# Valve Mounted Cylinder Double Acting，Single Rod CVJ5 Series <br> ø10，ø16 

How to Order


Applicable Auto Switches／Refer to pages 941 to 1067 for further information on auto switches．

| Type | Special function | Electrical entry |  | Wiring （Output） | Load voltage |  |  | Auto switch model |  |  |  | Lead wire length（m） |  |  |  |  | Pre－wired connector | Applicable load |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | DC |  | AC | Band mounting |  | Rail mounting |  | $\begin{array}{\|c\|} \hline 0.5 \\ \text { (Nil) } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 1 \\ (M) \end{array}$ | $\begin{gathered} \hline 3 \\ \text { (L) } \end{gathered}$ | $\begin{array}{\|c} 5 \\ (Z) \\ \hline \end{array}$ | None$(\mathrm{N})$ |  |  |  |
|  |  |  |  |  |  |  | Perpendicular | In－line | Perpendicular | In－line |  |  |  |  |  |  |  |  |
|  |  | Grommet | 3－wire（NPN） |  | 24 V | $\begin{aligned} & 5 \mathrm{~V}, \\ & 12 \mathrm{~V} \end{aligned}$ |  | V | M9NV | M9N | － | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | IC circuit | Relay， PLC |
|  |  |  |  |  | － |  | － |  | F7NV | F79 | － | － | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ |  |  |  |  |  |
|  |  |  |  | 3－wire（PNP） |  |  | M9PV |  | M9P | － | － | － | － | － | $\bigcirc$ | － | $\bigcirc$ |  |  |  |  |
|  |  |  |  | 3－wire（PNP） |  |  | － |  | － | F7PV | F7P | － | － | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ |  |  |  |  |
|  |  |  |  | 2－wire |  | 12 V | M9BV |  | M9B | － | － | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | － |  |  |
|  |  |  |  |  |  |  | － |  | － | F7BV | J79 | － | － | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ |  |  |  |
|  |  | Connector |  |  |  |  | － |  | H7C | J79C | － | － | － | $\bigcirc$ | － | － | － |  |  |  |
|  | Diagnostic indication （2－color indicator） | Grommet | Yes |  |  | $\begin{aligned} & 5 \mathrm{~V}, \\ & 12 \mathrm{~V} \end{aligned}$ | M9NWV |  | M9NW | － | － | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | IC circuit |  |  |
|  |  |  |  | 3－wire（NPN） |  |  | － |  | － | F7NWV | F79W | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ |  |  |  |
|  |  |  |  |  |  |  | M9PWV |  | M9PW | － | － | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ |  |  |  |
|  |  |  |  | wire（PNP） |  |  | － |  | － | － | F7PW | － | － | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ |  |  |  |
|  |  |  |  | 2－wire |  | 12 V | M9BWV |  | M9BW | － | － | － | － | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | － |  |  |
|  |  |  |  |  |  |  | － |  | － | F7BWV | J79W | － | － | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ |  |  |  |
|  |  |  |  | 3－wire（NPN） |  | 5 V ， | M9NAV＊1 |  | M9NA＊1 | － | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | IC circuit |  |  |
|  | Water resistant （2－color indicator） |  |  | 3－wire（PNP） |  | 12 V | M9PAV＊${ }^{\text {＊}}$ |  | M9PA＊1 | － | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ |  |  |  |
|  |  |  |  | 2－wire |  | 12 V | M9BAV＊1 |  | M9BA＊1 | － | － | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | － | $\bigcirc$ | － |  |  |
|  | With diagnostic outpu <br> （2－color indicator） |  |  | 4－wire（NPN） |  | $5 \mathrm{~V}, 12 \mathrm{~V}$ | － |  | H7NF | － | F79F | － | － | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | IC circuit |  |  |
|  |  | Grommet | Yes | 3．wie（NPV equivalati） |  | － | 5 V | － | A96V | A96 | － | A76H | $\bigcirc$ | － | $\bigcirc$ | － | － | － | IC circuit | － |
|  |  |  |  | 2－wire | － |  | 200 V | － | － | A72 | A72H | － | － | $\bigcirc$ | － | － | － | － | Relay， PLC |  |
|  |  |  |  |  | 24 V | 12 V | 100 V | A93V＊2 | A93 | A73 | A73H | － | $\bigcirc$ | $\bigcirc$ | － | － | － |  |  |  |
|  |  |  | No |  |  |  | 100 V or less | A90V | A90 | A80 | A80H | － | － | $\bigcirc$ | － | － | － | IC circuit |  |  |
|  |  | Connector | Yes |  |  |  | － | － | C73C | A73C | － | － | － | $\bigcirc$ | － | $\bigcirc$ | － | － |  |  |
|  |  |  | No |  |  |  | 24 V or less | － | C80C | A80C | － | － | － | $\bigcirc$ | － | $\bigcirc$ | － | IC circuit |  |  |
|  | Diagnostic indication （2－color indicator） | Grommet | Yes |  |  | － | － | － | － | A79W | － | $\bigcirc$ | － | $\bigcirc$ | － | － | － | － |  |  |

[^0]＊Solid state auto switches marked with＂$\bigcirc$＂are produced upon receipt of order．
＊D－A9■／M9■／A7ロロ／A80■／F7ロロ／J7ロロ auto switches are shipped together（not assembled）．（For D－A9■／M9■，only auto switch mounting brackets are assembled before shipped．）
＊D－C7ロロ／C80 $/ \mathrm{H} 7 \square \square$ auto switches are assembled at the time of shipment．
＊Order auto switch mounting brackets separately when $\mathrm{D}-\mathrm{A} 9 \square(\mathrm{~V}) / \mathrm{M} 9 \square(\mathrm{~V}) / \mathrm{M} 9 \square \mathrm{~W}(\mathrm{~V}) / \mathrm{M} 9 \square \mathrm{~A}(\mathrm{~V})$ are mounted on $\varnothing 10$ and $\varnothing 16$ of the rail mounting type．Refer to page 759 for details．
＊1 Water resistant type auto switches can be mounted on the above models，but in such case SMC cannot guarantee water resistance．Consult with SMC regarding water resistant types with the above model numbers．
＊2 1 m type lead wire is only applicable to D－A93．
750

## Valve Mounted Cylinder Double Acting, Single Rod <br> CVJ5 Series

Operation type can be changed to rod extended when energized or rod retracted when energized.
An auto switch cylinder with the switch installed can also be manufactured.


Symbol
Double acting/Single rod, Rubber bumper


Specifications

| Bore size (mm) | $\varnothing 10$ | $\varnothing 16$ |
| :---: | :---: | :---: |
| Action | Double acting, Single rod |  |
| Fluid | Air |  |
| Proof pressure | 1.05 MPa |  |
| Maximum operating pressure | 0.7 MPa |  |
| Minimum operating pressure | 0.15 MPa |  |
| Ambient and fluid temperature | -10 to $50^{\circ} \mathrm{C}$ (No freezing) |  |
| Cushion | Rubber bumper |  |
| Lubrication | Not required (Non-lube) |  |
| Stroke length tolerance | +1.00 |  |
| Port size | M5 x 0.8 |  |
| Mounting | Basic type, Axial foot type, Rod side flange type |  |
| Piston speed | 50 to $750 \mathrm{~mm} / \mathrm{s}$ | 50 to $150 \mathrm{~mm} / \mathrm{s}$ |
| Allowable kinetic energy | 0.035J | 0.090J |

Solenoid Valve Specifications

| Applicable solenoid valve model |  |  | SYJ3190 |
| :---: | :---: | :---: | :---: |
| Electrical entry |  |  | Grommet (G), L plug connector (L), M plug connector (M) |
| Coil rated voltage (V) |  | C | 24, 12, 6, 5, 3 |
|  |  | /60 Hz | 100, 110, 200, 220 |
| Effective area of valve (Cv factor) |  |  | $1.8 \mathrm{~mm}^{2}(0.1)$ |
| Allowable voltage |  |  | $\pm 10 \%$ of the rated voltage* |
| Power consumption (W) | DC | Standard | 0.35 (With indicator light: 0.4 ) |
| Apparent power (VA)* | AC | 100 V | 0.78 (With indicator light: 0.81) |
|  |  | $\begin{gathered} 110 \mathrm{~V} \\ {[115 \mathrm{~V}]} \end{gathered}$ | 0.86 (With indicator light: 0.89 ) [0.94 (With indicator light: 0.97)] |
|  |  | 200 V | 1.18 (With indicator light: 1.22) |
|  |  | $\begin{aligned} & 220 \mathrm{~V} \\ & {[230 \mathrm{~V}]} \end{aligned}$ | 1.30 (With indicator light: 1.34) [1.42 (With indicator light: 1.46)] |
| Surge voltage suppressor |  |  | Diode (Varistor for the non-polar type) |
| Indicator light |  |  | LED |

* 110 VAC and 115 VAC types and 220 VAC and 230 VAC types are common respectively.
* For 115 VAC and 230 VAC , allowable voltage fluctuation is -15 to $+5 \%$ of the rated voltage.
* For S and Z , the voltage will drop due to the internal circuit. Allowable voltage fluctuation must be in the range below.
Types S, Z 24 VDC: -7 to $10 \%, 12$ VDC: -4 to $10 \%$

Standard Stroke
CVID
Standard Stroke

| Bore size $(\mathrm{mm})$ | Standard stroke |
| :---: | :---: |
| 10 | $15,30,45,60$ |
| 16 | $15,30,45,60$ |

* If types for more than the strokes indicated in the table above ( 61 strokes) are required, please ask SMC.

Mounting Type and Accessory/For details, refer to page 755.

| Mounting |  | Basic type | Axial foot type | Rod side flange type |
| :---: | :---: | :---: | :---: | :---: |
|  | Mounting nut | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | Rod end nut | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| $\begin{aligned} & \text { 듬 } \\ & \text { 흥 } \end{aligned}$ | Single knuckle joint | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | Double knuckle joint (With pin)* | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |

* Knuckle pin and retaining ring are shipped - $\cdots$ Supplied with the product. together.

$$
\bigcirc \text { Please order separately. }
$$

Weight
(g)

| Bore size (mm) |  | $\mathbf{1 0}$ | $\mathbf{1 6}$ |
| :--- | :---: | :---: | :---: |
| Basic weight* | 71 | 99 |  |
| Additional weight per each 15 mm of stroke | 6.5 | 9.5 |  |
| Mounting <br> bracket weight | Axial foot type | 7 | 19 |
|  | Rod side flange type | 5 | 13 |

* Mounting nut and rod end nut are included in the basic weight.

Calculation: (Example) CVJ5L10-45-1G

> - Basic weight................71 (g) (ø10)
> - Additional weight .......6.5/15 stroke
> - Cylinder stroket .........45 stroke
> - Weight of bracket $\ldots \ldots .7(\mathrm{~g})$ (Axial foot type)
> $71+6.5 / 15 \times 45+7=97.5 \mathrm{~g}$

## Mounting Bracket Part No.

| Mounting bracket | Bore size (mm) |  |
| :--- | :---: | :---: |
|  | $\mathbf{1 0}$ | $\mathbf{1 6}$ |
| Foot | CJ-LO10B | CJ-L016B |
| Flange | CJ-F010B | CJ-F016B |

## Accessory (Option)

Refer to page 755 for part numbers and dimensions of the single knuckle joint, double knuckle joint, knuckle pin, mounting nut, and rod end nut.

## Changing between Rod Exxended when Energized and Rod Retracied when Energized

## <Step>

This procedure is for changing the rod extended when energized to the rod retracted when energized.

1. Using a screwdriver, loosen the two small round head screws, and remove the plate and the solenoid valve. At this time, instead of removing the plate and the solenoid valve separately, remove them together, with the round head screws remaining inserted.

2. Turn the pipe gasket at $180^{\circ}$ and mount, showing the letter " $B$ ".

3. Install the solenoid valve and the plate, and tighten the small round head screws, with a screw driver. After tightening, press the manual button on the solenoid valve, check for any air leaks, and verify the operating conditions. When the cylinder is viewed from above, the position of the gasket is as shown in the figure below.


## Manual Operation

Manual operation is possible by pushing the manual button indicated with the arrow.


## Specific Product Precautions

「Be sure to read this before handling the products. Refer to I I back page 50 for Safety Instructions, pages 3 to 12 for I I Actuator and Auto Switch Precautions, and 3/4/5 Port I I Solenoid Valve Precautions in Best Pneumatics No. 1-1. I
$\qquad$

## Handling Precautions

## © Caution

1. During installation, secure the rod cover and tighten the mounting nut or the rod cover body by applying an appropriate tightening force.
If the head cover is secured or the head cover is tightened, the cover may rotate, leading to the deviation.
2. Tighten the mounting screws with an appropriate tightening torque within the range given below.
ø6: 2.1 to $2.5 \mathrm{~N} \cdot \mathrm{~m}, ~ \varnothing 10: 5.9$ to $6.4 \mathrm{~N} \cdot \mathrm{~m}$
$ø 16: 10.8$ to $11.8 \mathrm{~N} \cdot \mathrm{~m}$
3. To remove and install the retaining ring for the knuckle pin or the clevis pin, use an appropriate pair of pliers (tool for installing a type $\mathbf{C}$ retaining ring).
In particular, use a pair of ultra-mini pliers for removing and installing the retaining rings on the $\varnothing 10$ cylinder.
4. For the auto switch mounting rail, do not remove the pre-equipped rail.
Since the mounting thread is drilled through inside the cylinder, it may cause air leakage.

## © Warning

## 1. Confirm the specifications.

Products in this catalog are designed to be used for compressed air systems. If not operated within the designated pressure or temperature, it may damage the products or cause malfunction. (Refer to specifications.)
2. Energizing continuously for a long period of time

When the valve is continuously energized for a long period of time, the performance may deteriorate, shorten the service life or effect peripheral equipment adversely since temperature rises when coils generate heat.

## Valve Mounted Cylinder Double Acting, Single Rod <br> CVJ5 Series

Construction/(Not able to disassemble.)


Component Parts

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1}$ | Rod cover | Aluminum alloy | Clear anodized |
| $\mathbf{2}$ | Head cover | Aluminum alloy | Clear anodized |
| $\mathbf{3}$ | Cylinder tube | Stainless steel |  |
| $\mathbf{4}$ | Piston rod | Stainless steel |  |
| $\mathbf{5}$ | Piston | Aluminum alloy | Chromated |
| $\mathbf{6}$ | Mounting nut | Brass | Nickel plated |
| $\mathbf{7}$ | Rod end nut | Rolled steel | Zinc chromated |
| $\mathbf{8}$ | Bumper | Urethane |  |
| $\mathbf{9}$ | Steel ball | Carbon steel |  |
| $\mathbf{1 0}$ | Stud | Brass | Electroless nickel plated |
| $\mathbf{1 1}$ | Phillips screw | Rolled steel | Zinc chromated |


| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1 2}$ | Plate | Zinc alloy |  |
| $\mathbf{1 3}$ | Solenoid valve | - | * Refer to the note below. |
| $\mathbf{1 4}$ | Pipe | Aluminum alloy | Clear anodized |
| $\mathbf{1 5}$ | Piston seal | NBR |  |
| $\mathbf{1 6}$ | Rod seal | NBR |  |
| $\mathbf{1 7}$ | Tube gasket | NBR |  |
| $\mathbf{1 8}$ | Piston gasket | NBR |  |
| $\mathbf{1 9}$ | Gasket | NBR + Stainless steel 304 |  |
| $\mathbf{2 0}$ | Pipe gasket | NBR |  |
| $\mathbf{2 1}$ | Plate gasket | NBR |  |

CVID

* How to order solenoid valves
SYJ3190 - $\square \square$
Rated voltage - Light/surge voltage suppressor
- Electrical entry

Basic Type (B)

## CVJ5


*[ ]: Denotes the values of AC.

| Bore size | A | B | C | D | F | H | HX | MM | NA | NB | ND | NN | S | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 15 | 12 | 14 | 4 | 8 | 28 | 35 | M4 $\times 0.7$ | 12.5 | 9.5 | $8{ }_{-0.022}^{0}$ | M8 $\times 1$ | 46 | 90 [91] |
| 16 | 15 | 18 | 20 | 5 | 8 | 28 | 41 | M5 $\times 0.8$ | 12.5 | 9.5 | $10{ }_{-0.022}^{0}$ | M10 $\times 1$ | 47 | 91 [92] |

## CVJ5 Series

Axial Foot Type (L)

## CVJ5L



Rod End Nut

| Bore size $(\mathrm{mm})$ | $\mathbf{B}_{1}$ | $\mathbf{H}_{\mathbf{1}}$ |
| :---: | :---: | :---: |
| $\mathbf{1 0}$ | 7 | 3.2 |
| $\mathbf{1 6}$ | 8 | 4 |

*[ ]: Denotes the values of AC.

| Bore size | A | B | C | D | F | H | LA | LC | LH | LT | LX | LY | LZ | MM | NA | NB | NN | S | X | Y | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 0}$ | 15 | 12 | 14 | 4 | 8 | 28 | 38 | 4.5 | 9 | 1.6 | 24 | 16.5 | 32 | M $4 \times 0.7$ | 12.5 | 9.5 | M $8 \times 1$ | 46 | 5 | 7 | $90[91]$ |
| $\mathbf{1 6}$ | 15 | 18 | 20 | 5 | 8 | 28 | 46 | 5.5 | 14 | 2.3 | 33 | 25 | 42 | M $5 \times 0.8$ | 12.5 | 9.5 | M10 $\times 1$ | 47 | 6 | 9 | $91[92]$ |

Rod Side Flange Type (F)

## CVJ5F



Rod End Nut

| Bore size $(\mathrm{mm})$ | $\mathbf{B}_{1}$ | $\mathbf{H}_{1}$ |
| :---: | :---: | :---: |
| $\mathbf{1 0}$ | 7 | 3.2 |
| $\mathbf{1 6}$ | 8 | 4 |

*[ ]: Denotes the values of AC.

| Bore size | A | B | C | D | F | FC | FT | FX | FY | FZ | H | HX | MM | NA | NB | NN | S | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 15 | 12 | 14 | 4 | 8 | 4.5 | 1.6 | 24 | 14 | 32 | 28 | 35 | M4 x 0.7 | 12.5 | 9.5 | M $8 \times 1$ | 46 | 90 [91] |
| 16 | 15 | 18 | 20 | 5 | 8 | 5.5 | 2.3 | 33 | 20 | 42 | 28 | 41 | M5 $\times 0.8$ | 12.5 | 9.5 | M10 $\times 1$ | 47 | 91 [92] |

## CVJ5 Series <br> Accessory Dimensions

## Single Knuckle Joint



Material: Rolled steel

| Part no. | Applicable bore size | $\mathrm{A}_{1}$ | $L_{1}$ | MM | ND ${ }^{\text {H10 }}$ | NX | R1 | $\mathbf{U}_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I-J010B | 10 | 8 | 21 | M $4 \times 0.7$ | $3.3{ }^{+0.048}$ | 3.1 | 8 | 9 |
| I-J016B | 16 | 8 | 25 | M5 $\times 0.8$ | $5{ }_{0}^{+0.048}$ | 6.4 | 12 | 14 |

Double Knuckle Joint
(mm)


| Material: Rolled steel |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Part no. | Applicable bore size | $\mathrm{A}_{1}$ | L | $L_{1}$ | MM | ND ${ }_{\text {d9 }}$ | ND ${ }_{\text {н1о }}$ | NX | R1 | $\mathbf{U}_{1}$ |
| Y-J010B | 10 | 8 | 16.2 | 21 | M $4 \times 0.7$ | ${ }_{3.3}^{-0.0030}$ | $3.3{ }_{0}^{+0.048}$ | 3.2 | 8 | 10 |
| Y-J016B | 16 | 11 | 16.6 | 21 | M5 $\times 0.8$ | $5_{-0.060}^{-0.030}$ | $5_{0}^{+0.048}$ | 6.5 | 12 | 10 |

* Knuckle pin and retaining ring are shipped together.

Rod End Nut


| Material: Stainless steel |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Part no. | Applicable <br> bore size | $\mathbf{D d 9}$ | $\mathbf{d}$ | $\mathbf{L}$ | $\mathbf{L}_{\mathbf{1}}$ | $\mathbf{m}$ | $\mathbf{t}$ | Applicable <br> retaining ring |
| IY-J010 | $\mathbf{1 0}$ | $3.3_{-0.060}^{-0.030}$ | 3 | 16.2 | 12.2 | 1.7 | 0.3 | Type C 3.2 |
| IY-J015 | $\mathbf{1 6}$ | $5_{-0.060}^{-0.030}$ | 4.8 | 16.6 | 12.2 | 1.5 | 0.7 | Type C 5 |

* Retaining rings are included.

Mounting Nut
(mm)


Material: Brass

| Part no. | Applicable <br> bore size | B | C | d | H |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SNJ-010B | $\mathbf{1 0}$ | 11 | 12.7 | $\mathrm{M} 8 \times 1.0$ | 4 |
| SNJ-016B | $\mathbf{1 6}$ | 14 | 16.2 | $\mathrm{M} 10 \times 1.0$ | 4 |



| Material: Iron |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Part no. | Applicable <br> bore size | B | C | d | H |
| NTJ-010A | $\mathbf{1 0}$ | 7 | 8.1 | $\mathrm{M} 4 \times 0.7$ | 3.2 |
| NTJ-015A | $\mathbf{1 6}$ | 8 | 9.2 | $\mathrm{M} 5 \times 0.8$ | 4 |

## CVJ5 Series <br> Auto Switch Mounting 1

## Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

Reed auto switch
<Band mounting>
D-A9 $\square$

( ): For D-A96 type
$A$ and $B$ are the dimensions from the end of the head cover/rod cover to the end of the auto switch.
D-C7ロ/C80


D-C73C $\square / C 80 C$

<Rail mounting>
D-A9■


D-A9■V


## D-A7 $\square / A 80$



D-A7■H/A80H


D-A73C/A80C


## D-A79W



## Auto Switch Proper Mounting Position（Detection at Stroke End）and Its Mounting Height

Solid state auto switch
＜Band mounting＞
D－M9 $\square$
D－M9 $\square$ W


D－H7 $\square$
D－H7■W
D－H7NF


## D－H7C


＜Rail mounting＞
D－M9 $\square$
D－M9 $\square \mathbf{W}$


D－M9 $\square V$
D－M9 $\square$ WV


D－F7口／J79
D－F7 $\square$ W／J79W
D－F79F



D－F7 $\square$ V／F7 $\square W V$

（ ）：For D－F7 $\square W V$ type

## D－J79C


（mm）

Auto Switch Proper Mounting Position

|  | Band mounting |  |  |  |  |  |  |  | Rail mounting |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \text { V } \end{aligned}$ |  | $\begin{aligned} & \text { D-M9 } \\ & \text { D-M9 } \square \mathbf{V} \\ & \text { D-M9 } \mathbf{W} \\ & \text { D-M9 } \square \mathbf{W V} \\ & \text { D-M9 A } \\ & \text { D-M9 AW } \end{aligned}$ |  | $\begin{aligned} & \text { D-C7 } \\ & \text { D-C80 } \\ & \text { D-C73C } \\ & \text { D-C80C } \end{aligned}$ |  | $\begin{aligned} & \text { D-H7口 } \\ & \text { D-H7C } \\ & \text { D-H7NF } \\ & \text { D-H7■W } \end{aligned}$ |  | $\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \text { V } \end{aligned}$ |  | $\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \mathbf{V} \\ & \text { D-M9 } \square \mathbf{W} \\ & \text { D-M9 } \square \mathbf{W V} \\ & \text { D-M9 } \square \mathbf{A V} \end{aligned}$ |  | $\begin{aligned} & \text { D-A7■ } \\ & \text { D-A80 } \end{aligned}$ |  | D－A7■H／A8OH <br> D－A73C／A80C <br> D－F7ㅁ／J79 <br> D－F7DW／J79W <br> D－F7口V／F7DWV <br> D－F79F／J79C |  | D－F7NT |  | D－A79W |  |
|  | A | B | A | B | A | B | A | B | A | B | A | B | A | B | A | B | A | B | A | B |
| 10 | 2 | 2 | 6 | 6 | 2.5 | 2.5 | 1.5 | 1.5 | 0.5 | 0.5 | 4.5 | 4.5 | 3 | 3 | 3.5 | 3.5 | 8.5 | 8.5 | 0.5 | 0.5 |
| 16 | 2.5 | 2.5 | 6.5 | 6.5 | 3 | 3 | 2 | 2 | 1 | 1 | 4 | 4 | 3.5 | 3.5 | 4 | 4 | 9 | 9 | 1 | 1 |

