Air Cylinder

CM3 Series

 ø20, ø25, ø32, ø40
Compact with a new construction! New release with full functions Minimized with shorter total length!

Space saving; contributes to downsizing of equipment.

CM3 Series

Female rod end available as standard

Applications expanded by making it possible to select either male or female thread within the standard model.

2-color indicator solid state auto switch mountable

Possible to confirm whether the position is appropriate at a glance.
Increases effectiveness of adjustment time.

A green light lights up at the optimum operating range.

Optimum operating range

Shorter total length than CM2 series

Bore size (mm)	Shortened by
$\mathbf{2 0}$	17 mm
$\mathbf{2 5}$	17 mm
$\mathbf{3 2}$	13 mm
$\mathbf{4 0}$	29 mm

 trunnion bracket are mountable.
Rotation: Max. 202° (CM3C40)

Series Variations

Series	Bore size (mm)	Standard stroke (mm)	Action	Rod	Mounting	Built-in magnet for auto switch	Rubber bumper	Auto switch
CM3	$\mathbf{2 0 , 2 5 , 3 2 , 4 0}$	25 to 300	Double acting	Single rod	Basic, Foot, Flange, Clevis, Trunnion, etc.	0	0	D-M9■(W), D-A90

Air Cylinder Short Type Standard: Double Acting, Single Rod CM3 Series

$\varnothing 20, \varnothing 25, \varnothing 32, \varnothing 40$

Auto switch mounting bracke Note) Note) This symbol is indicated when the D-A9 or M9 type auto switch is specified.
This mounting bracket does not apply to
other auto switches (D-C7 and H7D, etc.) (Nil)

- Number of auto switches

$\mathbf{N i l}$	2 pcs.
\mathbf{S}	1 pc.
\mathbf{n}	"n" pcs.

-Auto switch

Nil	Without auto switch

* For applicable auto switches, refer to the below table.
(Example) CDM3F32-100
- Rod end thread

Nil	Male thread
F	Female thread
\mathbf{G}	Long male rod end*

* G: Same rod end dimensions ($\mathrm{A}, \mathrm{AL}, \mathrm{H}$) as CM2 series.

- Cylinder stroke (mm)
* Since there are other applicable auto switches than listed above, refer to page 286 for details.
* For details about auto switches with pre-wired connector, refer to pages 1648 and 1649.
* Solid state auto switches marked with " 0 " are produced upon receipt of order.
* Do not indicate suffix "N" for no lead wire on the D-A3 $\square \mathrm{A} / \mathrm{A} 44 \mathrm{~A} / \mathrm{G} 39 \mathrm{~A} / \mathrm{K} 39 \mathrm{~A}$ types.
* The D-G39A/K39A cannot be mounted on the bore size ø20.
*1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
A water-resistant type cylinder is recommended for use in an environment which requires water resistance.
*2 1 m type lead wire is only applicable to D-A93.
* Lead wire length symbols: $0.5 \mathrm{~m} \ldots . .$. Nil (Example) M9NW

$1 \mathrm{~m} \cdots \cdots \cdot \mathrm{~L}$	(Example) M9NWL
$5 \mathrm{~m} \cdots \cdots \cdot \mathrm{Z}$	(Example) M9NWZ
None $\cdots \cdots \cdot \mathrm{N}$	(Example) H7CN

* The $D-A 9 \square(V), M 9 \square(V), M 9 \square W(V), M 9 \square A(V)$ type auto switches are shipped together, (but not assembled). (However, auto switch mounting brackets are assembled when being shipped.)

Symbol

Double acting,
Single rod/Rubber bumper

Refer to pages 283 to 286 for cylinders with auto switches.

- Auto switch proper mounting position (detection at stroke end) and its mounting height
- Minimum stroke for auto switch mounting
- Operating range
- Auto switch mounting brackets/Part no.

Warning

1. Operate the cylinder within the specified cylinder speed, kinetic energy and lateral load at the rod end.
2. The allowable kinetic energy is different between the cylinders with male rod end and with female rod end due to the different thread sizes. Refer to page 274.
3. When female rod end is used, use a washer, etc. to prevent the contact part at the rod end from being deformed depending on the material of the work piece.

\triangle Caution

1. Use a thin wrench when tightening the piston rod.

Specifications

Bore size (mm)		20	25	32	40
Type		Pneumatic			
Action		Double acting, Single rod			
Fluid		Air			
Proof pressure		1.0 MPa			
Maximum operating pressure		0.7 MPa			
Minimum operating pressure		0.05 MPa			
Ambient and fluid temperature		Without auto switch: -10 to $+70^{\circ} \mathrm{C}$ (No freezing) With auto switch: -10 to $+60^{\circ} \mathrm{C}$ (No freezing)			
Lubrication		Not required (Non-lube)			
Stroke length tolerance		$\stackrel{+1.4}{+1}{ }_{0}^{0} \mathrm{~mm}$			
Piston speed		50 to $750 \mathrm{~mm} / \mathrm{s}$			
Cushion		Rubber bumper			
Allowable kinetic energy	Male rod end	0.2 J	0.29 J	0.46 J	0.84 J
	Female rod end	0.11 J	0.18 J	0.29 J	0.52 J

* Operate the cylinder within the allowable kinetic energy. Refer to page 274 for details.

Standard Strokes

Bore size (mm)	Standard stroke (mm) Note)
20	
25	
32	
40	

* Other intermediate strokes can be manufactured upon receipt of order.

Manufacture of intermediate strokes in 1 mm increments is possible. (Spacers are not used.)

Boss-cut

Boss for the head cover bracket is eliminated and the total length of cylinder is shortened.

Comparison of the Full Length Dimension (Versus CM3 $\square-\square$ type)

(Versus CM3 \square - \square type)
(mm) -13 $ø \mathbf{2 5}$ $\varnothing \mathbf{3 2}$ $\varnothing \mathbf{4 0}$$\quad-13$

Mounting

■ Boss-cut/Basic (BZ) ■ Boss-cut/Rod flange (FZ)
■ Boss-cut/Rod trunnion (UZ)

Mounting Brackets/Part No.

| Mounting bracket | Min.
 order
 qty. | Bore size (mm) | | | Contents
 (for minimum order quantity) |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| | | CM-L020B | CM-L032B | CM-L040B | |
| Flange | | CM-F020B | CM-F032B | CM-F040B | 1 flange |
| Single clevis** | $\mathbf{1}$ | CM-C020B | CM-C032B | CM-C040B | 1 single clevis, 3 liners |
| Double clevis ****
 (with pin) | 1 | CM-D020B | CM-D032B | CM-D040B | 1 double clevis, 3 liners,
 1 clevis pin, 2 retaining rings |
| Trunnion
 (with nut) | 1 | CM3-T020B | CM3-T032B | CM3-T040B | 1 trunnion, 1 trunnion nut |

* Order 2 foots per cylinder.
** 3 liners are included with a clevis bracket for adjusting the mounting angle.
*** A clevis pin and retaining rings (split pins for ø40) are included.

