Rotary Actuator ø50, ø63, ø80, ø100

Compact auto switches are mountable. (D-M9■)

wishtreatued by ypo 14 mm Space saving by changing the auto switch rail mounting to groove mounting.

Mounting interchangeable with the existing model

Weight is reduced by up to 14%.

- Lightweight body by changing the body and the cover shape

Size	(New CRA1(kg)	Existing model (kg)	Reduction rate (\%)
50	1.3	1.5	13
63	2.2	2.5	12
80	3.9	4.3	10
100	7.3	8.5	14

Auto switch can be mounted from the front.

- Auto switch can be mounted from the front at any position on the mounting groove.
- Auto switch can be mounted after installation or when installation condition is changed.

Series CRA1

CAT.ES20-232A

Series CRA1

Easy adjustment

 of cushion valve- Cushion valve shape is changed so it can be adjusted using a hexagon wrench only.
- No protrusion from the body.
- Retaining ring is used to prevent drop-out.

Port, cushion and auto switch are on the same surface. Easy to handle.

Cushion seal is replaceable.
Cushion seal has been made replaceable. (Not possible for existing model. Cushion seal only)

- Slider

Tube gasket

- Spring pin
- Piston seal
- Cushion seal (New)

Interchangeable with

 existing model.Exterior dimension, shaft diameter, and mounting dimension are interchangeable with existing

Many variations of shaft type

Single shaft:

CRA1BS

Standard: 2 types

Semi-standard: 6 types

- Part number is assigned for shaft types (single round shaft, double shaft (round shaft, with four chamfers), double round shaft).

Double shaft:
CRA1BW

- Shaft type can be selected to suit the specification.

Single shaft with four
chamfers: CRA1BX

(New Series CRA1

Standard: 8 types

* Single round shaft, double shaft (round shaft, with four chamfers), double round shaft are made to order.

Size 30

Angle adjustable type

Series Variations

Refer to SMC Best Pneumatics No. 4 for details on

Rotary Actuator Series CRA1

 S 50

CRA1

 With auto switch CDRA1 B| Mounting | |
| :---: | :---: |
| B | Basic type |
| L | Foot type* |
| F | Flange type |

* For foot bracket and part number, refer to page 2.
* Foot bracket is included in the same package (but not assembled).

Shaft type

\mathbf{S}	Single shaft
\mathbf{W}	Double shaft
\mathbf{X}	Single shaft with four chamfers
\mathbf{Y}	Double shaft with key
\mathbf{Z}	Double shaft with four chamfers
\mathbf{T}	Single round shaft
\mathbf{J}	Double shaft fround shaft wiht fourchamiers)
\mathbf{K}	Double round shaft

* Flange type is not available for T, J, K.
* T, J, K are made to order.

Made to Order Refer to page 2.	
Number of	
- auto switches	
Nil	2 pcs.
\mathbf{S}	1 pc.

Note) Up to two auto switches are mountable.

- Auto switch

Nil	Without auto switch (Built-in magnet)

* For applicable auto switch model, refer to the table below.

Applicable Auto Switches/Refer to Best Pneumatics No. 4 for further information on auto switches.

Type	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch model		Lead wire length (m)				Pre-wired connector	Applicable load	
					DC		AC	Perpendicular	In-line	$\begin{array}{\|c\|} \hline 0.5 \\ \text { (Nil) } \\ \hline \end{array}$	$\begin{gathered} \hline 1 \\ (\mathrm{M}) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 3 \\ (\mathrm{~L}) \end{array}$	$\begin{array}{\|c} \hline 5 \\ (Z) \end{array}$			
		Grommet		3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	M9NV	M9N	\bullet	\bullet	\bullet	\bigcirc	\bigcirc	IC circuit	Relay, PLC
			Yes	3-wire (PNP)				M9PV	M9P	\bullet	\bullet	\bullet	\bigcirc	\bigcirc		
				2-wire		12 V		M9BV	M9B	\bullet	\bullet	\bullet	\bigcirc	\bigcirc	-	
				3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NWV	M9NW	\bullet	\bullet	\bullet	\bigcirc	\bigcirc	IC circuit	
	(2-color indication)			3-wire (PNP)				M9PWV	M9PW	\bullet	\bullet	\bullet	\bigcirc	\bigcirc		
	(2-color indication)			2-wire		12 V		M9BWV	M9BW	\bullet	\bullet	\bullet	\bigcirc	\bigcirc	-	
	Water resistant (2-color indication)			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NAV**	M9NA**	\bigcirc	\bigcirc	\bullet	\bigcirc	\bigcirc	IC circuit	
				3-wire (PNP)				M9PAV**	M9PA**	\bigcirc	\bigcirc	\bullet	\bigcirc	\bigcirc		
				2-wire		12 V		M9BAV**	M9BA**	\bigcirc	\bigcirc	\bullet	\bigcirc	\bigcirc	-	
든		Grommet	Yes	3 -wire (NPN equivalent)	-	5 V	-	A96V	A96	\bullet	-	\bullet	-	-	IC circuit	-
镸				2-wire	24 V	12 V	100 V	A93V	A93	\bullet	-	\bullet	-	-	-	Relay,
¢			No				100 V or less	A90V	A90	\bullet	-	\bullet	-	-	IC circuit	PLC

** Although it is possible to mount water resistant type auto switches, note that the rotary actuator itself is not of water resistant construction.

* Lead wire length symbols: $0.5 \mathrm{~m}$. Nil (Example) M9NW
$1 \mathrm{~m} \cdots . . . \mathrm{M}$ (Example) M9NWM
$3 \mathrm{~m} \cdots . . . \mathrm{L}$ (Example) M9NWL
$5 \mathrm{~m} \cdots \ldots . \mathrm{Z}$ (Example) M9NWZ

Refer to Best Pneumatics No. 4 for detailed solid state auto switches with pre-wired connectors.