Auto Switch Mounting Height

|  | Band mounting |  |  |  |  | Rail mounting |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \hline \text { D-A9 } \square \\ & \text { D-M9 } \square \\ & \text { D-M9 } \quad \text { W } \\ & \text { D-M9 } \square \text { A } \end{aligned}$ | $\begin{aligned} & \text { D-M9 } \square V \\ & \text { D-M9 } W \text { WV } \\ & \text { D-M9■AV } \\ & \text { D-A9■V } \end{aligned}$ | D－C7口／C80 <br> D－H7D／H7DW <br> D－H7NF | $\begin{aligned} & \text { D-C73C } \\ & \text { D-C80C } \end{aligned}$ | D－H7C |  | $\begin{aligned} & \text { D-A7■ } \\ & \text { D-A80 } \end{aligned}$ | D－A7DH／A80H <br> D－F7口／J79 <br> D－F7CWIJ79W <br> D－F79F | $\begin{aligned} & \text { D-A73C } \\ & \text { D-A80C } \end{aligned}$ | $\begin{aligned} & \text { D-F7 } \square \mathbf{V} \\ & \text { D-F7 } \square \mathbf{W V} \end{aligned}$ | D－J79C | D－A79W |
|  | Hs |
| 10 | 17 | 18 | 17 | 19.5 | 20 | 17.5 | 16.5 | 17.5 | 23.5 | 20 | 23 | 19 |
| 16 | 20.5 | 21 | 20.5 | 23 | 23.5 | 21 | 19.5 | 20.5 | 26.5 | 23 | 26 | 22 |

# CVJ5 Series <br> Auto Switch Mounting 2 

Minimum Auto Switch Mounting Stroke

| Auto switch mounting | Auto switch model | No. of auto switches mounted |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 |  | n ( n : No. of auto switches) |  |
|  |  |  | Different surfaces | Same surface | Different surfaces | Same surface |
| Band mounting | $\begin{aligned} & \text { D-M9 } \square / \text { M9 } \square \mathbf{W} \\ & \text { D-A9 } \square / \text { M9 } \square \mathbf{A} \end{aligned}$ | 10 | $15^{\text {Note 1) }}$ | 45 Note 1) | $\begin{gathered} 15+35 \frac{(n-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 4)} \end{gathered}$ | $\begin{gathered} 45+15(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
|  | D-M9 $\square$ V | 5 | $15^{\text {Note }}$ 1) | 35 | $\begin{gathered} 15+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 4)} \end{gathered}$ | $\begin{gathered} 35+25(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
|  | $\begin{aligned} & \text { D-M9 } \square W V \\ & \text { D-M9 } \square \text { AV } \end{aligned}$ | 10 | $15^{\text {Note 1) }}$ | 35 | $\begin{gathered} 15+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 4)} \end{gathered}$ | $\begin{gathered} 35+25(n-2) \\ (\mathrm{n}=2,3,4,5 \cdots) \end{gathered}$ |
|  | D-A9 $\square$ V | 5 | 10 | 35 | $\begin{gathered} 10+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 4)} \end{gathered}$ | $\begin{gathered} 35+25(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
|  | $\begin{aligned} & \text { D-C7 } \square \\ & \text { D-C80 } \end{aligned}$ | 10 | 15 | 50 | $\begin{gathered} 15+40 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 4)} \end{gathered}$ | $\begin{gathered} 50+20(n-2) \\ (\mathrm{n}=2,3,4,5 \cdots) \end{gathered}$ |
|  | $\begin{aligned} & \text { D-H7 } \square \\ & \text { D-H7 } \square \mathbf{W} \\ & \text { D-H7NF } \end{aligned}$ | 10 | 15 | 60 | $\begin{gathered} 15+45 \frac{(n-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 4)} \end{gathered}$ | $\begin{gathered} 60+22.5(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
|  | $\begin{aligned} & \text { D-C73C } \\ & \text { D-C80C } \\ & \text { D-H7C } \end{aligned}$ | 10 | 15 | $65^{\text {Note 2) }}$ | $\begin{gathered} 15+50 \frac{(n-2)}{2} \\ (n=2,4,6 \cdots)^{\text {Note } 4)} \end{gathered}$ | $\begin{gathered} 50+27.5(n-2) \\ (\mathrm{n}=2,3,4,5 \cdots) \end{gathered}$ |
| Rail mounting | D-M9 $\square$ V | 5 | - | 5 | - | $\begin{gathered} 10+10(\mathrm{n}-2) \\ (\mathrm{n}=4,6 \cdots)^{\text {Note } 5)} \\ \hline \end{gathered}$ |
|  | D-A9 $\square$ V | 5 | - | 10 | - | $\begin{gathered} 10+15(\mathrm{n}-2) \\ \left.(\mathrm{n}=4,6 \ldots)^{\text {Note }} 5\right) \\ \hline \end{gathered}$ |
|  | $\begin{aligned} & \text { D-M9 } \square \\ & \text { D-A9 } \end{aligned}$ | 10 | - | 10 | - | $\begin{gathered} 15+15(\mathrm{n}-2) \\ (\mathrm{n}=4,6 \cdots)^{\text {Note } 5)} \\ \hline \end{gathered}$ |
|  | $\begin{aligned} & \text { D-M9 } \square W V \\ & \text { D-M9 } \square \text { AV } \\ & \hline \end{aligned}$ | 10 | - | 15 | - | $\begin{gathered} 15+15(\mathrm{n}-2) \\ (\mathrm{n}=4,6 \cdots)^{\text {Note } 5)} \\ \hline \end{gathered}$ |
|  | D-M9 $\square$ W | 15 | - | 15 | - | $\begin{gathered} 20+15(\mathrm{n}-2) \\ (\mathrm{n}=4,6 \cdots)^{\text {Note } 5)} \\ \hline \end{gathered}$ |
|  | D-M9 $\square$ A | 15 | - | 20 | - | $\begin{gathered} 20+15(\mathrm{n}-2) \\ (\mathrm{n}=4,6 \cdots)^{\text {Note } 5)} \\ \hline \end{gathered}$ |
|  | $\begin{aligned} & \text { D-A7 } \square / A 80 \\ & \text { D-A7 } \square \text { H/A80H } \\ & \text { D-A73C/A80C } \end{aligned}$ | 5 | - | 10 | - | $\begin{gathered} 15+10(n-2) \\ \left.(\mathrm{n}=4,6 \cdots)^{\text {Note }} 5\right) \end{gathered}$ |
|  | $\begin{aligned} & \text { D-A7 } \square \mathrm{H} \\ & \text { D-A80H } \\ & \hline \end{aligned}$ | 5 | - | 10 | - | $\begin{gathered} 15+15(\mathrm{n}-2) \\ (\mathrm{n}=4,6 \cdots)^{\text {Note } 5)} \\ \hline \end{gathered}$ |
|  | D-A79W | 10 | - | 15 | - | $\begin{gathered} 10+15(n-2) \\ (\mathrm{n}=4,6 \cdots)^{\text {Note } 5)} \\ \hline \end{gathered}$ |
|  | $\begin{aligned} & \hline \text { D-F7口 } \\ & \text { D-J79 } \end{aligned}$ | 5 | - | 5 | - | $\begin{gathered} 15+15(\mathrm{n}-2) \\ (\mathrm{n}=4,6 \cdots)^{\text {Note } 5)} \\ \hline \end{gathered}$ |
|  | $\begin{aligned} & \text { D-F7 } \square V \\ & \text { D-J79C } \\ & \hline \end{aligned}$ | 5 | - | 5 | - | $\begin{gathered} 10+10(\mathrm{n}-2) \\ (\mathrm{n}=4,6 \cdots)^{\text {Note } 5)} \\ \hline \end{gathered}$ |
|  | D-F7 $\square$ W/J79W <br> D-F79F/F7NT | 10 | - | 15 | - | $\begin{gathered} 15+20(n-2) \\ (n=4,6 \cdots)^{\text {Note } 5)} \\ \hline \end{gathered}$ |
|  | D-F7 $\square \mathbf{W V}$ | 10 | - | 15 | - | $\begin{gathered} 10+15(\mathrm{n}-2) \\ (\mathrm{n}=4,6 \cdots)^{\text {Note } 5)} \\ \hline \end{gathered}$ |

Note 4) When " $n$ " is an odd number, an even number that is one larger than this odd number is used for the calculation. Note 5) When " $n$ " is an odd number, an even number that is one larger than this odd number is used for the calculation. However, the minimum even number is 4 . So, 4 is used for the calculation when " $n$ " is 1 to 3 .
Note 1) Auto switch mounting (The adjustment as shown in the figures below is required with the following stroke ranges.)

| Auto switch model | With 2 auto switches |  |
| :---: | :---: | :---: |
|  | Different surfaces ${ }^{\text {Note 1) }}$ | Same surface ${ }^{\text {Note 1) }}$ |
|  | The proper auto switch mounting position is 5.5 mm inward from the switch holder edge. | The auto switch is mounted by slightly displacing it in a direction (cylinder tube circumferential exterior) so that the auto switch and lead wire do not interfere with each other. |
| D-A93 | - | 45 to less than 50 stroke |
| $\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \quad \text { W } \end{aligned}$ | 15 to less than 20 stroke | 45 to less than 55 stroke |

Note 2) For the CDVJ5 series, note that 65 strokes cannot be manufactured.
Note 3) The dimension stated in ( ) shows the minimum stroke for the auto switch mounting when the auto switch does not project from the end surface of the cylinder body and hinder the lead wire bending space. (Refer to the figure below.)
These contents apply to the rail mounting with one or two auto switches.


## Operating Range

| Auto switch model |  | Bore size |  |
| :---: | :---: | :---: | :---: |
|  |  | 10 | 16 |
|  | D－A9 $\square$（V） | 6 | 7 |
|  | $\begin{aligned} & \text { D-M9 } \square(\mathrm{V}) \\ & \text { D-M9 } \square \mathrm{W}(\mathrm{~V}) / \text { M9 } \square \mathrm{A}(\mathrm{~V}) \end{aligned}$ | 2.5 | 3 |
|  | D－C7■／C80／C73C／C80C | 7 | 7 |
|  | D－H7 $\square / \mathrm{H} 7 \square$ W／H7NF | 4 | 4 |
|  | D－H7C | 8 | 9 |

＊Since the operating range is provided as a guideline including hysteresis，it cannot be guaranteed（assuming approximately $\pm 30 \%$ dispersion）．It may vary substantially depending on an ambient environment．

| Auto switch model |  | Bore size |  |
| :--- | :--- | :---: | :---: |
|  |  | $\mathbf{1 0}$ | $\mathbf{1 6}$ |
|  | D－A9 $\square /$ A9 $\square$ V |  |  |$)$

## Auto Switch Mounting Bracket：Part No．

| Auto switch mounting | Auto switch model | Bore size（mm） |  |
| :---: | :---: | :---: | :---: |
|  |  | $\varnothing 10$ | $\varnothing 16$ |
| Band mounting | $\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \quad \text { V } \\ & \text { D-M9 } \quad W \\ & \text { D-M9 } \square W V \\ & \text { D-A9 } \\ & \text { D-A9 } \square V \end{aligned}$ | BJ6－010 ${ }^{\text {Note 1）}}$ | BJ6－016 ${ }^{\text {Note 1）}}$ |
|  | $\begin{aligned} & \text { D-M9 } \square \text { A } \\ & \text { D-M9 AV } \end{aligned}$ | BJ6－010S ${ }^{\text {Note 2）}}$ | BJ6－016S ${ }^{\text {Note 2）}}$ |
|  |  |  |  |
|  | $\begin{aligned} & \text { D-C7ロ/C80 } \\ & \text { D-C73C/C80C } \\ & \text { D-H7ロ/H7口W } \\ & \text { D-H7NF } \end{aligned}$ | BJ2－010 | BJ2－016 |
| Rail mounting |  | BQ2－012 ${ }^{\text {Note 5）}}$ | BQ2－012 ${ }^{\text {Note } 5)}$ |
|  | $\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square V \\ & \text { D-M9 } \\ & \text { D-MV } \\ & \text { D-M9 } \square \text { AV } \end{aligned}$ | BQ2-012 |  |

Note 1）Set part number which includes the auto switch mount－ ing band（BJ2－$\square \square \square$ ）and the holder kit（BJ5－1／Switch bracket：Transparent）．Since the switch bracket（made from nylon）are affected in an environment where alcohol，chloroform，methylamines，hydrochloric acid or sulfuric acid is splashed over，so it cannot be used． Please consult SMC regarding other chemicals．
Note 2）Set part number which includes the auto switch mount－ ing band（ $\mathrm{BJ} 2-\square \square \square \mathrm{S}$ ）and the holder kit（BJ4－ 1／Switch bracket：White）．
Note 3）For the D－M9 $\square$ A（V）type auto switch，do not install the switch bracket on the indicator light．

Besides the models listed in How to Order，the following auto switches are applicable．
Refer to pages 941 to1067 for detailed specifications．

| Auto switch type | Part no． | Electrical entry（Fetching direction） | Features |
| :---: | :---: | :---: | :---: |
| Reed | D－C73，C76 | Grommet（ln－let） | － |
|  | D－C80 |  | Without indicator light |
| Solid state | D－H7A1，H7A2，H7B |  | － |
|  | D－H7NW，H7PW，H7BW |  | Diagnostic indication（2－color） |

＊For solid state auto switches，auto switches with a pre－wired connector are also available．Refer to pages 1014 and 1015 for details．
＊Normally closed（NC＝b contact）solid state auto switches（D－F9G／F9H types）are also available．Refer to page 959 for details．

# Valve Mounted Cylinder Single Acting, Spring Return/Extend CVJ3 Series <br> ø10, ø16 

How to Order


[^1]* Solid state auto switches marked with " $\bigcirc$ " are produced upon receipt of order.
* D-A9 $\square /$ M9 $\square /$ A7 $\square \square / A 80 \square / F 7 \square \square / J 7 \square \square$ auto switches are shipped together (not assembled). (For D-A9 $\square /$ M9 $\square$, only auto switch mounting brackets are assembled before shipped.)
* D-C7 $\square \square / C 80 \square / H 7 \square \square$ auto switches are assembled at the time of shipment.
* Order auto switch mounting brackets separately when $\mathrm{D}-\mathrm{A} 9 \square(\mathrm{~V}) / \mathrm{M} 9 \square(\mathrm{~V}) / \mathrm{M} 9 \square \mathrm{~W}(\mathrm{~V}) / \mathrm{M} 9 \square \mathrm{~A}(\mathrm{~V})$ are mounted on $\varnothing 10$ and $\varnothing 16$ of the rail mounting type. Refer to page 770 for details.


## Valve Mounted Cylinder Single Acting, Spring Return/Extend <br> CVJ3 Series

Specifications

An auto switch cylinder with the switch installed can also be manufactured.


| Bore size (mm) | $\varnothing 10$ | ø16 |
| :---: | :---: | :---: |
| Action | Single acting, Single rod, Spring return/Spring extend |  |
| Fluid | Air |  |
| Proof pressure | 1.05 MPa |  |
| Maximum operating pressure | 0.7 MPa |  |
| Minimum operating pressure | 0.15 MPa |  |
| Ambient and fluid temperature | -10 to $50^{\circ} \mathrm{C}$ (No freezing) |  |
| Cushion | Rubber bumper |  |
| Lubrication | Not required (Non-lube) |  |
| Stroke length tolerance | +1.0 ${ }_{0}$ |  |
| Port size | M5 x 0.8 |  |
| Mounting | Basic type, Axial foot type, Rod side flange type |  |
| Piston speed | 50 to $750 \mathrm{~mm} / \mathrm{s}$ | 50 to $350 \mathrm{~mm} / \mathrm{s}$ |
| Allowable kinetic energy | 0.035 J | 0.090 J |

Solenoid Valve Specifications

| Applicable solenoid valve model |  |  | SYJ319 |
| :---: | :---: | :---: | :---: |
| Electrical entry |  |  | Grommet (G), L plug connector (L), M plug connector (M) |
| Coil rated voltage (V) |  | D | 24, 12, 6, 5, 3 |
|  |  | 0/60 Hz | 100, 110, 200, 220 |
| Effective area of valve (Cv factor) |  |  | $1.8 \mathrm{~mm}^{2}(0.1)$ |
| Allowable voltage |  |  | $\pm 10 \%$ of the rated voltage* |
| Power consumption (W) | DC | Standard | 0.35 (With indicator light: 0.4 ) |
| Apparent power (VA)* | AC | 100 V | 0.78 (With indicator light: 0.81) |
|  |  | $\begin{gathered} 110 \mathrm{~V} \\ {[115 \mathrm{~V}]} \end{gathered}$ | 0.86 (With indicator light: 0.89) [0.94 (With indicator light: 0.97)] |
|  |  | 200 V | 1.18 (With indicator light: 1.22) |
|  |  | $\begin{aligned} & 220 \mathrm{~V} \\ & {[230 \mathrm{~V}]} \end{aligned}$ | 1.30 (With indicator light: 1.34) <br> [1.42 (With indicator light: 1.46)] |
| Surge voltage suppressor |  |  | Diode (Varistor for the non-polar type) |
| Indicator light |  |  | LED |

* 110 VAC and 115 VAC types and 220 VAC and 230 VAC types are common respectively.
* For 115 VAC and 230 VAC , allowable voltage fluctuation is -15 to $+5 \%$ of the rated voltage.
* For S and Z, the voltage will drop due to the internal circuit. Allowable voltage fluctuation must be in the range below.
Types S, Z 24 VDC: -7 to $10 \%, 12$ VDC: -4 to $10 \%$


## Standard Stroke

(mm)

| Bore size $(\mathrm{mm})$ | Standard stroke |
| :---: | :---: |
| $\mathbf{1 0}$ | $15,30,45,60$ |
| 16 | $15,30,45,60$ |

Spring Back Force
(N)

| Bore size $(\mathrm{mm})$ | Retracted side | Extended side |
| :---: | :---: | :---: |
| $\mathbf{1 0}$ | 6.9 | 3.5 |
| $\mathbf{1 6}$ | 14.2 | 6.9 |

Mounting Type and Accessory/For details, refer to page 755 .

| Mounting |  | Basic type | Axial foot type | Rod side flange type |
| :---: | :---: | :---: | :---: | :---: |
|  | Mounting nut | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | Rod end nut | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| $\begin{aligned} & \text { 듬 } \\ & \text { 흥 } \end{aligned}$ | Single knuckle joint | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | Double knuckle joint (With pin)* | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| * Knuckle pin and retaining ring are shipped together. |  |  | Supplied Please or | th the product separately |

## Accessory

Accessories of the CVJ3 series are the same specifications as those of the CVJ5 series. Refer to page 755.

## Mounting Bracket Part No.

| Mounting <br> bracket | $\mathbf{1 0}$ | $\mathbf{1 6}$ |
| :--- | :---: | :---: |
|  | CJ-LO10B | CJ-LO16B |
| Flange | CJ-F010B | CJ-F016B |

## Accessory (Option)

Refer to page 755 for part numbers and dimensions of the single knuckle joint, double knuckle joint, knuckle pin, mounting nut, and rod end nut.

## Weight

## Spring Return

| Bore size (mm) | 10 | 16 |  |
| :--- | :--- | :---: | :---: |
|  | 15 stroke | 79 | 116 |
|  | 30 stroke | 87 | 135 |
|  | 45 stroke | 97 | 159 |
|  | 60 stroke | 109 | 184 |
| Mounting <br> bracket weight | Axial foot type | 7 | 19 |
|  | Rod side flange type | 5 | 13 |

* Mounting nut and rod end nut are included in the basic weight. Calculation: (Example) CVJ3L10-45S

> - Basic weight ...................... $97(\mathrm{~g})$ (ø10-45 stroke)
> - Mounting bracket weight .... 7 (g) (Axial foot type) $97+7=104 \mathrm{~g}$

Spring Extend
(g)

| Bore size (mm) |  |  | $\mathbf{1 0}$ |
| :--- | :--- | :---: | :---: |
| Basic weight* | 15 Stroke | 75 | 111 |
|  | 30 Stroke | 82 | 129 |
|  | 45 Stroke | 93 | 151 |
|  | 60 Stroke | 103 | 175 |
| Mounting <br> bracket weight | Axial foot type | 7 | 19 |
|  | Rod side flange type | 5 | 13 |

* Mounting nut and rod end nut are included in the basic weight.

Calculation: (Example) CVJ3L10-45T

> - Basic weight ...................... $93(\mathrm{~g})$ (ø10-45 stroke)
> - Mounting bracket weight $\ldots . .7(\mathrm{~g})$ (Axial foot type) $93+7=100 \mathrm{~g}$

## Manual Operation

Manual operation is possible by pushing the manual button indicated with the arrow.


Valve Mounted Cylinder Single Acting, Spring Return/Extend

## Construction/Component Parts

## Single acting, Spring return



## Single acting, Spring extend

Component Parts

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1}$ | Rod cover | Aluminum alloy | Clear anodized |
| $\mathbf{2}$ | Head cover | Aluminum alloy | Clear anodized |
| $\mathbf{3}$ | Cylinder tube | Stainless steel |  |
| $\mathbf{4}$ | Piston rod | Stainless steel |  |
| $\mathbf{5}$ | Piston A | Aluminum alloy | Chromated |
| 6 | Piston B | Aluminum alloy | Chromated |
| $\mathbf{7}$ | Return spring | Piano wire |  |
| $\mathbf{8}$ | Spring seat | Brass |  |
| 9 | Bumper | Urethane |  |
| $\mathbf{1 0}$ | Mounting nut | Brass | Nickel plated |
| $\mathbf{1 1}$ | Rod end nut | Rolled steel | Zinc chromated |
| $\mathbf{1 2}$ | Steel ball | Carbon steel |  |


| No. | Description | Material | Note |
| :--- | :--- | :---: | :---: |
| $\mathbf{1 3}$ | Stud | Brass | Electroless nickel plated |
| $\mathbf{1 4}$ | Phillips screw | Rolled steel | Nickel plated |
| $\mathbf{1 5}$ | Plate | Zinc alloy |  |
| $\mathbf{1 6}$ | Solenoid valve | - | Refer to "How to Order" below.* |
| $\mathbf{1 7}$ | Pipe | Aluminum alloy | Clear anodized |
| $\mathbf{1 8}$ | Piston seal | NBR |  |
| $\mathbf{1 9}$ | Rod seal | NBR |  |
| $\mathbf{2 0}$ | Tube gasket | NBR |  |
| $\mathbf{2 1}$ | Piston gasket | NBR |  |
| $\mathbf{2 2}$ | Gasket | NBR + Stainless steel 304 |  |
| $\mathbf{2 3}$ | Plate gasket | NBR |  |
| *How to Order solenoid valves |  |  |  |
| SYJ319- $\square \square$ |  |  |  |
| Rated voltage • |  |  |  |

## CVJ3 Series

## Single Acting, Spring Return/Basic Type (B)

CVJ3B Bore size Stroke S


## Single Acting, Spring Return/Axial Foot Type (L)

## CVJ3L Bore size - Stroke S


*[ ]: Denotes the values of AC.

