Low-Speed Rotary Actuator

Possible to transfer a workpiece at low-speed.

- Realized a stable motion at $5 \mathrm{~s} / 90^{\circ}$.
Smooth motion without stick-slip phenomemon

Measurement conditions / Fluid: Air
Mounting orientation: Horizonal without load Operating pressure: 0.5 MPa
Pneumatic circuit: Meter-out circuit
Ambient temperature: Room temperature
Dimensions compatible with the CRQ2, MSQ series

Series MSQX

Series CRQ2X/MSQX Model Selection

* The selection procedure of the rotary for low-speed is the same as for an ordinary rotary. If the rotation time exceeds 2 s per 90°, however, the necessary torque and the kinetic energy are calculated with rotation time of 2 s per 90°.

Selection Procedure
 Remarks
 Selection Example

Operating conditions are as follows:

- Provisionally selected model
- Operating pressure: MPa
- Mounting position
- Load type

Static load: N.m
Resistance load: $N \cdot m$
Inertial load: N•m

- Load dimension: m
- Load mass: kg
- Rotation time: s
- Rotation angle: rad
- See P. 3 for load type.
- The unit of the rotation angle is Radians.
$180^{\circ}=\pi \mathrm{rad}$
$90^{\circ}=\pi / 2 \mathrm{rad}$

Calculation of moment of inertia

Calculate the moment of inertia of the load.
\Rightarrow P. 2

- If the moment of inertia of the load is made up of multiple components, calculate the moment of inertia of each component and add them together.

$$
\begin{aligned}
& \text { Load } 1 \text { moment of inertia: } I_{1} \\
& \qquad I_{1}=0.4 \times \frac{0.15^{2}+0.05^{2}}{12}+0.4 \times 0.05^{2}=0.001833
\end{aligned}
$$

$$
\text { Load } 2 \text { moment of inertia: } \mathbf{I}_{2}
$$

$$
I_{2}=0.2 \times \frac{0.025^{2}}{2}+0.2 \times 0.1^{2}=0.002063
$$

Total moment of inertia: I
$\mathbf{I}=\mathbf{I}_{1}+\mathbf{I}_{\mathbf{2}}=\mathbf{0 . 0 0 3 8 9 6 [\mathrm { kg } \cdot \mathrm { m } ^ { 2 }]}$

Calculation of necessary torque

Calculate necessary torque corre-
sponding to the load type, and ensure
it is within effective torque range.

- Static load (Ts)

Necessary torque T = Ts

- Resistance load (Tf)

Necessary torque T = Tf x (3 to 5)

- Inertial load (Ta)

Necessary torque $T=T a \times 10$
\Rightarrow P. 3

- When calculating the inertial load, if the rotation time exceeds 2 s per 90°, inertial load is calculated with rotation time of 2 s per 90°.
- Even for resistance load, when the load is rotated, necessary torque calculated from inertial load shall be added.

Necessary torque T = Tf x (3 to 5) +Ta $\times 10$

Inertial load: Ta

$\mathbf{T a}=\mathbf{I} \cdot \dot{\omega}$
$\dot{\omega}=\frac{2 \theta}{\mathbf{t}^{2}}\left[\mathrm{rad} / \mathrm{s}^{2}\right]$
Necessary torque: \mathbf{T}
$\mathrm{T}=\mathrm{Ta} \times 10$
$=0.003896 \times \frac{2 \times \pi}{4^{2}} \times 10=0.015[\mathrm{~N} \cdot \mathrm{~m}]$
(t is calculated with 2 s per 90°.)
$0.109 \mathrm{~N} \cdot \mathrm{~m}$ < Effective torque OK

Checking rotation time

Confirm that it is within the adjustable range of rotation time.
\Rightarrow P. 4

Converted to the time per 90° for comparison. (For comparison, $\mathbf{6 s} / 180^{\circ}$ is converted to $3 \mathrm{~s} / 90^{\circ}$.)

$1.0 \leq t \leq 5$

$t=3 \mathrm{~s} / 90^{\circ} \mathrm{OK}$

Calculation of kinetic energy

Confirm that the load's kinetic energy is within the allowable value.

Can be confirmed by the graph of the moment of inertia and the rotation time.
\Rightarrow P. 4

- If the rotation time exceeds 2 s per 90°, kinetic energy is calculated with rotation time of 2 s per 90°.
- If the allowable value is exceeded, an external cushioning mechanism such as an absorber needs to be installed.

$$
E=\frac{1}{2} \cdot I \cdot \omega^{2}
$$

$\omega=\frac{\mathbf{2} \cdot \theta}{\mathbf{t}}$

Kinetic energy

$$
\frac{1}{2} \times 0.003896 \times\left(\frac{2 \times \pi}{4}\right)^{2}=0.0048[\mathrm{~J}]
$$

(t is calculated with 2 s per 90°.)
0.0048 [J] < Allowable energy OK

Checking allowable load

Check if the load applied to the product is within the allowable range.

