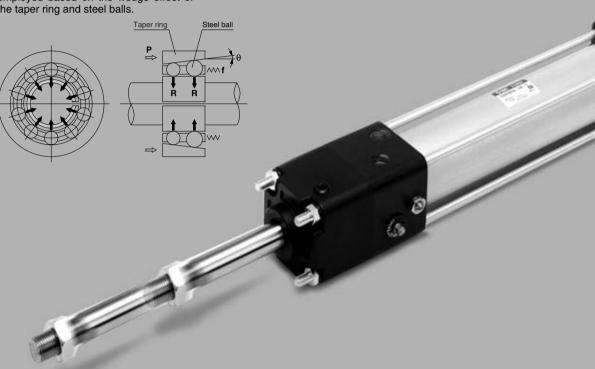
Cylinder with Lock


Series CNA

ø40, ø50, ø63, ø80, ø100

Suitable for intermediate stops, emergency stops and drop prevention

Simple construction

A force magnifying mechanism is employed based on the wedge effect of the taper ring and steel balls.

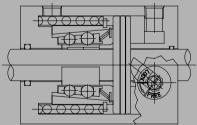
CLJ2 CLM2 CLG1 CL1 MLGC CNG MNB CNA CNS CLS CLS CLQ RLQ MLU MLGP ML1C

High locking efficiency

Greater locking efficiency as well as stable locking and unlocking operation has been achieved by arranging a large number of steel ball bearings in circular rows. (Unlocking pressure of 0.25 MPa 0.05 MPa lower than conventional SMC products) In addition, both alignability and stable locking force with respect to piston rod eccentricity are obtained by allowing the taper ring to float.

High reliability and stable holding force

Outstanding durability and stable holding force are maintained by the use of a brake shoe having superior wear resistance, which has also been substantially lengthened (double the conventional SMC product).


Series Variations

Series	Action	Туре	Standard variations With rod boot	Bore size (mm)	Lock holding force (N)	Max. stroke (mm)	
		Single rod		40	882	800	
Cylinder	Double	Series CNA		50	1370		
with lock Series	acting			- I F	63	2160	1200
CNA		Double rod Series		80	3430	1400	
		CNAW	Ĭ	100	5390	1500	

Manual override for unlocking

Even if the air supply is blocked or exhausted, lock release is possible.

The fail safe mechanism locks again when the manual override is released.

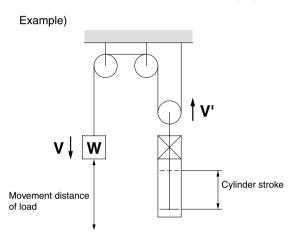
Design minimizes the influences of unlocking air quality

A construction which is strong against moisture and drainage in the compressed air has been realized by separating the locking mechanism and the unlocking chamber.

Can be locked in both directions

An equal holding force can be obtained on either reciprocating stroke of the cylinder.

Series CNA Model Selection


Precautions on Model Selection

∕∆Warning

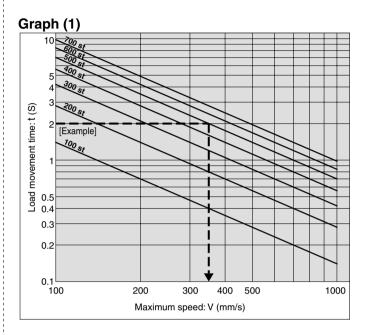
1. In order that the originally selected maximum speed is not exceeded, be certain to use a speed controller to adjust the total movement distance of the load so that movement takes place in no less than the applicable movement time.

The movement time is the time that is necessary for the load to travel the total movement distance from the start without any intermediate stops.

 In cases where the cylinder stroke and the movement distance of the load are different (double speed mechanism, etc.), use the movement distance of the load for selection purposes.

3. The following selection example and procedures are based on use at the intermediate stop (including emergency stops during the operation). However, when the cylinder is in the locked state such as drop prevention, kinetic energy does not act upon it. Under these conditions, use the load mass at the maximum speed (V) of 100 mm/s shown in graphs 5 to 7 on page 725 depending on the operating pressure and select models.

Selection Example

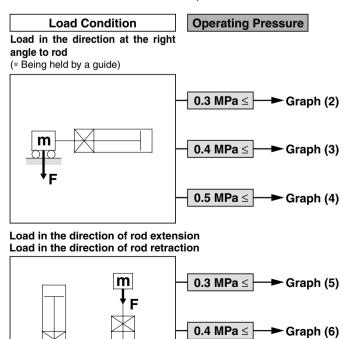

- Load mass: m = 50 kg
- Movement distance: st = 500 mm
- Movement time: t = 2 s
- Load condition: Vertical downward = Load in direction of rod extension
- Operating pressure: P = 0.4 MPa
- Step (1): From graph (1) find the maximum movement speed of the load.

 \therefore Maximum speed V \cong 350 mm/s

Step (2): Select graph (6) based upon the load conditions and operating pressure, and then from the intersection of the maximum speed V = 350 mm/s found in Step (1), and the load mass m = 50 kg. ∴ø63 → Decided the tube I.D. CNA63 or more.

Step (1) Find the maximum load speed V.

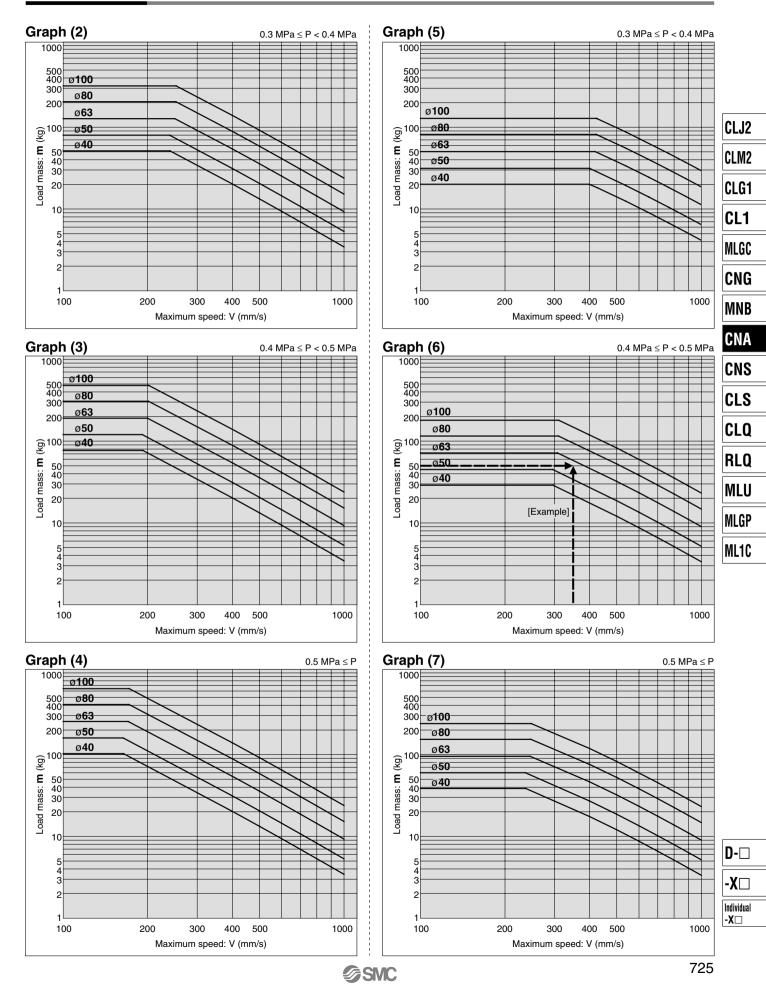
Find the maximum load speed: V (mm/s) from the load movement time: t (s) and the movement distance: st (mm).



Step (2) Find the bore size.

m

SMC


Select a graph based upon the load condition and operating pressure, and then find the point of intersection for the maximum speed found in Step (1) and the load mass. Select the bore size on the line above the point of intersection.

0.5 MPa ≤

Graph (7)

Cylinder with Lock Double Acting, Single Rod Series CNA ø40, ø50, ø63, ø80, ø100

How to Order CNALN 50 100 JN-D CDNA L N 50 100 JN - D - M9BW With auto switch With auto switch • Made to Order (Built-in magnet) Locking direction Refer to page 727 for Mounting style • D Both directions Type • details. Bore size В Basic style Ν Non-lube Auto switch Number of н Axial foot style **F** * Steel tube 40 40 mm auto switches Nil Without auto switch F Rod side flange style Auto switches are not 50 50 mm For the applicable auto switch Nil 2 pcs. available with steel model, refer to the table below. G Head side flange style 63 63 mm S 1 pc tube. С Single clevis style 80 80 mm n "n" pcs. With rod boot/cushion D Double clevis style 100 100 mm Nylon tarpaulin J Center trunnion style т Rod boot Heat resistant tarpaulin Thread type κ Built-in Magnet Cylinder Model With double-side cushion Nil Nil Rc If a built-in magnet cylinder without an auto Ν Without cushion ΤN NPT Cushion switch is required, there is no need to enter R With rod cushion TF G the symbol for the auto switch With head cushion н (Example) CDNALN40-100-D Cylinder stroke (mm) When the symbols are two or more, indicate them Refer to page 727 for the standard stroke. alphabetically Applicable Auto Switch/Refer to pages 1719 to 1827 for further information on auto switches Load voltage Auto switch model Lead wire length (m) Pre-wired Electrical Wiring Special function dicator Applicable load Туре Tie-rod 0.5 5 (Z) Band 1 3 connector entry (Output) DC AC mounting mounting (Nil) (M) (L) M9N • 3-wire (NPN) G59 IC circuit 5 V. 12 V 0 M9P • 3-wire (PNP) 24 V Grommet G5P • • M9B 12 V 2-wire K59 J51 100 V. 200 V • • G39 3-wire (NPN) Solid state switch Terminal G39C 12 V conduit K39C 2-wire K39 M9NW • 3-wire (NPN) Relay, Yes IC circuit G59W \bigcirc • PLC 5 V, 12 V M9PW Diagnostic indication • 3-wire (PNP) (2-color indication) G5PW M9BW \bigcirc • • 2-wire 24 V 12 V K59W Grommet 3-wire (NPN) M9NA • 5 V, 12 V Water resistant 3-wire (PNP) M9PA C (2-color indication) M9BA • 2-wire 12 V G5BA With diagnostic output (2-color indication) 4-wire (NPN) 5 V, 12 V • F59F G59F • IC circuit Magnetic field resistant (2-color indication) 2-wire (Non-polar) P4DW • • IC circuit 5 V A96 [Z76] 3-wire (NPN equivalent Yes 100 V A93 [Z73] • Grommet No 100 V or less A90 [Z80] • IC circuit Relay, Reed switch **B**54 PLĆ • A54 • • Yes 100 V, 200 V No 2 wire 24 V 12 V 200 V or less A64 **B64** • • A33 PLC Terminal A33C conduit A34C A34 100 V. 200 V Yes Relay, **DIN** terminal A44C Δ44 PLC Diagnostic indication (2-color indication) Grommet A59W **B59W** •

* Lead wire length symbols: 0.5 m Nil (Example) M9NW 1 m M

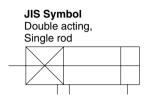
(Example) M9NWM 3 m L

Solid state auto switches marked with "O" are produced upon receipt of order.

(Example) M9NWL 5 m Z

** D-A9 and D-A9 V cannot be mounted on ø50. Select auto switches in brackets.

(Example) M9NWZ


* Since there are other applicable auto switches than listed, refer to page 751 for details.

* For details about auto switches with pre-wired connector, refer to pages 1784 and 1785

* D-A9□/M9□/M9□W/M9□AL auto switches are shipped together (not assembled). (Only auto switch brackets are assembled at the time of shipment.)

Made to Order Specifications (For details, refer to pages 1829 to 1954.)

Specification

Change of rod end shape

With heavy duty scraper

Dual stroke cylinder/Single rod type

-XC14 Change of trunnion bracket mounting position

Refer to pages 746 to 751 for cylinders with

 Minimum auto switch mounting stroke • Proper auto switch mounting position (detection at stroke end) and mounting height

• Switch mounting bracket: Part no.

Special port location

-XC15 Change of tie-rod length

-XC35 With coil scraper

auto switches.

Operating range

Nade Orde

Symbol

–XA🗆

—хсз

-XC4

-XC11

Specifications

Bore size (mm)	40	50	63	80	100	
Lubrication		Not re	quired (Non	n-lube)		
Action		C	ouble actin	g		
Proof pressure			1.5 MPa			
Max. operating pressure	1.0 MPa					
Min. operating pressure			0.08 MPa			
Piston speed		50	to 1000 mm	/s *		
Ambient and fluid temperature	Without auto switch: -10 to 70°C (No freezing) With auto switch: -10 to 60°C (No freezing)					
Cushion	Air cushion					
Stroke length tolerance	e Up to 250: $^{+1.0}_{0}$, 251 to 1000: $^{+1.4}_{0}$, 1001 to 1500: $^{+1.8}_{0}$					
Mounting Head side fl			ot style, Rod yle, Single cle Center trunn	evis style,	tyle,	

* Load limits exist depending upon piston speed when locked, mounting direction and operating pressure.

Lock Specifications

Bore size (mm)	40	50	63	80	100	C	
Locking action	Spring locking (Exhaust locking)						
Unlocking pressure		C	.25 MPa or	more		(
Lock starting pressure	0.20 MPa or less						
Max. operating pressure	1.0 MPa						
Locking direction	Both directions					(
Holding force N	882	1370	2160	3430	5390	F	

* Be sure to select cylinders in accordance with the procedures on page 724.

Standard Stroke For cases with auto switches, refer to the table of minimum strokes for auto switches mounting on pages 748 and 749.

			. 4
Bore size (mm)	Standard stroke (mm) ⁽¹⁾	Long stroke (mm) (2)	, [
40	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500	800	
50, 63	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 600	1200	
80, 100	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 600, 700	ø80: 1400 ø100: 1500	

Note 1) Intermediate strokes other than the above are produced upon receipt of order. Spacers are not used for intermediate strokes

Note 2) Long stroke applies to the axial foot style and the rod side flange style. When exceeding the stroke range for each bracket, determine the maximum strokes referring to the Selection Table (front matter 29 in Best Pneumatics No. 2).

