Rotary Actuator/Vane Style Series CRB2
 Size: 10, 15, 20, 30, 40

Basic style Series CRB2

With angle adjuster
Series CRB2BWU

CRB2

 CRBU2 CRB1

Rotary Actua

Rotating angle: $\mathbf{9 0}^{\circ}, \mathbf{1 8 0}^{\circ}, \mathbf{2 7 0}^{\circ}$ All series can rotate up to 270°.

The use of specially designed seals and stoppers now enables our compact vane type rotary actuators to rotate up to 270°.
(Single vane type)

Direct mounting

The body of rotary actuator can be mounted directly.

* Not possible to use direct mount type with units sized 10 to 40 .

Excellent reliability and durability
Bearings are used in all series to support thrust and radial loads. The use of a rubber bumper (except size 10) further improves reliability.

Two different connecting

 port locations (side and axial) are available.The port location can be selected according to the application. (Types with various units sized 10 to 40 are body side face only.)

Low pressure operation

Special seal construction allows for a broader operating pressure range and makes operation in low pressure applications possible.
Min. operating pressure
Size 10: 0.2 MPa
Size 15 to $100: 0.15 \mathrm{MPa}$

Unrestricted auto switch mounting position

Since the switches can be moved anywhere along the circumference of rotary actuator, they can be mounted at the optimum position according to the rotary actuator's specifications.

Direct mounting from 3 different dírections is possible (CRBU2).

Series CRBU2 can be mounted in 3 directions: axial, vertical, and lateral. In the axial direction, there are 4 mounting variations.

Since it may not be
necessary to use all the
convenient mounting
holes to mount the
actuator from three
directions at the same
time, the remaining
holes can be used for
other purposes.

Block (Unit) type construction

For all series' rotary actuator's single body, various units for body outside diameter integral type can be easily retrofit.

Basic Type + Switch Unit

tor Vane Style

Rotary Actuator
 Vane Style
 Series CRB2

Size: 10, 15, 20, 30, 40

How to Order
Without
auto switch

Flange Assembly Part No.
Applicable Auto Switches/Refer to pages 761 to 809 for further information on auto switches.

* Lead wire length symbols: $0.5 \mathrm{~m}$. Nil (Example) R73C
$\begin{array}{rlll}3 \mathrm{~m} & \cdots \cdots & \mathrm{~L} & \text { (Example) R73CL } \\ 5 \mathrm{~m} & \cdots \cdots & \text { Z } & \text { (Example) R73CZ } \\ \text { None } & \cdots \cdots & \mathrm{N} & \text { (Example) R73CN }\end{array}$

$|$| Model | Assembly part no. |
| :---: | :---: |
| CRB2FW10 | P211070-2 |
| CRB2FW15 | P211090-2 |
| CRB2FW20 | P211060-2 |
| CRB2FW30 | P211080-2 |

Made to Order
(Refer to pages 69 to 73,79 and 80 for details.)

Symbol	Specifications/Description
XA1 to XA24	Shaft type pattern
XC 1	Add connection port
XC 2	Change threaded hole to through-hole
XC 3	Change the screw position
XC 4	Change rotation range
XC 5	Change rotation range between 0 and 200°
XC 6	Change rotation range between 0 and 110°
XC 7	Reversed shaft
XC30	Fluorine grease

The above may not be selected when the product comes with an auto switch or angle adjustment unit. Refer to pages 69, 70 and 79 for details.

Single Vane Specifications

JIS Symbol

Volume

Model (Size)		CRB2BV	V10- \square S	CRB2B	W15- \square S	CRB2BW20- \square S	CRB2BW30- \square S	CRB2BW40- $\square \mathrm{S}$		
Vane type		Single vane								
Rotating angle		$90^{\circ}, 180$	270°	$90^{\circ}, 180^{\circ}$	270°	$90^{\circ}, 180^{\circ}, 270^{\circ}$				
Fluid		Air (Non-lube)								
Proof pressure (MPa)		1.05					1.5			
Ambient and fluid temperature		5 to $60^{\circ} \mathrm{C}$								
Max. operating pressure (MPa)		0.7					1.0			
Min. operating pressure (MPa)		0.2 0.15								
Rotation time adjustment range s/90 ${ }^{\circ}$ (1)		0.03 to 0.3					0.04 to 0.3	0.07 to 0.5		
Allowable kinetic energy (J) ${ }^{(2)}$		0.00015		0.001		0.003	0.02	0.04		
		0.00025	0.0004	0.015	0.03					
Shaft load (N)	Allowable radial load			15		15		25	30	60
	Allowable thrust load	10		10		20	25	40		
Bearing type		Bearing								
Port location		Side ported or Axial ported								
Port size	Side ported	M5 $\times 0.8$	M3 $\times 0.5$	M5 0.8	M3 $\times 0.5$	M5 x 0.8				
	Axial ported	M3 $\times 0.5$				M5 x 0.8				
Shaft type		Double shaft (Double shaft with single flat on both shafts)								
Angle adjustable range ${ }^{(3)}$		0 to	230°	0 to 240°				0 to 230°		
Mounting		Basic style, Flange style						Basic		
Auto switch		Mountable (Side ported only)								

Note 3) Adjustment range in the table is for 270°. For 90° and 180°, refer to page 142.
Double Vane Specifications

	Model (Size)	CRB2BW10- $\square \mathrm{D}$ \|	CRB2BW15- $\square \mathrm{D}$	CRB2BW20- $\square \mathrm{D}$	CRB2BW30- $\square \mathrm{D}$	CRB2BW40- $\square \mathrm{D}$
Vane type		Double vane				
Rotating angle		$90^{\circ}, 100^{\circ}$				
Fluid		Air (Non-lube)				
Proof pressure (MPa)		1.05			1.5	
Ambient and fluid temperature		5 to $60^{\circ} \mathrm{C}$				
Max. operating pressure (MPa)		0.7			1.0	
Min. operating pressure (MPa)		0.2	0.15			
Rotation time adjustment range s/90 ${ }^{\circ}$ (1)		0.03 to 0.3			0.04 to 0.3	0.07 to 0.5
Allowable kinetic energy (J)		0.0003	0.0012	0.0033	0.02	0.04
Shaft load (N)	Allowable radial load	15	15	25	30	60
	Allowable thrust load	10	10	20	25	40
Bearing type		Bearing				
Port location		Side ported or Axial ported				
Port size (Side ported, Axial ported)		M3 x 0.5		M5 x 0.8		
Shaft type		Double shaft (Double shaft with single flat on both shafts)				
Angle adjustable range ${ }^{(3)}$		0 to 90°				
Mounting		Basic style, Flange style				Basic style
Auto switch		Mountable (Side ported only)				

Note 1) Make sure to operate within the speed regulation range. Exceeding the maximum speed $\left(0.3 \mathrm{sec} / 90^{\circ}\right)$ can cause the unit to stick or not operate.
Note 2) The upper numbers in this section in the table indicate the energy factor when the rubber bumper is used (at the end of the rotation), and the lower numbers indicate the energy factor when the rubber bumper is not used. Note 3) Adjustment range in the table is for 100°. For 90°, refer to page 142.

Vane type	Single vane															Double vane									
Model	CRB2BW10- \square S			CRB2BW15- \square S			CRB2BW20- \square S			CRB2BW30- \square S			CRB2BW40- \square S			CRB2BW10- $\square \mathrm{D}$		CRB2BW15- $\square \mathrm{D}$		CRB2BW20- $\square \mathrm{D}$		CRB2BW30- $\square \mathrm{D}$		CRB2BW40- $\square \mathrm{D}$	
Rotation	90°	180°	270°	90°	100°																				
Volume	$\begin{gathered} 1 \\ (0.6) \end{gathered}$	1.2	1.5	$\begin{gathered} 1.5 \\ (1.0) \end{gathered}$	2.9	3.7	$\begin{array}{\|c} 4.8 \\ (3.6) \end{array}$	6.1	7.9	$\begin{aligned} & 11.3 \\ & (8.5) \end{aligned}$	15	20.2	$\left\|\begin{array}{c} 25 \\ (18.7) \end{array}\right\|$	31.5	41	1.0	1.1	2.6	2.7	5.6	5.7	14.4	14.5	33	34

* Values inside () are volume of the supply side when A port is pressurized.

Mass

Vane type	Single vane															Double vane									
Model	CRB2BW10- \square S			CRB2BW15- \square S			CRB2BW20- \square S			CRB2BW30- \square S			CRB2BW40- $\square \mathrm{S}$			CRB2BW10-CD		CRB2BW15-】D		CRB2BW20-CD		CRB2BW30-CD		CRB2BW40-CD	
Rotating angle	90°	180°	270°	90°	100°																				
Body of rotary actuator	26.3	26.0	25.7	50	49	48	106	105	103	203	198	193	387	376	365	42	43	57	60	121	144	223	243	400	446
Flange assembly		9			10			19			25			-			9		0		9		5		-
Auto switch unit +2 switches		30			30			50			60			46.5			30		30		0		0		. 5
Angle adjuster		30			47			90			150			203			30		7		0			20	

Series CRB2

Rotary Actuator: Replaceable Shaft

A shaft can be replaced with a different shaft type except for standard shaft type (W).