* Auto switches marked with "○" are produced upon receipt of order.
* Auto switches are shipped together, (but not assembled).

Rotary Actuator Rack \& Pinion Type

Specifications

| Type | Pneumatic | | |
| :--- | :---: | :---: | :---: | :---: |
| Size | $\mathbf{5 0}$ | $\mathbf{y y y}$ | |
| Fluid | Air (Non-lube) | | |
| Max. operating pressure | 1.0 MPa | | |
| Min. operating pressure | 0.1 MPa | | |
| Ambient and fluid temperature | 0 to $60^{\circ} \mathrm{C}$ (No freezing) | | |
| Cushion | Not attached, Air cushion | | |
| Backlash | Within 1° | | |
| Tolerance in rotating angle | $+4^{\circ}$ | | |
| | 0 | | |

Effective Torque

										($\mathrm{N} \cdot \mathrm{m}$)
Size	Operating pressure (MPa)									
	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
50	1.85	3.71	5.57	7.43	9.27	11.2	13.0	14.9	16.7	18.5
63	3.44	6.88	10.4	13.8	17.2	20.6	24.0	27.5	31.0	34.4
80	6.34	12.7	19.0	25.3	31.7	38.0	44.4	50.7	57.0	63.4
100	14.9	29.7	44.6	59.4	74.3	89.1	104	119	133	149

Allowable Kinetic Energy/Adjustable Range of Rotation Time Safe in Operation

Size	Allowable kinetic energy (J)		Adjustable range of rotation time safe in operation $\left(\mathrm{s} / 90^{\circ}\right)$	
	Without air cushion	With air cushion*		
$\mathbf{5 0}$	0.05	0.98		0.2 to 2
$\mathbf{6 3}$	0.12	1.50	Cushion angle	
$\mathbf{8 0}$	0.16	2.00	35°	0.2 to 3
$\mathbf{1 0 0}$	0.54	2.90		0.2 to 4

* Allowable kinetic energy of the product with air cushion is the maximum absorbed energy when the cushion valve adjustment is optimized.

Weights

Size	Standard weight		Additional weight		
	90°	180°	With auto switch*	Foot bracket	Flange bracket
$\mathbf{5 0}$	1.3	1.5	0.2	0.3	0.5
$\mathbf{6 3}$	2.2	2.6	0.4	0.5	0.9
$\mathbf{8 0}$	3.9	4.4	0.6	0.9	1.5
$\mathbf{1 0 0}$	7.3	8.3	0.9	1.2	2.0

* With 2 auto switches

Foot Bracket/Part No.

Size	Foot bracket	Contents	Mounting screw size included in foot bracket
50	CRA1L50-Y-1Z	Foot bracket: 2 pcs. Mounting screw: 4 pcs. Collar: 4 pcs.	M8 $\times 1.25 \times 35$
63	CRA1L63-Y-1Z		M10 $\times 1.5 \times 40$
80	CRA1L80-Y-1Z		M12 $\times 1.75 \times 50$
100	CRA1L100-Y-1Z		M12 $\times 1.75 \times 50$

Series CRA1

Rotation Range of Keyway/Auto Switch Mounting Position
Size: $\mathbf{5 0}$ to 100
CDRA1 $\square \square 50$ to 100

Working Principle

In the diagram below, the auto switch B is $O N$. When pressure is applied from A, the piston moves to B, causing the shaft to rotate clockwise. At this time, the magnet B goes out of the movement range of the auto switch B, causing the auto switch B to turn OFF. Furthermore, the piston moves to the right, causing the magnet A to enter the movement range of the auto switch A. As a result, the auto switch A turns ON.

Rotary Actuator Rack \＆Pinion Type

Construction

Without air cushion

（3）（9）（4）（15）（5）（14）（11）8）（10）（2）

Without air cushion With auto switch

With air cushion

Replacement Parts（Corresponding parts shown below are set．）

Size	Replacement parts			
	Without air cushion		With air cushion	
CRA1 \square［ 50		P694020－20	P694020－21	
CRA1 \square 63		P694030－20	P694030－21	
CRA1ロप80		P694040－20	P694040－21	
CRA1ロロ100		P694050－20	P694050－21	
Corresponding parts	No．	Description	Qty．	
	7	Slider	2	
	9	Tube gasket	2	
	10	Piston seal	2	
	13	Spring pin	4	
	23	Cushion seal＊	2	

Note）When ordering spare parts，write＂ 1 ＂for one set of the parts per actuator．
＊For model with air cushion
A grease pack（ 10 g ）is included．If an additional grease pack is needed，order with the following part number
Grease pack part number：GR－S－010（10 g）

Component Parts

No．	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Right cover	Aluminum alloy	Metallic coating
$\mathbf{3}$	Left cover	Aluminum alloy	Metallic coating
$\mathbf{4}$	Piston	Aluminum alloy	
5	Shaft	Alloy steel	
6	Rack	Carbon steel	Nitrided
7	Slider	Resin	
$\mathbf{8}$	Bearing retainer	Aluminum alloy	Chromated
9	Tube gasket	NBR	
10	Piston seal	NBR	
11	Bearing	High carbon chrome bearing steel	
12	Hexagon sockethead cap screw with washer	Alloy steel	Zinc chromated
13	Spring pin	Steel	Zinc chromated
14	Parallel key	Carbon steel	
15	Connecting screw	Carbon steel	Zinc chromated
16	Crossrecessed pan head tapping screw	Steel	Zinc chromated
$\mathbf{1 7}$	Wear ring	Resin	
18	Auto switch	-	
19	Magnet	－	
20	Switch spacer	Resin	
21	Cushion ring	Aluminum alloy	Anodized
22	Cushion valve	Steel	Zinc chromated
23	Cushion seal	Urethane	
24	O－ring	NBR	
25	Seal retainer	Steel	
26	Retaining ring	Steel	