- If the allowable value is exceeded, an external bearing needs to be installed.

$$
\begin{aligned}
M & =0.4 \times 9.8 \times 0.05+0.2 \times 9.8 \times 0.1 \\
& =0.392[\mathrm{~N} \cdot \mathrm{~m}]
\end{aligned}
$$

0.392 [$\mathrm{N} \cdot \mathrm{m}$] < Allowable moment load OK

Equation Table of Moment of Inertia (Calculation of moment of inertia I)

1. Thin shaft

Position of rotational axis:
Perpendicular to the shaft through the center of gravity

2. Thin rectangular plate

Position of rotational axis:
Parallel to side b through the center of gravity

3. Thin rectangular plate
(Including rectangular parallelepiped)
Position of rotational axis:
Perpendicular to the plate through the center of gravity

$$
\mathrm{I}=\mathbf{m} \cdot \frac{\mathbf{a}^{2}+\mathbf{b}^{2}}{12}
$$

4. Round plate (Including column)

Position of rotational axis:
Passing through the center axis

6. Thin round plate

Position of rotational axis:
Passing through the diameter

$$
\mathrm{I}=\mathbf{m} \cdot \frac{\mathbf{r}^{2}}{4}
$$

7. Cylindrical

Position of rotational axis:
Passing through the diameter and the center of gravity

8. When rotational axis and the center of the load are not concentric.

$\mathbf{I}=\mathbf{K}+\mathbf{m} \cdot \mathbf{L}^{2}$
\mathbf{K} : The moment of inertia around the center of gravity of the load
In case of 4 . Round plate $K=\mathbf{m} \cdot \frac{\mathbf{r}^{2}}{2}$

9. Gear transmission

5. Solid sphere

Position of rotational axis:
Passing through the diameter

$$
\mathrm{I}=\mathbf{m} \cdot \frac{2 \mathrm{r}^{2}}{5}
$$

Load Type

Calculation method of necessary torque depends on the load type. Refer the below table.

Load type		
Static load: Ts	Resistance load: Tf	Inertial load: Ta
Only pressing force is necessary. (e.g. for clamping)	Weight or friction force is applied to rotating direction.	Rotate the load with inertia.
	Gravity is applied. Friction force is applied.	Center of rotation and center of gravity of the load are concentric. Rotation shaft is vertical (up and down).
$\mathbf{T s}=\mathbf{F} \cdot \ell$ Ts: Static load ($\mathrm{N} \cdot \mathrm{m}$) F: Clamping force (N) l : Distance from the rotation center to the clamping position (m)	Gravity is applied in rotating direction. $\mathbf{T f}=\mathbf{m} \cdot \mathbf{g} \cdot \ell$ Friction force is applied in rotating direction. $\mathbf{T f}=\mu \cdot \mathbf{m} \cdot \mathbf{g} \cdot \ell$ Tf: Resistance load ($\mathrm{N} \cdot \mathrm{m}$) m : Load mass (kg) g : Gravitational acceleration $9.8\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ l : Distance from the rotation center to the point of application of the weight or friction force (m) μ : Friction coefficient	$\begin{aligned} & \mathbf{T a}=\mathrm{I} \cdot \omega=\mathrm{I} \cdot \frac{2 \theta}{\mathbf{t}^{2}} \\ & \mathrm{Ta}: \text { Inertial load }(\mathrm{N} \cdot \mathrm{~m}) \\ & \mathrm{I}: \text { Moment of inertia }\left(\mathrm{kg} \cdot \mathrm{~m}^{2}\right) \\ & \omega: \text { Angular acceleration }\left(\mathrm{rad} / \mathrm{s}^{2}\right) \\ & \theta: \text { Rotation angle }(\mathrm{rad}) \\ & \mathbf{t}: \text { Rotation time }(\mathrm{s}) \end{aligned}$ For low speed rotary, if the rotation time exceeds 2s per 90°, inertial load is calculated with rotation time of 2 s per 90°.
Necessary torque: $\mathbf{T}=\mathbf{T s}$	Necessary torque: $\mathbf{T}=\mathbf{T f} \times$ (3 to 5) ${ }^{\text {Note }}$)	Necessary torque: $\mathbf{T}=\mathbf{T a} \times 10^{\text {Note) }}$
- Resistance load: Gravity or friction force is ap Ex. 1) Rotation shaft is horizontal (lateral), load are not concentric. Ex. 2) Load moves by sliding on the floor * The total of resistance load and inertial load - Not resistance load: Neither weight or friction Ex. 1) Rotation shaft is vertical (up and down) Ex. 2) Rotation shaft is horizontal (lateral), load are not concentric. * Necessary torque is inertial load only. $\mathbf{T}=$	rotating direction. rotation center and the center of gravity of the necessary torque. $\mathbf{T}=\mathbf{T f} \times(3$ to 5$)+\mathbf{T a} \times 10$ applied in rotating direction. tion center and the center of gravity of the	To adjust the speed, margin is necessary fo Tf and Ta.

