Stroke Reading Cylinder with Brake

Series CE2

ø40, ø50, ø63, ø80, ø100

Brake mechan ding cylinder

$\frac{\text { which can }}{\text { stroke length. }}$

Controller/CEU2

|l|liticl

Stroke Reading Cylinder with Brake/CE2 Controller/CEU2

A cylinder capable of highly reproducible positioning (stopping accuracy of $\pm 0.5 \mathrm{~mm}$) has been created by adding a brake mechanism to a stroke reading cylinder which can measure stroke length.

Brake mechanism

Employs a combination spring and pneumatic lock type.

When there is a drop in air pressure, the workpiece is held by a spring lock.

Locking in both directions is possible.

Locking in either side of cylinder stroke is possible, too.

Working Principle of Brake Mechanism

Measuring

Smallest measuring unit 0.1 mm
Magnetic scale rod and built-in detection head
Relation between displacement and output pulse on stroke reading cylinder

System configuration

For safety measures
Stroke reading cylinder with brake + Counter

- Prevents dropping from raised positions during intermediate stops.

For precision positioning (Stopping accuracy $\pm 0.5 \mathrm{~mm}$)

Stroke reading cylinder with brake + Controller $\binom{$ Brake positioning }{ system }

- Positioning with high reproducibility has been achieved by prediction control and learning function.
- The stop position will be automatically redressed by re-try function.

Series CE2 Prior to Use

Flow Chart to Confirm Utility of Stroke Reading Cylinder with Brake
Depending on the operating conditions, stable stopping accuracy may not be obtained. Therefore, make sure to follow the flow chart shown below.

* This series cannot be used in an environment where it is exposed to fluids (water, oil, coolant, etc.)

Handling Technical Material

Be sure to read before handling brake positioning system (CE2 + CEU2).

Horizontal mounting

Vertical flat mounting

Vertical overhead mounting

Note）In the case of light load，regulate head side supply pressure．
＊SMC original symbols are used for Stroke Reading Cylinder with Brake．

Recommended Pneumatic Equipment

Bore size（mm）	Directional control valve	Brake valve	Regulator	Piping	Silencer	Speed controller
$\varnothing 40$	VFS24■OR	VFS21ロ0	AR425	Nylon ø8／6 or larger	AN200－02	AS4000－02
$\varnothing 50$	VFS24■OR	VFS21ロO	AR425	Nylon ø10／7．5 or larger	AN200－02	AS4000－02
ø63	VFS34ロOR	VFS21ロO	AR425	Nylon $\varnothing 12 / 9$ or larger	AN300－03	AS4000－03
$\varnothing 80$	VFS44ロOR	VFS31ロO	AR425	Nylon ø12／9 or larger	AN300－03	AS420－03
$\varnothing 100$	VFS44ロOR	VFS31■O	AR425	Nylon ø12／9 or larger	AN400－04	AS420－04

Caution on Pneumatic Circuit Design

Supply pressure

If line pressure is used directly as supply pressure，any fluctuation in pressure will appear in the form of changes in cylinder characteristics． Therefore，make sure to use a pressure regulator to convert line pressure into supply pressure（Drive： 0.1 to 1 MPa ，Brake： 0.3 to 0.5 MPa ）for the actuating valve and the brake valve．In order to actuate multiple cylinders at once，use a pressure regulator that can handle a large air flow volume and also consider installing a surge tank．

Be sure to read before handling.
 Refer to front matter 39 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Sensor

\triangle Caution

Because a magnetic system is adopted in the sensor unit of the stroke reading cylinder with brake, the presence of a strong magnetic fields in the vicinity of the sensor could lead to a malfunction.
Operate the system with an external magnetic field of 14.5 mT .
This is equivalent to a magnetic field of approximately 18 cm in radius from a welding area using a welding amperage of almost 15,000 amperes. To use the system in a magnetic field that exceeds this value, use a magnetic material to shield the sensor unit

The sensor unit is adjusted to an appropriate position at the time of shipment. Therefore, never detach the sensor unit from the body. Make sure that water does not splash on the sensor unit (enclosure IP65). Do not pull on the sensor cable.

Noise

Operating the stroke reading cylinder with brake in the vicinity of equipment that generates noise, such as a motor or a welder, could result in miscounting. Therefore, minimize the generation of noise as much as possible, and keep the wiring separate.
Also, the maximum transmission distance of the stroke reading cylinder with brake is 20.5 m . Make sure that the wiring does not exceed this distance. Besides, when the transmission distance is over 20.5 m , use the dedicated transmission box (Part no. CE1-H0374).

How to Manually Disengage the Lock and Changg from the Unlocked to the Locked State

Manual unlocking

1. Loosen the two hexagon socket head cap bolts and remove the pin guide.
2. As viewed from the end of the rod, the pin is tilted 15° to the left of the center.
3. Supply an air pressure of 0.3 MPa or more to the unlocking port.
4. Rotate the pin 30° to the right with a wooden implement such as the grip of a wooden hammer or a resin stick without scratching

How to manually change from an unlocked state to a locked state

1. Loosen the two hexagon socket head cap bolts and remove the pin guide.
2. As viewed from the end of the rod, the pin is tilted 15° to the right of the center.
3. Supply air pressure of 0.3 MPa to the unlocking port.
4. Rotate the pin 30° by pushing it with a wooden implement such as the grip of a wooden hammer or a resin stick.
Note) Never rotate the pin by striking it since this may bend or damage the pin. Be careful when pushing the pin since the surface is slippery.
5. Inside the pin guide, there is a slotted hole that is slightly larger than the pin. Align the pin with the slotted hole and secure them to cover, using the hexagon socket head cap screws that were removed in step 1. The convex of the pin guide and "LOCK" on the locking condition indication plate will align.