Series CDRA1

Dimensions/Basic Type: C \square RA1B \square
Size: 50/63/80/100

Single shaft: C \square RA1BS

Single shaft

- The dimensions above show pressurization to B port.
- Drawing shows the auto switch mounted on the port side.
* () are the dimensions for rotation of 180° and 190°

Model	Note1) Port size	A	B	C	$\begin{gathered} \text { D } \\ (\mathrm{g} 6) \end{gathered}$	$\begin{gathered} \text { DD } \\ \text { (h9) } \end{gathered}$	F	H	J	K	With auto switch					Without auto switch	U	W	BA	BB	BC	CA	$C B^{\star}$	Key Note 2) dimensions	
											S	SB	SC	SD	SE	S								b	L 1
C \square RA1BS50	Rc1/8	62	48	46	15	25	2.5	36	$\begin{gathered} \text { M8 } \times 1.25 \\ \text { depth } 8 \end{gathered}$	5	$\begin{gathered} 156 \\ (189) \end{gathered}$	1.5	5	14.5	33	$\begin{gathered} 144 \\ (177) \end{gathered}$	98	17	17	8.5	6	9.5	7.5	$5-0.030$	25
C \square RA1BS63	Rc1/8	76	60	57	17	30	2.5	41	M10 $\times 1.5$ depth 12	5	$\begin{gathered} 175 \\ (213.5) \end{gathered}$	1.5	5	21.5	33	$\begin{gathered} 163 \\ (201.5) \end{gathered}$	117	19.5	20	10	7	11	8	$6-0.030$	30
C \square RA1BS80	Rc1/4	92	72	70	20	35	3	50	$\begin{array}{\|c} \text { M12 } 1.75 \\ \text { depth } 13 \end{array}$	5	$\begin{gathered} 199 \\ (243) \end{gathered}$	1.5	5	29.5	33	$\begin{gathered} 186 \\ (230) \end{gathered}$	142	22.5	23.5	12	8	13	9	$6-0.030$	40
C \square RA1BS100	Rc3/8	112	85	85	25	40	4	60	$\begin{array}{\|c} \text { M12 x } 1.75 \\ \text { depth } 14 \end{array}$	5	$\begin{gathered} 259 \\ (325) \end{gathered}$	1.5	5	39.5	33	$\begin{aligned} & 245 \\ & (311) \end{aligned}$	172	28	25	12.5	8	14	10	$8-0.036$	45

Note 1) In addition to Rc, G, NPT and NPTF are also available.

* For model with air cushion

Note 2) A parallel key is included in the same package, (but not assembled).

Dimensions/Basic Type: C \square RA1B \square
Size: 50/63/80/100

Double shaft: C \square RA1BW

Double shaft

Note) Other dimensions are the same as the single shaft type.

Model	D (g6)	G	M	N	UU	L
C \square RA1BW50	15	11	20	15	118	14
C \square RA1BW63	17	13	22	17	139	16
C \square RA1BW80	20	15	25	20	167	19
C \square RA1BW100	25	19	30	25	202	24

Double shaft with key: C \square RA1BY \square

Note) Other dimensions are the same as the single shaft type.

Model	H	K	UU	L
C \square RA1BY $\square \mathbf{5 0}$	36	5	134	25
C \square RA1BY $\square 63$	41	5	158	30
C \square RA1BY $\square \mathbf{8 0}$	50	5	192	40
C \square RA1BY $\square 100$	60	5	232	45

Single shaft with four chamfers: $C \square$ RA1BX \square

Note) Other dimensions are the same as the single shaft type.

Model	G	H	N	U	L
$\mathbf{C} \square$ RA1BX $\square \mathbf{5 0}$	11	27	15	89	14
$\mathbf{C} \square$ RA1BX $\square \mathbf{6 3}$	13	29	17	105	16
$\mathbf{C} \square$ RA1BX $\square \mathbf{8 0}$	15	38	20	130	19
$\mathbf{C} \square$ RA1BX $\square \mathbf{1 0 0}$	19	44	25	156	24

Double shaft with four chamfers: C \square RA1BZ \square

Note) Other dimensions are the same as the single shaft type.

Model	G	H	M	N	\mathbf{U}	UU	\mathbf{L}
$\mathbf{C} \square$ RA1BZ $\square \mathbf{5 0}$	11	27	20	15	89	109	14
$\mathbf{C} \square$ RA1BZ $\square \mathbf{6 3}$	13	29	22	17	105	127	16
$\mathbf{C} \square$ RA1BZ $\square \mathbf{8 0}$	15	38	25	20	130	155	19
$\mathbf{C} \square$ RA1BZ $\square \mathbf{1 0 0}$	19	44	30	25	156	186	24

Series CDRA1

Dimensions/Basic Type: C \square RA1B \square
Size: 50/63/80/100
Single round shaft: C \square RA1BT

Note) Other dimensions are the same as the single shaft type.

Model	\mathbf{D} $(\mathrm{g} 6)$	H
C \square RA1BT50	15	36
C \square RA1BT63	17	41
C \square RA1BT80	20	50
C \square RA1BT100	25	60

Double shaft (round shaft, with four chamfers): C \square RA1BJ

Double round shaft: C \square RA1BK

Note) Other dimensions are the same as the single shaft type.