For details, refer to pages 74 to 80 .

Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
C	8	9	10	13	15
D	14	18	20	22	30

Note) Dimensions and tolerance of the shaft and single flat (a parallel key for size 40) are the same as the standard.

The above may not be selected when the product comes with an auto switch or angle adjustment unit. Refer to pages 74,75 and 79 for details.

Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$					
D	14	18	20	22	30					

Note 1) Only side ports are available except for basic type.
Note 2) Dimensions and tolerance of the shaft and single flat (a parallel key for size 40) are the same as the standard.

Copper-free and Fluorine-free Rotary Actuator

The above may not be selected when the product comes with an auto switch or angle adjustment unit. Refer to pages 69, 70 and 79 for details.

\triangle Precautions

「Be sure to read before handling Refer to front matters 138 and 39 for Safety Instructions and pages 4 to 13 for I I Rotary Actuator and Auto Switch Precautions.

Angle Adjuster

© Caution

1. Since the maximum angle of the rotation adjustment range will be limited by the rotation of the rotary actuator itself, make sure to take this into consideration when ordering.
Refer to the table below.

Rotating angle of the rotary actuator	Rotating angle adjustment range
$270^{\circ}+4$	
	0° to $230^{\circ}(\text { Size: } 10,40)^{* 1}$
$180^{\circ}+4$	0° to $240^{\circ}($ Size: $15,20,30)$
$90_{0}^{\circ+4}$	0° to 175°
	0° to 85°

*1 The maximum adjustment angle of the angle adjuster for size 40 is 230°.
2. Connection ports are side ports only.
3. The allowable kinetic energy is the same as the specifications of the rotary actuator by itself (i.e., without angle adjuster).
4. Use a 100° rotary actuator if you desire to adjust the angle to 90° using a double vane type.

Type				Flange assembly part no.
Basic type	With auto switch	With angle adjuster	With angle adjuster and auto switch	
CDRB2FW10	CRB2FWU10	CDRB2FWU10	P211070-2	
CRB2FW15	CDRB2FW15	CRB2FWU15	CDRB2FWU15	P211090-2
CRB2FW20	CDRB2FW20	CRB2FWU20	CDRB2FWU20	P211060-2
CRB2FW30	CDRB2FW30	CRB2FWU30	CDRB2FWU30	P211080-2

Note 1) The flange (with countersunk head screws) is not mounted on the actuator at the time of shipment.
Note 2) The flange can be mounted on the rotary actuator at 60-degree intervals.

Assembly Part No.: P211070-2
(for C \square RB2FW $\square 10$)
$6 x$ countersunk head screw

Assembly Part No.: P211060-2
(for C \square RB2FW $\square 20$)

Assembly Part No.: P211090-2
(for C \square RB2FW $\square 15$)

Assembly Part No.: P211080-2
(for C \square RB2FW $\square 30$)
$6 x$ countersunk head screw

Effective Output

Direct Mounting of Body

CRB2
CRBU2 table below for JIS standard hexagon socket head cap screws. If these types of screw are used, their heads will fit in the mounting hole.

Model	\mathbf{L}	Screw
CRB2BW10	11.5^{*}	M 2.5
CRB2BW15	16	M 2.5
CRB2BW20	24.5	M 3
CRB2BW30	34.5	M 4
CRB2BW40	39.5	M 4

* Only the size 10 actuators have different L dimensions for single and double vane.
Double vane: $L=20.5$
* Refer to page 56 for Q1 and Q2 dimensions.

Chamfered Position and Rotation Range: Top View from Long Shaft Side

Chamfered positions shown below illustrate the conditions of actuators when B port is pressurized.
Single vane type
Double vane type

* For size 40 actuators, a parallel keyway will be used instead of chamfer.

,Note 1) For single vane type, rotation tolerance of $90^{\circ}, 180^{\circ}$, and 270° actuators will be ${ }_{0}^{+5^{\circ}}$ for size 10 actuators only. For double vane style, the tolerance of rotation angle of 90° will be ${ }_{0}^{+5^{\circ}}$ for size 10 only.
Note 2) The chamfered position of the double vane type shows the 90° specification position.

Series CRB2

Construction: 10, 15, 20, 30, 40
Single vane type - Figures for 90° and 180° show the condition of the actuators when B port is pressurized, and the figure for 270° shows the position of the ports during rotation.

For $90^{\circ} \quad$ For 180°
(Top view from long shaft side)

(Long shaft side)

(Short shaft side)
Double vane type
CRB2BW10- \square D/Figures below show the intermediate rotation position when A or B port is pressurized.

For 90°
For 100°

(Long shaft side)

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body (A)	Aluminum alloy	Anodized
$\mathbf{2}$	Body (B)	Aluminum alloy	Anodized
$\mathbf{3}$	Vane shaft	Carbon steel	
$\mathbf{4}$	Stopper	Stainless steel*	
$\mathbf{5}$	Stopper	Resin	
$\mathbf{6}$	Stopper	Stainless steel*	
$\mathbf{7}$	Bearing	High carbon chrome bearing steel	
$\mathbf{8}$	Back-up ring	Stainless steel	
$\mathbf{9}$	Cover	Aluminum alloy	Anodized

* For size 40, material for no. (4)(6) is die-cast aluminum.
(Top view from long shaft side)

For 270°
(Top view from long shaft side)

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body (A)	Aluminum alloy	Anodized
$\mathbf{2}$	Body (B)	Aluminum alloy	Anodized
$\mathbf{3}$	Vane shaft	Stainless steel*	
$\mathbf{4}$	Stopper	Resin	For 270°
$\mathbf{5}$	Stopper	Resin	For 180°
$\mathbf{6}$	Bearing	High carbon chrome bearing steel	
$\mathbf{7}$	Back-up ring	Stainless steel	
$\mathbf{8}$	Hexagon socket head cap screw	Stainless steel	Special screw
$\mathbf{9}$	O-ring	NBR	
$\mathbf{1 0}$	Stopper seal	NBR	Special seal
$\mathbf{1 1}$	Parallel key	Carbon steel	Size 40 only

* Carbon steel for CRB2BW30 and CRB2BW40.

CRB2BW15/20/30/40-DD

For 90°
(Top view from long shaft side)

(Short shaft side)
Component Parts

No.	Description	Material	Note
$\mathbf{1 0}$	Plate	Resin	
11	Hexagon socket head cap screw	Stainless steel	Special screw
$\mathbf{1 2}$	O-ring	NBR	
13	Stopper seal	NBR	Special seal
14	Gasket	NBR	Special seal
15	O-ring	NBR	
16	O-ring	NBR	
$\mathbf{1 7}$	O-ring	NBR	Double vane only
18	Parallel key	Carbon steel	Size 40 only

Construction (With auto switch unit)

Single vane type \cdot Following figures show actuators for 90° and 180° when B port is pressurized.
Double vane type - Following figures show the intermediate rotation position when A or B port is pressurized.

Component Parts

No.	Description	Material
$\mathbf{1}$	Cover (A)	Resin
2	Cover (B)	Resin
3	Magnet lever	Resin
4	Holding block (A)	Aluminum alloy
5	Holding block (B)	Aluminum alloy
6	Holding block	Aluminum alloy
7	Switch block (A)	Resin
8	Switch block (B)	Resin
9	Switch block	Resin
10	Magnet	-

[^0]

CBB2

CDRB2BW40- \square ©

Series CRB2

Dimensions: 10, 15, 20, 30

Single vane type - Following figures show actuators for 90° and 180° when B port is pressurized.

CRB2BW $\square-\square$ S

<Port location: Side ported>

CRB2BW10- \square s <Port location: Side ported>

CRB2BW \square - \square SE <Port location: Axial ported>

2

Note) Depths of Q1 and Q2 with the mark indicate that the holes go through both bodies (A) and (B).

Note) The pre-drilled mounting threads for CRB2BW15, 20, and 30, 3 mounting holes depicted with the \star marks are for tightening the actuator and not to be used for external mounting.

Model	A	B	C	D	E(g6)	F(h9)	G1	G2	J	K	L	M	N	P	Q (Depth)			R ${ }^{\text {(mm) }}$		
															-Q1	-Q2	*Q3	90°	180°	270°
CRB2BW10- \square S	29	15	8	14	$4^{-0.0004}$	$9_{-0.036}^{0}$	3	1	5	9	0.5	5	25	24	M3 (6)	$\begin{aligned} & \hline 3.4 \\ & (5.5) \end{aligned}$	-	M5		M3
CRB2BW10- \square SE												8.5	9.5						M3	
CRB2BW15- \square S	34	20	9	18	$5_{-0.012}^{-0.004}$	$12_{-0.043}^{0}$	4	1.5	6	10	0.5	5	25	29	$\begin{aligned} & \hline \text { 33 } \\ & \text { (10) } \end{aligned}$	$\begin{aligned} & \hline 3.4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M3 } \\ & \text { (5) } \\ & \hline \end{aligned}$	M5		M3
CRB2BW15- \square SE												11	10					M3		
CRB2BW20- \square S	42	29	10	20	$6^{-0.0004}$	$14{ }_{-0.043}^{0}$	4.5	1.5	7	10	0.5	9	25	36	$\begin{array}{\|c\|} \hline \text { M4 } \\ (13.5) \end{array}$	$\begin{array}{\|l\|} \hline 4.5 \\ (11) \\ \hline \end{array}$	M4	M5		
CRB2BW20- \square SE												14	13				(7.5)			
CRB2BW30- \square S	50	40	13	22	$8_{-0.014}^{-0.005}$	$16_{-0.043}^{0}$	5	2	8	12	1.0	10	25	43	M5	5.5	M5	M5		
CRB2BW30- \square SE												15.5	14		(18)	(16.5)	(10)			

Double vane type - Following figures show the intermediate rotation position when A or B port is pressurized.
CRB2BW10- \square D
<Port location: Side ported>

Series CRB2

Dimensions: 15, 20, 30
Double vane type •Following figures show the intermediate rotation position when A or B port is pressurized.

