Rotary Actuator: Free Mount Type/Vane Style Series CRBU2
 Size: 10, 15, 20, 30, 40

Basic style
Series CRBU2
Series CRBU2

Series Variations

Rotary Actuator: Free Mount Type Series CRBU2

Size: 10, 15, 20, 30, 40

How to Order

* Lead wire length symbols: 0.5 m Nil (Example) R73C
$3 \mathrm{~m} \mathrm{L}$ (Example) R73CL
$5 \mathrm{~m} \ldots . . \mathrm{Z}$ (Example) R73CZ
None N (Example) R73CN
Made to Made to Order

Symbol	Specifications/Description
XA1 to XA24	Shaft type pattern
XC 1	Add connection port
XC	2

The above may not be selected when the product comes with an auto switch or angle adjustment unit. Refer to pages 103, 104 and 113 for details.

Single Vane Specifications

Model (Size)	CRBU2W10- \square S	CRBU2W15-	CRBU2W20- \square S	CRBU2W30- $\square \mathrm{S}$	CRBU2W40- \square S
Rotating angle	$90^{\circ}, 180^{\circ}, 270^{\circ}$				
Fluid	Air (Non-lube)				
Proof pressure (MPa)	1.05			1.5	
Ambient and fluid temperature	5 to $60^{\circ} \mathrm{C}$				
Max. operating pressure (MPa)	0.7			1.0	
Min. operating pressure (MPa)	0.2	0.15			
Rotation time adjustment range $\mathrm{s} / 90^{\circ}$ (1)	0.03 to 0.3			0.04 to 0.3	0.07 to 0.5
Allowable kinetic energy	0.00015	0.001	0.003	0.02	0.04
(J)		0.00025	0.0004	0.015	0.033
Shaft Allowable radial load (N)	15		25	30	60
load Allowable thrust load (N)	10		20	25	40
Bearing type	Bearing				
Port location	Side ported or Axial ported				
Shaft type	Double shaft (Double shaft with single flat on both shafts)				$\begin{array}{\|c\|} \hline \text { Double shaft } \\ \text { (Long shaft key \& Single flat) } \end{array}$
Angle adjustable ${ }^{(3)}$	0 to 230°	0 to 240°			0 to 230°

Note 3) Adjustment range in the table is for 270°. For 90° and 180°, refer to page 142.

Double Vane Specifications

Model (Size)	CRBU2W10- $\square \mathrm{D}$ CRBU2W15- $\square \mathrm{D}$	CRBU2W20- $\square \mathrm{D}$	CRBU2W30- $\square \mathrm{D}$	CRBU2W40- \square D
Rotating angle	$90^{\circ}, 100^{\circ}$			
Fluid	Air (Non-lube)			
Proof pressure (MPa)	1.05		1.5	
Ambient and fluid temperature	5 to $60^{\circ} \mathrm{C}$			
Max. operating pressure (MPa)	0.7		1.0	
Min. operating pressure (MPa)	0.2	0.15		
Rotation time adjustment range $\mathrm{s} / 90^{\circ}$ (1)	0.03 to 0.3		0.04 to 0.3	0.07 to 0.5
Allowable kinetic energy (J)	0.0003 0.0012	0.0033	0.02	0.04
Shaft Allowable radial load (N)	15	25	30	60
load Allowable thrust load (N)	10	20	25	40
Bearing type	Bearing			
Port location	Side ported or Axial ported			
Shaft type	Double shaft (Double shaft with single flat on both shafts)			$\begin{array}{\|c} \text { Double shaft } \\ \hline \text { (Long shath key } \text { Q Single fatat } \end{array}$
Angle adjustable ${ }^{(3)}$	0 to 90°			0 to 230°

○,
Note 1) Make sure to operate within the speed regulation range. Exceeding the maximum speeds can cause the unit to stick or not operate.
Note 2) The upper numbers in this section in the table indicate the energy factor when the rubber bumper is used (at the end of the rotation), and the lower numbers indicate the energy factor when the rubber bumper is not used.
Note 3) Adjustment range in the table is for 100°. For 90°, refer to page 142.
Connection Port

Vane type	Model (size)		CRBU2W10			CRBU2W15			CRBU2W20				CRBU2W30			CRBU2W40		
$\stackrel{1}{\square}$	Rotating angle		90 ${ }^{\circ}$	180°	270 ${ }^{\circ}$	$90^{\circ} 1$	180°	270°	90°	180°		270°	90 ${ }^{\circ}$	180°	$0^{\circ} 270^{\circ}$	90°	180°	270 ${ }^{\circ}$
$\stackrel{\text { T }}{ }$	Volume (cm^{3})		1(0.6)	1.2	1.5	1.5(1.0)	2.9	3.7	4.8(3.5)	6.1		7.9	11.3(8.5)	15	20.2	25	31.5	41
$\begin{aligned} & \frac{01}{\bar{O}} \\ & \stackrel{-}{\bar{\omega}} \end{aligned}$	Port size	Side ported	M5 x 0.8															
		Axial ported	M3 x 0.5						M5 x 0.8									
®	Rotating angle		90°		100°	90°		100°	90	0°		00 ${ }^{\circ}$	90°		100°	90		100°
$\stackrel{\square}{0}$	Volume (cm^{3}) *			1	1.1	2.6		2.7	5.6			5.7	14.4		14.5	33		34
$\frac{1}{0}$	Port size	Side ported	M5 x 0.8						M5 x 0.8									
\bigcirc		Axial ported	M3 x 0.5															

* Values inside () are volume of the supply side when A port is pressurized.

Mass

(g)																
Vane type	Model (size)	CRBU2W10			CRBU2W15			CRBU2W20			CRBU2W30			CRBU2W40		
$\stackrel{0}{5}$$\stackrel{1}{0}$$\stackrel{0}{0}$$\stackrel{\rightharpoonup}{=}$	Rotating angle	90 ${ }^{\circ}$	180°	270°	90°	180°	270°									
	Body of rotary actuator	47.5	47.1	47	73	72	72	143	142	140	263	258	255	491	480	469
	Auto switch unit +2 switches	30			30			50			60			46.5		
	Angle adjuster	30			47			90			150			203		
$\stackrel{0}{\sim}$	Rotating angle	-	90°	100°												
3	Body of rotary actuator	-	62.2	63.2	-	77	81	-	151	158	-	289	308	-	504	550
윽	Auto switch unit +2 switches	30			30			50			60			46.5		
\bigcirc	Angle adjuster	30			47			90			150			203		

Series CRBU2

Rotary Actuator: Replaceable Shaft
A shaft can be replaced with a different shaft type except standard shaft type (W).

(mm)

Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
C	8	9	10	13	15
D	14	18	20	22	30

Note) Dimensions and tolerance of the shaft and single flat (a parallel keyway for size 40) are the same as the standard.

Copper-free and Fluorine-free Rotary Actuator

20-CRBU2W	Size Rotating angle				Vane type		
\longrightarrow Pattern							
- Copper-free and fluorine-free			Nil	Without Made to Order Simple Specials/Made to O			
			P				
Use the standard vane type rotary actuators in all series to prevent any adverse effects to color CRTs due to copper ions or fluororesin.							
Specifications							
Vane type	Single/Double vane						
Size	10	15	20		1	40	
Operating pressure range (MPa)	0.2 to 0.7	0.15	to 0.7	$0.15 \text { to } 1.0$			
Speed regulation range (s/900)	0.03 to $0.3 \mathrm{~s} / 90^{\circ}$			0.04100	35190°	0.07 to 0.5 s/9	
Port location	Side ported or axial ported (Basic style only)						
Shaft type	Double shatt (Shatt with single flat on both shats) $\left.\right\|_{\text {L }} ^{\text {Long sinat key \& }}$ Singe fat						
Variations	Basic style, With auto switch, With angle adjuster						

§ Precautions

Angle Adjuster

\triangle Caution

1. Since the maximum angle of the rotation adjustment range will be limited by the rotation of the rotary actuator itself, make sure to take this into consideration when ordering.
(Refer to the table below.)