Stopping Accuracy

				(mm)		
Lock type	Piston speed (mm/s)					
	100	300	500	1000		
Spring locking	± 0.3	± 0.6	± 1.0	± 2.0		

Condition: Lateral, Supply pressure P = 0.5 MPa Load mass Upper limit of allowed value Solenoid valve for locking mounted on the unlocking port

Maximum value of stopping position dispersion from 100 measurements

D-🗆

-X□ Individual -X□

CLJ2

CLM2

CLG1

CL1

MLGC

CNG

MNB

MLU

Mounting Bracket Part No.

Bore size (mm)	40	50	63	80	100
Foot *	CA1-L04	CA1-L05	CA1-L06	CA1-L08	CA1-L10
Flange	CA1-F04	CA1-F05	CA1-F06	CA1-F08	CA1-F10
Single clevis	CA1-C04	CA1-C05	CA1-C06	CA1-C08	CA1-C10
Double clevis **	CA1-D04	CA1-D05	CA1-D06	CA1-D08	CA1-D10

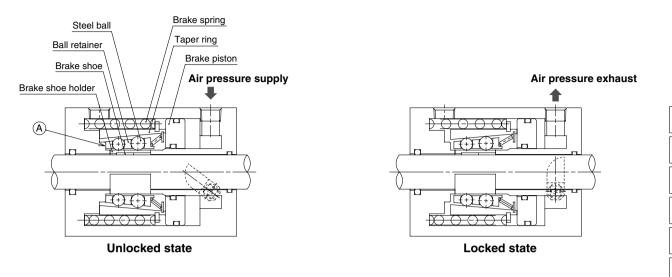
* When ordering foot bracket, order 2 pieces per cylinder. ** Clevis pin, plain washer, and cotter pin are shipped together with double clevis style.

Rod Boot Material

Symbol	Rod boot material	Max. ambient temperature	
J	Nylon tarpaulin	70°C	
К	Heat resistant tarpaulin	110°C *	

* Maximum ambient temperature for the rod boot itself.

Accessory

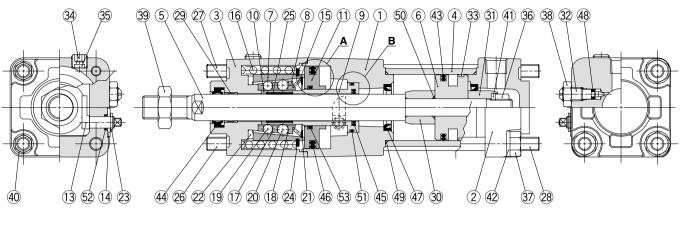

	Mounting style	Basic style	Foot style	Rod side flange style	Head side flange style	Single clevis style	Double clevis style	Center trunnion style
Standard	Rod end nut	•	•	•	•	•	•	•
equipment	Clevis pin	_	_	_		—	•	—
	Single knuckle joint	•	•	•	•	•	•	•
Option	Double knuckle joint (With pin)	•	•	•	•	•	•	•
	With rod boot	•	•	•	•	•	•	•

Mass/(): Denotes the values for steel tube.

							(kg)
Bore size (mm)		40	50	63	80	100	
	Basic style		1.70 (1.75)	2.70 (2.76)	4.08 (4.12)	7.30 (7.46)	10.80 (11.01)
	Foot style		1.89 (1.94)	2.74 (2.78)	4.42 (4.46)	7.97 (8.13)	11.79 (12.00)
Basic mass	Flange sty	Flange style		2.97 (3.01)	4.87 (4.91)	8.75 (8.91)	12.72 (12.93)
	Single clevis style		1.93 (1.98)	2.86 (2.90)	4.71 (4.75)	8.41 (8.57)	12.58 (12.79)
	Double clevis style		1.97 (2.02)	2.95 (2.99)	4.87 (4.91)	8.70 (8.86)	13.10 (13.31)
	Trunnion style		2.15 (2.25)	3.05 (3.15)	4.97 (5.17)	9.00 (9.29)	13.20 (13.59)
	Aluminum tube	Mounting bracket	0.22	0.28	0.37	0.52	0.65
Additional mass per each 50mm of stroke	Steel tube	Mounting bracket except trunnion	0.28	0.35	0.43	0.70	0.87
		Trunnion style	0.36	0.46	0.65	0.86	1.07
	Single knu	ickle joint	0.23	0.26	0.26	0.60	0.83
Accessory bracket	Double kn	uckle joint	0.32	0.38	0.38	0.73	1.08
	Knuckle p	in	0.05	0.05	0.05	0.14	0.19

Calculation: (Example) CNALN40-100-D • Base mass ······· 1.89 (Foot style, ø40)

Construction Principle


Spring locking (Exhaust locking)

The spring force which acts upon the taper ring is magnified by a wedge effect, and is conveyed to all of the numerous steel balls which are arranged in two circles. These act on the brake shoe holder and brake, which lock the piston rod by tightening against it with a large force.

Unlocking is accomplished when air pressure is supplied to the unlocking port. The brake piston and taper ring oppose the spring force, moving to the left side, and the ball retainer strikes the cover section A. The braking force is released as the steel balls are removed from the taper ring by the ball retainer.

Construction

A section (Release piston bushing)

ø 100	ø 80	ø 63	ø 50	ø 40
12	12	9 (91		

B section (Piston guide bushing) ø50, ø63, ø80, ø100

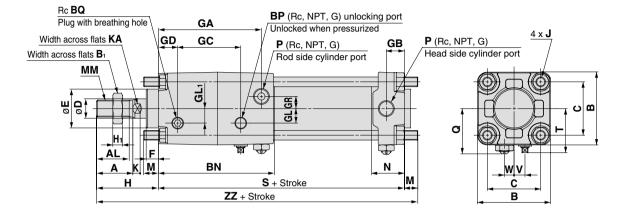
Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Black painted after hard anodized
2	Head cover	Aluminum alloy	Black painted
3	Cover	Aluminum alloy	Black painted after chromated
4	Cylinder tube	Aluminum alloy	Hard anodized
5	Piston rod	Carbon steel	Hard chrome plated
6	Piston	Aluminum alloy	Chromated
7	Taper ring	Carbon steel	Heat treated
8	Ball retainer	Special resin	
9	Piston guide	Carbon steel	Zinc chromated
10	Brake shoe holder	Special steel	Heat treated
11	Release piston	Aluminum alloy	Hard anodized (ø40, ø50, ø63) Chromated (ø80, ø100)
12	Release piston bushing	Steel + Special resin	
13	Unlocking cam	Chromium molybdenum steel	Zinc chromated
14	Washer	Carbon steel	Black zinc chromated
15	Retainer pre-load spring	Stainless steel wire	
16	Brake spring	Steel wire	Zinc chromated
17	Clip A	Stainless steel	
18	Clip B	Stainless steel	
19	Steel ball A	Carbon steel	
20	Steel ball B	Carbon steel	
21	Tooth ring	Stainless steel	
22	Bumper	Polyurethane rubber	
23	Type C retaining ring for unlocking cam shaft	Carbon steel	
24	Type C retaining ring for taper ring	Carbon steel	
25	Brake shoe	Special friction material	
26	Unit holding tie-rod A	Carbon steel	Chromated
27	Unit holding tie-rod B	Carbon steel	Chromated
28	Tie-rod	Carbon steel	Chromated
29	Bushing	Copper alloy	
30	Cushion ring A	Rolled steel plate	Zinc chromated
31	Cushion ring B	Rolled steel plate	Zinc chromated
32	Cushion valve	Rolled steel plate	Electroless nickel plated

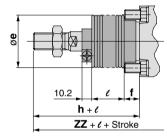
Component Parts

<u> </u>		NA 1 1	N 1 - 1
No.	Description	Material	Note
33	Wear ring	Special resin	
34	Hexagon socket head plug	Chromium molybdenum steel	Black zinc chromated
35	Element	Bronze	
36	Piston nut	Rolled steel plate	Zinc chromated
37	Tie-rod nut	Carbon steel	Black zinc chromated
38	Lock nut	Carbon steel	Nickel plated
39	Rod end nut	Carbon steel	Nickel plated
40	Spring washer	Steel wire	Black zinc chromated
41	Spring washer	Steel wire	Zinc chromated
42	Spring washer	Steel wire	Black zinc chromated
43	Piston seal	NBR	
44	Rod seal A	NBR	
45	Rod seal B	NBR	
46	Release piston seal	NBR	
47	Cushion seal	NBR	
48	Cushion valve seal	NBR	
49	Tube gasket	NBR	
50	Piston gasket	NBR	
51	Piston guide gasket	NBR	
52	Unlocking cam gasket	NBR	
53	O-ring	NBR	
	-		

Replacement Parts/Seal Kit


Bore size (mm)	Kit no.	Contents
40	CA1N 40A-PS	
50	CA1N 50A-PS	
63	CA1N 63A-PS	Including no. (43, (44, (48) and (49).
80	CA1N 80A-PS	
100	CA1N100A-PS	

* Since the lock section for Series CNA is normally replaced as a unit, kits are for the cylinder section only. These can be ordered using the order number for each bore size.


* Seal kit includes a grease pack (ø40 and ø50: 10 g, ø63 and ø80: 20 g, ø100: 30 g). Order with the following part number when only the grease pack is needed. Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

Basic style (B): CNABN

With rod boot

																								(mm)	MLGP
Bore size	Stroke	range	Α	AL	в	B1	BN	BP	BQ	С	D	Е	F	GA	GB	GC	GD	GL	GL1	GR	H1	J	к	КА	WILUP
(mm)	(m	m)	<u> </u>						Da	•		-	•	~~							•••	U	i N		MI 40
40	Up to	500	30	27	60	22	96	1/8	1/8	44	16	32	10	85	15	52	16	12	12	10	8	M8 x 1.25	6	14	ML1C
50	Up to	600	35	32	70	27	108	1/4	1/8	52	20	40	10	95	17	56.5	20	13	15	12	11	M8 x 1.25	7	18	
63	Up to	600	35	32	86	27	115	1/4	1/4	64	20	40	10	102	17	67	20	18	12	15	11	M10 x 1.25	7	18	
80	Up to	750	40	37	102	32	139	1/4	1/4	78	25	52	14	123	21	83	20	23	18	17	13	M12 x 1.75	11	22	
100	Up to	750	40	37	116	41	160	1/4	1/4	92	30	52	14	144	21	98	22	25	20	19	16	M12 x 1.75	11	26	
													(mm)		With	Rod	l Boo	ot						(mm)	
Bore size (mm)	м	М	И	N	Р	(ว	н	s	т	v	w	zz			size m)	Stroke (m	range m)	е	f	h	e		zz	
40	11	M14	x 1.5	27	1/4	37 t	o 39.5	51	153	37.5	9	8	215		4	10	20 to	500	43	11.2	59	1/4 strok	e	223	
50	11	M18	x 1.5	30	3/8	42 t	o 44.5	58	168	44	11	0	237		Ę	50	20 to	o 600	52	11.2	66	1/4 strok	æ	245	
63	14	M18	x 1.5	31	3/8	50 t	o 51.5	58	182	52.5	12	0	254	-	(63	20 to	o 600	52	11.2	66	1/4 strok	e	262	
80	17	M22	x 1.5	37	1/2	59.5 t	0 62.5	71	218	59.5	15	0	306		8	30	20 to	o 750	65	12.5	80	1/4 strok	e	315	
100	17	M26	x 1.5	40	1/2	66.5 t	0 69.5	72	246	69.5	15	0	335	-	10	00	20 to	o 750	65	14	81	1/4 strok	ke	344	

CLJ2

CLM2

CLG1

CL1

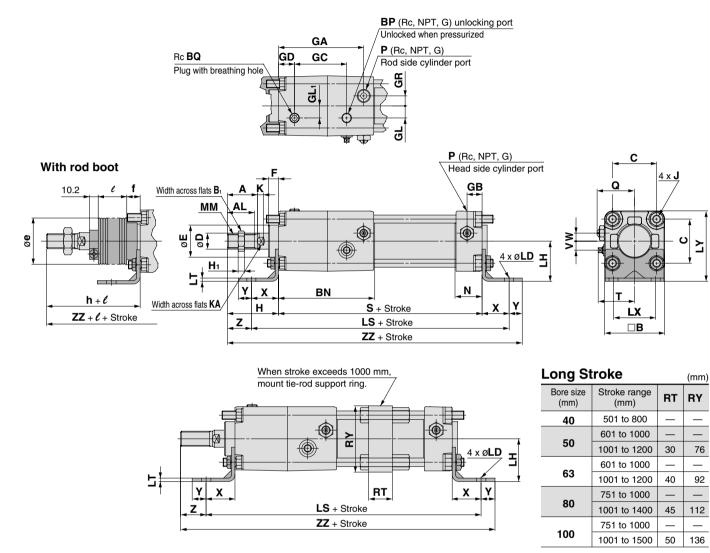
MLGC

CNG

MNB

CNA

CNS


CLS

CLQ

RLQ

MLU

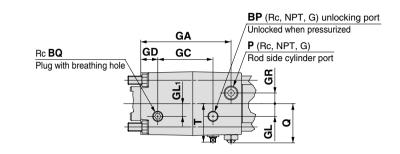
Axial foot style (L): CNALN

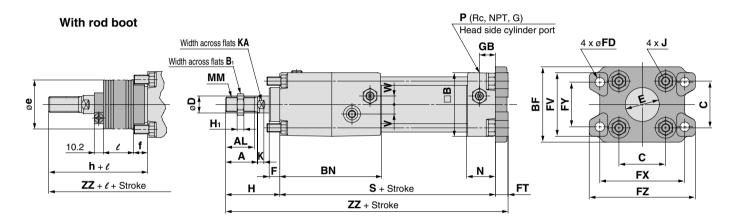
																							(mm)
Bore size (mm)	Stroke range (mm)	Α	AL	в	B1	BN	BP	BQ	С	D	Е	F	GA	GB	GC	GD	GL	GL₁	GR	H1	J	к	КА
40	Up to 500	30	27	60	22	96	1/8	1/8	44	16	32	10	85	15	52	16	12	12	10	8	M8 x 1.25	6	14
50	Up to 600	35	32	70	27	108	1/4	1/8	52	20	40	10	95	17	56.5	20	13	15	12	11	M8 x 1.25	7	18
63	Up to 600	35	32	86	27	115	1/4	1/4	64	20	40	10	102	17	67	20	18	12	15	11	M10 x 1.25	7	18
80	Up to 750	40	37	102	32	139	1/4	1/4	78	25	52	14	123	21	83	20	23	18	17	13	M12 x 1.75	11	22
100	Up to 750	40	37	116	41	160	1/4	1/4	92	30	52	14	144	21	98	22	25	20	19	16	M12 x 1.75	11	26