Rod End Nut

| Bore size $(\mathrm{mm})$ | $\mathbf{B}_{1}$ | $\mathbf{H}_{1}$ |
| :---: | :---: | :---: |
| 10 | 7 | 3.2 |
| 16 | 8 | 4 |


| Bore size | A | B | C | D | F | H | LA | LB | LC | LH | LT | LX | LY | LZ | MM | NA | NB | NN | X | Y | 5 to 15 st |  | 16 to 30 st |  | 31 to 45 st |  | 46 to 60 s |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | S | Z | S | Z | S | Z | S | Z |
| 10 | 15 | 12 | 14 | 4 | 8 | 28 | 37.5 | 15 | 4.5 | 9 | 1.6 | 24 | 16.5 | 32 | M4 x 0.7 | 12.5 | 9.5 | M8 x 1 | 5 | 7 | 52.5 | 26.5 <br> $197.5]$ | 60 | (104 | 72 | ${ }_{\text {c }}^{1116}$ [117] | 84 | ${ }_{\substack{\text { 2 } \\ \text { [128] } \\ \hline 129 \\ \hline}}$ |
| 16 | 15 | 18 | 20 | 5 | 8 | 28 | 45.5 | 23 | 5.5 | 14 | 2.3 | 33 | 25 | 42 | M5 0.8 | 12.5 | 9.5 | M10 x | 6 | 9 | 52.5 | 96.5 <br> 197.51 | 61 | [105 | 73 | ${ }_{\text {[118] }}^{117}$ | 85 | $\xrightarrow{129} \begin{aligned} & 129 \\ & 130\end{aligned}$ |

Single Acting, Spring Return/Rod Side Flange Type (F)
CVJ3F Bore size Stroke S


* [ ]: Denotes the values of AC.

| Bore size | A | B | C | D | F | FC | FT | FX | FY | FZ | H | HX | MM | NA | NB | NN | 5 to 15 st |  | 16 to 30 st |  | 31 to 45 st |  | 46 to 60 st |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | S | Z | S | Z | S | Z | S | Z |
| 10 | 15 | 12 | 14 | 4 | 8 | 4.5 | 1.6 | 24 | 14 | 32 | 28 | 34.5 | M $4 \times 0.7$ | 12.5 | 9.5 | M8 x 1 | 52.5 | ¢ <br> 96.5 <br> 197.5 <br> 1 | 60 | 104 [105] | 72 | ${ }_{1116}^{117]}$ | 84 | ${ }_{\substack{128 \\[129]}}^{\text {[129 }}$ |
| 16 | 15 | 18 | 20 | 5 | 8 | 5.5 | 2.3 | 33 | 20 | 42 | 28 | 40.5 | M5 x 0.8 | 12.5 | 9.5 | M10 $\times 1$ | 52.5 | 196.5 <br> $197.5]$ | 61 | ${ }_{\text {l }}^{\text {[106] }}$ | 73 | ${ }_{\text {117 }}^{118]}$ | 85 | ${ }_{\text {l }}^{\text {129 }}$ [130] |

Rod End Nut

| Bore size $(\mathrm{mm})$ | $\mathrm{B}_{\mathbf{1}}$ | $\mathbf{H}_{\mathbf{1}}$ |
| :---: | :---: | :---: |
| $\mathbf{1 0}$ | 7 | 3.2 |
| $\mathbf{1 6}$ | 8 | 4 |

(mm)

Valve Mounted Cylinder
Single Acting, Spring Return/Extend CVJ3 Series

## Single Acting, Spring Extend/Basic Type (B)

## CVJ3B Bore size - Stroke T



* [ ]: Denotes the values of AC.

| Bore size | A | B | C | D | F | H | HX | MM | NA | NB | ND | NN | 5 to 15 st |  | 16 to 30 st |  | 31 to 45 st |  | 46 to 60 st |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  | S | Z | S | Z | S | Z | S | Z |
| 10 | 15 | 12 | 14 | 4 | 8 | 28 | 34.5 | M4 x 0.7 | 12.5 | 9.5 | $8{ }_{-0.022}^{0}$ | M8 $\times 1$ | 52.5 | ${ }^{\text {26.5 }}$ | 60 | 104 $[105]$ | 72 | ${ }_{[117}^{117}$ | 84 | 128 $[129]$ |
| 16 | 15 | 18 | 20 | 5 | 8 | 28 | 40.5 | M5 x 0.8 | 12.5 | 9.5 | $10{ }_{-0.022}^{0}$ | M10 $\times 1$ | 52.5 | 96.5 <br> $197.5]$ | 61 | ${ }_{105}^{106}$ | 73 | [117 | 85 | [129] |

Single Acting, Spring Extend/Axial Foot Type (L)
CVJ3L Bore size - Stroke T


* [ ]: Denotes the values of AC.

| Bore size | A | B | C | D | F | H | LA | LB | LC | LH | LT | LX | LY | LZ | MM | NA | NB | NN | X | Y | 5 to 15 st |  | 16 to 30 st |  | 31 to 45 st |  | 46 to 60 st |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | S | Z | S | Z | S | Z | S | Z |
| 10 | 15 | 12 | 14 | 4 | 8 | 28 | 37.5 | 15 | 4.5 | 9 | 1.6 | 24 | 16.5 | 32 | M $4 \times 0.7$ | 12.5 | 9.5 | M8 $\times 1$ | 5 | 7 | 52.5 | ${ }_{\text {¢ }}^{96.5} \times$ | 60 | [104 | 72 | ${ }_{\text {c }}^{1116}$ [117] | 84 | ${ }_{\substack{128 \\[129]}}^{\text {[129 }}$ |
| 16 | 15 | 18 | 20 | 5 | 8 | 28 | 45.5 | 23 | 5.5 | 14 | 2.3 | 33 | 25 | 42 | M5 x 0.8 | 12.5 | 9.5 | M10 $\times 1$ | 6 | 9 | 52.5 | 96.5 <br> $[97.5$ | 61 | ${ }_{\text {c }}^{105}$ [106] | 73 | ${ }_{\text {d }}^{117}$ [17] | 85 | ${ }_{\substack{129 \\[130]}}$ |

## Single Acting, Spring Extend/Rod Side Flange Type (F)

CVJ3F Bore size- Stroke T


Rod End Nut

| Bore size $(\mathrm{mm})$ | $\mathbf{B}_{1}$ | $\mathbf{H}_{1}$ |
| :---: | :---: | :---: |
| 10 | 7 | 3.2 |
| 16 | 8 | 4 |

* [ ]: Denotes the values of AC.

| Bore size | A | B | C | D | F | FC | FT | FX | FY | FZ | H | HX | MM | NA | NB | NN | 5 to 15 st |  | 16 to 30 st |  | 31 to 45 st |  | 46 to 60 st |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | S | Z | S | Z | S | Z | S | Z |
| 10 | 15 | 12 | 14 | 4 | 8 | 4.5 | 1.6 | 24 | 14 | 32 | 28 | 34.5 | M4 x 0.7 | 12.5 | 9.5 | M8 x 1 | 52.5 | ${ }_{\text {c }}^{\text {26.5 }}$ | 60 | [104 | 72 | ${ }_{\text {¢ }}^{1116}$ | 84 | ${ }_{\substack{128 \\[129]}}$ |
| 16 | 15 | 18 | 20 | 5 | 8 | 5.5 | 2.3 | 33 | 20 | 42 | 28 | 40.5 | M5 x 0.8 | 12.5 | 9.5 | M10 $\times 1$ | 52.5 | ${ }_{\text {197.5] }}$ | 61 | ${ }_{[105}^{105}$ | 73 | ${ }_{\text {[118] }}^{117}$ | 85 | ${ }_{\text {[130] }}^{129}$ |

## CVJ3 Series <br> Auto Switch Mounting 1

## Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

Reed auto switch
<Band mounting>
D-A9 $\square$

( ) : For D-A96 type
$A$ and $B$ are the dimensions from the end of the head cover/rod cover to the end of the auto switch.
D-C7■/C80


## D-C73C $\square / C 80 C$


<Rail mounting>
D-A9■

( ): For D-A93 type
D-A9 $\square \mathbf{V}$


D-A7 $\square / A 80$


## D-A7■H/A80H



## D-A73C/A80C



## D-A79W



## Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

Solid state auto switch
<Band mounting>
D-M9 $\square$
D-M9 $\square$ W


D-H7 $\square$
D-H7 $\square$ W


D-H7C

<Rail mounting>
D-M9 $\square$
D-M9 $\square$ W


D-M9 $\square$ V
D-M9 $\square \mathbf{W V}$


D-F7 $\square / J 79$
D-F7 $\square$ W/J79W
D-F79F


D-F7 $\square$ V/F7 $\square W V$


D-J79C


## CVJ3 Series <br> Auto Switch Mounting 2

Auto Switch Proper Mounting Position（Detection at Stroke End） and Its Mounting Height：Single Acting，Spring Return（S）／Spring Extend（T）

Auto Switch Proper Mounting Position／Spring Return（S）

| Auto switch model |  | $\begin{gathered} \hline \text { Bore size } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | Dimension A |  |  |  | B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 10 to $15^{\text {st }}$ | 16 to $30^{\text {st }}$ | 31 to $45^{\text {st }}$ | 46 to $60^{\text {st }}$ |  |
|  | D－A9 $\square$（V） |  | 10 | 8.5 | 16 | 28 | 40 | 2 |
|  |  | 16 | 8 | 16.5 | 28.5 | 40.5 | 2.5 |
|  | $\begin{aligned} & \text { D-M9 } \square(\mathrm{V}) \\ & \text { D-M9 } \square \mathrm{W}(\mathrm{~V}) \\ & \text { D-M9 } \square \mathrm{A}(\mathrm{~V}) \end{aligned}$ | 10 | 12.5 | 20 | 32 | 44 | 6 |
|  |  | 16 | 12 | 20.5 | 32.5 | 44.5 | 6.5 |
|  | $\begin{aligned} & \text { D-C7口/C80 } \\ & \text { D-C73C/C80C } \end{aligned}$ | 10 | 9 | 16.5 | 28.5 | 40.5 | 2.5 |
|  |  | 16 | 8.5 | 17 | 29 | 41 | 3 |
|  | $\begin{aligned} & \text { D-H7口/H7C } \\ & \text { D-H7口W } \\ & \text { D-H7NF } \\ & \hline \end{aligned}$ | 10 | 8 | 15.5 | 27.5 | 39.5 | 1.5 |
|  |  | 16 | 7.5 | 16 | 28 | 40 | 2 |
|  | $\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \text { V } \end{aligned}$ | 10 | 7 | 14.5 | 26.5 | 38.5 | 0.5 |
|  |  | 16 | 6.5 | 15 | 27 | 39 | 1 |
|  | $\begin{aligned} & \hline \text { D-M9 } \square / \text { M9 } \square V \\ & \text { D-M9 } \square \text { W/M9 } \square \text { WV } \\ & \hline \end{aligned}$ | 10 | 11 | 18.5 | 30.5 | 42.5 | 4.5 |
|  |  | 16 | 10.5 | 19 | 31 | 43 | 5 |
|  | $\begin{aligned} & \hline \text { D-A7■ } \\ & \text { D-A80 } \end{aligned}$ | 10 | 9.5 | 17 | 29 | 41 | 3 |
|  |  | 16 | 9 | 17.5 | 29.5 | 41.5 | 3.5 |
|  | $\begin{aligned} & \text { D-A7 } \square \text { H/A80H } \\ & \text { D-A73C/A80C } \\ & \text { D-F7口/J79 } \\ & \text { D-F7■W/J79W } \\ & \text { D-F7■V/F7 } \square W V \\ & \text { D-F79F/J79C } \end{aligned}$ | 10 | 10 | 17.5 | 29.5 | 41.5 | 3.5 |
|  |  | 16 | 9.5 | 18 | 30 | 42 | 4 |
|  | D－F7NT | 10 | 15 | 22.5 | 34.5 | 46.5 | 8.5 |
|  |  | 16 | 14.5 | 23 | 35 | 47 | 9 |
|  | D－A79W | 10 | 7 | 14.5 | 26.5 | 38.5 | 0.5 |
|  |  | 16 | 6.5 | 15 | 27 | 39 | 1 |

Note）Adjust the auto switch after confirming the operating conditions in the actual setting
Auto Switch Proper Mounting Position／Spring Extend（T）
（mm）

| Auto switch model |  | $\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | A | Dimension B |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 10 to $15^{\text {st }}$ |  | 16 to $30^{\text {st }}$ | 31 to $45^{\text {st }}$ | 46 to $60{ }^{\text {st }}$ |
|  | D－A9 $\square$（V） |  | 10 | 2 | 8.5 | 16 | 28 | 40 |
|  |  | 16 | 2.5 | 8 | 16.5 | 28.5 | 40.5 |
|  | $\begin{aligned} & \text { D-M9 } \square(\mathrm{V}) \\ & \text { D-M9 } \square \mathbf{W}(\mathrm{V}) \\ & \text { D-M9 } \square \mathbf{A}(\mathrm{V}) \end{aligned}$ | 10 | 6 | 12.5 | 20 | 32 | 44 |
|  |  | 16 | 6.5 | 12 | 20.5 | 32.5 | 44.5 |
|  | $\begin{aligned} & \hline \text { D-C7口/C80 } \\ & \text { D-C73C/C80C } \\ & \hline \end{aligned}$ | 10 | 2.5 | 9 | 16.5 | 28.5 | 40.5 |
|  |  | 16 | 3 | 8.5 | 17 | 29 | 41 |
|  | $\begin{aligned} & \text { D-H7口/H7C } \\ & \text { D-H7 } \square W \\ & \text { D-H7NF } \end{aligned}$ | 10 | 1.5 | 8 | 15.5 | 27.5 | 39.5 |
|  |  | 16 | 2 | 7.5 | 16 | 28 | 40 |
|  | $\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \end{aligned}$ | 10 | 0.5 | 7 | 14.5 | 16.5 | 38.5 |
|  |  | 16 | 1 | 6.5 | 15 | 27 | 39 |
|  | $\begin{aligned} & \hline \text { D-M9 } \square / \text { M9 } \square V \\ & \text { D-M9 } \square \text { W/M9 } \square \text { WV } \end{aligned}$ | 10 | 4.5 | 11 | 18.5 | 30.5 | 42.5 |
|  |  | 16 | 5 | 10.5 | 19 | 31 | 43 |
|  | $\begin{aligned} & \text { D-A7■ } \\ & \text { D-A80 } \end{aligned}$ | 10 | 3 | 9.5 | 17 | 29 | 41 |
|  |  | 16 | 3.5 | 9 | 17.5 | 29.5 | 41.5 |
|  | D－A7 $\square$ H／A80HD－A73C／A80CD－F7口／J79D－F7口W／J79WD－F7口V／F7 $\square W V$D－F79F／J79C | 10 | 3.5 | 10 | 17.5 | 29.5 | 41.5 |
|  |  | 16 | 4 | 9.5 | 18 | 30 | 42 |
|  | D－F7NT | 10 | 8.5 | 15 | 22.5 | 34.5 | 46.5 |
|  |  | 16 | 9 | 14.5 | 23 | 35 | 47 |
|  | D－A79W | 10 | 0.5 | 7 | 14.5 | 26.5 | 38.5 |
|  |  | 16 | 1 | 6.5 | 15 | 27 | 39 |

Note）Adjust the auto switch after confirming the operating conditions in the actual setting．

Auto Switch Mounting Height

|  | Band mounting |  |  |  |  | Rail mounting |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { D-A9■ } \\ & \text { D-M9 } \\ & \text { D-M9ロW } \\ & \text { D-M9■A } \end{aligned}$ |  | $\begin{aligned} & \mathrm{D}-\mathrm{C7} \mathrm{\square} / \mathrm{C80} \\ & \mathrm{D}-\mathrm{H} 7 \square \\ & \mathrm{D}-\mathrm{H} 7 \square \mathrm{~W} \\ & \mathrm{D}-\mathrm{H} 7 \mathrm{NF} \end{aligned}$ | $\begin{aligned} & \mathrm{D}-\mathrm{C} 73 \mathrm{C} \\ & \mathrm{D}-\mathrm{C} 80 \mathrm{C} \end{aligned}$ | D－H7C | D－A9 $\square$／A9 $\square$ V D－M9 D－M9 $\square \mathbf{V}$ D－M9 $\square \mathbf{W}$ D－M9 $\square \mathbf{W V}$ | $\begin{aligned} & \text { D-A7ロ } \\ & \text { D-A80 } \end{aligned}$ | $\|$D－A7LH／A80H <br> D－F7IJT7 <br> D．F7CWIJT9W <br> D－F79F <br> D－F7NT | $\begin{aligned} & \text { D-A73C } \\ & \text { D-A80C } \end{aligned}$ | $\begin{aligned} & \text { D-F7■V } \\ & \text { D-F7■WV } \end{aligned}$ | D－J79C | D－A79W |
|  | Hs |
| 10 | 17 | 18 | 17 | 19.5 | 20 | 17.5 | 16.5 | 17.5 | 23.5 | 20 | 23 | 19 |
| 16 | 20.5 | 21 | 20.5 | 23 | 23.5 | 21 | 19.5 | 20.5 | 26.5 | 23 | 26 | 22 |

## Minimum Auto Switch Mounting Stroke

| Auto switch mounting | Auto switch model | No．of auto switches mounted |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 |  | n （ n ：No．of auto switches） |  |
|  |  |  | Different surfaces | Same surface | Different surfaces | Same surface |
| Band mounting | $\begin{aligned} & \text { D-M9 } \square / \text { M9 } \square W \\ & \text { D-A9 } \square / \text { M9 } \square \mathbf{A} \end{aligned}$ | 10 | $15^{\text {Note 1）}}$ | $45^{\text {Note 1）}}$ | $\begin{gathered} 15+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 4)} \end{gathered}$ | $\begin{gathered} 45+15(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
|  | D－M9 $\square$ V | 5 | $15^{\text {Note 1）}}$ | 35 | $\begin{gathered} 15+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 4)} \end{gathered}$ | $\begin{gathered} 35+25(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
|  | $\begin{aligned} & \text { D-M9 } \square W V \\ & \text { D-M9 } \square \text { AV } \end{aligned}$ | 10 | $15^{\text {Note 1）}}$ | 35 | $\begin{gathered} 15+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \ldots)^{\text {Note } 4)} \end{gathered}$ | $\begin{gathered} 35+25(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
|  | D－A9 ${ }^{\text {V }}$ | 5 | 10 | 35 | $\begin{gathered} 10+35 \frac{(n-2)}{2} \\ \left.(n=2,4,6 \cdots)^{\text {Note }} 4\right) \end{gathered}$ | $\begin{gathered} 35+25(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
|  | $\begin{aligned} & \text { D-C7口 } \\ & \text { D-C80 } \end{aligned}$ | 10 | 15 | 50 | $\begin{gathered} 15+40 \frac{(n-2)}{2} \\ \left.(n=2,4,6 \ldots)^{\text {Note }} 4\right) \end{gathered}$ | $\begin{gathered} 50+20(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
|  | $\begin{aligned} & \text { D-H7口 } \\ & \text { D-H7■W } \\ & \text { D-H7NF } \end{aligned}$ | 10 | 15 | 60 | $\begin{gathered} 15+45 \frac{(n-2)}{2} \\ (n=2,4,6 \cdots)^{\text {Note } 4)} \end{gathered}$ | $\begin{gathered} 60+22.5(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
|  | $\begin{aligned} & \text { D-C73C } \\ & \text { D-C80C } \\ & \text { D-H7C } \end{aligned}$ | 10 | 15 | 65 Note 2） | $\begin{gathered} 15+50 \frac{(n-2)}{2} \\ (n=2,4,6 \cdots)^{\text {Note } 4)} \end{gathered}$ | $\begin{gathered} 50+27.5(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
| Rail mounting | D－M9 $\square$ V | 5 | － | 5 | － | $\begin{gathered} 10+10(n-2) \\ \left.(n=4,6 \cdots)^{\text {Note }} 5\right) \\ \hline \end{gathered}$ |
|  | D－A9■V | 5 | － | 10 | － | $\begin{gathered} 10+15(n-2) \\ \left.(n=4,6 \cdots)^{\text {Note }} 5\right) \\ \hline \end{gathered}$ |
|  | $\begin{aligned} & \text { D-M9■ } \\ & \text { D-A9 } \end{aligned}$ | 10 | － | 10 | － | $\begin{gathered} 15+15(n-2) \\ (n=4,6 \cdots)^{\text {Note } 5)} \end{gathered}$ |
|  | $\begin{aligned} & \text { D-M9 WV } \\ & \text { D-M9 AV } \end{aligned}$ | 10 | － | 15 | － | $\begin{gathered} 15+15(n-2) \\ \left.(\mathrm{n}=4,6 \cdots)^{\text {Note }} 5\right) \\ \hline \end{gathered}$ |
|  | D－M9■W | 15 | － | 15 | － | $\begin{gathered} 20+15(n-2) \\ (n=4,6 \cdots)^{\text {Note } 5)} \end{gathered}$ |
|  | D－M9 $\square$ A | 15 | － | 20 | － | $\begin{gathered} 20+15(n-2) \\ (n=4,6 \cdots)^{\text {Note } 5)} \\ \hline \end{gathered}$ |
|  | $\begin{aligned} & \text { D-A7■/A80 } \\ & \text { D-A7■H/A80H } \\ & \text { D-A73C/A80C } \end{aligned}$ | 5 | － | 10 | － | $\begin{gathered} 15+10(n-2) \\ \left.(n=4,6 \cdots)^{\text {Notete }}\right) \end{gathered}$ |
|  | $\begin{aligned} & \text { D-A7ロH } \\ & \text { D-A80H } \end{aligned}$ | 5 | － | 10 | － | $\begin{gathered} 15+15(n-2) \\ (n=4,6 \cdots)^{\text {Note } 5)} \end{gathered}$ |
|  | D－A79W | 10 | － | 15 | － | $\begin{gathered} 10+15(n-2) \\ (n=4,6 \cdots)^{\text {Note } 5)} \\ \hline \end{gathered}$ |
|  | $\begin{aligned} & \text { D-F7口 } \\ & \text { D-J79 } \end{aligned}$ | 5 | － | 5 | － | $\begin{gathered} 15+15(n-2) \\ (n=4,6 \cdots)^{\text {Note } 5)} \\ \hline \end{gathered}$ |
|  | $\begin{aligned} & \text { D-F7口V } \\ & \text { D-J79C } \\ & \hline \end{aligned}$ | 5 | － | 5 | － | $\begin{gathered} 10+10(n-2) \\ (n=4,6 \cdots) \text { Note } 5) \end{gathered}$ |
|  | $\begin{aligned} & \text { D-F7口W/J79W } \\ & \text { D-F79F/F7NT } \\ & \hline \end{aligned}$ | 10 | － | 15 | － | $\begin{gathered} 15+20(n-2) \\ (n=4,6 \cdots)^{\text {Note } 5)} \\ \hline \end{gathered}$ |
|  | D－F7口WV | 10 | － | 15 | － | $\begin{gathered} 10+15(n-2) \\ (n=4,6 \cdots)^{\text {Note } 5)} \end{gathered}$ |

Note 4）When＂$n$＂is an odd number，an even number that is one larger than this odd number is used for the calculation． Note 5）When＂$n$＂is an odd number，an even number that is one larger than this odd number is used for the calculation． However，the minimum even number is 4 ．So， 4 is used for the calculation when＂$n$＂is 1 to 3 ．
Note 1）Auto switch mounting（The adjustment as shown in the figures below is required with the following stroke ranges．）

| Auto switch model | With 2 auto switches |  |
| :---: | :---: | :---: |
|  | Different surfaces ${ }^{\text {Note 1）}}$ | Same surface ${ }^{\text {Note 1）}}$ |
|  | The proper auto switch mounting position is 5.5 mm inward from the switch holder edge． | The auto switch is mounted by slightly displacing it in a direction （cylinder tube circumferential exterior）so that the auto switch and lead wire do not interfere with each other． |
| D－A93 | － | 45 to less than 50 stroke |
| $\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \text { W } \end{aligned}$ | 15 to less than 20 stroke | 45 to less than 55 stroke |

[^2]Note 3）The dimension stated in（ ）shows the minimum stroke for the auto switch mounting when the auto switch does not project from the end surface of the cylinder body and hinder the lead wire bending space．（Refer to the figure below．）
These contents apply to the rail mounting with one or two auto switches．

# CVJ3 Series <br> Auto Switch Mounting 3 

## Operating Range

| Auto switch model |  | Bore size |  |
| :---: | :---: | :---: | :---: |
|  |  | 10 | 16 |
|  | D－A9 $\square$（V） | 6 | 7 |
|  | $\begin{aligned} & \text { D-M9 } \square(V) \\ & \text { D-M9 } \square \text { W(V)/M9 } \square \text { A(V) } \end{aligned}$ | 2.5 | 3 |
|  | D－C7 $\square / \mathrm{C80} / \mathrm{C73C/C80C}$ | 7 | 7 |
|  | D－H7 $\square / \mathrm{H} 7 \square$ W／H7NF | 4 | 4 |
|  | D－H7C | 8 | 9 |

＊Since the operating range is provided as a guideline including hysteresis，it cannot be guaranteed（assuming approximately $\pm 30 \%$ dispersion）．It may vary substantially depending on an ambient environment．

| Auto switch model |  | Bore size |  |
| :---: | :---: | :---: | :---: |
|  |  | 10 | 16 |
|  | D－A9 $\square /$ A9 $\square \mathrm{V}$ | 6 | 6.5 |
|  | $\begin{aligned} & \text { D-M9 } \square / \text { M9 } \square V \\ & \text { D-M9 W/M9 } \square \mathbf{W V} \\ & \text { D-M9 } \square \text { A/M9 } \square \mathrm{AV} \end{aligned}$ | 3 | 3.5 |
|  | D－A7■／A80／A7H／A80H／A73C／A80C | 8 | 9 |
|  | D－A79W | 11 | 13 |
|  | D－F7■／J79／F7■W／J79W <br> D－F7■V／F7■WV／F79F／J79C <br> D－F7NT | 5 | 5 |

Auto Switch Mounting Bracket：Part No．

| Auto switch mounting | Auto switch model | Bore size（mm） |  |
| :---: | :---: | :---: | :---: |
|  |  | $\varnothing 10$ | $\varnothing 16$ |
| Band mounting | D－M9 $\square$ D－M9 $\quad V$ D－M9 $\quad \mathbf{W}$ D－M9 $\square W V$ D－A9 $\square$ D－A9 $\square V$ | BJ6－010 ${ }^{\text {Note 1）}}$ | BJ6－016 ${ }^{\text {Note 1）}}$ |
|  | $\begin{aligned} & \text { D-M9 } \square \text { A } \\ & \text { D-M9 } \end{aligned}$ | BJ6－010 ${ }^{\text {Note 2）}}$ | BJ6－016S ${ }^{\text {Note 2）}}$ |
|  |  |  |  |
|  | $\begin{aligned} & \text { D-C7ロ/C80 } \\ & \text { D-C73C/C80C } \\ & \text { D-H7口/H7ロW } \\ & \text { D-H7NF } \end{aligned}$ | BJ2－010 | BJ2－016 |
| Rail mounting |  | BQ2－012 Note 5） | BQ2－012 ${ }^{\text {Note }}$ 5） |
|  |  | BQ2-012 |  |

Note 1）Set part number which includes the auto switch mount ing band（BJ2－$\square \square \square$ ）and the holder kit（BJ5－1／Switch bracket：Transparent）．Since the switch bracket（made from nylon）are affected in an environment where alcohol，chloroform，methylamines，hydrochloric acid or sulfuric acid is splashed over，so it cannot be used Please consult SMC regarding other chemicals．
Note 2）Set part number which includes the auto switch mount－ ing band（BJ2－$\square \square \square S$ ）and the holder kit（BJ4－ 1／Switch bracket：White）．
Note 3）For the D－M9 $\square \mathrm{A}(\mathrm{V})$ type auto switch，do not install the switch bracket on the indicator light．

Besides the models listed in How to Order，the following auto switches are applicable．
Refer to pages 941 to 1067 for detailed specifications．

| Auto switch type | Part no． | Electrical entry（Fetching direction） | Features |
| :---: | :--- | :---: | :---: |
| Reed | D－C73，C76 | Grommet（In－let） | - |
|  | D－C80 |  | Without indicator light |
|  | Solid state |  |  |
|  |  |  | Diagnostic indication（2－color） |

[^3]＊Normally closed（ $\mathrm{NC}=\mathrm{b}$ contact）solid state auto switches（D－F9G／F9H types）are also available．Refer to page 959 for details．

# Valve Mounted Cylinder Double Acting, Single Rod CVM5 Series <br> ø20, ø25, ø32, ø40 

How to Order


## CVM5 Series

Operation type can be changed to rod extended when energized or rod retracted when energized.
An auto switch cylinder with the switch installed can also be manufactured.


| $\begin{array}{\|c\|} \hline \text { Made to } \\ \text { Order } \end{array}$ | Made to Order Specifications Click here for details |
| :---: | :---: |
| Symbol | Specifications |
| -XA $\square$ | Change of rod end shape |
| -XC4 | With heavy duty scraper |
| -XC6 | Made of stainless steel |
| -XC29 | Double knuckle joint with spring pin |
| -XC52 | Mounting nut with set screw |

Refer to pages 787 to 789 for cylinders with auto switches.