Model	D (g6)	H	UU
C $\square R A 1 B K 50 ~$	15	36	134
C $\square R A 1 B K 63$	17	41	158
C $\square R A 1 B K 80$	20	50	192
C $\square R A 1 B K 100$	25	60	232

7

Dimensions/Foot Type: C \square RA1L, Flange Type: C \square RA1F
Size: 50/63/80/100

Foot type: C \square RA1L \square

- Dimensions above show pressurization to B port.
- Drawing shows the auto switch mounted on the port side.
* () are the dimensions for rotating angle of 180° and 190°

Model	LA	LB	LC	With auto switch		Without auto switch	
				LD	LE	LD	LE
C \square RA1L $\square \square 50$	62	9	44	$\begin{gathered} 212 \\ (245) \end{gathered}$	$\begin{gathered} 236 \\ (269) \end{gathered}$	$\begin{gathered} 200 \\ (233) \end{gathered}$	$\begin{gathered} 224 \\ (257) \end{gathered}$
C \square RA1L $\square \square 63$	76	11	55	$\begin{gathered} 247 \\ (285.5) \end{gathered}$	$\begin{gathered} 275 \\ (313.5) \end{gathered}$	$\begin{gathered} 235 \\ (273.5) \end{gathered}$	$\begin{gathered} 263 \\ (301.5) \end{gathered}$
C \square RA1L $\square \square 80$	92	13	67	$\begin{gathered} 287 \\ (331) \end{gathered}$	$\begin{gathered} 329 \\ (373) \end{gathered}$	$\begin{gathered} 274 \\ (318) \end{gathered}$	$\begin{gathered} 316 \\ (360) \end{gathered}$
C \square RA1L $\square \square 100$	112	13	87	$\begin{gathered} 347 \\ (413) \end{gathered}$	$\begin{gathered} 389 \\ (455) \end{gathered}$	$\begin{gathered} 333 \\ (399) \end{gathered}$	$\begin{gathered} 375 \\ (441) \end{gathered}$

Model	LF	LH	LT
C \square RA1L $\square \square 50$	41	108	4.5
C \square RA1L $\square \square 63$	48	127	5
C \square RA1L $\square \square 80$	58	154	6
C \square RA1L $\square \square \mathbf{1 0 0}$	73.5	189.5	6

Flange type
Single shaft: C \square RA1FS

Note) Other dimensions are the same as the basic type.

Model	F	H	MM	U	FD	FT	FX	FY	ZX	ZY
C \square RA1F $\square \square 50$	4	39	$\text { M6 x } 1.0$ $\text { depth } 12$	114	9	13	90	50	110	81
C \square RA1F $\square \square 63$	5	45	M6 x 1.0 depth 12	136	11.5	15	105	59	130	101
C \square RA1F $\square \square 80$	5	55	M8× 1.25 depth 16	165	13.5	18	130	76	160	119
C \square RA1F $\square 100$	5	60	M10 x 1.5 depth 20	190	13.5	18	150	92	180	133

Series CDRA1

Dimensions/Foot Type: C \square RA1L, Flange Type: C \square RA1F
Size: 50/63/80/100

Flange type
Double shaft: C \square RA1FW

Note) Other dimensions are the same as the single shaft type.

Model	H	N	U	UU
C \square RA1FW $\square 50$	39	15	114	134
$\mathbf{C} \square$ RA1FW $\square \mathbf{6 3}$	45	17	136	158
$\mathbf{C} \square$ RA1FW $\square \mathbf{8 0}$	55	20	165	190
$\mathbf{C} \square$ RA1FW $\square \mathbf{1 0 0}$	60	25	190	220

Flange type
Double shaft with key: C \square RA1FY

Note) Other dimensions are the same as the single shaft type.

Model	H	U	UU
C \square RA1FY $\square 50$	39	114	150
C \square RA1FY $\square \mathbf{6 3}$	45	136	177
C \square RA1FY $\square \mathbf{8 0}$	55	165	215
$\mathbf{C} \square$ RA1FY $\square \mathbf{1 0 0}$	60	190	250

Flange type
Single shaft with four chamfers: C \square RA1FX

Note) Other dimensions are the same as the single shaft type.

Model	H	N	U
$\mathbf{C} \square$ RA1FX $\square \mathbf{5 0}$	30	15	105
$\mathbf{C} \square$ RA1FX $\square 63$	33	17	124
$\mathbf{C} \square$ RA1FX $\square \mathbf{8 0}$	43	20	153
$\mathbf{C} \square$ RA1FX $\square 100$	44	25	174

Flange type
Double shaft with four chamfers: C \square RA1FZ

Note) Other dimensions are the same as the single shaft type.

Model	H	N	U	UU
C \square RA1FZ $\square \mathbf{5 0}$	30	15	105	125
C \square RA1FZ $\square \mathbf{6 3}$	33	17	124	146
C \square RA1FZ $\square \mathbf{8 0}$	43	20	153	178
C \square RA1FZ $\square \mathbf{1 0 0}$	44	25	174	204

Note) The dimensions of shaft key and four chamfers are the same as the basic type.

Series CRA1
 Auto Switch Mounting

Auto Switch Proper Mounting Position (Detection at Rotation End)

CDRA1 $\square \square 50$ to 100

Auto switch model	$\begin{gathered} \text { D-M9 } \square / \text { M9 } \square V \\ \text { D-M9 } \square \text { W/M9 } \square \text { WV } \\ \text { D-M9 } \square \text { A/M9 } \square \mathrm{AV} \end{gathered}$		D-A9 $\square /$ A9 \square V	
Model	Proper mounting position A (mm)	Operating range $\theta\left({ }^{\circ}\right)$	Proper mounting position A (mm)	Operating range $\theta\left({ }^{\circ}\right)$
CDRA1 $\square 50-90$	22.5	30°	18.5	44°
CDRA1 $\square 50-180$	39		35	
CDRA1 $\square 63-90$	25	28°	21	49°
CDRA1 $\square 63-180$	44.5		40.5	
CDRA1 $\square 80-90$	27.5	23°	23.5	41°
CDRA1 \square 80-180	49.5		45.5	
CDRA1 $\square 100-90$	42.5	15°	38.5	29°
CDRA1 $\square 100-180$	75.5		71.5	

* Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately $\pm 30 \%$ dispersion) There may be the case to change substantially depending on an ambient environment.
Adjust the auto switch after confirming the operating conditions in the actual setting.