																			(mm)
Bore size (mm)	LD	LH	LS	LT	LX	LY	ММ	N	Р	Q	н	S	т	v	w	х	Y	z	zz
40	9	40	207	3.2	42	70	M14 x 1.5	27	1/4	37 to 39.5	51	153	37.5	9	8	27	13	24	244
50	9	45	222	3.2	50	80	M18 x 1.5	30	3/8	42 to 44.5	58	168	44	11	0	27	13	31	266
63	11.5	50	250	3.2	59	93	M18 x 1.5	31	3/8	50 to 51.5	58	182	52.5	12	0	34	16	24	290
80	13.5	65	306	4.5	76	116	M22 x 1.5	37	1/2	59.5 to 62.5	71	218	59.5	15	0	44	16	27	349
100	13.5	75	332	6.0	92	133	M26 x 1.5	40	1/2	66.5 to 69.5	72	246	69.5	15	0	43	17	29	378

With Rod Boot

With Ro	od Boot					(mm)
Bore size (mm)	Stroke range (mm)	е	f	h	e	zz
40	20 to 500	43	11.2	59	1/4 stroke	252
50	20 to 600	52	11.2	66	1/4 stroke	274
63	20 to 600	52	11.2	66	1/4 stroke	298
80	20 to 750	65	12.5	80	1/4 stroke	358
100	20 to 750	65	14	81	1/4 stroke	387
732						

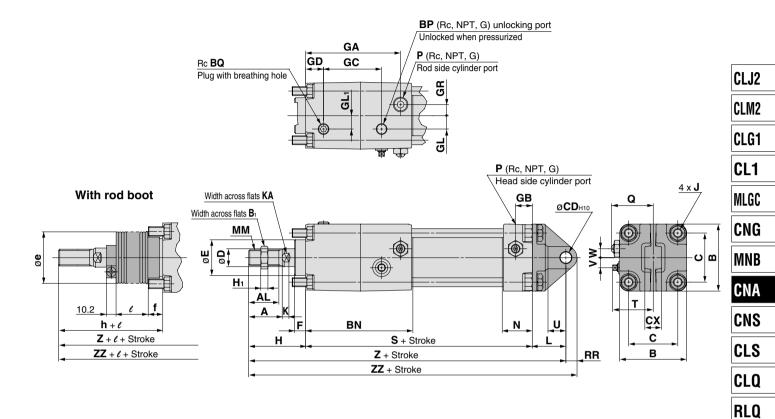

Rod side flange style (F): CNAFN


					Rc E Plug		breath	iing ho	le	GD	G	iA iC	•	/ī / <u>P</u>	Jnlock (Rc,	ked wh NPT, de cyl	nen p , G)	<u>G) unlo</u> pressuriz er port		port										
									\rightarrow		GL	 _	Æ	٩Ę		•														CLJ2
										Ē	>		Ф —		ษี															CLM2
									Y				\$ 7	₽								ľ	4		FZ FX		-	<u>x J</u> 4 x ø F l	D	CLG1
W	/ith I	rod k	000		<u>Wid</u> Width a		ss flats	1						P (Ro Head			ler p		àB				•	Q			1/		_	CL1
4		-m		[]	<u>vviotn a</u>			Γ,		¶ [≞]	•									+ 1	•)		.	Æ	T T	Ī	MLGC
8 –					/ }	8	f						_ (₽_) 	В	υ	\$			E .		{ ≿	군 뿝		CNG
¥		€ UU	-				<u>H1</u>						Ŷ	╞					Ē	ŀ,	<u> </u>	1		Ð	\square	Ð	€	<u>+</u> ,		
<u>1</u>	0.2	+ e	e i	f				A	K		_												-	Т	C					MNB
-		+ t l + S	troke		_			H	FT		E	BN	S	⊢ Stro	ke				M					-	B	► 				CNA
								•				Z	Z + S	stroke																CNS
		str oø										troke ie-rod				nm,							/	<u>4 x @</u>	FD					CLS
			T		ζ					•			}		e				Ъ	Ť	-		∯	6	<u>}</u>	1	ĵL -	⊕-		CLQ
e —) \			.				-	۲	ž			_	Þ	T	Н	≿		-	Ĥ		h	1	Ψ		RLQ
					$\langle \ $							٢	-	ш —]_					(₽			Ó	J -	ф-		MLU
1	0.2			f			z	FT						Ľ	R	-	_	м		ţ				4		¥		\square		MLGP
-		+ l l + Si	troke	•		•	Ζ,		-		ZZ	Z + St	roke		4	•				F			-		FX FZ			► ►	l	
					_																							(m		ML1C
Bore size (mm)	(m	range m)	A	AL	в	B1	BF	BN	BP	BQ	С	D	Е	FD	FT	FV	FX	FY	FZ	GA	GB		GD	GL	GL₁	GR	H1	J		
40 50		o 800 1000	30 35	27 32	60 70	22 27	71 81		1/8 1/4	1/8 1/8	44 52	16 20	32 40	9 9	12 12	60 70	80 90		100 110	85 95	15 17	52 56.5	16 20	12 13	12 15	10 12	8 11	M8 x 1.		
63		1000		32	86		101					20	40	11.5		86				102	17	67	20	18	12			M10 x 1.		
<u>80</u> 100	•	1000 1000	40 40	37 37	102	32 41	119	139 160	1/4	1/4	78 92	25 30	52	13.5		102 116	130 150	_		123	21 21	83 98	20	23 25	18 20	17 19		M12 x 1. M12 x 1.		
100	UP IO	1000	40	37	116	41	133	100	1/4	1/4	92	30	52	13.5	18 (mm)			th Ro		144 00t	21	90	22	20	20	19	10	(m		
Bore size	к	KA	М	м	М	N	Р	0	2	н	s	т	v	w	ZZ		Bor	e size		oke ra	nge	d	е	f	h		l		z	
(mm) 40	6	14	11	M14	x 1.5	27	1/4	37 t	o 39.5	51	153	37.5	9	8	215			nm) 40	20	(mm) to 80	00	52	43	15	59	1/-	4 stro	ke 2	23	
50	7	18	11	M18	x 1.5	30	3/8		o 44.5		168		11	0	237			50		to 100		58	52	15	66	1/-	4 stro	ke 2	45	
63	7	18	14		x 1.5		3/8		0 51.5				12	0	254			63		to 100		58	52	17.5			4 stro		62	
<u>80</u> 100	11 11	22 26	17 17		x 1.5 x 1.5				o 62.5 o 69.5			59.5 69.5	15 15	0	306 335			80 00		to 100 to 100		80 80		21.5 21.5			4 stro 4 stro		15 44	
Long St			.,	10.20		10	., 2	100.01		,	240	30.0		(mm)		-		ong S					00	1 - 1.0				(mm)	<u></u>	
Bore size (mm)	Stro	ke rai (mm)	nge	м	BF	FD	FT	FX	FY	FZ	RT	RY	z	zz		Bore		-	oke ra (mm)	nge	d	е	f	h		e		zz		
50		(1111) 1 to 12	200	6	88	9	20	120		144		76	47	241			50	100	(1111) 1 to 1		58	52	19	66	1/-	4 stro	ke	240		D -□
63		1 to 12		10	105	11.5	23	140	64	170		92	48	263	[6	63		1 to 1		58	52	19	66	1/-	4 stro	ke	258		
80		1 to 14		12			28	164	84	198		112	59	317			80		1 to 1		80	65	21	80		4 stro		310		-X□
100	100	1 to 15	500	12	140	13.5	29	180	100	220	50	136	60	347	<u> </u>	10	0	100	1 to 1	500	80	65	21	81	1/4	4 stro	ke	339		Individual

Dimensions

Head side flange style (G): CNAGN

(mm)


Bore size (mm)	Stroke range (mm)	Α	AL	в	B1	BF	BN	BP	BQ	с	D	Е	F	FD	FT	FV	FX	FY	FZ	GA	GB	GC	GD	GL	GL1	GR	H1
40	Up to 500	30	27	60	22	71	96	1/8	1/8	44	16	32	10	9	12	60	80	42	100	85	15	52	16	12	12	10	8
50	Up to 600	35	32	70	27	81	108	1/4	1/8	52	20	40	10	9	12	70	90	50	110	95	17	56.5	20	13	15	12	11
63	Up to 600	35	32	86	27	101	115	1/4	1/4	64	20	40	10	11.5	15	86	105	59	130	102	17	67	20	18	12	15	11
80	Up to 750	40	37	102	32	119	139	1/4	1/4	78	25	52	14	13.5	18	102	130	76	160	123	21	83	20	23	18	17	13
100	Up to 750	40	37	116	41	133	160	1/4	1/4	92	30	52	14	13.5	18	116	150	92	180	144	21	98	22	25	20	19	16

														(mm)
Bore size (mm)	J	к	KA	м	ММ	Ν	Ρ	Q	н	s	т	v	w	zz
40	M8 x 1.25	6	14	11	M14 x 1.5	27	1/4	37 to 39.5	51	153	37.5	9	8	216
50	M8 x 1.25	7	18	11	M18 x 1.5	30	3/8	42 to 44.5	58	168	44	11	0	238
63	M10 x 1.25	7	18	14	M18 x 1.5	31	3/8	50 to 51.5	58	182	52.5	12	0	255
80	M12 x 1.75	11	22	17	M22 x 1.5	37	1/2	59.5 to 62.5	71	218	59.5	15	0	307
100	M12 x 1.75	11	26	17	M26 x 1.5	40	1/2	66.5 to 69.5	72	246	69.5	15	0	336

With Rod Boot

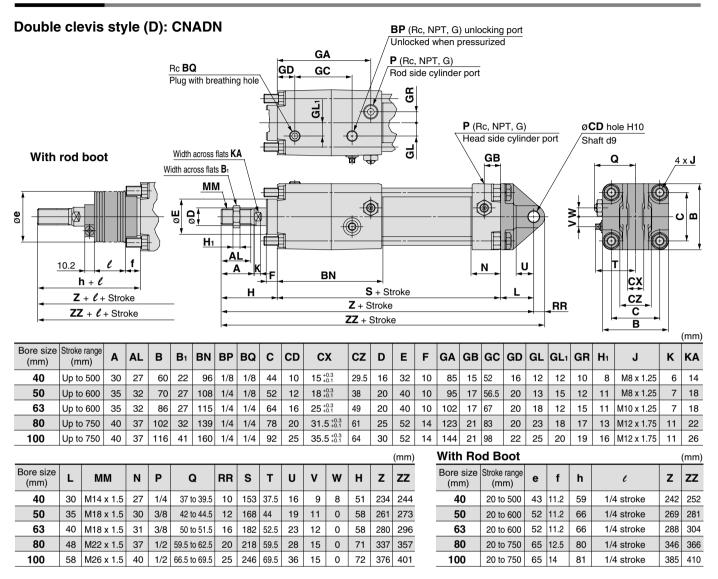
With Re	od Boot	t				(mm)
Bore size (mm)	Stroke range (mm)	е	f	h	l	zz
40	20 to 500	43	11.2	59	1/4 stroke	224
50	20 to 600	52	11.2	66	1/4 stroke	246
63	20 to 600	52	11.2	66	1/4 stroke	263
80	20 to 750	65	12.5	80	1/4 stroke	316
100	20 to 750	65	14	81	1/4 stroke	345

Single clevis style (C): CNACN

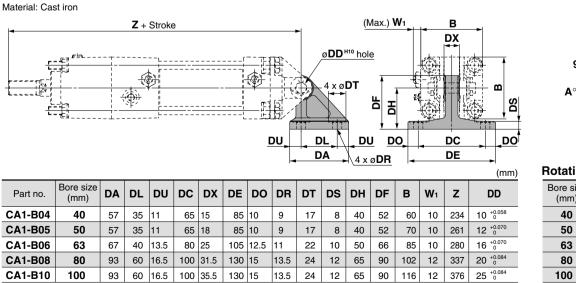
																						(mm)
Bore size (mm)	Stroke range (mm)	Α	AL	в	B1	BN	BP	BQ	С	CD	сх	D	Е	F	GA	GB	GC	GD	GL	GL₁	GR	H1
40	Up to 500	30	27	60	22	96	1/8	1/8	44	10	15 ^{-0.1} -0.3	16	32	10	85	15	52	16	12	12	10	8
50	Up to 600	35	32	70	27	108	1/4	1/8	52	12	18 ^{-0.1} -0.3	20	40	10	95	17	56.5	20	13	15	12	11
63	Up to 600	35	32	86	27	115	1/4	1/4	64	16	25 -0.1	20	40	10	102	17	67	20	18	12	15	11
80	Up to 750	40	37	102	32	139	1/4	1/4	78	20	31.5 ^{-0.1} -0.3	25	52	14	123	21	83	20	23	18	17	13
100	Up to 750	40	37	116	41	160	1/4	1/4	92	25	35.5 -0.1 -0.3	30	52	14	144	21	98	22	25	20	19	16

Bore size (mm)	J	к	KA	L	ММ	Ν	Ρ	Q	Н	RR	s	Т	U	v	w	z	zz
40	M8 x 1.25	6	14	30	M14 x 1.5	27	1/4	37 to 39.5	51	10	153	37.5	16	9	8	234	244
50	M8 x 1.25	7	18	35	M18 x 1.5	30	3/8	42 to 44.5	58	12	168	44	19	11	0	261	273
63	M10 x 1.25	7	18	40	M18 x 1.5	31	3/8	50 to 51.5	58	16	182	52.5	23	12	0	280	296
80	M12 x 1.75	11	22	48	M22 x 1.5	37	1/2	59.5 to 62.5	71	20	218	59.5	28	15	0	337	357
100	M12 x 1.75	11	26	58	M26 x 1.5	40	1/2	66.5 to 69.5	72	25	246	69.5	36	15	0	376	401