Mounting and Accessories

Mounting	Standard			Option		
	Mounting nut	Rod end nut (male thread)	Clevis pin	Single knuckle joint	Double knuckle joint ${ }^{\text {Note } 3)}$	Pivoting clevis bracket ${ }^{\text {Note 4) }}$
Basic	(1 pc.)	\bigcirc	-	\bigcirc	\bigcirc	-
Foot	(2)	\bigcirc	-	\bigcirc	\bigcirc	-
Rod flange	(1)	\bigcirc	-	\bigcirc	\bigcirc	-
Head flange	(1)	-	-	\bigcirc	\bigcirc	-
Integrated clevis	- Note 1)	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc
Single clevis	- Note 1)	\bigcirc	-	\bigcirc	\bigcirc	-
Double clevis ${ }^{\text {Note 3) }}$	- Note 1)	\bigcirc	Note 5)	\bigcirc	\bigcirc	-
Rod trunnion	-(1) ${ }^{\text {Note } 2)}$	\bigcirc	-	\bigcirc	\bigcirc	-
Head trunnion	(1) ${ }^{\text {Note } 2)}$	\bigcirc	-	\bigcirc	\bigcirc	-
Boss-cut/Basic	(1)	\bigcirc	-	\bigcirc	\bigcirc	-
Boss-cut/Rod flange	(1)	\bigcirc	-	\bigcirc	\bigcirc	-
Boss-cut/Rod trunnion	(1)	\bigcirc	-	\bigcirc	\bigcirc	-

Note 1) Mounting nuts are not attached to the Integrated clevis, single clevis and double clevis types.
Note 2) Trunnion nuts are attached to the rod trunnion and head trunnion types.
Note 3) A pin and retaining rings (split pins for $\varnothing 40$) are included with the double clevis and double knuckle joint.
Note 4) A pivoting clevis bracket pin and retaining rings are included with the pivoting clevis bracket.
Note 5) Retaining rings (split pins for $\varnothing 40$) are included with the clevis pin.

Mounting Brackets, Accessories/Material, Surface Treatment

Segment	Description	Material	Surface treatment
Mounting brackets	Foot	Iron	Nickel plated
	Flange	Iron	Nickel plated
	Single clevis	Iron	Nickel plated
	Double clevis	Iron	Nickel plated
	Trunnion	Iron	Electroless nickel plated
Accessories	Rod end nut (male thread)	Iron	Zinc chromated
	Mounting nut	Iron	Nickel plated
	Trunnion nut	Iron	Nickel plated
	Pivoting clevis bracket	Iron	Nickel plated
	Pivoting clevis bracket pin	Iron	(None)
	Single knuckle joint	Iron	Electroless nickel plated
	Double knuckle joint	Iron	Electroless nickel plated Metallic silver color painted for ø40
	Double clevis pin	Iron	(None)
	Double knuckle joint pin	Iron	(None)

* For part numbers and dimensions of accessories, refer to pages 280 and 281.

© Warning

1. Do not rotate the cover.

If a cover is rotated when installing a cylinder or screwing a fitting into the port, it is likely to damage the junction part with cover.

\triangle Caution

1. Do not touch the cylinder during operation at a high speed and a high frequency.
Use caution when handling a cylinder, which is running at a high speed and a high frequency, because the surface of a cylinder tube could get so hot enough as to cause you get burned.
2. Do not use the air cylinder as an air-hydro cylinder.
If it uses turbine oil in place of fluids for cylinder, it will result in oil leakage and damage the product.

Weights

Bore size (mm)		20	25	32	40
Basic weight	Basic	0.12	0.18	0.25	0.45
	Long male rod end (G)	0.13	0.20	0.27	0.48
	Female rod end (F)	0.11	0.17	0.23	0.41
	Boss-cut/Basic	0.11	0.17	0.23	0.42
	Boss-cut/Long male rod end	0.12	0.18	0.25	0.45
	Boss-cut/Female rod end	0.10	0.15	0.22	0.38
	Integrated clevis	0.12	0.18	0.26	0.46
	Integrated clevis/Long male rod end	0.13	0.19	0.28	0.48
	Integrated clevis/Female rod end	0.11	0.16	0.25	0.41
Additional weight for bracket	Foot	0.15	0.16	0.16	0.27
	Flange	0.06	0.09	0.09	0.12
	Single clevis	0.04	0.04	0.04	0.09
	Double clevis	0.05	0.06	0.06	0.13
	Trunnion	0.04	0.07	0.07	0.10
Pivoting bracket		0.08	0.09	0.17	0.25
Single knuckle joint		0.05	0.09	0.09	0.10
Double knuckle joint (with pin)		0.05	0.09	0.09	0.13
Additional weight per 50 mm of stroke		0.04	0.06	0.08	0.11
Additional weight for switch magnet		0.01	0.01	0.01	0.01

Calculation: (Example) CDM3F20-100G

(Flange type, ø20, 100 mm stroke)

- Basic weight 0.13 (Basic type G, ø20)
- Additional weight for bracket … 0.06 (Flange)
- Additional weight for stroke $\ldots . . .0 .04 / 50 \mathrm{~mm}$
- Air cylinder stroke 100 mm
- Additional weight for switch magnet $\cdots \cdot 0.01$

CM3 Series

Allowable Kinetic Energy

Table (1) Max. Allowable Kinetic Energy

Bore size (mm)	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Male rod end	0.2	0.29	0.46	0.84
Female rod end	0.11	0.18	0.29	0.52

Kinetic energy E(J)=, $\left.\mathbf{m}_{1}+\mathbf{m}_{2}\right) \mathbf{V}^{2} \quad m_{1}$: Mass of cylinder movable parts kg m_{2} : Load mass kg V : Piston speed at the end m / s

Table (2) Mass of Cylinder Movable Parts:
At Each Rod End/Without Built-in Magnet/0 Stroke [g]

Bore size (mm)	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Basic	31.2	55.8	82.5	147.3
Long male rod end (G)	39.4	69.4	102.0	172.7
Female rod end (F)	22.4	38.5	66.5	102.3

* Mass of the rod end nut is included for the basic type and the long male rod end type (G).