Caution on Handling

. Caution

1. Operate the cylinder in such a way that the load is always applied in the axial direction.
In case the load is applied in a direction other than the axial direction of the cylinder, provide a guide to constrain the load itself. In such a case, take precautions to prevent off-centering. If the piston rod and the load are off-centered, the speed of the movement of the piston could fluctuate, which could affect the piston's stopping accuracy and shorten the life of the brake unit.
2. If there is a large amount of dust in the operating environment, use a cylinder with a bellows to prevent the intrusion of dust.
Also, be aware that the operating temperature range is between 0 and $60^{\circ} \mathrm{C}$.
3. The brake unit and the cylinder rod cover area are assembled as shown in the diagram below. For this reason, unlike ordinary cylinders, it is not possible to use the standard style mounted directly onto a machine by screwing in the cylinder tie-rods.
Furthermore, when replacing mounting brackets, the unit holding tie-rods may get loosen. Tighten them once again in such a case.
Use a socket wrench when replacing mounting brackets or retightening the unit holding tie-rods.

Bore size (mm)	Mounting bracket nut			Unit holding tie-rod	
	Nut	Wioth acooss flats	Socket	Width across flats	Socket
40	$\begin{array}{\|c} \text { JIS B } 1181 \text { Class } 3 \\ \text { M8 } \times 1.25 \end{array}$	13	$\left\|\begin{array}{\|c\|} \hline \text { JIS B B } 4636 \\ \text { 2pangle socket 13 } \end{array}\right\|$	10	JIS B 4636 2 point angle socket 10
50				13	JIS B 4636 2 point angle socket 13
63	$\begin{aligned} & \hline \text { JIS B } 1181 \text { Class } 3 \\ & \text { M10 } 1.25 \end{aligned}$	17	JIS B 4636 2 point angle socket 17	13	JIS B 4636 2 point angle socket 13
$\begin{gathered} 80 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { JIS B } 1181 \text { Class } 3 \\ \text { M12 } 1.75 \\ \hline \end{gathered}$	19	JIS B 4636 2 point angle socket 19	17	JIS B 4636 2 point angle socket 17

Operating Cautions

Counting speed of the counter

Be aware that if the speed of the stroke reading cylinder with brake is faster than the counting speed of the counter, the counter will miscount.

```
Use CEU1, CEU2, CEU5.
    Cylinder speed < Counting speed of the counter
(Cylinder speed 500 mm/sec = Counting speed of the counter 5 kcps)
```


Miscounting by lurching or bounding

If the stroke reading cylinder with brake lurches or bounds during an IN or OUT movement, or due to other factors, be aware that the cylinder speed could increase momentarily, possibly exceeding the counter's counting speed or the sensor's response speed, which could lead to miscounting.

Stroke Reading Cylinder with Brake Series CE2 $\varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100$

Note）CE－compliant：When connecting to a 3－point preset counter（CEU1口－D， power supply voltage 24 VDC ）and a multi－counter（CEU5ロロ－D，power supply voltage 24 VDC ）． Refer to the counter operation manual for details．

How to Order

＊1 Water resistant type auto switches can be mounted on the above models，but in such case SMC cannot guarantee water resistance．
Consult with SMC regarding water resistant types with the above model numbers．
Consult with SMC regarding water resistant types with the above model numbers．
＊Lead wire length symbols： $0.5 \mathrm{~m} \ldots \ldots . . .$. Nil（Example）M9NW \quad Solid state auto switches marked with＂O＂are produced upon receipt of order $\begin{array}{lll}\text {（Example）M9NW } & \text {＊Solid state auto switches marked with＂O＂are produced upon receipt of order } \\ 1 \mathrm{~m} \ldots \ldots \ldots . . \mathrm{M} & \text {（Example）M9NWM } & \text {＊＊Since D－A9 and D－A9■V cannot be mounted on } \varnothing 50 \text { ，use of D－Z7 } \square \text { or } \\ 3 \mathrm{~m} \ldots \ldots . . \mathrm{L} & \text {（Example）M9NWL } & \text { D－Z80 is recommended．}\end{array}$
＊Since there are other applicable auto switches than listed，refer to page 1649 for details．
＊For details about auto switches with pre－wired connector，refer to pages 1960 and 1961.
＊D－A9 $\square / \mathrm{M} 9 \square / \mathrm{M} 9 \square \mathrm{~W} / \mathrm{M} 9 \square \mathrm{~A}(\mathrm{~V})$ auto switches are shipped together（not assembled）．（Only auto switch mounting brackets are assembled before shipped．）

Series CE2

Model

Series	Type	Action	Bore size (mm)	Lock action
CE2	Non-lube	Double acting	$40,50,63$ 80,100	Spring and pneumatic lock

Rod Boot Material

Symbol	Rod boot material	Maximum ambient temperature
\mathbf{J}	Nylon tarpaulin	$60^{\circ} \mathrm{C}$
\mathbf{K}	Neoprene cross	$110^{\circ} \mathrm{C}^{*}$

* Maximum ambient temperature for the rod boot itself.

Refer to pages 1644 to 1649 for cylinders with auto switches.

- Auto switch proper mounting position (detection at stroke end) and its mounting height
- Operating range
- Minimum stroke for auto switch mounting
- Auto switch mounting brackets/Part no.