With Roo	d Boot						(mm)
Bore size (mm)	Stroke range (mm)	е	f	h	e	z	zz
40	20 to 500	43	11.2	59	1/4 stroke	242	252
50	20 to 600	52	11.2	66	1/4 stroke	269	281
63	20 to 600	52	11.2	66	1/4 stroke	288	304
80	20 to 750	65	12.5	80	1/4 stroke	346	366
100	20 to 750	65	14	81	1/4 stroke	385	410


D -□
-X □
Individual -X□

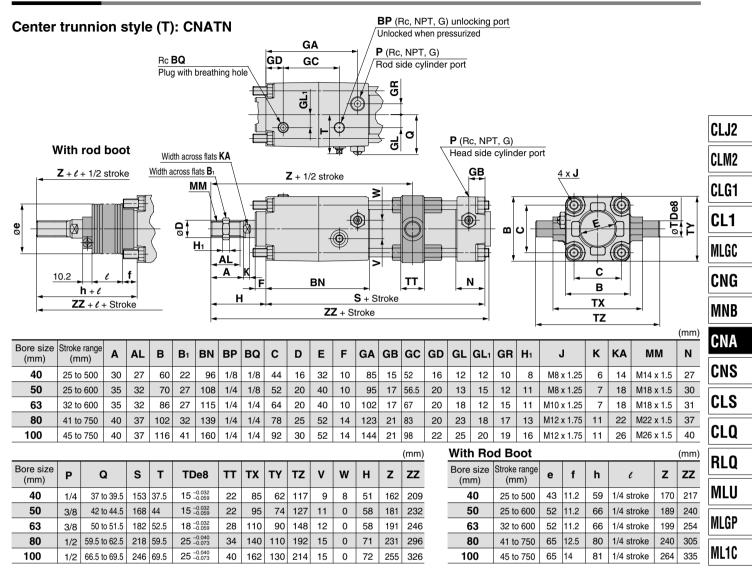
MLU


MLGP

ML1C

Dimensions

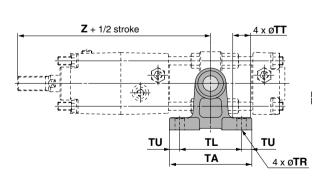
Double Clevis Pivot Bracket



 Bore size (mm)
 A°
 B°
 A° + B° + 90°

 40
 50
 12°
 60°
 162°

 80
 100
 100
 162°
 162°


Note) 1. There is no mention of cylinder part no. 2. Order it separately from cylinder. 3. Pin, retainer, etc. of double clevis, double knuckle joint clevis are shipped together.



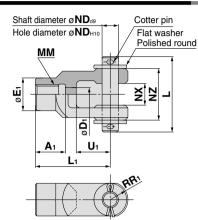
Trunnion Pivot Bracket

Material: Cast iron

Part no.	Bore size (mm)	ТА	TL	τU	тс	тх	TE	то	TR	тт	тs	тн	TF	ТΥ	W 1	z	TD
CA1-S04	40	80	60	10	102	85	119	17	9	17	12	45	60	62	10	162	15 ^{+0.070}
CA1-504	50	80	60	10	112	95	129	17	9	17	12	45	60	74	10	181	15 ^{+0.070}
CA1-S06	63	100	70	15	130	110	150	20	11	22	14	55	73	90	10	191	18 ^{+0.070}
CA1-S08	80	120	90	15	166	140	192	26	13.5	24	17	75	100	110	12	231	25 ^{+0.084}
	100	120	90	15	188	162	214	26	13.5	24	17	75	100	130	12	255	25 ^{+0.084}

SMC

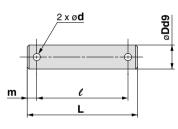
(mm)


Note 1) There is no mention of cylinder part no. Note 2) Order it separately from cylinder.

Note 3) Two trunnion pivot brackets are needed per one cylinder.

Series CNA Accessory Bracket Dimensions

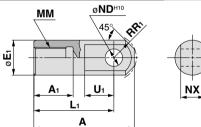
Y Type Double Knuckle Joint



Materia	Naterial: Cast iron (mm)													
Part no.	Applicable bore size (mm)	A 1	E1	D1	L1	ММ	RR1	U1	ND	NX	NZ	L	Cotter pin size	Flat washer size
Y-04C	40	22	24	10	55	M14 x 1.5	13	25	12	16 +0.3 +0.1	38	55.5	ø3 x 18 ℓ	Polished round 12
Y-05C	50, 63	27	28	14	60	M18 x 1.5	15	27	12	16 ^{+0.3} _{+0.1}	38	55.5	ø3 x 18 ℓ	Polished round 12
Y-08C	80	37	36	18	71	M22 x 1.5	19	28	18	28 ^{+0.3} +0.1	55	76.5	ø4 x 25 ℓ	Polished round 18
Y-10C	100	37	40	21	83	M26 x 1.5	21	38	20	30 ^{+0.3} +0.1	61	83	ø4 x 30ℓ	Polished round 20

* Pin and retaining ring are shipped together with double clevis and double knuckle joint.

* Knuckel pin, cotter pins and flat washers are packaged with knuckles.


Clevis Pin/Knuckle Pin

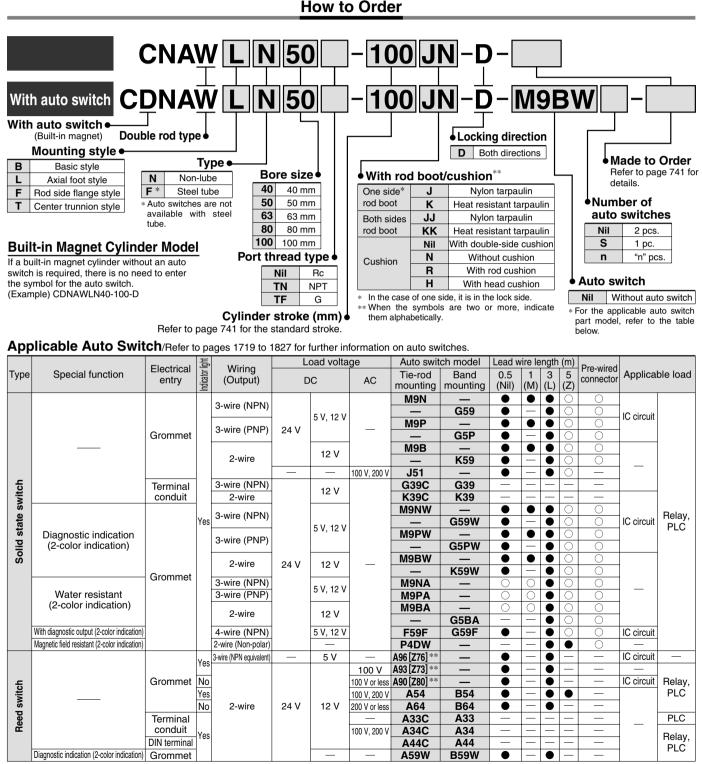
Material: Ca	urbon stee	I							(mm)
Part no.	Applicable I	bore size(mm)	Dd9				d	Applicable	Applicable
Pan no.	Clevis	Knuckle	Dua	L	e	m	Drill through	cotter pin	flat washer
CDP-2A	40	—	$10 {}^{-0.040}_{-0.076}$	46	38	4	3	ø3 x 18 <i>l</i>	Polished round 10
CDP-3A	50	40, 50, 63	12 ^{-0.050} -0.093	55.5	47.5	4	3	ø3 x 18 <i>l</i>	Polished round 12
CDP-4A	63	_	$16 \ _{-0.093}^{-0.050}$	71	61	5	4	ø4 x 25ℓ	Polished round 16
CDP-5A	—	80	18 ^{-0.050} -0.093	76.5	66.5	5	4	ø4 x 25ℓ	Polished round 18
CDP-6A	80	100	20 -0.065 -0.117	83	73	5	4	ø4 x 30 <i>l</i>	Polished round 20
CDP-7A	100	_	25 ^{-0.065} -0.117	88	78	5	4	ø4 x 36 <i>l</i>	Polished round 24

* Cotter pin and flat washer are attached.

I Type Single Knuckle Joint

- A

Mater	Material: Sulfur free-cutting steel											
Part no.	Applicable bore size (mm)	A	A 1	E1	L1	ММ	R1	U1	ND	NX		
I-04	40	69	22	24	55	M14 x 1.5	15.5	20	12 ^{+0.070}	16 ^{-0.1} -0.3		
I-05	50, 63	74	27	28	60	M18 x 1.5	15.5	20	12 ^{+0.070}	16 ^{-0.1} -0.3		
I-08	80	91	37	36	71	M22 x 1.5	22.5	26	18 ^{+0.070}	28 -0.1		
I-10	100	105	37	40	83	M26 x 1.5	24.5	28	20 ^{+0.084}	30 -0.1		


Rod End Nut (Standard equipment)

0

Material: Rolled steel										
Part no.	Applicable bore size (mm)	d	н	В	С	D				
NT-04	40	M14 x 1.5	8	22	25.4	21				
NT-05	50, 63	M18 x 1.5	11	27	31.2	26				
NT-08	80	M22 x 1.5	13	32	37.0	31				
NT-10	100	M26 x 1.5	16	41	47.3	39				

Cylinder with Lock Double Acting, Double Rod Series CNAW ø40, ø50, ø63, ø80, ø100

* Lead wire length symbols: 0.5 m Nil (Example) M9NW

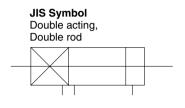
(Example) M9NWM 1 m M 3 m L

Solid state auto switches marked with "O" are produced upon receipt of order. ** D-A9 and D-A9 V cannot be mounted on ø50. Select auto switches in brackets.

(Example) M9NWL

5 m Z (Example) M9NWZ

* Since there are other applicable auto switches than listed, refer to page 751 for details.


* For details about auto switches with pre-wired connector, refer to pages 1784 and 1785

* D-A9□/M9□/M9□W/M9□AL auto switches are shipped together (not assembled). (Only auto switch brackets are assembled at the time of shipment.)

Cylinder with Lock Double Acting, Double Rod Series CNAW

(For details, refer to pages 1844 and 1846.)

Symbol	Specification
—XC14	Change of trunnion pivot bracket mounting position
—XC15	Change of tie-rod length

Refer to pages 746 to 751 for cylinders	with
auto switches.	

- Minimum auto switch mounting stroke
- Proper auto switch mounting position (detection at stroke end) and mounting height
- Operating range
- Switch mounting bracket: Part no.

Specifications

					100						
Bore size (mm)	40	50	63	80	100						
Fluid	Air										
Туре		Non-lube									
Action	Double acting										
Lock operation	Spring locking										
Proof pressure		1.5 MPa									
Max. operating pressure	1.0 MPa										
Min. operating pressure	0.1 MPa										
Piston speed	50 to 1000 mm/s *										
Ambient and	Withou	t auto switc	h: -10 to 70	°C (No free	zing)						
fluid temperature	With au	uto switch:	-10 to 60°	°C (No free	zing)						
Cushion			Air cushion								
Stroke length tolerance	Up to 250: $^{+1.0}_{0}$, 251 to 1000: $^{+1.4}_{0}$, 1001 to 1500: $^{+1.8}_{0}$										
Mounting	Basic style, Axial foot style, Rod side flange style, Center trunnion style										
Load limits exist depending upon p	iston speed wl	nen locked, mo	ounting direction	and operating	pressure.						

Lock Specifications

						CN				
Bore size (mm)	40	50	63	80	100	CL				
Locking action		Spring locking (Exhaust locking)								
Unlocking pressure		0.25 MPa or more								
Lock starting pressure	0.20 MPa or less									
Max. operating pressure		1.0 MPa								
Locking direction		Both directions								
Holding force N	882	1370	2160	3430	5390	М				
Be sure to select cylinders in acco	rdance with the	e procedures or	page 724.			ML				

For cases with auto switches, refer to the table of minimum strokes Standard Stroke for mounting of auto switches Table on pages 748 and 749.

Bore size (mm)	Standard stroke (mm)							
40	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500							
50, 63	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 600							
80, 100	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 600, 700							

* Intermediate strokes other than the above are produced upon receipt of order. Spacers are not used for intermediate strokes.

Stopping Accuracy

				(mm)						
Lock type	Piston speed (mm/s)									
	100	300	500	1000						
Spring locking	±0.3	±0.6	±1.0	±2.0						

Condition: Lateral, Supply pressure P = 0.5 MPa Load mass Upper limit of allowed value

Solenoid valve for locking mounted on the unlocking port

Maximum value of stopping position dispersion from 100 measurements

CNA

ML1C

SMC

Mounting Bracket Part No.

Bore size (mm)	40	50	63	80	100
Foot *	CA1-L04	CA1-L05	CA1-L06	CA1-L08	CA1-L10
Flange	CA1-F04	CA1-F05	CA1-F06	CA1-F08	CA1-F10

 \ast When ordering foot bracket, order 2 pieces per cylinder.

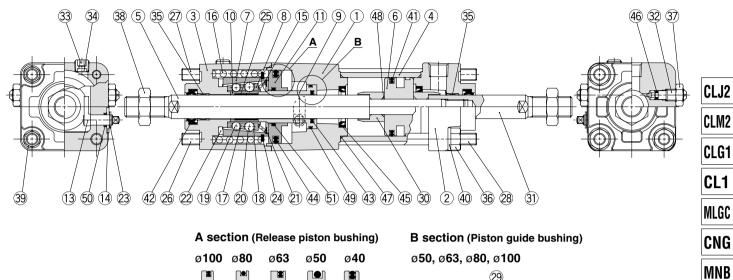
Accessory

	Mounting	Basic style	Foot style	Flange style	Center trunnion style
Standard	Rod end nut	•	•	•	•
equipment	Clevis pin		—	_	
	Single knuckle joint	•	•	•	•
Option	Double knuckle joint (With pin)	•	•	•	•
	With rod boot	•	•	•	•

* Dimensions are same as double acting, single rod type of Series CNA. (Refer to page 738.)

$\ensuremath{\textit{Mass}}\xspace/($): denotes the values for steel tube.