Rotating angle of the rotary actuator	Rotating angle adjustment range
$270^{\circ}+4$	
	0° to $230^{\circ}($ Size: 10,40$) * 1$
$180^{\circ}+4$	0° to 240° (Size: $\left.15,20,30\right)$
$90^{\circ+4}$	0° to 175°
	0° to 85°

*1 The maximum adjustment angle of the angle adjuster for size 10 and 40 is 230°.
2. Connection ports are side ports only.
3. The allowable kinetic energy is the same as the specifications of the rotary actuator by itself (i.e., without angle adjuster).
4. Use a 100° rotary actuator if you desire to adjust the angle to 90° using a double vane type.

Effective Output

CRBU2W15

CRBU2W20

CRBU2W30

CRBU2W40

Chamfered Position and Rotation Range: Top View from Long Shaft Side

Chamfered positions shown below illustrate the conditions of actuators when B port is pressurized.

* For size 40 actuators, a parallel key will be used instead of chamfer.

Note) For single vane type, rotation tolerance of $90^{\circ}, 180^{\circ}$, and 270° actuators ${ }_{0}^{+5^{\circ}}$ will be for size 10 actuators only. For double vane type, rotation tolerance of 90° actuators ${ }_{0}^{+5^{\circ}}$ will be for size 10 actuators only.

Construction: 10, 15, 20, 30, 40
Single vane type - Figures for 90° and 180° show the condition of the actuators when B port is pressurized, and the figure for 270° shows the position of the ports during rotation. Standard: CRBU2W10/15/20/30/40- \square S (3 female threads (one of them is indicated with "**") spaced equally apart in 120° are not available for size 10 .)

With auto switch unit (Units are common for both single and double vane.)
CDRBU2W10, 15- $\square_{\mathrm{D}}^{\mathrm{S}} \quad$ CDRBU2W20, 30, 40- $\square \underset{\mathrm{D}}{\mathrm{S}} \quad$ CDRBU2W40-S/D

- For single vane type:

Figures show actuators for 90° and 180° when the B port is pressurized.

- For double vane type:

Figures show the intermediate rotation position when the A or B port is pressurized.
Component Parts

No.	Description	Material
$\mathbf{1}$	Cover (A)	Resin
$\mathbf{2}$	Cover (B)	Resin
$\mathbf{3}$	Magnet lever	Resin
$\mathbf{4}$	Holding block (A)	Aluminum alloy
$\mathbf{5}$	Holding block (B)	Aluminum alloy
$\mathbf{6}$	Holding block	Aluminum alloy
$\mathbf{7}$	Switch block (A)	Resin
$\mathbf{8}$	Switch block (B)	Resin
$\mathbf{9}$	Switch block	Resin
$\mathbf{1 0}$	Magnet	-
$\mathbf{1 1}$	Arm	Stainless steel
$\mathbf{1 2}$	Hexagon socket head set screw	Stainless steel
$\mathbf{1 3}$	Round head Phillips screw	Stainless steel
$\mathbf{1 4}$	Round head Phillips screw	Stainless steel
$\mathbf{1 5}$	Round head Phillips screw	Stainless steel
$\mathbf{1 6}$	Round head Phillips screw	Stainless steel
$\mathbf{1 7}$	Rubber cap	NBR (size 40 only)

* For CDRBU2W10, two round head Phillips screws
(13), are required.

Series CRBU2

Construction: 10, 15, 20, 30, 40

Double vane type - Figures below show the intermediate rotation position when A or B port is pressurized.
Standard: CRBU2W10- \square D

For 90°
(Top view from long shaft side)

Standard: CRBU2W15/20/30/40- \square D

- Figures below show the intermediate rotation position when A or B port is pressurized.

For 90°
(Top view from long shaft side)

(Short shaft side)

For 100°
(Top view from long shaft side)

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body (A)	Aluminum alloy	Anodized
2	Body (B)	Aluminum alloy	Anodized
3	Vane shaft	Carbon steel	
4	Stopper	Stainless steel	
5	Stopper	Resin	
6	Stopper	Stainless steel	
7	Bearing	High carbon chrome bearing steel	
8	Back-up ring	Stainless steel	
9	Cover	Aluminum alloy	Anodized
10	Plate	Resin	
11	Hexagon socket head cap screw	Stainless steel	Special screw
12	O-ring	NBR	
13	Stopper seal	NBR	
14	Gasket	NBR	
15	O-ring	NBR	
16	O-ring	NBR	

For 100°
(Top view from long shaft side)

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body (A)	Aluminum alloy	Anodized
$\mathbf{2}$	Body (B)	Aluminum alloy	Anodized
$\mathbf{3}$	Vane shaft	Carbon steel	
$\mathbf{4}$	Stopper	Stainless steel*	
5	Stopper	Resin	
6	Stopper	Stainless steel*	
7	Bearing	High carbon chrome bearing steel	
$\mathbf{8}$	Back-up ring	Stainless steel	
9	Hexagon socket head cap screw	Stainless steel	Special screw
10	O-ring	NBR	
11	Stopper seal	NBR	
12	Parallel key	Carbon steel	Size 40 only

* For size 40, material for no. (4) (6) is die-cast aluminum.

Dimensions: 10, 15, 20, 30
Single vane type - Following figures show actuators for 90° and 180° when B port is pressurized.

CRBU2W $\square-\square$ S

<Port location: Side ported>

CRBU2W \square - \square SE
<Port location: Axial ported>

CRBU2W10 $\square-\square$ SE

For unit mounting (mm)																								
Model	A	B	C	D	E(g6)	F(h9)	G	H	J	K	L	M	N	P	Q1	$\left\|\begin{array}{c} \text { Depth) } \\ \text { Q2 } \end{array}\right\|$	R	S1	S2	T	U	V	W	X
CRBU2W10- \square S	29	22	8	14	$4_{-0.012}^{-0.004}$	$9_{-0.036}^{0}$	1	15.5	5	9	0.5	10.5	10.5	24		M3	M5 $\times 0.8$	3.5	M 3×0.5	17	3	25	31	41
CRBU2W10- \square SE	29	22	8	14	4-0.012	$9_{-0.036}$	1	15.5	5	9	0.5	8.5	9.5	24	-	(4)	M3 $\times 0.5$	3.5	M3 $\times 0.5$	17	3	25	31	41
CRBU2W15- \square S	34	25	9	18	$5^{-0.004}$	12^{0}	1.5	15.5	6	10	0.5	10.5	10.5	29	M3 $\times 0.5$	-	M5 $\times 0.8$	3.5	M 3×0.5	21	3	29	36	48
CRBU2W15- \square SE	34	25	9	18	5-0.012	$12-0.043$	1.5	15.5	6	10	0.5	11	10	29	M3 $\times 0.5$		M3 $\times 0.5$	3.5	M3 $\times 0.5$	21	3	29	36	48
CRBU2W20- \square S	42	34.5	10	20	$6^{-0.004}$	14^{0}	15	17	7	10	0.5	11.5	11	36	M4 0.7	-	M5 $\times 0.8$	4.5	M4 $\times 0.7$	26	4	36	44	59
CRBU2W20- \square SE	42	34.5	10	20	6-0.012	$14-0.043$	1.5	17	7	10	0.5	14	13	36	M4×0.7	-	M5 $\times 0.8$	4.5	M 4×0.7	26	4	36	44	59
CRBU2W30- \square S	50	47.5	13	22	$8^{-0.005}$.	2	17.5	8	12		12	13	43	M5 $\times 0.8$	-	M5 $\times 0.8$	55	M5 $\times 0.8$	29	45	42	52	69
CRBU2W30- \square SE	50	47.5	13	22	8-0.014	$16^{-0.043}$	2	17.5	8	12	1	15.5	14	43	M5 x 0.8	-	M5 x 0.8	5.5	M 5×0.8	29	4.5	42	52	69