Switch Spacer Part No.

Size	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Switch spacer part no.	BMY3-016			

* The above part number includes one switch spacer.
* Two switch spacers are included with the product with built-in magnet.

Auto Switch Mounting

To fix the auto switch, hold the switch spacer, and insert into the groove. Make sure that the switch spacer is in the right position or correct the position if necessary, then slide the auto switch in the groove so that it goes into the spacer. Confirm where the mounting position is, and tighten the auto switch mounting screw using a flat head screwdriver.

Note) When tightening an auto switch mounting screw, use a watchmakers' screwdriver with a handle of approximately 5 to 6 mm in diameter. Also, tighten with a torque of about 0.1 to $0.15 \mathrm{~N} \cdot \mathrm{~m}$.
As a guide, turn about 90° past the point at which tightening can first be felt.

Shaft shape pattern is dealt with simple made-to-order system. A specification sheet is available

Symbol
Shaft Pattern Sequencing I

How to Order

Shaft Pattern Sequencing I

Applicable shaft type: S, W, Y
Combination Chart of Simple Specials for Shaft-End Shape
Chart (1) Combination between XA \square and XA \square (S, W, Y shaft)

Symbol	Description	Axial direction		Applicable shaft type			Combination			
		Top	Bottom	S	W	Y	XA1	XA2	XA13	XA24
XA1	Shaft-end female thread	\bullet	-	\bullet	\bullet	\bullet	-	\bullet	-	\bullet
XA2	Shaft-end female thread	-	\bullet	\bullet	\bullet	\bullet	\bullet	-	-	\bullet
XA13	Shaft through-hole	\bullet	-	\bullet	\bullet	\bullet	-	-	-	-
XA14	Shaft through-hole + Shaft-end female thread	\bullet	-	\bullet	\bullet	\bullet	-	-	-	\bullet
XA15	Shaft through-hole + Shaft-end female thread	-	\bullet	\bullet	\bullet	\bullet	-	-	-	\bullet
XA16	Shaft through-hole + Double shaft-end female thread	\bullet	\bullet	\bullet	\bullet	\bullet	-	-	-	\bullet
XA17	Shortened shaft (Long shaft with key)	\bullet	-	\bullet	\bullet	\bullet	-	\bullet	\bullet	-
XA18	Shortened shaft (Short shaft with key and with four chamfers)	-	\bullet	-	\bullet	\bullet	W, Y*	-	$\mathrm{W}, \mathrm{Y}^{*}$	-
XA19	Shortened shaft (Double shaft)	\bullet	\bullet	-	\bullet	\bullet	-	-	$\mathrm{W}, \mathrm{Y}^{*}$	-
XA20	Reversed shaft, Shortened shaft	\bullet	\bullet	-	\bullet	\bullet	-	-	S, W*	-
XA24	Double key	\bullet	-	\bullet	\bullet	\bullet	-	-	-	-

* Shaft type available for combination.

Combination Chart of Made to Order

Chart (2) Combination between $\mathrm{XA} \square$ and $\mathrm{XC} \square$

Symbol	Description	Applicable shaft type			Combination	
		S	W	Y	XA1, 2, 13 to 19	XA20, 24
XC7	Reversed shaft	\bigcirc	\bigcirc	-	-	-
XC8 to XC11	Change of rotation range	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-
XC30	Changed to fluorine grease	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XC31 to XC36	Change of rotation range and shaft rotation direction	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-
XC59 to XC61	Change of port location	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc

Series CRA1
 Simple Specials 2

Shaft shape pattern is dealt with simple made-to-order system. A specification sheet is available for ordering. Please access SMC website, or consult your nearest sales branch.

Shaft Pattern Sequencing I

Applicable shaft type: S, W, Y

Additional Reminders

1. Enter the dimensions within a range that allows for additional machining
2. SMC will make appropriate arrangements if no dimensional, tolerance, or finish instructions are given in the diagram.
3. The length of the unthreaded portion is 2 to 3 pitches.
4. Unless specified otherwise, the thread pitch is based on coarse metric threads $\mathrm{P}=$ Thread pitch
M4 x 0.7, M5 x 0.8
M6 x 1, M8 x 1.25 , M10 $\times 1.5$
5. Enter the desired figures in the \qquad portion of the diagram.
6. Chamfer face of the parts machining additionally is C 0.5 .

Symbol: A2

Female threads are machined into the short shatt Note) Except flange type
The maximum dimension L 2 is, as a rule, twice the thread size. (Example) For M4: L2 = 8

- Applicable shaft type: S, W, Y

A special end is machined onto the short shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter. The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M5: L2 $=10$

- Applicable shaft type:

S, W, Y

Symbol: A13

Shaft through-hole
Note) Except flange type
The minimum unit of the dimensions within a range that allows for machining d1 is 0.1

- Applicable shaft type: S, W, Y

(mm)	
Size	$\mathbf{d 1}$
$\mathbf{5 0}$	$\varnothing 4$ to $\varnothing \mathbf{7}$
$\mathbf{6 3}$	$\varnothing 4$ to $\varnothing 8$
$\mathbf{8 0}$	$\varnothing 6.8$ to $\varnothing 11$
$\mathbf{1 0 0}$	$\varnothing 6.8$ to $\varnothing 13$

Symbol: A16
A special end is machined onto both the long
and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes. The maximum dimension L1 is, as a rule, twice the thread size. (Example) For M5: L1 = 10 - Applicable shaft type: S, W, Y