Proper auto switch mounting position (detection at stroke end) and mounting height Minimum auto switch mounting stroke Operating range
Auto switch mounting bracket: Part no.

Specifications

| Applicable bore size (mm) |  | 20 | 25 | 32 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fluid |  | Air |  |  |  |
| Action |  | Double acting, Single rod |  |  |  |
| Cushion |  | Rubber bumper |  |  |  |
| Proof pressure |  | 1.0 MPa |  |  |  |
| Maximum operating pressure |  | 0.7 MPa |  |  |  |
| Minimum operating pressure |  | 0.15 MPa |  |  |  |
| Ambient and fluid temperature |  | -10 to $50^{\circ} \mathrm{C}$ (No freezing) |  |  |  |
| Lubrication |  | Not required (Non-lube) |  |  |  |
| Stroke length tolerance |  | $\begin{gathered} +1.4 \\ 0 \end{gathered}$ |  |  |  |
| Port size | Screw-in type | Rc 1/8 |  |  |  |
|  | Built-in One-touch fitting | O.D.: ø6/I.D.: ø4 |  |  |  |
| Piston speed (mm/s) ${ }^{\text {Note) }}$ |  | 50 to 700* | 50 to 650* | 50 to 590* | 50 to 420* |
| Allowable kinetic energy |  | 0.27 J | 0.4 J | 0.65 J | 1.2 J |
| Mounting |  | Basic type, Axial foot type, Rod side flange type, Head side flange type, Single clevis type, Double clevis type, Head side trunnion type, Rod side trunnion type |  |  |  |

Note) The figures marked with "*" represent the values of the cylinder with the silencer type exhaust throttle valve removed. To operate the cylinder at these values, prevent dust from entering by installing an AN120-M5 silencer on the EXH port.

## Solenoid Valve Specifications

| Applicable solenoid valve model | VZ3 $\square 90$ series |
| :--- | :---: |
| Coil rated voltage | Standard: $100 / 200 \mathrm{VAC}(50 / 60 \mathrm{~Hz}), 24 \mathrm{VDC}$ <br> Semi-standard: $110 / 220 \mathrm{VAC}, 12 \mathrm{VDC}$ |
| Effestive area of valve (Cv factor) | $4.5 \mathrm{~mm}^{2}(0.25)$ |
| Allowable voltage | -15 to $10 \%$ |
| Coil insulation | Class B or equivalent (130 |

Note) At the rated voltage.

## Standard Stroke

| Bore size <br> $(\mathrm{mm})$ | Standard stroke $(\mathrm{mm})$ Note) | Maximum stroke (mm) |
| :---: | :---: | :---: |
| $\mathbf{2 0}$ |  |  |
| 25 | $25,50,75,100,125,150$, | 1000 |
| $\mathbf{3 2}$ | $200,250,300$ |  |
| 40 |  |  |

Note 1) Other intermediate strokes can be manufactured upon receipt of order. When exceeding 300 stroke, the allowable maximum stroke length is determined by the stroke selection table.
Note 2) Applicable strokes should be confirmed according to the usage. For details, refer to the CM2 series of the "Air Cylinders Model Selection" on front matter pages of the Best Pneumatics No. 2-1. In addition, the products that exceed the standard stroke might not be able to fulfill the specifications due to the deflection etc.

Rod Boot Material

| Symbol | Rod boot material | Maximum ambient temperature |
| :---: | :---: | :---: |
| $\mathbf{J}$ | Nylon tarpaulin | $70^{\circ} \mathrm{C}$ |
| $\mathbf{K}$ | Heat resistant tarpaulin | $110^{\circ} \mathrm{C}^{*}$ |

* Maximum ambient temperature for the rod boot itself.


## Valve Mounted Cylinder Double Acting, Single Rod <br> CVM5 <br> Series

| Veight |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bore size (mm) |  | 20 | 25 | 32 | 40 |
| Basic <br> Weight | Basic type | 0.25 | 0.32 | 0.39 | 0.67 |
|  | Axial foot type | 0.40 | 0.48 | 0.55 | 0.94 |
|  | Flange type | 0.31 | 0.41 | 0.48 | 0.79 |
|  | Single clevis type | 0.29 | 0.36 | 0.43 | 0.76 |
|  | Double clevis type | 0.30 | 0.38 | 0.44 | 0.80 |
|  | Trunnion type | 0.29 | 0.39 | 0.45 | 0.77 |
| Additional weight per each 50 mm of stroke |  | 0.05 | 0.07 | 0.09 | 0.14 |
| Option bracket | Single knuckle joint | 0.06 | 0.06 | 0.06 | 0.23 |
|  | Double knuckle joint (With pin) | 0.07 | 0.07 | 0.07 | 0.20 |

Calculation: (Example) CVM5L32-100-11G

> - Basic weight ............ $0.55(\mathrm{~kg})$ (Axial foot type ø32)
> - Additional weight $\cdots \cdots .0 .09 / 50(\mathrm{~kg} / 50 \mathrm{st})$
> - Cylinder stroke ....... $100(\mathrm{st})$
> $0.55+0.09 \times 100 / 50=0.73 \mathrm{~kg}$

## Mounting Type and Accessory

|  | Standard equipment |  |  | Option |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mounting nut | Rod end nut | Clevis pin | Single knuckle joint | $\left\lvert\, \begin{gathered} \text { Double } \\ \text { knuckle joint } \end{gathered}\right.$ | Pivot ${ }^{(5)}$ bracket | Pivot bracket pin |
| Basic type | - (1 pc.) | $\bullet$ | - | $\bigcirc$ | - |  |  |
| Axial foot type | - (2) | - | - | $\bigcirc$ | - |  |  |
| Rod side flange type | (1) | - | - | - | - |  |  |
| Head side flange type | (1) | $\bigcirc$ | - | - | - |  |  |
| Single clevis type | - ${ }^{(1)}$ | - | - | - | - | - | - |
| Double clevis type ${ }^{(3)}$ | - ${ }^{(1)}$ | $\bigcirc$ | - ${ }^{(4)}$ | - | - | - | - |
| Head side trunnion type | - (1) ${ }^{(2)}$ | - | - | - | - | - | - |
| Rod side trunnion type | - (1) ${ }^{(2)}$ | - | - | - | - |  |  |

Note 1) Mounting nut is not equipped with single clevis type and double clevis type
Note 2) Trunnion nuts are equipped for head side trunnion and rod side trunnion.
Note 3) Pin and set ring are shipped together with double clevis and double knuckle joint.
Note 4) Retaining rings (cotter pins for $\varnothing 40$ ) are included in clevis pins.
Note 5) Pin and retaining ring are not included in pivot bracket.
Note 6) Retaining rings are included in pivot bracket pin.

## Mounting Bracket Part No.

| Bore size (mm) | $\mathbf{2 0}$ | $\mathbf{2 5}$ | $\mathbf{3 2}$ |
| :--- | :---: | :---: | :---: |
| Axial foot* | CM-L020B | CM-LO32B | CM-L040B |
| Flange | CM-F020B | CM-F032B | CM-F040B |
| Single clevis | CM-C020B | CM-C032B | CM-C040B |
| Double clevis** | CM-D020B | CM-D032B | CM-D040B |
| Trunnion (With nut) | CM-T020B | CM-T032B | CM-T040B |

* Two foot brackets and a mounting nut are attached.

When ordering the foot bracket, order 2 pcs. per cylinder.

* Clevis pin and retaining ring (cotter pin for $\varnothing 40$ ) are packaged together.


## Accessory (Option)

Refer to page 786 for part numbers and dimensions of the single knuckle joint, double knuckle joint, clevis pin, knuckle pin, rod end nut, mounting nut, and trunnion nut.

## $\triangle$ Precautions

F Be sure to read this before handling the 1 products. Refer to back page 50 for I Safety Instructions, pages 3 to 12 for I Actuator and Auto Switch Precautions, I and $3 / 4 / 5$ Port Solenoid Valve Precautions I in Best Pneumatics No. 1-1.

## Mounting

## © Warning

1. Do not rotate the cover.

If a cover is rotated when installing a cylinder or screwing a fitting into the port, it is likely to damage the junction part with cover.

## $\triangle$ Caution

1. Not able to disassemble.

Cover and cylinder tube are connected to each other by caulking method, thus making it impossible to disassemble. Therefore, internal parts of a cylinder other than rod seal are not replaceable.
2. Use caution to the popping of a retaining ring.
When replacing rod seals and removing and mounting a retaining ring, use a proper tool (retaining ring plier: tool for installing type C retaining ring). Even if a proper tool is used, it is likely to inflict damage to a human body or peripheral equipment, as a retaining ring may be flown out of the tip of a plier. Be much careful with the popping of a retaining ring. Besides, be certain that a retaining ring is placed firmly into the groove of rod cover before supplying air at the time of installment.
3. Do not touch the cylinder during operation. Use caution when handling a cylinder, which is running at a high speed and a high frequency, because the surface of a cylinder tube could get so hot enough as to cause you get burns.
4. Do not use an air cylinder as an airhydro cylinder.
If it uses turbine oil in place of fluids for cylinder, it may result in oil leakage.
5. Conjoin the rod end part, so that rod boot might not be twisted.
If a rod boot is installed with being twisted when installing a cylinder, it will cause a rod boot to fail during operation.

## Model Selection

$\triangle$ Warning

## 1. Confirm the specifications.

Products in this catalog are designed to be used for compressed air systems. If not operated within the designated pressure or temperature, it may damage the products or cause malfunction. (Refer to specifications.)
2. Energizing continuously for a long period of time
When the valve is continuously energized for a long period of time, the performance may deteriorate, shorten the service life or affect peripheral equipment adversely since temperature rises when coils generate heat.

| CVM5 Mounting type | Bore size | For "How to Order", |
| :---: | :---: | :---: |
|  |  | $T_{\text {Built-in One-touch fitting }}$ |

## Specifications

One-touch fittings are installed on cylinders.


## Application/Tubing O.D.

| Bore size (mm) | $\mathbf{2 0}$ | $\mathbf{2 5}$ | $\mathbf{3 2}$ | $\mathbf{4 0}$ |
| :---: | :---: | :---: | :---: | :---: |
| Applicable tubing O.D. (mm) | $ø 6 / 4$ | $ø 6 / 4$ | $\varnothing 6 / 4$ | $\varnothing 6 / 4$ |
| Applicable tubing material | Can be used for either nylon, soft nylon <br> or polyurethane tube. |  |  |  |


| Action | Double acting, Single rod |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Bore size (mm) | 20, 25, 32, 40 |  |  |  |
| Maximum operating pressure | 0.7 MPa |  |  |  |
| Minimum operating pressure | 0.15 MPa |  |  |  |
| Cushion | Rubber bumper |  |  |  |
| Piping | Built-in One-touch fitting |  |  |  |
| Piston speed ( $\mathrm{mm} / \mathrm{s}$ ) | ø20 | ø25 | ø32 | $ø 40$ |
|  | 50 to 700 | 50 to 650 | 50 to 590 | 50 to 420 |
| Mounting | Basic type, Axial foot type, Rod side flange type, Head side flange type, Single clevis type, Double clevis type, Rod side trunnion type, Head side trunnion type |  |  |  |
| For the dimensions of mounting bracket, refer to pages 777 to 780 . |  |  |  |  |

## Opening Range of Throttle Valve and Driving Speed



Measuring conditions: Operating pressure 0.5 MPa
Mounting: horizontal Load: no load on the return side The speeds indicated above are for reference.

## Manual Operation

Manual operation is possible by pushing the manual button indicated with the arrow.


## Piston Speed Adjustment

- To slow down the piston speed, screw in the needle of the silencer type exhaust throttle valve clockwise, which reduces the amount of air that is discharged.
- To adjust the piston extension side, regulate the "R1" side silencer type exhaust throttle valve.
To adjust the retraction side, regulate the "R2" side silencer exhaust throttle valve.
- The needle valve of the throttle valve can be fully opened by loosening it 8 turns from the fully closed position.
- The needle valve has a loosening prevention construction.


## Changing between Rod Extended when Energized and Rod Retracted when Energized

Step [This procedure is for changing the rod extended when energized to the rod retracted when energized.]

1. Using a tool, loosen the two hexagon socket bolts, and remove the plate and the solenoid valve. At this time, instead of removing the plate and the solenoid valve separately, remove them together, with the hexagon socket bolts remaining inserted.

2. A sub-plate gasket is inside the sub-plate. Invert this sub-plate gasket $180^{\circ}$ and install it with its letter "B" visible. (A portion that protrudes is provided on the periphery of the sub-plate gasket, and the letter " B " is on one side of this protrusion.)

3. Install the solenoid valve and the plate, and tighten the hexagon socket bolts with a tool. The tightening torque is between 0.6 and 0.8 N.m.

After tightening, press the manual button on the solenoid valve, check for any air leaks, and verify the operating conditions. Distinction between rod extended when energized and rod retracted when energized can be determined from the outside, by looking through the small window in the sub-plate.


Rod retracted when energized

# Valve Mounted Cylinder Double Acting, Single Rod CVM5 Series 

Construction


DIN terminal


Component Parts

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1}$ | Rod cover | Aluminum alloy | Clear anodized |
| $\mathbf{2}$ | Head cover | Aluminum alloy | Clear anodized |
| $\mathbf{3}$ | Cylinder tube | Stainless steel |  |
| $\mathbf{4}$ | Piston | Aluminum alloy | Chromated |
| $\mathbf{5}$ | Piston rod | Carbon steel | Hard chrome plated |
| $\mathbf{6}$ | Bushing | Bearing alloy |  |
| $\mathbf{7}$ | Seal retainer | Carbon tool steel | Phosphate coated |
| $\mathbf{8}$ | Retaining ring | Aluminum alloy | Clear anodized |
| $\mathbf{9}$ | Pipe | Brass | Electroless nickel plated |
| $\mathbf{1 0}$ | Stud | Carbon steel | Nickel plated |
| $\mathbf{1 1}$ | Hex. sockethead cap screw with spring washer | Carbon steel | Nickel plated |
| $\mathbf{1 2}$ | Hex. sockethead cap screw with sping washer | Aluminum alloy | Metallic painted |
| $\mathbf{1 3}$ | Plate | Aluminum alloy | Metallic painted |
| $\mathbf{1 4}$ | Sub-plate | - | Refer to the How to order' below.* |
| $\mathbf{1 5}$ | Solenoid valve | Urethane |  |
| $\mathbf{1 6}$ | Bumper A | Urethane |  |
| $\mathbf{1 7}$ | Bumper B |  |  |

* How to order solenoid valves


Type of
actuation - Electrical entry

- Rated voltage

Component Parts

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1 8}$ | Retaining ring | Stainless steel |  |
| $\mathbf{1 9}$ | Piston seal | NBR |  |
| $\mathbf{2 0}$ | Piston gasket | NBR |  |
| $\mathbf{2 1}$ | Gasket | Resin |  |
| $\mathbf{2 2}$ | Pipe gasket | Urethane rubber |  |
| $\mathbf{2 3}$ | Wear ring | Resin |  |
| $\mathbf{2 4}$ | Head cover gasket | NBR |  |
| $\mathbf{2 5}$ | Sub-plate gasket | NBR |  |
| $\mathbf{2 6}$ | Gasket | NBR |  |
| $\mathbf{2 7}$ | Spacer gasket | Resin | Except $\varnothing 25$ |
| $\mathbf{2 8}$ | Exhaust throttle with silencer | - | ASN2-M5 |
| $\mathbf{2 9}$ | One-touch fitting | - | Port size: $\varnothing 6$ |

## Replacement Parts/Seal Kit

| No. | Description | Material | Part no. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathbf{2 0}$ | $\mathbf{2 5}$ | $\mathbf{3 2}$ | $\mathbf{4 0}$ |
| $\mathbf{3 0}$ | Rod seal | NBR | CM220-PS | CM225-PS | CM232-PS | CM240-PS |

[^4]
## CVM5 Series

Basic Type (B)


## Built-in One-touch fitting

## With rod boot



For DIN terminal and double solenoid, refer to page 780.

| Bore size (mm) | Stroke range | A | AL | $\mathrm{B}_{1}$ | $\mathrm{B}_{2}$ | D | Eh\% | F | Q | QY | H | $\mathrm{H}_{1}$ | $\mathrm{H}_{2}$ | HX | 1 | K | MM | N | NA | NN | S | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | Up to 300 | 18 | 15.5 | 13 | 26 | 8 | $20_{-0.033}^{0}$ | 13 | 19.8 | 14 | 41 | 5 | 8 | 65.3 | 28 | 5 | M8 $\times 1.25$ | 15 | 24 | M20 $\times 1.5$ | 62 | 116 |
| 25 | Up to 300 | 22 | 19.5 | 17 | 32 | 10 | $26_{-0.033}^{0}$ | 13 | 22 | 14 | 45 | 6 | 8 | 70.5 | 33.5 | 5.5 | M10 1.25 | 15 | 30 | M26 x 1.5 | 62 | 120 |
| 32 | Up to 300 | 22 | 19.5 | 17 | 32 | 12 | $26_{-0.033}^{0}$ | 13 | 25.8 | 16 | 45 | 6 | 8 | 76.5 | 37.5 | 5.5 | M10 1.25 | 15 | 34.5 | M26 x 1.5 | 64 | 122 |
| 40 | Up to 300 | 24 | 21 | 22 | 41 | 14 | $32{ }_{-0.039}^{0}$ | 16 | 29.8 | 16 | 50 | 8 | 10 | 84.5 | 46.5 | 7 | M14 $\times 1.5$ | 21.5 | 42.5 | M32 $\times 2$ | 88 | 154 |

With Rod Boot

| Bore size (mm) | $B_{3}$ | e | f | h |  |  |  |  |  |  | $\ell$ |  |  |  |  |  |  | $\begin{gathered} \mathrm{JH} \\ \text { (Reference) } \end{gathered}$ | $\underset{\text { (Reference) }}{\mathrm{JW}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1 to 50 | 51 to 100 | 101 to 150 | 151 to 200 | 20110300 | 301 to400 | 40110500 | 1 to 50 | 51 to 100 | 101 to 150 | 15110200 | 20110300 | 30110400 | 40110500 |  |  |
| 20 | 30 | 36 | 18 | 68 | 81 | 93 | 106 | 131 | 156 | - | 12.5 | 25 | 37.5 | 50 | 75 | 100 | - | 23.5 | 10.5 |
| 25 | 32 | 36 | 18 | 72 | 85 | 97 | 110 | 135 | 160 | 185 | 12.5 | 25 | 37.5 | 50 | 75 | 100 | 125 | 23.5 | 10.5 |
| 32 | 32 | 36 | 18 | 72 | 85 | 97 | 110 | 135 | 160 | 185 | 12.5 | 25 | 37.5 | 50 | 75 | 100 | 125 | 23.5 | 10.5 |
| 40 | 41 | 46 | 20 | 77 | 90 | 102 | 115 | 140 | 165 | 190 | 12.5 | 25 | 37.5 | 50 | 75 | 100 | 125 | 27 | 10.5 |


| ZZ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bore size (mm) |  |  |  |  |  |  |  |  |
|  | 1 to 50 | 51 to 100 | 101 to 150 | 151 to 200 | 201 to300 | 301 to 400 | 401 to 500 |  |
| $\mathbf{2 0}$ | 143 | 156 | 168 | 181 | 206 | 231 | 256 |  |
| $\mathbf{2 5}$ | 147 | 160 | 172 | 185 | 210 | 235 | 260 |  |
| $\mathbf{3 2}$ | 149 | 162 | 174 | 187 | 212 | 237 | 262 |  |
| $\mathbf{4 0}$ | 181 | 194 | 206 | 219 | 244 | 269 | 294 |  |

* For short strokes, a solenoid valve may protrude from the rod cover end. Confirm S dimension and solenoid dimensions.
* Long stroke type includes ones for strokes more than 301 mm .


