviceNet is turned ON, SI unit PWR BUS and PWR IN LED become steady. (If AUTO RESET mode is set, AUTO RESET LED become steady)
(2) When Device Net start to actuate, and Communication to master is established, MOD/NET LED become steadily green.
(3) When power for solenoid valve is turned ON, PWR EPR and PWR VLV LED of SI unit become steady.
*With above, SI unit become ready.
(4) Hereafter, turn ON/OFF according to command from Device Net master. Moreover, respond the status to master if there is input from sensor. Also, respond the status to master if output short is detected.

Table 7.1 LED display specification

Name	Contents	
MOD / NET	Green steadily	When cormunication to DeviceNet is doing normally.
	Green flashing	When communication to DeviceNet is waiting.
	Red steadily	When cormunication to DeviceNet become error.
	Red flashing	When cormunication to DeviceNet become connection timeout.
	OFF	When Off line
$\begin{aligned} & \hline \text { AUT0 } \\ & \text { RESET } \end{aligned}$	Green steadily	When set at excessive current protection AUT0 RESET mode.
	OFF	Unless set at excessive current protection AUTO RESET mode.
PWR BUS	Green steadily	DeviceNet turn ON the power supply
	OFF	DeviceNet turn OFF the power supply
PWR IN	Green steadily	When power for sensor is turned ON
	OFF	When power for sensor is turned OFF or the sensor circuit is shorted
PWR EPR	Green steadily	When power for EPR is turned ON
	OFF	When power for EPR is turned OFF or the EPR circuit is shorted
PWR VLV	Green steadily	When power for solenoid valve is turned ON with 20 V or over
	Red steadily	When power for solenoid valve is turned ON with $18 \mathrm{~V} \sim 20 \mathrm{~V}$
	OFF	When power for solenoid valve is turned OFF or less than 18V
$\begin{array}{\|l\|} \hline \text { IN } \\ 17 \sim 21 \end{array}$	Orange steadily	When input from sensor is turned ON .
	OFF	When input from sensor is turned OFF
IN 22, 23	Orange steadily	When input from EPR is turned ON .
	OFF	When input from EPR is turned OFF
$\text { OUT } 0 \sim$F	Orange steadily	Output toward solenoid valve is turned ON
	Orange flashing	Output toward solenoid valve is shorted
	OFF	Output toward solenoid valve is turned OFF

-7-2 Actuation of output excessive current protection

(1) When AUTO RESET OFF
SI unit is execute following procedure to output command from Device Net master.
(1) Turn ON solenoid valve according to command (output LED steady)
(2) Turn OFF solenoid valve when output excessive current occur.
(Output LED flashing)

Output OFF status is hold until DeviceNet power supply is turned OFF.

(1) Turn ON solenoid valve according to command (output LED steady)
(2) Turn OFF solenoid valve when output excessive current occur. (Output LED flashing)
(3) When the cause of excessive current is removed, make solenoid valve recover its normal output.

8. Maintenance

-8-1 Procedureof SI unit exchange

SI unit and valve manifold is connected by internal connector. SI unit is stationary with screw (4 pieces)
Please follow the procedure to exchange SI unit.
(1) Ensure SI unit is not supplied with power.
(2) Remove all cables connected to SI unit.
(Normally Device Net cable and source cable should be removed.
When sensor are used, remove the cable connected to IN18/17, IN19 and IN20/21 connector) .
(3) Remove hex socket head screw (4 pieces) with wrench.

Screws are seen at display surface side of SI unit.
(4) Draw SI unit upward (display surface side) from bottom, and remove it.
(5) Adjust SW setting of SI unit to exchange, and mount with the reverse procedure.

Refer to Fig4. 1 for the position of connector and screw.

-8-2 Procedureoffuseexchange

See SI unit from bottom surface to find internal connector and 2 fuses. Exchange the fuse.
Remove SI unit with the same procedure as SI unit exchange.
Pull out fuses toward bottom, which are seen from SI unit bottom surface side. Remove and exchange.

Refer to Fig4. 1 for the position of fuse.
(Note) Fuses are built-in to avoid fire when internal circuit is shorted. Also it is necessary to protect SI unit from external serge voltage and current. So please use specified fuse.
FUSE BUS : 3961200044 made by WICKMANN (Rated2.0A)
FUSE VLV PWR : 3961315044 made by WICKMANN (Rated3. 15A)

9. MAP for system control

-9-1 I/O assign

Item		Output	Input
Occupied byte		2byte (solenoid valve output)	4byte (short circuit / sensor input)
Send / receive data	Output Address+0byte	Output No. $0 \sim 7$	
	+1byte	Output No. $8 \sim 15$	
		-	
		-	
	Input Address +Obyte		Output status No. $0 \sim 7$
	+1byte		Output status No. $8 \sim 15$
	+2byte		Input No. $16 \sim 23$
	+3byte		Input No. $24 \sim 31$

Assignment method of send/receive data is different by PLC. Refer to PLC master (scanner) manual for the detail.

