Rotary Actuator Series CRB1
 Vane Style/Size: 10, 15, 20, 30

Variations/Size: 10, 15, 20, 30

Rotary Actuator Vane Style
 Series CRB1/Size: 10, 15, 20, 30

Rotation angles: $90^{\circ}, 180^{\circ}, 270^{\circ}$ Up to 270° is possible for the entire series
Through the adoption of specially designed seals and stoppers, a swing angle of 270° has been achieved for the first time in a compact vane style actuator.
(Single vane style)

Low pressure operation made possible
The special sealing construction that has been adopted in the body supports a wide operating pressure range and enables the entire series to be used at low pressures.
Min. operating pressure
Size $10 \quad: 0.2 \mathrm{MPa}$
Size 15 to $30: 0.15 \mathrm{MPa}$

Direct mount applications possible

The rotary actuator body 3 bolts used. can be mounted directly.
*Direct mounting is not possible with unit sizes 10 to 30 .

Stainless steel shafts and bolts
(Carbon steel for size 30 and double-vane)

Double vane style standard: $\mathbf{9 0}^{\circ}, \mathbf{1 0 0}^{\circ}$
The outside diameter is identical to the single vane construction (except size 10); however, due to the double vane construction, twice the torque of the single vane style can be obtained. circumference, it can be mounted in a position that is most appropriate for the application.

Port positions: body side and axial direction

The positions can be selected for ease of use. (Those that are equipped with various styles of units can only be connected to the body side.)
(On the body side)
(In the axial direction)

(Fittings are sold separately.)

Block-built (units) adopted
Various styles of units that can be housed within the body's outside diameter can easily be retrofitted to the rotary actuator units of the entire series.

Rotary Actuator
 Series CRB1
 Vane Style/Size: 10, 15, 20, 30

How to Order

Standard

Application	Symbol	Rotaion angle
Single	90	90°
	$\mathbf{1 8 0}$	180°
	$\mathbf{2 7 0}$	270°
Double	90	90°
vane	$\mathbf{1 0 0}$	100°

Flange Brackets Part No.

Model	Ass'y part No.
CRB1FW10	P211070-2
CRB1FW15	P211090-2
CRB1FW20	P211060-2
CRB1FW30	P211080-2

Rotary Actuator/Vane Style Series CRB1

Lightweight (single vane 180°)

Size 10....29 X 15t (Body part), 26g
Size 20... $\varnothing 42$ X $29 t$ (Body part), 105g
Rotation angle of 270° achieved High reliability
(Bearings are used for supporting the shaft.)
Shaft and bolts made of stainless
steel
(Carbon steel for size 30 and the double vane style)
Body can be used as a flange
(Bolts used: sizes 10, 15: M2.5; size 20: M3; size 30: M4)
Two styles of port positions: body side and axial direction

Angle adjustment unit can be mounted

A style that can be housed within the body's outside diameter can perform angle adjustments of 0° to 240°.
(CRB1BW10: 0° to 230°)

Double vane
P.1.1-20 to 1.2-28

Inner Volume

Single Vane Specifications

Model (Size)		CRB1BW	10-■S	CRB1BW15-■S	CRB1BW20-■S	CRB1BW30-■S		
Vane style		Single vane						
Rotation angle		$90^{\circ}, 180^{\circ}$	270°	$90^{\circ}, 180^{\circ} \quad 270^{\circ}$	$90^{\circ}, 180^{\circ}, 270^{\circ}$			
Fluid		Air (Non-lube)						
Proof pressure (MPa)		1.05				1.5		
Ambient and fluid temperature		5 to $60^{\circ} \mathrm{C}$						
Max. operating press. (MPa)		0.7				1.0		
Min. operating press. (MPa)		0.2		0.15				
Speed range ${ }^{(1)}\left(\mathrm{sec} / 90^{\circ}\right)$		0.03 to 0.3				0.04 to 0.3		
Allowable kinetic energy ${ }^{(2)}$ (J)		0.00015		0.001	0.003	0.02		
		0.00025	0.0004	0.015				
Shat load (N)	Allowable radial load			15		15	25	30
	Allowable thrust load	10		10	20	25		
Bearing		Ball bearing						
Port position		On the body side or in the axial direction						
Size	Body side				M5 X 0.8			
	Axial direction	M3 X 0.5			M5 X 0.8			
Shaft		Double shaft (One flat chamfering on each shaft)						
Angle adjustable range of the unit		0 to 2		0 to 240°				
Mounting		Basic, Flange						
Auto switch		Mountable (Port: Only on the body side)					rotation); the lower section indicates the energy value when the rubber bumper is not used.	

Double Vane Specifications

Model (Size)		CRB1BW10-DD	CRB1BW15-DD	CRB1BW20--D	CRB1BW30--D
Vane style		Double vane			
Rotation angle		$90^{\circ}, 100^{\circ}$			
Fluid		Air (Non-lube)			
Proof press (MPa)		1.05			1.5
Ambient and fluid temperature		5 to $60^{\circ} \mathrm{C}$			
Max. operating press. (MPa)		0.7			1.0
Min. operating press. (MPa)		0.2	0.15		
Speed range ${ }^{(1)}$ (sec/90 ${ }^{\circ}$)		0.03 to 0.3			0.04 to 0.3
Allowable kinetic energy (J)		0.0003	0.0012	0.0033	0.02
Shat load (N)	Allowable radial load	15	15	25	30
	Allowable thrust load	10	10	20	25
Bearing		Bearing			
Port position		On the body side or in the axial direction			
Port size (Body side, Axial direction)		M3 $\times 0.5$		M5 $\times 0.8$	
Shaft		Double shaft (One flat chamfering on each shaft)			
Mounting		Basic, Flange			
Auto switch		Mountable (Port: Only on the body side)			

,
Note 1) Make sure to operate within the adjustable speed range.
Exceeding the speed control upper limit $\left(0.3 \mathrm{sec} / 90^{\circ}\right)$ could cause the unit to stick or not operate.

Vane style	Single vane												Double vane							
Model	CRB1BW10- \square S			CRB1BW15- \square S			CRB1BW20- \square S			CRB1BW30-■S			CRB1BW10- $\square \mathrm{D}$		CRB1BW15- \square D		CRB1BW20-■D		CRB1BW30- \square D	
Rotation angle	90°	180°	270°	90°	100°	90°	100°	90°	100°	90°	100°									
Inner volume	$\begin{gathered} 1 \\ (0.6) \end{gathered}$	1.2	1.5	$\begin{gathered} 1.5 \\ (1.0) \end{gathered}$	2.9	3.7	$\begin{gathered} \hline 4.8 \\ (3.6) \end{gathered}$	6.1	7.9	$\begin{aligned} & 11.3 \\ & (8.5) \end{aligned}$	15	20.2	1.0	1.1	2.6	2.7	5.6	5.7	14.4	14.5

*The values in () indicate the internal volume of the air supply side at the time port A is pressurized

Weights

(g)

Vane style	Single vane												Double vane							
Model	CRB1BW10-■S			CRB1BW15- \square S			CRB1BW20- \square S			CRB1BW30- \square S			CRB1BW10-■D		CRB1BW15-■D		CRB1BW20-■D		CRB1BW30-■D	
Rotation angle	90 ${ }^{\circ}$	180°	270°	90°	180°	270°	90°	180°	270°	90 ${ }^{\circ}$	180°	270°	90°	100°	90°	100°	90°	100°	90°	100°
Body of rotary actuator	26.3	26.0	25.7	50	49	48	106	105	103	203	198	193	42	43	57	60	121	144	223	243
Flange bracket ass'y	9			10			19			25			9		10		19		25	
Auto switch unit + 2 switches	30			30			50			60			30		30		50		60	
Angle adjusting unit	30			47			90			150			30		47		90		150	

\triangle Precautions

''Be sure to read before handling.
'Refer to p. $0-20$ and $0-21$ for Safety Instructions and common I precautions for the products mentioned in this catalog, and 'refer to p.1.0-2 to 1.0-4 for precautions on every series.