## Valve Mounted Cylinder Double Acting, Single Rod

Axial Foot Type (L)


Rod Side Flange Type (F)

(mm)

| Bore size (mm) | Stroke range | A | AL | B | $\mathrm{B}_{1}$ | $\mathrm{B}_{2}$ | C2 | D | Eh8 | F | FD | FT | FX | FY | FZ | H | $\mathrm{H}_{1}$ | $\mathrm{H}_{2}$ | HX |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | Up to 300 | 18 | 15.5 | 34 | 13 | 26 | 30 | 8 | $20{ }_{-0.093}^{0}$ | 13 | 7 | 4 | 60 | - | 75 | 41 | 5 | 8 | 65.3 |
| 25 | Up to 300 | 22 | 19.5 | 40 | 17 | 32 | 37 | 10 | 26-0.033 | 13 | 7 | 4 | 60 | - | 75 | 45 | 6 | 8 | 70.5 |
| 32 | Up to 300 | 22 | 19.5 | 40 | 17 | 32 | 37 | 12 | $26_{-0.033}^{0}$ | 13 | 7 | 4 | 60 | - | 75 | 45 | 6 | 8 | 76.5 |
| 40 | Up to 300 | 24 | 21 | 52 | 22 | 41 | 47.3 | 14 | 32-0.039 | 16 | 7 | 5 | 66 | 36 | 82 | 50 | 8 | 10 | 84.5 |


| Bore size (mm) | $\mathbf{I}$ | $\mathbf{K}$ | MM | $\mathbf{N}$ | NA | NN | $\mathbf{Q}$ | $\mathbf{Q Y}$ | $\mathbf{S}$ | $\mathbf{Z}$ | $\mathbf{Z Z}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 0}$ | 28 | 5 | $\mathrm{M} 8 \times 1.25$ | 15 | 24 | $\mathrm{M} 20 \times 1.5$ | 19.8 | 14 | 62 | 37 | 116 |
| $\mathbf{2 5}$ | 33.5 | 5.5 | $\mathrm{M} 10 \times 1.25$ | 15 | 30 | $\mathrm{M} 26 \times 1.5$ | 22 | 14 | 62 | 41 | 120 |
| $\mathbf{3 2}$ | 37.5 | 5.5 | $\mathrm{M} 10 \times 1.25$ | 15 | 34.5 | $\mathrm{M} 26 \times 1.5$ | 25.8 | 16 | 64 | 41 | 122 |
| $\mathbf{4 0}$ | 46.5 | 7 | $\mathrm{M} 14 \times 1.5$ | 21.5 | 42.5 | $\mathrm{M} 32 \times 2$ | 29.8 | 16 | 88 | 45 | 154 |

[^5]
## CVM5 Series

Head Side Flange Type (G)


| Bore size (mm) | Stroke range | A | AL | B | B1 | $\mathrm{B}_{2}$ | $\mathrm{C}_{2}$ | D | Eh8 | F | FD | FT | FX | FY | FZ | H | $\mathrm{H}_{1}$ | $\mathrm{H}_{2}$ | HX |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | Up to 300 | 18 | 15.5 | 34 | 13 | 26 | 30 | 8 | $20{ }_{-0.033}^{0}$ | 13 | 7 | 4 | 60 | - | 75 | 41 | 5 | 8 | 65.3 |
| 25 | Up to 300 | 22 | 19.5 | 40 | 17 | 32 | 37 | 10 | $26_{-0.033}^{0}$ | 13 | 7 | 4 | 60 | - | 75 | 45 | 6 | 8 | 70.5 |
| 32 | Up to 300 | 22 | 19.5 | 40 | 17 | 32 | 37 | 12 | $26_{-0.033}^{0}$ | 13 | 7 | 4 | 60 | - | 75 | 45 | 6 | 8 | 76.5 |
| 40 | Up to 300 | 24 | 21 | 52 | 22 | 41 | 47.3 | 14 | $32{ }_{-0.039}^{0}$ | 16 | 7 | 5 | 66 | 36 | 82 | 50 | 8 | 10 | 84.5 |


| Bore size (mm) | $\mathbf{I}$ | $\mathbf{K}$ | $\mathbf{M M}$ | $\mathbf{N}$ | $\mathbf{N A}$ | $\mathbf{N N}$ | $\mathbf{Q}$ | $\mathbf{Q Y}$ | $\mathbf{S}$ | $\mathbf{Z}$ | $\mathbf{Z Z}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 0}$ | 28 | 5 | $\mathrm{M} 8 \times 1.25$ | 15 | 24 | $\mathrm{M} 20 \times 1.5$ | 19.8 | 14 | 62 | 107 | 116 |
| $\mathbf{2 5}$ | 33.5 | 5.5 | $\mathrm{M} 10 \times 1.25$ | 15 | 30 | $\mathrm{M} 26 \times 1.5$ | 22 | 14 | 62 | 111 | 120 |
| $\mathbf{3 2}$ | 37.5 | 5.5 | $\mathrm{M} 10 \times 1.25$ | 15 | 34.5 | $\mathrm{M} 26 \times 1.5$ | 25.8 | 16 | 64 | 113 | 122 |
| $\mathbf{4 0}$ | 46.5 | $\mathbf{7}$ | $\mathrm{M} 14 \times 1.5$ | 21.5 | 42.5 | $\mathrm{M} 32 \times 2$ | 29.8 | 16 | 88 | 143 | 154 |

## Single Clevis Type (C)



| Bore size (mm) | Stroke range | A | AL | B1 | CD | CX | D | Eh8 | F | H | $\mathrm{H}_{1}$ | I | HX | K | L | MM | N | NA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | Up to 300 | 18 | 15.5 | 13 | 9 | 10 | 8 | 20-0.033 | 13 | 41 | 5 | 28 | 65.3 | 5 | 30 | M8 $\times 1.25$ | 15 | 24 |
| 25 | Up to 300 | 22 | 19.5 | 17 | 9 | 10 | 10 | $26_{-0.033}^{0}$ | 13 | 45 | 6 | 33.5 | 70.5 | 5.5 | 30 | M10 1.25 | 15 | 30 |
| 32 | Up to 300 | 22 | 19.5 | 17 | 9 | 10 | 12 | 26-0.033 | 13 | 45 | 6 | 37.5 | 76.5 | 5.5 | 30 | M10 x 1.25 | 15 | 34.5 |
| 40 | Up to 300 | 24 | 21 | 22 | 10 | 15 | 14 | 32-0.039 | 16 | 50 | 8 | 46.5 | 84.5 | 7 | 39 | M14 $\times 1.5$ | 21.5 | 42.5 |


|  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bore size $(\mathrm{mm})$ | NN | Q | QY | RR | S | $\mathbf{U}$ | $\mathbf{Z}$ | ZZ |
| $\mathbf{2 0}$ | M20 $\times 1.5$ | 19.8 | 14 | 9 | 62 | 14 | 133 | 142 |
| $\mathbf{2 5}$ | $\mathrm{M} 26 \times 1.5$ | 22 | 14 | 9 | 62 | 14 | 137 | 146 |
| $\mathbf{3 2}$ | $\mathrm{M} 26 \times 1.5$ | 25.8 | 16 | 9 | 64 | 14 | 139 | 148 |
| $\mathbf{4 0}$ | $\mathrm{M} 32 \times 2$ | 29.8 | 16 | 11 | 88 | 18 | 177 | 188 |

Double Clevis Type (D)


Rod Side Trunnion Type (U)


## CVM5 Series

Head Side Trunnion Type (T)


| Bore size (mm) | Stroke range |  | A | AL | $\mathrm{B}_{1}$ | B | ${ }_{2}$ | D |  | Eh8 | F | H | $\mathrm{H}_{1}$ | HX | I | K | MM | N | NA | NN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | Up to 300 |  | 18 | 15.5 | 13 | 2 | 6 | 8 |  | $20_{-0.033}^{0}$ | 13 | 41 | 5 | 65.3 | 28 | 5 | M8 $\times 1.25$ | 15 | 24 | M20 $\times 1.5$ |
| 25 | Up to 300 |  | 22 | 19.5 | 17 | 3 | 2 | 10 |  | 26-0.033 | 13 | 45 | 6 | 70.5 | 33.5 | 5.5 | M10 1.25 | 15 | 30 | M26 $\times 1.5$ |
| 32 | Up to 300 |  | 22 | 19.5 | 17 | 3 |  | 12 |  | 26 ${ }_{-0.033}^{0}$ | 13 | 45 | 6 | 76.5 | 37.5 | 5.5 | M10 $\times 1.25$ | 15 | 34.5 | M $26 \times 1.5$ |
| 40 | Up to 300 |  | 24 | 21 | 22 | 4 |  | 14 |  | 32-0.099 | 16 | 50 | 8 | 84.5 | 46.5 | 7 | M14 $\times 1.5$ | 21.5 | 42.5 | M32 $\times 2$ |
| (mm) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Bore size (mm) | Q | QY | S | TD | TT | TX |  | Y | TZ | Z | ZZ | * Brackets are packaged together. |  |  |  |  |  |  |  |  |
| 20 | 19.8 | 14 | 62 | 8 | 10 | 32 |  | 32 | 52 | 108 | 118 |  |  |  |  |  |  |  |  |  |
| 25 | 22 | 14 | 62 | 9 | 10 | 40 |  | 40 | 60 | 112 | 122 |  |  |  |  |  |  |  |  |  |
| 32 | 25.8 | 16 | 64 | 9 | 10 | 40 |  | 40 | 60 | 114 | 124 |  |  |  |  |  |  |  |  |  |
| 40 | 29.8 | 16 | 88 | 10 | 11 | 53 |  | 53 | 77 | 143.5 | 154 |  |  |  |  |  |  |  |  |  |

## DIN Terminal



Double Solenoid


* For the mounting brackets of flange, single clevis, double clevis and head side trunnion type, the doule soleoid may not be used depending on the mounting conditions.


# Valve Mounted Cylinder: Non-rotating Rod Type Double Acting 

# CVM5K Series <br> ø20, ø25, ø32, ø40 

How to Order


Applicable Auto Switches/Refer to pages 941 to 1067 for further information on auto switches.

$\begin{array}{rlll}\text { * Lead wire length symbols: } & 0.5 \mathrm{~m} & \ldots . . . . . . & \text { Nil }\end{array}$ (Example) M9NW
None ........ N (Example) H7CN

* Solid state auto switches marked with "○" are produced upon receipt of order. *1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance. Consult with SMC regarding water resistant types with the above model numbers. *2 1 m type lead wire is only applicable to D-A93.
* Since there are other applicable auto switches than listed, refer to page 789 for details.
* For details about auto switches with pre-wired connector, refer to pages 1014 and 1015.
* D-A9 $\square / \mathrm{M} 9 \square$ auto switches are shipped together (not assembled). (Only auto switch mounting brackets are assembled before shipped.)


## A hexagon shaped rod that does not rotate.

Non-rotating accuracy
ø20, $\varnothing 25- \pm 0.7^{\circ}$
$\varnothing 32, \varnothing 40- \pm 0.5^{\circ}$
Can operate without
lubrication.

## Auto switches can also be mounted.

Can be installed with auto switches to facilitate the detection of the cylinder's stroke position.


## Symbol

Rubber bumper


Refer to pages 787 to 789 for cylinders with auto switches.

- Proper auto switch mounting position
(detection at stroke end) and mounting height - Minimum auto switch mounting stroke
- Operating range
- Auto switch mounting bracket: Part no.

Specifications

| Applicable bore size (mm) |  | 20 | 25 | 32 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Rod non-rotating accuracy |  | $\pm 0.7^{\circ}$ |  | $\pm 0.5^{\circ}$ |  |
| Fluid |  | Air |  |  |  |
| Action |  | Double acting, Single rod |  |  |  |
| Proof pressure |  | 1.0 MPa |  |  |  |
| Maximum operating pressure |  | 0.7 MPa |  |  |  |
| Minimum operating pressure |  | 0.15 MPa |  |  |  |
| Ambient and fluid temperature |  | -10 to $50^{\circ} \mathrm{C}$ (No freezing) |  |  |  |
| Lubrication |  | Not required (Non-lube) |  |  |  |
| Stroke length tolerance |  | ${ }^{+1.4}$ |  |  |  |
| Piston speed (mm/s) |  | 50 to 700* | 50 to 650* | 50 to 590* | 50 to 420* |
| Allowable kinetic energy |  | 0.27 J | 0.4 J | 0.65 J | 1.2 J |
| Port size | Screw-in type | Rc 1/8 |  |  |  |
|  | Built-in One-touch fitting | O.D.: ø6/I.D.: ø4 |  |  |  |
| Mounting |  | Basic type, Axial foot type, Rod side flange type, Head side flange type, Single clevis type, Double clevis type, Head side trunnion type, Rod side trunnion type |  |  |  |

Note) The figures marked with "*" represent the values of the cylinder with the silencer type exhaust throttle valve removed. To operate the cylinder at these values, prevent dust from entering by installing an AN120-M5 silencer on the EXH port.

## Solenoid Valve Specifications

| Applicable solenoid valve model |  |  | VZ3■90 series |
| :---: | :---: | :---: | :---: |
| Coil rated voltage |  |  | Standard: 100/200 VAC ( $50 / 60 \mathrm{~Hz}$ ), 24 VDC Semi-standard: 110/220 VAC, 12 VDC |
| Effective area of valve (Cv factor) |  |  | $4.5 \mathrm{~mm}^{2}$ (0.25) |
| Allowable voltage |  |  | -15 to 10\% |
| Coil insulation |  |  | Class B or equivalent ( $130^{\circ} \mathrm{C}$ ) |
| Electrical entry |  |  | Grommet, L plug connector, M plug connector, DIN terminal |
| Power $\left.\begin{array}{l}\text { Note) } \\ \text { consumption (W) }\end{array}\right)$ | DC |  | 1.8 (With indicator light: 2.1) |
| Apparent power (VA) | AC | Inrush | $4.5 / 50 \mathrm{~Hz}, 4.2 / 60 \mathrm{~Hz}$ |
|  |  | Holding | $3.5 / 50 \mathrm{~Hz}, 3.0 / 60 \mathrm{~Hz}$ |

Note) At the rated voltage.

## Standard Stroke

| Bore size <br> $(\mathrm{mm})$ | Standard stroke (mm) Note) |
| :---: | :--- |
| 20 |  |
| 25 | $25,50,75,100,125,150$ |
| 32 | $200,250,300$ |
| 40 |  |

Note) Other intermediate strokes can be manufactured upon receipt of order.
Although it is possible to make up to 1000 stroke length, when exceeding the standard stroke, there may be the case which cannot meet the specifications.

## Rod Boot Material

| Symbol | Rod boot material | Maximum ambient temperature |
| :---: | :---: | :---: |
| $\mathbf{J}$ | Nylon tarpaulin | $70^{\circ} \mathrm{C}$ |
| $\mathbf{K}$ | Heat resistant tarpaulin | $110^{\circ} \mathrm{C} *$ |

[^6]| Weight |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bore size (mm) 20 25 32 40 |  |  |  |  |  |
| Basic weight | Basic type | 0.25 | 0.32 | 0.39 | 0.67 |
|  | Axial foot type | 0.40 | 0.48 | 0.55 | 0.94 |
|  | Flange type | 0.31 | 0.41 | 0.48 | 0.79 |
|  | Single clevis type | 0.29 | 0.36 | 0.43 | 0.76 |
|  | Double clevis type | 0.30 | 0.38 | 0.44 | 0.80 |
|  | Trunnion type | 0.29 | 0.39 | 0.45 | 0.77 |
| Additional weight per each 50 mm of stroke |  | 0.05 | 0.07 | 0.09 | 0.14 |
| Option bracket | Single knuckle joint | 0.06 | 0.06 | 0.06 | 0.23 |
|  | Double knuckle joint (with pin) | 0.07 | 0.07 | 0.07 | 0.20 |

Calculation: (Example) CVM5KL32-100-11G

- Basic weight............ $0.55(\mathrm{~kg})$ (Axial foot type ø32)
- Additional weight..... 0.09 (kg/50 st)
- Cylinder stroke ........ 100 (st) $0.55+0.09 \times 100 / 50=0.73 \mathrm{~kg}$

Mounting Bracket and Accessory

| Mounting | Standard equipment |  |  | Option |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mounting nut | Rod end nut | Clevis pin | Single knuckle joint | Double ${ }^{\text {(3) }}$ | Pivot ${ }^{(5)}$ bracket | $\underset{\text { bracket pin }}{ }{ }^{\text {Piva }}$ |
| Basic type | - (1 pc.) | - | - | - | - |  |  |
| Axial foot type | - (2) | - | - | - | - |  |  |
| Rod side flange type | - (1) | $\bullet$ | - | - | - | - | - |
| Head side flange type | - (1) | - | - | - | - |  |  |
| Single clevis type | - ${ }^{(1)}$ | $\bullet$ | - | - | - | - | - |
| Double clevis type ${ }^{(3)}$ | - ${ }^{(1)}$ | $\bullet$ | ${ }^{(4)}$ | - | - | - | - |
| Head side trunnion type | - (1) ${ }^{(2)}$ | $\bullet$ | - | - | - |  |  |
| Rod side trunnion type | - (1) ${ }^{(2)}$ | - | - | - | - |  | - |

Note 1) Mounting nut is not equipped with single clevis type and double clevis type.
Note 2) Trunnion nuts are equipped for head side trunnion and rod side trunnion.
Note 3) Pin and set ring are shipped together with double clevis and double knuckle joint.
Note 4) Retaining rings (cotter pins for $\varnothing 40$ ) are included in clevis pins.
Note 5) Pin and retaining ring are not included in pivot bracket.
Note 6) Retaining rings are included in pivot bracke pin.

## Accessory (Option)

Refer to page 786 for part numbers and dimensions of the single knuckle joint, double knuckle joint, clevis pin, knuckle pin, rod end nut, mounting nut, and trunnion nut.

## $\triangle$ Precautions

I Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions, pages 3 to 12 for $I$
1 Actuator and Auto Switch Precautions, and 3/4/5 Port Solenoid Valve Precautions in Best Pneumatics No. 1-1.


## Precautions

## $\triangle$ Warning

1. Do not rotate the cover.

If a cover is rotated when installing a cylinder or screwing a fitting into the port, it is likely to damage the junction part with cover.

## $\triangle$ Caution

1. Avoid using the air cylinder in such a way that rotational torque would be applied to the piston rod.
If rotational torque is applied, the non-rotating guide will deform, causing a loss of non-rotating accuracy. Also, to screw a bracket or a nut onto the threaded portion at the end of the piston rod, make sure to retract the piston rod entirely, and place a wrench on the parallel sections of the rod that protrudes. To tighten, take precautions to prevent the tightening torque from being applied to the non-rotating guide.

| Allowable <br> rotational torque <br> (N.m or less) | ø20 | $\varnothing \mathbf{2 5}$ | $\varnothing \mathbf{3 2}$ | $\varnothing \mathbf{4 0}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | 0.2 | 0.25 | 0.25 | 0.44 |



## Disassembly/Replacement

## $\triangle$ Caution

1. When replacing rod seals, please contact SMC.

Air leakage may be happened, depending on the position in which a rod seal is fitted. Thus, please contact SMC when replacing them.
2. Not able to disassemble.

Since the cover and the cylinder tube are combined by crimping method, it is impossible to disassemble it. Therefore, the internal parts of a cylinder other than rod seal cannot be replaced at all.
3. Do not touch the cylinder during operation.

If the cylinder is operating at a high frequency, be aware that the cylinder tube surface could become very hot, creating the risk of burns.
4. Conjoin the rod end part, so that rod boot might not be twisted.

If a cylinder were installed with its rod boot being twisted, the rod boot could be damaged during operation.

## Model Selection

## $\triangle$ Warning

1. Confirm the specifications.

Products in this catalog are designed to be used for compressed air systems. If not operated within the designated pressure or temperature, it may damage the products or cause malfunction. (Refer to specifications.)
2. Energizing continuously for a long period of time

When the valve is continuously energized for a long period of time, the performance may deteriorate, shorten the service life or affect peripheral equipment adversely since temperature rises when coils generate heat.

## CVM5K Series

## Construction



## DIN terminal



## Component Parts

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1}$ | Rod cover | Aluminum alloy | Clear anodized |
| $\mathbf{2}$ | Head cover | Aluminum alloy | Clear anodized |
| $\mathbf{3}$ | Cylinder tube | Stainless steel |  |
| $\mathbf{4}$ | Piston | Aluminum alloy | Chromated |
| $\mathbf{5}$ | Piston rod | Stainless steel |  |
| $\mathbf{6}$ | Non-rotating guide | Bearing alloy |  |
| $\mathbf{7}$ | Seal retainer | Rolled steel | Nickel plated |
| $\mathbf{8}$ | Retaining ring | Carbon tool steel | Phosphate coated |
| $\mathbf{9}$ | Pipe | Aluminum alloy | White anodized |
| $\mathbf{1 0}$ | Stud | Brass | Electroless nickel plated |
| $\mathbf{1 1}$ | Hex. sockethead cap screw with spring washer | Carbon steel | Nickel plated |
| $\mathbf{1 2}$ | Hex. socketheadcap screw with spring washer | Carbon steel | Nickel plated |
| $\mathbf{1 3}$ | Plate | Aluminum alloy | Metallic painted |
| $\mathbf{1 4}$ | Sub-plate | Aluminum alloy | Metallic painted |
| $\mathbf{1 5}$ | Solenoid valve | - | Refer tothe "How to order" below.* |
| $\mathbf{1 6}$ | Bumper A | Urethane |  |
| $\mathbf{1 7}$ | Bumper B | Urethane |  |
|  | nern |  |  |


| * How to order solenoid valves |
| :--- |
| VZ3 $\square 90-\square$ <br> Type of <br> actuation <br> $\square$ <br> - Electrical entry |
| Rated voltage |

Component Parts

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1 8}$ | Retaining ring | Stainless steel |  |
| $\mathbf{1 9}$ | Piston seal | NBR |  |
| $\mathbf{2 0}$ | Piston gasket | NBR |  |
| $\mathbf{2 1}$ | Gasket | Resin |  |
| $\mathbf{2 2}$ | Pipe gasket | Urethane rubber |  |
| $\mathbf{2 3}$ | Wear ring | Resin |  |
| $\mathbf{2 4}$ | Head cover gasket | NBR |  |
| $\mathbf{2 5}$ | Sub-plate gasket | NBR |  |
| $\mathbf{2 6}$ | Gasket | NBR |  |
| $\mathbf{2 7}$ | Spacer gasket | Resin | Except $\varnothing 25$ |
| $\mathbf{2 8}$ | Exhaust throttle with silencer | - | ASN2-M5 |
| $\mathbf{2 9}$ | One-touch fitting | - | Port size: $\varnothing 6$ |

## Replacement Parts/Seal Kit

| No. | Description | Material | Part no. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathbf{2 0}$ | $\mathbf{2 5}$ | $\mathbf{3 2}$ | $\mathbf{4 0}$ |
| $\mathbf{3 0}$ | Rod seal | NBR | CM2K20-PS | CM2K25-PS | CM2K32-PS | CM2K40-PS |

[^7]Basic Type (B): External Dimensions


For DIN terminal and double solenoid, refer to page 780.

| Bore size (mm) | Stroke range | A | AL | B1 | B2 | Eh8 | F | Q | QY | H | $\mathrm{H}_{1}$ | $\mathrm{H}_{2}$ | HX | I | KA | MM | N | NA | NN | S | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | Up to 300 | 18 | 15.5 | 13 | 26 | $20_{-0.033}^{0}$ | 13 | 19.8 | 14 | 41 | 5 | 8 | 65.3 | 28 | 8.2 | M8 x 1.25 | 15 | 24 | M $20 \times 1.5$ | 62 | 116 |
| 25 | Up to 300 | 22 | 19.5 | 17 | 32 | 26-0.093 | 13 | 22 | 14 | 45 | 6 | 8 | 70.5 | 33.5 | 10.2 | M10 x 1.25 | 15 | 30 | M26 x 1.5 | 62 | 120 |
| 32 | Up to 300 | 22 | 19.5 | 17 | 32 | 26-0.093 | 13 | 25.8 | 16 | 45 | 6 | 8 | 76.5 | 37.5 | 12.2 | M10 $\times 1.25$ | 15 | 34.5 | M $26 \times 1.5$ | 64 | 122 |
| 40 | Up to 300 | 24 | 21 | 22 | 41 | 32-0.039 | 16 | 29.8 | 16 | 50 | 8 | 10 | 84.5 | 46.5 | 14.2 | M14 $\times 1.5$ | 21.5 | 42.5 | M $32 \times 2$ | 88 | 154 |

With Rod Boot

| Bore size (mm) | B3 | e | f | h |  |  |  |  | $l$ |  |  |  |  | JH (Reference) | $\begin{gathered} \mathbf{J W} \\ \text { (Reference) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1 to 50 | 51 to 100 | 101 to 150 | 15110200 | 20110300 | 1 to 50 | 51 to 100 | 101 to 150 | 15110200 | 20110300 |  |  |
| 20 | 30 | 36 | 18 | 68 | 81 | 93 | 106 | 131 | 12.5 | 25 | 37.5 | 50 | 75 | 23.5 | 10.5 |
| 25 | 32 | 36 | 18 | 72 | 85 | 97 | 110 | 135 | 12.5 | 25 | 37.5 | 50 | 75 | 23.5 | 10.5 |
| 32 | 32 | 36 | 18 | 72 | 85 | 97 | 110 | 135 | 12.5 | 25 | 37.5 | 50 | 75 | 23.5 | 10.5 |
| 40 | 41 | 46 | 20 | 77 | 90 | 102 | 115 | 140 | 12.5 | 25 | 37.5 | 50 | 75 | 27 | 10.5 |


|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bore size (mm) | (m) |  |  |  |  |
|  | 1 to 50 | 51 to 100 | 101 to 150 | 151 to 0200 | 201 to300 |
| $\mathbf{2 0}$ | 143 | 156 | 168 | 181 | 206 |
| $\mathbf{2 5}$ | 147 | 160 | 172 | 185 | 210 |
| $\mathbf{3 2}$ | 149 | 162 | 174 | 187 | 212 |
| $\mathbf{4 0}$ | 181 | 194 | 206 | 219 | 244 |

## CVM5 Series

## Accessory dimensions

Single Knuckle Joint Mounting


| Bore size | A | H | MM | NDH10 | NX1 | $\mathrm{U}_{1}$ | R2 | Y | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 18 | 41 | M8 $\times 1.25$ | $9{ }_{0}^{+0.058}$ | $9{ }_{-0.2}^{-0.1}$ | 14 | 10 | 11 | 66 |
| 25, 32 | 22 | 45 | M10 $\times 1.25$ | $9{ }_{0}^{+0.058}$ | $9_{-0.2}^{-0.1}$ | 14 | 10 | 14 | 69 |
| 40 | 24 | 50 | M14 $\times 1.5$ | $12{ }_{0}^{+0.070}$ | $16{ }_{-0.3}^{-0.1}$ | 20 | 14 | 13 | 92 |

Double Knuckle Joint Mounting


| Bore size | $\mathbf{A}$ | $\mathbf{H}$ | $\mathbf{L}$ | $\mathbf{M M}$ | $\mathbf{N D}$ | $\mathbf{N X}_{\mathbf{2}}$ | $\mathbf{R}_{\mathbf{2}}$ | $\mathbf{U}_{\mathbf{2}}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 0}$ | 18 | 41 | 25 | $\mathrm{M} 8 \times 1.25$ | 9 | $9^{+0.2}$ |  |  |  |  |
| $\mathbf{2 5 , 3}$ | 10 | 14 | 11 | 66 |  |  |  |  |  |  |
| $\mathbf{4 0}$ | $\mathbf{2 2}$ | 45 | 25 | $\mathrm{M} 10 \times 1.25$ | 9 | $9_{\substack{+0.2 \\ +0.1}}^{+0 .}$ | 10 | 14 | 14 | 69 |



Single Knuckle Joint
(mm)

I-020B, 032B Material: Rolled steel I-040B Material: Free cutting sulfur steel

Double Knuckle Joint
(mm)

Y-020B, Y-032B Material: Rolled steel Y-040B Material: Cast iron



| Part no. | $\begin{array}{\|l\|} \hline \text { Applicabile cylinder } \\ \text { bore size } \end{array}$ |  | A | $\mathrm{A}_{1}$ | $\mathrm{E}_{1}$ | L | $\mathrm{L}_{1}$ | MM | ND |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Y-020B | 20 |  | 46 | 16 | 20 | 25 | 36 | M8 x 1.25 | 9 |
| Y-032B | 25, 32 |  | 48 | 18 | 20 | 25 | 38 | M10 $\times 1.25$ | 9 |
| Y-040B | 40 |  | 68 | 22 | 24 | 49.7 | 55 | M14 $\times 1.5$ | 12 |
| Part no. | NX | NZ | R1 | $\mathrm{U}_{1}$ | Applicable pinpar no par no. |  | $\begin{array}{\|l\|l\|} \hline \text { Retaining ring } \\ \text { Cotter pin } \end{array}$ |  |  |
| Y-020B | ${ }^{+}{ }_{+0.1}^{+0.2}$ | 18 | 5 | 14 | CDP-1 |  | Type C9 for shaft |  |  |
| Y-032B | $9+$ | 18 | 5 | 14 | CDP-1 |  | Type C9 for shaft |  |  |
| Y-040B | $16{ }_{+0.1}^{+0.3}$ | 38 | 13 | 25 | CDP-3 |  | $ø 3 \times 18$ e |  |  |

* Knuckle pins and retaining rings (cotter pins for $\varnothing 40$ ) are included.