I / 0	Item	Classification	SIGNAL NAME	BIT ADDRESS
Output	Word 1	Solenoid valve	OUT_0 ~ 15	Nxx:000 ~ 15
Input	Word 1	Circuit protection status	STS_0 ~ 15	Nxx: $\mathrm{T} 00 \sim 15$
	Word 2	Valve power	IN_16	Nxx:I16
		Sensor	IN_17 ~ 21	Nxx: $\mathrm{I} 17 \sim 21$
		EPR 0,1	IN_22 ~ 23	Nxx: $122 \sim 23$
		NOT USE	IN_24 ~31	Nxx:I24 ~ 31

*OUT_0 STS_0 and IN_16 is LSB ,OUT_15, STS_15 and IN_23 is MSB.
$*$ Next page shows detail of Bit mapping

Bit mapping (detail)
[I] Tooling TYPE

I / 0	Item	Classification	SIGNAL NAME	BIT ADDRESS
Output	Word 1	Solenoid valve	OUT_0 ~ 15	Nxx:000 ~ 15
Input	Word 1	Circuit protection status	STS_0 ~ 15	Nxx:I00 ~ 15
	Word 2	Valve Power	IN_16	Nxx:I16
		Sensor	IN_17 ~ 21	Nxx:I17 ~ 21
		NOT USE	IN_22, 23	Nxx:I22, 23
		NOT USE	IN_24 ~ 31	~ 31

*OUT_0 STS_0 and IN_16 is LSB ,OUT_15, STS_15 and IN_23 is MSB.
[II] Weld TYPE

I / 0	Item	Classification	SIGNAL NAME	BIT ADDRESS
Output	Word 1	Solenoid valve	OUT_0 ~3	Nxx:000 ~ 03
		EPR1	OUT_4 ~ 7	Nxx:004 ~ 07
		Solenoid valve	OUT_ $8 \sim 11$	Nxx:008~11
		EPR0	OUT_12 ~ 15	Nxx:012~15
Input	Word 1	Circuit protection status	STS_0 ~ 15	Nxx: $100 \sim 15$
	Word 2	Valve Power	IN_16	Nxx:I16
		Sensor	IN_17 ~ 21	Nxx:I17 ~21
		EPR0	IN_22	Nxx:I22
		EPR1	IN_23	Nxx:I23
		NOT USE	IN_24 ~ 31	Nxx:I24 ~ 31

* OUT_0 STS_0 and IN_16 is LSB ,OUT_15, STS_15 and IN_23 is MSB.

-9-3 EDS file

\$ Electronic Data Sheet File for
\$ SMC EX230-SDN1 Serial Interface Unit
\$ BASIC Mode
[File]
DescText = "SMC EX230-SDN1 EDS File";
CreateDate $=07-14-2000 ; \quad \$$ created
CreateTime =12:00:00;
Revision =1.1; \$ Revision of EDS
[Device]
VendCode = 7 ;
VendName = "SMC Corp.";
ProdType =27;
ProdTypeStr ="Pneumatic Valve";
ProdCode $=2301$;
MajRev =1; \$ Device Major Revision
MinRev =4; $\quad \$$ Device Minor Revision
ProdName = "Valve Manifold SIU";
Catalog = "EX230-SDN1";
[IO_Info]

> Default =0x0001;
> Pollinfo =0x0001, 1, 1;

Input1 =4,
0 ,
0×0001,
"Solenoid Status", 6,
"20 04241130 03",
"";
Output1 =2,
0 ,
0×0001,
"Solenoid Output",
6,
"20 04242330 03",
"'";
\$ Poll(Bit 0)
\$ Prod. Cnxn=1
\$ Cons. Cnxn=1
\$ 4 byte
\$ All bits are significant
\$ Poll Only Connection
\$ Name String
\$ Path Size
\$ Assy Obj Inst 11 Attr 3
\$ Help String
\$ 2 byte
\$ All bits are significant
\$ Poll Only Connection
\$ Name String
\$ Path Size
\$ Assy Obj Inst 23 Attr 3
\$ Help String
\$ Cons. Cnxn=1
\$ 4 byte
\$ All bits are significant
\$ Poll Only Connection
\$ Name String
\$ Path Size
\$ Assy Obj Inst 11 Attr 3
\$ Help String
\$ 2 byte
\$ All bits are significant
\$ Poll Only Connection
\$ Name String
\$ Path Size
\$ Assy Obj Inst 23 Attr 3
\$ Help String

3011 N orth Franklin Road Indianapolis, IN 46226, U.S.A
Phone: 317-899-4440 Fax: 317-899-3102 URL: http://www.smcusa.com/
Branch offices/ Atlanta, Charlotte, Tampa, Nashville, Richmond, Boston, New J ersey, Rochester, Binghamton Cincinnati, Cleveland, Columbus, Detroit, Indianapolis, Austin, Dallas, Houston, Tulsa, Los Angeles, Phoenix Portland, San Diego, San Francisco, Seattle, Denver, Chicago, Minneapolis, St. Louis, Milwaukee
Specifications are subject to change without prior notice
and any obligation on the part of the manufacture.
EX230-SDN1