Table (3) Additional Mass

[gore size (mm)	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Additional mass per 50 mm of stroke	19.6	30.6	44.1	60.6
Switch magnet	3.5	4.0	5.0	6.0

* Do not apply a lateral load over the allowable range to the rod end when it is mounted horizontally.
Calculation: (Example) CDM3B40-175
- Basic mass of movable parts: Table (2) Rod end [Basic], Bore size [40] 147.3 g
- Additional mass: Additional mass of stroke $60.6 \times 175 / 50=212.1 \mathrm{~g} \cdots 212.1 \mathrm{~g}$ Switch magnet

Total 365.4 g

Allowable Lateral Load at Rod End

Theoretical Output

Bore size	Rod size	Operating	Piston area (mm^{2})	Operating pressure (MPa)					
D (mm)	d (mm)	direction		0.2	0.3	0.4	0.5	0.6	0.7
20	8	OUT	314	62.8	94.2	125.6	157	188.4	219.8
		IN	264	52.8	79.2	105.6	132	158.4	184.8
25	10	OUT	491	98.2	147.3	196.4	245.5	294.6	343.7
		IN	412	82.4	123.6	164.8	206	247.2	288.4
32	12	OUT	804	160.8	241.2	321.6	402	482.4	562.8
		IN	691	138.2	207.3	276.4	345.5	414.6	483.7
40	14	OUT	1257	251.4	377.1	502.8	628.5	754.2	879.9
		IN	1103	220.6	330.9	441.2	551.5	661.8	772.1

* Theoretical outpt $(\mathrm{N})=$ Pressure $(\mathrm{MPa}) \times$ Piston area $\left(\mathrm{mm}^{2}\right)$

Construction

With rubber bumper

Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Anodized
2A	Head cover A	Aluminum alloy	Anodized
2B	Head cover B	Aluminum alloy	Anodized
2C	Head cover C	Aluminum alloy	Anodized
3	Cylinder tube	Stainless steel	
4	Piston	Aluminum alloy	Chromated
5	Piston rod	Carbon steel	Hard chrome plated
6	Bushing	Bearing alloy	
7	Bumper A	Urethane	
8	Bumper B	Urethane	
9	Rod seal	NBR	
10	Piston seal	NBR	
11	Wear ring	Resin	
12	Mounting nut	Carbon steel	Nickel plated
13	Rod end nut	Carbon steel	Zinc chromated
14	Bushing for clevis	Bearing alloy	

Boss-cut

Clevis integrated

\triangle Caution

1. Not able to disassemble.

Cover and cylinder tube are connected to each other by crimping method, thus making it impossible to disassemble.

Dimensions

Basic (B)

Female rod end
Female thread MM Thread depth \mathbf{A}_{1}

Long male rod end *2

$\xrightarrow{Z 2+\text { Stroke }}$
(mm)

Bore size	A	AL	B1	B2	D	E	F	FL	G	H	H_{1}	H_{2}	I	KA	MM	NA	NN
20	14.5	12	13	26	8	20-0.033	13	10.5	6	31	5	8	27.9	Width across flats 6 length 3.5	M8 $\times 1.25$	24	M 20×1.5
25	17.5	15	17	32	10	$26{ }_{-0.033}^{0}$	13	10.5	6	34	6	8	33.4	Width across flats 8 length 3.5	M10 $\times 1.25$	30	$\mathrm{M} 26 \times 1.5$
32	17.5	15	17	32	12	$26_{-0.033}^{0}$	13	10.5	8	34	6	8	37.4	Width across flats 10 length 3.5	M10 $\times 1.25$	34.5	M 26×1.5
40	23.5	20.5	22	41	14	32 ${ }_{-0.039}^{0}$	16	13.5	8	42	8	10	46.4	Width across flats 12 length 3.5	M14 $\times 1.5$	42.5	M 32×2

* 1 Use a thin wrench when tightening the piston rod.
*2 The dimension from the rod cover to the male rod end of the long male rod end type is the same as the CM2 series.
*3 When female thread is used, use a washer, etc. to prevent the contact part at the rod end from being deformed depending on the material of the work piece.
Foot (L): C \square M3L Bore size Stroke

Bore size	$\mathbf{L T}$	$\mathbf{L X}$	$\mathbf{L Z}$	MM	NA	NN	\mathbf{P}	\mathbf{S}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	$\mathbf{Z Z}$
$\mathbf{2 0}$	3.2	40	55	$\mathrm{M} 8 \times 1.25$	24	$\mathrm{M} 20 \times 1.5$	$\mathrm{M} 5 \times 0.8$	55	20	8	11	114
$\mathbf{2 5}$	3.2	40	55	$\mathrm{M} 10 \times 1.25$	30	$\mathrm{M} 26 \times 1.5$	$\mathrm{M} 5 \times 0.8$	56	20	8	14	118
$\mathbf{3 2}$	3.2	40	55	$\mathrm{M} 10 \times 1.25$	34.5	$\mathrm{M} 26 \times 1.5$	$\mathrm{Rc} 1 / 8$	62	20	8	14	124
$\mathbf{4 0}$	3.2	55	75	$\mathrm{M} 14 \times 1.5$	42.5	$\mathrm{M} 32 \times 2$	$\mathrm{Rc} 1 / 8$	67	23	10	19	142

* Use a thin wrench when tightening the piston rod.
* Refer to the dimensions of the basic type for the female rod end type and the long male rod end type.

CM3 Series

Dimensions
Rod Flange (F): C \square M3F Bore size - Stroke

Boss-cut

$\varnothing 20$ to $\varnothing 32$

ø40

Rod Flange (F)

* Refer to the dimensions of the basic type for the female rod end type and the long male rod end type.

Head Flange (G): C $\square \mathbf{M} 3 \mathrm{G}$ Bore size - Stroke

Head Flange (G)
(mm)

| Bore size | \mathbf{A} | $\mathbf{A L}$ | \mathbf{B} | $\mathbf{B}_{\mathbf{1}}$ | $\mathbf{B}_{\mathbf{2}}$ | $\mathbf{C}_{\mathbf{2}}$ | \mathbf{D} | \mathbf{E} | \mathbf{F} | $\mathbf{F D}$ | $\mathbf{F L}$ | $\mathbf{F T}$ | $\mathbf{F X}$ | $\mathbf{F Y}$ | $\mathbf{F Z}$ | \mathbf{G} | \mathbf{H} | $\mathbf{H}_{\mathbf{1}}$ | $\mathbf{H}_{\mathbf{2}}$ |
| :---: |
| $\mathbf{2 0}$ | 14.5 | 12 | 34 | 13 | 26 | 30 | 8 | $2_{-0.033}^{0}$ | 13 | 7 | 10.5 | 4 | 60 | - | 75 | 6 | 31 | 5 | 8 |
| $\mathbf{2 5}$ | 17.5 | 15 | 40 | 17 | 32 | 37 | 10 | $2_{-0.033}^{-}$ | 13 | 7 | 10.5 | 4 | 60 | - | 75 | 6 | 34 | 6 | 8 |
| $\mathbf{3 2}$ | 17.5 | 15 | 40 | 17 | 32 | 37 | 12 | $26_{-0.033}^{-}$ | 13 | 7 | 10.5 | 4 | 60 | - | 75 | 8 | 34 | 6 | 8 |
| $\mathbf{4 0}$ | 23.5 | 20.5 | 52 | 22 | 41 | 47.3 | 14 | $3_{-0.039}^{0}$ | 16 | 7 | 13.5 | 5 | 66 | 36 | 82 | 8 | 42 | 8 | 10 |