Double Knuckle Pin/Material: Carbon steel
(mm)

| Bore size: $\varnothing$ 20, ø25, $\varnothing 32$ | Bore size: $\varnothing$ 40 |
| :--- | :--- |
| CDP-1 | CDP-3 |

Rod End Nut
(mm) Mounting Nut

## (mm) Trunnion Nut

(mm)

|  |  |  |  | Material: Carbon steel |  |  |  |  |  |  |  |  |  |  |  |  | Material: Carbon steel |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $I$ |  |  |  |  |  |  | $1$ |  |  |  |  |  |  | B |  |  |
| Part no. | Applicable bore size | B | C | D | d | H | Part no. | Applicable bore size | B | C | D | d | H | Part no. | Applicable bore size | B | C | D | d | H |
| NT-02 | 20 | 13 | 15.0 | 12.5 | M8 $\times 1.25$ | 5 | SN-020B | 20 | 26 | 30 | 25.5 | M20 $\times 1.5$ | 8 | TN-020B | 20 | 26 | 28 | 25.5 | M20 1.5 | 10 |
| NT-03 | 25, 32 | 17 | 19.6 | 16.5 | M10 1.25 | 6 | SN-032B | 25, 32 | 32 | 37 | 31.5 | M26 $\times 1.5$ | 8 | TN-032B | 25, 32 | 32 | 34 | 31.5 | M26 1.5 | 10 |
| NT-04 | 40 | 22 | 25.4 | 21.0 | M14 $\times 1.5$ | 8 | SN-040B | 40 | 41 | 47.3 | 40.5 | M $32 \times 2.0$ | 10 | TN-040B | 40 | 41 | 45 | 40.5 | M32 $\times 2$ | 10 | 786

# CVM5 Series <br> Auto Switch Mounting 1 

## Auto Switch Proper Mounting Position (Detection at Stroke End) and Mounting Height

Reed auto switch


Solid state auto switch

## D-M9■/D-M9■W



D-H7■/H7■W/H7NF


D-G5NT


D-H7C

cva
cuam
CVJ $\square$
CVIMD
CV3
CVS1
MVGO

Auto Switch Proper Mounting Position (Detection at Stroke End) and Mounting Height
Auto Switch Proper Mounting Position

|  | D-A9 $\square$ (V) |  | $\begin{aligned} & \text { D-M9 } \square(\mathrm{V}) \\ & \text { D-M9 } \square \mathrm{W}(\mathrm{~V}) \\ & \text { D-A9 } \square \mathbf{( V )} \end{aligned}$ |  | $\begin{aligned} & \text { D-B5 } \\ & \text { D-B64 } \end{aligned}$ |  | $\begin{aligned} & \hline \text { D-C7 } \square \\ & \text { D-C80 } \\ & \text { D-C73C } \\ & \text { D-C80C } \end{aligned}$ |  | D-B59W |  | $\begin{aligned} & \text { D-H7 } \square \\ & \text { D-H7C } \\ & \text { D-H7 } \square W \\ & \text { D-H7NF } \end{aligned}$ |  | D-G5NT |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | A | B | A | B | A | B | A | B | A | B | A | B |
| 20 | 6.5 | 5.5 | 10.5 | 9.5 | 1 | 0 | 7 | 6 | 4 | 3 | 6 | 5 | 2.5 | 1.5 |
| 25 | 6.5 | 5.5 | 10.5 | 9.5 | 1 | 0 | 7 | 6 | 4 | 3 | 6 | 5 | 2.5 | 1.5 |
| 32 | 7.5 | 6.5 | 11.5 | 10.5 | 2 | 1 | 8 | 7 | 5 | 4 | 7 | 6 | 3.5 | 2.5 |
| 40 | 13.5 | 11.5 | 17.5 | 15.5 | 7 | 6 | 13 | 12 | 10 | 9 | 12 | 11 | 8.5 | 7.5 |

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.
Auto Switch Mounting Height
(mm)

|  | $\begin{aligned} & \text { D-A9 } \square(\mathrm{V}) \\ & \text { D-M9 } \square(\mathrm{V}) \\ & \text { D-M9 } \square \mathbf{W}(\mathrm{V}) \\ & \text { D-M9 } \square \mathbf{A}(\mathrm{V}) \end{aligned}$ | $\begin{aligned} & \text { D-B5 } \square \\ & \text { D-B64 } \\ & \text { D-B59W } \\ & \text { D-G5NT } \\ & \text { D-H7C } \end{aligned}$ | $\begin{aligned} & \text { D-C7 } \square \\ & \text { D-C80 } \\ & \text { D-H7 } \square \\ & \text { D-H7 } \square \mathbf{W} \\ & \text { D-H7NF } \end{aligned}$ | $\begin{aligned} & \text { D-C73C } \\ & \text { D-C80C } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | Hs | Hs | Hs | Hs |
| 20 | 23 | 25.5 | 22.5 | 25 |
| 25 | 25.5 | 28 | 25 | 27.5 |
| 32 | 29 | 31.5 | 28.5 | 31 |
| 40 | 33 | 35.5 | 32.5 | 35 |

## CVM5 Series

## Auto Switch Mounting 2

## Minimum Auto Switch Mounting Stroke

| Auto switch model | No．of auto switch mounted |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 |  | n |  |
|  |  | Different surfaces | Same surface | Different surfaces | Same surface |
| $\begin{aligned} & \text { D-A9 } \square \\ & \text { D-M9 } \square \\ & \text { D-M9 } \square \end{aligned}$ | 10 | $15^{\text {Note 1）}}$ | $45^{\text {Note 1）}}$ | $\begin{gathered} 15+45 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 45+45(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
| D－M9 $\square$ V | 5 | 20 | 35 | $\begin{gathered} 20+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 35+35(\mathrm{n}-2) \\ (\mathrm{n}=2,3,4,5 \cdots) \end{gathered}$ |
| D－A9■V | 5 | 15 | 25 | $\begin{gathered} 15+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 25+35(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
| $\begin{aligned} & \text { D-M9 } \square W V \\ & \text { D-M9 } \square \text { AV } \end{aligned}$ | 10 | 20 | 35 | $\begin{gathered} 20+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 35+35(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
| $\begin{aligned} & \text { D-C7口 } \\ & \text { D-C80 } \end{aligned}$ | 10 | 15 | 50 | $\begin{gathered} 15+45 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 50+45(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
| $\begin{aligned} & \text { D-H7ロ } \\ & \text { D-H7■W } \\ & \text { D-H7NF } \end{aligned}$ | 10 | 15 | 60 | $\begin{gathered} 15+45 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 60+45(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
| $\begin{aligned} & \text { D-C73C } \\ & \text { D-C80C } \\ & \text { D-H7C } \end{aligned}$ | 10 | 15 | 65 | $\begin{gathered} 15+50 \frac{(n-2)}{2} \\ (n=2,4,6 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 65+50(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
| $\begin{aligned} & \text { D-B5 } \square / B 64 \\ & \text { D-G5NT } \end{aligned}$ | 10 | 15 | 75 | $\begin{gathered} 15+50 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \ldots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 75+55(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
| D－B59W | 15 | 20 | 75 | $\begin{gathered} 20+50 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 75+55(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |

Note 2）When＂ n ＂is an odd number，an even number that is one larger than this odd number is used for the calculation．
Note 1）Auto switch mounting（The adjustment as shown in the figures below is required with the following stroke ranges．）


Operating Range

| $(\mathrm{mm})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Auto switch model | Bore size（mm） |  |  |  |
|  | 20 | 25 | 32 | 40 |
| D－A9 $\square$（V） | 6 | 6 | 6 | 6 |
| $\begin{aligned} & \text { D-M9 } \square(\mathrm{V}) / \mathrm{M} 9 \square \mathrm{~W}(\mathrm{~V}) \\ & \mathrm{D}-\mathrm{M} 9 \square \mathrm{~A}(\mathrm{~V}) \end{aligned}$ | 3.5 | 3 | 3.5 | 3 |
| $\begin{aligned} & \text { D-C7ロ/C80 } \\ & \text { D-C73C/C80C } \end{aligned}$ | 7 | 8 | 8 | 8 |
| D－B5口／B64 | 8 | 8 | 9 | 9 |
| D－B59W | 12 | 12 | 13 | 13 |
| $\begin{aligned} & \text { D-H7 } \square / H 7 \square W \\ & \text { D-G5NT/H7NF } \end{aligned}$ | 4 | 4 | 4.5 | 5 |
| D－H7C | 7 | 8.5 | 9 | 10 |

＊Since the operating range is provided as a guideline including hysteresis， it cannot be guaranteed（assuming approximately $\pm 30 \%$ dispersion）．
It may vary substantially depending on an ambient environment．

Auto Switch Mounting Bracket: Part No.

| Auto switch mounting | Bore size (mm) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\varnothing 20$ | ø25 | ø32 | $\varnothing 40$ |
| $\begin{aligned} & \text { D-M9 } \square(\mathrm{V}) \\ & \text { D-M9 } \square \mathrm{W}(\mathrm{~V}) \\ & \text { D-A9 } \square(\mathrm{V}) \end{aligned}$ | BM5-020 Note 1) | BM5-025 ${ }^{\text {Note 1) }}$ | BM5-032 ${ }^{\text {Note 1) }}$ | BM5-040 ${ }^{\text {Note 1) }}$ |
| D-M9 $\square$ (V) | BM5-020 ${ }^{\text {Note } 2)}$ | BM5-025S ${ }^{\text {Note 2) }}$ | BM5-032 ${ }^{\text {Note } 2)}$ | BM5-040 ${ }^{\text {Note }}$ 2) |
| $\begin{aligned} & \text { D-H7 } \square \\ & \text { D-H7 } \square \text { W } \\ & \text { D-H7NF } \\ & \text { D-C7■/C80 } \\ & \text { D-C73C/C80C } \end{aligned}$ | BM2-020A | BM2-025A | BM2-032A | BM2-040A |
| $\begin{aligned} & \text { D-B5■/B64 } \\ & \text { D-B59W } \\ & \text { D-G5NT } \\ & \text { D-G5NB } \end{aligned}$ | BA2-020 | BA2-025 | BA2-032 | BA2-040 |

Note 1) Set part number which includes the auto switch mounting band (BM2-■a口A) and the holder kit (BJ5-1/Switch bracket: Transparent).
Since the switch bracket (made from nylon) are affected in an environment where alcohol, chloroform, methylamines, hydrochloric acid or sulfuric acid is splashed over, so it cannot be used. Please consult SMC regarding other chemicals.
Note 2) Set part number which includes the auto switch mounting band (BM2-पด口AS/tainless steel screw) and the holder kit (BJ4-1/Switch bracket: White).
Note 3) For the D-M9 $\square \mathrm{A}(\mathrm{V})$ type auto switch, do not install the switch bracket on the indicator light.

## [Mounting screw set made of stainless steel]

The following set of mounting screws made of stainless steel is available. Use it in accordance with the operating environment. (Please order the auto switch mounting bracket separately, since it is not included.)

BBA4: For D-C7/C8/H7 types
Note 2) Refer to page 1048 for the details of BBA4.

(1) BJ $\square-1$ is a set of "a" and "b".
(2) BM2- $\square \square \square A(S)$ is a set of " $c$ " and " $d$ ". Band (c) is mounted so that the projected part is on the internal side (contact side with the tube). BJ4-1 (Switch bracket: White)
BJ5-1 (Switch bracket: Transparent)

Besides the models listed in How to Order, the following auto switches are applicable.
Refer to pages 941 to 1067 for detailed specifications.

| Auto switch type | Part no. | Electrical entry (Fetching direction) | Features |
| :---: | :---: | :---: | :---: |
| Reed | D-B53, C73, C76 | Grommet (ln-let) | - |
|  | D-C80 |  | Without indicator light |
| Solid state | D-H7A1, H7A2, H7B |  | - |
|  | D-H7NW, H7PW, H7BW |  | Diagnostic indication (2-color) |
|  | D-G5NT |  | With timer |

[^8]
# Valve Mounted Cylinder Single Acting, Spring Return/Extend CVM3 Series <br> $\varnothing 20, \varnothing 25, \varnothing 32, \varnothing 40$ 

## How to Order

Applicable Auto Switches/Refer to pages 941 to 1067 for further information on auto switches.


* Lead wire length symbols: $0.5 \mathrm{~m} \ldots \ldots .$. Nil (Example) M9NW * Solid state auto switches marked with "○" are produced upon receipt of order.

| 1 m | $\ldots \ldots \ldots$. | M |
| :---: | :---: | :---: | (Example) M9NWM

*1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance. Consult with SMC regarding water resistant types with the above model numbers.
*2 1 m type lead wire is only applicable to D-A93.

* Since there are other applicable auto switches than listed, refer to page 811 for details.
* For details about auto switches with pre-wired connector, refer to pages 1014 and 1015
* D-A9 $\square /$ M9 $\square$ auto switches are shipped together (not assembled). (Only auto switch mounting brackets are assembled before shipped.)


## Valve Mounted Cylinder Single Acting, Spring Return/Extend

An auto switch cylinder with the switch installed can also be manufactured.


Symbol
Rubber bumper


Made to Order Specifications
Click here for details

| Symbol | Specifications |
| :--- | :--- |
| -XA $\square$ | Change of rod end shape |
| -XC6 | Made of stainless steel |
| -XC29 | Double knuckle joint with spring pin |
| -XC52 | Mounting nut with set screw |

Refer to pages 808 to 811 for cylinders with auto switches.

- Proper auto switch mounting position
(detection at stroke end) and mounting height Minimum auto switch mounting stroke
Operating range
Auto switch mounting bracket: Part no.

Specifications

| Applicable bore size (mm) |  | 20 | 25 | 32 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Action |  | Single acting, Spring return/Spring extend |  |  |  |
| Fluid |  | Air |  |  |  |
| Cushion |  | Rubber bumper |  |  |  |
| Proof pressure |  | 1.0 MPa |  |  |  |
| Maximum operating pressure |  | 0.7 MPa |  |  |  |
| Minimum operating pressure |  | 0.18 MPa Spring return |  | 0.23 MPa Spring extend |  |
| Ambient and fluid temperature |  | -10 to $50^{\circ} \mathrm{C}$ (No freezing) |  |  |  |
| Lubrication |  | Not required (Non-lube) |  |  |  |
| Stroke length tolerance |  | $\begin{gathered} +1.4 \\ 0 \end{gathered}$ |  |  |  |
| Piping | Screw-in type | Rc 1/8 |  |  |  |
|  | Built-in One-touch fitting | O.D.: ø6/I.D.: ø4 |  |  |  |
| Manual override |  | Non locking (Standard) |  |  |  |
| Piston speed (mm/s) |  | 50 to 700 | 50 to 650 | 50 to 590 | 50 to 420 |
| Allowable kinetic energy |  | 0.27 J | 0.4 J | 0.65 J | 1.2 J |
| Mounting |  | Basic type, Axial foot type, Rod side flange type, Head side flange type, Single clevis type, Double clevis type, Head side trunnion type, Rod side trunnion type |  |  |  |

## Solenoid Valve Specifications

| Applicable solenoid valve model | VZ319 |
| :--- | :---: |
| Coil rated voltage | Standard: $100 / 200 \mathrm{VAC}(50 / 60 \mathrm{~Hz}), 24 \mathrm{VDC}$ <br> Semi-standard: $110 / 220 \mathrm{VAC}, 12 \mathrm{VDC}$ |
| Effestive area of valve (Cv factor) | $4.5 \mathrm{~mm}^{2}(0.25)$ |
| Allowable voltage | -15 to $10 \%$ of the rated voltage |
| Coil insulation | Class B or equivalent (130 |

Note) At the rated voltage.

## Standard Stroke

| Bore size $(\mathrm{mm})$ | Standard stroke $(\mathrm{mm})$ Note) |
| :---: | :---: |
| $\mathbf{2 0}$ | $25,50,75,100,125,150^{*}$ |
| $\mathbf{2 5}$ | $25,50,75,100,125,150^{*}$ |
| $\mathbf{3 2}$ | $25,50,75,100,125,150,200^{*}$ |
| $\mathbf{4 0}$ | $25,50,75,100,125,150,200,250^{*}$ |

Note 1) Intermediate stroke except mentioned above is produced upon receipt of order. Note 2) Strokes marked with "*" are the maximum strokes which are available.

## Theoretical Output

Refer to the Technical Data (Theoretical Output 1) in Best Pneumatics No. 2-1.

## Spring Reaction Force

Refer to the Technical Data (Table 2: Spring Reaction Force) in Best Pneumatics No. 2-1.

## Mounting Bracket and Accessory

|  | Standard equipment |  |  | Option |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mounting nut | Rod end nut | Clevis pin | Single knuckle join | $\begin{array}{\|c\|} \text { Double } \\ \text { knuckle joint } \end{array}$ | Pivot ${ }^{(5)}$ bracket | Pivot bracket pin |
| Basic type | - (1 pc.) | - | - | - | - | - | - |
| Axial foot type | - (2) | $\bullet$ | - | - | - |  |  |
| Rod side flange type | (1) | - | - | - | - |  |  |
| Head side flange type | - (1) | - | - | - | - |  |  |
| Single clevis type | - ${ }^{(1)}$ | - | - | - | - | - | $\bigcirc$ |
| Double clevis type ${ }^{(3)}$ | - ${ }^{(1)}$ | - | ${ }^{(4)}$ | $\bigcirc$ | - | - | - |
| Head side trunnion type | - (1) ${ }^{(2)}$ | - | - | - | - | - | - |
| Rod side trunnion type | - (1) ${ }^{(2)}$ | $\bigcirc$ | - | - | - |  |  |

Note 1) Mounting nut is not equipped with single clevis type and double clevis type.
Note 2) Trunnion nuts are equipped for head side trunnion and rod side trunnion.
Note 3) Pin and retaining ring are shipped together with double clevis and double knuckle joint.
Note 4) Retaining rings (cotter pins for ø40) are included in clevis pins.
Note 5) Pin and retaining ring are not included in pivot bracket.
Note 6) Retaining rings are included in pivot bracket pin.

## Accessory Bracket

Further information on accessories are the same specifications as these of the standard double acting single rod. Refer to page 786 .

## Manual Operation

Manual operation is possible by pushing the manual button indicated with the arrow.


## Weight

| Spring Return/( ) : DBore size (mm) |  | ring E | d. |  | (kg) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 20 | 25 | 32 | 40 |
| Basic weight | 25 stroke | 0.30 (0.30) | 0.40 (0.04) | 0.52 (0.51) | 0.87 (0.86) |
|  | 50 stroke | 0.32 (0.32) | 0.43 (0.43) | 0.56 (0.56) | 0.94 (0.93) |
|  | 75 stroke | 0.37 (0.37) | 0.52 (0.51) | 0.68 (0.66) | 1.13 (1.09) |
|  | 100 stroke | 0.39 (0.39) | 0.55 (0.54) | 0.73 (0.70) | 1.19 (1.16) |
|  | 125 stroke | 0.45 (0.44) | 0.64 (0.61) | 0.86 (0.82) | 1.39 (1.33) |
|  | 150 stroke | 0.47 (0.46) | 0.67 (0.64) | 0.90 (0.86) | 1.46 (1.40) |
|  | 200 stroke | - (-) | - (-) | 1.07 (1.02) | 1.71 (1.63) |
|  | 250 stroke | - (-) | - (-) | - (-) | 1.97 (1.85) |
| Mounting bracket weight | Axial foot | 0.15 (0.15) | 0.16 (0.16) | 0.16 (0.16) | 0.27 (0.27) |
|  | Flange | 0.06 (0.06) | 0.09 (0.09) | 0.09 (0.09) | 0.12 (0.12) |
|  | Single clevis | 0.04 (0.04) | 0.04 (0.04) | 0.04 (0.04) | 0.09 (0.09) |
|  | Double clevis | 0.05 (0.05) | 0.06 (0.06) | 0.06 (0.06) | 0.13 (0.13) |
|  | Trunnion | 0.04 (0.04) | 0.07 (0.07) | 0.07 (0.07) | 0.10 (0.10) |
| Option bracket | Single knuckle joint | 0.06 (0.06) | 0.06 (0.06) | 0.06 (0.06) | 0.23 (0.23) |
|  | Double knuckle (With pin) | 0.07 (0.07) | 0.07 (0.07) | 0.07 (0.07) | 0.20 (0.20) |

Calculation: (Example) CVM3L32-100-1G ( $\varnothing 32,100$ stroke, Spring return) - Basic weight.................. 0.73 (kg)

- Weight of brackets.........0.16 (kg)
$0.73+0.16=0.89 \mathrm{~kg}$


## $\triangle$ Precautions

I Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions, pages 3 to 12 for I
I Actuator and Auto Switch Precautions, and 3/4/5 Port Solenoid Valve Precautions in Best Pneumatics No. 1-1.

## Operating Precautions

## Warning

## 1. Do not rotate the cover.

If a cover is rotated when installing a cylinder or screwing a fitting into port, it is likely to damage the junction part with cover.

## $\triangle$ Caution

## 1. Not able to disassemble.

Cover and cylinder tube are connected to each other by caulking method, thus making it impossible to disassemble. Therefore, internal parts of a cylinder other than rod seal are not replaceable.
2. Use caution to the popping of a retaining ring.

When replacing rod seals and removing and mounting a retaining ring, use a proper tool (retaining ring plier: tool for installing type C retaining ring). Even if a proper tool is used, it is likely to inflict damage to a human body or peripheral equipment, as a retaining ring may be flown out of the tip of a plier. Be much careful with the popping of a retaining ring. Besides, be certain that a retaining ring is placed firmly into the groove of rod cover before supplying air at the time of installment.

## $\triangle$ Caution

## 3. Do not touch the cylinder during operation.

Use caution when handling a cylinder, which is running at a high speed and a high frequency, because the surface of a cylinder tube could get so hot enough as to cause you get burned.

## 4. One-touch fitting cannot be replaced.

One-touch fitting is press-fit into the cover, thus cannot be replaced.

## Model Selection

## $\triangle$ Warning

1. Confirm the specifications.

Products in this catalog are designed to be used for compressed air systems (including vacuum). If not operated within the designated pressure or temperature, it may damage the products or cause malfunction. (Refer to specifications.)
2. Energizing continuously for a long period of time

When the valve is continuously energized for a long period of time, the performance may deteriorate, shorten the service life or affect peripheral equipment adversely since temperature rises when coils generate heat.