Units Equipped with Angle Adjustment

. Caution

(1) If the rotary actuator body is used for a 90° or 180° application, the maximum angle will be limited by the rotation angle of the rotary actuator body. Make sure to take this into consideration when ordering equipment.
If the rotary actuator body is used for a 90° or 180° application, making an angle adjustment at the maximum angle of 90° or 180°, respectively, is not feasible because the rotation angle of the rotary actuator body is $90^{\circ}{ }_{0}^{4^{\circ}}$ (or $180^{\circ}+4^{\circ}$), respectively.
Therefore, in the case of the single vane type, use a rotary actuator body for 270°, and in the case of the double vane type, use a rotary actuator body for 100°. Furthermore, the " 90° " and " 180° " designations of the rotary actuator bodies are approximate; they should be used for angle adjustments within 85° and 175°, respectively.
(2) All of the connecting port positions are on the body side.
(3) The allowable kinetic energy is the same as that of the rotary actuator unit specifications.

Copper Free

The entire standard series of the vane rotary actuators does not affect color CRTs due to copper ions or fluororesins.

Specification

Vane style	Single, Double			
Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$
Operating press. range	0.2 to 0.7 MPa	0.15 to 0.7 MPa	0.15 to 1.0 MPa	
Speed adjust. range	0.03 to $0.3 \mathrm{~s} / 90^{\circ}$			0.04 to $0.3 \mathrm{~s} / 90^{\circ}$
Port position	On the body side or in the axial direction			
Piping	Basic only			
Mounting style				
Variations	Basic style, With auto switch, With angle adjuster			

Clean Series

This type can be used in a class 100 clean room due to the dual seal construction in the actuator shaft area and the ability to vent directly outside of the clean room through its relief port.

Specification

Vane style	Single	Single, Double		
Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$
Operating press. range	0.2 to 0.7 MPa	0.15 to 0.7 MPa	0.15 to 1.0 MPa	
Speed range	0.03 to $0.3 \mathrm{~s} / 90^{\circ}$			0.04 to $0.3 \mathrm{~s} / 90^{\circ}$
Port position	On the body side or in the axial direction			
Piping	Screw-in piping			
Relief port	M3 X 0.5			M5 X 0.8
Mounting style	Basic style, With auto switch			
Variations				

Construction

Rotary Actuator/Vane Style Series CRB1

Option Specifications/Flange Brackets/Size: 10, 15, 20, 30

Model				年
Basic style	With auto swicth	With angle adjuster	With angle adjuster and auto switch	
CRB1FW10	CDRB1FW10	CRB1FWU10	CDRB1FWU10	P211070-2
CRB1FW15	CDRB1FW15	CRB1FWU15	CDRB1FWU15	P211090-2
CRB1FW20	CDRB1FW20	CRB1FWU20	CDRB1FWU20	P211060-2
CRB1FW30	CDRB1FW30	CRB1FWU30	CDRB1FWU30	P211080-2

$)^{N}$
Notes) No flange metal fittings (with Phillips screw) are mounted when assembled in a factory.
The mounting location of flange metal fittings onto the body of rotary actuator can be adjusted at 60-degree intervals.

	Basic (Side port) CRB1FW	Size	Angle S SCRB	Size	\#11 (\#1+\#11)
	Basic (Axial direction port) CRB1FW	Size	Angle SE.......... SCRB	Size,	, \#12 (\#3+\#12)
CAD	W/ angle adjuster CRB1FWU	Size	Angle S SCRB	Size,	\#13 (\#5+\#13)
	W/ auto switch CDRB1FW	Size	AngleS SCRB	Size	\#14 (\#7+\#14)
	W/ angle adjuster and auto switch CDRB1FWU	Size	Angle S SCRB	Size	, \#15 (\#9+\#

Ass'y Part Number: P211060-2 (For C \square RB1FW \square 20)

Ass'y Part Number: P211090-2 (For C \square RB1FW $\square 15$)

Ass'y Part Numer: P211080-2 (For C \square RB1FW $\square 30$)

CRB1BW10

CRB1BW20

CRB1BW15

CRB1BW30

L dimensions of the body are shown below. If hexagonal head cap screws as accordance of JIS standard are used, the head part of the bolt can be fit in the groove on the actuators.

Model	L	Bolt
CRB1BW10	11.5^{*}	M2.5
CRB1BW15	16	M2.5
CRB1BW20	24.5	M3
CRB1BW30	34.5	M4

*Only the ones of size 10 have different types of vanes between single vane and double vane.
Length (L) for double vane is 20.5 .
*Refer to p.1.1-9, and 1.1-10 for dimensions of Q1 and Q2.

Rotation Range/From long shaft side.
(The chamfering locations shown below indicate the states when pressurized from B port.)

Single Vane
Double Vane

Note) For single and double vane styles: The cross angle rotation of $90^{\circ}, 180^{\circ}$, and 270° will be ${ }_{0}^{+5^{\circ}}$ only for size 10 .

Single vane -The dimensions below are of size 20.
 - Dimensions for 90° and for 180° shows the pressurization to B port, and

 dimensions for 270° show the location of the ports during rotation.For 90°
(From long shaft side)

(Short shaft side)

For 80° (From long shaft side)

For 270°
(From long shaft side)

Component Parts

No.	Descroption	Material	Note
(1)	Body (A)	Aluminum alloy	Black
(2)	Body (B)	Aluminum alloy	Black
(3)	Vane shaft	Stainless steel*	
(4)	Stopper	Resin	For 270
(5)	Stopper	Resin	For 180°
(6)	Bearing	High carbonate chrome steel	
(7)	Back-up ring	Stainless steel	Special bolt
(8)	Hexagon socket head cap screw	Stainless steel	Special packing
(9)	O ring	NBR	
(10)	Stopper packing	NBR	
*Carbon steel for CRB1BW30.			

Double vane

CRB1BW10-■D/Dimensions below shows the middle locations of pressurization to A port or B port.

For 90°
(From long shaft side)

CRB1BW15/20/30- \square D/Dimensions below are based on size 20

For 90° (From long shaft side)

For 100° (From long shaft side)

(Short shaft side)
Component Parts

No.	Description	Material	Note
(1)	Body (A)	Aluminum alloy	Black
(2)	Body (B)	Aluminum alloy	Black
(3)	Vane shaft	Carbon steel	
(4)	Stopper	Stainless steel	
(5)	Stopper	Resin	
(6)	Stopper	Stainless steel	
(7)	Bearing	High carbonate chrome steel	
(8)	Back-up ring	Stainless steel	

Component Parts

No.	Description	Material	Note
(9)	Cover	Aluminum alloy	Black
(10)	Plate	Resin	Black
(11)	Hexagon socket head cap screw	Stainless steel	Special bolt
(12)	O ring	NBR	
(13)	Stopper packing	NBR	Special packing
(14)	Gasket	NBR	Special packing
(15)	O ring	NBR	
(16)	O ring	NBR	

Series CRB1

Size 10, 15, 20, 30 m

Single vane

Port locations: Body side/

CRB1BW $\square-\square S$

Port locations:
Body side/
CRB1BW10- \square S

Port locations:
 Axial direction/
 CRB1BW $\square-\square$ SE

\square
The dimensions above show the pressurization state to B port of the one for 90° or 180°. Refer to p.1.1-7 for further information.