CRB2BW15/20/30- \square D
 <Port location: Side ported>

> CRB2BW15/20/30- \square DE <Port location: Axial ported>

Model	A	B	C	D	E (g6)	F (h9)	G1	G2	J	K	L	M	N	P	Q (Depth)			R	
															- Q1	- Q2	* Q3	90°	100°
CRB2BW15- \square D	34	20	9	18	$5_{-0.012}^{-0.004}$	$12_{-0.043}^{0}$	4	1.5	6	10	0.5	5	25	29	$\begin{aligned} & \text { M3 } \\ & \text { (10) } \end{aligned}$	$\begin{aligned} & 3.4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M3 } \\ & \text { (5) } \\ & \hline \end{aligned}$	M3	
CRB2BW15- \square DE												11	10						
CRB2BW20- \square D	42	29	10	20	$6_{-0.012}^{-0.004}$	$14_{-0.043}^{0}$	4.5	1.5	7	10	0.5	9	25	36	$\begin{gathered} \text { M4 } \\ (13.5) \\ \hline \end{gathered}$	$\begin{aligned} & 4.5 \\ & \text { (11) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M4 } \\ & \text { (7.5) } \\ & \hline \end{aligned}$	M5	
CRB2BW20- \square DE												14	13						
CRB2BW30- \square D	50	40	13	22	$8_{-0.014}^{-0.005}$	$16_{-0.043}^{0}$	5	2	8	12	1.0	10	25	43	M5	5.5	M5	M5	
CRB2BW30- \square DE												15.5	14		(18)	(16.5)	(10)		

Dimensions: 40

Single vane type/Double vane type

CRB2BW40- \square S/D

CRB2

- For single vane type:

Figures show actuators for 90° and 180° when the B port is pressurized

- For double vane type:

Figures show the intermediate rotation position when the A or B port is pressurized.

Keyway dimensions				
Series	b (h9)	h (h9)		e
CRB2BW40-■I口	4-0.030	4-0.030		0

CRB2BW40- \square SE/DE <Port location: Axial ported>

Series CDRB2

Dimensions: 10, 15, 20, 30 (With auto switch unit)

Single vane type - Following figures show actuators for 90° and 180° when B port is pressurized.

* 1 The length is 24 when any of the following auto switches are used: D-90/90A/S99(V)/T99(V)/S9P(V)

The length is 30 when any of the following auto switches are used: D-97/93A

* 2 The angle is 60° when any of the following auto switches are used: D-90/90A/97/93A

The angle is 69° when any of the following auto switches are used: $\mathrm{D}-\mathrm{S} 99(\mathrm{~V}) / \mathrm{T} 99(\mathrm{~V}) / \mathrm{S} 9 \mathrm{P}(\mathrm{V})$
Note) For rotary actuators with auto switch unit, connection ports are side ports only.

* The above exterior view drawings illustrate rotary actuators with one right-hand and one left-hand switch.

	A	B			E	F											
Model	A	B	C	D	(g6)	(h9)	G	K	L	M	N	P	Q	90°	180°	270°	Y
CDRB2BW10- \square S	29	15	29	14	4	9	3	9	0.5	10	25	24	M 3×0.5 depth 5	M5 0.8		M 3×0.5	18.5
CDRB2BW15- \square S	34	20	29	18	5	12	4	10	0.5	15	25	29	M 3×0.5 depth 5			M 3×0.5	18.5
CDRB2BW20- \square S	42	29	30	20	6	14	4.5	10	0.5	20	25	36	M 4×0.7 depth 7	M5 x 0.8			25
CDRB2BW30- \square S	50	40	31	22	8	16	5	12	1	30	25	43	M5 $\times 0.8$ depth 10	M5 x 0.8			25

Dimensions: 10, 15, 20, 30 (With auto switch unit)
Double vane type • Figures below show the intermediate rotation position when A or B port is pressurized.

CDRB2BW10- \square D

CRB2BW15/20/30- \square D
(Dimensions are the same as the single vane type.)

CRB2

* 1 The length is 24 when any of the following auto switches are used: D-90/90A/S99(V)/T99(V)/S9P(V)

The length is 30 when any of the following auto switches are used: D-97/93A

* 2 The angle is 60° when any of the following auto switches are used: D-90/90A/97/93A

The angle is 69° when any of the following auto switches are used: D-S99(V)/T99(V)/S9P(V)

* 3 The length (Dimension S) is 25.5 when any of the following grommet type auto switches are used: D-R73/R80/S79/T79/S7P The length (Dimension S) is 34.5 when any of the following connector type auto switches are used: D-R73/R80/T79
(mm)

Model	A				E (g6)	F (h9)							Q			S		Y
		B	C	D			G	K	L	M	N	P		90°	100°			
CDRB2BW15- \square D	34	20	29	18	5	12	4	10	0.5	15	25	29	M 3×0.5 depth 5	M3		$24^{* 1}$	30*1	18.5
CDRB2BW20- \square D	42	29	30	20	6	14	4.5	10	0.5	20	25	36	M 4×0.7 depth 7	M5		$255 * 3$	$34 .{ }^{*}$	25
CDRB2BW30- \square D	50	40	31	22	8	16	5	12	1	30	25	43	M5 $\times 0.8$ depth 10	M5	0.8			25

Series CDRB2BW

Dimensions: 40 (With auto switch unit)

Single vane type/Double vane type CDRB2BW40- \square S/D

- For single vane type:

Figures show actuators for 90° and 180° when the B port is pressurized.

- For double vane type:

Figures show the intermediate rotation position when the A or B port is pressurized.

Rotary Actuator with Angle Adjuster Vane Style Series CRB2BWU

Size: 10, 15, 20, 30, 40

With auto switch

(With auto switch unit and built-in magnet)

* Refer to page 141 when the auto switch unit is needed separately.

Mounting style | B | Basic style |
| :---: | :---: |
| F | Flange style |

* F: Except size 40

With angle adjusterd
Pattern

Nil	Standard
\mathbf{P}	Simple Specials/Made to Order

* For details, refer to pages 69 to 80.

Rotating angle

Single	90	90°
	180	180°
	270	270°
Double	90	90°
vane	100	100°

Auto switch

NiI \quad Without auto switch (built-in magnet)

* For the applicable auto switch model, refer to the table below.

\mathbf{S}	$1 \mathrm{pc} .^{*}$
$\mathbf{N i l}$	$2 \mathrm{pcs} .{ }^{* *}$

* S (1 auto switch) is shipped with a righthand auto switch.

** Nil (2 auto switches) is shipped with a right-hand and a left-hand switch. - Electrical entry/Lead wire length | Nil | Grommet/Lead wire 0.5 m |
| :---: | :--- |
| L | Gromm | Grommet/Lead wire: 3 m Connector/Lead wire 0.5 m CL CN Connector/without lead wire * Connectors are available only for auto switch types R73, R80 and T79.

** Lead wire with connector part nos. D-LC05: Lead wire 0.5 m
D-LC30: Lead wire 3 m
D-LC50: Lead wire 5 m
Applicable Auto Switches/Refer to pages 761 to 809 for further information on auto switches.