Bore size	\mathbf{I}	KA	MM	NA	NN	P	S	Z	ZZ
$\mathbf{2 0}$	27.9	Width across flats 6 length 3.5	M8 $\times 1.25$	24	M20 $\times 1.5$	M5 $\times 0.8$	55	90	99
$\mathbf{2 5}$	33.4	Width across flats 8 length 3.5	M10 $\times 1.25$	30	M26 $\times 1.5$	M5 $\times 0.8$	56	94	103
$\mathbf{3 2}$	37.4	Width across flats 10 length 3.5	M10 $\times 1.25$	34.5	M26 $\times 1.5$	Rc1/8	62	100	109
$\mathbf{4 0}$	46.4	Width across flats 12 length 3.5	M14 $\times 1.5$	42.5	M32 $\times 2$	Rc1/8	67	114	125

[^0]* Refer to the dimensions of the basic type for the female rod end type and the long male rod end type.

Dimensions

Single Clevis (C): C \square M3C Bore size - Stroke

Single Clevis (C)

| (mm) | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bore size | \mathbf{A} | $\mathbf{A L}$ | \mathbf{B}_{1} | $\mathbf{C D}$ | $\mathbf{C l}$ | $\mathbf{C X}$ | \mathbf{D} | \mathbf{E} | \mathbf{F} | $\mathbf{F L}$ | \mathbf{G} | \mathbf{H} | \mathbf{H} | \mathbf{I} | $\mathbf{1}$ | |
| $\mathbf{2 0}$ | 14.5 | 12 | 13 | 9 | 24 | 10 | 8 | $20_{-0.033}^{0}$ | 13 | 10.5 | 6 | 31 | 5 | 27.9 | Width across flats 6 length 3.5 | 30 |
| $\mathbf{2 5}$ | 17.5 | 15 | 17 | 9 | 30 | 10 | 10 | $26_{-0.033}^{-0}$ | 13 | 10.5 | 6 | 34 | 6 | 33.4 | Width across flats 8 length 3.5 | 30 |
| $\mathbf{3 2}$ | 17.5 | 15 | 17 | 9 | 30 | 10 | 12 | $26_{-0.033}^{-0}$ | 13 | 10.5 | 8 | 34 | 6 | 37.4 | Width across flats 10 length 3.5 | 30 |
| $\mathbf{4 0}$ | 23.5 | 20.5 | 22 | 10 | 38 | 15 | 14 | $3_{-0.039}^{-0}$ | 16 | 13.5 | 8 | 42 | 8 | 46.4 | Width across flats 12 length 3.5 | 39 |

Bore size	MM	NA	NN	P	RR	S	\mathbf{U}	\mathbf{Z}	$\mathbf{Z Z}$
$\mathbf{2 0}$	$\mathrm{M} 8 \times 1.25$	24	$\mathrm{M} 20 \times 1.5$	$\mathrm{M} 5 \times 0.8$	9	55	14	116	125
$\mathbf{2 5}$	$\mathrm{M} 10 \times 1.25$	30	$\mathrm{M} 26 \times 1.5$	$\mathrm{M} 5 \times 0.8$	9	56	14	120	129
$\mathbf{3 2}$	$\mathrm{M} 10 \times 1.25$	34.5	$\mathrm{M} 26 \times 1.5$	$\mathrm{Rc} 1 / 8$	9	62	14	126	135
$\mathbf{4 0}$	$\mathrm{M} 14 \times 1.5$	42.5	$\mathrm{M} 32 \times 2$	$\mathrm{Rc} 1 / 8$	11	67	18	148	159

*Refer to the dimensions of the basic type for the female rod end type and the long male rod end type.

Double Clevis (D): C \square M3D Bore size - Stroke

Double Clevis (D)

Bore size	A	AL	B1	CD	CI	CL	CX	CZ	D	E	F	FL	G	H	H_{1}	I	KA
20	14.5	12	13	9	24	25	10	19	8	20-0.033	13	10.5	6	31	5	27.9	Width across flats 6 length 3.5
25	17.5	15	17	9	30	25	10	19	10	$26_{-0.033}^{0}$	13	10.5	6	34	6	33.4	Width across flats 8 length 3.5
32	17.5	15	17	9	30	25	10	19	12	$26_{-0.033}^{0}$	13	10.5	8	34	6	37.4	Width across flats 10 length 3.5
40	23.5	20.5	22	10	38	41.2	15	30	14	32-0.039	16	13.5	8	42	8	46.4	Width across flats 12 length 3.5

Bore size	\mathbf{L}	MM	NA	NN	\mathbf{P}	RR	S	\mathbf{U}	\mathbf{Z}	$\mathbf{Z Z}$
$\mathbf{2 0}$	30	$\mathrm{M} 8 \times 1.25$	24	$\mathrm{M} 20 \times 1.5$	$\mathrm{M} 5 \times 0.8$	9	55	14	116	125
$\mathbf{2 5}$	30	$\mathrm{M} 10 \times 1.25$	30	$\mathrm{M} 26 \times 1.5$	$\mathrm{M} 5 \times 0.8$	9	56	14	120	129
$\mathbf{3 2}$	30	$\mathrm{M} 10 \times 1.25$	34.5	$\mathrm{M} 26 \times 1.5$	$\mathrm{Rc} 1 / 8$	9	62	14	126	135
$\mathbf{4 0}$	39	$\mathrm{M} 14 \times 1.5$	42.5	$\mathrm{M} 32 \times 2$	$\mathrm{Rc} 1 / 8$	11	67	18	148	159

[^1]
CM3 Series

Dimensions
Rod Trunnion (U): C \square M3U Bore size - Stroke

Boss-cut

Rod Trunnion (U)