Effective Torque

Unit: N-m												
Model	Size	Operating pressure (MPa)										
		0.1	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
CRQ2X	10	-	0.09	0.12	0.18	0.24	0.30	0.36	0.42	-	-	-
	15	-	0.22	0.30	0.45	0.60	0.75	0.90	1.04	-	-	-
	20	0.37	0.55	0.73	1.10	1.47	1.84	2.20	2.57	2.93	3.29	3.66
	30	0.62	0.94	1.25	1.87	2.49	3.11	3.74	4.37	4.99	5.60	6.24
	40	1.06	1.59	2.11	3.18	4.24	5.30	6.36	7.43	8.48	9.54	10.6
MSQX	10	0.18	-	0.36	0.53	0.71	0.89	1.07	1.25	1.42	1.60	1.78
	20	0.37	-	0.73	1.10	1.47	1.84	2.20	2.57	2.93	3.29	3.66
	30	0.55	-	1.09	1.64	2.18	2.73	3.19	3.82	4.37	4.91	5.45
	50	0.93	-	1.85	2.78	3.71	4.64	5.57	6.50	7.43	8.35	9.28

Note 1) Values of operating torque in the above table are representative values, and not guaranteed. Make use of the values as a reference when ordering.
Note 2) Except for cases when an external stopper is used, the holding torque at the operation end is half of the table value.

Kinetic Energy/Rotating Time

In a rotational movement, the kinetic energy of a load may damage the internal parts, even if the required torque for a load is small. Consider the moment of inertia and rotation time before selecting a model.
(For model selection, refer to the moment of inertia and rotation time graph as shown on the below table.)

Allowable kinetic energy and rotation time adjustment range

Set the rotation time, within stable operational guidelines, using the adjustment range specification table as detailed below. When operating at low-speeds which exceed the rotation time adjustment range, use caution as it may result in sticking or malfunction.

Model	Size	Allowable kinetic energy (J)	Stable operational rotation time adjustment range $\left(\mathrm{s} / 90^{\circ}\right)$
CRQ2X	$\mathbf{1 0}$	0.00025	
	$\mathbf{1 5}$	0.00039	
	$\mathbf{2 0}$	0.7 to 5	
	$\mathbf{3 0}$	0.025	
	$\mathbf{4 0}$	0.048	
MSQX	$\mathbf{1 0}$	0.081	
	$\mathbf{2 0}$	0.007	
	$\mathbf{3 0}$	0.025	
	$\mathbf{5 0}$	0.048	

Model Selection Select a model based on the moment of inertia and rotation time as shown graph below.

CRQ2X

[^0]
Model Selection

Allowable Load

CRQ2X

A load up to the allowable radial/thrust load can be applied provided that a dynamic load is not generated. However, applications which apply a load directly to the shaft should be avoided whenever possible. In order to further improve the operating conditions, a method such as that shown in the drawing on the right side is recommended so that a direct load is not applied to the shaft.

MSQX
Do not allow the load and moment applied to the table to exceed the allowable values shown in the below table.
(Operation beyond the allowable values can cause adverse effects on service life, such as play in the table and loss of accuracy.)

Size				
	Allowable radial load (N)	Allowable thrust load (N)		Allowable moment ($\mathrm{N} \cdot \mathrm{m}$)
		(a)	(b)	
10	78	74	78	2.4
20	147	137	137	4.0
30	196	197	363	5.3
50	314	296	451	9.7

Rotary Actuator Technical Data Air Consumption

Air consumption is the volume of air which is expended by the rotary actuator's reciprocal operation inside the actuator and in the piping between the actuator and the switching valve, etc. This is necessary for selection of a compressor and for calculation of its running cost.

* The air consumption (QcR) required for one reciprocation of the rotary actuator alone is shown in the below table, and can be used to simplify the calculation.

Formulas
$Q_{C R}=2 V \times\left(\frac{P+0.1}{0.1}\right) \times 10^{-3}$
$Q_{C P}=2 \times \mathrm{a} \times e \times\left(\frac{P}{0.1}\right) \times 10^{-6}$
$Q_{C}=Q_{C R}+Q_{C P}$
$Q_{C R}=$ Air consumption of rotary actuator
QcP = Air consumption of tubing or piping
$\mathbf{V}=$ Internal volume of rotary actuator
$\mathbf{P}=$ Operating pressure
$\ell=$ Length of piping
$\mathbf{a}=$ Internal cross section of piping
Qc = Air consumption required for one reciprocation of rotary actuator

When selecting a compressor, it is necessary to choose one which has sufficient reserve for the total air consumption of pneumatic actuators downstream. This is affected by factors such as leakage in piping, consumption by drain valves and pilot valves, etc., and reduction of air volume due to drops in temperature.

Formulas

Qc2 $=$ Qc x $\mathrm{n} \times$ Number of actuators \times Reserve factor

Qcempressor discharge flow rate
[$/$ /min (ANR)] $\mathbf{n}=$ Actuator reciprocations per minute
Reserve factor: 1.5 or greater

Internal Cross Section of Tubing and Steel Piping

Nominal size	O.D. (mm)	I.D. (mm)	Internal cross section $\mathbf{a (m ^ { 2 })}$
T $\square \mathbf{0 4 2 5}$	4	2.5	4.9
T $\square \mathbf{0 6 0 4}$	6	4	12.6
TU0805	8	5	19.6
T $\square \mathbf{0 8 0 6}$	8	6	28.3
$\mathbf{1 / 8 B}$	-	6.5	33.2
T $\square \mathbf{1 0 7 5}$	10	7.5	44.2
TU1208	12	8	50.3
T $\square \mathbf{1 2 0 9}$	12	9	63.6
$\mathbf{1 / 4 B}$	-	9.2	66.5
TS1612	16	12	113
3/8B	-	12.7	127
T $\square \mathbf{1 6 1 3}$	16	13	133
$\mathbf{1 / 2 B}$	-	16.1	204
3/4B	-	21.6	366
1B	-	27.6	598