						Load vo	Itage	Auto		Lead	wire le	ngth			
$\begin{aligned} & \text { Applicable } \\ & \text { size } \end{aligned}$	$\stackrel{\circ}{2}$	$\begin{aligned} & \text { Electrical } \\ & \text { entry } \end{aligned}$		(Output)		DC	AC	switch model	Lead wire type	$\begin{gathered} 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$	None (N)	$\begin{array}{r} \text { Appl } \\ \text { Io } \end{array}$	licable jad
	¢			2-wire		12V		T99		\bigcirc	\bigcirc	-	-		
	3					12 V		T99V		\bigcirc	\bigcirc	-	-		
	$\begin{aligned} & \infty \\ & \pm \\ & \hline \end{aligned}$		$\stackrel{\text { ® }}{ }$	3-wire				S99	Heavy-duty	\bigcirc	\bigcirc	-	-		
	$\stackrel{\pi}{\omega}$			(NPN)				S99V		\bigcirc	\bigcirc	-	-		
For 10	읒			3-wire		12		S9P		\bigcirc	\bigcirc	-	-	IC	
and 15	0	Grommet		(PNP)	24 V			S9PV		\bigcirc	\bigcirc	-	-	circuit	PLC
	¢					$5 \mathrm{~V}, 12 \mathrm{~V}$	24 V or less	90	Parallel cord	\bigcirc	\bigcirc	\bigcirc	-		
	荡		z	2-wire		12	100 V or less	90A	Heary-duty cord	\bigcirc	\bigcirc	\bigcirc	-		
	O		$\stackrel{\sim}{0}$				-	97	Parallel cord	\bigcirc	\bigcirc	\bigcirc	-		
							100V	93A	Heary-duy cord	\bigcirc	\bigcirc	\bigcirc	-		
For 20, 30 and 40		Grommet	$\underset{\underset{\sim}{\infty}}{\stackrel{\otimes}{\infty}}$	2-wire	24V	12V		T79	Heavy-duty cord	\bigcirc	\bigcirc	-	-		Relay, PLC
		Connector					-	T79C		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
		Grommet		3 -wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		S79		\bigcirc	\bigcirc	-	-	IC	
				3 -wire (PNP)				S7P		\bigcirc	\bigcirc	-	-	circuit	
		Grommet	$\stackrel{\otimes}{\underset{\sim}{\infty}}$	2-wire			100 V	R73		\bigcirc	\bigcirc	-	-		
		Connector					-	R73C		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
		Grommet	은			48V, 100V	100 V or less	R80		\bigcirc	\bigcirc	-	-	ICcricuit	
		Connector				-	24 V or less	R80C		\bigcirc	\bigcirc	-	-	-	

Made to Order	Made to Order (Refer to pages 69 to 73,79 and 80 for details.)
Symbol Specifications/Description XA1 to XA24 Shaft type pattern XC 1 Add connection port XC 2 Change threaded hole to through-hole XC 3 Change the screw position XC 4 Change rotation range XC 5 XC Change rotation range between 0 and 200° XC Change rotation range between 0 and 110° XC30 Reversed shaft	

The above may not be selected when the product comes with an auto switch or angle adjustment unit. Refer to pages 69, 70 and 79 for details.

[^1]
Series CRB2BWU

Construction (Same switch units are used for both single and double vane type.)

With angle adjuster CRB2BWU10/15/20/30/40- \square D

Single vane

Double vane

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Stopper ring	Aluminum die-casted	Electroless nickel plated
$\mathbf{2}$	Stopper lever	Carbon steel	Electroless nickel plated
$\mathbf{3}$	Lever retainer	Carbon steel	Zinc chromated
$\mathbf{4}$	Rubber bumper	NBR	
$\mathbf{5}$	Stopper block	Carbon steel	Zinc chromated
$\mathbf{6}$	Block retainer	Carbon steel	Zinc chromated
$\mathbf{7}$	Cap	Resin	
$\mathbf{8}$	Hexagon socket head cap screw	Stainless steel	Special screw
$\mathbf{9}$	Hexagon socket head cap screw	Stainless steel	Special screw
$\mathbf{1 0}$	Hexagon socket head cap screw	Stainless steel	Special screw
$\mathbf{1 1}$	Joint	Aluminum alloy	Note) Zinc chromated
	Hexagon socket head cap screw	Stainless steel	Hexagon nut will be used
	Hexagon nut	Stainless steel	for size 10 only.
	Round head Phillips screw	Stainless steel	Note)
$\mathbf{1 4}$	Magnet lever	-	

[^2]

Precautions

I Be sure to read before handling. Refer to front matters i I 38 and 39 for Safety Instructions and pages 4 to 13 for I I Rotary Actuator and Auto Switch Precautions.

Angle Adjuster

© Caution

1. Since the maximum angle of the rotation adjustment range will be limited by the rotation of the rotary actuator itself, make sure to take this into consideration when ordering.

Rotating angle of the rotary actuator	Rotating angle adjustment range
$270^{\circ}{ }_{0}^{+4}$	0° to 230° (Size: 10,40$)^{* 1}$
	0° to 240° (Size: $\left.15,20,30\right)$
$180^{\circ}+4$	
$90^{\circ+4}$	0° to 175°
	0° to 85°

*1 The maximum adjustment angle of the angle adjuster for size 10 and 40 is 230°.
2. Connection ports are side ports only.
3. The allowable kinetic energy is the same as the specifications of the rotary actuator by itself (i.e., without angle adjuster).
4. Use a 100° rotary actuator if you desire to adjust the angle to 90° using a double vane type.

Dimensions: 10, 15, 20, 30 (With angle adjuster)

Single vane type

- Following figures show actuator for 90° CRB2BWU10/15/20/30- \square S

Double vane type CRB2BWU10- \square D

- Following figures show the intermediate rotation position when A or B port is pressurized.

Double vane type
CRB2BWU15/20/30- \square D
Dimensions for double vane type sizes 15,20 , and 30 are the same as those of single type.
(mm)

Model	A	B	C	D	$\underset{(\mathrm{g} 6)}{\mathrm{E}}$	$\underset{\text { (h9) }}{\mathbf{F}}$	G	H	K	L	M	N	P	Q
CRB2BWU10- \square S	29	15	19.5	14	4	9	3	3	9	0.5	10	25	24	M 3×0.5 depth 6
$\begin{aligned} & \hline \text { CRB2BWU15- } \square \text { S } \\ & \hline \text { CRB2BWU15- } \square \text { D } \end{aligned}$	34	20	21.2	18	5	12	4	3.2	10	0.5	15	25	29	M 3×0.5 depth 5
$\begin{aligned} & \hline \text { CRB2BWU20- } \square \text { S } \\ & \hline \text { CRB2BWU20- } \square \text { D } \end{aligned}$	42	29	25	20	6	14	4.5	4	10	0.5	20	25	36	M4 x 0.7 depth 7
CRB2BWU30- \square S	50	40	29	22	8	16	5	4.5	12	1	30	25	43	M5 x 0.8 depth 10

Model	R			
	90°	100°	180°	270°
CRB2BWU10- $\square \mathbf{S}$	$\mathrm{M} 5 \times 0.8$	-	$\mathrm{M} 5 \times 0.8$	$\mathrm{M} 3 \times 0.5$
CRB2BWU10- $\square \mathbf{D}$	*Refer to the drawing.	-		
CRB2BWU15- $\square \mathbf{S}$	$\mathrm{M} 5 \times 0.8$		-	$\mathrm{M} 5 \times 0.8$
$\mathrm{M} 3 \times 0.5$				
CRB2BWU15- $\square \mathbf{D}$	$\mathrm{M} 3 \times 0.5$		-	
CRB2BWU20- $\square \mathbf{S}$	$\mathrm{M} 5 \times 0.8$	-	$\mathrm{M} 5 \times 0.8$	
CRB2BWU20- $\square \mathbf{D}$	$\mathrm{M} 5 \times 0.8$		-	
CRB2BWU30- $\square \mathbf{S}$	$\mathrm{M} 5 \times 0.8$	-	$\mathrm{M} 5 \times 0.8$	
CRB2BWU30- $\square \mathbf{D}$	$\mathrm{M} 5 \times 0.8$		-	

Series CRB2BWU

Dimensions: 40 (With angle adjuster)

Single vane type/Double vane type With angle adjuster
CRB2BWU40- \square S/D

- For single vane type:

Figures show actuators for 90° and 180° when the B port is pressurized.

- For double vane type:

Figures show the intermediate rotation position when the A or B port is pressurized.

Dimensions: 10, 15, 20, 30 (With angle adjuster and auto switch unit)

Single vane type CDRB2BWU10/15- \square s

- Following figures show actuator for 90° when A port is pressurized.

Single vane type

CDRB2BWU20/30- \square s

Double vane type - Following figures show the intermediate rotation CDRB2BWU10- \square D position when A or B port is pressurized.

Double vane type

CDRB2BWU15/20/30- \square D
Dimensions for double vane type sizes 15,20 , and 30 are the same as those of single type.

Model	A	B	C	D	$\underset{(\mathrm{g} 6)}{\mathbf{E}}$	$\begin{gathered} \mathbf{F} \\ (\mathrm{h} 9) \end{gathered}$	G	K	L	M
CDRB2BWU10- $\square \mathrm{s}$	29	15	45.5	14	4	9	3	9	0.5	10
CDRB2BWU15- \square S	34	20	47	18	5	12	4	10	0.5	15
CDRB2BWU15- \square D										
CDRB2BWU20- \square S	42	29	51	20	6	14	4.5	10	0.5	20
CDRB2BWU20- $\square \mathrm{D}$										
CDRB2BWU30- \square S	50	40	55.5	22	8	16	5	12	1	30
CDRB2BWU30- $\square \mathrm{D}$										

Model	N	P	Y	Q	R			
					90°	100°	180°	270°
CDRB2BWU10- $\square \mathrm{S}$	25	24	18.5	M3 x 0.5 depth 6	M5 0.8	-	M5x0.8	M3x 0.5
CDRB2BWU10- \square D					*Reierto the drawing.			
CDRB2BWU15- $\square \mathrm{S}$	25	29	18.5	M 3×0.5 depth 5	M5x0.8	-	M5 x 0.8	M3x 0.5
CDRB2BWU15- \square D					M3	$\times 0.5$		
CDRB2BWU20- \square S	25	36	25	M4 x 0.7 depth 7	M 5×0.8	-	M5 x	$\times .8$
CDRB2BWU20- $\square \mathrm{D}$					M5	$\times 0.8$	-	
CDRB2BWU30- $\square \mathrm{S}$	25	43	25	M5 x 0.8 depth 10	M5 50.8	-	M5 x	$\times 0.8$
CDRB2BWU30- $\square \mathrm{D}$					M5	$\times 0.8$	-	

Note) • For rotary actuators with angle adjuster and auto switch unit, connection ports are side ports only.