Bore size	\mathbf{A}	$\mathbf{A L}$	\mathbf{B}_{1}	$\mathbf{B}_{\mathbf{2}}$	\mathbf{D}	\mathbf{E}	\mathbf{F}	$\mathbf{F L}$	\mathbf{G}	\mathbf{H}	$\mathbf{H}_{\mathbf{1}}$	\mathbf{I}	\mathbf{M}	KA	$\mathbf{M M}$
$\mathbf{2 0}$	14.5	12	13	26	8	$20_{-0.033}^{0}$	13	10.5	6	31	5	27.9	Width across flats 6 length 3.5	M8 $\times 1.25$	24
$\mathbf{2 5}$	17.5	15	17	32	10	$26_{-0.033}^{0}$	13	10.5	6	34	6	33.4	Width across flats 8 length 3.5	M10 $\times 1.25$	30
$\mathbf{3 2}$	17.5	15	17	32	12	$26_{-0.033}^{0}$	13	10.5	8	34	6	37.4	Width across flats 10 length 3.5	M10 $\times 1.25$	34.5
$\mathbf{4 0}$	23.5	20.5	22	41	14	$322_{-0.039}^{0}$	16	13.5	8	42	8	46.4	Width across flats 12 length 3.5	M14 $\times 1.5$	42.5

Bore size	NN	P	S	TD	TT	TX	TY	TZ	Z	ZZ
$\mathbf{2 0}$	$\mathrm{M} 20 \times 1.5$	$\mathrm{M} 5 \times 0.8$	55	8	10	32	32	52	26	99
$\mathbf{2 5}$	$\mathrm{M} 26 \times 1.5$	$\mathrm{M} 5 \times 0.8$	56	9	10	40	40	60	29	103
$\mathbf{3 2}$	$\mathrm{M} 26 \times 1.5$	$\mathrm{Rc} 1 / 8$	62	9	10	40	40	60	29	109
$\mathbf{4 0}$	$\mathrm{M} 32 \times 2$	$\mathrm{Rc} 1 / 8$	67	10	11	53	53	77	36.5	125

* Use a thin wrench when tightening the piston rod.
* Refer to the dimensions of the basic type for the female rod end type and the long male rod end type.

Boss-cut	(mm)
Bore size	$\mathbf{Z Z}$
$\mathbf{2 0}$	86
$\mathbf{2 5}$	90
$\mathbf{3 2}$	96
$\mathbf{4 0}$	109

Head Trunnion (T): C \square M3T Bore size - Stroke

Head Trunnion (T)

Bore size	\mathbf{A}	$\mathbf{A L}$	\mathbf{B}_{1}	$\mathbf{B}_{\mathbf{2}}$	\mathbf{D}	\mathbf{E}	\mathbf{F}	$\mathbf{F L}$	\mathbf{G}	\mathbf{H}	$\mathbf{H}_{\mathbf{1}}$	\mathbf{I}	\mathbf{K}	$\mathbf{K A}$	$\mathbf{M M}$
$\mathbf{2 0}$	14.5	12	13	26	8	$2_{-0.033}^{0}$	13	10.5	6	31	5	27.9	Width across flats 6 length 3.5	M8 $\times 1.25$	24
$\mathbf{2 5}$	17.5	15	17	32	10	$26_{-0.033}^{-}$	13	10.5	6	34	6	33.4	Width across flats 8 length 3.5	M10 $\times 1.25$	30
$\mathbf{3 2}$	17.5	15	17	32	12	$26_{-0.033}^{-}$	13	10.5	8	34	6	37.4	Width across flats 10 length 3.5	M10 $\times 1.25$	34.5
$\mathbf{4 0}$	23.5	20.5	22	41	14	$32_{-0.039}^{0}$	16	13.5	8	42	8	46.4	Width across flats 12 length 3.5	M14 $\times 1.5$	42.5

Bore size	NN	\mathbf{P}	\mathbf{S}	TD	TT	TX	TY	TZ	Z	$\mathbf{Z Z}$
$\mathbf{2 0}$	$\mathrm{M} 20 \times 1.5$	$\mathrm{M} 5 \times 0.8$	55	8	10	32	32	52	91	101
$\mathbf{2 5}$	$\mathrm{M} 26 \times 1.5$	$\mathrm{M} 5 \times 0.8$	56	9	10	40	40	60	95	105
$\mathbf{3 2}$	$\mathrm{M} 26 \times 1.5$	$\mathrm{Rc} 1 / 8$	62	9	10	40	40	60	101	111
$\mathbf{4 0}$	$\mathrm{M} 32 \times 2$	$\mathrm{Rc} 1 / 8$	67	10	11	53	53	77	114.5	125

* Use a thin wrench when tightening the piston rod.
* Refer to the dimensions of the basic type for the female rod end type and the long male rod end type.

Dimensions

Integrated Clevis (E): C \square M3E Bore size $\boldsymbol{\text { Stroke }}$

Integrated Clevis (E)

Bore size	A	AL	B1	CD	CI	CX	D	E	F	FL	G	H	H_{1}	I	KA	L
20	14.5	12	13	8	20	12	8	20-0.033	13	10.5	6	31	5	27.9	Width across flats 6 length 3.5	12
25	17.5	15	17	8	22	12	10	$26{ }_{-0.033}^{0}$	13	10.5	6	34	6	33.4	Width across flats 8 length 3.5	12
32	17.5	15	17	10	27	20	12	$26_{-0.033}^{0}$	13	10.5	8	34	6	37.4	Width across flats 10 length 3.5	15
40	23.5	20.5	22	10	33	20	14	32 ${ }_{-0.039}^{0}$	16	13.5	8	42	8	46.4	Width across flats 12 length 3.5	15

Bore size	MM	NA	NN	P	RR	S	U	Z	ZZ
$\mathbf{2 0}$	$\mathrm{M} 8 \times 1.25$	24	$\mathrm{M} 20 \times 1.5$	$\mathrm{M} 5 \times 0.8$	9	55	11.5	98	107
$\mathbf{2 5}$	$\mathrm{M} 10 \times 1.25$	30	$\mathrm{M} 26 \times 1.5$	$\mathrm{M} 5 \times 0.8$	9	56	11.5	102	111
$\mathbf{3 2}$	$\mathrm{M} 10 \times 1.25$	34.5	$\mathrm{M} 26 \times 1.5$	$\mathrm{Rc} 1 / 8$	12	62	14.5	111	123
$\mathbf{4 0}$	$\mathrm{M} 14 \times 1.5$	42.5	$\mathrm{M} 32 \times 2$	$\mathrm{Rc} 1 / 8$	12	67	14.5	124	136

Pivoting Clevis Bracket

Pivoting Clevis Bracket									
Bore size	LD	LF	LG	LH	LP	LT	LV	LY	LZ
$\mathbf{2 0}$	6.8	15	30	30	37	3.2	18.4	59	135
$\mathbf{2 5}$	6.8	15	30	30	37	3.2	18.4	59	139
$\mathbf{3 2}$	9	15	40	40	50	4	28	75	161
$\mathbf{4 0}$	9	15	40	40	50	4	28	75	174

* Use a thin wrench when tightening the piston rod.
* Refer to the dimensions of the basic type for the female rod end type and the long male rod end type.