Model	A	B	C	D	$\mathrm{E}(\mathrm{g} 6)$	F(h9)	G1	G2	J	K	L	M	N	P	- Q1	-Q2	^Q3			
																		R		
																		90°	180°	270°
CRB1BW10- \square S	29	15	8	14	$4_{-0.012}^{-0.004}$	$9{ }_{-0.036}^{0}$	3	1	5	9	0.5	5	25	24	$\begin{aligned} & \text { M3 } \\ & \text { (6) } \end{aligned}$	$\begin{array}{\|c\|} \hline 3.4 \\ (5.5) \\ \hline \end{array}$		M		M3
CRB1BW10- \square SE												8.5	9.5					M3		
CRB1BW15-■S	34	20	9	18	$5_{-0.012}^{-0.004}$	$12{ }_{-0.043}^{0}$	4	1.5	6	10	0.5	5	25	29	$\begin{gathered} \hline \text { M3 } \\ \text { (10) } \\ \hline \end{gathered}$	$\begin{aligned} & 3.4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M3 } \\ \text { (5) } \\ \hline \end{array}$	M3		
CRB1BW15- \square SE												11	10							
CRB1BW20- \square S	42	29	10	20	$6^{-0.004}$-0.012	$14_{-0.043}^{0}$	4.5	1.5	7	10	0.5	9	25	36	$\begin{array}{\|c} \hline \text { M4 } \\ (13.5) \end{array}$	$\begin{aligned} & \hline 4.5 \\ & (11) \end{aligned}$	M4	M5		
CRB1BW20- \square SE												14	13				(7.5)			
CRB1BW30-■S	50	40	13	22	$8_{-0.014}^{-0.005}$	$16{ }_{-0.043}^{0}$	5	2	8	12	1.0	10	25	43	$\begin{array}{\|c} \hline \text { M5 } \\ \text { (18) } \end{array}$	$\begin{gathered} 5.5 \\ (16.5) \end{gathered}$	M5	M5		
CRB1BW30- \square SE												15.5	14				(10)			

Port location: Body side
CRB1BW Size -םS...........SCRB Size, \#1
Port location: Axial direction
CRB1BW Size -■SE.........SCRB Size, \#3

Rotary Actuator/Vane Style Series CRB1

Double vane

Port locations: Body side/
CRB1BW10- \square D

Port locations: Body side/
CRB1BW15, 20, 30- \square D

Port direction:
Axial direction/
CRB1BW10-■DE

Port direction:
Axial direction/
CRB1BW15-20-30-■DE

Penetrated to threads on body B side

The dimensions above show the rotation middle position during pressurization to A or B Port.

Model	A	B	C	D	E(g6)	F(h9)	G1	G2	J	K	L	M	N	P	Q (Depth)			R	
															-Q1	-Q2	\star Q3	90°	100°
CRB1BW15- \square D	34	20	9	18	$5_{-0.012}^{-0.004}$	$12{ }_{-0.043}^{0}$	4	1.5	6	10	0.5	5	25	29	$\begin{gathered} \text { M3 } \\ \text { (10) } \end{gathered}$	$\begin{aligned} & 3.4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M3 } \\ & \text { (5) } \end{aligned}$	M3	
CRB1BW15-DDE												11	10						
CRB1BW20- \square D	42	29	10	20	$6_{-0.012}^{-0.004}$	$14{ }_{-0.043}^{0}$	4.5	1.5	7	10	0.5	9	25	36	$\begin{array}{\|c\|c\|} \hline \text { M4 } \\ (13.5) \\ \hline \end{array}$	$\begin{gathered} \hline 4.5 \\ (11) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { M4 } \\ (7.5) \end{array}$	M5	
CRB1BW20- \square DE												14	13						
CRB1BW30- \square D	50	40	13	22	$8_{-0.014}^{-0.005}$	$16{ }_{-0.043}^{0}$	5	2	8	12	1.0	10	25	43	M5			M5	
CRB1BW30-DDE												15.5	14		(18)	(16.5)	(10)		

Rotary Actuator with Auto Switch Series CDRB1

Vane Style/Size: 10, 15, 20, 30

How to Order

Auto Switch Specifications/

[^0]$3 \mathrm{~m} \cdot \cdots \cdots$. L Ex.) R73CL \bullet Shock resistance- $300 \mathrm{~m} / \mathrm{s}^{2}$ (Reed type), $1000 \mathrm{~m} / \mathrm{s}^{2}$ (Solid state type)
5m...................Z Ex.) R73CZ
Not attached.... N Ex.) R73CN

Rotary Actuator/Vane Style Series CRB1

Applicable series	Auto switch models		Electrical entry	Page
CDRB1BW 10 CDRB1BW 15	Reed switch	D-90/90A	Grommet/2 wire style	$\begin{aligned} & 2.11-12 \\ & 2.11-14 \end{aligned}$
		D-97/93A		
	Solid state switch	D-S99/S99V*	Grommet/3 wire style (NPN)	2.11-23
		D-S9P/S9PV*	Grommet/3 wire style (PNP)	
		D-T99/T99V	Grommet/2 wire style	
CDRB1BW 20 CDRB1BW 30	Reed switch	D-R73	Grommet/2 wire style	2.11-15
		D-R80	Connector/2 wire style	
	Solid state switch	D-S79*	Grommet/3 wire style (NPN)	2.11-24
		D-S7P*	Grommet/2 wire style (PNP)	
		D-T79	Grommet/2 wire style, Connector/2 wire style	

*No connector style for 3 wire without connecting section style.
How to Adjust Auto Switch
Refer to p.1.0-19 and 1.0-20 for further information on auto switch adjusting method.

Units

All units are mountable to series CDRB1. Refer to p.1.0-23 for 1.0-24 further information. Combinable unit
(1)Auto switch unit
(2) Angle adjusting unit
*Switch block unit (Required when using 3 auto switches.)
*Joint unit (Required when connecting auto switch to angle adjusting unit.)

Series CDRB1

Size 10, 15, 20, 30/with auto switch

Single vane
CDRB1BW10/15- \square S

Single vane
CDRB1BW20/30- \square S

The dimensions above show pressurization to B port for 90° and 180°. Refer to p.1.1-7 for further information.

*1. 24: When auto switches of "D-90", "90A", "S99(V)", "T99(V)", "S9P(V)", styles are being used.
30: When "D-97", "93A" styles are being used.
*2. 60° : When auto switches of "D-90", "90A", "97", "93A" styles are being used.
69° : When auto switches of "D-S99(V)", "T99(V)", "S9P(V)" styles are being used.
Note) For auto switch attached style, positions for connecting ports are on body side.
*The diagrams of outer appearances show the auto switches with 1 right
hand operating switch and one left hand operating switch.