Series CRBU2

Dimensions: 10

Double vane type - Figures below show the intermediate rotation position when A or B port is pressurized.

CRBU2W10- \square D
<Port location: Side ported>

Dimensions: 15, 20, 30
Double vane type - Figures below show the intermediate rotation position when A or B port is pressurized.
CRBU2W15/20/30- \square D
<Port location: Side ported> (Figures below show size 30 actuators.)

CRBU2W15/20/30- \square DE <Port location: Axial ported>

CRBU2
CRB1
MSU
CRJ
CRA1
CRQ2
MSQ
MSZ
CRO2X

MRQ

Dimensions: 40

Single vane type/Double vane type

CRBU2W40- \square S/D

Figures show actuators for 90° and 180° when the B port is

- For double vane type:

Figures show the intermediate rotation position when the A or B port is pressurized.

Keyway dimensions			
Model	b (h9)	h (h9)	ℓ
CRBU2W40- $\square \square \square$	4-0.030	4-0.030	20

4h9-0.0.0зo (New JIS key dimension) (4P9 ${ }_{-0.042}^{-0.012}$ Keyway dimension)

CRBU2W40- \square SE/DE <Port location: Axial ported>

Dimensions: 10, 15, 20, 30 (With auto switch unit)
Single vane type - Following figures show actuators for 90° and 180° when B port is pressurized.
CDRBU2W10, 15- \square S
CDRBU2W20, 30- \square S

*1. The length is 24 when any of the following auto switches are used: D-90/90A/S99(V)/T99/S9P(V) The length is 30 when any of the following auto switches are used: D-97/93A
*2. The angle is 60° when any of the following auto switches are used: D-90/90A/97/93A
The angle is 69° when any of the following auto switches are used: D-S99(V)/T99(V)/S9P(V)

For rotary actuators with auto switch unit connection ports are side ports only.

- The above exterior view drawings illustrate rotary actuators with one right-hand and one left-hand

Model	A	B	C	D	E (g6)	$F(\mathrm{~h} 9)$	G	H	K	L	M	N	R	S1	S2	T	U	V	W	X	Y
CDRBU2W10- \square S	29	22	29	14	$4^{-0.0004}$	$9_{-0.036}^{0}$	1	15.5	9	0.5	10.5	10.5	M 5×0.8	3.5	M3 $\times 0.5$	17	3	25	31	41	18.5
CDRBU2W15- $\square \mathrm{s}$	34	25	29	18	$5{ }_{-0.012}^{-0.004}$	$12{ }_{-0.043}^{0}$	1.5	15.5	10	0.5	10.5	10.5	M 5×0.8	3.5	M3 $\times 0.5$	21	3	29	36	48	18.5
CDRBU2W20- $\square \mathrm{S}$	42	34.5	30	20	$6{ }_{-0.012}^{-0.004}$	$14_{-0.043}^{0}$	1.5	17	10	0.5	11.5	11	M 5×0.8	4.5	$\mathrm{M} 4 \times 0.7$	26	4	36	44	59	25
CDRBU2W30- \square S	50	47.5	31	22	$8{ }_{-0.014}^{-0.005}$	$16{ }_{-0.043}^{0}$	2	17.5	12	1	12	13	M 5×0.8	5.5	M5 $\times 0.8$	29	4.5	42	52	69	25

Series CDRBU2

Dimensions: 10, 15, 20, 30 (With auto switch unit)
Double vane type •Following figures show actuators for 90° and 180° when B port is pressurized.

CDRBU2W10- \square D

CDRBU2W15- \square D

CDRBU2W15, 20, 30- $\square \mathrm{D}$
(Figures below show size 20 actuators.)

*1. The length is 24 when any of the following auto switches are used: D-90/90A/S99(V)/T99(V)/S9P(V)
The length is 30 when any of the following auto switches are used: D-97/93A
*2. The angle is 60° when any of the following auto switches are used: D-90/90A/97/93A
The angle is 69° when any of the following auto switches are used: D-S99(V)/T99(V)/S9P(V)
*3. The length (Dimension S) is 25.5 when any of the following grommet type auto switches are used: D-R73/R80/S79/S7P/T79 The length (Dimension S) is 34.5 when any of the following connector type auto switches are used: D-R73/R80/T79

Model	A	B	C	D	E (g6)	F (h9)	G	H	K	L	M	N	R	S1	S2	T	U	V	W	X	Y	Z	
CDRBU2W15- \square D	34	25	29	18	$5_{-0.012}^{-0.04}$	$12{ }_{-0.043}^{0}$	1.5	15.5	10	0.5	10.5	10.5	M5 0.8	3.5	M3 $\times 0.5$	21	3	29	36	48	18.5	$24 * 1$	$30^{* 1}$
CDRBU2W20- \square D	42	34.5	30	20	$6^{-0.004}$	$14{ }_{-0.043}^{0}$	1.5	17	10	0.5	11.5	11	M 5×0.8	4.5	$\mathrm{M} 4 \times 0.7$	26	4	36	44	59	25	. 5	$34.5{ }^{* 3}$
DRBU2W30- \square D	50	47.5	31	22	$8{ }_{-0.014}^{-0.005}$	$16{ }_{-0.043}^{0}$	2	17.5	12	1	12	13	M 5×0.8	5.5	M5 $\times 0.8$	29	4.5	42	52	69			

Dimensions: 40 (With auto switch unit)

Rotary Actuator with Angle Adjuster Free Mount Type
 Series CRBU2WU

Size: 10, 15, 20, 30, 40

How to Order

* Connectors are available only for auto switch types R73, R80 and T79.
** Lead wire with connector part nos.
D-LC05: Lead wire 0.5 m
D-LC30: Lead wire 3 m
D-LC50: Lead wire 5 m
Applicable Auto Switches/Refer to pages 761 to 809 for further information on auto switches.