CM3 Series

Dimensions of Accessories 1

Single Knuckle Joint

Part no.	Applicable bore size	\mathbf{A}	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{E}_{\mathbf{1}}$	$\mathbf{L}_{\mathbf{1}}$	$\mathbf{M M}$	$\mathbf{N D}_{\mathbf{1 1 0}}$	$\mathbf{N X}$	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{U}_{\mathbf{1}}$
I-020B	$\mathbf{2 0}$	46	16	20	36	M8 $\times 1.25$	$9_{0}^{+0.058}$	$9_{-0.2}^{-0.1}$	10	14
I-032B	$\mathbf{2 5 , 3 2}$	48	18	20	38	M10 $\times 1.25$	$9_{0}^{+0.058}$	$9_{-0.2}^{-0.1}$	10	14
I-040B	$\mathbf{4 0}$	69	22	24	55	M14 $\times 1.5$	$12_{0}^{+0.070}$	$16_{-0.3}^{-0.1}$	15.5	20

* Use a thin wrench when tightening the piston rod.

Part no.	Applicable bore size	A	A1	E_{1}	L	L1	MM	ND	NX	NZ	R1	\mathbf{U}_{1}	Included pin part no.	$\begin{aligned} & \text { Retaining ring } \\ & \text { Split pin } \end{aligned}$
Y-020B	20	46	16	20	25	36	M8 $\times 1.25$	9	$9_{+0.1}^{+0.2}$	18	5	14	CDP-1	Type C9 for axis
Y-032B	25, 32	48	18	20	25	38	M10 $\times 1.25$	9	$9_{+0.1}^{+0.2}$	18	5	14	CDP-1	Type C9 for axis
Y-040B	40	68	22	24	49.7	55	M14 $\times 1.5$	12	$16_{+0.1}^{+0.3}$	38	13	25	CDP-3	$ø 3 \times 18 \ell$

* A knuckle pin and retaining rings (split pins for $\varnothing 40$) are included.

Double Clevis Pin
(mm)

Bore size/ø20, ø25, ø32
CDP-1 Material: Carbon steel

Retaining ring: Type C 9 for axis

* Retaining rings (split pins for $\varnothing 40$) are included.

Bore size/ø40

CDP-2 Material: Carbon steel

Split pin: $\varnothing 3 \times 18 \ell$

Double Knuckle Joint Pin
(mm)

Bore size/ø20, ø25, ø32
Bore size/ø40
CDP-1 Material: Carbon steel

Retaining ring: Type C 9 for axis

CDP-3 Material: Carbon steel

Split pin: $\varnothing 3 \times 18 \ell$

* Retaining rings (split pins for $\varnothing 40$) are included.

Material: Carbon steel

Part no.	Applicable bore size	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{d}	\mathbf{H}
NT-02	$\mathbf{2 0}$	13	15.0	12.5	$\mathrm{M} 8 \times 1.25$	5
NT-03	$\mathbf{2 5 , 3 2}$	17	19.6	16.5	$\mathrm{M} 10 \times 1.25$	6
NT-04	$\mathbf{4 0}$	22	25.4	21.0	$\mathrm{M} 14 \times 1.5$	8

Mounting Nut (mm)

Material: Carbon steel

Part no.	Applicable bore size	B	C	D	d	H
SN-020B	$\mathbf{2 0}$	26	30	25.5	M20 $\times 1.5$	8
SN-032B	$\mathbf{2 5 , 3 2}$	32	37	31.5	M26 $\mathbf{3} 1.5$	8
SN-040B	$\mathbf{4 0}$	41	47.3	40.5	$\mathrm{M} 32 \times 2.0$	10

Trunnion Nut
Material: Carbon steel

Part no.	Applicable bore size	\mathbf{B}	\mathbf{C}	D	d	H
TN-020B	$\mathbf{2 0}$	26	28	25.5	M20 $\times 1.5$	10
TN-032B	$\mathbf{2 5 , 3 2}$	32	34	31.5	M26 $\times 1.5$	10
TN-040B	$\mathbf{4 0}$	41	45	40.5	$\mathrm{M} 32 \times 2$	10

Pivoting Clevis Bracket (For CM3E)
(mm)

CM3 Series
 Dimensions of Accessories 2

Dimensions

Single Clevis (C)

Rotating Angle

Bore size (mm)	\mathbf{A}°	\mathbf{B}°	$\mathbf{A}^{\circ}+\mathbf{B}^{\circ}+90^{\circ}$
$\mathbf{2 0}$	25	85	200
$\mathbf{2 5 , 3 2}$	21	81	192
$\mathbf{4 0}$	26	86	202

Mounting	Part no.	Applicable bore size	CX	Z + Stroke	CD	LX	LZ
CM3C (Single clevis)	CM-B032	20	10	116	9	44	60
		25		120			
		32		126			
	CM-B040	40	15	148	10	49	65

Note 1) A pivoting bracket pin and retaining rings are not included with the pivoting bracket. Note 2) The above dimensions are for the male rod end type.

Rod Trunnion (U)

-Head Trunnion (T)

(mm)

Mounting	Part no.	Applicable bore size	TX	Rod trunnion	Head trunnion	TD	LX	LZ
				Z	$\mathbf{Z}+$ Stroke			
CM3U, CM3T (Rod trunnion, Head trunnion)	CM-B020	20	32	26	91	8	66	82
	CM-B032	25	40	29	95	9	74	90
		32			101			
	CM-B040	40	53	36.5	114.5	10	87	103

Note 1) A pivoting bracket pin and retaining rings are not included with the pivoting bracket.
Note 2) The above dimensions are for the male rod end type.

Pivoting Bracket

* Pivoting brackets consist of a set of two brackets.

	(mm)
Part no.	CD
CM-B020 Note 2)	8
CM-B032	9
CM-B040	10

Note 1) A pivoting bracket pin and retaining rings
are not included with the pivoting bracket. Note 2) CM-B020 is applicable only for trunnion type.