Model	A	B	C	D	$\underset{(\mathrm{g} 6)}{\mathrm{E}}$	$\begin{gathered} \mathrm{F} \\ \text { (h9) } \end{gathered}$	G	K	L	M	N	P	Q	R			Y
														90°	180°	270°	
CDRB1BW10- ${ }^{\text {S }}$	29	15	29	14	4	9	3	9	0.5	10	25	24	M3 X 0.5Depth5	M5 X 0.8		M3 $\times 0.5$	18.5
CDRB1BW15-■S	34	20	29	18	5	12	4	10	0.5	15	25	29	M3 X 0.5Depth5	M5 $\times 0.8$		M3 $\times 0.5$	18.5
CDRB1BW20-■S	42	29	30	20	6	14	4.5	10	0.5	20	25	36	M4 X 0.7Depth7	M5 X 0.8			25
CDRB1BW30-■S	50	40	31	22	8	16	5	12	1	30	25	43	M5 X 0.8Depth10	M5 $\times 0.8$			25

\square CDRB1BW Size - S.........SCRB Size, \#7
CAD

Rotary Actuator/Vane Style Series CRB1

Double vane
 CRB1BW15/20/30- \square D

(Same size as single vane style.)

CDRB1BW15- \square D

CDRB1BW20/30- \square D

The dimensions above show the rotation middle position during pressurization to A or B port.
*1) 24: When auto switches of "D-90", "90A", "S99(V)", "T99(V)", "S9P(V)" styles are being used.
30: When "D-97", "93A", styles are being used.
*2) 60° : When auto switches of "D-90", "90A", "97", "93A" styles are being used.
69° : When auto switches of "D-S99(V)", "T99(V)", "S9P(V)" styles are being used.
*3) 25.5: When auto switches grommet "D-R73", "R80", "S79", "T79", and "S7P" styles are being used. 34.5: When auto switches "D-R73", "R80" and "T79" connector styles are being used.

Model	A	B	C	D	E(g6)	F(h9)	G	K	L	M	N	P	Q			S		Y
														90°	100°			
CDRB1BW15-■D	34	20	29	18	5	12	4	10	0.5	15	25	29	M3 X 0.5Depth5	M3	X 0.5	$24^{* 1}$	$30^{* 1}$	18.5
CDRB1BW20--D	42	29	30	20	6	14	4.5	10	0.5	20	25	36	M4 X 0.7Depth7	M5	$\times 0.8$		5*3	25
CDRB1BW30-■D	50	40	31	22	8	16	5	12	1	30	25	43	M5 X 0.8Depth10	M5	$\times 0.8$			25

Series CDRB1

Construction

- Single vane

The dimensions below show pressurization to B port of the switches for 90° and 180°.

- Double vane

The dimensions below show the rotation middle position during pressurization to A port or B port.

(The unit is common to single vane and double vane styles.)

Component Parts

No.	Description	Material
(1)	Cover (A)	Resin
(2)	Cover (B)	Resin
(3)	Magnet lever	Resin
(4)	Fixing block (A)	Aluminum alloy
(5)	Fixing block (B)	Aluminum alloy
(6)	Fixing block	Aluminum alloy
(7)	Switch block (A)	Resin
(8)	Switch block (B)	Resin
(9)	Switch block	Resin
$(10$	Magnet	Magnetic substance

No.	Description	Material
(11)	Arm	Stainless steel
(12)	Hexagon socket head cap screw	Stainless steel
(13)	Cross-recessed head cap screw	Stainless steel
(14)	Cross-recessed head cap screw	Stainless steel
(15)	Cross-recessed head cap screw	Stainless steel
(16)	Cross-recessed head cap screw	Stainless steel

*2 cross-recessed head cap screws (13) are attached for "CDRB1BW10"

Rotary Actuator with Angle Adjuster Series CRB1BWU

Vane Style/Size:10, 15, 20, 30

How to order

Series CRB1BWU

Construction (Units are common for both the single vane and double vane.)
With angle adjusting unit
CRB1BWU10/15/20/30-ם.

Single vane

Double vane

With angle adjusting unit and auto switch

CDRB1BWU10/15--■号 CDRB1BWU20/30/- \square S

CDRB1BWU10

Component Parts

No.	Description	Material	Notes
(1)	Stopper ring	Aluminum die casting	
(2)	Stopper lever	Carbon steel	
(3)	Lever retainer	Carbon steel	Zinc chromated
(4)	Rubber bumper	NBR	
(5)	Stopper block	Carbon steel	Zinc chromated
(6)	Block retainer	Carbon steel	Zinc chromated
(7)	Cap	Resin	
(8)	Hexagon socket head cap bolt	Stainless steel	Special bolt
(9)	Hexagon socket head cap bolt	Stainless steel	Special bolt
(10)	Hexagon socket head cap bolt	Stainless steel	Special bolt
(11)	Joint	Aluminum alloy	(1)
(12)	Hexagon socket head cap screw	Stainless steel	Only for CDRBUW10, the part
	Hexagon nut	Stainless steel	indicated with no. 12 is a hexagon nut.
(13)	Cross-recessed head cap screw	Stainless steel	(1)
(14)	Magnet lever	-	(1)

Note 1) Consists of the combination of an auto switch unit and an angle adjustment unit;
for detailed specifications, refer to p.1.0-23 and 1.0-24.

. Precautions

「 Be sure to read before handling
I Refer to p.0-20 and 0-21 for Safety Instructions and common ${ }_{\text {I }}$ precautions for the products mentioned in this catalog, and $L^{\text {refer to p.1.0-2 to 1.0-4 for precautions on every series. }}$

Unit with Angle Adjuster

Caution

(1) The maximum angle of the adjustable range of rotation angle will be restricted depending on the rotation angle of the rotary actuator body.

Rotation angle of rotary actuator body	Range of rotation angle
$270^{\circ+4}$	0° to $230^{\circ}(\text { Size: } 10)^{* 1}$
	$180^{\circ+4}$
$90^{\circ+4}$	0° to $240^{\circ}($ size: $15,20,30)$
	0° to 175°

[^1]
Rotary Actuator/Vane Style Series CRB1

Size $10,15,20,30 /$ with angle adjuster $\underset{\text { CAD }}{\square}$

Single vane

CRB1BWU10/15/20/30- \square S

Dimensions below show pressurization to A port of the switches for 90°. Refer to p.1.1-7.

Double vane

CRB1BWU10- \square D

CBB1

Dimensions below show the rotation middle position during pressurization to A port or B port.

Double vane

CRB1BWU15/20/30- \square D
Size of double vane style: The outer dimensions of 15, 20, 30 and the sizes shown in the dimension table are same as those of single vane size $15,20,30$ styles.