$\left\lvert\, \begin{gathered} \text { Applicable } \\ \text { size } \end{gathered}\right.$	$\stackrel{\otimes}{\stackrel{\circ}{2}}$	Electricalentry	$\begin{array}{\|l\|} \hline \text { 든 } \\ \text { 응 } \\ \text { 흐 } \\ \text { 흔 } \\ \hline \end{array}$	Wiring (Output)	Load voltage			Auto switch model	Lead wire type	Lead wire length (m)*				Applicable load		
					DC		AC			$\begin{aligned} & \hline 0.5 \\ & \text { (Nil) } \end{aligned}$	$\begin{gathered} \hline 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} \hline 5 \\ (Z) \end{gathered}$	None (N)			
For 10 and 15		Grommet	$\stackrel{\otimes}{\varnothing}$	2-wire	12 V		-	T99	Heavy-duty cord	\bigcirc	\bigcirc	-	-	$\left\lvert\, \begin{array}{c\|} \text { ICrcuit } \end{array}\right.$	Relay, PLC	
							T99V	\bigcirc		\bigcirc	-	-				
				3-wire	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$		S99		-	\bigcirc	-	-			
				(NPN)				S99V		\bigcirc	\bigcirc	-	-			
				3-wire				S9P		\bigcirc	\bigcirc	-	-			
				(PNP)				S9PV		\bigcirc	\bigcirc	-	-			
			은	2-wire		$5 \mathrm{~V}, 12 \mathrm{~V}$		$5 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}$	90	Parallel cord	\bigcirc	\bigcirc	\bigcirc			-
						$\begin{aligned} & 5 \mathrm{~V}, 12 \mathrm{~V}, \\ & 100 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V}, 12 \mathrm{~V}, \\ & 24 \mathrm{~V}, 100 \mathrm{~V} \end{aligned}$	90A	Heav-duty cord	\bigcirc	\bigcirc	\bigcirc	-			
			$\begin{array}{\|l\|} \hline \infty \\ \underset{\sim}{\infty} \\ \hline \end{array}$			-	-	97	Parallel cord	\bigcirc	\bigcirc	\bigcirc	-	-		
							100 V	93A	Heary-duty cord	\bigcirc	\bigcirc	\bigcirc	-			
For 20, 30 and 40		Grommet	$\stackrel{\varnothing}{\underset{\sim}{\infty}}$	2-wire	24 V	12 V	-	T79	Heavy-duty cord	-	\bigcirc	-	-		Relay,	
		Connector						T79C		\bigcirc	\bigcirc	\bigcirc	\bigcirc			
		Grommet		3 -wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		S79		\bigcirc	\bigcirc	-	-	IC		
				3 -wire (PNP)				S7P		\bigcirc	\bigcirc	-	-	circuit		
	¢	Grommet	$\underset{\sim}{\infty}$	2-wire			100 V	R73		\bigcirc	\bigcirc	-	-			
	萮	Connector					-	R73C		\bigcirc	\bigcirc	\bigcirc	-			
	\%	Grommet	0			$48 \mathrm{~V}, 100 \mathrm{~V}$	100 V or less	R80		\bigcirc	\bigcirc	-	-	IC cricuit		
	$\underset{\sim}{\text { ¢ }}$	Connector				-	24 V or less	R80C		\bigcirc	\bigcirc	\bigcirc	\bigcirc	-		

$\begin{array}{\|l\|} \hline \text { Made to } \\ \text { Order } \\ \hline \end{array}$	Made to Order (Refer to pages 103 to 107, 113 and 114 for details.)
Symbol	Specifications/Description
XA1 to XA24	Shaft type pattern
XC 1	Add connection port
XC 2	Change threaded hole to through-hole
XC 3	Change the screw position
XC	Change rotation range
XC	Change rotation range between 0 and 200°
XC 6	Change rotaioon range be
XC 7	Reversed shaft
XC30	Fluor

The above may not be selected when the product comes with an auto switch or angle adjustment unit. Refer to pages 103, 104 and 113 for details.

[^0]Construction: 10, 15, 20, 30, 40

Single vane type/Double vane type
With angle adjuster

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Stopper ring	Aluminum die-casted	Electroless nickel plated
$\mathbf{2}$	Stopper lever	Carbon steel	Electroless nickel plated
$\mathbf{3}$	Lever retainer	Carbon steel	Zinc chromated
$\mathbf{4}$	Rubber bumper	NBR	
$\mathbf{5}$	Stopper block	Carbon steel	Zinc chromated
$\mathbf{6}$	Block retainer	Carbon steel	Zinc chromated
$\mathbf{7}$	Cap	Resin	
$\mathbf{8}$	Hexagon socket head cap screw	Stainless steel	Special screw
$\mathbf{9}$	Hexagon socket head cap screw	Stainless steel	Special screw
$\mathbf{1 0}$	Hexagon socket head cap screw	Stainless steel	Special screw
$\mathbf{1 1}$	Joint	Aluminum alloy	Zinc chromated Note)
$\mathbf{1 2}$	Hexagon socket head cap screw	Stainless steel	Hexagon nut will be used
	Hexagon nut	Stainless steel	for CDRBU2W10 only.
$\mathbf{1 3}$	Round head Phillips screw	Stainless steel	Note)
$\mathbf{1 4}$	Magnet lever	-	Note)

Note) These items (no. 11, 13, and 14) consist of auto switch unit and
angle adjuster. Refer to pages 140 and 141 for detailed specifications. Stainless steel is used for size 10 only.

\triangle Precautions

「Be sure to read before handling. Refer to front matters I I 38 and 39 for Safety Instructions and pages 4 to 13 for I I Rotary Actuator and Auto Switch Precautions.

Angle Adjuster

© Caution

1. Since the maximum angle of the rotation adjustment range will be limited by the rotation of the rotary actuator itself, make sure to take this into consideration when ordering.
(Refer to the table below.)

Rotating angle of the rotary actuator	Rotating angle adjustment range
$270^{\circ}+{ }_{0}^{+4}$	0° to 230° (Size: 10,40$)^{* 1}$
	0° to 240° (Size: $15,20,30$)
$180^{\circ+4}$	0° to 175°
$90^{\circ+4}$	
0	0° to 85°

*1 The maximum adjustment angle of the angle adjuster for size 10 and 40 is 230°.
2. Connection ports are side ports only.
3. The allowable kinetic energy is the same as the specifications of the rotary actuator by itself (i.e., without angle adjuster).
4. Use a 100° rotary actuator if you desire to adjust the angle to 90° using a double vane type.

CRB2
CRBU2

Series CRBU2WU

Dimensions: 10, 15, 20, 30 (With angle adjuster)

Single vane type

CRBU2WU10, 15, 20, 30- \square S

* Figures above show actuators for 90° and 180°
when B port is pressurized, and they show size 20 actuators.

Model	A	B	C	D	E (g6)	F (h9)	G	H	K	L	M	N	R	S1	S2	T	U	V	W	X	Y
CRBU2WU10- \square S	29	22	19.5	14	$4^{-0.0004}$	$9_{-0.036}^{0}$	1	15.5	9	0.5	10.5	10.5	M5 x 0.8	3.5	M3 $\times 0.5$	17	3	25	31	41	3
CRBU2WU15- \square S	34	25	21.2	18	$5^{-0.004}$	12-0.043	1.5	15.5	10	0.5	10.5	10.5	M5 0.8	3.5	M3 $\times 0.5$	21	3	29	36	48	3.2
CRBU2WU20- \square S	42	34.5	25	20	$6^{-0.0012}$	$14_{-0.043}^{0}$	1.5	17	10	0.5	11.5	11	M5 0.8	4.5	$\mathrm{M} 4 \times 0.7$	26	4	36	44	59	4
CRBU2WU30- \square S	50	47.5	29	22	$8^{-0.0014}$	$16_{-0.043}^{0}$	2	17.5	12	1	12	13	M5 $\times 0.8$	5.5	M5 $\times 0.8$	29	4.5	42	52	69	4.5

Dimensions: 10, 15, 20, 30 (With angle adjuster)

Double vane type
CRBU2WU10- $\square \mathrm{D}$

CRBU2WU15, 20, 30- \square D
Figures below show size 20 actuators.