Pivoting Bracket Pin

Applicable bore size	Part no.	Dd9	\mathbf{d}	\mathbf{L}	$\mathbf{L} 1$	\mathbf{m}	\mathbf{t}	Included retaining ring
$\mathbf{2 0 , 2 5 , 3 2}$	CDP-1	$9_{-0.076}^{-0.040}$	8.6	25	19.2	1.75	1.15	Type C9 for axis
$\mathbf{4 0}$	CD-S03	$10_{-0.076}^{-0.040}$	9.6	34	29	1.35	1.15	Type C10 for axis

CM3 Series
 Auto Switch Mounting 1

CM3 Series
 Auto Switch Mounting 2

Auto Switch Proper Mounting Position (Detection at stroke end) and Its Mounting Height
Auto Switch Proper Mounting Position

	$\begin{aligned} & \text { D-M9 } \square(\mathrm{V}) \\ & \text { D-M9 } \square \mathrm{W}(\mathrm{~V}) \\ & \text { D-M9 } \square \mathrm{A}(\mathrm{~V}) \end{aligned}$		D-A9 \square (V)		$\begin{aligned} & \text { D-B54 } \\ & \text { D-B64 } \end{aligned}$		$\begin{aligned} & \text { D-C73C } \\ & \text { D-C80C } \end{aligned}$		D-B59W		$\begin{aligned} & \text { D-A3 } \square \text { A } \\ & \text { D-A44A } \\ & \text { D-G39A }{ }^{\text {Note 2) }} \\ & \text { D-K39A Note 2) } \end{aligned}$		$\begin{aligned} & \text { D-H7C } \\ & \text { D-H7BA } \\ & \text { D-H7NF } \end{aligned}$		D-G5NT	
	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B
20	10	9	6	5	0.5	0	6.5	5.5	3.5	2.5	0	0	5.5	4.5	2	1
25	10	10	6	6	0.5	0.5	6.5	6.5	3.5	3.5	0	0	5.5	5.5	2	2
32	10	10	6	6	0.5	0.5	6.5	6.5	3.5	3.5	0	0	5.5	5.5	2	2
40	12	12	8	8	2.5	2.5	8.5	8.5	5.5	5.5	2	2	7.5	7.5	4	4

Note 1) Adjust the auto switch after confirming the operating condition in the actual setting.
Note 2) The D-G39A/K39A cannot be mounted on the bore size ø20.
Note 3) For the combination of the following auto switches, bore sizes and mounting positions, the auto switch cannot be mounted to the port side.
-D-G5 \square type: On the head side and the rod side of the bore size ø32

- D-B5 $\square / B 64$ types (except B59W) \ldots On the head side of the bore size ø20, ø32, On the rod side of the bore size ø32

Auto Switch Mounting Height
Auto Switch Mounting Height

| Auto switch
 model | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | D-M9 $\square \mathbf{V}$
 D-M9 $\square \mathbf{W V}$
 D-M9 \square AV |
| D-A9 \mathbf{V} | |

Minimum Stroke for Auto Switch Mounting

				n : Number of auto switches (mm)		
Auto switch model	Number of auto switches					
	With 1 pc .	With 2 pcs.		With n pcs.		
		Different surfaces	Same surface	Different surfaces	Same surface	
D-M9 \square	5	20	55	$\begin{aligned} & 20+35 \frac{(\mathrm{n}-2)}{2} \\ & (\mathrm{n}=2,4,6 \ldots) \end{aligned}$	$\begin{gathered} 55+35(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$	
D-M9 \square W	10	20	55	$\begin{aligned} & 20+35 \frac{(\mathrm{n}-2)}{2} \\ & (\mathrm{n}=2,4,6 \ldots) \end{aligned}$	$\begin{gathered} 55+35(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$	
D-M9 $\square \mathbf{A}$	10	25	60	$\begin{aligned} & 25+35 \frac{(\mathrm{n}-2)}{2} \\ & (\mathrm{n}=2,4,6 \ldots) \end{aligned}$	$\begin{gathered} 60+35(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$	
D-A9 \square	5	15	50	$\begin{aligned} & 15+35 \frac{(\mathrm{n}-2)}{2} \\ & (\mathrm{n}=2,4,6 \ldots) \end{aligned}$	$\begin{gathered} 50+35(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$	
D-M9 \square V	5	20	35	$\begin{aligned} & 20+35 \frac{(\mathrm{n}-2)}{2} \\ & (\mathrm{n}=2,4,6 \ldots) \end{aligned}$	$\begin{gathered} 35+35(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$	
D-A9 \square V	5	15	25	$\begin{aligned} & 15+35 \frac{(\mathrm{n}-2)}{2} \\ & (\mathrm{n}=2,4,6 \ldots) \end{aligned}$	$\begin{gathered} 25+35(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$	
$\begin{aligned} & \text { D-M9 } \square \text { WV } \\ & \text { D-M9 } \square \mathbf{A V} \end{aligned}$	10	20	35	$\begin{aligned} & 20+35 \frac{(\mathrm{n}-2)}{2} \\ & (\mathrm{n}=2,4,6 \ldots) \end{aligned}$	$\begin{gathered} 35+35(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$	
$\begin{aligned} & \text { D-C7 } \\ & \text { D-C80 } \end{aligned}$	5	20	60	$\begin{aligned} & 20+45 \frac{(\mathrm{n}-2)}{2} \\ & (\mathrm{n}=2,4,6 \ldots) \end{aligned}$	$\begin{gathered} 60+45(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$	
$\begin{aligned} & \text { D-H7 } \square \\ & \text { D-H7 } \square \text { W } \\ & \text { D-H7BA } \\ & \text { D-H7NF } \end{aligned}$	10	25	70	$\begin{aligned} & 25+45 \frac{(\mathrm{n}-2)}{2} \\ & (\mathrm{n}=2,4,6 \ldots) \end{aligned}$	$\begin{gathered} 70+45(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$	
$\begin{aligned} & \text { D-C73C } \\ & \text { D-C80C } \\ & \text { D-H7C } \end{aligned}$	15	30	80	$\begin{aligned} & 30+50 \frac{(n-2)}{2} \\ & (n=2,4,6 \ldots) \end{aligned}$	$\begin{gathered} 80+50(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$	
$\begin{aligned} & \text { D-B5 } \\ & \text { D-B64 } \\ & \text { D-G5 } \\ & \text { D-K59 } \end{aligned}$	10	25	70	$\begin{aligned} & 25+50 \frac{(n-2)}{2} \\ & (n=2,4,6 \ldots) \end{aligned}$	$\begin{gathered} 70+50(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$	
D-B59W	15	30	75	$\begin{aligned} & 30+50 \frac{(\mathrm{n}-2)}{2} \\ & (\mathrm{n}=2,4,6 \ldots) \end{aligned}$	$\begin{gathered} 75+50(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$	
$\begin{aligned} & \text { D-A3 } \square \text { A } \\ & \text { D-G39A } \\ & \text { D-K39A } \\ & \text { D-A44A } \end{aligned}$	20	35	110	$\begin{aligned} & 35+30 \frac{(\mathrm{n}-2)}{2} \\ & (\mathrm{n}=2,4,6 \ldots) \end{aligned}$	$\begin{aligned} & 110+100(n-2) \\ & (n=2,3,4,5 \ldots) \end{aligned}$	