- The above exterior view drawings illustrate the rotary actuator equipped with one right-hand and one left-hand switch.

Series CRB2BWU

Dimensions: 40 (With angle adjuster and auto switch unit)

Single vane type/Double vane type

 CDRB2BWU40-■S/D

- For single vane type:

Figures show actuators for 90° and 180° when the B port is pressurized.

- For double vane type:

Figures show the intermediate rotation position when the A or B port is pressurized.

Series CRB2 (Size: 10, 15, 20, 30, 40) Simple Specials:
-XA1 to -XA24: Shaft Pattern Sequencing I
Shaft shape pattern is dealt with simple made-to-order system. (Refer to front matter 33). Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing I
-XA1 to XA24
Applicable shaft type: W (Standard)

Series CRB2

Combination

XA \square Combination

A combination of up to two $X A \square$ s are available.
Example: -XA2A24

XA \square, XC \square Combination

Combination other than -XA \square, such as Made to Order (-XC \square), is also available.
Refer to pages 79 to 80 for details of made-to-order specifications.

Symbol	Description		Combination
		Applicable size	XA1 to XA24
XC 1*	Add connection port location	10, 15, 20, 30, 40	\bigcirc
XC 2*	Change threaded hole to through-hole	15, 20, 30, 40	\bigcirc
XC 3*	Change the screw position	10, 15, 20, 30, 40	\bigcirc
XC 4	Change rotation range		\bigcirc
XC 5*	Change rotation range between 0 to 200°		\bigcirc
XC 6*	Change rotation range between 0 to 110°		\bigcirc
XC 7*	Reversed shaft		-
XC30	Fluorine grease		\bigcirc

* These specifications are not available for rotary actuators with auto switch unit and angle adjuster.
A total of four XA \square and XC \square combinations is available
Example: -XA2A24C1C30
-XA2C1C4C30

Axial: Top (Long shaft side)

Symbol: A1 $\begin{aligned} & \text { The long shaft can be further shortened by machining }\end{aligned}$ female threads into it.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Not available for size 10.
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft type: W

Symbol: A3 The long shaft can be further shortened by machining male threads into it.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W

| |
| :---: | :---: | :---: | :---: | :---: | :---: |

Symbol: A5 The long shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate " $*$ " for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Symbol: A7 The long shaft can be further shortened by machining it into

 a stepped round shaft with male threads.(If shortening the shaft is not required, indicate "*" for dimension X.)
-Applicable shaft type: W

- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Axial: Bottom (Short shaft side)

Symbol: A2 $\begin{aligned} & \text { The short shaft can be further shortened by machining } \\ & \text { female threads into it }\end{aligned}$ female threads into it.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Not available for size 10
- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M3: L2 $=6 \mathrm{~mm}$
- Applicable shaft type: W

Symbol: A4 The short shaft can be further shortened by machining male threads into it.
(If shortening the shaft is not required, indicate "*" for dimension Y .) - Applicable shaft type: W

Symbol: A6 The short shaft can be further shortened by machining it

II
(If shortening the shaft is not required, indicate " $*$ " for dimension Y .)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

Size	Y	L2 max	D2
10	2 to 8	Y-1	ø3
15	3 to 9	Y-1.5	ø3 to ø4
20	3 to 10	Y-1.5	ø3 to ø5
30	3 to 13	Y-2	ø3 to ø6
40	6 to 15	Y-4.5	ø3 to ø8

Symbol: A8

The short shaft can be further shortened by machining it into a stepped round shaft with male threads.
(If shortening the shaft is not required, indicate "*" for dimension Y .)
-Applicable shaft type: W

- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

Size	Y	L2 max	Q2
10	5.5 to 8	Y-1	3
15	7.5 to 9	Y-1.5	3,4
20	9 to 10	Y-1.5	3, 4, 5
30	11 to 13	Y-2	3, 4, 5, 6
40	14 to 15	Y-4.5	3, 4, 5, 6, 8

CRB2

Axial: Top (Long shaft side)

Symbol: A9 \quad The long shaft can be further shortened by changing the length of the standard chamfer on the long shaft side.
(If shortening the shaft is not required, indicate " $*$ " for dimension X .)

- Applicable shaft type: W

Size
$\mathbf{1 0}$

Symbol: A11 The long shaft can be further shortened by machining a double-sided chamter onto it.
(If altering the standard chamfer and shortening the shaft are not required, indicate " $*$ " for both the L1 and X dimensions.)

- Since L1 is a standard chamfer, dimension E1 is 0.5 mm or more, and 1 mm or
more with a shaft bore size of $\varnothing 30$.
- Applicable shaft type: W

Symbol: A14
Applicable to single vane type only
A special end is machined onto the long shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter.

- Not available for size 10
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 max. $=6 \mathrm{~mm}$
- A parallel key is used on the long shaft for size 40.
- Applicable shaft type: W

Symbol: A17

Shorten the long shaft.

- Applicable shaft type: W

Axial: Bottom (Short shaft side)

Symbol: A10 The short shaft can be further shortened by changing the length of the standard chamfer.
(If shortening the shaft is not required, indicate " $*$ " for dimension Y .)
-Applicable shaft type: W

Size	Y	L2
10	3 to 8	5-(8-Y) to (Y-1)
15	3 to 9	6-(9-Y) to (Y-1.5)
20	3 to 10	7-(10-Y) to (Y-1.5)
30	5 to 13	8-(13-Y) to (Y-2)
40	7 to 15	9-(15-Y) to (Y-2)

Symbol: A12 The short shaft can be further shortened by machining a double-sided chamfer onto it.
If altering the standard chamfer and shortening the shaft are not required, ndicate " $*$ " for both the L2 and Y dimensions.)

- Since L2 is a standard chamfer, dimension E2 is 0.5 mm or more,
and 1 mm or more with shaft bore sizes of $\varnothing 30$ or $\varnothing 40$
- Applicable shaft type: W

Symbol: A15

A special end is machined onto the short shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter.

- A parallel key is used on the long shaft for size 40.
- Not available for size 10.
- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M4: L2 max. $=8 \mathrm{~mm}$
- Applicable shaft type: W

Symbol: A18

- A parallel key is used on the long shaft for size 40.
- Applicable shaft type: W

	(mm)
Size	\mathbf{Y}
10	1 to 8
15	1.5 to 9
20	1.5 to 10
30	2 to 13
40	4.5 to 15

Axial: Top (Long shaft side)

Axial: Bottom (Short shaft side)

Symbol: A22	The short shaft can be further shortened by machining it into a stepped round shaft with a double-sided chamfer.				
(If shortening the shaft is not required, indicate " $*$ " for dimension Y .) - Applicable shaft type: W - Equal dimensions are indicated by the same marker. (If not specifying dimension C 2 , indicate "*" instead.)					
	(mm)				
	Size	Y	L1 max	L4	D2
	10	4 to 8	Y-2.5	L2 + 1.5	$\varnothing 3$
0^{2}	15	4.5 to 9	Y-3	$\mathrm{L} 2+1.5$	®3 to 04
	20	5 to 10	Y-3.5	L2 + 2	03 to 05
2	30	71013	Y-5	L2 +3	03 to 06
	40	8 to 15	Y-5.5	L2 + 5	03 to 06

Double Shaft

Symbol: A13

Shaft with through-hole

- Not available for size 10.
- Minimum machining diameter for d1 is 0.1 mm .
- A parallel key is used on the long shaft for size 40.
- Applicable shaft type: W

Size	(mm)
$\mathbf{1 5}$	$\varnothing 2.5$
$\mathbf{2 0}$	$\varnothing 2.5$ to $\varnothing 3.5$
$\mathbf{3 0}$	$\varnothing 2.5$ to $\varnothing 4$
$\mathbf{4 0}$	ø2.5 to $\varnothing 3$

Symbol: A19

Both the long shaft and short shaft are shortened.

- A parallel key is used on the long shaft for size 40.
- Applicable shaft type: W

Symbol: A23 The long shaft can be further shortened by machining right-angle double-sided chamfer onto it.
(If altering the standard chamfer and shortening the shaft are not required, indicate " $*$ " for both the L1 and X dimensions.)