CRBU2

* Figures above show the intermediate rotation position when A or B port is pressurized.

Model	A	B	C	D	E (g6)	F (h9)	G	H	K	L	M	N	R	S1	S2	T	U	V	W	X	Y
CRBU2WU15- $\square \mathrm{D}$	34	25	21.2	18	$5_{-0.012}^{-0.004}$	$12_{-0.043}^{0}$	1.5	15.5	10	0.5	10.5	10.5	M5 x 0.8	3.5	M3 $\times 0.5$	21	3	29	36	48	3.2
CRBU2WU20- $\square \mathrm{D}$	42	34.5	25	20	$6_{-0.004}^{-0.004}$	14-0.043	1.5	17	10	0.5	11.5	11	M5 $\times 0.8$	4.5	M4 x 0.7	26	4	36	44	59	4
CRBU2WU30- $\square \mathrm{D}$	50	47.5	29	22	$8_{-0.014}^{-0.005}$	$16_{-0.043}^{0}$	2	17.5	12	1	12	13	M5 x 0.8	5.5	M5 x 0.8	29	4.5	42	52	69	4.5

Series CRBU2WU

Dimensions: 40 (With angle adjuster)

Single vane type/Double vane type CRBU2WU40- \square S/D

- For single vane type:

Figures show actuators for 90° and 180° when the B port is pressurized.

- For double vane type:

Figures show the intermediate rotation position when the A or B port is pressurized.

Dimensions: 10, 15, 20, 30 (With angle adjuster and auto switch unit)

				(mm)
Model	B	\mathbf{C}	\mathbf{D}	\mathbf{R}
CDRBU2WU10- $\square \mathbf{S}$	22	45.5	14	$\mathrm{M} 5 \times 0.8$
CDRBU2WU15- $\square \mathbf{S}$	25	47	18	$\mathrm{M} 5 \times 0.8$
CDRBU2WU20- $\square \mathbf{S}$	34.5	51	20	$\mathrm{M} 5 \times 0.8$
CDRBU2WU30- $\square \mathbf{s}$	47.5	55.5	22	$\mathrm{M} 5 \times 0.8$

* Following figures show actuators for 90° and 180° when A port is pressrized. Note) - For rotary actuators with angle adjuster and auto switch unit, connection ports are side ports only.
- The above exterior view drawings illustrate the rotary actuator equipped with one right-hand and one left-hand switches.

Double vane type

CDRBU2WU10, 15- \square D

Model	B	C	D	R
CDRBU2WU10- $\square \mathbf{D}$	31	45.5	14	$\mathrm{M} 5 \times 0.8$
CDRBU2WU15- $\square \mathbf{D}$	25	47	18	$\mathrm{M} 5 \times 0.8$
CDRBU2WU20- $\square \mathbf{D}$	34.5	51	20	$\mathrm{M} 5 \times 0.8$
CDRBU2WU30- $\square \mathbf{D}$	47.5	55.5	22	$\mathrm{M} 5 \times 0.8$

@

* Figures above show the intermediate rotation position when A or B port is pressurized. Note) • For rotary actuators with angle adjuster and auto switch unit, connection ports are side ports only.
- The above exterior view drawings illustrate the rotary actuator equipped with one right-hand and one left-hand switches.

D-

Series CDRBU2WU

Dimensions: 40 (With angle adjuster and auto switch unit)

Single vane type/Double vane type CDRBU2WU40- \square S/D

For single vane type:
Figures show actuators for 90° and 180° when the B port is pressurized

- For double vane type:

Figures show the intermediate rotation position when the A or B port is pressurized.

Shaft shape pattern is dealt with simple made-to-order system. (Refer to front matter 33). Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing I

-XA1 to XA24

These specifications are not available for rotary actuators with auto switch unit and angle adjuster.

- Axial: Bottom (Short shaft side)

Symbol	Description	Applicable size				
		10	15	20	30	0
XA 2*	Shaft-end female thread		-	-	-	-
XA 4*	Shaft-end male thread	\bullet	-	-	-	-
XA 6 *	Stepped round shaft	\bullet	\bullet	\bullet	-	-
XA 8 ${ }^{\text {* }}$	Stepped round shaft with male thread	\bullet	-	-	-	\bigcirc
XA10*	Modified length of standard chamfer	-	-	\bullet	-	\bigcirc
XA12 ${ }^{*}$	Two-sided chamfer	\bullet	-	-	-	\bigcirc
XA15*	Shaft through-hole + Shatt-end female thread		-	-	-	-
XA18 ${ }^{\text {* }}$	Shortened shaft	\bullet	-	-	-	-
XA22*	Stepped round shatt with double-sided c					

CRB2
CRBU2

- Double Shaft

Symbol	Description	Applicable size				
		10	15	20	30	40
XA13 *	Shaft through-hole		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA16 *	Shaft through-hole + Double shaft-end female thread		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA19*	Shortened shaft	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA20 *	Reversed shaft	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Series CRBU2

Combination

XA \square Combination

A combination of up to two XA \square s are available.
Example: -XA2A24

$\mathrm{XA} \square, \mathrm{XC} \square$ Combination

Combination other than -XA \square, such as Made to Order (-XC \square), is also available.
Refer to pages 113 and 114 for details of made-to-order specifications.

Symbol	Description	Applicable size	Combination
			XA1 to XA24
XC 1*	Add connection port location	10, 15, 20, 30, 40	\bigcirc
XC 2*	Change threaded holes to through-holes	15, 20, 30, 40	\bigcirc
XC 3*	Change the screw position	10, 15, 20, 30, 40	\bigcirc
XC 4	Change rotation range		\bigcirc
XC 5*	Change rotation range between 0 and 200°		\bigcirc
XC 6*	Change rotation range between 0 and 110°		\bigcirc
XC 7*	Reversed shaft		-
XC30	Fluorine grease		\bigcirc

* These specifications are not available for rotary actuators with auto switch unit and angle adjuster.

A total of four XA \square and $X C \square$ combinations is available.
Example: -XA2A24C1C30
-XA2C1C4C30

Axial: Top (Long shaft side)

Symbol: A1 The long shaft can be further shortened by machining female threads into it.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Not available for size 10.
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft type: W

Symbol: A3 The long shaft can be further shortened by machining male threads into it.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W

Symbol: A5
 The long shaft can be further shortened by machining it into a stepped round shaft

(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Symbol: $\mathbf{A 7}$ The long shaft can be further shortened by machining it into a stepped round shaft with male threads.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Axial: Bottom (Short shaft side)

Symbol: A2 The short shaft can be further shortened by machining female threads into it.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Not available for size 10.
- The maximum dimension L2 is, as a rule, twice the thread size
(Example) For M3: L2 $=6 \mathrm{~mm}$
- Applicable shaft type: W

Symbol: A4 \quad The short shaft can be further shortened by machining male threads into it.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: W

		(mm)			
		Size	Y	L2 max	Q2
		10	7 to 8	Y - 3	M 4
		15	8.5 to 9	Y - 3.5	M 5
		20	10	Y-4	M 6
		30	13	Y - 5	M 8
		40	15	Y-6	M10