Air Consumption
[(ANR)]
[(ANR)]
$\left[\mathrm{cm}^{3}\right]$
[MPa]
[mm]
[mm^{2}]
[e (ANR)]

Model	Size	Rotation angle (${ }^{\circ}$)	Internal volume $\mathrm{V}\left(\mathrm{cm}^{3}\right)$	Operating pressure (MPa)										
				0.1	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
CRQ2X	10	90	1.2	-	0.006	0.007	0.009	0.012	0.014	0.016	0.018	-	-	-
		180	2.2	-	0.011	0.013	0.018	0.022	0.026	0.031	0.035	-	-	-
	15	90	2.9	-	0.015	0.017	0.023	0.029	0.035	0.041	0.046	-	-	-
		180	5.5	-	0.028	0.033	0.044	0.055	0.066	0.077	0.088	-	-	-
	20	90	7.1	0.028	0.036	0.043	0.057	0.071	0.085	0.099	0.114	0.128	0.142	0.156
		180	13.5	0.054	0.068	0.081	0.108	0.135	0.162	0.189	0.216	0.243	0.270	0.297
	30	90	12.1	0.048	0.060	0.073	0.097	0.121	0.145	0.169	0.193	0.218	0.242	0.266
		180	23.0	0.092	0.115	0.138	0.184	0.230	0.276	0.322	0.368	0.413	0.459	0.505
	40	90	20.6	0.082	0.103	0.123	0.164	0.206	0.247	0.288	0.329	0.370	0.411	0.452
		180	39.1	0.156	0.195	0.234	0.313	0.391	0.469	0.547	0.625	0.703	0.781	0.859
MSQX	10	190	6.6	0.026	0.033	0.040	0.053	0.066	0.079	0.092	0.106	0.119	0.132	0.145
	20		13.5	0.054	0.068	0.081	0.108	0.135	0.162	0.189	0.216	0.243	0.270	0.297
	30		20.1	0.080	0.101	0.121	0.161	0.201	0.241	0.281	0.322	0.362	0.402	0.442
	50		34.1	0.136	0.171	0.205	0.273	0.341	0.409	0.477	0.546	0.614	0.682	0.750

Low-Speed Compact Rotary Actuator Rack \& Pinion Type Series CRQ2X Size: 10, 15, 20, 30, 40

How to Order

Applicable Auto Switches/Refer to pages 24 through to 27 for further information on auto switches.

$\stackrel{\stackrel{\circ}{2}}{\stackrel{\circ}{\nwarrow}}$	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch model		Lead wire length (m)*				Applicable load		
					DC		AC			$\begin{array}{r} 0.5 \\ \text { (Nil) } \\ \hline \end{array}$	$\begin{gathered} 1 \\ (M) \end{gathered}$	$\begin{gathered} \hline 3 \\ \text { (L) } \end{gathered}$	$\begin{gathered} \hline 5 \\ (\mathrm{Z}) \end{gathered}$			
							Perpendicular	In-line								
		Grommet	Yes	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$		-	M9NV	M9N	\bigcirc	-	\bigcirc	\bigcirc	IC	Relay, PLC
	-			3-wire (PNP)			M9PV		M9P	\bigcirc	-	\bigcirc	\bigcirc	circuit		
				2-wire		12 V	M9BV		M9B	\bigcirc	-	\bigcirc	\bigcirc	-		
	Diagnostic indication (2-color)			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$	M9NWV		M9NW	\bigcirc	-	\bigcirc	\bigcirc	IC circuit		
				3-wire (PNP)			M9PWV		M9PW	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
				2-wire		12 V	M9BWV		M9BW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-		
	Water resistant (2-color)			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$	M9NAV		M9NA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit		
				3-wire (PNP)			M9PAV		M9PA	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
				2-wire		12 V	M9BAV		M9BA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-		
	-	Grommet	No	2-wire	24 V	12 V	100 V or less	A90V	A90	\bigcirc	-	\bigcirc	-	IC circuit	Relay, PLC	
			Yes	3-wire (NPN equiv.)	-	5 V	-	A96V	A96	\bigcirc	-	\bigcirc	-		-	
				2-wire	24 V	12 V	100 V	A93V	A93	\bigcirc	-	\bigcirc	-	-	Relay, PLC	

[^1]- Auto switches marked with " \bigcirc " are manufactured upon a receipt of order
- For details about auto switches with pre-wired connector, refer to "SMC Best Pneumatics 2004" Vol. 11 catalog.
- Auto switches are shipped together, (but not assembled).

Specifications

Size	10	15	20	30	40
Fluid	Air (Non-lube)				
Max. operating pressure	0.7 MPa		1 MPa		
Min. operating pressure	0.15 MPa		0.1 MPa		
Ambient and fluid temperature	0° to $60^{\circ} \mathrm{C}$ (No freezing)				
Cushion	Not attached				
Angle adjustment range	Rotation end $\pm 5^{\circ}$				
Rotation angle	80° to $100^{\circ}, 170^{\circ}$ to 190°				
Port size	M5 x 0.8		Rc $1 / 8$, G $1 / 8$, NPT $1 / 8$, NPTF $1 / 8$		
Output (N•m)*	0.30	0.75	1.8	3.1	5.3

* Output under the operating pressure at 0.5 MPa . Refer to page 4 for further information.