- Since L1 is a standard chamfer, dimension E1 is 0.5 mm or more, and 1 mm or
more with a shaft bore sizes of $\varnothing 30$ or $\varnothing 40$.
- Applicable shaft type: W

(mm)			
Size	X	L1	L3 max
10	5 to 14	9. $(14 \cdot \mathrm{C}$) to ($(-3-3)$	X-3
15	8 to 18	10-(18-x) to ($x-4$)	X-4
20	10 to 20	10-(20-X) to ((-4.5)	X-4.5
30	10 to 22	12-(22-X) to ($X-5$)	X-5

Symbol: A16

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10.
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
- A parallel key is used on the long shaft for size 40.
- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

Symbol: A20

The rotation axis is reversed.
(The long shaft and short shaft are shortened.)

- A parallel key is used on the long shaft for size 40.
- Applicable shaft type: W

Symbol: A24

Double key

Keys and keyways are machined at 180° from the standard position.

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

		(mm)
Size	Keyway dimensions	LL
40	$4 \times 4 \times 20$	2

Series CRB2 (Size: 10, 15, 20, 30, 40) Simple Specials:
-XA31 to -XA58: Shaft Pattern Sequencing II
Shaft shape pattern is dealt with simple made-to-order system. (Refer to front matter 33). Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing II
-XA31 to XA58
Applicable shaft type: J, K, S, T, Y

Shaft Pattern Sequencing Symbol

- Axial: Top (Long shaft side)

Symbol	Description	Shaft type	Applicable size				
			10	15	20	30	40
XA31	Shaft-end female thread	S, Y		\bigcirc	-	\bigcirc	
XA33	Shaft-end female thread	J, K, T		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA37	Stepped round shaft	J, K, T	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA45	Middle-cut chamfer	J, K, T	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA47	Machined keyway	J, K, T			\bigcirc	\bigcirc	
XA48	Change of long shaft length	S, Y	-	-	\bigcirc	\bigcirc	\bigcirc
XA51	Change of long shaft length	J, K, T	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc

- Axial: Bottom (Short shaft side)

Symbol	Description	Shaft type	Applicable size				
			10	15	20	30	40
XA32	Shaft-end female thread	S, Y		\bigcirc	\bigcirc	\bigcirc	
XA34	Shaft-end female thread	J, K, T		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA38	Stepped round shaft	K	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA46	Middle-cut chamfer	K	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA49	Change of short shaft length	Y	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA52	Change of short shaft length	K	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA55	Change of short shaft length	J	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

- Double Shaft

Symbol	Description	Shaft type	Applicable size				
			10	15	20	30	40
XA39*	Shaft through-hole	S, Y		\bigcirc	\bigcirc	-	-
XA40*	Shaft through-hole	K, T		\bigcirc	\bigcirc	\bigcirc	
XA41*	Shaft through-hole	J		\bigcirc	\bigcirc	-	\bigcirc
XA42*	Shaft through-hole + Shaft-end female thread	S, Y		\bigcirc	\bigcirc	\bigcirc	
XA43*	Shaft through-hole + Shaft-end female thread	K, T		\bigcirc	\bigcirc	-	\bigcirc
XA44*	Shaft through-hole + Shaft-end female thread	J		\bigcirc	\bigcirc	-	\bigcirc
XA50*	Change of double shaft length	Y	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA53*	Change of double shaft length	K	\bigcirc	\bigcirc	\bigcirc	-	
XA57*	Change of double shaft length	J	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc
XA58*	Reversed shaft, Change of double shaft length	J	\bigcirc	\bigcirc	\bigcirc	-	-

* These specifications are not available for rotary actuators with auto switch unit and angle adjuster.

Rotary Actuator Vane Style

Combination

XA \square Combination

A combination of up to two $\mathrm{XA} \square$ s are available.
Example: XA31A32
CRB2

XA \square, XC \square Combination

Combination other than XA■, such as Made to Order (XC■), is also available.
Refer to pages 79 to 80 for details of made-to-order specifications.

Symbol	Description	Applicable size	$\begin{array}{\|l\|} \hline \text { Combination } \\ \hline \text { XA31 to XA58 } \\ \hline \end{array}$
XC 1*	Add connection port location	10, 15, 20, 30, 40	\bigcirc
XC 2*	Change threaded hole to through-hole	15, 20, 30, 40	\bigcirc
XC 3*	Change the screw position		\bigcirc
XC 4	Change rotation range		\bigcirc
XC 5*	Change rotation range between 0 to 200°		\bigcirc
XC 6*	Change rotation range between 0 to 110°	10, 15, 20, 30, 40	\bigcirc
XC 7*	Reversed shaft		-
XC30	Fluorine grease		\bigcirc

* These specifications are not available for rotary actuators with auto switch unit and angle adjuster.
A total of four XA \square and $X C \square$ combinations is available.
Example: ХА33A34C5C30

Axial: Top (Long shaft side)

Symbol: A31

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: S, Y

Symbol: A33

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: J, K, T

Symbol: A37 The long shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft types: J, K, T
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Symbol: A45 The long shaft can be further shortened by machining a middle-cut chamfer into it. (The position of the chamfer is same as the standard one.)
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft types: J, K, T

Axial: Bottom (Short shaft side)

Symbol: A32

The maximum dimension L2 is, as a rule, twice the thread size
Example) For M4: L2 $=8 \mathrm{~mm}$
However, for M5 with S shaft, the maximum dimension L2 is 1.5 times the thread size.

- Applicable shaft types: S, Y

-		
Size	S	Y
10		
15	M	
20		
30		

Symbol: A34

Machine female threads into the short shaft.

- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M3: L2 $=6 \mathrm{~mm}$
However, for M5 with T shaft, the maximum dimension L2 is 1.5 times the thread size.
- Applicable shaft types: J, K, T

Size	Q2		
	J	K	T
10	Not available		
15	M3		
20	M3, M4		
30	M3, M4, M5		
40	M3, M4, M5		

Symbol: A38 The short shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension Y.)

- Applicable shaft type: K
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

	(mm)		
Size	Y	L2 max	Q2
$\mathbf{1 0}$	2 to 14	Y-1	$\varnothing 3$ to $\varnothing 3.9$
$\mathbf{1 5}$	3 to 18	Y-1.5	$\varnothing 3$ to $\varnothing 4.9$
$\mathbf{2 0}$	3 to 20	Y-1.5	$\varnothing 3$ to $\varnothing 5.9$
$\mathbf{3 0}$	3 to 22	Y-2	$\varnothing 3$ to $\varnothing 7.9$
$\mathbf{4 0}$	6 to 30	Y-4.5	$\varnothing 5$ to $\varnothing 9.9$

Symbol: A46 The short shaft can be further shortened by machining a middle-cut chamfer into it. (The position of the chamfer is same as the standard one.)
(If shortening the shaft is not required, indicate "*" for dimension Y.)

- Applicable shaft type: K

(mm)

Axial: Top (Long shaft side)

Axial: Bottom (Short shaft side)

Symbol: A48
Shorten the long shaft.

- Applicable shaft types: S, Y

Symbol: A51
Shorten the long shaft.

- Applicable shaft types: J, K, T

	(mm)
Size	\mathbf{X}
$\mathbf{1 0}$	3 to 14
$\mathbf{1 5}$	4 to 18
$\mathbf{2 0}$	4.5 to 20
$\mathbf{3 0}$	5 to 22
$\mathbf{4 0}$	6.5 to 30

Symbol: A49
Shorten the short shaft.

- Applicable shaft type: Y

CRB2

Symbol: A55

Shorten the short shaft.

- Applicable shaft type: J

	(mm)
Size	\mathbf{Y}
$\mathbf{1 0}$	1 to 8
$\mathbf{1 5}$	1.5 to 9
20	1.5 to 10
$\mathbf{3 0}$	2 to 13
40	4.5 to 15

Double Shaft

Symbol: A40

- Applicable shaft types: K, T
- Equal dimensions are indicated by the - same marker.
- Not available for size 10

- d1 = ø2.5, L1 = 18 (max.) for size 15 ; minimum machining diameter for d 1 is 0.1 mm .
- d 1 = d3 for sizes 20 to 40.

Series CRB2

Symbol: A41

Applicable to single vane type only
Shaft with through-hole

- Not available for size 10
- Applicable shaft type: J
- Equal dimensions are indicated by the same marker.

Symbo: A43

Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10.
- Applicable shaft types: K, T
- Not available for size 10.
- The maximum dimension L1 is, as - Equal dimensions are indicated by the same a rule, twice the thread size. marker.
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
However, for M5 on the short shaft of T shaft
L1 max. $=7.5 \mathrm{~mm}$
Q1=M

haft				(mm)
Size	15	20	30	40
Thread ${ }_{\text {shaf }}^{\text {shafe }}$	K \mathbf{T}	K ${ }^{\mathbf{T}}$	K \mathbf{T}	K \quad T
M 3×0.5	ø2.5	ø2.5	ø2.5	ø2.5
M 4×0.7	-	ø3.3	$ø 3.3$	ø3.3
M5 x 0.8	-	-	ø4.2	$\varnothing 4.2$

Symbol: A50

- Applicable shaft type: Y

Symbol: A57

Shorten both long and short shafts.