Cylinder Specifications

Bore size (mm)		$\varnothing 40$	$\varnothing 50$	ø63	$ø 80$	$\varnothing 100$
Fluid		Air (Non-lube)				
Proof pressure	Drive	1.5 MPa				
	Brake	0.75 MPa				
Maximum operating pressure	Drive	1 MPa				
	Brake	0.5 MPa				
Minimum operating pressure	Drive	0.1 MPa				
	Brake	0.3 MPa				
Piston speed		50 to $500 \mathrm{~mm} / \mathrm{s}^{*}$				
Ambient temperature		00 to $60^{\circ} \mathrm{C}$ (No freezing)				
Brake system		Spring and pneumatic lock type				
Sensor cord length		$\varnothing 7-500 \mathrm{~mm}$ Oil-resistant				
Stroke length tolerance		Up to $250 \mathrm{~mm}:{ }_{0}^{+1.0}, 251 \mathrm{~mm}$ to $1000 \mathrm{~mm}{ }_{0}^{+1.4}$				

* Be aware of the constraints in the allowable kinetic energy.

Sensor Specifications

Cable	$\varnothing 7,6$ core twisted pair shielded wire (Oil, Heat and Flame resistant cable)
Maximum transmission distance	20.5 m (when using SMC cable while using controller or counter)
Position detection method	Magnetic scale rod/Sensor head <Incremental type>
Magnetic field resistance	14.5 mT
Power supply	10.8 to 26.4 VDC (Power supply ripple: 1% or less)
Current consumption	40 mA
Resolution	$0.1 \mathrm{~mm} /$ pulse
Accuracy	$\pm 0.2 \mathrm{~mm}$ Note)
Output type	Open collector (Max. 35 VDC, 80 mA) Note)
Output signal	A/B phase difference output
Insulation resistance	$50 \mathrm{M} \Omega$ or more (500 VDC measured via megohmmeter) (between case and 12E)
Vibration resistance	33.3 Hz, 6.8 G 2 hrs. each in X, Y directions 4 hrs. in Z direction based upon JIS D 1601
Impact resistance	$30 \mathrm{G}, 3$ times at $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$
Enclosure	IP65 (IEC standard) Except connector part
Extension cable (Option)	$5 \mathrm{~m}, 10 \mathrm{~m}, 15 \mathrm{~m}, 20 \mathrm{~m}$

Note) Digital error under Controller (CEU2), Counter (CEU1 or CEU5) is included. Besides, the whole accuracy after mounting on an equipment may be varied depending on the mounting condition and surroundings. As an equipment, calibration should be done by customer.

Standard Stroke

Bore size (mm)	Standard stroke (mm)		Range of manufacturable stroke*	
	Without rod boot	With rod boot	Without rod boot	With rod boot
$\mathbf{4 0}$	25 to 850	25 to 700	Up to 1200	Up to 950
$\mathbf{5 0}$	25 to 800	25 to 650	Up to 1150	Up to 900
$\mathbf{6 3}$	25 to 800	25 to 650	Up to 1150	Up to 900
$\mathbf{8 0}$	25 to 750	25 to 600	Up to 1100	Up to 900
$\mathbf{1 0 0}$	25 to 750	25 to 600	Up to 1100	Up to 850

* Strokes longer than the standard stroke are made-to-order products.

Weight

Bore size (mm)			40	50	63	80	100
Basic weight	Basic style		2.18	3.39	5.29	8.66	12.09
	Foot style		2.37	3.61	5.63	9.33	13.08
	Flange style		2.55	3.84	6.08	10.11	14.01
	Single clevis style		2.41	3.73	5.92	9.77	13.87
	Double clevis style		2.45	3.82	6.08	10.06	14.39
	Trunnion style		3.63	3.92	6.18	10.36	14.49
Additional weight per each 50 mm of stroke	Aluminum tube	Mounting bracket	0.22	0.28	0.37	0.52	0.65
Accessory bracket	Single knuckle		0.23	0.26	0.26	0.60	0.83
	Double knuckle		0.32	0.38	0.38	0.73	1.08
	Knuckle pin		0.05	0.05	0.05	0.14	0.19

Calculation example: CE2L40-100

- Basic weight....................... 2.37 (Foot style, ø40)
- Additional weight................0.22/50 stroke
- Cylinder stroke................... 100 stroke
$2.37+0.22 \times 100 / 50=2.81 \mathrm{~kg}$

Accessories

Mounting		Basic	Axial foot	Rod flange	Head flange	Single clevis	Double clevis	Center trunnion
Standard	Rod end nut	\bullet						
	Clevis pin	-	-	-	-	-	\bullet	-
Option	Single knuckle joint	\bullet						
	Double knuckle joint (with pin)	\bullet						
	With rod boot	\bullet						

* Refer to page 1642 for dimensions and part numbers of the option. Refer to page 1640 for dimensions of the rod boot.

Construction

Component parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Black painted after hard anodized
2	Head cover	Aluminum alloy	Black painted
3	Cover	Aluminum alloy	Black painted after hard anodized
4	Cylinder tube	Aluminum alloy	Hard anodized
5	Piston rod	Free-cutting steel	Hard chrome plated
6	Piston	Aluminum alloy	Chromated
7	Brake piston	Carbon steel	Nitriding
8	Brake arm	Carbon steel	Nitriding
9	Brake arm holder	Carbon steel	Nitriding
10	Brake shoe holder	Carbon steel	Nitriding
11	Brake shoe	Special friction material	
12	Roller	Chromium molybdenum steel	Nitriding
13	Pin	Chrome bearing steel	Heat treated
14	Type E retaining ring	Stainless steel	JIS B 2805E
15	Brake spring	Steel wire	Dacrodized
16	Retaining plate	Rolled steel plate	Zinc chromated
17	Cushion ring A	Rolled steel	Electroless nickel plated
18	Cushion ring B	Rolled steel	Electroless nickel plated
19	Bushing	Lead-bronze casted	
20	Bushing	Lead-bronze casted	
21	Cushion valve	Rolled steel plate	Electroless nickel plated
22	Tie-rod	Carbon steel	Chromated
23	Unit holding tie-rod	Carbon steel	Chromated
24	Piston nut	Rolled steel plate	Zinc chromated
25	Non-rotating pin	Carbon steel	High frequency quenched
26	Pin guide	Carbon steel	Black painted after nitriding
27	Tie-rod nut	Carbon steel	Black zinc chromated