Mounting Bracket Part No.

| Bore size (mm) | $\mathbf{2 0}$ | $\mathbf{2 5}$ | $\mathbf{3 2}$ |
| :--- | :---: | :---: | :---: |
| Axial foot * | CM-L020B | CM-L032B | CM-L040B |
| Flange | CM-F020B | CM-F032B | CM-F040B |
| Single clevis | CM-C020B | CM-C032B | CM-C040B |
| Double clevis ${ }^{* *}$ | CM-D020B | CM-D032B | CM-D040B |
| Trunnion (with nut) | CM-T020B | CM-T032B | CM-T040B |

* Two foot brackets and a mounting nut are attached.

When ordering the foot bracket, order 2 pcs. per cylinder.
** Clevis pin and retaining ring (cotter pin for $\varnothing 40$ ) are packaged together.

## CVM3 Series

## Construction

## Spring return



## Spring extend




Built-in One-touch
fitting


DIN terminal

Component Parts

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1}$ | Rod cover | Aluminum alloy | Clear anodized |
| $\mathbf{2}$ | Head cover | Aluminum alloy | Clear anodized |
| $\mathbf{3}$ | Cylinder tube | Stainless steel |  |
| $\mathbf{4}$ | Piston | Aluminum alloy | Chromated |
| $\mathbf{5}$ | Piston rod | Carbon steel | Hard chromium electroplated |
| $\mathbf{6}$ | Bushing | Oil-impregnated sintered alloy |  |
| $\mathbf{7}$ | Seal retainer | Stainless steel |  |
| $\mathbf{8}$ | Return spring | Aluminum alloy | Chromated |
| $\mathbf{9}$ | Spring guide | Aluminum alloy | Chromated |
| $\mathbf{1 0}$ | Spring seat | Alloy steel | Black zinc chromated |
| $\mathbf{1 1}$ | Plug with fixed orifice | Carbon tool steel | Phosphate coated |
| $\mathbf{1 2}$ | Retaining ring | Aluminum alloy | Metallic painted |
| $\mathbf{1 3}$ | Sub-plate | Carbon steel | Nickel plated |
| $\mathbf{1 4}$ | Hex. sockethead cap screw with spping washer | Aluminum alloy | Metallic painted |
| $\mathbf{1 5}$ | Plate | Carbon steel | Nickel plated |
| $\mathbf{1 6}$ | Hex. sockethead cap screw with spring washer | - | Refer to "How to order" below.* |
| $\mathbf{1 7}$ | Solenoid valve | Urethane |  |
| $\mathbf{1 8}$ | Bumper | Urethane |  |
| $\mathbf{1 9}$ | Bumper A |  |  |

* How to order solenoid valves

VZ319- $\square \square \square$
Rated voltage - Light/surge voltage suppressor

- Electrical entry

Component Parts

| No. | Description | Material | Note |
| :--- | :--- | :---: | :---: |
| $\mathbf{2 0}$ | Bumper B | Urethane |  |
| $\mathbf{2 1}$ | Retaining ring | Stainless steel |  |
| $\mathbf{2 2}$ | Piston seal | NBR |  |
| $\mathbf{2 3}$ | Piston gasket | NBR |  |
| $\mathbf{2 4}$ | Wear ring | Resin |  |
| $\mathbf{2 5}$ | Head cover gasket | NBR |  |
| $\mathbf{2 6}$ | Sub-plate gasket | NBR |  |
| $\mathbf{2 7}$ | Gasket | NBR |  |
| $\mathbf{2 8}$ | Pipe gasket | Urethane rubber |  |
| $\mathbf{2 9}$ | Gasket | Resin |  |
| $\mathbf{3 0}$ | Spacer gasket | Resin |  |
| $\mathbf{3 1}$ | One-touch fitting | - | Port size: $ø 6$ |
| $\mathbf{3 2}$ | Stud | Brass | Electroless nickel plated |
| $\mathbf{3 3}$ | Pipe | Aluminum alloy | Clear anodized |

## Replacement Parts/Seal Kit

| No. | Description | Material | Part no. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathbf{2 0}$ | $\mathbf{2 5}$ | $\mathbf{3 2}$ | $\mathbf{4 0}$ |  |
| $\mathbf{3 4}$ | Rod seal | NBR | CM220-PS | CM225-PS | CM232-PS | CM240-PS |  |

* Since the seal kit does not include a grease pack, order it separately. Grease pack part no.: GR-S-010 (10g)

Basic Type (B)
Single acting, Spring return: CVM3B $\qquad$ Bore size Stroke S


## Built-in One-touch fitting



| Bore size (mm) | A | AL | $\mathrm{B}_{1}$ | $\mathrm{B}_{2}$ | D | Eh8 | F | H | $\mathrm{H}_{1}$ | $\mathrm{H}_{2}$ | HX | I | K | MM | N | NA | NN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 18 | 15.5 | 13 | 26 | 8 | 20-0.033 | 13 | 41 | 5 | 8 | 57.5 | 28 | 5 | M8 $\times 1.25$ | 15 | 24 | M20 $\times 1.5$ |
| 25 | 22 | 19.5 | 17 | 32 | 10 | 26-0.033 | 13 | 45 | 6 | 8 | 63.5 | 33.5 | 5.5 | M10 $\times 1.25$ | 15 | 30 | M26 $\times 1.5$ |
| 32 | 22 | 19.5 | 17 | 32 | 12 | $26_{-0.033}^{0}$ | 13 | 45 | 6 | 8 | 68 | 37.5 | 5.5 | M10 $\times 1.25$ | 15 | 34.5 | M26 x 1.5 |
| 40 | 24 | 21 | 22 | 41 | 14 | 32 ${ }_{-0.039}^{0}$ | 16 | 50 | 8 | 10 | 76 | 46.5 | 7 | M14 $\times 1.5$ | 21.5 | 42.5 | M32 $\times 2$ |

Dimensions by Stroke

| $\begin{aligned} & \text { Stroke } \\ & \begin{array}{l} \text { Bore } \\ \text { size }(\mathrm{mm}) \end{array} \end{aligned}$ | 1 to 50 |  | 51 to 100 |  | 101 to 150 |  | 151 to 200 |  | 201 to 250 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | S | ZZ |
| 20 | 87 | 141 | 112 | 166 | 137 | 191 | - | - | - | - |
| 25 | 87 | 145 | 112 | 170 | 137 | 195 | - | - | - | - |
| 32 | 89 | 147 | 114 | 172 | 139 | 197 | 164 | 222 | - | - |
| 40 | 113 | 179 | 138 | 204 | 163 | 229 | 188 | 254 | 213 | 279 |

Single Acting/Spring Extend (mm)

| Bore size <br> $(\mathrm{mm})$ | $\mathbf{H X}$ | $\mathbf{Q}$ | $\mathbf{Q Y}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{2 0}$ | 65.3 | 19.8 | 14 |
| $\mathbf{2 5}$ | 70.5 | 22 | 14 |
| $\mathbf{3 2}$ | 76.5 | 25.8 | 16 |
| $\mathbf{4 0}$ | 84.5 | 29.8 | 16 |

## CVM3 Series

Axial Foot Type (L)
Single acting, Spring return: CVM3L
Bore size - Stroke S


Single acting, Spring extend: CVM3L Bore size $\boldsymbol{-}$ Stroke $\mathbf{T}$


| Bore size (mm) | A | AL | B | B1 | $\mathrm{B}_{2}$ | D | F | H | $\mathrm{H}_{1}$ | $\mathrm{H}_{2}$ | I | K | LC | LD | LH | LT | LX | LY | LZ | MM | N | NA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 18 | 15.5 | 40 | 13 | 26 | 8 | 13 | 41 | 5 | 8 | 28 | 5 | 4 | 6.8 | 25 | 3.2 | 40 | 70.5 | 55 | M8 $\times 1.25$ | 15 | 24 |
| 25 | 22 | 19.5 | 47 | 17 | 32 | 10 | 13 | 45 | 6 | 8 | 33.5 | 5.5 | 4 | 6.8 | 28 | 3.2 | 40 | 76.5 | 55 | M10 $\times 1.25$ | 15 | 30 |
| 32 | 22 | 19.5 | 47 | 17 | 32 | 12 | 13 | 45 | 6 | 8 | 37.5 | 5.5 | 4 | 6.8 | 28 | 3.2 | 40 | 78.8 | 55 | M10 $\times 1.25$ | 15 | 34.5 |
| 40 | 24 | 21 | 54 | 22 | 41 | 14 | 16 | 50 | 8 | 10 | 46.5 | 7 | 4 | 7 | 30 | 3.2 | 55 | 84.8 | 75 | M14 $\times 1.5$ | 21.5 | 42.5 |


|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Bore size <br> $(\mathrm{mm})$ | $\mathbf{N N}$ | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |
| $\mathbf{2 0}$ | $\mathrm{M} 20 \times 1.5$ | 20 | 8 | 21 |
| $\mathbf{2 5}$ | $\mathrm{M} 26 \times 1.5$ | 20 | 8 | 25 |
| $\mathbf{3 2}$ | $\mathrm{M} 26 \times 1.5$ | 20 | 8 | 25 |
| $\mathbf{4 0}$ | $\mathrm{M} 32 \times 2$ | 23 | 10 | 27 |

Dimensions by Stroke
(mm)

| Bore ${ }^{\text {Stroke }}$Size $(\mathrm{mm})^{2} \mathrm{mboll}^{2}$ | 1 to 50 |  |  | 51 to 100 |  |  | 101 to 150 |  |  | 151 to 200 |  |  | 201 to 250 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | S | LS | ZZ |
| 20 | 87 | 127 | 156 | 112 | 152 | 181 | 137 | 177 | 206 | - | - | - | - | - | - |
| 25 | 87 | 127 | 160 | 112 | 152 | 185 | 137 | 177 | 210 | - | - | - | - | - | - |
| 32 | 89 | 129 | 162 | 114 | 154 | 187 | 139 | 179 | 212 | 164 | 204 | 237 | - | - | - |
| 40 | 113 | 159 | 196 | 138 | 184 | 221 | 163 | 209 | 246 | 188 | 234 | 271 | 213 | 259 | 296 |

* Brackets are packaged together.


## Valve Mounted Cylinder Single Acting, Spring Return/Extend <br> CVM3 Series

Rod Side Flange Type (F)
Single acting, Spring return: CVM3F Bore size - Stroke $\mathbf{S}$


Single acting, Spring extend: CVM3F Bore size - Stroke $\mathbf{T}$


| Bore size (mm) | A | AL | B | B1 | $B_{2}$ | $\mathrm{C}_{2}$ | D | Eh8 | F | FD | FT | FX | FY | FZ | H | $\mathrm{H}_{1}$ | $\mathrm{H}_{2}$ | HX | 1 | K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 18 | 15.5 | 34 | 13 | 26 | 30 | 8 | $20{ }_{-0.093}^{0}$ | 13 | 7 | 4 | 60 | - | 75 | 41 | 5 | 8 | 57.5 | 28 | 5 |
| 25 | 22 | 19.5 | 40 | 17 | 32 | 37 | 10 | $26{ }_{-0.093}^{0}$ | 13 | 7 | 4 | 60 | - | 75 | 45 | 6 | 8 | 63.5 | 33.5 | 5.5 |
| 32 | 22 | 19.5 | 40 | 17 | 32 | 37 | 12 | $26{ }_{-0.093}^{0}$ | 13 | 7 | 4 | 60 | - | 75 | 45 | 6 | 8 | 68 | 37.5 | 5.5 |
| 40 | 24 | 21 | 52 | 22 | 41 | 47.3 | 14 | 32-0.0.039 | 16 | 7 | 5 | 66 | 36 | 82 | 50 | 8 | 10 | 76 | 46.5 | 7 |


|  |  |  |  |  |  |  | $(\mathrm{mm})$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bore size <br> $(\mathrm{mm})$ | MM | N | NA | NN | $\mathbf{Z}$ |  |  |  |  |  |
| $\mathbf{2 0}$ | $\mathrm{M} 8 \times 1.25$ | 15 | 24 | $\mathrm{M} 20 \times 1.5$ | 37 |  |  |  |  |  |
| $\mathbf{2 5}$ | $\mathrm{M} 10 \times 1.25$ | 15 | 30 | $\mathrm{M} 26 \times 1.5$ | 41 |  |  |  |  |  |
| $\mathbf{3 2}$ | $\mathrm{M} 10 \times 1.25$ | 15 | 34.5 | $\mathrm{M} 26 \times 1.5$ | 41 |  |  |  |  |  |
| $\mathbf{4 0}$ | $\mathrm{M} 14 \times 1.5$ | 21.5 | 42.5 | $\mathrm{M} 32 \times 2$ | 45 |  |  |  |  |  |


| Dimensions by Stroke |  |  |  |  |  |  |  |  | (mm) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Stroke } \\ & \begin{array}{l} \text { Bore symbol } \\ \text { size }(\mathrm{mm}) \end{array} \end{aligned}$ | 1 to 50 |  | 51 to 100 |  | 101 to 150 |  | 151 to 200 |  | 201 to 250 |  |
|  | S | ZZ |
| 20 | 87 | 141 | 112 | 166 | 137 | 191 | - | - | - | - |
| 25 | 87 | 145 | 112 | 170 | 137 | 195 | - | - | - | - |
| 32 | 89 | 147 | 114 | 172 | 139 | 197 | 164 | 222 | - | - |
| 40 | 113 | 179 | 138 | 204 | 163 | 229 | 188 | 254 | 213 | 279 |


| Single Acting/Spring Extend (mm) |  |  |  |
| :---: | :---: | :---: | :---: |
| Bore size <br> $(\mathrm{mm})$ | $\mathbf{H X}$ | $\mathbf{Q}$ | $\mathbf{Q Y}$ |
| $\mathbf{2 0}$ | 65.3 | 19.8 | 14 |
| $\mathbf{2 5}$ | 70.5 | 22 | 14 |
| $\mathbf{3 2}$ | 76.5 | 25.8 | 16 |
| $\mathbf{4 0}$ | 84.5 | 29.8 | 16 |

[^9]
## CVM3 Series

Head Side Flange Type (G)
Single acting, Spring return: CVM3G Bore size - Stroke S


Single acting, Spring extend: CVM3G Bore size - Stroke $\mathbf{T}$


| Bore size (mm) | A | AL | B | B1 | $\mathrm{B}_{2}$ | $\mathrm{C}_{2}$ | D | Eh8 | F | FD | FT | FX | FY | FZ | H | $\mathrm{H}_{1}$ | $\mathrm{H}_{2}$ | HX | I | K | MM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 18 | 15.5 | 34 | 13 | 26 | 30 | 8 | $20{ }_{-0.033}^{0}$ | 13 | 7 | 4 | 60 | - | 75 | 41 | 5 | 8 | 57.5 | 28 | 5 | M8 $\times 1.25$ |
| 25 | 22 | 19.5 | 40 | 17 | 32 | 37 | 10 | $26{ }_{-0.033}^{0}$ | 13 | 7 | 4 | 60 | - | 75 | 45 | 6 | 8 | 63.5 | 33.5 | 5.5 | M10 $\times 1.25$ |
| 32 | 22 | 19.5 | 40 | 17 | 32 | 37 | 12 | $26{ }_{-0.033}^{0}$ | 13 | 7 | 4 | 60 | - | 75 | 45 | 6 | 8 | 68 | 37.5 | 5.5 | M10 $\times 1.25$ |
| 40 | 24 | 21 | 52 | 22 | 41 | 47.3 | 14 | $32{ }_{-0.039}^{0}$ | 16 | 7 | 5 | 66 | 36 | 82 | 50 | 8 | 10 | 76 | 46.5 | 7 | M14 $\times 1.5$ |

( mm ) Dimensions by Stroke

| Bore size <br> $(\mathrm{mm})$ | $\mathbf{N}$ | NA | NN |
| :---: | :---: | :---: | :---: |
| $\mathbf{2 0}$ | 15 | 24 | $\mathrm{M} 20 \times 1.5$ |
| $\mathbf{2 5}$ | 15 | 30 | $\mathrm{M} 26 \times 1.5$ |
| $\mathbf{3 2}$ | 15 | 34.5 | $\mathrm{M} 26 \times 1.5$ |
| $\mathbf{4 0}$ | 21.5 | 42.5 | $\mathrm{M} 32 \times 2$ |


| Bore Strokesize $(\mathrm{mm}) \mathrm{m}_{\mathrm{mbog}}$ | 1 to 50 |  |  | 51 to 100 |  |  | 101 to 150 |  |  | 151 to 200 |  |  | 201 to 250 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | S | Z | ZZ |
| 20 | 87 | 132 | 141 | 112 | 157 | 166 | 137 | 182 | 191 | - | - | - | - | - | - |
| 25 | 87 | 136 | 145 | 112 | 161 | 170 | 137 | 186 | 195 | - | - | - | - | - | - |
| 32 | 89 | 138 | 147 | 114 | 163 | 172 | 139 | 188 | 197 | 164 | 213 | 222 | - | - | - |
| 40 | 113 | 168 | 179 | 138 | 193 | 204 | 163 | 218 | 229 | 188 | 243 | 254 | 213 | 268 | 279 |

(mm) Single Acting/Spring Extend (mm)

| Bore size <br> $(\mathbf{m m})$ | $\mathbf{H X}$ | $\mathbf{Q}$ | $\mathbf{Q Y}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{2 0}$ | 65.3 | 19.8 | 14 |
| $\mathbf{2 5}$ | 70.5 | 22 | 14 |
| $\mathbf{3 2}$ | 76.5 | 25.8 | 16 |
| $\mathbf{4 0}$ | 84.5 | 29.8 | 16 |

[^10]
## Single Clevis Type (C)

Single acting, Spring return: CVM3C
Bore size - Stroke S


Single acting, Spring extend: CVM3C Bore size - Stroke $\mathbf{T}$


| Bore size (mm) | A | AL | B1 | CD | CX | D | Eh\% | F | H | $\mathrm{H}_{1}$ | HX | I | K | L | MM | N | NA | NN | RR | U |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 18 | 15.5 | 13 | 9 | 10 | 8 | $20{ }_{-0.033}^{0}$ | 13 | 41 | 5 | 57.5 | 28 | 5 | 30 | M $8 \times 1.25$ | 15 | 24 | M20 $\times 1.5$ | 9 | 14 |
| 25 | 22 | 19.5 | 17 | 9 | 10 | 10 | $26{ }_{-0.033}^{0}$ | 13 | 45 | 6 | 63.5 | 33.5 | 5.5 | 30 | M10 $\times 1.25$ | 15 | 30 | M26 $\times 1.5$ | 9 | 14 |
| 32 | 22 | 19.5 | 17 | 9 | 10 | 12 | $26{ }_{-0.033}^{0}$ | 13 | 45 | 6 | 68 | 37.5 | 5.5 | 30 | M10 $\times 1.25$ | 15 | 34.5 | M26 x 1.5 | 9 | 14 |
| 40 | 24 | 21 | 22 | 10 | 15 | 14 | $32{ }_{-0.039}^{0}$ | 16 | 50 | 8 | 76 | 46.5 | 7 | 39 | M14 $\times 1.5$ | 21.5 | 42.5 | M32 $\times 2$ | 11 | 18 |

## Dimensions by Stroke

| Stroke | 1 to 50 |  |  | 51 to 100 |  |  | 101 to 150 |  |  | 151 to 200 |  |  | 201 to 250 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| size (mm) Simbol | S | Z | ZZ |
| 20 | 87 | 158 | 167 | 112 | 183 | 192 | 137 | 208 | 217 | - | - | - | - | - | - |
| 25 | 87 | 162 | 171 | 112 | 187 | 196 | 137 | 212 | 221 | - | - | - | - | - | - |
| 32 | 89 | 164 | 173 | 114 | 189 | 198 | 139 | 214 | 223 | 164 | 239 | 248 | - | - | - |
| 40 | 113 | 202 | 213 | 138 | 227 | 238 | 163 | 252 | 263 | 188 | 277 | 288 | 213 | 302 | 313 |

Single Acting/Spring Extend (mm)

| Bore size <br> $(\mathbf{m m})$ | $\mathbf{H X}$ | $\mathbf{Q}$ | $\mathbf{Q Y}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{2 0}$ | 65.3 | 19.8 | 14 |
| $\mathbf{2 5}$ | 70.5 | 22 | 14 |
| $\mathbf{3 2}$ | 76.5 | 25.8 | 16 |
| $\mathbf{4 0}$ | 84.5 | 29.8 | 16 |

## CVM3 Series

Double Clevis Type (D)
Single acting, Spring return: CVM3D Bore size - Stroke S


Single acting, Spring extend: CVM3D Bore size - Stroke T


| Bore size (mm) | A | AL | B1 | CD | CX | CZ | D | Eh\% | F | H | $\mathrm{H}_{1}$ | HX | I | K | L | MM | N | NA | NN | RR | U |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 18 | 15.5 | 13 | 9 | 10 | 19 | 8 | $20_{-0.033}^{0}$ | 13 | 41 | 5 | 57.5 | 28 | 5 | 30 | M8 $\times 1.25$ | 15 | 24 | M20 x 1.5 | 9 | 14 |
| 25 | 22 | 19.5 | 17 | 9 | 10 | 19 | 10 | $26_{-0.033}^{0}$ | 13 | 45 | 6 | 63.5 | 33.5 | 5.5 | 30 | M10 $\times 1.25$ | 15 | 30 | M26 x 1.5 | 9 | 14 |
| 32 | 22 | 19.5 | 17 | 9 | 10 | 19 | 12 | $26_{-0.033}^{0}$ | 13 | 45 | 6 | 68 | 37.5 | 5.5 | 30 | M10 $\times 1.25$ | 15 | 34.5 | M26 x 1.5 | 9 | 14 |
| 40 | 24 | 21 | 22 | 10 | 15 | 30 | 14 | 32-0.0.099 | 16 | 50 | 8 | 76 | 46.5 | 7 | 39 | M14 $\times 1.5$ | 21.5 | 42.5 | M32 $\times 2$ | 11 | 18 |

Dimensions by Stroke

| Stroke | 1 to 50 |  |  | 51 to 100 |  |  | 101 to 150 |  |  | 151 to 200 |  |  | 201 to 250 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Bore } \\ & \text { size }(\mathrm{mm}) \text { Symbor } \end{aligned}$ | S | Z | ZZ |
| 20 | 87 | 158 | 167 | 112 | 183 | 192 | 137 | 208 | 217 | - | - | - | - | - | - |
| 25 | 87 | 162 | 171 | 112 | 187 | 196 | 137 | 212 | 221 | - | - | - | - | - | - |
| 32 | 89 | 164 | 173 | 114 | 189 | 198 | 139 | 214 | 223 | 164 | 239 | 248 | - | - | - |
| 40 | 113 | 202 | 213 | 138 | 227 | 238 | 163 | 252 | 263 | 188 | 277 | 288 | 213 | 302 | 313 |

[^11]Rod Side Trunnion Type (U)
Single acting, Spring return: CVM3U Bore size - Stroke $\mathbf{S}$


| Bore size (mm) | A | AL | $\mathrm{B}_{1}$ | $\mathrm{B}_{2}$ | D | Eh\% | F | H | $\mathrm{H}_{1}$ | HX | I | K | MM | N | NA | NN | TD | TT | TX | TY | TZ | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 18 | 15.5 | 13 | 26 | 8 | 20-0.033 | 13 | 41 | 5 | 57.5 | 28 | 5 | M8 $\times 1.25$ | 15 | 24 | M20 $\times 1.5$ | 8 | 10 | 32 | 32 | 52 | 36 |
| 25 | 22 | 19.5 | 17 | 32 | 10 | 26-0.033 | 13 | 45 | 6 | 63.5 | 33.5 | 5.5 | M10 1.25 | 15 | 30 | M $26 \times 1.5$ | 9 | 10 | 40 | 40 | 60 | 40 |
| 32 | 22 | 19.5 | 17 | 32 | 12 | $26{ }_{-0.033}^{0}$ | 13 | 45 | 6 | 68 | 37.5 | 5.5 | M10 $\times 1.25$ | 15 | 34.5 | M26 x 1.5 | 9 | 10 | 40 | 40 | 60 | 40 |
| 40 | 24 | 21 | 22 | 41 | 14 | 32-0.039 | 16 | 50 | 8 | 76 | 46.5 | 7 | M14 $\times 1.5$ | 21.5 | 42.5 | M $32 \times 2$ | 10 | 11 | 53 | 53 | 77 | 44.5 |


| Dimensions by Stroke |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Bore Stroke } \\ & \text { Bize } \begin{array}{l} \text { smm }) \end{array} \end{aligned}$ | 1 to 50 |  | 51 to 100 |  | 101 to 150 |  | 151 to 200 |  | 201 to 250 |  |
|  | S | ZZ | S | ZZ | S | ZZ | S | ZZ | S | Z |
| 20 | 87 | 141 | 112 | 166 | 137 | 191 | - | - | - |  |
| 25 | 87 | 145 | 112 | 170 | 137 | 195 | - | - | - |  |
| 32 | 89 | 147 | 114 | 172 | 139 | 197 | 164 | 222 | - | - |
| 40 | 113 | 179 | 138 | 204 | 163 | 229 | 188 | 254 | 213 | 27 |