Model	A	B	C	D	$\begin{gathered} E \\ (\mathrm{~g} 6) \end{gathered}$	$\begin{gathered} \text { F } \\ \text { (h9) } \end{gathered}$	G	H	K	L	M	N	P	Q
CRB1BWU10- \square S	29	15	19.5	14	4	9	3	3	9	0.5	10	25	24	M3 X 0.5 Depth6
CRB1BWU15- \square S														
CRB1BWU15- \square D	34	20	21.2	18	5	12	4	3.2	10	0.5	15	25	29	M3 X 0.5 Depth5
CRB1BWU20- \square	42	29	25	20	6	14	4.5	4	10	0.5	20	25	36	M4 X 0.7 Depth7
CRB1BWU20-■D														M4 X 0.7 Depth7
CRB1BWU30- \square S	50	40	29	22	8	16	5	4.5	12	1	30	25	43	M5 X 0.8 Depth10
CRB1BWU30-DD							5	4.5	12	1	30	25	43	M5 X 0.8 Depth10

Model	R			
	90°	100°	180°	270°
CRB1BWU10- \square S	M5 X 0.8	-	M5 X 0.8	M3 $\times 0.5$
CRB1BWU10--D	Refer to the drawings above.*		-	
CRB1BWU15- \square S	M5 X 0.8	-	M5 X 0.8	M3 $\times 0.5$
CRB1BWU15--D	M3 $\times 0.5$		-	
CRB1BWU20- \square S	M5 X 0.8	-	M5 X 0.8	
CRB1BWU20--D	M5 $\times 0.8$			
CRB1BWU30-■S	M5 X 0.8	-	M5 X 0.8	
CRB1BWU30--D	M5 X 0.8		-	

CRB1BWU Size-SSCRB Size, \#5

Single vane
 CDRB1BWU10/15-■S

Double vane CDRB1BWU10-■D

Double vane

CDRB1BWU15/20/30-■D
The outside diameter dimension diagram and dimension table for sizes 15 , 20, and 30 of the double vane style provide the same dimensions as those of sizes 15,20 , and 30 of the single vane style.

Model	A	B	C	D	$\begin{gathered} \mathrm{E} \\ (\mathrm{~g} 6) \end{gathered}$	$\begin{gathered} \text { F } \\ \text { (h9) } \end{gathered}$	G	K	L	M
CDRB1BWU10-■S	29	15	45.5	14	4	9	3	9	0.5	10
$\begin{aligned} & \hline \text { CDRB1BWU15- } \square S \\ & \hline \text { CDRB1BWU15- } \square \text { D } \end{aligned}$	34	20	47	18	5	12	4	10	0.5	15
$\begin{aligned} & \hline \text { CDRB1BWU20- } \square \mathrm{S} \\ & \hline \text { CDRB1BWU20-■D } \end{aligned}$	42	29	51	20	6	14	4.5	10	0.5	20
CDRB1BWU30- $\square S$ CDRB1BWU30- $\square D$	50	40	55.5	22	8	16	5	12	1	30
	N	P	Y	Q			R			
Model							90°	100°	180°	270°
CDRB1BWU10- \square S	25	24	18.5	M3 X 0.5 Depth 6			M5 $\times 0.8$	-	M5 $\times 0.8$	м3 $\times 0.5$
CDRB1BWU10-D							Refer to the			
CDRB1BWU15-■S	25	29	18.5	M3 X 0.5 Depth 5			M5 $\times 0.8$	-	M5 0.8	M3 $\times 0.5$
CDRB1BWU15--D							M3 $\times 0.5$		-	-
CDRB1BWU20-■S	25	36	25	M4 X 0.7 Depth 7			M5 $\times 0.8$	-	M5	$\times 0.8$
CDRB1BWU20-■D							M5 X 0.8		-	-
CDRB1BWU30-■S	25	43	25	M5 X 0.8 Depth10			M5 $\times 0.8$		M5	$\times 0.8$
CDRB1BWU30-D							M5	0.8	-	-

,
Note) The connecting port position for those equipped with an angle adjustment unit or auto switch is on the body side.
Note) The outside drawing indicates one each of the right-hand and left-hand switches.

Series CRB1/Size: 10, 15, 20, 30
 Made to Order Specifications
 Change of Shaft End Shape/-XA1 to XA47

Consult SMC for further information on specifications, dimensions and delivery.

A wide selection of models is now available, as non-standard shaft configurations for the CRB1 series (sizes: 10, 15, 20, and 30) are provided in 46 types of patterns.

Additional reminders

- Enter the dimensions within a range that allows for additional machining.
-SMC will make appropriate arrangements if no dimensions, tolerance, or finish instructions are given in the diagram.
-The length of the unthreaded portion is 2 to 3 pitches.
- Unless specified otherwise, the thread pitch is based on coarse metric threads.
$\mathrm{P}=$ thread pitch
M3 X 0.5; M4 X 0.7; M5 X 0.8
\bullet Enter the desired values in the $-=-_$, portion of the diagram.
-To shorten the shaft, use the dimensional charts for patterns A17 to A19 for reference
- If equipped with an auto switch, the manufacturable patterns are those for shafts J and W.
- Consult SMC for made to order specifications other than those mentioned in "How to Order".
- Individual drawings for specific made to order models may not be available. Consult SMC separately if drawings are needed.

How to Order

Without auto switches 2 patterns (A1, C6)

Applicable patterns

Size	10, 15, 20, 30
Patterns	XA 1 to XA23,
	XA31 to XA34,
	XA37 to XA47,
	XC 1 to XC 7, XC30

Applicable shaft/Pattern combination table (Size: 10, 15, 20, 30)

Shaft Type/W: Double shafts (Standard)

Symbol	Description		Shaft direction		Applicable
		Upper	Lower	size	
-XA	1	Female thread at the shaft end	\bullet	-	$15,20,30$
-XA	2	Female thread at the shaft end	-	\bullet	
-XA	3	Male thread at the shaft end	\bullet	-	
-XA	4	Male thread at the shaft end	-	\bullet	
-XA	5	Round shaft with steps	-	-	
-XA	6	Round shaft with steps			

With auto switches Only for pattern A1

Refer to p.1.1-11 for further information.

Series CRB1/Size: 10, 15, 20, 30
 Made to Order Specifications
 Change of Shaft End Shape/-XA1 to XA8
 Consult SMC for further information on specifications, dimensions and delivery.

Additional reminders

- Enter the dimensions within a range that allows for additional machining.
- SMC will make appropriate arrangements if no dimensions, tolerance, or finish instructions are given in the diagram
- The length of the unthreaded portion is 2 to 3 pitches.
- Unless specified otherwise, the thread pitch is based on coarse metric threads.
$\mathrm{P}=$ thread pitch
- M3 X 0.5; M4 X 0.7; M5 X 0.8

Enter the desired figures in the 1_{-1}^{-2} portion of the diagram.

- To shorten the shaft, use the dimensional tables for patterns A17 to A19 for reference.

Symbol: A3

The shaft can be further shortened by machining male threads on the long end of the shaft.
(If the shaft is not to be shortened, leave the X dimension blank.)

Size	X	Lmax	Q
10	9 to 14	X-5	M4
15	11 to 18	X-6	M5
20	13 to 20	X-7	M6
30	16 to 22	X-8	M8

Symbol: A6

The shaft can be further shortened by machining a round shoulder on the short end of the shaft.
(If the shaft is not to be shortened, leave the Y dimension blank.)

Size	Y	Lmax
10	2 to 8	Y-1
15	3 to 9	Y-1.5
20	3 to 10	Y-1.5
30	3 to 13	Y-2

Symbol: A1

The shaft can be further shortened by machining female threads into the long end of the shaft. (If the shaft is not to be shortened, leave the X dimension blank.)