No.		Material	Note
28	Lock nut	Carbon steel	Nickel plated
29	Hexagon socket head cap screw	Chromium molybdenum steel	Black zinc chromated
30	Hexagon socket head cap screw	Stainless steel	
31	Spring washer	Steel wire	Black zinc chromated
32	Spring washer	Steel wire	Black zinc chromated
33	Spring washer	Steel wire	Black zinc chromated
34	Spring washer	Steel wire	Black zinc chromated
35	Spring washer	Steel wire	Zinc chromated
36	Sensor cover	Carbon steel	
37	Detection head assembly	-	
38	Connector	-	
39	Cable	-	
40	Rubber magnet	NBR	
41	Wear ring	Resin	
42	Gasket	NBR	
43	Bushing	NBR	
44	Amp cushion	NBR	
45	Seal retainer	Aluminum alloy	
46	Coil scraper	Phosphor bronze	
47	Piston seal	NBR	
48	Rod seal A	NBR	
49	Rod seal B	NBR	
50	Brake piston seal	NBR	
51	Cushion seal	NBR	
52	Piston gasket	NBR	
53	Cylinder tube gasket	NBR	
54	Cushion valve seal	NBR	

Foot style

Bore size (mm)	B	LH	LS	LX	\mathbf{X}	\mathbf{Y}	ZZ	LD
$\mathbf{4 0}$	58.5	40	272.5	42	27	13	309.5	9
$\mathbf{5 0}$	68.5	45	289.5	50	27	13	333.5	9
$\mathbf{6 3}$	83	50	322	59	34	16	362	11.5
$\mathbf{8 0}$	100	65	372	76	44	16	415	13.5
$\mathbf{1 0 0}$	114	75	386	92	43	17	432	13.5

Rod side flange style

Head side flange style

Single clevis style

Double clevis style

Center trunnion style

(mm)

Bore size (mm)	Rod side flange, Head side flange						Rod side flange		Single clevis, Double clevis						Single clevis CX	Double clevis		Center trunnion			
	FT	FV	FX	FY	FZ	FD	B	BB	$C^{\text {H10 }}$	L	$\mathbf{R R}_{1}$	$\mathbf{R R}_{\mathbf{2}}$	U	Z		CX	CZ	TDe8	TX	TZ	Z
40	12	60	80	42	100	9	71	77	$10_{0}^{+0.058}$	30	10	16	16	299.5	$15_{-0.3}^{-0.1}$	$15_{+0.1}^{+0.3}$	29.5	$15_{-0.059}^{-0.052}$	85	117	227.5
50	12	70	90	50	110	9	81	86	$12_{0}^{+0.070}$	35	12	19	19	328.5	$18_{-0.3}^{-0.1}$	$18_{+0.1}^{+0.3}$	38	$15_{-0.059}^{-0.032}$	95	127	248.5
63	15	86	105	59	130	11.5	101	107	$16_{0}^{+0.070}$	40	16	23	23	352	$25_{-0.3}^{-0.1}$	25 ${ }_{+0.1}^{+0.3}$	49	$18_{-0.059}^{-0.032}$	110	148	263
80	18	102	130	76	160	13.5	119	126	$20^{+0.084}$	48	20	28	28	403	$31.5_{-0.3}^{-0.1}$	$31.5_{+0.1}^{+0.3}$	61	$25_{-0.073}^{-0.040}$	140	192	297
100	18	116	150	92	180	13.5	133	140	$25_{0}^{+0.084}$	58	25	23.5	36	430	$35.5{ }_{-0.3}^{-0.1}$	$35.5{ }_{+0.1}^{+0.3}$	64	$25_{-0.073}^{-0.040}$	162	214	309

Mounting Bracket Part No.

Bore size (mm)	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Foot *	CA1-L04	CA1-L05	CA1-L06	CA1-L08	CA1-L10
Flange	CA1-F04	CA1-F05	CA1-F06	CA1-F08	CA1-F10
Single clevis	CA1-C04	CA1-C05	CA1-C06	CA1-C08	CA1-C10
Double clevis $^{* *}$	CA1-D04	CA1-D05	CA1-D06	CA1-D08	CA1-D10

* When ordering foot style brackets, 2 pcs. should be ordered for each cylinder.
** Clevis pin, flat washer and cotter pin are shipped together with double clevis style.

Series CE2

Allowable Kinetic Energy

Operate the stroke reading cylinder with brake within the proper allowable kinetic energy. It must not be operated out of the allowable range, which is shown in the graph on the right. All sizes must be operated within this range. (Supply pressure 0.5 MPa)

Dimensions of Accessories

Y Type Double Knuckle Joint

Clevis Pin/Knuckle Pin

I Type Single Knuckle Joint

Material: Cast ir														
Part no.	Applicable bore size	A1	E_{1}	D1	L1	MM	R1	U_{1}	ND	NX	NZ	L	Split pin size	Flat washer size
Y-04D	40	22	24	10	55	M14 $\times 1.5$	13	25	12	$16{ }_{+0.1}^{0.3}$	38	55.5	¢3 $\times 18 \mathrm{~L}$	Polished round 12
Y-05D	50,63	27	28	14	60	M18 $\times 1.5$	15	27	12	$16_{+0.1}^{0.3}$	38	55.5	ø3×18L	Polished round 12
Y-08D	80	37	36	18	71	M22 $\times 1.5$	19	28	18	$28+{ }_{+0.1}^{+0.3}$	55	76.5	$\varnothing 4 \times 25 \mathrm{~L}$	Polished round 18
Y-10D	100	37	40	21	83	M26 1.5	21	38	20	$30_{+0.1}^{0+3 .}$	61	83	¢4×30 L	Polished round 20

* A knuckle pin, split pins and flat washers are included.