- Applicable shaft - Equal dimension the same marker.				(mm)
	50	63	80	100
M5 $\times 0.8$	$\varnothing 4$	$\varnothing 4$	-	-
M6 $\times 1$	$\varnothing 5$	$\varnothing 5$	-	-
M8 $\times 1.25$	-	ø6.8	$\varnothing 6.8$	$\varnothing 6.8$
M10 $\times 1.5$	-	-	$\varnothing 8.5$	$\varnothing 8.5$
M12 $\times 1.75$	-	-	$\varnothing 10.3$	$\varnothing 10.3$
Rc1/8	-	-	$\bigcirc 8$	$\bigcirc 8$
Rc1/4	-	-	-	$\varnothing 11$

Symbol: A1
Female threads are machined into the long shaft. Note) Except flange type
The maximum dimension L1 is, as a rule, twice the thread size (Example) For M4: L1 = 8

- Applicable shaft type: S, W, Y

	(mm)
Size	Q1
$\mathbf{5 0}$	$\mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6$
$\mathbf{6 3}$	$\mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6$
$\mathbf{8 0}$	$\mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6, \mathrm{M} 8$
$\mathbf{1 0 0}$	$\mathrm{M} 5, \mathrm{M} 6, \mathrm{M} 8, \mathrm{M} 10$

Symbol: A14

Note) Except flange type
A special end is machined onto the long shaft, and a through-hole is drilled into it. Female threads are machined into the throughhole, whose diameter is equivalent to the pilot hole diameter The maximum dimension L 1 is, as a rule, twice the thread size. (Example) For M5: $\mathrm{L} 1=10$

- Applicable shaft type: S, W, Y

Size						$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Thread									
M5 $\times 0.8$	$\varnothing 4$	$\varnothing 4$	-	-					
M6 $\times 1$	$\varnothing 5$	$\varnothing 5$	-	-					
M8 $\times 1.25$	-	$\varnothing 6.8$	$\varnothing 6.8$	$\varnothing 6.8$					
M10 $\times 1.5$	-	-	$\varnothing 8.5$	$\varnothing 8.5$					
M12 $\times 1.75$	-	-	$\varnothing 10.3$	$\varnothing 10.3$					
Rc1/8	-	-	$\varnothing 8$	$\varnothing 8$					
Rc1/4	-	-	-	$\varnothing 11$					

Symbol: A17

- The long shaft is shortened. - Applicable shaft type: S, W, Y

Shaft Pattern Sequencing I

-XA18 to -XA24
Applicable shaft type: S, W, Y

Shaft shape pattern is dealt with simple made-to-order system. A specification sheet is available for ordering. Please access SMC website, or consult your nearest sales branch.

Combination Chart of Simple Specials for Shaft-End Shape

Symbol	Description	Axial direction		Applicable shaft type									Combination					
		Top	Botom	X	Z	T	J	K						* Shaft type available for combination.				
XA33	Shaft-end female thread	\bullet	-	-	-	\bullet	\bullet	\bullet	XA33									
XA34	Shaft-end female thread	-	\bullet	-	-	\bullet	\bullet	-	T, J, K*	XA34								
XA35	Shaft-end female thread	\bullet	-	-	\bullet	-	-	-	-	-	XA35							
XA36	Shaft-end female thread	-	\bullet	\bullet	\bullet	-	-	-	-	-	X, ${ }^{\text {* }}$	XA36						
XA37	Stepped round shaft	\bullet	-	-	-	\bullet	\bullet	\bullet	-	$\mathrm{T}, \mathrm{J}, \mathrm{K}^{*}$	-	-	XA37					
XA38	Stepped round shaft	-	\bullet	-	-	-	-	\bullet	K*	-	-	-	K*					
XA40	Shaft through-hole	\bullet	\bullet	-	-	\bullet	-	\bullet	-	-	-	-	-					
XA41	Shaft through-hole	\bullet	\bullet	-	\bullet	-	\bullet	-	-	-	-	-	-					
XA43	Shatt troughholole + Double shaftend female thread	\bullet	\bullet	-	-	\bullet	-	\bullet	-	-	-	-	-					
XA44	Shatt throughhole + Double shaftend female thread	\bullet	\bullet	\bullet	\bullet	-	\bullet	-	-	-	-	-	-	XA38				
XA45	Middle-cut chamfer	\bullet	-	-	-	\bullet	\bullet	\bullet	-	T, J, K*	-	-	-	K*	XA40	XA41	XA45	
XA46	Middle-cut chamfer	-	\bullet	-	-	-	-	\bullet	K*	-	-	-	K^{*}	-	-	-	K*	XA46
XA51	Change of long shaft length (Without keyway)	\bullet	-	-	-	\bullet	\bullet	\bullet	-	T, J, K*	-	-	-	K^{*}	T, K^{*}	J^{*}	-	K*
XA52	Change of short shat length (Without keyway)	-	\bullet	-	-	-	-	\bullet	K*	-	-	-	-	-	K*	-	K^{*}	-
XA53	Change of double shatt lengt (Both without keyway)	-	\bullet	-	-	-	-	\bullet	-	-	-	-	-	-	K^{*}	-	-	-
XA54	Change of ong shatt length (With four chamiers)	\bullet	-	\bullet	\bullet	-	-	-	-	-	-	X, z^{*}	-	-	-	X, ${ }^{*}$	-	-
XA55	Change of short shatt length (With four chaméers)	-	\bullet	-	\bullet	-	\bullet	-	J^{*}	-	z*	-	J*	-	-	J, Z^{*}	J^{*}	-
XA56	Change of double shatil length (Both with four chameres)	-	\bullet	-	\bullet	-	-	-	-	-	-	-	-	-	-	Z*	-	-
XA57		\bullet	\bullet	-	-	-	\bullet	-	-	-	-	-	-	-	-	J^{*}	-	-
XA58		\bullet	\bullet	-	-	\bullet	\bullet	-	-	-	-	-	-	-	T*	J^{*}	-	-
XA59		-	\bullet	\bullet	-	-	-	-	-	-	-	-	-	-	-	X*	-	-

Combination Chart of Made to Order
Chart (4) Combination between XA \square and XC \square

Symbol	Description	Applicable shaft type					Combination
		X	Z	T	J	K	XA33 to 38, 40 to 46, 51 to 59
XC7	Reversed shaft	\bullet	-	\bullet	\bullet	-	-
XC8 to XC11	Change of rotation range	-	-	-	-	-	-
XC30	Changed to fluorine grease	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
XC31 to XC36	Change of rotation range and shaft rotation direction	-	-	-	-	-	-
XC59 to XC61	Change of port location	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet

Series CRA1
 Simple Specials 4

Shaft shape pattern is dealt with simple made-to-order system. A specification sheet is available for ordering. Please access SMC website, or consult your nearest sales branch.