							(kg)
	Bore size (mm)		40	50	63	80	100
	Basic s	style	1.84 (1.89)	2.93 (2.99)	4.34 (4.38)	7.76 (7.92)	11.50 (11.71)
Desis messa	Foot st	yle	2.03 (2.08)	2.97 (3.01)	4.68 (4.72)	8.43 (8.59)	12.49 (12.70)
Basic mass	Flange	style	2.21 (2.26)	3.20 (3.24)	5.13 (5.17)	9.21 (9.37)	13.42 (13.63)
	Trunnio	on style	2.29 (2.39)	3.28 (3.38)	5.23 (5.43)	9.46 (9.75)	13.90 (14.29)
	Aluminum tube	Mounting bracket	0.30	0.40	0.50	0.71	0.92
Additional mass per each 50 mm of stroke	Steel tube	Mounting bracket except trunnion	0.35	0.47	0.55	0.89	1.15
		Trunnion style	0.44	0.58	0.77	1.06	1.35
	Single kr	uckle joint	0.23	0.26	0.26	0.60	0.83
Accessory bracket	Double k	nuckle joint	0.32	0.38	0.38	0.73	1.08
	Knuckle	pin	0.05	0.05	0.05	0.14	0.19


Calculation: (Example) CNAWLN40-100-D

Rod Boot Material

Symbol	Rod boot material	Max. ambient temperature		
J	Nylon tarpaulin	70°C		
К	Heat resistant tarpaulin	110°C *		
A Maria da a constructiona de la construction de la construcción de la	La service a service service a service	16		

 \ast Maximum ambient temperature for the rod boot itself.

Construction

12

Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Black painted after hard anodized
2	Rod cover	Aluminum alloy	Black painted
3	Cover	Aluminum alloy	Black painted after chromated
4	Cylinder tube	Aluminum alloy	Hard anodized
5	Piston rod A	Carbon steel	Hard chrome plated
6	Piston	Aluminum alloy	Chromated
7	Taper ring	Carbon steel	Heat treated
8	Ball retainer	Special resin	
9	Piston guide	Carbon steel	Zinc chromated
10	Brake shoe holder	Special steel	Heat treated
11	Release piston	Aluminum alloy	Hard anodized (ø40, ø50, ø63) Chromated (ø80, ø100)
12	Release piston bushing	Steel + Special resin	
13	Unlocking cam	Chromium molybdenum steel	Zinc chromated
14	Washer	Carbon steel	Black zinc chromated
15	Retainer pre-load spring	Stainless steel wire	
16	Brake spring	Steel wire	Zinc chromated
17	Clip A	Stainless steel	
18	Clip B	Stainless steel	
19	Steel ball A	Carbon steel	
20	Steel ball B	Carbon steel	
21	Tooth ring	Stainless steel	
22	Bumper	Polyurethane rubber	
23	Type C retaining ring for unlocking cam shaft	Carbon steel	
24	Type C retaining ring for taper ring	Carbon steel	
25	Brake shoe	Special friction material	
26	Unit holding tie-rod A	Carbon steel	Chromated
27	Unit holding tie-rod B	Carbon steel	Chromated
28	Tie-rod	Carbon steel	Chromated
29	Bushing	Copper alloy	
30	Cushion ring	Rolled steel plate	Zinc chromated
31	Piston rod B	Carbon steel	Hard chrome plated

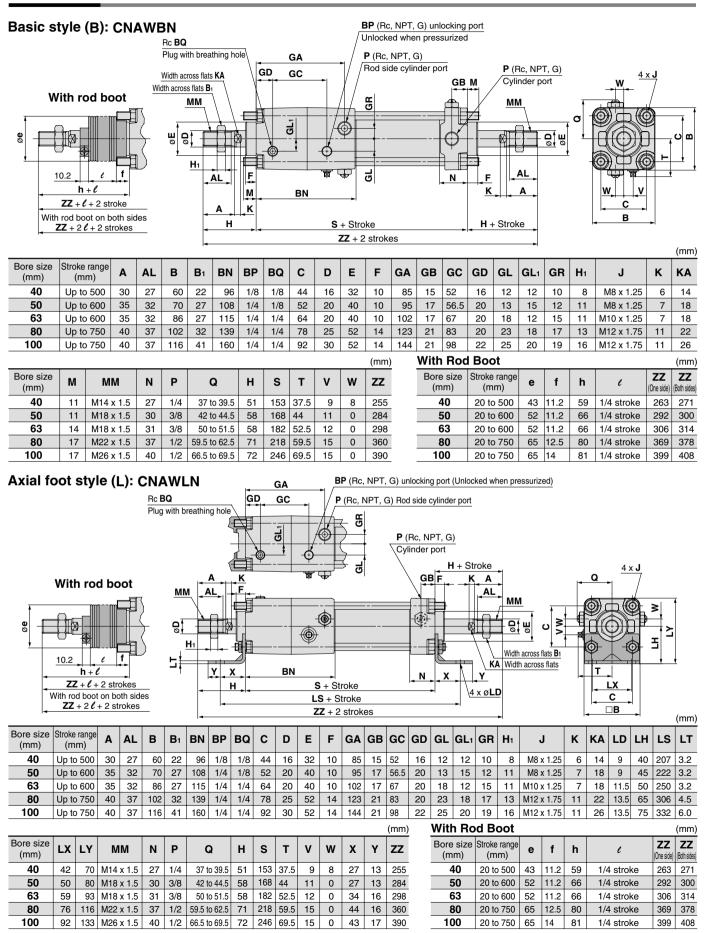
Component Parts

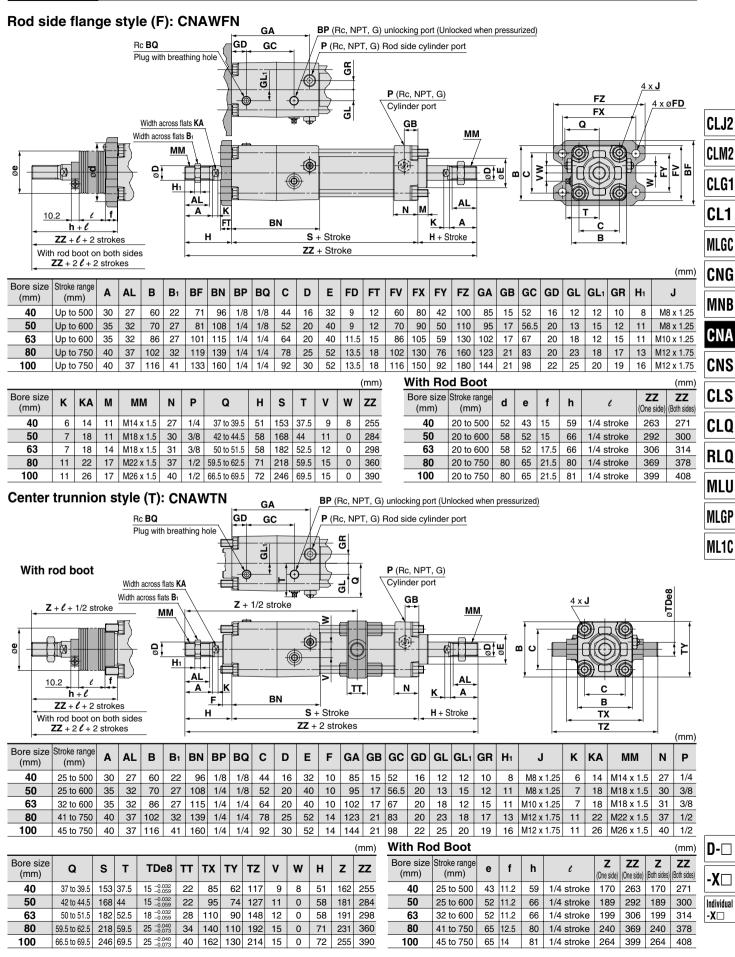
No.	Description	Material	Note							
32	Cushion valve	Rolled steel plate	Electroless nickel plated							
33	Hexagon socket head plug	Chromium molybdenum steel	Black zinc chromated							
34	Element	Bronze								
35	Bushing	Copper alloy								
36	Tie-rod nut	Carbon steel	Black zinc chromated							
37	Lock nut	Carbon steel	Nickel plated							
38	Rod end nut	Carbon steel	Nickel plated							
39	Spring washer	Steel wire	Black zinc chromated							
40	Spring washer	Steel wire	Black zinc chromated							
41	Piston seal	NBR								
42	Rod seal A	NBR								
43	Rod seal B	NBR								
44	Release piston seal	NBR								
45	Cushion seal	NBR								
46	Cushion valve seal	NBR								
47	Tube gasket	NBR								
48	Piston gasket	NBR								
49	Piston guide gasket	NBR								
50	Unlocking cam gasket	NBR								
51	O-ring	NBR								

Replacement Parts/Seal Kit

Bore size (mm)	Kit no.	Contents
40	CA1WN 40A-PS	
50	CA1WN 50A-PS	
63	CA1WN 63A-PS	Including no. (4) , (4) , (4) and (4) .
80	CA1WN 80A-PS	
100	CA1WN100A-PS	

* Since the lock section for Series CNA is normally replaced as a unit, kits are for the cylinder section only. These can be ordered using the order number for each bore size.

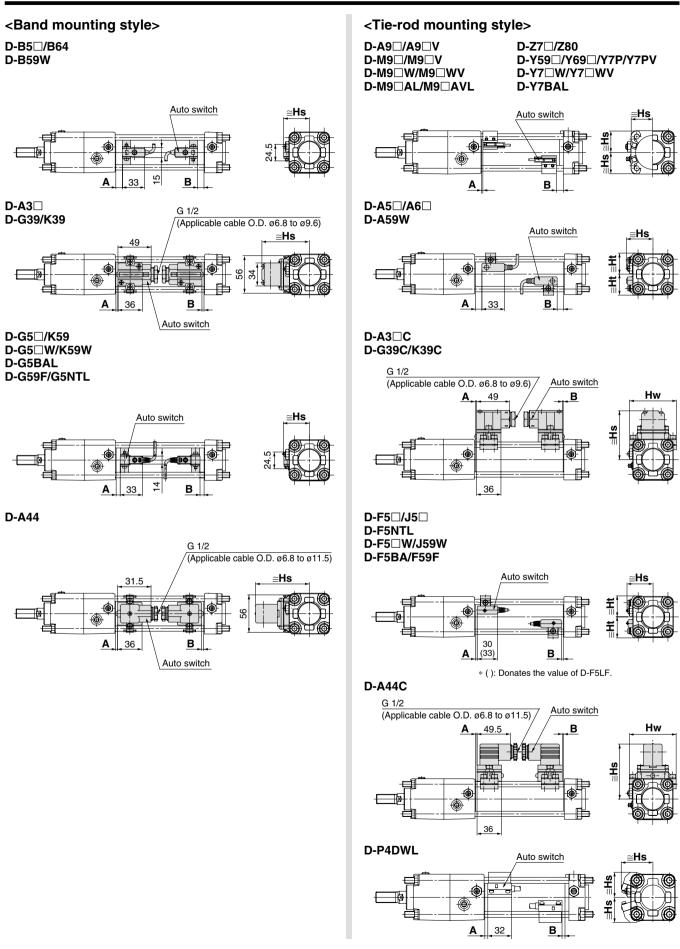

* Seal kit includes a grease pack (ø40 and ø50: 10 g, ø63 and ø80: 20 g, ø100: 30 g). Order with the following part number when only the grease pack is needed. Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g) **D**-□