Material: Carbon steel

Part no.	Applicable bore size		Dd9	L1	L2	m	$\left\|\begin{array}{c} \text { d } \\ \text { pill trough } \end{array}\right\|$	Included split pin	Included flat washer
	Clevis	Knuckle							
CDP-2A	40	-	$10^{-0.040}$	46	38	4	3	$\varnothing 3 \times 18 \mathrm{~L}$	Polished round
CDP-3A	50	40, 50, 63	$12_{-0.093}^{-0.050}$	55.5	47.5	4	3	$03 \times 18 \mathrm{~L}$	Polished round 12
CDP-4A	63	-	$16_{-0.093}^{-0.050}$	71	61	5	4	$04 \times 25 \mathrm{~L}$	Polished round 16
CDP-5A	-	80	$18_{-0.093}^{-0.050}$	76.5	66.5	5	4	$04 \times 25 \mathrm{~L}$	Polished round 18
CDP-6A	80	100	$20_{-0.117}^{-0.065}$	83	73	5	4	$\varnothing 4 \times 30 \mathrm{~L}$	Polished round 20
CDP-7A	100	-	$25_{-0.117}^{-0.065}$	88	78	5	4	$\varnothing 4 \times 36 \mathrm{~L}$	Polished round 24

* Split pins and flat washers are included.

Rod End Nut (Standard)

Material: Rolled steel						(mm)
Part no.	Applicable bore size	d	H	B	C	
NT-04	40	M14 $\times 1.5$	8	22	25.4	21
NT-05	50, 63	M18 $\times 1.5$	11	27	31.2	26
NT-08	80	M 22×1.5	13	32	37.0	31
NT-10	100	M26 $\times 1.5$	16	41	47.3	39

Series CE2

Auto Switch Mounting 1

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height
<Band mounting>
D-B5 $\square / B 64 / B 59 W$

D-A3 \square
D-G39/K39

D-G5 $\square / K 59$
D-G5 WW/K59W
D-G5BA
D-G59F/G5NT

D-A44

<Tie-rod mounting>
D-A9ㅁ/A9■V
D-Z7ロ/Z80
D-M9■/M9■V
D-M9■W/M9■WV
D-M9 $\square A / M 9 \square A V$
D-Y59■/Y69■/Y7P/Y7PV
D-Y7■W/Y7ロWV
D-Y7BA

D-A5 $\square /$ A6 \square
D-A59W

D-A3 \square C
D-G39C/K39C

D-F5 $\square / J 59$
D-F5NT
D-F5 \quad W/J59W
D-F5BA/F59F

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height
Auto Switch Proper Mounting Position
(mm)

Auto switch model Bore size (mm)	$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \end{aligned}$		$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square V \\ & \text { D-M9 } \square \text { W } \\ & \text { D-M9 } \square \mathbf{W V} \\ & \text { D-M9 } \square \text { A } \\ & \text { D-M9 } \square \text { AV } \end{aligned}$		$\begin{aligned} & \text { D-B59W } \\ & \text { D-Z7 } \\ & \text { D-Z80 } \\ & \text { D-Y59 } \\ & \text { D-Y69 } \\ & \text { D-Y7P } \\ & \text { D-Y7PV } \\ & \text { D-Y7 } \square W \\ & \text { D-Y7 } \square W V \\ & \text { D-Y7BA } \end{aligned}$		$\begin{aligned} & \hline \text { D-A5 } \square \\ & \text { D-A6 } \square \\ & \text { D-A3 } \square \\ & \text { D-A3 } \square \text { C } \\ & \text { D-A44 } \\ & \text { D-A44C } \\ & \text { D-G39 } \\ & \text { D-G39C } \\ & \text { D-K39 } \\ & \text { D-K39C } \end{aligned}$		$\begin{aligned} & \text { D-B5 } \\ & \text { D-B64 } \end{aligned}$		D-F5 \square D-J59 D-F59F D-F5 \square W D-J59W D-F5BA		$\begin{aligned} & \text { D-G5ם } \\ & \text { D-K59 } \\ & \text { D-G5NT } \\ & \text { D-G5 } \quad \text { W } \\ & \text { D-K59W } \\ & \text { D-G5BA } \\ & \text { D-G59F } \end{aligned}$		D-A59W		D-F5NT	
	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B
40	6	4	10	8	3.5	1.5	0	0	0.5	0	6.5	4.5	2	0	4	2	11.5	9.5
50	-	-	10	8	3.5	1.5	0	0	0.5	0	6.5	4.5	2	0	4	2	11.5	9.5
63	8.5	7.5	12.5	11.5	6	5	2.5	1.5	3	2	9	8	4.5	3.5	6.5	5.5	14	13
80	12	10	16	14	9.5	7.5	6	4	6.5	4.5	4.5	12.5	8	6	10	8	17.5	15.5
100	13.5	12.5	17.5	16.5	11	10	7.5	6.5	8	7	14	13	9.5	8.5	11.5	10.5	19	18

* D-A9 and D-A9 \square V cannot be mounted on $\varnothing 50$.