Symbol: A6 The short shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

Size	Y	L2 max	D2
10	2 to 8	Y-1	ø3
15	3 to 9	Y - 1.5	$ø 3$ to $\varnothing 4$
20	3 to 10	Y - 1.5	$\varnothing 3$ to $\varnothing 5$
30	3 to 13	Y - 2	$ø 3$ to ø6
40	6 to 15	Y - 4.5	$ø 3$ to $\varnothing 8$

Symbol: A8 \quad The short shaft can be further shortened by machining it into a stepped round shaft with male threads.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

	(mm)			
Size	\mathbf{Y}	L2 \max	$\mathbf{Q 2}$	
$\mathbf{1 0}$	5.5 to	8	$\mathrm{Y}-1$	3
$\mathbf{1 5}$	7.5 to	9	$\mathrm{Y}-1.5$	3,4
$\mathbf{2 0}$	9.5 to 10	$\mathrm{Y}-1.5$	$3,4,5$	
$\mathbf{3 0}$	11	to 13	$\mathrm{Y}-2$	$3,4,5,6$
$\mathbf{4 0}$	14	to 15	$\mathrm{Y}-4.5$	$3,4,5,6,8$

CRB2
CRBU2

Axial: Top (Long shaft side)

Symbol: A9 \quad The long shaft can be further shortened by changing the length of the standard chamfer on the long shaft side.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W

Size	\mathbf{X}	$\mathbf{L 1}$
$\mathbf{1 0}$	3	to 14
$\mathbf{1 5}$	5.5 to 18	$10-(14-X)$ to $(X-1)$
$\mathbf{2 0}$	7	to 20
$\mathbf{3 0}$	$10-(20-X)$ to $(X-1.5)$	
$\mathbf{7}$	to 22	$10-(22-X)$ to $(X-1.5)$

Symbol: A11 The long shaft can be further shortened by machining a double-sided chamfer onto it.
If altering the standard chamfer and shortening the shaft are not required, indicate " "*" for both the L1 and X dimensions.)

- Since L1 is a standard chamfer, dimension E1 is 0.5 mm or more.
- Applicable shaft type: W

Size	\mathbf{X}	L1	L3 max
$\mathbf{1 0}$	3 to 14	$9 \cdot(14-X)$ to $(X-1)$	$X-1$
$\mathbf{1 5}$	3 to 18	$10-(18-X)$ to $(X-1.5)$	$X-1.5$
$\mathbf{2 0}$	3 to 20	$10-(20-X)$ to $(X-1.5)$	$X-1.5$
$\mathbf{3 0}$	5 to 22	$12-(22-X)$ to $(X-2)$	$X-2$

Symbol: A14

Applicable to single vane type only
A special end is machined onto the long shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter.

- Not available for size 10.
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) for M3: L1 max. $=6 \mathrm{~mm}$
A parallel key is used on the long shaft for size 40
- Applicable shaft type: W

Symbol: A17

Shorten the long shaft.

- Applicable shaft type: W

Axial: Bottom (Short shaft side)

Symbol: A10 $\begin{aligned} & \text { The short shaft can be further shortened by changing the }\end{aligned}$ length of the standard chamfer.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: W

(mm)		
Size	Y	L2
10	3 to 8	5-(8-Y) to (Y-1)
15	3 to 9	6-($9-Y$) to (Y - 1.5)
20	3 to 10	$7-(10-Y)$ to $(Y-1.5)$
30	5 to 13	8-(13-Y) to (Y-2)
40	7 to 15	9-(15-Y) to (Y-4.5)

Symbol: A12 The short shaft can be further shortened by machining a
(If altering the standard chamfer and shortening the shaft are not required, indicate "*" for both the L2 and Y dimensions.)

- Since L2 is a standard chamfer, dimension E2 is 0.5 mm or more, and 1 mm
or more with shaft bore sizes of $\varnothing 30$ or $\varnothing 40$.
- Applicable shaft type: W

Size	Y	L2	L2 max
10	3 to 8	5-(8-Y) to (Y-1)	Y-1
15	3 to 9	6-($9-Y$) to $(Y-1.5)$	Y-1.5
20	3 to 10	$7 \cdot(10-Y)$ to $(Y-1.5)$	Y-1.5
30	5 to 13	8-(13-Y) to (Y-2)	Y-2
40	7 to 15	9-(15-Y) to (Y-4.5)	Y-4.5

Symbol: A15

Applicable to single vane type only
A special end is machined onto the short shaft, and a through-hole is drilled into it.
Female threads are machined into the through-hole, whose diameter is equivalent
to the pilot hole diameter.

- Not available for size 10
- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) for M4: L2 max. $=8 \mathrm{~mm}$
- A parallel key is used on the long shaft for size 40.
- Applicable shaft type: W

Symbol: A18

Shorten the short shaft.

- A parallel key is used on the long shaft for size 40.
- Applicable shaft type: W

	(mm)
Size	\mathbf{Y}
$\mathbf{1 0}$	1 to 8
$\mathbf{1 5}$	1.5 to 9
20	1.5 to 10
$\mathbf{3 0}$	2 to 13
40	4.5 to 15

Axial: Top (Long shaft side)

Symbol: A21 The long shaft can be further shortened by machining it into a stepped round shaft with a double-sided chamfer.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Applicable shaft type: W
(If not specifying dimension C 1 , indicate "*" instead.)

Axial: Bottom (Short shaft side)

Double Shaft

Symbol: A13

Shaft with through-hole

- Not available for size 10.
- Minimum machining diameter for d1 is 0.1 mm .
- A parallel key is used on the long shaft for size 40.
- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

d1 $=\varnothing^{--}$	(mm)	
$\rightarrow{ }^{\sim}$	Size	d1
1	15	$\varnothing 2.5$
\bigcirc	20	$ø 2.5$ to ø3.5
	30	ø2.5 to ø4
(1) 開- -	40	ø2.5 to ø3

Symbol: A19

Both the long shaft and short shaft are shortened.

- A parallel key is used on the long shaft for size 40.
- Applicable shaft type: W

(mm)				
Size	\mathbf{X}		\mathbf{Y}	
$\mathbf{1 0}$	$\mathbf{1}$ to 14	1	to 8	
$\mathbf{1 5}$	1.5 to 18	1.5 to 9		
$\mathbf{2 0}$	1.5 to 20	1.5 to 10		
$\mathbf{3 0}$	2	to 22	2	
to 13				
$\mathbf{4 0}$	18	to 30	4.5 to 15	

Symbol: A23 The long shaft can be further shortened by machining right(If altering the standard chamfer and shortening the shaft are not required, indicate "*" for both the L1 and X dimensions.)

- Since L1 is a standard chamfer, dimension E1 is 0.5 mm or more, and 1 mm or more with a shaft bore sizes of $\varnothing 30$ or $\varnothing 40$.
- Applicable shaft type: W

Symbol: A16

Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10.
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) for M5: L1 max $=10 \mathrm{~mm}$
- A parallel key is used on the long shaft for size 40.
- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

Symbol: A20

The rotation axis is reversed.
(The long shaft and short shaft are shortened.)

- A parallel key is used on the long shaft for size 40.
- Applicable shaft type: W

Symbol: A24

Double key
Keys and keyways are machined at 180° from the standard position.