- Applicable shaft type: J

(mm)		
Size	X	Y
10	3 to 14	1 to 14
15	4 to 18	1.5 to 18
20	4.5 to 20	1.5 to 20
30	5 to 22	2 to 22
40	6.5 to 30	4.5 to 30

Symbol: A42

Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10
- The maximum dimension L1 is, as
a rule, twice the thread size.
- A parallel key is used on the long shaft for size 40.
a rule, twice the thread size. $\quad \bullet$ Applicable shaft types: S, Y
(Example) For M5: L1 max. $=10 \mathrm{~mm}$ - Equal dimensions are indicated by the same
However, for M5 on the short shaft However, for M5 on the short shaft

$\begin{gathered} \text { Size } \\ \text { Thread } \\ \text { shany } \\ \text { free } \end{gathered}$	15	20	30	40
	S ${ }^{\mathbf{S}} \mathbf{Y}$	S ${ }^{\mathbf{Y}} \mathrm{Y}$	S	S ${ }^{\mathbf{Y}}$
M3 $\times 0.5$	ø2.5	ø2.5	ø2.5	ø2.5
M 4×0.7	-	ø3.3	ø3.3	-
M5 $\times 0.8$	-	-	ø4.2	-

Symbol: A44

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10
- A parallel key is used on the long shaft for size 40.
- The maximum dimension L1 is, as
a rule, twice the thread size.
(Example) For M5: L1 max. $=10 \mathrm{~mm}$ - Applicable shaft type: J J
(Example) For M5: L1 max. $=10 \mathrm{~mm} \bullet$ Equal dimensions are indicated by the same

Symbol: A53

Shorten both long and short shafts.

- Applicable shaft type: K

Symbol: A58

The rotation axis is reversed.
The long shaft and short shaft are shortened.
(If shortening the shaft is not required, indicate "*" for dimension X, Y.) - Applicable shaft type: J

Series CRB2 (Size: 10, 15, 20, 30, 40)
Made to Order Specifications:
XC1, 2, 3, 4, 5, 6, 7, 30

Made to Order Symbol

Symbol	Description	Applicable shaft type W, J, K, S, T, Y	Applicable size
XC 1*	Add connection port	\bigcirc	
XC 2*	Change threaded holes to through-hole	\bigcirc	10
XC 3*	Change the screw position	\bigcirc	15
XC 4	Change rotation range	\bigcirc	
XC 5*	Change rotation range between 0 to 200°	\bigcirc	
XC 6*	Change rotation range between 0 to 110°	\bigcirc	30
XC 7*	Reversed shaft	W, J	40
XC30	Fluorine grease	\bigcirc	

* For products with auto switch; angle adjustment unit cannot be selected.

Combination

D- \square

Series CRB2

Symbol: C5

Applicable to single vane type only
Start of rotation is 45° up from the bottom of the vertical line to the left side

- Rotation tolerance for CRB2BW10 is $+5^{\circ}$.
- Port size for CRB2BW10, 15 is M3.
- A parallel key is used instead of chamfer for size 40 .

Start of rotation is the position of the chamfer (key) when B port is pressurized. (Top view from long shaft side)
Symbol: C7
The shafts are reversed.

- Parallel key is used on the long shaft for size 40.

		(mm)
Size	\mathbf{Y}	\mathbf{X}
$\mathbf{1 0}$	12	10
$\mathbf{1 5}$	15.5	11.5
$\mathbf{2 0}$	17	13
$\mathbf{3 0}$	19	16
$\mathbf{4 0}$	28	17

Symbol: C4

Applicable to single vane type only
Change rotation range to 90°
Rotation starts from the horizontal line (90° down from the top to the right side)

- Rotation tolerance for CRB2BW10 is ${ }^{+5^{\circ}}$.
- A parallel key is used instead of chamfer for size 40.

Start of rotation is the position of the chamfer (key) when A port is pressurized. (Top view from long shaft side)

Symbol: C6

Applicable to single vane type only
Start of rotation is horizontal line (90° down from the top to the left side).

- Rotation tolerance for CRB2BW10 is ${ }^{+50^{\circ}}$.
- A parallel key is used instead of chamfer for size 40.

Start of rotation is the position of the chamfer (key) when B port is pressurized. (Top view from long shaft side)

Symbol: C30
Change the standard grease to fluoro grease Not for low-speed specification.)

Rotary Actuators
 Series CRB2/CRBU2/CRB1
 Component Unit

Auto Switch Unit and Angle Adjuster

Series CRB2/CRBU2 Auto switch unit and angle adjuster can be mounted on the rotary actuator vane type.

* For rotary actuator with switch unit and angle adjuster is basically a combination of a switch unit and an angle adjuster. The items marked with \star are additionally required parts for connection (joint unit parts), and the items marked with will not be in use.
* Use a unit part number when ordering joint unit separately.

Note) Illustrations above show Series CRB2BW.

Rotary Actuators Series CRB2/CRBU2/CRB1

1 Auto Switch Unit Part No.
Each unit can be retrofitted to the rotary actuator.

Series	Model	Vane type	Unit part no.
Series CRB2	CDRB2BW 10	Single/Double type	P611070-1
	CDRB2BW 15		P611090-1
	CDRB2BW 20		P611060-1
	CDRB2BW 30		P611080-1
	CDRB2BW 40		P611010-1
Free mount type Series CRBU2	CDRBU2W 10	Single/Double type	P611070-1
	CDRBU2W 15		P611090-1
	CDRBU2W 20		P611060-1
	CDRBU2W 30		P611080-1
	CDRBU2W 40		P611010-1
Series CRB1	CDRB1BW 50	Single/Double type	P411020-1
	CDRB1BW 63		P411030-1
	CDRB1BW 80		P411040-1
	CDRB1BW100		P411050-1

* Auto switch unit can be ordered separately if the rotary actuator with auto switch unit is required after the product being delivered. Auto switch itself will not be included. Please order separately.

2 Switch Block Unit Part No.

Auto switch unit comes with one right-hand and one left-hand switch blocks that are used for addition or when the switch block is damaged.

Series	Model	Unit	
Series CRB2	CDRB2BW10,15	Right-handed	P611070-8
		Left-handed	P611070-9
	CDRB2BW20,30	Right-handed	P611060-8
		Left-handed	
	CDRB2BW40	Right-handed	P611010-8
		Left-handed	P611010-9
Free mount type Series CRBU2	CDRBU2W10,15	Right-handed	P611070-8
		Left-handed	P611070-9
	CDRBU2W20,30	Right-handed	P611060-8
		Left-handed	
	CDRBU2W40	Right-handed	P611010-8
		Left-handed	P611010-9
Series CRB1	CDRB1BW50	Right-handed	P411020-8
		Left-handed	P411020-9
	CDRB1BW63,80,100	Right-handed	P411040-8
		Left-handed	P411040-9

* Solid state switch for size 10 and 15 requires no switch block, therefore the unit part no. will be P211070-13.

3 Angle Adjuster Part No.
Each unit can be retrofitted to the rotary actuator.

Series	Model	Vane type	Unit part no.
Series CRB2	CRB2BWU10	Single/Double type	P611070-3
	CRB2BWU15		P611090-3
	CRB2BWU20		P611060-3
	CRB2BWU30		P611080-3
	CRB2BWU40		P611010-3
Free mount type Series CRBU2	CRBU2WU10	Single/Double type	P611070-3
	CRBU2WU15		P611090-3
	CRBU2WU20		P611060-3
	CRBU2WU30		P611080-3
	CRBU2WU40		P611010-3

5 Joint Unit Part No.

Joint unit is a unit required to retrofit the angle adjuster to a rotary actuator with a switch unit or to retrofit the switch unit to a rotary actuator with angle adjuster.

Series	Model	Vane type	Unit part no.
Series CRB2	CDRB2BWU10	Single/Double type	P211070-10
	CDRB2BWU15		P211090-10
	CDRB2BWU20		P211060-10
	CDRB2BWU30		P211080-10
	CDRB2BWU40		P211010-10
Free mount type Series CRBU2	CDRBU2WU10	Single/Double type	P211070-10
	CDRBU2WU15		P211090-10
	CDRBU2WU20		P211060-10
	CDRBU2WU30		P211080-10
	CDRBU2WU40		P211010-10

Series CRB2/CRBU2

Installation of Angle Adjuster

Specifications

Single Vane Type		
Model	Rotation adjustment range	Rubber bumper
CRB2BWU10, CRBU2WU10	0 to 230°	Yes
CRB2BWU15, CRBU2WU15	0 to 240°	
CRB2BWU20, CRBU2WU20		
CRB2BWU30, CRBU2WU30		
CRB2BWU40, CRBU2WU40	0 to 230°	

Note 1) Use rotary actuator for 270°.
Note 2) Connection ports are side ports only.
Note 3) The allowable kinetic energy is the same as the specifications of the rotary actuator by itself.

Double Vane Type

Model

Rotation adjustment range Rubber bumper
CRB2BWU10, CRBU2WU10
CRB2BWU15, CRBU2WU15
CRB2BWU20, CRBU2WU20 0 to $90^{\circ} \mathrm{C}$ Yes CRB2BWU30, CRBU2WU30
CRB2BWU40, CRBU2WU40
Note 1) Since the maximum angle of the rotation adjustment range will be limited by the rotation when using a rotary actuator for 90°, make sure to take this into consideration when ordering. Rotary actuator for 90° should be used to adjust the angle of 85° or less as a guide.
Note 2) Connection ports are side ports only.
Note 3) The allowable kinetic energy is the same as the specifications of the rotary actuator by itself.