-X□

Individual

-X□

Dimensions



∂SMC

745

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

Auto switch model	D-A D-A	9□ 9□V	D-M9	₽□V	D-Z D-Z D-Y D-Y D-Y D-Y	280 /59□ /69□	v	D-P4	DWL		D-A5[D-A6[D-A3] D-A3[D-A44 D-A44 D-G39 D-G39 D-G39 D-K39		D-E D-E	35□ 364	D-F5 D-J5 D-F5 D-F5 D-J5 D-F5	i⊡ i9F i⊡W i9W	D-(D-(D-(D-(G59F G5 () K59V G5 () G5 () K59 G5 () G5 ()	W V AL	D-A	59W	[D-F51	NTL	CLJ2
ore					D-Y	7BAI	L				D-K39														CLM
ze (mm)	Α	В	Α	В	Α	B	_	Α	В	-	A	В	Α	В	Α	В	A		В	Α	В	_	A	В	ULINI
40 50	6	4	10	8	3.5 3.5		1.5	3	1	0	_	0	0.5	0	6.5 6.5	4.5 4.5	2	0		4	2		1.5 1.5	9.5 9.5	CLG
63	8.5	7.5	12.5	11.5	6	5	-	5.5	4	2	2.5	1.5	3	2	9	8	4.5	-	3.5	6.5	5.5		-	13	
80	12	10	16	14	9.5	5 7	7.5	9	7	6	;	4	6.5	4.5	4.5	12.5	8	6	3	10	8	1	7.5	15.5	CL1
		40 -	17.5	16.5	11	10	, ,	10.5	9	7	.5	6.5	8	7	14	13	9.5	5 8	3.5	11.5	10.5	5 1	9	18	MI CO
100 D-A9 and D ong stroke is	s availat	ole only	be mour for foot	nted on ø style and	950. I rod sic	de flanç	nge sty																	,	
-A9 and D ong stroke is Adjust the uto Swi Auto switch model	D-A9 s availat e auto s itch I D-A9 D-M9 D-M9	cannot ble only witch a Moun	be mour for foot fter confi	Heig	550. I rod sid e opera ht V I WV I	de flang ating cc D-Z7 D-Z80 D-Y59 D-Y7F	nge sty onditio		the actu D□ PV [etting.	D-B5 D-B64 D-B59 D-G5 D-K59 D-G5	∓ ƏW ⊐ ƏNTL	D-A3□ D-G39 D-K39		A44	D-A8 D-A8	50	D-F5 D-J5 D-F5 D-J5	59 5⊡W 59W	D-A3 D-G3 D-K3	39C	D-A	(mm) 444C	MLG CN MNI CN/
-A9⊟ and D ong stroke is te) Adjust the uto Switch model ore	D-A9 V s availat e auto s itch I D-A9 D-A9 D-M9 D-M9 D-M9	Cannot ble only witch a MOUI	be mour for foat fitter confi nting	D-M9C D-M9C D-M9C D-M9C	b50. I rod sic e opera ht V IV IV IV IAVL	de flanç ating co D-Z7[D-Z80 D-Y59 D-Y7F D-Y7[D-Y7E	nge sty onditio 0 9 9 P BAL	D-Y69 D-Y7P D-Y7P D-Y7	9⊡ PV ⊇WV	D-P4I	DWL	D-B64 D-B59 D-G50 D-K59 D-G50 D-G50 D-K59 D-G58 D-G59	↓ → → → → → → → → → → → → →	D-G39 D-K39	D-/	A44	D-A8 D-A8	5⊐ 59W	D-J5 D-F5 D-J5 D-F5 D-F5 D-F5	9 5⊡W 9W BAL 9F NTL	D-G: D-K:	39C 39C		44C	CN(MNI CN/ CNS
-A9 and D ong stroke is te) Adjust the uto Switch model Dre ze (mm)	D-A9 V s availat e auto s itch I D-A9 D-M9 D-M9 D-M9 D-M9 Hs	Cannot ble only witch a MOUI W W AL Ht H	be mour for foot fter confi nting 0-A9 V	Heig D-M9[D-M9] D-M9[D-M9] Hs	50. I rod sid e opera ht V WV AVL	de flang ating cc D-Z7 D-Z80 D-Y59 D-Y7E D-Y7E Hs	nge sty onditio 0 9 9 P BAL Ht	D-Y69 D-Y7P D-Y7P D-Y7	PV PV WV	D-P4I	DWL	D-B64 D-B59 D-G50 D-K59 D-G50 D-G50 D-K59 D-G59 D-G59 Hs	↓ → → → → → → → → → → → → →	D-G39 D-K39 Hs	D-,	A44 Is	D-AG D-AS	S⊡ 59W Ht	D-J5 D-F5 D-F5 D-F5 D-F5 Hs	9 5⊡W 9W BAL 9F NTL Ht	D-G: D-K3 Hs	39C 39C Hw	Hs	44C	CN MN CN CL CL
A9□ and D ong stroke is te) Adjust the uto Switch model Dre ze (mm) 40	D-A9 V s availat e auto s itch I D-A9 D-M9 D-M9 D-M9 D-M9 D-M9 30	Cannot ble only witch a MOUI W AL Ht H 30 3	D-A9 V	D-M9[D	b 50. t rod sic e opera ht V WV AVL I I I I I I I I I I I I I	de flang ating co D-Z7 D-Z80 D-Y59 D-Y7F D-Y7F D-Y7E D-Y7E 30 (nge sty oonditio 0 9 P BAL Ht 30	D-Y69 D-Y7P D-Y7P D-Y7 Hs 30.5	PV DV DV DV DV DV DV DV DV DV DV DV DV DV	D-P4 Hs 43	DWL Ht 33.5	D-B64 D-B59 D-G5 D-K59 D-G55 D-G55 D-G59 Hs 38	↓ → → NTL → W → W → BAL → F 	D-G39 D-K39 Hs 72.5	D-,	A44 Is 0.5	D-A6 D-A5 Hs 40	59W Ht	D-J5 D-F5 D-F5 D-F5 D-F5 Hs 38.5	9 5⊡W 59W BAL 59F 50F 50TL 11 11 11 11 11	D-G: D-K: Hs 73	39C 39C Hw 69	Hs 81	44C	CN MN CN CN
-A9□ and D ong stroke is te) Adjust the uto Switch model Dre ze (mm)	D-A9 V s availat e auto s itch I D-A9 D-M9 D-M9 D-M9 D-M9 D-M9 30 34	Cannot ble only witch a MOUI W AL Ht H 30 3 34 3	be mour for foot fter confi nting 0-A9 V	Heig D-M9 D-M9 D-M9 D-M9 Hs 35	Ht 30 (34 (30 (34 (50. 10. 10. 10. 10. 10. 10. 10. 1	de flang ating co D-Z7[D-Z80 D-Y59 D-Y7E D-Y7E Hs 30 34	nge sty onditio 0 9 9 P BAL Ht	D-Y69 D-Y7P D-Y7P D-Y7□ Hs 30.5 35	PV PV WV	D-P4I	DWL	D-B64 D-B59 D-G50 D-K59 D-G50 D-G50 D-K59 D-G59 D-G59 Hs	↓ → → → → → → → → → → → → →	D-G39 D-K39 Hs	D-,	A44 Is 0.5 66	D-AG D-AS	S⊡ 59W Ht	D-J5 D-F5 D-F5 D-F5 D-F5 Hs	9 5⊡W 9W BAL 9F NTL Ht	D-G: D-K3 Hs	39C 39C Hw	Hs	Hw 69 77	CN MN CN CL CL CL
-A9□ and D ong stroke is te) Adjust the uto Switch model Dre ze (mm) 40 50	D-A9 V s availat e auto s itch I D-A9 D-M9 D-M9 D-M9 D-M9 D-M9 D-M9 D-M9	cannot ca	be mour for foot fter confi nting 0-A9 V 1s Ht 2 30 6.5	D-M9 D-M9 D-M9 D-M9 D-M9 D-M9 D-M9 Hs 35 35 39 46	a50. 1 rod sic e opera ht V WV AVL I 30 34 41	D-Z7[D-Z80 D-Z90 D-Z90 D-Z90 D-Y7E Hs 30 34 41	nge sty onditic 0 9 9 P W BAL Ht 30 34	D-Y69 D-Y7P D-Y7P D-Y7⊂ Hs 30.5 35 42.5		D-P4 Hs 43 47	DWL Ht 33.5 38	D-B64 D-B59 D-G5 D-K59 D-G5 D-G59 D-G59 Hs 38 43.5	↓ → → → → → → → → → → → → →	D-G39 D-K39 Hs 72.5 78	D -,	A44 Is 0.5 6 3	D-A8 D-A8 Hs 40 43.5	59W Ht 31 35	D-J5 D-F5 D-F5 D-F5 D-F5 B-F5 A-F5 D-F5 A-F5 D-F5 D-F5 D-F5 D-F5 D-F5 D-F5 D-F5 D	9 5 □ W 9 W 8 AL 5 9 F 5 NTL 31 35	D-G: D-K: Hs 73 78.5	Hw 69 77	Hs 81 86.5	Hw 69 77	CN MN CN CL CL

Minimum Stroke for Auto Switch Mounting

Auto available model Number of auto witchine models, barrie surface, n Number of auto burne surface, n Numer of auto burne surface, n Number o							n: Number of au	ito switch (mm)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Auto switch model			a10	a 50	Center trunnion	a 90	a100	
$ \begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				040	050	003	000	0100	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			15	75		90	100	110	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D-A9□		$15 + 40 \frac{(n-2)}{2}$	$75 + 40 \frac{(n-4)}{2}$	—	$90 + 40 \frac{(n-4)}{2}$	$100 + 40 \frac{(n-4)}{2}$	$110 + 40 \frac{(n-4)}{2}$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		n							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D-A9□V	Jame Sunace), 1	(n - 2)	— — — — — — — — — —		(n - 4)	(n - 4)	(n - 4)	
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline 100 100 100 100 110 115 100 115 100 100 100 110 100 115 100 $100$$		n	2	2		2	2	ے ا	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2 (Different ourfaces		(11 = 4, 8, 12, 16 ···)		(11 = 4, 8, 12, 16 ···)	(11 = 4, 8, 12, 16 ···)	(1 = 4, 8, 12, 10 ···)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	(15	-	-			-	
Low (in = 2, 4, 6, 8,) (n = 2, 4, 6, 8,) (n = 4, 8, 12, 16)	-	n	$15 + 40 \frac{(n-2)}{2}$	80 + 40	$\frac{(n-4)}{2}$	$95 + 40 \frac{(n-4)}{2}$	$110 + 40 \frac{(n-4)}{2}$	$115 + 40 \frac{(n-4)}{2}$	
$ \begin{array}{ c c c c c c } \hline D-M9 \\ \hline D-M9 \\ \hline D-M9 \\ \hline D-M9 \\ \hline M $			$(n = 2, 4, 6, 8 \cdots)$	(n = 4, 8,	12, 16 …)	(n = 4, 8, 12, 16 ···)	(n = 4, 8, 12, 16 ···)	(n = 4, 8, 12, 16 ···)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D-M9⊡V		10	8	0	95	110	115	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-		10 · 00 (n-2)		(n – 4)	05 · 00 (n - 4)	110 · 00 (n - 4)	115 . 00 (n - 4)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D-M9□AVL	n	2		2		<u> </u>	2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2 (Different surfaces		(11 = 4, 8,	12, 10)			(11 = 4, 0, 12, 10)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			15		90		-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D-F5□W/J59W	n (Same surface)	$15 + 55 \frac{(n-2)}{2}$	90 + 55	$\frac{(n-4)}{2}$	$100 + 55 \frac{(n-4)}{2}$	$110 + 55 \frac{(n-4)}{2}$	$120 + 55 \frac{(n-4)}{2}$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D-F5BAL/F59F	n (bane sundee)	(n = 2, 4, 6, 8····)	(n = 4, 8,	12, 16)	(n = 4, 8, 12, 16 ···)	(n = 4, 8, 12, 16····)	(n = 4, 8, 12, 16 ···)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			20		90	100	110	120	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D-A59W		$20 + 55 \frac{(n-2)}{2}$	90 + 55	$\frac{(n-4)}{2}$	$100 + 55 \frac{(n-4)}{2}$	$110 + 55 \frac{(n-4)}{2}$	$120 + 55 \frac{(n-4)}{2}$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		n (Same surface)	-	E		-		-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$, , , , , , , , , , , , , , , , , , ,	25	110		120	130	140	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D-F5NTL		$25 + 55 \frac{(n-2)}{2}$	$110 + 55 \frac{(n-4)}{2}$		$120 + 55 \frac{(n-4)}{2}$	$130 + 55 \frac{(n-4)}{2}$	$140 + 55 \frac{(n-4)}{2}$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		n (Same surface)	-		-	-	-	-	
D-G5D/K59 D-G5DW D-K59W D-K59W D-G5BAL D-G5BAL D-G5BAL D-G5BAL D-G59F D-G5NTL Same surface 75 75 90 + 50 $\frac{(n-4)}{2}$ $(n = 2, 4, 6, 8, \cdots)$ 100 + 50 $\frac{(n-4)}{2}$ $(n = 4, 8, 12, 16, \cdots)$ 110 + 50 $\frac{(n-4)}{2}$ $(n = 4, 8, 12, 16, \cdots)$ D-G5BAL D-G59F D-G59F D-G59TL 1 10 90 + 50 $(n-2)$ $(n = 2, 4, 6, 8, \cdots)$ 100 + 50 $(n-2)$ $(n = 2, 4, 6, 8, \cdots)$ 110 + 50 $\frac{(n-4)}{2}$ $(n = 2, 4, 6, 8, \cdots)$ 110 + 50 $\frac{(n-4)}{2}$ $(n = 2, 4, 6, 8, \cdots)$ 110 + 50 $\frac{(n-2)}{2}$ $(n = 2, 4, 6, 8, \cdots)$ 90 100 110 n $\frac{1}{2}$ $\frac{10}{2}$ $\frac{10}{2}$ $\frac{90 + 50 \frac{(n-4)}{2}}{2}$ $90 + 50 \frac{(n-4)}{2}$ 100 + 50 \frac{(n-4)}{2} $100 + 50 \frac{(n-4)}{2}$ 110 + 50 \frac{(n-4)}{2} $110 + 50 \frac{(n-4)}{2}$ D-B59W $\frac{1}{n}$ $\frac{1}{10}$ $\frac{90 + 50 \frac{(n-4)}{2}}{(n = 2, 4, 6, 8, \cdots)}$ $\frac{100 + 50 \frac{(n-4)}{2}}{(n = 2, 4, 6, 8, \cdots)}$ $\frac{100 + 50 \frac{(n-4)}{2}}{(n = 4, 8, 12, 16, \cdots)}$ $\frac{100 + 50 \frac{(n-4)}{2}}{(n = 4, 8, 12, 16, \cdots)}$ $\frac{100 + 50 \frac{(n-4)}{2}}{(n = 2, 4, 6, 8, \cdots)}$ $\frac{100 + 50 \frac{(n-4)}{2}}{(n = 2, 4, 6, 8, \cdots)}$ $\frac{100 + 50 \frac{(n-4)}{2}}{(n = 2, 4, 6, 8, \cdots)}$ $\frac{100 + 50 \frac{(n-4)}{2}}{(n = 2, 4, 6, 8, \cdots)}$ $\frac{100 + 50 \frac{(n-4)}{2}}{(n = 2, 4, 6, 8, \cdots)}$ $\frac{100 + 50 \frac{(n-4)}{2}}{(n = 2, 4, 6, 8, \cdots)}$ $\frac{100 + 50 \frac{(n-4)}{2}}{(n = 2, 4, 6, 8, \cdots)}$ $\frac{100 + 50 \frac{(n-4)}{2}}{(n = 2, 4, 6, 8, \cdots)}$ $\frac{100 + 50 \frac{(n-4)}{2}$		2 Different surfaces				100			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Same surface						-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Different surfaces	$15 + 50 \frac{(n-2)}{2}$	90 + 50	$\frac{(n-4)}{2}$	$100 + 50 \frac{(n-4)}{2}$	110 + 50	$\frac{(n-4)}{2}$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		n	(n = 2, 4, 6, 8, …)				(n = 4, 8,	12, 16…)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Same surface	()		()			· · · ·	
$ \textbf{D-B59W} \qquad \begin{array}{ c c c c c c c } \hline 2 & \frac{\text{Different surfaces}}{\text{Same surface}} & 20 & 90 & 100 & 110 & 110 & 10$	D-G5NTL	1					• • • •	,	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Different surfaces	-					-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2 Same surface	75		90	100	1	0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Different surfaces	$20 + 50 \frac{(n-2)}{2}$	90 + 50	$\frac{(n-4)}{2}$	$100 + 50 \frac{(n-4)}{2}$	110 + 50	$\frac{(n-4)}{2}$	
$ \begin{array}{ c c c c c c c c } \hline Same \ surface & 75 + 50 \ (n - 2) \\ (n = 2, 3, 4, \cdots) & (n = 2, 4, 6, 8, \cdots) \\ \hline 1 & 15 & 90 & 100 & 110 \\ \hline 1 & 15 & 90 & 100 & 110 \\ \hline 1 & 15 & 90 & 100 & 110 \\ \hline 1 & 15 & 90 & 100 & 110 \\ \hline 1 & 10 & 100 & 100 & 110 \\ \hline 1 & 10 & 100 & 100 & 110 \\ \hline 1 & 10 & 100 + 30 \ (n - 2) & (n = 2, 4, 6, 8, \cdots) & (n$	D-B59W			(n = 4, 8,	12, 16, …)	-	(n = 4, 8,	12, 16, …)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$. ,			· /	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				· · ·					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					90	100	1	0	
D-A3 Different surfaces $35 + 30 (n - 2) (n = 2, 3, 4, \cdots)$ $100 + 30 (n - 2) (n = 2, 4, 6, 8, \cdots)$ $110 + 30 (n - 2) (n = 2, 4, 6, 8, \cdots)$ D-G39 D-K39 n $100 + 100 (n - 2) (n = 2, 4, 6, 8, \cdots)$ $100 + 100 (n - 2) (n = 2, 4, 6, 8, \cdots)$ $(n = 2, 4, 6, 8, \cdots)$ $(n = 2, 4, 6, 8, \cdots)$ Same surface $100 + 100 (n - 2) (n = 2, 3, 4, \cdots)$ $100 + 100 (n - 2) (n = 2, 4, 6, 8, \cdots)$ $100 + 100 (n - 2) (n = 2, 4, 6, 8, \cdots)$ $(n = 2, 4, 6, 8, \cdots)$ 1 10 100 100 110 2 Different surfaces 35 100 100 110		2		10	00	100	11	0	
D-G39 D-K39 n $(n = 2, 3, 4, \cdots)$ $(n = 2, 4, 6, 8, \cdots)$ $(n = 2, 4, 6, 8, \cdots)$ $(n = 2, 4, 6, 8, \cdots)$ $D-K39$ $n = 2, 4, 6, 8, \cdots$ $(n = 2, 3, 4, \cdots)$ $(n = 2, 4, 6, 8, \cdots)$ $(n = 2, 4, 6, 8, \cdots)$ $D-K39$ $D-K39$ $100 + 100 (n - 2)$ $100 + 100 (n - 2)$ $100 + 100 (n - 2)$ $n = 2, 4, 6, 8, \cdots$ $(n = 2, 3, 4, \cdots)$ $(n = 2, 4, 6, 8, \cdots)$ $(n = 2, 4, 6, 8, \cdots)$ 1 10 100 100 $(n = 2, 4, 6, 8, \cdots)$ 1 10 100 100 110 2 Different surfaces 35 100 100 110	D-A3□	Different surfaces	35 + 30 (n - 2)	100 + 3	0 (n – 2)	100 + 30 (n - 2)	110 + 30	D (n – 2)	
D-K39 Same surface $100 + 100 (n - 2) (n = 2, 3, 4, \cdots)$ $100 + 100 (n - 2) (n = 2, 4, 6, 8, \cdots)$ $100 + 100 (n - 2) (n = 2, 4, 6, 8, \cdots)$ 1 10 100 100 110 2 Different surfaces 35 100 100 110	D-G39		(n = 2, 3, 4, ···)						
1 10 100 100 110 2 Different surfaces 35 100 100 110	D-K39	Same surface			. ,			· · · ·	
2 Different surfaces 35 100 100 110		1							
Same surface 55		Different surfaces							
		Same surface							
Define the surfaces $35 + 30 (n - 2)$ $100 + 30 (n - 2)$ $100 + 30 (n - 2)$ $110 + 30 (n - 2)$ $110 + 30 (n - 2)$ $(n - 2) 4 6 8 w)$	D 444	Different surfaces			. ,				
D-A44 n $n = 2, 3, 4, \cdots$ (n = 2, 4, 6, 8,) (n = 2, 4, 6, 8,	D-A44								
Same surface $33 + 30 (n-2)$ $100 + 30 (n-2)$ $100 + 30 (n-2)$ $100 + 30 (n-2)$ $(n = 2, 3, 4, \cdots)$ $(n = 2, 4, 6, 8, \cdots)$ $(n = 2, 4, 6, 8, \cdots)$ $(n = 2, 4, 6, 8, \cdots)$		Same surface	. ,		. ,			· · ·	
1 10 100 100 110		1							