Allowable Kinetic Energy and Rotation Time Adjustment Range

Size	Allowable kinetic energy (J)	Stable operational rotation time adjustment range (s/90 $)$
$\mathbf{1 0}$	0.00025	0.7 to 5
$\mathbf{1 5}$	0.00039	
$\mathbf{2 0}$	0.025	
$\mathbf{3 0}$	0.048	
$\mathbf{4 0}$	0.081	

Note) If operated where the kinetic energy exceeds the allowable value, this may cause damage to the internal parts and result in product failure. Please pay special attention to the kinetic energy levels when designing, adjusting and during operation to avoid exceeding the allowable limit.

Weight

Size	(g)	
	90°	180°
10	120	150
15	220	270
20	600	700
30	900	1100
40	1400	1600

* Not including the weight of auto switch.

Series CRQ2X

Rotation Range

When pressurized from the port indicated by the arrow, the shaft will rotate in a clockwise direction.

Rotation angle: 90°

Rotation angle: $\mathbf{1 8 0}^{\boldsymbol{\circ}}$

Low-Speed Compact Rotary Actuator Rack \& Pinion Type

Construction
Standard
Size 10/15

Component Parts

No.	Description	Material
$\mathbf{1}$	Body	Aluminum alloy
$\mathbf{2}$	Cover	Aluminum alloy
$\mathbf{3}$	Plate	Aluminum alloy
$\mathbf{4}$	End cover	Aluminum alloy
$\mathbf{5}$	Piston	Stainless steel
$\mathbf{6}$	Size: 10, 15	Shaft
	Size: $\mathbf{2 0 , 3 0 , 4 0}$	
$\mathbf{7}$	Seal retainer	Chrome molybdenum steel
$\mathbf{8}$	Bearing retainer	Aluminum alloy
$\mathbf{9}$	Wear ring	Aluminum alloy
$\mathbf{1 0}$	Hexagon socket head cap screw	Resin
$\mathbf{1 1}$	Hexagon nut with flange	Stainless steel
$\mathbf{1 2}$	Cross recessed screw No. $\mathbf{0}$	Steel wire

Replacement Parts

Description	Part no.				Note	
	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$		
Seal kit	$\mathrm{P} 473010-23$	$\mathrm{P} 473020-23$	$\mathrm{P} 473030-23$	$\mathrm{P} 473040-23$	$\mathrm{P} 473050-23$	A set of above numbers (9), (19, (20), (21) and (22)

Series CRQ2X

Construction

With auto switch Size 10/15

With auto switch
Size 20/30/40

Dimensions

Size	Rotation angle	A	AU*	B	BA	BB	BC	BD	BU	$\underset{(\mathrm{g} 6)}{\mathrm{D}}$	$\begin{gathered} \text { DD } \\ \text { (h9) } \end{gathered}$	H
10	$90^{\circ}, 180^{\circ}$	42	(8.5)	29	8.5	17	6.7	2.2	16.7	5	12	18
15	$90^{\circ}, 180^{\circ}$	53	(9.5)	31	9	26.4	10.6	-	23.1	6	14	20

Size	Rotation angle	W	Q	S	US	UW	ab	M	TA	TC	TD
10	90°	4.5	17	56	35	44	6	9	15.5	8	15.4
	180°			69							
15	90°	5.5	20	65	40	50	7	10	16	9	17.6
	180°			82							

* The AU dimension is not the dimension at the time of shipment, since its dimension is for adjustment parts.

Series CRQ2X

Dimensions

Size 20/30/40

Size	Rotation angle	A	AU*	B	BA	BB	BC	BD	BE	BU	$\underset{\text { (g6) }}{\text { D }}$	$\begin{gathered} \text { DD } \\ \text { (h9) } \end{gathered}$	F	H	J	JA	JB	JJ	K
20	$90^{\circ}, 180^{\circ}$	63	(11)	50	14	34	14.5	-	-	30.4	10	25	2.5	30	M8 $\times 1.25$	11	6.5	-	3
30	$90^{\circ}, 180^{\circ}$	69	(11)	68	14	39	16.5	49	16	34.7	12	30	3	32	M10 $\times 1.5$	14	8.5	M5 x 0.8 depth 6	4
40	$90^{\circ}, 180^{\circ}$	78	(13)	76	16	47	18.5	55	16	40.4	15	32	3	36	M10 $\times 1.5$	14	8.6	M6 $\times 1$ depth 7	5

Size	Rotation angle	Q	S	W	Keyway dimensions		US	TA	TB	TC	TD	$\begin{gathered} \text { TF } \\ \text { (H9) } \end{gathered}$	$\begin{gathered} \text { TG } \\ \text { (H9) } \end{gathered}$	TL	UW	G	M	N	L
					b	I													
20	90°	29	104	11.5	$4_{-0.03}^{0}$	20	59	24.5	1	13.5	27	4	4	2.5	74	$8_{-0.1}^{0}$	15	11	9.6 ${ }_{-0.1}^{0}$
	180°		130																
30	90°	33	122	13.5	$4_{-0.03}^{0}$	20	65	27	2	19	36	4	4	2.5	83	$10_{-0.1}^{0}$	18	13	$11.4{ }_{-0.1}^{0}$
	180°		153																
40	90°	37	139	17	$5_{-0.03}^{0}$	25	73	32.5	2	20	39.5	5	5	3.5	93	$11{ }_{-0.1}^{0}$	20	15	$14 \stackrel{0}{-0.1}$
	180°		177																

[^2]
Unit Used as Flange Mount

The L dimensions of this unit are shown in the below table. When hexagon socket head cap bolt of the JIS standard is used, the head of the bolt will recess into the groove of actuator.