- Size 10 mm is not manufacturable.
- L dimension (maximum size) is 2 times as large as the thread size as a rule

Ex.) M	$=6 \mathrm{~mm}$		(mm)
Size	X	Q	
15	to 18	M3	
20	4.5 to 20	M3, M4	
		M3, M	

Symbol: A4

The shaft can be further shortened by machining male threads on the short end of the shaft.
(If the shaft is not to be shortened, leave the Y dimension blank.)

Size	Y	Lmax	Q
$\mathbf{1 0}$	7 to 8	$\mathrm{Y}-3$	M 4
$\mathbf{1 5}$	8.5 to 9	$\mathrm{Y}-3.5$	M 5
$\mathbf{2 0}$	10	$\mathrm{Y}-4$	M 6
$\mathbf{3 0}$	13	$\mathrm{Y}-5$	M 8

Symbol: A7

The shaft can be further shortened by machining a round shoulder and machining male threads on the long end of the shaft.
(If the shaft is not to be shortened, leave the X dimension blank.)

					(mm)
Size	X	Lmax	Q		
$\mathbf{1 0}$	7.5 to 14	$X-3$	M 3		
$\mathbf{1 5}$	10	to 18	$\mathrm{X}-4$		
$\mathrm{M} 3, \mathrm{M} 4$					
$\mathbf{2 0}$	12	to 20	$\mathrm{X}-4.5$		
$\mathbf{3 0}$	14	to 22	$\mathrm{X}-5$		

Symbol: A2
The shaft can be further shortened by machining female threads into the short end of the shaft. (If the shaft is not to be shortened, leave the Y dimension blank.)

- Size 10 mm is not manufacturable
- L dimension (maximum size) is 2 times as large as the thread size as a rule
Ex.) M3: L = 6mm

Ex.) $\mathrm{M} 3: L=6 \mathrm{~mm}$	(mm)	
Size	Y	Q
$\mathbf{1 5}$	1.5 to 9	M 3
$\mathbf{2 0}$	1.5 to 10	$\mathrm{M} 3, \mathrm{M} 4$
$\mathbf{3 0}$	2 to 13	$\mathrm{M} 3, \mathrm{M} 4, \mathrm{M} 5$

Symbol: A5

The shaft can be further shortened by machining a round shoulder on the long end of the shaft.
(If the shaft is not to be shortened, leave the X dimension blank.)

Symbol: A8

The shaft can be further shortened by machining a round shoulder and machining male threads on the short end of the shaft
If the shaft is not to be shortened, leave the Y dimension blank.)

					(mm)
Size	Y	Lmax	Q		
$\mathbf{1 0}$	5.5 to 8	Y-1	M3		
$\mathbf{1 5}$	7.5 to 9	Y-1.5	M3, M4		
$\mathbf{2 0}$	9 to 10	Y-1.5	M3, M4, M5		
$\mathbf{3 0}$	11	to 13	Y-2		

Symbol: A9

The shaft can be further shortened by changing the length of the standard flat of the long end of the shaft. (If the shaft is not to be shortened, leave the X dimension blank.)

(mm)		
Size	X	L1
$\mathbf{1 0}$	5 to 14	$9-(14-X)$ to $(X-3)$
15	8 to 18	$10-(18-X)$ to $(X-4)$
$\mathbf{2 0}$	10 to 20	$10-(20-X)$ to $(X-4.5)$
$\mathbf{3 0}$	10 to 22	$12-(22-X)$ to $(X-5)$

Symbol: A12

The shaft can be further shortened by milling double flats on the short end of the shaft.
(If no changes are to be made to the standard flat, and the shaft is not to be shortened, leave the L1 and Y dimensions blank.)

Symbol: A15
Applicable to the single vane style only.
Machine a special end (at the short end of the shaft), and machine female threads in the through hole at the short end of the shaft, thus creating a through hole to serve as the pilot.

- Size 10 is not manufacturable.
-The L dimension (maximum) is, as a rule, twice the size of the bolt. Example: For M4 bolt: L max $=8 \mathrm{~mm}$

	(mm)		
Size	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$
M3 X 0.5	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$
M4 X 0.7	-	$\varnothing 3.3$	$\varnothing 3.3$
M5 X 0.8	-	-	$\varnothing 4.2$

Symbol: A10

The shaft can be further shortened by changing the length of the
standard flat of the short end of the shaft (If the shaft is not to be standard flat of the short end of the shaft. (If the shaft is not to be shortened, leave the Y dimension blank.)

Symbol: A13 Applicable to the single vane style only.
Shaft through hole $\mathrm{d} 2=\varnothing_{\llcorner }^{\text {- }}$ -
,

- Size 10 mm is not manufacturable.
- For size $15 \mathrm{~mm}, \mathrm{~d} 1=\varnothing 2.5, \mathrm{~L} 1=$ max. 18 .
- For size 15 mm only, inscribe the L1, L2, and d1 dimensions
when = d2 is ø2.6 or more.
- Sizes 20 mm and 30 mm are $\mathrm{d} 1=\mathrm{d} 2$.
- The minimum range of the machinable dimension for the d2 area is 0.1 mm .

$\quad(\mathrm{mm})$		
Size	d 1	d 2
$\mathbf{1 5}$	$\varnothing 2.5$	$\varnothing 2.5$ to $\varnothing 3$
$\mathbf{2 0}$	-	$\varnothing 2.5$ to $\varnothing 4$
$\mathbf{3 0}$	-	$\varnothing 2.5$ to $\varnothing 4.5$

Symbol: A16 Applicable to the single vane style only.

Machine special ends (at both ends of the shaft), and machine female threads in the through holes at both ends of the shaft, thus creating through holes to serve as pilot.

- Size 10 is not manufacturable.
- The L dimension (maximum) is, as a rule, twice the size of the bolt.
Example: For M5 bolt: L max. $=10 \mathrm{~mm}$

Size	15	20	30
M3 X 0.5	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$
M4 X 0.7		$\varnothing 3.3$	$\varnothing 3.3$
M5 X 0.8	-		$\varnothing 4.2$

Symbol: A11

The shaft can be further shortened by milling double flats on the long end of the shaft. (lf no changes are to be made to the standard flat, and the shaft is not to be shortened, leave the L1 and X dimensions blank.)

*: 0.5mm or more
L1: Standard chamfering part

(mm)			
Size	X	L1	L2max
$\mathbf{1 0}$	5 to 14	$9-(14-X)$ to $(X-3)$	$X-3$
$\mathbf{1 5}$	8 to 18	$10-(18-X)$ to $(X-4)$	$X-4$
$\mathbf{2 0}$	10 to 20	$10-(20-X)$ to $(X-4.5)$	$X-4.5$
$\mathbf{3 0}$	10 to 22	$12-(22-X)$ to $(X-5)$	$X-5$

Symbol: $\mathbf{A} 14$ Applicable to the single vane style only.
Machine a special end (at the long end of the shaft), and machine female threads in the through hole at the long end of the shaft, thus creating a through hole to serve as the pilot.

- Size 10 is not manufacturable
- The L dimension (maximum), is, as a rule, twice the size of the bolt.
Example: For M3 bolt: L max. $=6 \mathrm{~mm}$

Example: For M3 bolt: L max. $=6 \mathrm{~mm}$			
Size	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$
$\mathrm{M} 3 \times 0.5$	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$
$\mathrm{M} 4 \times 0.7$	-	$\varnothing 3.3$	$\varnothing 3.3$
$\mathrm{M} 5 \times 0.8$	-	-	$\varnothing 4.2$

Symbol: A17

Shorten the long end of the shaft.