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.
Auto Switch Mounting Height
(mm)

Auto switch model (mm)	$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-M9 } \square \\ & \text { D-M9 } \square \mathbf{W} \\ & \text { D-M9 } \square \mathbf{A} \end{aligned}$		D-A9 \square V		$\begin{aligned} & \text { D-M9 } \square V \\ & \text { D-M9 } \square \text { WV } \\ & \text { D-M9 } \square A V \end{aligned}$		D-Z7■ D-Z80 D-Y59 D-Y7P D-Y7BA D-Y7 $\square \mathbf{W}$		$\begin{aligned} & \text { D-Y69 } \\ & \text { D-Y7PV } \\ & \text { D-Y7 } \square W V \end{aligned}$		D-B5 \square D-B64 D-B59W D-G5 \square D-K59 D-G5NT D-G5 \square W D-K59W D-G5BA D-G59F	$\begin{aligned} & \text { D-A3 } \\ & \text { D-G39 } \\ & \text { D-K39 } \end{aligned}$	D-A44 Hs	$\begin{aligned} & \text { D-A5 } \square \\ & \text { D-A6 } \square \\ & \text { D-A59W } \end{aligned}$		D-F5 \square D-J59 D-F5 \square W D-J59W D-F5BA D-F59F D-F5NT		$\begin{aligned} & \text { D-A3 } \square \text { C } \\ & \text { D-G39C } \\ & \text { D-K39C } \end{aligned}$		D-A44C	
	Hs	Ht				Hs	Ht	Hs	Ht	Hs	Hw	Hs	Hw								
40	30	30	32	30	35	30	30	30	30.5	30	38	72.5	80.5	40	31	38.5	31	73	69	81	69
50	34	34	36.5	34	39	34	34	34	35	34	43.5	78	86	43.5	35	42.5	35	78.5	77	86.5	77
63	41	41	43.5	41	46	41	41	41	42.5	41	50.5	85	93	49	42	48	42	85.5	91	93.5	91
80	49.5	49	51.5	49	54	49	49.5	48.5	51	48.5	59	93.5	101.5	55.5	50	54	50	94	107	102	107
100	57	56	59.5	56	62.5	56	58.5	56	59	56	69.5	104	112	63	57.5	62	57.5	104	121	112	121

* D-A9 \square and D-A9■V cannot be mounted on $\varnothing 50$.