Size	\mathbf{L}	Screw
$\mathbf{1 0}$	13	M4
$\mathbf{1 5}$	16	M4
$\mathbf{2 0}$	22.5	M6
$\mathbf{3 0}$	24.5	M8
$\mathbf{4 0}$	28.5	M8

Auto Switch Proper Mounting Position (at Rotation End Detection)

Size	Rotation angle	Reed switch				Solid state switch			
		A	B	Operating angle (θ m)	$\begin{aligned} & \text { Hystere- } \\ & \text { sis } \\ & \text { angle } \\ & \hline \end{aligned}$	A	B	Operating angle (θ m)	$\begin{array}{\|l} \hline \text { Hystere- } \\ \text { sis } \\ \text { angle } \\ \hline \end{array}$
10	90°	15	21.5	63°	12°	19	25.5	75°	3°
	180°	18	31			22	35		
15	90°	18.5	27	52°	9°	22.5	31	69°	3°
	180°	22.5	39.5			26.5	43.5		
20	90°	36	48.5	41°	9°	40	52.5	56°	4°
	180°	42	67.5			46	71.5		
30	90°	43	59	32°	7°	47	63	43°	3°
	180°	51	82			55	86		
40	90°	50	69	24°	5°	54	73	36°	4°
	180°	59.5	97.5			63.5	101.5		

Operating angle $\theta \mathbf{m}$: Value of the operating range of single auto switch (Lm) as represented by rotation angle for shaft
Hysteresis angle: Value of the auto switch hysteresis as represented by angle

Note) For actual setting, adjustment shall be made after checking the auto switch operating condition.

Series CRQ2X/MSQX Auto Switch Specifications

Auto Switch Common Specifications

Type	Reed switch	Solid state switch
Leakage current	None	3-wire: $100 \mu \mathrm{~A}$ or less 2 -wire: 0.8 mA or less
Operating time	1.2 ms	1 ms or less
Impact resistance	$300 \mathrm{~m} / \mathrm{s}^{2}$	$1000 \mathrm{~m} / \mathrm{s}^{2}$
Insulation resistance	$50 \mathrm{M} \Omega$ or more at 500 VDC Mega (between lead wire and case)	
Withstand voltage	1500 VAC for 1 minute (between lead wire and case)	1000 VAC for 1 minute (between lead wire and case)
Ambient temperature	-10 to $60^{\circ} \mathrm{C}$	
Enclosure	IEC60529 standard IP67, JIS C 0920 waterproof construction	
Standard	Conforming to CE Standards	

Lead Wire Length

Lead wire length indication

Note 1) Applicable auto switch with 5 m lead wire " Z "
Solid state switch: Manufactured upon receipt of order as standard.
Note 2) To designate solid state switches with flexible specifications, add "-61" after the lead wire length. Flexible cable is used for D-M9 $\square(\mathrm{V})$, D M9 $\square \mathrm{W}(\mathrm{V}), \mathrm{D}-\mathrm{M} 9 \square \mathrm{~A}(\mathrm{~V})$ as standard. There is no need to place the suffix -61 to the end of part number.
Note 3) $1 \mathrm{~m}(\mathrm{M}): \mathrm{D}-\mathrm{M} 9 \square \mathrm{~W}, \mathrm{D}-\mathrm{M} 9 \square \mathrm{~A}(\mathrm{~V})$.
Note 4) Lead wire length tolerance

Lead wire length	Tolerance
0.5 m	$\pm 15 \mathrm{~mm}$
1 m	$\pm 30 \mathrm{~mm}$
3 m	$\pm 90 \mathrm{~mm}$
5 m	$\pm 150 \mathrm{~mm}$

Contact Protection Box: CD-P11, CD-P12

<Applicable switch model>

D-A9 \square (V) type
The above auto switch type does not have a built-in contact protection circuit.
(1) Where the operation load is an inductive load.
(2) Where the wiring length to load is greater than 5 m .
(3) Where the load voltage is $\mathbf{1 0 0}$ VAC.

Therefore, use a contact protection box with the switch for any of the above cases:
The contact life may be shortened (due to permanent energizing conditions). Since the solid state auto switch is a semiconductor switch which has no contacts, no contact protection box is needed.
(4) Where the load voltage is $\mathbf{1 1 0}$ VAC.

When the load voltage is increased by more than 10% to the rating of applicable auto switches above, use a contact protection box (CD-P11) to reduce the upper limit of the load current by 10% so that it can be set within the range of the load current range.