Minimum Stroke for Auto Switch Mounting

						O and an transition	n: Number of au	uto switch (mm
Auto switch model		Number of auto	Mounting brackets			Center trunnion		
	s		other than center trunnion	ø 40	ø 50	ø 63	ø 80	ø100
	2	Different surfaces	20	1(00	100	12	20
	⊢	Same surface	100		= ()	(00.05(.0)	120 + 35 (n - 2)	
D-A3□C D-G39C		Different surfaces	20 + 35 (n - 2)			100 + 35 (n - 2)		. ,
D-G39C D-K39C	n		$(n = 2, 3, 4, \cdots)$			$(n = 2, 4, 6, 8, \cdots)$	(n = 2, 4	
D-K39C		Same surface	100 + 100 (n – 2)		00 (n – 2)	100 + 100 (n - 2)	120 + 10	· · · ·
	⊢	1	$(n = 2, 3, 4, 5 \cdots)$ 10		, 6, 8, …) 00	(n = 2, 4, 6, 8, ···) 100	(n = 2, 4	, 6, 8, ···) 20
	-	Different surfaces	20	10	00	100	14	20
	2		20 55	10	00	100	12	20
	\vdash	Same surface	55 20 + 35 (n – 2)	100 - 0	E (m. 0)	100 + 25 (2 - 0)	120 + 3	E (n 0)
D-A44C		Different surfaces	20 + 35 (n - 2) (n = 2, 3, 4,)		5 (n – 2) , 6, 8, …)	100 + 35 (n - 2) (n = 2, 4, 6, 8,)	(n = 2, 4	()
D-A44C	n		(1 = 2, 3, 4, ···) 55 + 50 (n - 2)		0 (n – 2)	(1 = 2, 4, 0, 3,) 100 + 50 (n - 2)	120 + 5	· · · · · · · · · · · · · · · · · · ·
		Same surface	$(n = 2, 3, 4, \cdots)$		- ()	$(n = 2, 4, 6, 8, \cdots)$		- \ /
	⊢	1	10	(n = 2, 4, 6, 8, ···) 100		100	(n = 2, 4, 6, 8, ···) 120	
	21	Different surfaces,	10			100	12	
D-Z7□/Z80		Same surface), 1	15	80	85	90	95	105
D-Y59□/Y7P	⊢		(n - 2)		$85 + 40 \frac{(n-4)}{2}$		n – 4)	
D-Y7⊟W		n	$15 + 40 \frac{(n-2)}{2}$	2	<u> </u>	<u> </u>	$95 + 40 \frac{(n-4)}{2}$	_ _
			(n = 2, 4, 6, 8 ···)	(n = 4, 8, 12, 16 ···)	(n = 4, 8, 12, 16 ···)	(n = 4, 8, 12, 16 ···)	(n = 4, 8, 12, 16 ···)	(n = 4, 8, 12, 16 ···)
		Different surfaces,	10		65	75	80	90
D-Y69□/Y7PV	<u> </u>	Same surface), 1						
D-Y7□WV		-	$10 + 30 \frac{(n-2)}{2}$	65 + 30	$\frac{(n-4)}{2}$	$75 + 30 \frac{(n-4)}{2}$	$80 + 30 \frac{(n-4)}{2}$	$90 + 30 \frac{(n-4)}{2}$
		n	(n = 2, 4, 6, 8···)	(n = 4, 8,	2	(n = 4, 8, 12, 16 ···)		_ _
	21	Different surfaces,			. ,			
		Same surface), 1	20		95	100	105	110
D-Y7BAL			$20 + 45 \frac{(n-2)}{2}$	95 + 45	. (n – 4)	100 · 45 (n-4)	$105 + 45 \frac{(n-4)}{2}$	110 · 45 (n-4)
		n	2		2	2		_ <u>~</u>
			(n = 2, 4, 6, 8···)	(n = 4, 8,	12, 16…)	(n = 4, 8, 12, 16 ···)	(n = 4, 8, 12, 16 ···)	(n = 4, 8, 12, 16····)
		Different surfaces, Same surface), 1	15	1:	20	130	1	40
D-P4DWL	\vdash	same sunace), 1						<i>(</i>
		n	$15 + 65 \frac{(n-2)}{2}$	120 + 6	$5 \frac{(n-4)}{2}$	$130 + 65 \frac{(n-4)}{2}$	140 + 6	$5 \frac{(n-4)}{2}$
			(n = 2, 4, 6, 8···)	(n = 4 8	12, 16)	(n = 4, 8, 12, 16···)		

D- □
-X □
Individual -X□

Operating Range

Auto switch model		Bore	e size (ı	nm)	
Auto switch model	40	50	63	80	100
D-A9□/A9□V	7	—	9	9	9
D-M9 //M9 V D-M9 W/M9 WV D-M9 AL/M9 AVL	4.5	5	5.5	5	6
D-Z7□/Z80	8	7	9	9.5	10.5
D-A3□/A44 D-A3□C/A44C D-A5□/A6□ D-B5□/B64	9	10	11	11	11
D-A59W	13	13	14	14	15
D-B59W	14	14	17	16	18
D-Y59□/Y69□ D-Y7P/Y7□V D-Y7□W/Y7□WV D-Y7BAL	8	7	5.5	6.5	6.5

					(mm)
Auto switch model	Bore size (mm)				
Auto Switch model	40	50	63	80	100
D-F5□/J5□/F59F D-F5□W/J59W D-F5BAL/F5NTL	4	4	4.5	4.5	4.5
D-G5□/K59/G59F D-G5□W/K59W D-G5NTL/G5BAL	5	6	6.5	6.5	7
D-G39/K39 D-G39C/K39C	9	9	10	10	11
D-P4DWL	4	4	4.5	4	4.5

 * D-A9□ and D-A9□V cannot be mounted on ø50.
 * Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately ±30% dispersion.) There may be the case it will vary substantially depending on an embedded of the substantial substantial substa ambient environment.

Auto Switch Mounting Bracket Part No.

<Tie-rod Mounting>

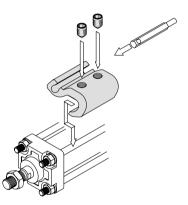
Auto switch model	Bore size (mm)					
Auto switch model	ø 40	ø 50	ø 63	ø 80	ø 100	
D-A9□/A9□V D-M9□/M9□V D-M9□W/M9□WV D-M9□AL/M9□AVL	BA7-040	BA7-040	BA7-063	BA7-080	BA7-080	
D-A5□/A6□/A59W D-F5□/J5□/F5□W/J59W D-F5NT/F5BAL/F59F	BT-04	BT-04	BT-06	BT-08	BT-08	
D-A3 C/A44C/G39C/K39C	BA3-040	BA3-050	BA3-063	BA3-080	BA3-100	
D-Z7□/Z80 D-Y59□/Y69□ D-Y7P/Y7PV D-Y7□W/Y7□WV D-Y7BAL	BA4-040	BA4-040	BA4-063	BA4-080	BA4-080	
D-P4DWL	BAP2-040	BAP2-040	BAP2-063	BAP2-080	BAP2-080	

<Band Mounting>

Auto switch model	Bore size (mm)					
Auto Switch model	ø 40	ø 50	ø 63	ø 80	ø 100	
D-A3□/A44/G39/K39	BD1-04M	BD1-05M	BD1-06M	BD1-08M	BD1-10M	
D-B5□/B64/B59W D-G5□/K59/G5□W/K59W D-G5BAL/G59F/G5NTL	BA-04	BA-05	BA-06	BA-08	BA-10	

* D-A9 and D-A9 V cannot be mounted on ø50.

Auto switch mounting bolt is attached to D-A3 C/A44C/G39C, and K39C. To order, indicate as shown below, according to the cylinder size.
 (Example) ø40: D-A3 C-4, ø50: D-A3 C-5 ø63: D-A3 C-6, ø80: D-A3 C-8, ø100: D-A3 C-10 To order the auto switch mounting brackets separately, use the part number shown above.


[Mounting screw set made of stainless steel]

The following set of mounting screws made of stainless steel (including nuts) is available. Use it in accordance with the operating environment. (Please order the auto switch mounting bracket and band separately, since it is not included.)

BBA1: For D-A5/A6/F5/J5 types

BBA3: For D-B5/B6/G5/K5 types D-H5BAL/G5BAL auto switches are set on the cylinder with the stainless steel screws above when shipped. When an auto switch is shipped independently, BBA1 or BBA3 is attached.

Note 1) Refer to pages 1813 and 1821 for the details of BBA1 and BBA3. Note 2) When using D-M9_AL and D-M9_AVL/Y7BAL, do not use the steel set screws which is included with the auto switch mounting brackets above (BA7-____, BA4-___). Order a stainless steel screw set (BBA1) separately, and select and use the M4 x 6L stainless steel set screws included in the BBA1.

• The above figure shows the mounting example of D-A9 (V) /M9 (V) /M9 W (V) / M9 A (V) L.

A	NA 1.1			
Auto switch type	Model	Electrical entry (Fetching direction)	Features	
	D-A93V, A96V	Grommet (Perpendicular)		
Read	D-A90V		Without indicator light	
nouu	D-A53, A56, B53, Z73, Z76	Grommet (In-line)		
	D-A67, Z80	Grommer (m-inte)	Without indicator light	
	D-M9NV, M9PV, M9BV		_	
	D-Y69A, Y69B, Y7PV			
	D-M9NWV, M9PWV, M9BWV	Grommet (Perpendicular)		
	D-Y7NWV, Y7PWV, Y7BWV		Diagnostic indication (2-color indication	
	D-M9NAVL, M9PAVL, M9BAVL		Water resistant (2-color indication)	
Solid state	D-Y59A, Y59B, Y7P		-	
Solid State	D-F59, F5P, J59			
	D-Y7NW, Y7PW, Y7BW		Disgnastic indication (2 color indication	
	D-F59W, F5PW, J59W	Grommet (In-line)	Diagnostic indication (2-color indication	
	D-F5BAL, Y7BAL		Water resistant (2-color indication)	
	D-F5NTL, G5NTL]	With timer	
	D-P5DWL	1	Magnetic field resistant (2-color indication	

I t With pre-wired connector is available for solid state auto switches. For details, refer to pages 1744 and 1785.
 Normally closed (NC = b contact), solid state auto switch (D-F9G/F9H/YTG/Y7H type) are also available. For details, refer to pages 1746 and 1748.
 Wide range detection type, solid state auto switches (D-G5NBL type) are also available. Refer to page 1776 for details.