Symbol

Shaft Pattern Sequencing II

Applicable shaft type: X, Z, T, J, K

Additional Reminders

1. Enter the dimensions within a range that allows for additional machining.
2. SMC will make appropriate arrangements if no dimensional, tolerance, or finish instructions are given in the diagram.
3. The length of the unthreaded portion is 2 to 3 pitches.
4. Unless specified otherwise, the thread pitch is based on coarse metric threads
$\mathrm{P}=$ Thread pitch
M4 x 0.7, M5 $\times 0.8$
M6 x $1, \mathrm{M} 8 \times 1.25, \mathrm{M} 10 \times 1.5$
5. Enter the desired figures in the \square portion of the diagram.
6. Chamfer face of the parts machining additionally is C 0.5 .

Symbol: A35

Female threads are machined into the long shaft Note) Except flange type
The maximum dimension L 1 is, as a rule, twice the thread size.
(Example) For M4: L1 = 8

- Applicable shaft type: X, Z
(mm)

Size	Q1
$\mathbf{5 0}$	$M 4, M 5, M 6, M 8$
$\mathbf{6 3}$	$M 4, M 5, M 6, M 8, M 10$
$\mathbf{8 0}$	$M 4, M 5, M 6, M 8, M 10, M 12$
$\mathbf{1 0 0}$	$M 5, M 6, M 8, M 10, M 12$

Symbol: A38 Note) Except flange type

The short shaft can be further shortened by machining it into a stepped round shaft.

- The minimum unit of the dimensions within a range that allows for machining is 0.1
(If shortening the shaft is not required, indicate "*" for dimension Y .)
(If not specifying dimension C2, indicate "*" instead.)
- Applicable shaft type: K
- Equal dimensions are indicated by the same marker.

Symbol: A33 Female threads are machined into the long shaft Note) Except flange type
The maximum dimension L 1 is, as a rule, twice the thread size.
(Example) For M4: L1 = 8

- Applicable shaft type: J, K, T

Size	Q1
$\mathbf{5 0}$	$M 4, M 5, M 6, M 8$
$\mathbf{6 3}$	$M 4, M 5, M 6, M 8, M 10$
$\mathbf{8 0}$	$M 4, M 5, M 6, M 8, M 10, M 12$
$\mathbf{1 0 0}$	$M 5, M 6, M 8, M 10, M 12$

Symbol: A36 Female threads are machined into the short shaft. Note) Except flange type
The maximum dimension L 2 is, as a rule, twice the thread size. (Example) For M4: L2 = 8

- Applicable shaft type: X, Z

Symbol: A40 Shaft through-hole Note) Except flange type

- The minimum unit of the dimensions within a range
that allows for machining d1 is 0.1.
- Applicable shaft type: K, T

K axis

Taxis
(mm)

	d1	
Size	d1	
$\mathbf{5 0}$	$\varnothing 4$	to $\varnothing 7.5$
$\mathbf{6 3}$	$\varnothing 4$	to $\varnothing 8$
$\mathbf{8 0}$	$\varnothing 6.8$ to $\varnothing 11$	
$\mathbf{1 0 0}$	$\varnothing 6.8$ to $\varnothing 13$	

Symbol: A34
Female threads are machined into the short shatt: Note) Except flange type
The maximum dimension L 2 is, as a rule, twice the thread size.
(Example) For M4: L2 = 8

- Applicable shaft type: J, K, T

(mm)

Size	Q2
$\mathbf{5 0}$	$M 4, M 5, M 6, M 8$
$\mathbf{6 3}$	$M 4, M 5, M 6, M 8, M 10$
$\mathbf{8 0}$	$M 4, M 5, M 6, M 8, M 10, M 12$
$\mathbf{1 0 0}$	$M 5, M 6, M 8, M 10, M 12$
$\mathbf{S y}$	
Symbol: $\mathbf{A 3 7}$	Note) Except flange type

The long shaft can be further shortened by machining it into a stepped round shaft

- The minimum unit of the dimensions within a range that allows for machining is 0.1 .
(If shortening the shaft is not required, indicate "*" for dimension X.) (If not specifying dimension C 1 , indicate "*" instead.)
- Applicable shaft type: J, K, T
- Equal dimensions are indicated by the same marker

(mm)

			(mm)	
Size	X	L1 max	D1	
$\mathbf{5 0}$	3.5 to 36	X-2.5	$\varnothing 5$ to $\varnothing 14.9$	
$\mathbf{6 3}$	3.5 to 41	$\mathrm{X}-2.5$	$\varnothing 5$ to $\varnothing 16.9$	
$\mathbf{8 0}$	4 to 50	$\mathrm{X}-3$	$\varnothing 8$ to $\varnothing 19.9$	
$\mathbf{1 0 0}$	5 to 60	$\mathrm{X}-4$	$\varnothing 8$ to $\varnothing 24.9$	

Symbol: A41 Shaft through-hole Note) Except flange type

- The minimum unit of the dimensions within a range that allows for machining d1 is 0.1 .
- Applicable shaft type: J, X, Z

J axis

	(mm)
Size	d1
$\mathbf{5 0}$	$\varnothing 4$ to $\varnothing 7.5$
63	$\varnothing 4$ to $\varnothing 8$
80	$\varnothing 6.8$ to $\varnothing 11$
100	$\varnothing 6.8$ to $\varnothing 13$

Symbol

Shaft Pattern Sequencing II
-XA43 to -XA55

Applicable shaft type: X, Z, T, J, K

Series CRA1
 Simple Specials 5

Shaft shape pattern is dealt with simple made-to-order system. A specification sheet is available for ordering. Please access SMC website, or consult your nearest sales branch.