Note 1) Auto switch mounting

Auto switch model	With 2 auto switches	
	Different surfaces	Same surface
	Correct auto switch mounting position is 3.5 mm from the back face of the switch holder.	The auto switch is mounted by slightly displacing it in a direction (cylinder tube circumferential exterior) so that the auto switch and lead wire do not interfere with each other.
$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \text { W } \end{aligned}$	Less than 20 stroke ${ }^{\text {Note 2) }}$	Less than 55 stroke Note 2)
D-M9 \square A	Less than 25 stroke ${ }^{\text {Note 2) }}$	Less than 60 stroke ${ }^{\text {Note 2) }}$
D-A9 \square	-	Less than 50 stroke ${ }^{\text {Note } 2 \text {) }}$

[^2]
CM3 Series

Auto Switch Mounting 3

Operating Range

Auto switch model	（more size				
	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	
$\begin{array}{l}\text { D－M9 } \square(V) \\ \text { D－M9 } \square \mathbf{W}(V) \\ \text { D－M9 } \square \mathbf{A}(V)\end{array}$	3	3	4	3.5	
D－A9 \square					

＊Values which include hysteresis are for guideline purposes only，they are not a guarantee（assuming approximately $\pm 30 \%$ dispersion）and may change substantially depending on the ambient environment．

Auto Switch Mounting Brackets／Part No．

Auto switch model	Bore size（mm）			
	20	25	32	40
$\begin{aligned} & \text { D-M9 } \square(\mathrm{V}) \\ & \text { D-M9 } \square \mathrm{W}(\mathrm{~V}) \\ & \text { D-A9 } \square(\mathrm{V}) \end{aligned}$	$\begin{gathered} \text { Note 1) } \\ \text { BM5-020 } \end{gathered}$	$\begin{gathered} \text { Note 1) } \\ \text { BM5-025 } \end{gathered}$	$\begin{gathered} \text { Note 1) } \\ \text { BM5-032 } \end{gathered}$	$\begin{gathered} \text { Note 1) } \\ \text { BM5-040 } \end{gathered}$
D－M9 \square A（V）	$\begin{gathered} \text { Note 2) } \\ \text { BM5-020S } \end{gathered}$	$\begin{gathered} \text { Note 2) } \\ \text { BM5-025S } \end{gathered}$	$\begin{gathered} \text { Note 2) } \\ \text { BM5-032S } \end{gathered}$	$\begin{gathered} \text { Note 2) } \\ \text { BM5-040S } \end{gathered}$
D－C7口／C80 D－C73C／C80C D－H7 \square D－H7 $\square W$ D－H7NF D－H7BA	BM2－020A	BM2－025A	BM2－032A	BM2－040A
D－H7BA	BM2－020AS	BM2－025AS	BM2－032AS	BM2－040AS
$\begin{aligned} & \text { D-B5 } \square / B 64 \\ & \text { D-B59W } \\ & \text { D-G5 } \square / K 59 \\ & \text { D-G5 } \square W / K 59 W \\ & \text { D-G5BA/G59F } \\ & \text { D-G5NT } \\ & \text { D-G5NB } \end{aligned}$	BA2－020	BA2－025	BA2－032	BA2－040
D－A3 \square A／A44A D－G39A／K39A	BM3－020	BM3－025	BM3－032	BM3－040

Note 1）Set part number which includes the auto switch mounting band（BM2－ロपロA）and the holder kit （BJ5－1／Switch bracket：Transparent）．
Since the switch bracket（made from nylon）are affected in an environment where alcohol， chloroform，methylamines，hydrochloric acid or sulfuric acid is splashed over，so it cannot be used．Please consult SMC regarding other chemicals．
Note 2）Set part number which includes the auto switch mounting band（BM2－पロロAS／Stainless steel screw）and the holder kit（BJ4－1／Switch bracket：White）．
Note 3）For the D－M9■A（V）type auto switch，do not install the switch bracket on the indicator light．

［Stainless Steel Mounting Screw］

The following stainless steel mounting screw is available．Use it in accordance with the operating environment．（Since switch mounting bracket is not included，order it separately．）
BBA4：For D－C7／C8／H7 types
Note 4）Refer to page 1682 for details of BBA4 screws．
The above stainless steel screws are used when a cylinder is shipped with the D－H7BAL auto switches．When only an auto switch is shipped independently，the BBA4 screw is attached．

（1）BJ $\square-1$ is a set of＂a＂and＂b＂．
（2）BM2－$\square \square \square A(S)$ is a set of＂c＂and＂d＂． Band（c）is mounted so that the projected part is on the internal side（contact side with the tube）． BJ4－1（Switch bracket：White）
BJ5－1（Switch bracket：Transparent）

Other than the applicable auto switches listed in＂How to Order，＂the following auto switches are mountable． Refer to pages 1575 to 1701 for detailed specifications．

Type	Model	Electrical entry	Features
Solid state auto switch	D－H7A1，H7A2，H7B	Grommet（In－line）	－
	D－H7NW，H7PW，H7BW		Diagnostic indication（2－color indicator）
	D－H7BA		Water resistant（2－color indicator）
	D－G5NT		With timer
Reed auto switch	D－B53，C73，C76		－
	D－C80		Without indicator light

＊With pre－wired connector is also available for solid state auto switches．For details，refer to pages 1648 and 1649.
＊Normally closed（ $\mathrm{NC}=\mathrm{b}$ contact）solid state auto switches（ $\mathrm{D}-\mathrm{F} 9 \mathrm{G} / \mathrm{F9H}$ ）are also available．For details，refer to page 1595.
＊Wide range detection type，solid state auto switch（D－G5NB）is also available．For details，refer to page 1638.

[^0]: * Use a thin wrench when tightening the piston rod.

[^1]: * A clevis pin and retaining rings (split pins for $\varnothing 40$) are shipped together.
 * Use a thin wrench when tightening the piston rod.

[^2]: Note 2) Minimum stroke for auto switch mounting in types other than those mentioned in Note 1