CLJ2	
CLM2	
CLG1	
CL1	
MLGC	
CNG	
MNB	
CNA	
CNS	
CLS	
CLQ	
RLQ	
MLU	
MLGP	
ML1C	

D-□ **-X**□ Individual -X□

Be sure to read before handling. Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Design of Equipment and Machinery

1. Construct so that the human body will not come into direct contact with driven objects or the moving parts of locking cylinders.

Devise a safe structure by attaching protective covers that prevent direct contact with the human body, or in cases where there is a danger of contact, provide sensors or other devices to perform an emergency stop, etc., before contact occurs.

2. Use a balance circuit, taking cylinder lurching into consideration.

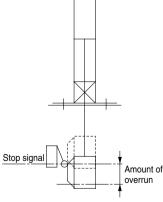
In cases such as an intermediate stop, where a lock is operated at a desired position within the stroke and air pressure is applied from only one side of the cylinder, the piston will lurch at high speed when the lock is released. In such situations, there is a danger of causing human injury by having hands or feet, etc. caught, and also a danger for causing damage to the equipment. In order to prevent this lurching, a balance circuit such as the recommended pneumatic circuits (page 753) should be used.

Selection

A Warning

1. When in the locked state, do not apply a load accompanied by an impact shock, strong vibration or turning force, etc.

Use caution, because an external action such as an impacting load, strong vibration or turning force, may damage the locking mechanism or reduce its life.


2. Consider stopping accuracy and the amount of over-run when an intermediate stop is performed.

Due to the nature of a mechanical lock, there is a momentary lag with respect to the stop signal, and a time delay occurs before stopping. The cylinder stroke resulting from this delay is the overrun amount. The difference between the maximum and minimum overrun amounts is the stopping accuracy.

- Place a limit switch before the desired stopping position, at a distance equal to the overrun amount.
- The limit switch must have a detection length (dog length) of the overrun amount + α.
- For SMC's auto switches, the operating range is between 8 and 14 mm. (It varies depending on a switch model.) When the overrun amount exceeds this range, selfholding of the contact should

be performed at the switch

load side.

* For stopping accuracy, refer to page 727.

3. In order to further improve stopping accuracy, the time from the stop signal to the operation of the lock should be shortened as much as possible.

To accomplish this, use a device such as a highly responsive electric control circuit or solenoid valve driven by direct current, and place the solenoid valve as close as possible to the cylinder. Selection

4. Note that the stopping accuracy will be influenced by changes in piston speed.

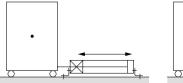
When piston speed changes during the course of the cylinder stroke due to variations in the load or disturbances, etc., the dispersion of stopping positions will increase. Therefore, consideration should be given to establishing a standard speed for the piston just before it reaches the stopping position.

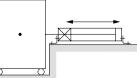
Moreover, the dispersion of stopping positions will increase during the cushioned portion of the stroke and during the accelerating portion of the stroke after the start of operation, due to the large changes in piston speed.

5. The holding force (max. static load) indicates the maximum capability to hold a static load without loads, vibration and impact. This does not indicate a load that can be held in ordinary conditions.

Select the most suitable bore sizes for the operating conditions in accordance with the selection procedures. The Model Selection (pages 724 and 725) is based on use at the intermediate stop (including emergency stops during the operation). However, when the cylinder is in a locked state, kinetic energy does not act upon it. Under these conditions, use the load mass at the maximum speed (V) of 100 mm/s shown in the graphs 5 to 7 on page 725 depending on the operating pressure and select models.

Mounting


∕Marning


- 1. Be certain to connect the rod end to the load with the lock released.
 - If connected in the locked state, a load greater than the turning force or holding force, etc. may operate on the piston rod and cause damage to the lock mechanism. Series CNA is equipped with an emergency unlocking mechanism; however, when connecting the rod end to the load, this should be done with the lock released. This can be accomplished by simply connecting an air line to the unlocking port and supplying air pressure of 0.25 MPa or more.

Caution

1. Do not apply offset loads to the piston rod.

Particular care should be taken to match the load's center of gravity with the center of the cylinder shaft. When there is a large discrepancy, the piston rod may be subjected to uneven wear or damage due to the inertial moment during locking stops.

× Load center of gravity and cylinder shaft center are not matched.

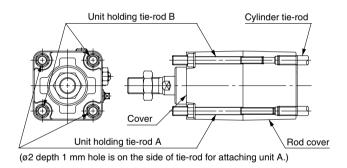
 Load center of gravity and cylinder shaft center are matched.

Note) Can be used if all of the generated moment is absorbed by an effective guide.

Be sure to read before handling. Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Mounting

ACaution


2. Caution on using the basic style or replacing the support bracket.

The lock unit and cylinder rod cover are assembled as shown in the figure below. For this reason, it cannot be installed as in the case of common air cylinders, by using the basic type and screwing the cylinder tie-rods directly to machinery.

Furthermore, when replacing mounting brackets, the unit holding tie-rods may get loosen. Tighten them once again in such a case.

Use socket wrench for replacing the mounting bracket or tightening tie-rod for unit mounting.

Bore size	Mounting bracket nut			Unit holding tie-rod	
(mm)	Nut	Width across flats			Socket
40	JIS B 1181 Class 3	13	JIS B 4636	10	JIS B 4636 2 point angle socket 10
50	M8 x 1.25	13	2 point angle socket 13	13	JIS B 4636 2 point angle socket 13
63	JIS B 1181 Class 3 M10 x 1.25	17	JIS B 4636 2 point angle socket 17	13	JIS B 4636 2 point angle socket 13
80, 100	JIS B 1181 Class 3 M12 x 1.25	19	JIS B 4636 2 point angle socket 19	17	JIS B 4636 2 point angle socket 17

Adjustment

≜Caution

- 1. Adjust air balance for cylinder. Balance the load by adjusting the air pressure in the cylinder rod side and head side after the lock is released when the load is mounted on cylinder. When you have this air balance, cylinder ejection at lock release can be avoided.
- Adjust mounting position for detection area of auto switch etc. When intermediate stop is done, adjust the mounting position for detection area of auto switch etc., with consideration of over-run distance to required stop position.

Pneumatic Circuit

∕Marning

1. Be certain to use an pneumatic circuit which will apply balancing pressure to both sides of the piston when in a locked stop.

In order to prevent cylinder lurching after a lock stop, when restarting or when manually unlocking, a circuit should be used to which will apply balancing pressure to both sides of the piston, thereby canceling the force generated by the load in the direction of piston movement.

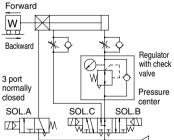
2. Use a solenoid valve for unlocking which has a large effective area, as a rule 50% or more of the effective area of the cylinder drive solenoid valve. The larger the effective area is, the shorter the locking time will be (the users) and effective area is a shorter the locking time.

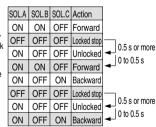
will be (the overrun amount will be shorter), and stopping accuracy will be improved.

3. Place the solenoid valve for unlocking close to the cylinder, and no farther than the cylinder drive solenoid valve.

The shorter the distance from the cylinder (the shorter the piping), the shorter the overrun amount will be, and stopping accuracy will be improved.

4. Allow at least 0.5 seconds from a locked stop (intermediate stop of the cylinder) until release of the lock.

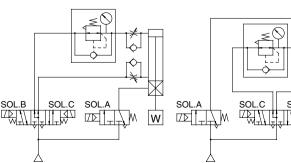

When the locked stop time is too short, the piston rod (and load) may lurch at a speed greater than the control speed of the speed controller.

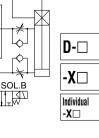

5. When restarting, control the switching signal for the unlocking solenoid valve so that it acts before or at the same time as the cylinder drive solenoid valve. If the signal is delayed, the piston rod (and load) may lurch at

If the signal is delayed, the piston rod (and load) may lurch at a speed greater than the control speed of the speed controller.

6. Basic circuit

1) [Horizontal]





2) [Vertical]

[Load in the direction of rod extension]

[Load in the direction of rod retraction]

W

ML1C

CLJ2

CLM2

CLG1

CL1

MLGC

CNG

MNB

CNA

CNS

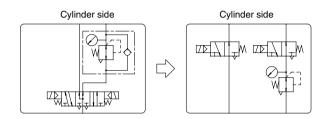
CLS

CLQ

RLQ

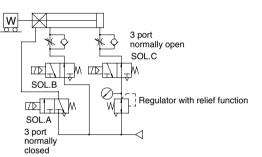
MLU

MLGP



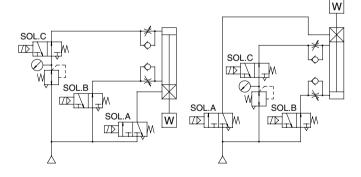
Be sure to read before handling. Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Pneumatic Circuit


ACaution

1. 3 position pressure center solenoid valve and regulator with check valve can be replaced with two 3 port normally open valves and a regulator with relief function.

[Example]

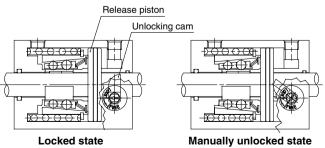

1) [Horizontal]

2) [Vertical]

[Load in the direction of rod extension]

[Load in the direction of rod retraction]

Manually Unlocking


- 1. Never operate the unlocking cam until safety has been confirmed. (Do not turn to the FREE side.)
 - When unlocking is performed with air pressure applied to only one side of the cylinder, the moving parts of the cylinder will lurch at high speed causing a serious hazard.
 - When unlocking is performed, be sure to confirm that personnel are not within the load movement range and that no other problems will occur if the load moves.
- 2. Before operating the unlocking cam, exhaust any residual pressure which is in the system.
- 3. Take measures to prevent the load from dropping when unlocking is performed.
 - Perform work with the load in its lowest position.
 - Take measures for drop prevention by strut, etc.

- 1. The unlocking cam is an emergency unlocking mechanism only. During an emergency when the air supply is stopped or cut off, this is used to alleviate a problem by forcibly pushing back the release piston and brake spring to release the lock.
- 2. When installing the cylinder into equipment or performing adjustments, etc., be sure to apply air pressure of 0.25 MPa or more to the unlocking port, and do not perform work using the unlocking cam.
- 3. When releasing the lock with the unlocking cam, it must be noted that the internal resistance of the cylinder will be high, unlike normally unlocking with air pressure.

Bore size (mm)	Cylinder internal resistance (N)	Cam operating torque (standard) (N·m)	Width across flats (mm)
40	108	5.9	5
50	275	11.8	6
63	432	12.8	7
80	686	20.6	7
100	765	23.5	9

- 4. Be sure to operate the unlocking cam on the FREE side (clockwise direction), and do not turn with a torque greater than the maximum cam operating torque. There is a danger of damaging the unlocking cam if it is turned excessively.
- 5. For safety reasons, the unlocking cam is constructed so that it cannot be fixed in the unlocked condition.

[Principle]

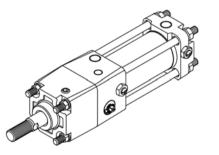
If the unlocking cam is turned counter clockwise with a tool such as an adjustable angle wrench, the release piston is pushed back and the lock is released. Since the lever will return to its original position when released and become locked again, it should be held in this position for as long as unlocking is needed.

Be sure to read before handling. Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

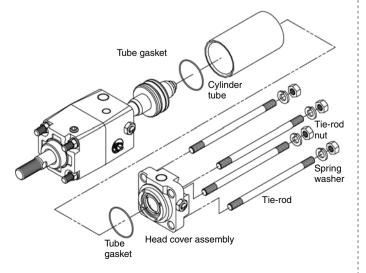
Maintenance

1. Replacement of lock unit for Series CNA is possible. To order Series CNA lock units for maintenance, use the order numbers given in the table below.

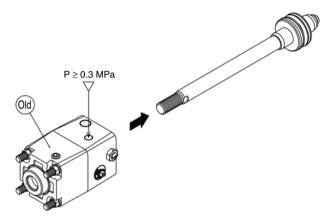
Bore size (mm)	Lock unit part no.
40	CNA 40D-UA
50	CNA 50D-UA
63	CNA 63D-UA
80	CNA 80D-UA
100	CNA100D-UA

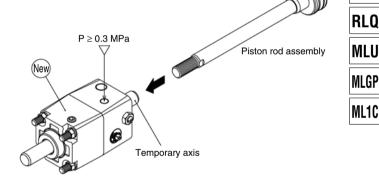

 \ast But, suffix "L" to the end of part number for 1001 stroke or more on CDNAF50 to 100. (Example: CNA100D-UAL)

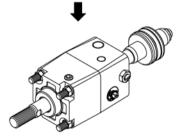
2. How to replace lock unit


1) Loosen the tie-rod nuts (4 pcs.) on the cylinder head cover side by using a socket wrench.

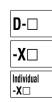
For the applicable socket, refer to the table below.


Bore size (mm)	Nut	Width across flats dimension	Socket
40, 50	JIS B 1181 Class 2 M8 x 1.25	13	JIS B 4636 + 2 point angle socket 13
63	JIS B 1181 Class 2 M10 x 1.25	17	JIS B 4636 + 2 point angle socket 17
80, 100	JIS B 1181 Class 2 M12 x 1.75	19	JIS B 4636 + 2 point angle socket 19


2) Remove the tie-rods, head cover and cylinder tube.



3) Apply 0.3 MPa or more of compressed air to the unlocking port, and pull out the piston rod assembly.



4) Similarly, apply 0.3 MPa or more of compressed air to the unlocking port of the new lock unit, and replace the new lock unit's temporary axis with the previous piston rod assembly.

5) Reassemble in reverse order from steps 2) and 1).

CLJ2

CLM2

CLG1

CL1

MLGC

CNG

MNB

CNA

CNS

CLS

CLQ