Specifications

Part no.	CD-P11		CD-P12		
Load voltage	100 VAC	200 VAC	24 VDC		
Max. load current	25 mA	12.5 mA	50 mA		* Lead wire length - Switch connection side 0.5 m
:---					
Load connection side 0.5 m					

Internal Circuit

CD-P11		OUT Bro ~ OUT Blue
CD-P12		OUT (+) Brown OUT (-) Blue

Dimensions

Connection

To connect a switch unit to a contact protection box, connect the lead wire from the side of the contact protection box marked SWITCH to the lead wire coming out of the switch unit. Keep the switch as close as possible to the contact protection box, with a lead wire length of no more than 1 meter.

Auto Switch
 Connections and Examples

Basic Wiring

Solid state 3-wire, NPN

Solid state 3-wire, PNP

2-wire
(Solid state)

2-wire

Power supplies for switch and load are separate.)

(Reed)

Example of Connection to PLC (Programmable Logic Controller)

- Sink input specification

3-wire, NPN

- Source input specification

3-wire, PNP

2-wire

2-wire

Connect according to the applicable PLC input specifications, since the connection method will vary depending on the PLC input specifications.

Example of AND (Serial) and OR (Parallel) Connection

- 3-wire

AND connection for NPN output (using relays)

2-wire with 2-switch AND connection

Load voltage at $\mathrm{ON}=\underset{\text { Power supply }}{\text { voltage }}-\underset{\text { voltage }}{\text { Residual }} \times 2 \mathrm{pcs}$.

$$
\begin{aligned}
& =24 \mathrm{~V}-4 \mathrm{~V} \times 2 \mathrm{pcs} . \\
& =16 \mathrm{~V}
\end{aligned}
$$

Example: Power supply is 24 VDC.
Internal voltage drop in switch is 4 V .

AND connection for NPN output (performed with switches only)

The indicator lights will illuminate when both switches are turned ON.

2-wire with 2-switch OR connection

Leakage current from switch is 1 mA .

Reed Switch: Direct Mounting Style D-A90(V)/D-A93(V)/D-A96(V) (E

Grommet

©Caution

Precautions

Fix the switch with the existing screw installed on the switch body. The switch may be damaged if a screw other than the one supplied is used.

Auto Switch Internal Circuit

D-A93(V)

D-A96(V)

Note) (1) In a case where the operation load is an inductive load.
(2) In a case where the wiring load is greater than 5 m .
(3) In a case where the load voltage is 100 VAC.
Use the auto switch with a contact protection box in any of the above mentioned cases. (For details about the contact protection box, refer to page 22.)

Auto Switch Specifications

				PLC: Prog	mable	gic Controller
D-A90/D-A90V (Without indicator light)						
Auto switch part no.	D-A90	D-A90V	D-A90	D-A90V	D-A90	D-A90V
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Applicable load	IC circuit, Relay, PLC					
Load voltage	24 VAC/DC or less		$48 \mathrm{VAC} / \mathrm{DC}$ or less		100 VAC/DC or less	
Maximum load current	50 mA		40 mA		20 mA	
Contact protection circuit	None					
Internal resistance	1Ω or less (including lead wire length of 3 m)					
Standard	Conforming to CE Standards					
D-A93/D-A93V/D-A96/D-A96V (With indicator light)						
Auto switch part no.	D-A93	D-A93V	D-A93	D-A93V	D-A96	D-A96V
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Applicable load	Relay, PLC				IC circuit	
Load voltage	24 VDC		100 VAC		4 to 8 VDC	
Load current range and max. load current	5 to 40 mA		5 to 20 mA		20 mA	
Contact protection circuit	None					
Internal voltage drop	D-A93 - 2.4 V or less (to 20 mA)/3 V or less (to 40 mA) D-A93V - 2.7 V or less				0.8 V or less	
Indicator light	Red LED illuminates when turned ON.					
Standard	Conforming to CE Standards					

- Lead wires

D-A90(V)/D-A93(V) — Oilproof heavy-duty vinyl cable: ø2.7, $0.18 \mathrm{~mm}^{2} \times 2$ cores (Brown, Blue), 0.5 m D-A96(V) - Oilproof heavy-duty vinyl cable: ø2.7, $0.15 \mathrm{~mm}^{2} \times 3$ cores (Brown, Black, Blue), 0.5 m
Note 1) Refer to page 22 for reed switch common specifications.
Note 2) Refer to page 22 for lead wire lengths.
Note 3) If load current is less than 5 mA , the visibility of the indicator light is decreased. If less than 2.5 mA , the light may become invisible. From the point of view of contact output, however, it is not a problem as long as the load current is more than 1 mA .

Weight

Unit: g

Auto switch part no.		D-A90(V)	D-A93(V)	D-A96(V)
Lead wire length (m)	0.5	6	6	8
	3	30	30	41

Dimensions
Unit: mm
D-A90/A93/A96

D-A90V/A93V/A96V

Solid State Switch: Direct Mounting Style D-M9N(V)/D-M9P(V)/D-M9B(V) (E

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- UL certified (style 2844) lead cable is used.
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard spec.
- Brightness of indicator light is 2 times greater than the conventional model (SMC comparison).