Series CRB1／Size：10，15，20， 30
 Made to Order Specifications
 Change of Shaft End Shape／－XA18 to XA23
 Consult SMC for further information on specifications，dimensions and delivery．

Additional reminders

－Enter the dimensions within a range that allows for additional machining
－SMC will make appropriate arrangements if no dimensions，tolerance，or finish instructions are given in the diagram．
－The length of the unthreaded portion is 2 to 3 pitches．
－Unless specified otherwise，the thread pitch is based on coarse metric threads．
$\mathrm{P}=$ thread pitch
M3 X 0．5；M4 X 0．7；M5 X 0.8
－Enter the desired figures in the「ここ．portion of the diagram．
－To shorten the shaft，use the dimensional tables for patterns A17 to A19 for reference．

Symbol：A20

Reverse the assembly of the shaft（thus shortening the long end and the short end of the shaft．）

（mm）			
Size	X	Y	
$\mathbf{1 0}$	3 to 10	1 to 12	
$\mathbf{1 5}$	4 to 11.5	1.5 to 15.5	
$\mathbf{2 0}$	4.5 to 13	1.5 to 17	
$\mathbf{3 0}$	5 to 16	2 to 19	

Symbol：A23

The shaft can be further shortened by milling perpendicular double flats on the long end of the shaft．（If no changes are to be made to the standard flat and the shaft is not to be shortened，leave the L1 and X dimensions blank．）

The＂＊＂mark indicates 0.5 minimum．
L 1 is the standard flat．

（mm）

Size	X	L1	L2max
$\mathbf{1 0}$	5 to 14	$9-(14-X)$ to $(X-3)$	$X-3$
$\mathbf{1 5}$	8 to 18	$10-(18-X)$ to $(X-4)$	$X-4$
$\mathbf{2 0}$	10 to 20	$10-(20-X)$ to $(X-4.5)$	$X-4.5$
$\mathbf{3 0}$	10 to 22	$12-(22-X)$ to $(X-5)$	$X-5$

Symbol：A18

Shorten the short end of the shaft．

Symbol：A21

The shaft can be further shortened by machining a round shoulder and double flats on the long end of the shaft．（If the shaft is not to be shortened，leave X dimension blank．）

Symbol：A19
Shorten both the long and the short end of the shaft．

（mm）			
Size	X	Y	
$\mathbf{1 0}$	3 to 14	1 to 8	
$\mathbf{1 5}$	4 to 18	1.5 to 9	
$\mathbf{2 0}$	4.5 to 20	1.5 to 10	
$\mathbf{3 0}$	5 to 22	2 to 13	

Symbol：A22

The shaft can be further shortened by machining a round shoulder and double flats on the short end of the shaft．（If the shaft is not to be shortened，leave Y dimension blank．）

Depending on the
type of change that has been made，th standard flat may
remain．

Size	Y	L1max	L2
$\mathbf{1 0}$	4 to 8	Y－2．5	$\mathrm{L} 1+1.5$
$\mathbf{1 5}$	4.5 to 9	$\mathrm{Y}-3$	$\mathrm{~L} 1+1.5$
$\mathbf{2 0}$	5 to 10	$\mathrm{Y}-3.5$	$\mathrm{~L} 1+2$
$\mathbf{3 0}$	$\mathbf{7}$ to 13	$\mathrm{Y}-5$	$\mathrm{~L} 1+3$

Series CRB1/size: 10, 15, 20, 30 Made to Order Specifications
Change of Shaft End Shape/-XA31 to XA40
Consult SMC for further information on specifications, dimensions and delivery.

Additional reminders

- Enter the dimensions within a range that allows for additional machining.
- SMC will make appropriate arrangements if no dimensions, tolerance, or finish instructions are given in the diagram.
-The length of the unthreaded portion is 2 to 3 pitches.
- Unless specified otherwise, the thread pitch is based on coarse metric threads.
$\mathrm{P}=$ thread pitch
M3 X 0.5; M4 X 0.7; M5 X 0.8
- Enter the desired figures in the $\left\lceil_{\llcorner }^{-}\right\urcorner$portion of the diagram.
- To shorten the shaft, use the dimensional tables for patterns A17 to A19 for reference.

Symbol: A33

Machine female threads into the long end of the shaft.
-The L dimension (maximum) is, as a rule, twice the size of the bolt.
(Example: For M3 bolt: L max. $=6 \mathrm{~mm}$)

- Applicable shaft styles - shafts J, K, T

Symbol: A38

The shaft can be further shortened by machining a round shoulder on the short end of the shaft. (If the shaft is not to be shortened, leave the Y dimension blank.)

- Applicable shaft styles - shaft K

Size	Y	Lmax
$\mathbf{1 0}$	2 to 14	$\mathrm{Y}-1$
$\mathbf{1 5}$	3 to 18	$\mathrm{Y}-1.5$
$\mathbf{2 0}$	3 to 20	$\mathrm{Y}-1.5$
$\mathbf{3 0}$	3 to 22	$\mathrm{Y}-2$

Symbol: A31

Machine female threads into the long end of the shaft

- The L dimension (maximum) is, as a rule, twice the size of the bolt.
(Example: For M3 bolt: L max. $=6 \mathrm{~mm}$)
- Applicable shaft styles - shafts S, Y

Symbol: A34

Machine female threads into the short end of the shaft.
-The L dimension (maximum) is, as a rule, twice the size of the bolt.
(Example: For M3 bolt: L max. $=6 \mathrm{~mm}$)
However, in the case of the M5 bolt for shaft T, it is 1.5 times the size of the bolt.
-Applicable shaft styles — shafts J, K, T

(mm)

	Q		
S			
Size	J	K	T
10	Not manufacturable		
15	M3		
20	M3, M4		
30	M3, M4, M5		

Symbol: A39 Applicable to the single vane type only Shaft through hole (shafts S, Y additionally machined)

- Size 10 is not manufacturable. For size 15 is $\mathrm{d} 1=\varnothing 2.5, \mathrm{~L} 1=$ max. X 18 The minimum range of the machinable dimension for the d 2 area is 0.1 mm .
-For sizes 20 and 30 are $\mathrm{d} 1=\mathrm{d} 2$.
-With size 15 , enter the L1 L 2 , and d 1 dimensions when d2 is $\varnothing 2.6$ or more. -Applicable shaft styles -shafts S, Y

Symbol: A32

Machine female threads into the short end of the shaft. -The L dimension (maximum) is, as a rule, twice the size of the bolt. (If M5 only 1.5 times)
(Example: For M4 bolt: L max. $=8 \mathrm{~mm}$)
-Applicable shaft styles - shafts S, Y

Symbol: A37
The shaft can be further shortened by machining a round shoulder on the long end of the shaft. (If the shaft is not to be shortened, leave the X dimension blank.)