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

ame marker.				
Thread Size	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
$\mathrm{M} 3 \times 0.5$	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$
$\mathrm{M} 4 \times 0.7$	-	$\varnothing 3.3$	$\varnothing 3.3$	-
$\mathrm{M} 5 \times 0.8$	-	-	$\varnothing 4.2$	-

		(mm)	
Size	\mathbf{X}	\mathbf{Y}	
$\mathbf{1 0}$	1	to 3	to 12
$\mathbf{1 5}$	1.5 to 6.5	1.5 to 15.5	
$\mathbf{2 0}$	1.5 to 7.5	1.5 to 17	
$\mathbf{3 0}$	2	to 8.5	2
to 19			
$\mathbf{4 0}$	3	to 9	-

(mm)		
Size	Keyway dimensions	LL
40	$4 \times 4 \times 20$	2

Series CRBU2 (Size: 10, 15, 20, 30, 40) Simple Specials: -XA31 to -XA58: Shaft Pattern Sequencing II
Shaft shape pattern is dealt with simple made-to-order system (Refer to front matter 33). Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing II
-XA31 to XA58
Applicable shaft type: J, K, S, T, Y

Shaft Pattern Sequencing Symbol

- Axial: Top (Long shaft side)

Symbol	Description	Shaft type	Applicable size				
			10	15	20	30	40
XA31	Shaft-end female thread	S, Y		\bigcirc	\bigcirc	\bigcirc	
XA33	Shaft-end female thread	J, K, T		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA37	Stepped round shaft	J, K, T	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA45	Middle-cut chamfer	J, K, T	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc
XA47	Machined keyway	J, K, T			\bigcirc	\bigcirc	
XA48	Change of long shaft length	S, Y	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA51	Change of long shaft length	J, K, T	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Axial: Bottom (Short shaft side)

Symbol	Description	Shaft type	Applicable size				
			10	15	20	30	40
XA32	Shaft-end female thread	S, Y		\bigcirc	-	\bigcirc	
XA34	Shaft-end female thread	J, K, T		\bigcirc	\bigcirc	\bigcirc	-
XA38	Stepped round shaft	K	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA46	Middle-cut chamfer	K	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA49	Change of short shaft length	Y	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA52	Change of short shaft length	K	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA55	Change of short shaft length	J	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

- Double Shaft

Symbol	Description	Shaft type	Applicable size				
			10	15	20	30	40
XA39*	Shaft through-hole	S, Y		\bigcirc		\bigcirc	-
XA40*	Shaft through-hole	K, T		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA41*	Shaft through-hole	J		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA42*	Shaft through-hole + Shaft-end female thread	S, Y		\bigcirc	\bigcirc	\bigcirc	-
XA43*	Shaft through-hole + Shaft-end female thread	K, T		-	\bigcirc	\bigcirc	
XA44*	Shaft through-hole + Shaft-end female thread	J		-	\bigcirc	\bigcirc	-
XA50*	Change of double shaft length	Y	\bigcirc	-	\bigcirc	\bigcirc	
XA53*	Change of double shaft length	K	\bigcirc	-	\bigcirc	-	\bigcirc
XA57*	Change of double shaft length	J	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA58*	Reversed shaft, Change of double shaft length	J	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-
3	ese specifications are not available witch unit and angle adjuster.	or rota					

Combination

XA \square Combination

A combination of up to two $\mathrm{XA} \square$ s are available.
Example: XA31A32

$\mathrm{XA} \square, \mathrm{XC} \square$ Combination

Combination other than XA■, such as Made to Order (XC■), is also available.
Refer to pages 113 and 114 for details of made-to-order specifications.

Symbol	Description	Applicable size	$\begin{array}{\|l\|} \hline \text { Combination } \\ \hline \text { XA31 to XA47 } \\ \hline \end{array}$
XC 1*	Add connection port location	10, 15, 20, 30, 40	-
XC 2*	Change threaded hole to through-hole	15, 20, 30, 40	\bigcirc
XC 3*	Change the screw position		\bigcirc
XC 4	Change rotation range		\bigcirc
XC 5*	Change rotation range between 0 and 200°	10,15,20,30,40	\bigcirc
XC 6*	Change rotation range between 0 and 110°	10, 15, 20, 30, 40	\bigcirc
XC 7*	Reversed shaft		-
XC30	Fluorine grease		\bigcirc

,

* These specifications are not available for rotary actuators with auto switch unit and angle adjuster.
A total of four XA \square and XC \square combinations is available.
Example: XA33A34C5C30

Axial: Top (Long shaft side)

Symbol: A31

.
(Exampx)
For M3: L1 $=6 \mathrm{~mm}$

- Applicable shaft types: S, Y

	(mm)	
	Q1	
	S	Y
10	Not available	
15	M3	
20	M3, M4	
30	M3, M4, M5	

Symbol: A33

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: J, K, T

Symbol: A37 The long shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft types: J, K, T
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Symbol: $\mathbf{A} 45$ The long shaft can be further shortened by machining a middle-cut chamfer into it.
(The position of the chamfer is same as the standard one.)
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft types: J, K, T

Size		W1	L1 max	(mm)
	X			L3 max
	J K \mathbf{T}	J $\mathbf{K}_{\mathbf{\prime}} \mathbf{T}$	J $\mathbf{K}_{\mathbf{\prime}} \mathbf{T}$	
10	6.5 to 14	0.5 to 2	X-3	L1-1
15	8 to 18	0.5 to 2.5	X-4	L1-1
20	9 to 20	0.5 to 3	X-4.5	L1-1
30	11.5 to 22	0.5 to 4	X-5	L1-2
40	15.5 to 30	0.5 to 5	X-5.5	L1-2

Axial: Bottom (Short shaft side)

Symbol: A32

The maximum dimension L 2 is, as a rule, twice the thread size
(Example) For M4: L2 $=8 \mathrm{~mm}$
However, for M5 with S shaft, the maximum dimension L2 is 1.5 times
the thread size.

- Applicable shaft types: S, Y

	(mm)	
	Q2	
	S	Y
10	Not available	
15	M3	
20	M3, M4	
30	M3, M4, M5	

Symbol: A34

Machine female threads into the short shaft.

- The maximum dimension L2 is, as a rule, twice the thread size
(Example) For M3: L2 $=6 \mathrm{~mm}$
However, for M5 with T shaft, the maximum dimension L2 is 1.5 times
the thread size.
- Applicable shaft types: J, K, T

$\text { Size } \overbrace{\text { sanf }}^{\text {spee }}$	Q2		
	J	K	T
10	Not available		
15	M3		
20	M3, M4		
30	M3, M4, M5		
40	M3, M4, M5		

Symbol: A38 The short shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: K
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

Size	Y	L2 max	D2
10	2 to 14	Y-1	ø3 to 03.9
15	3 to 18	Y-1.5	¢3 to 04.9
20	3 to 20	Y-1.5	ø3 to ø5.9
30	6 to 22	Y-2	03 to 07.9
40	6 to 30	Y - 4.5	¢5 to 09.9

Symbol: A46 The short shaft can be further shortened by machining a middle-cut chamfer into it.
(The position of the chamfer is same as the standard one.) (If shortening the shaft is not required, indicate "*" for dimension Y.)

- Applicable shaft type: K

(mm)				
Size	Y	W2	L2 max	L4 max
10	4.5014	0.5 to2	Y-1	L2-1
15	5.5 to 18	0.5 to 2.5	Y - 1.5	L2-1
20	61020	0.5 to	Y - 1.5	L2-1
30	8.5 to 22	0.5 to 4	Y-2	L2-2
40	13.5 to 30	0.5 to 5	Y-4.5	L2-2

Axial: Top (Long shaft side)

Axial: Bottom (Short shaft side)

Symbol: A55

Shorten the short shaft.