Symbol
Shaft Pattern Sequencing II
-XA56 to -XA59
Applicable shaft type: X, Z, T, J, K

Please contact SMC for further details about dimensions, specifications and delivery.

How to Order

- Combination 3 types	- Combination of applicable chart
C7 C30 C59	Chart (5)
	Combination is available only when all the conditions are fulfilled in above combination chart.

* Combination of made-to-order is available up to 3 types.
* Above is the typical example of combination.
- Number of auto switches

Nil	2 pcs.
\mathbf{S}	1 pc.

- Auto switch

Nil	Without auto switch (Built-in magnet)

* For auto switch model refer to page 1.
* Auto switches are shipped together, (but not assembled).
- Air cushion

Nil	None
\mathbf{C}	With air cushion

- Rotating angle

90	90°
180	180°
100	100°
190	190°

d Port type

Port type				
Size		50,63	80	100
Nil	Rc			
TF	G	$1 / 8$	$1 / 4$	$3 / 8$
TN	NPT			
TT	NPTF			

Combination Chart of Made to Order

Chart (5) Combination between XA \square and XC \square

Symbol	Description	Applicable shaft type								Combination				
		S	W	\mathbf{X}	Y	Z	T	J	K					
XC7	Reversed shaft	\bullet	\bullet	\bullet	-	-	\bullet	\bullet	-	XC7		* Shaft type available for combination.		
XC8 to XC11	Change of rotation range	\bullet	\bullet	-	\bullet	-	-	-	-	-	XC8 to XC11			
XC30	Changed to fluorine grease	\bullet	S,W,X,T, J*	S,W, Y^{*}	XC30									
XC31 to XC36	Changes of rotation range and shaft location direction	-	-	-	\bullet	-	-	-	-	-	-	S,W, Y^{*}	XC31 to XC36	
XC59 to XC61	Change of port location	\bullet	S,W,X,T,J*	\bullet	-	S,W,Y*	XC59 to XC61							

Series CRA1
 Made to Order 2

Please contact SMC for further details about dimensions, specifications and delivery.

| | Symbol |
| :--- | :--- | :--- |

Symbol: C7

Note) If it is pressurized from the port indicated with the arrow, the shaft rotates in the clockwise direction.

The patterns with the rotation range of 90° and 180° are applicable to the respective patterns with the rotation range of 100° and 190° of the semi-standard specifications.

3 Changed to Fluorine Grease

Made to Order Series CRA1

4 Change of Rotation Range and Shaft Rotation Direction

-XC31 to -XC36

The patterns with the rotation range of 90° and 180° are applicable to the respective patterns with the rotation range of 100° and 190° of the semi-standard specifications.

Symbol: C31	Symbol: C32	Symbol: C33
The rotation range is changed and the rotation direction is reversed. Note) If it is pressurized from the port indicated with the arrow, the shaft rotates in the clockwise direction.	The rotation range is changed and the rotation direction is reversed. Note) If it is pressurized from the port indicated with the arrow, the shaft rotates in the clockwise direction.	The rotation range is changed and the rotation direction is reversed. Note) If it is pressurized from the port indicated with the arrow, the shaft rotates in the clockwise direction.
Symbol: C3	Symbol: C35	Symbor.
The rotation range is changed and the rotation direction is reversed. Note) If it is pressurized from the port indicated with the arrow, the shaft rotates in the clockwise direction.	The rotation range is changed and the rotation direction is reversed. Note) If it is pressurized from the port indicated with the arrow, the shaft rotates in the clockwise direction.	The rotation range is changed and the rotation direction is reversed. Note) If it is pressurized from the port indicated with the arrow, the shaft rotates in the clockwise direction.

Please contact SMC for further details about dimensions, specifications and delivery.

Symbol
5 Change of Port Location (Mounting location of the cover is changed.)

The patterns with the rotation range of 90° and 180° are applicable to the respective patterns with the rotation range of 100° and 190° of the semi-standard specifications.

Symbol: C59	Symbol: C60	Symbol: C61
The port direction is changed. (Upward)	The port direction is changed. (Downward)	The port direction is changed. (Backward)

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

© Caution:

Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.
Warning indicates a hazard with a medium level of
Warning: risk which, if not avoided, could result in death or serious injury.

Danger indicates a hazard with a high level of risk
 injury.

\triangle Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications. Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.
2. Only personnel with appropriate training should operate machinery and equipment.
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
10. An application which could have negative effects on people, property, or animals requiring special safety analysis.
11. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.
```
*1) ISO 4414: Pneumatic fluid power - General rules relating to systems.
    ISO 4413: Hydraulic fluid power - General rules relating to systems.
    IEC 60204-1: Safety of machinery - Electrical equipment of machines.
            (Part 1: General requirements)
    ISO 10218-1: Manipulating industrial robots - Safety.
    etc.
```


\triangle Caution

1. The product is provided for use in manufacturing industries. The product herein described is basically provided for peaceful use in manufacturing industries.
If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary.
If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".
Read and accept them before using the product.

Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered. ${ }^{* 2)}$
Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided. This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.

*2) Vacuum pads are excluded from this 1 year warranty.

A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.