- Applicable shaft styles — shafts J, K, T

Symbol: A40 Applicable to the single vane only. Shaft through hole (shafts K, T additionally machined)

- Size 10 is not manufacturable. For size 15 is $\mathrm{d} 1=\varnothing 2.5, \mathrm{~L} 1=\max . \mathrm{X} 18$ The minimum range of the machinable dimension for the d 2 area is 0.1 mm . -For sizes 20 and 30 are d1 $=\mathrm{d} 2$.
- With size 15 , enter the L1, L 2 , and d 1 dimensions when d2 is $\varnothing 2.6$ or more. -Applicable shaft styles -shafts S, Y

(mm)		
${ }^{\text {Shatit }}$	K T	K T
Size	d1	d2
15	2.5	2.5 to 3
20	-	2.5 to 4
30	-	2.5 to 4.5

Series CRB1/Size: 10, 15, 20, $\mathbf{3 0}$
Made to Order Specifications
Change of Shaft End Shape/-XA41 to XA47
Consult SMC for further information on specifications, dimensions and delivery.

Additional reminders

- Enter the dimensions within a range that allows for additional machining.
- SMC will make appropriate arrangements if no dimensions, tolerance, or finish instructions are given in the diagram.
- The length of the unthreaded portion is 2 to 3 pitches.
- Unless specified otherwise, the thread pitch is based on coarse metric threads. $\mathrm{P}=$ thread pitch
M3 X 0.5; M4 X 0.7; M5 X 0.8
- Enter the desired figures in the portion of the diagram.
- To shorten the shaft, use the dimensional tables for patterns A17 to A19 for reference.

Symbol: A43
Applicable only to single vane.
Machine special ends (at both ends of the shaft), and machine female threads in the through holes at both ends of the shaft, thus creating through holes to serve as the pilot holes.

Size	15		20		30	
Thread	K	T	K	T	K	T
M3 X 0.5	2.5		2.5		2.5	
M 4×0.7	-		3.3		3.3	
M5 X 0.8	-		-		4.2	

Symbol: A46

The shaft can be further shortened by machining an intermediate flat on the short end of the shaft (the position is that of the standard flat).

Symbol: A41
Applicable only to single vane

- Size 10 is not manufacturable
- For size 15 is $d 1=2.5, L 1=$ max. 18 The minimum
range of the machinable dimension for the d2 area is
range of the machinable dimension for the d2 area is
0.1 mm . Enter the $\mathrm{L} 1, \mathrm{~L} 2$, and d 1 dimensions when d2 is $\varnothing 2.6$ or more.
- For sizes 20 and 30 are d1 = d2.
- Applicable shaft styles - shaft J

(mm)		
Size	d1	d2
$\mathbf{1 5}$	2.5	2.5 to 3
$\mathbf{2 0}$	-	2.5 to 4
$\mathbf{3 0}$	-	2.5 to 4.5

Symbol: A44

Applicable only to single vane.
Machine special ends (at both ends of the shaft), and machine female threads in the through holes at both ends of the shaft, thus creating through holes to serve as the pilot holes.

- Size 10 is not manufacturable - The L dimension (maximum) is, as a rule, twice the size of the bolt. (Example: For M5 bolt: L max. $=10 \mathrm{~mm}$.) - Applicable shaft styles- shaft J

(mm)			
Thread \quad Size	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$
M3 $\times 0.5$	2.5	2.5	2.5
M4 00.7		3.3	3.3
M5 X 0.8	-	-	4.2

Symbol: A47

Machining a key groove in the long end of the shaft (the position is that of the standard flat). A key must be ordered separately.

- Applicable shaft styles - shafts J, K, T	(mm)		
Size	a	L	N
$\mathbf{2 0}$	$2 \mathrm{~h} 9-0.025$	10	6.8
$\mathbf{3 0}$	$3 \mathrm{~h} 9-0.025$	14	9.2

Symbol: A42 Applicable only to single vane.
Machine special ends (at both ends of the shaft), and machine female threads in the through holes at both ends of the shaft, thus creating through holes to serve as the pilot holes.

- Size 10 is not manufacturable - The L dimension (maximum) is, as a rule, twice the size the bolt. (Example: For M5 the bolt. (Example: For
bolt: L max. $=10 \mathrm{~mm}$.) However, for the short end of However, for the short end of
shaft S: For M5 bolt: L max. = shaft S:
7.5 mm .
- Applicable shaft styles -
shafts S, Y

Symbol: A45
The shaft can be further shortened by machining an intermediate flat on the long end of the shaft (the position is that of the standard flat).

- Applicable shaft styles — shafts J, K, T

										(mm)		
Ser	X			W			L1max			L2max		
Size ${ }^{\text {aty }}$	J	K	T	J	K	T	J	K	T	J	K	T
10	6.5 to 14			0.5 to 2			X-3			L1-1		
15	8 to 18			0.5 to 2.5			X-4			L1-1		
20	9 to 20			0.5 to 3			X-4.5			L1-1		
30	11.5 to 22			0.5 to 4			X-5			L1-2		

\triangle Caution

Symbols: A45, A46 and dimensions W and L1-L2
The intermediate flat may interfere with the center hole if dimensions W and (L1-L2) are at the measurements given below.

Size	W	L1 - L2
$\boldsymbol{\varnothing 1 0}$	1 to 2	1 to 3
$\boldsymbol{\varnothing 1 5}$	1.5 to 2.5	1 to 3
$\boldsymbol{\varnothing 2 0}$	2 to 3	1 to 3
$\boldsymbol{\varnothing} 0$	3 to 4	2 to 3

Series CRB1/Size: 10, 15, 20, 30
 Made to Order Specifications
 -XC1 to -XC4

Consult SMC for further information on specifications, dimensions and delivery.

CRB1BWP Refer to the "How to Order" on p.1.1-20. XC1
Symbols
Connecting port is added to the body (A) side.
*Not available for models with auto switch.

5 Symbol
 Location change of body tightening bolt -XC3

CRB1BWP

ocation change of body tightening bolt

Three holes in screw parts of the body (B) to penetrate screws.
*Not available for models with auto switch.

Symbol
 -XC4

CRB1BWP

Location change of the rotation range (90° to the right from the starting point)

Applicable only to single vane.

Rotation starting point is located on
the horizontal line (90° to the right).
Angle error of "CRB1BW10" is 0° to $+5^{\circ}$.

Rotation starting point is one chamfered
Diagram viewed from position during pressurization from A port.

*Write required angle in \square below.
Symbol: XC5 Applicable only to single vane style.
Rotation starting point is located at the angle of 45°. Angle error of "CRB1BW10" is from 0° to $+5^{\circ}$.
Port sizes of "CRB1BW10" and "CRB1BW15" are M3.

Symbol: XC6 Applicable only to single vane style.
Rotation starting point is located on horizontal line (left at the angle of 90°).
Angle error of "CRB1BW10" is from 0° to $+5^{\circ}$.
$\theta=\square{ }^{+9} 8$
$\max .110^{\circ}$

CRB1BWP $\begin{aligned} & \text { Refer to "How to Order" on p.1.1-20.-XC7 }\end{aligned}$

Dimensions

Size	Y	Xm
$\mathbf{1 0}$	12	10
$\mathbf{1 5}$	15.5	11.5
$\mathbf{2 0}$	17	13
$\mathbf{3 0}$	19	16

Fluorine grease is used for lubricant for seal part of packing and inner wall of the actuator.

Shaft styles of series CRB1 except for standard shaft style (W).

[^0]:

[^1]: *1 The maximum adjustable angle of the angle adjustment unit for size 10 is 230°
 (2)All the positions of the connecting ports are on the body side
 (3)The allowable kinetic energy is the same as that of the specification of the rotary actuator unit.
 (4) To make a 90° adjustment on the double vane type, use a rotary actuator for 100°.