Series CE2
Auto Switch Mounting 2
Minimum Auto Switch Mounting Stroke

						n : No. of	auto switches (mm)	
Auto switch model	No. of auto switch mounted		Mounting brackets other than center trunnion	Center trunnion				
			ø40 \quad ø50	$ø 63$	$\varnothing 80$	$\varnothing 100$		
D-A9 \square		Different surfaces, Same surface) 1		15	75	80	85	90
		n	$\begin{gathered} 15+40 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note 1 })} \end{gathered}$	$\begin{gathered} 75+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \end{gathered}$	$\begin{array}{\|c\|} \hline 80+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \end{array}$	$\begin{gathered} 85+40 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{array}{\|c\|} \hline 90+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \end{array}$	
D-A9 \square V		Different surfaces, Same surface) 1	10	50	55	60	65	
		n	$\begin{gathered} 10+30 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$	$\begin{gathered} 50+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \text { Note 2) } \end{gathered}$	$\begin{array}{\|c\|} \hline 55+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note 2) }} \end{array}$	$\begin{gathered} 60+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{array}{\|c\|} 65+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{array}$	
$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \quad \text { W } \end{aligned}$		Different surfaces, Same surface) 1	15	80	85	90	95	
		n	$\begin{gathered} 15+40 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$	$\begin{gathered} 80+40 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{gathered} 85+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{gathered} 90+40 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{gathered} 95+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	
$\begin{aligned} & \text { D-M9 } \square V \\ & \text { D-M9 } \square \mathbf{W V} \end{aligned}$	2 (Different surfaces, Same surface) 1		10	55	60	65	70	
		n	$\begin{gathered} 10+30 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$	$\begin{gathered} 55+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{gathered} 60+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$	$\begin{gathered} 65+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{array}{\|c\|} 70+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \end{array}$	
D-M9 \square A	2 (Different surfaces, Same surface) 1		15	80	85	95	100	
		n	$\begin{gathered} 15+40 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$	$\begin{gathered} 80+40 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{gathered} 85+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{gathered} 95+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{array}{\|c\|} 100+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \\ \hline \end{array}$	
D-M9 \square AV	2 (Different surfaces, Same surface) 1		10	60	65	70	75	
	n		$\begin{gathered} 10+30 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$	$\begin{gathered} 60+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{gathered} 65+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{gathered} 70+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{array}{\|c\|} \hline 75+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{array}$	
D-A5 $\square / A 6$ D-F5 $\square / J 59$ D-F5 \square W/J59W D-F5BA/F59F	2 (Different surfaces, Same surface) 1		15	90	100	110	120	
	n (Same surface)		$\begin{array}{\|c\|} 15+55 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note 1 })} \end{array}$	$\begin{gathered} 90+55 \frac{(\mathrm{n}-4)}{2} \\ \left(\mathrm{n}=4,8,12,16^{\cdots}\right)^{\text {Note } 2)} \end{gathered}$	$\begin{gathered} 100+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \end{gathered}$	$\begin{gathered} 110+55 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note 2) }} \end{gathered}$	$\begin{array}{\|c\|} 120+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \end{array}$	
D-A59W	2 (Different surfaces, Same surface)		20	90	100	110	120	
	n (Same surface)		$\begin{gathered} 20+55 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$	$\begin{gathered} 90+55 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{gathered} 100+55 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note 2) }} \end{gathered}$	$\begin{gathered} 110+55 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$	$\begin{gathered} 120+55 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	
		1	15	90	100	110	120	
D-F5NT	$\begin{aligned} & 2 \text { (Different surfaces, } \\ & \text { Same surface) } 1 \\ & \hline \end{aligned}$		25	110	120	130	140	
	n (Same surface)		$\begin{gathered} 25+55 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note 1 })} \end{gathered}$	$\begin{gathered} 110+55 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{gathered} 120+55 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{gathered} 130+55 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$	$\begin{array}{\|c\|} 140+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{array}$	
$\begin{aligned} & \text { D-B5ם/B64 } \\ & \text { D-G5 } \square / K 59 \\ & \text { D-G5 } \square \text { W } \\ & \text { D-K59W } \\ & \text { D-G5BA } \\ & \text { D-G59F } \\ & \text { D-G5NT } \end{aligned}$	2	(Different surfaces)	15	90	100	110		
		(Same surface)	75					
	n	(Different surfaces)	$\begin{gathered} 15+50 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8, \cdots)^{\text {Note } 1)} \end{gathered}$	$\begin{gathered} 90+50 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16, \cdots) \text { Note } 2) \end{gathered}$	$\begin{gathered} 100+50 \frac{(n-4)}{2} \\ (n=4,8,12,16, \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{array}{r} 110+5 \\ (n=4,8,12 \end{array}$	$\begin{aligned} & 50 \frac{(n-4)}{2} \\ & , 16 \cdots) \text { Note 2) } \end{aligned}$	
		(Same surface)	$\begin{gathered} 75+50(n-2) \\ (n=2,3,4, \cdots) \end{gathered}$	$\begin{gathered} 90+50(n-2) \\ (n=2,4,6,8, \cdots)^{\text {Note } 1)} \end{gathered}$	$\begin{gathered} 100+50(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8, \cdots)^{\text {Note } 1)} \end{gathered}$	$\begin{array}{r} 110+5 \\ (n=2,4,6 \end{array}$	$\begin{aligned} & 0(n-2) \\ & , 8, \cdots)^{\text {Note 1) }} \end{aligned}$	
		1	10	90	100		10	
D-B59W	2	(Different surfaces)	20	90	100	110		
		(Same surface)	75					
	n	(Different surfaces)	$\begin{gathered} 20+50 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8, \cdots)^{\text {Note } 1)} \end{gathered}$	$\begin{gathered} 90+50 \frac{(n-4)}{2} \\ (n=4,8,12,16, \cdots) \text { Note } 2) \end{gathered}$	$\begin{gathered} 100+50 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16, \cdots)^{\text {Note 2) }} \end{gathered}$	$\begin{array}{r} 110+5 \\ (n=4,8,12 \\ \hline \end{array}$	$\begin{aligned} & 0 \frac{(n-4)}{2} \\ & , 16, \cdots) \text { Note } 2) \end{aligned}$	
		(Same surface)	$\begin{aligned} & 75+50(n-2) \\ & (n=2,3,4, \cdots) \\ & \hline \end{aligned}$	$\begin{gathered} 90+50(n-2) \\ (n=2,4,6,8, \cdots) \text { Note } 1) \\ \hline \end{gathered}$	$\begin{gathered} 100+50(n-2) \\ (\mathrm{n}=2,4,6,8, \cdots)^{\text {Note 1 })} \end{gathered}$	$\begin{array}{r} 110+5 \\ (n=2,4,6, \end{array}$	$\begin{aligned} & 0(n-2) \\ & , 8, \cdots)^{\text {Note 1) }} \end{aligned}$	
		1	15	90	100		10	

[^0]Auto Switch Mounting Series CE2

Minimum Auto Switch Mounting Stroke

[^1]
Series CE2

Auto Switch Mounting 3

Operating Range

	(mm)				
Auto switch model	Bore size (mm)				
	40	50	63	80	100
D-A9 $\square /$ A9 \square V	7	-	9	9	9
D-M9 $\square / M 9 \square V$ D-M9 \square W/M9 \square WV D-M9 \square A/M9 \square AV	5	5	5.5	6	6.5
D-Z7口/Z80	8	7	9	9.5	10.5
$\begin{aligned} & \hline \text { D-A3 } \square / \text { A44 } \\ & \text { D-A3 } \square \text { C/A44C } \end{aligned}$	9	10	11	11	11
D-A5 $\square / \mathrm{A6} \square$					
D-B5 $\square / B 64$					
D-A59W	13	13	14	14	15
D-B59W	14	14	17	16	18

Auto switch model	Bore size (mm)				
	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
D-Y59 $\square / Y 69 \square$ D-Y7P/Y7 $\square \mathbf{V}$ D-Y7 $\square W / Y 7 \square W V ~$ D-Y7BA	8	7	5.5	6.5	6.5
D-F5 $\square / J 59 / F 5 \square W ~$ D-J59W/F5BA D-F5NT D-F59F	4	4	4.5	4.5	4.5
D-G5 $\square / K 59 / G 5 \square W ~$ D-K59W/G5BA D-G5NT/G59F	5	6	6.5	6.5	7
D-G39/K39 D-G39C/K39C	9	9	10	10	11

* D-A9 \square and D-A9■V cannot be mounted on $\varnothing 50$.
* Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approximately $\pm 30 \%$ dispersion). It may vary substantially depending on an ambient environment.
Auto Switch Mounting Bracket: Part No.