\triangle Caution

Precautions

Fix the switch with the existing screw installed on the switch body. The switch may be damaged if a screw other than the one supplied is used.
Auto Switch Internal Circuit

Auto Switch Specifications

PLC: Programmable Logic Controller						
D-M9 $\square / \mathrm{D}-\mathrm{M} 9 \square \mathrm{~V}$ (With indicator light)						
Auto switch part no.	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON.					
Standard	Conforming to CE Standards					

- Lead wires - Oilproof heavy-duty vinyl cable: $\varnothing 2.7 \times 3.2$ ellipse D-M9B(V) $0.15 \mathrm{~mm}^{2} \times 2$ cores
D-M9N(V), D-M9P(V) $\quad 0.15 \mathrm{~mm}^{2} \times 3$ cores
Note 1) Refer to page 22 for solid state switch common specifications.
Note 2) Refer to page 22 for lead wire lengths.

Weight

Unit: g

Auto switch part no.		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length (m)	0.5	8	8	7
	3	41	41	38
	5	68	68	63

Dimensions

Unit: mm
D-M9 \square

D-M9 \square V

SSMC

2-Color Indication Solid State Switch: Direct Mounting Style
 D-M9NW(V)/D-M9PW(V)/D-M9BW(V)

Auto Switch Specifications

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- UL certified (style 2844) lead cable is used.
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard spec. - The optimum operating position can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)
- Brightness of indicator light is 2 times greater than the conventional model (SMC comparison).

Auto Switch Internal Circuit

D-M9PW(V)

D-M9BW(V)

Indicator light / Display method

PLC: Programmable Logic Controller						
D-M9 \square W/D-M9 \square WV (With indicator light)						
Auto switch part no.	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP			-
Applicable load	IC circuit, Relay, PLC				24 VDC re	relay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)					
Current consumption	10 mA or less					
Load voltage	28 VD	or less		-	24 VDC (10	to 28 VDC)
Load current	40 mA or less				2.5 to	40 mA
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or	r less
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA	or less
Indicator light	Operating position Red LED illuminates. Optimum operating position Green LED illuminates.					
Standard	Conforming to CE Standards					

- Lead wires - Oilproof heavy-duty vinyl cable: ø 2.7×3.2 ellipse

D-M9BW(V)
$0.15 \mathrm{~mm}^{2} \times 2$ cores
D-M9NW(V), D-M9PW(V) $0.15 \mathrm{~mm}^{2} \times 3$ cores
Note 1) Refer to page 22 for solid state switch common specifications.
Note 2) Refer to page 22 for lead wire lengths.
Weight Unit: g

Auto switch part no.		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Lead wire length (m)	0.5	8	8	7
	1	14	14	13
	3	41	41	38
	5	68	68	63

Dimensions

D-M9■W

D-M9 $\square W V$

Water Resistant 2-Color Indication Solid State Switch: Direct Mounting Style D-M9NA(V)/D-M9PA(V)/D-M9BA(V) C E

Grommet

- Water (coolant) resistant type
- 2-wire load current is reduced (2.5 to 40 mA).
- UL certified (style 2844) lead cable is used.
- The optimum operating position can be determined by the color of the light. (Red Green Red)

Auto Switch Internal Circuit D-M9NA(V)

D-M9PA(V)

D-M9BA(V)

Indicator light / Display method

Auto Switch Specifications

PLC: Programmable Logic Controller						
D-M9 \square A/D-M9 \square AV (With indicator light)						
Auto switch part no.	D-M9NA	D-M9NAV	D-M9PA	D-M9PAV	D-M9BA	D-M9BAV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC r	relay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC	or less			24 VDC (10	to 28 VDC)
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating position Red LED illuminates. Optimum operating position Green LED illuminates.					
Standard	Conforming to CE Standards					

- Lead wires - Oilproof heavy-duty vinyl cable: ø2.7 x 3.2 ellipse D-M9BA(V) $0.15 \mathrm{~mm}^{2} \times 2$ cores
D-M9NA(V), D-M9PA(V) $\quad 0.15 \mathrm{~mm}^{2} \times 3$ cores
Note 1) Refer to page 22 for solid state switch common specifications.
Note 2) Refer to page 22 for lead wire lengths.

Weight

Auto switch part no.		D-M9NA(V)	D-M9PA(V)	D-M9BA(V)
Lead wire length (m)	0.5	8	8	7
	1	14	14	13
	3	41	41	38
	5	68	68	63

Dimensions

Unit: mm
D-M9 \square A

D-M9 \square AV

6. Most sensitive position

[^0]: * If the rotation time exceeds 2 s per 90°, kinetic energy is calculated with rotation time of 2 s per 90°.

[^1]: ** Although it is possible to mount water resistant type auto switches, note that the rotary actuator itself is not of water resistant construction.

 * Lead wire length symbols: $0.5 \mathrm{~m}$. Nil (Example) M9NW

 | $1 \mathrm{~m} \ldots \ldots$. | M |
 | :--- | :--- |
 | $3 \mathrm{~m} \ldots .$. | M9NWM |
 | $5 \mathrm{~m} \ldots \ldots$ | Z |

[^2]: * The AU dimension is not the dimension at the time of shipment, since its dimension is for adjustment parts.

 S: Upper 90°, Lower 180°
 ** In addition to Rc 1/8, G 1/8, NPT 1/ 8, NPTF $1 / 8$ are also available.