Rotation Adjustment Method

Remove the resin cap in the illustrations below, slide the stopper block on the long groove and lock it into the appropriate position to adjust the rotation and rotation position. Protruding four chamfers for wrench on the output shaft that rotates allows manual operation and convenient positioning. (Refer to the rotation setting examples shown in the next page for details.)

$\begin{array}{cc}\text { Section A-A } & \begin{array}{c}\text { Section A-A } \\ \text { (Single vane) }\end{array} \\ \text { (Double vane) }\end{array}$
Note) For size 40, each stopper block comes with 2 holding bolts.

Recommended Tightening Torque for Holding Stopper Block

Model	Tightening torque (N.m)
CRB2BWU10, CRBU2WU10	1.0 to 1.2
CRB2BWU15, CRBU2WU15	2.5 to 2.9
CRB2BWU20, CRBU2WU20	3.4 to 3.9
CRB2BWU30, CRBU2WU30	
CRB2BWU40, CRBU2WU40	

Note) Stopper block is tightened temporarily at the time of shipment. Angle is not adjusted before shipment.

Output shaft with single flat
(Key is used for size 40)

Other Operating Method

Although one stopper block is mounted on each long groove for standard specifications as shown in the illustrations below, 2 stopper blocks can be mounted on one long groove.
Angle adjustment range when 2 stopper blocks are mounted on a single long groove

Size: 10, 40 50°
Size: 15, 20, 30 60°

As shown in <Figure b>, when mounting 2 pcs.stopper blocks in the 1 pc . long groove, by revolving each stopper block $(A)(B)$, the rotating range of the output shaft with single flat (key) is adjustable, as described in <Figure $a>$, within either left 50° and 60° against port A and B . (Rotating range of single flat (key) when mounting 2 pcs. stopper blocks on the other side's groove is the opposite side from <Figure a> and the setting range is within either right 50° and 60° against port A and B.)

<Figure a>

<Figure b>

Rotation Setting Example

Example 1
The stopper ring is mounted on the standard position.
(Rotary actuator with a rotation of 270° is used.)

<Fig. 1-2>
Lock block (D) in Fig. 1-2, and move block (C) clockwise to allow the rotation of the shaft with single flat in Fig. 1-1 from point zero to end of rotation (1). When block (C) is locked and block (D) is moved counterclockwise, the shaft with single flat in Fig. 1-1 rotates from point zero to end of rotation (2). The maximum rotation range of the shaft with single flat is as follows: Sizes 10, 40 : up to 230°; Sizes $15,20,30$: up to 240° (Fig. 1-2 shows when the rotation is 0°.)

Example 3

The stopper ring is mounted on 120° clockwise from the standard position shown in Fig. 1-2 in Example 1, just as in Fig. 4-2 of Example 4

Lock block (C) in Fig. 3-2 and move block (D) counterclockwise to allow the rotation of the shaft with single flat in Fig. 3-1 from end of rotation (1) to end of rotation (2). However, since the internal stopper will come into contact with the vane at end of rotation ${ }^{1}$, make sure that the stopper lever stops at block (c) when adjusting. End of rotation side (1) can be adjusted within 30° by turning block (Counterclockwise.

Example 2
The stopper ring is mounted on 120° counterclockwise from the standard position shown in Fig. 1-2 in Example 1.

The maximum rotation range of the shaft with single flat in Fig. 2-2 is 195°, from end of rotation (1) to end of rotation (2). The rotation range decreases to the range between end of rotation (2) and (3) as in 2-1 when moving block (C) in Fig. 2-2 clockwise, and similarly when block (D) is moved counterclockwise, the rotation range decreases to the range between end of rotation (1) and (4). However, since the internal stopper will come into contact with the vane at end of rotation (1) in Fig. 2-1, make sure that the stopper lever stops at block (D) when adjusting.

Example 4

The stopper ring is mounted on 120° clockwise from the standard position shown in Fig. 1-2 in Example 1, just as in Fig. 3-2 of Example 3.

<Fig. 4-2>
The maximum rotation range of the shaft with single flat is 270°, from end of rotation (1) to end of rotation (2), when using the actuator for 270° and end of rotation (1) side in Fig. 4-1 is stopped with the internal stopper and end of rotation (2) side is adjusted using block (C). The rotation can be adjusted within 90° from end of rotation (2). Note that block (C) cannot be moved and set 90° counterclockwise from its position in Fig. 4-2 since the internal stopper will come into contact with the vane.

Note 1) Mounting of the stopper ring shown in Examples 2, 3, and 4 are not applicable for size 10.
Note 2) - marks in the illustrations above indicate the position of the stopper ring assembly.
Note 3) Select the appropriate rotation of the rotary actuator by itself after careful consideration of the content of "installation of angle adjuster".
Note 4) For size 40, each block comes with 2 holding bolts.

Series CDRB2/CDRBU2/CRB1
 With Auto Switch

Applicable Auto Switch

* Solid state switch with 3-wire type has no connector type.

Operating Range and Hysteresis

* Operating range: $\theta \mathbf{m}$

The range between the position where the auto switch turns ON as the magnet inside the auto switch unit moves and the position where the switch turns OFF as the magnet travels the same direction.

* Hysteresis range: θ d

The range between the position where the auto switch turns ON as the magnet inside the auto switch unit moves and the position where the auto switch turns OFF as the magnet travels the opposite direction.

Model	Operating range: $\theta \mathrm{m}$	Switch actuation range: $\theta \mathrm{d}$
CDRB2BW10/15	110°	10°
CDRBU2W10/15		
CDRB2BW20/30	90°	
CDRBU2W20/30		8°
CDRB2BW40	52°	
CDRBU2W40		
CDRB1BW50	38°	

Note) Since the figures in the above table are provided as a guideline only, they cannot be guaranteed. Adjust the auto switch after confirming the operating conditions in the actual setting.

How to Change the Detecting Position of Auto Switch

* When setting the detection location, loosen the tightening screw a bit and move the auto switch to the preferred location and then tighten again and fix it. At this time, if tightened too much, screw can become damaged and unable to fix location. Be sure to set the tightening torque around $0.49 \mathrm{~N} \cdot \mathrm{~m}$.

$\binom{$ CDRB2BW10/15 }{ CDRBU2W10/15 }
(CDRB2BW20 to 40 CDRBU2W20 to 40 CDRB1BW50 to 100

Adjustment of Auto Switch

Rotation range of the output shaft with single flat (key for size 40 only) and auto switch mounting position Size: 10, 15, 20, 30, 40
<Single vane>

CRB2
CBBU2
CRB1
(CDRB2BW10 to 40)
(CDRBU2W10 to 40)

* Solid-lined curves indicate the rotation range of the output shaft with single flat (key). When the single flat (key) is pointing to end of rotation (1), the switch for end of rotation (1) will operate, and when the single flat (key) is pointing to end of rotation(2), the switch for end of rotation (2) will operate.
* Broken-lined curves indicate the rotation range of the built-in magnet. Rotation range of the switch can be decreased by either moving the switch for end of rotation (1) clockwise or moving the switch for end of rotation (2) counterclockwise. Auto switch in the figures above is at the most sensitive position.
* Each auto switch unit comes with one righthand and one left-hand switch.

Series CDRB2/CDRBU2/CRB1

Adjustment of Auto Switch

Rotation range of the output key (keyway) and auto switch mounting position

Size: 50, 63, 80, 100

<Single vane>

Rotation: $\mathbf{9 0}^{\circ}$

Rotation: $\mathbf{1 8 0}^{\circ}$

Rotation: $\mathbf{2 7 0}^{\circ}$

* Solid-lined curves indicate the rotation range of the output key (keyway). When the key is pointing to end of rotation (1) the switch for end of rotation (1) will operate, and when the key is pointing to end of rotation (2), the switch for end of rotation (2) will operate.
* Broken-lined curves indicate the rotation range of the built-in magnet. Rotation range of the switch can be decreased by either moving the switch for end of rotation (2) clockwise or moving the switch for end of rotation (2) counterclockwise. Auto switch in the figures above is at the most sensitive position.
* Each auto switch unit comes with one right-hand and one left-hand switch.
* The magnet position can be checked with a convenient indication by removing a rubber cap when adjusting the auto switch position.
* Since four chamfers are machined into the axis of rotation, a magnet position can be readjusted at 90° intervals.

[^0]: * For CDRB2BW10, 2 round head Phillips screws, (13), are required.

[^1]: * Lead wire length symbols: $0.5 \mathrm{~m} \ldots . .$. Nil (Example) R73C
 $3 \mathrm{~m} \cdots . . \mathrm{L}$ (Example) R73CL
 $5 \mathrm{~m} \mathrm{Z}$ (Example) R73CZ
 None N (Example) R73CN

[^2]:

 Note) These items (No. 11, 13, and 14) consist of auto switch unit and angle adjuster. Refer to pages 140 and 141 for detailed specifications. Stainless steel is used for size 10 only.