<Tie-rod mounting>

Auto switch model	Bore size (mm)				
	40	50	63	80	100
D-A9■/A9 $\square V$ D-M9 $\square / M 9 \square V$ D-M9■W/M9■WV D-M9 \square A/M9 \square AV	BA7-040	BA7-040	BA7-063	BA7-080	BA7-080
D-A5 $\square / A 6 \square$ D-A59W D-F5 $\square / J 59$ D-F5 \square W/J59W D-F59F/F5NT	BT-04	BT-04	BT-06	BT-08	BT-08
$\begin{aligned} & \text { D-A3 } \square C / A 44 C \\ & \text { D-G39C/K39C } \end{aligned}$	ВАЗ-040	ВАЗ-050	ВАЗ-063	ВАЗ-080	ВАЗ-100
$\begin{array}{\|l\|} \hline \text { D-Z7ロ/Z80 } \\ \text { D-Y59 } / \text { Y69 } \\ \text { D-Y7P/Y7PV } \\ \text { D-Y7 } \square W / Y 7 \square W V ~ \\ \text { D-Y7BA } \end{array}$	BA4-040	BA4-040	BA4-063	BA4-080	BA4-080

- Mounting example of D-A9 $\square(\mathrm{V}) / \mathrm{M} 9 \square(\mathrm{~V}) / \mathrm{M} 9 \square \mathrm{~W}(\mathrm{~V}) / \mathrm{M} 9 \square \mathrm{~A}(\mathrm{~V})$

<Band mounting>

Auto switch model	Bore size (mm)				
	40	50	63	80	100
$\begin{aligned} & \text { D-A3 } \square / A 44 \\ & \text { D-G39/K39 } \end{aligned}$	BD1-04M	BD1-05M	BD1-06M	BD1-08M	BD1-10M
$\begin{array}{\|l\|} \hline \text { D-B5 } \square / B 64 \\ \text { D-B59W } \\ \text { D-G5 } \square / K 59 \\ \text { D-G5 } \square \text { W/K59W } \\ \text { D-G59F } \\ \text { D-G5NT } \\ \hline \end{array}$	BA-04	BA-05	BA-06	BA-08	BA-10

Note 1) D-A9 \square and D-A9 \square V cannot be mounted on $\varnothing 50$.
Note 2) Auto switch mounting brackets are included in D-A3■C/A44C/G39C/K39C. Order them in accordance with the cylinder size as shown below. (Example) ø40: D-A3 $\square \mathrm{C}-4, \varnothing 50: \mathrm{D}-\mathrm{A3} \square \mathrm{C}-5$
ø63: D-A3 $\square C-6, ~ ø 80: ~ D-A 3 \square C-8, ~ \varnothing 100: ~ D-A 3 \square C-10 ~$ Order them with the part numbers above when the mounting brackets are required separately.

[Mounting screw set made of stainless steel]

The following set of mounting screws made of stainless steel (including nuts) is available. Use it in accordance with the operating environment.
(Please order the auto switch mounting bracket and band separately, since they are not included.)
BBA1: For D-A5/A6/F5/J5 types
BBA3: For D-B5/B6/G5/K5 types
D-F5BA/G5BA auto switches are set on the cylinder with the stainless steel screws above when shipped. When an auto switch is shipped independently, BBA1 or BBA3 is attached.

Note 3) Refer to pages 1989 and 1997 for the details of BBA1 and BBA3.
 Order a stainless steel screw set (BBA1) separately, and select and use the M4 x6L stainless steel set screws included in the BBA1.

Auto Switch Mounting Series CE2

Controller CEU2/Specifications

* Refer to operation manual of CEU2 regarding detailed positioning system.

Dimensions

As for 3 point preset counter and multi counter, it will be common to CEP1 and CE1 series. For details, refer to 3 point preset counter/CEU1 on page 1618, and Multi counter/CEU5 on page 1615 respectively.

Wiring with External Equipment

<Wiring with controller CEU2>

1. Wiring of driving power of controller

To operate the controller, use a power supply with the following specifications: 90 to $110 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$, and 21.6 to $26.4 \mathrm{VDC}, 0.4 \mathrm{~A}$ or higher.

3. Output circuit

There are two outputs, the NPN open collector and the PNP open collector. The maximum rating is $30 \mathrm{VDC}, 50 \mathrm{~mA}$. Operating the controller by exceeding this voltage and amperage could damage the electric circuit. Therefore, the equipment to be connected must be below this rating.

* However, on the valve output side, the COM of the input circuit and the COM of the output circuit are electrically insulated from each other.

2. Input circuit

The voltage and the amperage capacity of the switch or the PLC to be connected are 24 VDC, 10 mA or higher.

4. Valve output circuit

The maximum rating is $24 \mathrm{VDC}, 80 \mathrm{~mA}$. Operating the controller by exceeding this voltage and amperage could damage the electric circuit. Therefore, the equipment to be connected must be below this rating.

<Input, Output>

The connection of the input/output signals of the position detection sensor of the stroke reading cylinder is effected through the connector that extends from the cylinder. The output circuit and the connection of the connectors are described in the diagram below.

Output circuit of stroke reading cylinder with brake

Connector pin arrangement

Signal

Contact signal	Wire color	Signal name
A	White	A phase
B	Yellow	B phase
C	Brown	COM $(0 \mathrm{~V})$
D	Blue	COM $(0 \mathrm{~V})$
E	Red	+12 V to 24 V
F	Black	0 V
G	-	Shield

[^0]: Note 1) When " n " is an odd number, an even number that is one larger than this odd number is used for the calculation.
 Note 2) When " n " is an odd number, a multiple of 4 that is larger than this odd number is used for the calculation.

[^1]: Note 1) When " n " is an odd number, an even number that is one larger than this odd number is used for the calculation.
 Note 2) When " n " is an odd number, a multiple of 4 that is larger than this odd number is used for the calculation.