- Applicable shaft types: J

\quad (mm)	
Size	\mathbf{Y}
$\mathbf{1 0}$	1 to 8
$\mathbf{1 5}$	1.5 to 9
$\mathbf{2 0}$	1.5 to 10
$\mathbf{3 0}$	2 to 13
$\mathbf{4 0}$	4.5 to 15

Double Shaft

Symbol: A40

Applicable to single vane type only
Shaft with through-hole (Additional machining of K, T shaft)

- Applicable shaft types: K, T
- Equal dimensions are indicated by the
- $\mathrm{d} 1=\varnothing 2.5, \mathrm{~L} 1=18$ (max.) for size 15 ;
same marker.
- Not available for size 10.

minimum machining diameter for d 1 is 0.1 mm .
- $\mathrm{d} 1=\mathrm{d} 3$ for sizes 20 to 40 .

				(mm)
$\text { Thread } \underset{\text { shize }}{\text { sipe }}$	K	T	K	T
	d1		d3	
15	$\varnothing 2.5$		ø2.5 to ø3	
20	-		ø2.5 to 04	
30	-		$\varnothing 2.5$ to ø4.5	
40	-		$\varnothing 2.5$ to $\varnothing 5$	

Double Shaft

Symbol: A41

Applicable to single vane type only
Shaft with through-hole

- Not available for size 10.
- Applicable shaft type: J
- Equal dimensions are indicated by the same marker.

Symbol: A43

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10 . Applicable shaft types: K, T
- The maximum dimension L1 is, as - Equal dimensions are indicated by the same a rule, twice the thread size. marker.
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
However, for M5 on the short shaft of T shaft
: L1 max. $=7.5 \mathrm{~mm}$

at				(mm)
Size	15	20	30	40
	K \mathbf{T}^{\prime}	K \mathbf{T}	K ${ }^{\mathbf{T}}$	K
M 3×0.5	ø2.5	ø2.5	ø2.5	ø2.5
M 4×0.7	-	$ø 3.3$	ø3.3	ø3.3
M5 x 0.8	-	-	$ø 4.2$	ø4.2

Symbol: A50

- Applicable shaft type: Y

Size	X	Y
10	1 to 14	1 to 14
15	1.5 to 18	1.5 to 18
20	1.5 to 20	1.5 to 20
30	2 to 22	2 to 22
40	18 to 30	18 to 30

Size: 10 to 30
Size: 40

Symbol: A57

- Applicable shaft type: J

	(mm)			
Size	\mathbf{X}		\mathbf{Y}	
$\mathbf{1 0}$	1	to 14	1	
to 14				
$\mathbf{1 5}$	1.5 to 18	1.5 to 18		
$\mathbf{2 0}$	1.5 to 20	1.5 to 20		
$\mathbf{3 0}$	2	to 22	2	
to 22				
$\mathbf{4 0}$	3	to 30	4.5 to 30	

Symbol: A42

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10 .

The maximum dimension L2 is,
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
However, for M5 on the short shaft of S shaft: L1 max. $=7.5 \mathrm{~mm}$

A parallel key is used on the long shaft for size 40.

- Applicable shaft types: S, Y
- Equal dimensions are indicated by the same marker.

				(mm)
	15	20	30	40
	S \mathbf{Y}	\mathbf{S}	$\mathbf{S} \mathbf{Y}$	$\mathbf{S} \mathbf{Y}$
M 3×0.5	ø2.5	ø2.5	ø2.5	ø2.5
M 4×0.7	-	ø3.3	ø3.3	-
M5 $\times 0.8$	-	-	ø4.2	-

Symbol: A44

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10.

A parallel key is used on the long shaft for

- The maximum dimension L1 is, as size 40
a rule, twice the thread size.
- Applicable shaft type: J
(Example) For M5: L1 max. $=10 \mathrm{~mm} \bullet$ Equal dimensions are indicated by the same
 marker.

Symbol: A53

Shorten both long and short shafts.

- Applicable shaft type: K

(mm)		
Size	X	Y
10	1 to 14	1 to 14
15	1.5 to 18	1.5 to 18
20	1.5 to 20	1.5 to 20
30	2 to 22	2 to 22
40	3 to 30	4.5 to 30

Symbol: A58

The rotation axis is reversed.
The long shaft and short shaft are shortened.
(If shortening the shaft is not required, indicate "*" for dimension X, Y.)

- Applicable shaft type: J

(mm)		
Size	X	Y
10	1 to 10	1 to 12
15	1.5 to 11.5	1.5 to 15.5
20	1.5 to 13	1.5 to 17
30	2 to 16	2 to 19
40	3 to 17	4.5 to 28

Symbol: C1

Add connecting ports on Body (A).
(An additionally machined port will have an aluminum surface since it will be left unfinished.)

- Parallel key is used on the long shaft for size 40 .
- This specification is not available for the rotary actuator with auto switch unit.

			(mm)
Size	\mathbf{Q}	\mathbf{M}	\mathbf{N}
$\mathbf{1 0}$	M3	8.5	9.5
$\mathbf{1 5}$	M3	11	10
$\mathbf{2 0}$	M5	14	13
$\mathbf{3 0}$	M5	15.5	14
$\mathbf{4 0}$	M5	21	20

Combination

* For products with auto switch; angle adjustment unit cannot be selected.

Made to Order Symbol

Symbol	Description	$\begin{aligned} & \text { Applicable shaft type } \\ & \hline \mathbf{W}, \mathbf{J}, \mathbf{K}, \mathbf{S}, \mathbf{T}, \mathbf{Y} \end{aligned}$	Applicable size
XC 1*	Add connection port	\bigcirc	
XC 2*	Change threaded holes to through-hole	\bigcirc	10
XC 3*	Change the screw position	\bigcirc	15
XC 4	Change rotation range	\bigcirc	
XC 5*	Change rotation range between 0 and 200°	-	20
XC 6*	Change rotation range between 0 and 110°	\bigcirc	30
XC 7*	Reversed shaft	W, J	40
XC30	Fluorine grease	\bigcirc	

D- \square

Symbol: C3 Change the position of the screws for tightening the actuator

- Not available for size 10

Symbol: C5

Applicable to single vane style only
Start of rotation is 45° up from the bottom of the vertical line to the left side.

- Rotation tolerance for CRBU2W10 is ${ }^{+5}$
- A parallel key is used instead of chamfer for size 40.

Start of rotation is the position of the chamfer (keyway) when B port is pressurized.
Symbol: C7
The shafts are reversed.

- A parallel key is used instead of chamfer for size 40.

Symbol: C4

Applicable to single vane style only
Rotation starts from the horizontal line (90° down from the top to the right side) - Rotation tolerance for CRBU2W10 is ${ }^{+5}$

- A parallel key is used instead of chamfer for size 40.

Start of rotation is the position of the chamfer (keyway) when A port is pressurized.

Symbol: C6

Applicable to single vane style only
Start of rotation is 45° up from the bottom of the vertical line to the left side.

- Rotation tolerance for CRBU2W10 is ${ }^{+5}$
- A parallel key is used instead of chamfer for size 40.

Start of rotation is the position of the chamfer (keyway) when B port is pressurized.

Symbol: C30

Change the standard grease to fluoro grease (Not for low-speed specifications.)

[^0]: * Lead wire length symbols: 0.5 m Nil (Example) R73C
 $3 \mathrm{~m} \cdots . . \mathrm{L}$ (Example) R73CL
 5 m Z (Example) R73CZ
 None N (Example) R73CN