Single Acting/Spring Extend (mm)

| Bore size <br> $(\mathbf{m m})$ | $\mathbf{H X}$ | $\mathbf{Q}$ | $\mathbf{Q Y}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{2 0}$ | 65.3 | 19.8 | 14 |
| $\mathbf{2 5}$ | 70.5 | 22 | 14 |
| $\mathbf{3 2}$ | 76.5 | 25.8 | 16 |
| $\mathbf{4 0}$ | 84.5 | 29.8 | 16 |

[^12]
## CVM3 Series

Head Side Trunnion Type (T)
Single acting, Spring return: CVM3T Bore size - Stroke $\mathbf{s}$


Single acting, Spring extend: CVM3T Bore size - Stroke $\mathbf{T}$


| Bore size (mm) | A | AL | $\mathrm{B}_{1}$ | B2 | D | Eh8 | F | H | $\mathrm{H}_{1}$ | HX | 1 | K | MM | N | NA | NN | TD | TT | TX | TY | TZ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 18 | 15.5 | 13 | 26 | 8 | $20{ }_{-0.033}^{0}$ | 13 | 41 | 5 | 57.5 | 28 | 5 | M8 $\times 1.25$ | 15 | 24 | M20 $\times 1.5$ | 8 | 10 | 32 | 32 | 52 |
| 25 | 22 | 19.5 | 17 | 32 | 10 | $26{ }_{-0.033}^{0}$ | 13 | 45 | 6 | 63.5 | 33.5 | 5.5 | M10 1.25 | 15 | 30 | M26 $\times 1.5$ | 9 | 10 | 40 | 40 | 60 |
| 32 | 22 | 19.5 | 17 | 32 | 12 | $26{ }_{-0.033}^{0}$ | 13 | 45 | 6 | 68 | 37.5 | 5.5 | M10 1.25 | 15 | 34.5 | M26 x 1.5 | 9 | 10 | 40 | 40 | 60 |
| 40 | 24 | 21 | 22 | 41 | 14 | $32{ }_{-0.039}^{0}$ | 16 | 50 | 8 | 76 | 46.5 | 7 | M14 $\times 1.5$ | 21.5 | 42.5 | M32 $\times 2$ | 10 | 11 | 53 | 53 | 77 |

Dimensions by Stroke

| $\underbrace{\text { Strmool }}_{$ Bore  <br>  size $(\mathrm{mm})$$}$ | 1 to 50 |  |  | 51 to 100 |  |  | 101 to 150 |  |  | 151 to 200 |  |  | 201 to 250 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | S | Z | ZZ |
| 20 | 87 | 133 | 143 | 112 | 158 | 168 | 137 | 183 | 193 | - | - | - | - | - | - |
| 25 | 87 | 137 | 147 | 112 | 162 | 172 | 137 | 187 | 197 | - | - | - | - | - | - |
| 32 | 89 | 139 | 149 | 114 | 164 | 174 | 139 | 189 | 199 | 164 | 214 | 224 | - | - | - |
| 40 | 113 | 168.5 | 179 | 138 | 193.5 | 204 | 163 | 218.5 | 229 | 188 | 243.5 | 254 | 213 | 268.5 | 279 |

Single Acting/Spring Extend (mm)

| Bore size <br> $(\mathbf{m m})$ | $\mathbf{H X}$ | $\mathbf{Q}$ | $\mathbf{Q Y}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{2 0}$ | 65.3 | 19.8 | $\mathbf{1 4}$ |
| $\mathbf{2 5}$ | 70.5 | 22 | 14 |
| $\mathbf{3 2}$ | 76.5 | 25.8 | 16 |
| $\mathbf{4 0}$ | 84.5 | 29.8 | 16 |

[^13]
# Valve Mounted Cylinder: Non-rotating Rod Type Single Acting, Spring Return/Extend CVM3K Series <br> ø20, ø25, ø32, ø40 

How to Order


## A hexagon shaped rod that does not rotate.

Non-rotating accuracy
$\varnothing 20, \varnothing 25- \pm 0.7^{\circ}$
$\varnothing 32, \varnothing 40- \pm 0.5^{\circ}$
Can operate without lubrication.
Auto switches can also be mounted.
Can be installed with auto switches to facilitate the detection of the cylinder's stroke position.


Symbol
Rubber bumper


## Mounting Bracket Part No.

| Bore size (mm) | $\mathbf{2 0}$ | $\mathbf{2 5}$ | $\mathbf{3 2}$ | $\mathbf{4 0}$ |
| :--- | :---: | :---: | :---: | :---: |
| Axial foot* | CM-L020B | CM-L032B | CM-L040B |  |
| Flange | CM-F020B | CM-F032B | CM-F040B |  |
| Single clevis | CM-C020B | CM-C032B | CM-C040B |  |
| Double clevis** | CM-D020B | CM-D032B | CM-D040B |  |
| Trunnion (With nut) | CM-T020B | CM-T032B | CM-T040B |  |

[^14]When ordering the foot bracket, order 2 pcs. per cylinder.
** Clevis pin and retaining ring (cotter pin for ø40) are packaged together.
Note) At the rated voltage.

## Standard Stroke

## Specifications

| Applicable bore size (mm) |  | 20 | 25 | 32 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Rod non-rotating accuracy |  | $\pm 0.7^{\circ}$ |  | $\pm 0.5^{\circ}$ |  |
| Action |  | Single acting, Spring return/Spring extend |  |  |  |
| Fluid |  | Air |  |  |  |
| Cushion |  | Rubber bumper |  |  |  |
| Proof pressure |  | 1.0 MPa |  |  |  |
| Maximum operating pressure |  | 0.7 MPa |  |  |  |
| Minimum operating pressure |  | 0.18 MPa spring return |  | 0.23 MPa spring extend |  |
| Ambient and fluid temperature |  | -10 to $50^{\circ} \mathrm{C}$ (No freezing) |  |  |  |
| Lubrication |  | Not required (Non-lube) |  |  |  |
| Stroke length tolerance |  | $\begin{gathered} +1.4 \\ 0 \\ \hline \end{gathered}$ |  |  |  |
| Piping | Screw-in type | Rc 1/8 |  |  |  |
|  | Built-in One-touch fitting | O.D.: ø6/I.D.: ø4 |  |  |  |
| Manual override |  | Non locking (Standard) |  |  |  |
| Piston speed (mm/s) |  | 50 to 700 | 50 to 650 | 50 to 590 | 50 to 420 |
| Allowable kinetic energy |  | 0.27 J | 0.4 J | 0.65 J | 1.2 J |
| Mounting |  | Basic type, Axial foot type, Rod side flange type, Head side flange type, Single clevis type, Double clevis type, Head side trunnion type, Rod side trunnion type |  |  |  |

## Solenoid Valve Specifications

| Applicable solenoid valve model |  |  | VZ319 |
| :---: | :---: | :---: | :---: |
| Coil rated voltage |  |  | Standard: 100/200 VAC ( $50 / 60 \mathrm{~Hz}$ ), 24 VDC Semi-standard: 110/220 VAC, 12 VDC |
| Effective area of valve (Cv factor) |  |  | $4.5 \mathrm{~mm}^{2}$ (0.25) |
| Allowable voltage |  |  | -15 to 10\% of the rated voltage |
| Coil insulation |  |  | Class B or equivalent ( $130^{\circ} \mathrm{C}$ ) |
| Electrical entry |  |  | Grommet, L plug connector, M plug connector, DIN terminal |
| $\begin{array}{\|l\|} \hline \begin{array}{l} \text { Power } \end{array} \text { Note) } \\ \text { consumption (W) } \\ \hline \end{array}$ | DC |  | 1.8 (With indicator light: 2.1) |
| $\begin{array}{\|l\|} \hline \text { Apparent power) } \\ \text { (VA) } \end{array}$ | AC | Inrush | $4.5 / 50 \mathrm{~Hz}, 4.2 / 60 \mathrm{~Hz}$ |
|  | AC | Holding | $3.5 / 50 \mathrm{~Hz}, 3.0 / 60 \mathrm{~Hz}$ |


| Bore size $(\mathrm{mm})$ | Standard stroke $(\mathrm{mm})^{\text {Note })}$ |
| :---: | :---: |
| 20 | $25,50,75,100,125,150^{*}$ |
| 25 | $25,50,75,100,125,150^{*}$ |
| 32 | $25,50,75,100,125,150,200 *$ |
| 40 | $25,50,75,100,125,150,200,250 *$ |

Note 1) Intermediate stroke other than above is manufactured upon receipt of order.
Note 2) Strokes marked with " $*$ " are the maximum strokes which are available.

> | Refer to pages 808 to 811 for cylinders with auto switches. |
| :--- |
| - Proper auto switch mounting position (detection at stroke end) |
| and mounting height |
| - Minimum auto switch mounting stroke |
| - Operating range |
| - Auto switch mounting bracket: Part no. |

## Theoretical Output

Refer to the Technical Data (Theoretical Output 1) in Best Pneumatics No. 2-1

## Spring Reaction Force

Refer to the Technical Data (Table 2: Spring Reaction Force) in Best Pneumatics No. 2-1.

## Valve Mounted Cylinder: Non-rotating Rod Type Single Acting, Spring Return/Extend <br> CVM3K Series

## Mounting Bracket and Accessory

|  | Standard equipment |  |  | Option |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mounting nut | Rod end nut | Clevis pin | Single knuckle joint | Double <br> knuckle joint | $\begin{aligned} & \text { Pivot }{ }^{(5)} \\ & \text { bracket } \end{aligned}$ | $\left\lvert\, \begin{gathered} \text { Pivot }{ }^{(6)} \\ \text { bracket pin } \end{gathered}\right.$ |
| Basic type | - (1 pc.) | - | - | - | - | - | - |
| Axial foot type | - (2) | $\bullet$ | - | $\bigcirc$ | - |  |  |
| Rod side flange type | (1) | - | - | $\bigcirc$ | - |  |  |
| Head side flange type | - (1) | - | - | - | - |  |  |
| Single clevis type | - ${ }^{(1)}$ | - | - | $\bigcirc$ | - | - | $\bigcirc$ |
| Double clevis type ${ }^{(3)}$ | - ${ }^{(1)}$ | - | ${ }^{(4)}$ | - | - | - | - |
| Head side trunnion type | - (1) ${ }^{(2)}$ | - | - | $\bigcirc$ | - | - | - |
| Rod side trunnion type | - (1) ${ }^{(2)}$ | - | - | - | - |  |  |

Note 1) Mounting nut is not equipped with single clevis type and double clevis type.
Note 2) Trunnion nuts are equipped for head side trunnion and rod side trunnion.
Note 3) Pin and retaining ring are shipped together with double clevis and double knuckle joint.
Note 4) Retaining rings (cotter pins for ø40) are included in clevis pins.
Note 5) Pin and retaining ring are not included in pivot bracket.
Note 6) Retaining rings are included in pivot bracket pin.

## Weight

Spring Return/( ): Denotes Spring Extend.

| Bore size (mm) |  | $\mathbf{2 0}$ | $\mathbf{2 5}$ | $\mathbf{3 2}$ | $\mathbf{4 0}$ |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Basic <br> weight | 25 stroke | $0.30(0.30)$ | $0.40(0.04)$ | $0.52(0.51)$ | $0.87(0.86)$ |
|  | 50 stroke | 100 stroke | $0.32(0.32)$ | $0.43(0.43)$ | $0.56(0.56)$ |
|  | 75 stroke | $0.94(0.93)$ |  |  |  |
|  | 125 stroke | $0.37(0.37)$ | $0.52(0.51)$ | $0.68(0.66)$ | $1.13(1.09)$ |
|  | 150 stroke | $0.39(0.39)$ | $0.55(0.54)$ | $0.73(0.70)$ | $1.19(1.16)$ |
|  | 200 stroke | $0.45(0.44)$ | $0.64(0.61)$ | $0.86(0.82)$ | $1.39(1.33)$ |
|  | 250 stroke | $0.47(0.46)$ | $0.67(0.64)$ | $0.90(0.86)$ | $1.46(1.40)$ |
| Mounting <br> bracket <br> weight | Axial foot | Flange | $-(-)$ | $-(-)$ | $1.07(1.02)$ |
|  | Single clevis | $-(-)$ | $-(-)$ | $-(-)$ | $1.91(1.63)$ |
|  | Double clevis | $0.15(0.15)$ | $0.16(0.16)$ | $0.16(0.16)$ | $0.27(0.27)$ |
|  | Trunnion | $0.06(0.06)$ | $0.09(0.09)$ | $0.09(0.09)$ | $0.12(0.12)$ |
| Option <br> bracket <br> weight | Single knuckle joint | Double knuckle (With pin) | $0.04(0.04)$ | $0.04(0.04)$ | $0.09(0.09)$ |
|  | $0.05(0.05)$ | $0.06(0.06)$ | $0.06(0.06)$ | $0.13(0.13)$ |  |

Calculation: (Example) CVM3KL32-100-1G (ø32, 100 stroke, Spring return)

- Basic weight ............ 0.73 (kg)
- Weight of brackets … $0.16(\mathrm{~kg})$
$0.73+0.16=0.89 \mathrm{~kg}$


## Manual Operation

Manual operation is possible by pushing the manual button indicated with the arrow.


## $\triangle$ Precautions

I Be sure to read this before handling the I
I products. Refer to back page 50 for 1
I Safety Instructions, pages 3 to 12 for
Actuator and Auto Switch Precautions, I and $3 / 4 / 5$ Port Solenoid Valve Precautions $I$ in Best Pneumatics No. 1-1.

Operating Precautions

## Caution

1. Avoid using the air cylinder in such a way that rotational torque would be applied to the piston rod.
If rotational torque is applied, the non-rotating guide will deform, causing a loss of non-rotating accuracy. Also, to screw a bracket or a nut onto the threaded portion at the end of the piston rod, make sure to retract the piston rod entirely, and place a wrench on the parallel sections of the rod that protrudes. To tighten, take precautions to prevent the tightening torque from being applied to the non-rotating guide.

| Allowable <br> rotational torque <br> (N.m or less) | $\varnothing \mathbf{2 0}$ | $\varnothing \mathbf{2 5}$ | $\varnothing \mathbf{3 2}$ | $\varnothing \mathbf{4 0}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | 0.2 | 0.25 | 0.25 | 0.44 |



## Disassembly/Replacement

$\triangle$ Caution

1. When replacing rod seals, please contact SMC.
Air leakage may be happened, depending on the position in which a rod seal is fitted. Thus, please contact SMC when replacing them.

## Model Selection <br> $\triangle$ Warning

## 1. Confirm the specifications.

Products in this catalog are designed to be used for compressed air systems. If not operated within the designated pressure or temperature, it may damage the products or cause malfunction. (Refer to specifications.)
2. Energizing continuously for a long period of time
When the valve is continuously energized for a long period of time, the performance may deteriorate or affect peripheral equipment adversely since temperature rises when coils generate heat.

## CVM3K Series

## Construction

## Spring return



Spring extend



Built-in One-touch fitting


DIN terminal

## Component Parts

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1}$ | Rod cover | Aluminum alloy | Clear anodized |
| $\mathbf{2}$ | Head cover | Aluminum alloy | Clear anodized |
| $\mathbf{3}$ | Cylinder tube | Stainless steel |  |
| $\mathbf{4}$ | Piston | Aluminum alloy | Chromated |
| $\mathbf{5}$ | Piston rod | Carbon steel | Hard chrome plated |
| $\mathbf{6}$ | Non-rotating guide | Bearing alloy |  |
| $\mathbf{7}$ | Seal retainer | Rolled steel | Nickel plated |
| $\mathbf{8}$ | Return spring | Steel wire | Zinc chromated |
| $\mathbf{9}$ | Spring guide | Aluminum alloy | Chromated |
| $\mathbf{1 0}$ | Spring seat | Aluminum alloy | Chromated |
| $\mathbf{1 1}$ | Plug with fixed orifice | Alloy steel | Black zinc chromated |
| $\mathbf{1 2}$ | Retaining ring | Carbon tool steel | Phosphate coated |
| $\mathbf{1 3}$ | Sub-plate | Aluminum alloy | Metallic painted |
| $\mathbf{1 4}$ | Hex. sockethead cap screw with spping washer | Carbon steel | Nickel plated |
| $\mathbf{1 5}$ | Plate | Aluminum alloy | Metallic painted |
| $\mathbf{1 6}$ | Hex. sockethead cap screwwith spring washer | Carbon steel | Nickel plated |
| $\mathbf{1 7}$ | Solenoid valve | - | Refer to the below.* |
| $\mathbf{1 8}$ | Bumper | Urethane |  |
| $\mathbf{1 9}$ | Bumper A | Urethane |  |

* How to order solenoid valves

VZ319- $\square \square$
Rated voltage - Light/surge voltage suppressor - Electrical entry

Component Parts

| No. | Description | Material | Note |
| :--- | :--- | :---: | :---: |
| $\mathbf{2 0}$ | Bumper B | Urethane |  |
| $\mathbf{2 1}$ | Retaining ring | Stainless steel |  |
| $\mathbf{2 2}$ | Piston seal | NBR |  |
| $\mathbf{2 3}$ | Piston gasket | NBR |  |
| $\mathbf{2 4}$ | Wear ring | Resin |  |
| $\mathbf{2 5}$ | Head cover gasket | NBR |  |
| $\mathbf{2 6}$ | Sub-plate gasket | NBR |  |
| $\mathbf{2 7}$ | Gasket | NBR |  |
| $\mathbf{2 8}$ | Pipe gasket | Urethane rubber |  |
| $\mathbf{2 9}$ | Gasket | Resin |  |
| $\mathbf{3 0}$ | Spacer gasket | Resin |  |
| $\mathbf{3 1}$ | One-touch fitting | - | Port size: $ø 6$ |
| $\mathbf{3 2}$ | Stud | Brass | Electroless nickel plated |
| $\mathbf{3 3}$ | Pipe | Aluminum alloy | Clear anodized |

## Replacement Parts/Seal Kit

| No. | Description | Material | Part no. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathbf{2 0}$ | $\mathbf{2 5}$ | $\mathbf{3 2}$ | $\mathbf{4 0}$ |  |
| $\mathbf{3 4}$ | Rod seal | NBR | CM2K20-PS | CM2K25-PS | CM2K32-PS | CM2K40-PS |  |

* Since the seal kit does not include a grease pack, order it separately. Grease pack part no.: GR-S-010 (10g)

Basic Type (B): External Dimensions
Single acting, Spring return: CVM3KB Bore size - Stroke S


Single acting, Spring extend: CVM3KB


## Built-in One-touch fitting



| Bore size (mm) | A | AL | B1 | B2 | Eh8 | F | H | $\mathrm{H}_{1}$ | $\mathrm{H}_{2}$ | HX | I | KA | MM | N | NA | NN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 18 | 15.5 | 13 | 26 | $20_{-0.033}^{0}$ | 13 | 41 | 5 | 8 | 57.5 | 28 | 8.2 | M8 $\times 1.25$ | 15 | 24 | M20 $\times 1.5$ |
| 25 | 22 | 19.5 | 17 | 32 | $26_{-0.033}^{0}$ | 13 | 45 | 6 | 8 | 63.5 | 33.5 | 10.2 | M10 $\times 1.25$ | 15 | 30 | M26 $\times 1.5$ |
| 32 | 22 | 19.5 | 17 | 32 | $26_{-0.033}^{0}$ | 13 | 45 | 6 | 8 | 68 | 37.5 | 12.2 | M10 $\times 1.25$ | 15 | 34.5 | M26 x 1.5 |
| 40 | 24 | 21 | 22 | 41 | 32 ${ }_{-0.039}^{0}$ | 16 | 50 | 8 | 10 | 76 | 46.5 | 14.2 | M14 $\times 1.5$ | 21.5 | 42.5 | M32 $\times 2$ |

Dimensions by Stroke

| Bore Strokesize (mm) | 1 to 50 |  | 51 to 100 |  | 101 to 150 |  | 151 to 200 |  | 201 to 250 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | S | ZZ |
| 20 | 87 | 141 | 112 | 166 | 137 | 191 | - | - | - | - |
| 25 | 87 | 145 | 112 | 170 | 137 | 195 | - | - | - | - |
| 32 | 89 | 147 | 114 | 172 | 139 | 197 | 164 | 222 | - | - |
| 40 | 113 | 179 | 138 | 204 | 163 | 229 | 188 | 254 | 213 | 279 |

Single Acting/Spring Extend (mm)

| Bore size <br> $(\mathrm{mm})$ | $\mathbf{H X}$ | $\mathbf{Q}$ | $\mathbf{Q Y}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{2 0}$ | 65.3 | 19.8 | 14 |
| $\mathbf{2 5}$ | 70.5 | 22 | 14 |
| $\mathbf{3 2}$ | 76.5 | 25.8 | 16 |
| $\mathbf{4 0}$ | 84.5 | 29.8 | 16 |

## CVM3 Series

## Auto Switch Mounting 1

## Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

## Reed auto switch

D-A9 $\square$

( ): For D-A96 type
$A$ and $B$ are the dimensions from the end of the head
D-C7/C8 cover/rod cover to the end of the auto switch.


## D-B5/B6/B59W



## D-C73C/C80C



Solid state auto switch

## D-M9 $\square$ <br> D-M9 $\square$ W



## D-H7■/H7■W/H7NF



## D-G5NT



## D-H7C



## Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height: Single Acting, Spring Return (S)/Spring Extend (T)

Auto Switch Proper Mounting Position: Standard, Spring Return (S)
Non-Rotating, Spring Return (S)

Auto Switch Proper Mounting Position: Standard, Spring Extend (T)
Non-Rotating, Spring Extend (T)
(mm)

| Auto switch model | Bore size | A | B dimension |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | to $15^{\text {st }}$ | 51 to $100^{\text {st }}$ | 101 to $150{ }^{\text {st }}$ | 151 to $200{ }^{\text {st }}$ | 201 to $250{ }^{\text {st }}$ |
| D-A9 $\square$ (V) | 20 | 6.5 | 30.5 | 55.5 | 80.5 | - | - |
|  | 25 | 6.5 | 30.5 | 55.5 | 80.5 | - | - |
|  | 32 | 7.5 | 31.5 | 56.5 | 81.5 | 106.5 | - |
|  | 40 | 13.5 | 36.5 | 61.5 | 86.5 | 111.5 | 136.5 |
| $\begin{aligned} & \text { D-M9 } \square(\mathrm{V}) \\ & \text { D-M9 } \square \mathrm{W}(\mathrm{~V}) \\ & \text { D-M9 } \square \mathbf{A}(\mathrm{V}) \end{aligned}$ | 20 | 10.5 | 34.5 | 59.5 | 84.5 | - | - |
|  | 25 | 10.5 | 34.5 | 59.5 | 84.5 | - | - |
|  | 32 | 11.5 | 35.5 | 60.5 | 85.5 | 110.5 | - |
|  | 40 | 17.5 | 40.5 | 65.5 | 90.5 | 115.5 | 140.5 |
| $\begin{aligned} & \text { D-B5 } \\ & \text { D-B64 } \end{aligned}$ | 20 | 1 | 25 | 50 | 75 | - | - |
|  | 25 | 1 | 25 | 50 | 75 | - | - |
|  | 32 | 2 | 26 | 51 | 76 | 101 | - |
|  | 40 | 7 | 31 | 56 | 81 | 106 | 131 |
| $\begin{aligned} & \text { D-C7 } \\ & \text { D-C80 } \\ & \text { D-C73C } \\ & \text { D-C80C } \end{aligned}$ | 20 | 7 | 31 | 56 | 81 | - | - |
|  | 25 | 7 | 31 | 56 | 81 | - | - |
|  | 32 | 8 | 32 | 57 | 82 | 107 | - |
|  | 40 | 13 | 37 | 62 | 87 | 112 | 137 |
| D-B59W | 20 | 4 | 28 | 53 | 78 | - | - |
|  | 25 | 4 | 28 | 53 | 78 | - | - |
|  | 32 | 5 | 29 | 54 | 79 | 104 | - |
|  | 40 | 10 | 34 | 59 | 84 | 109 | 134 |
| D-H7 <br> D-H7C <br> D-H7 $\square$ W <br> D-H7NF | 20 | 6 | 30 | 55 | 80 | - | - |
|  | 25 | 6 | 30 | 55 | 80 | - | - |
|  | 32 | 7 | 31 | 56 | 81 | 106 | - |
|  | 40 | 12 | 36 | 61 | 86 | 111 | 136 |
| D-G5NT | 20 | 2.5 | 26.5 | 51.5 | 76.5 | - | - |
|  | 25 | 2.5 | 26.5 | 51.5 | 76.5 | - | - |
|  | 32 | 3.5 | 27.5 | 52.5 | 77.5 | 102.5 | - |
|  | 40 | 8.5 | 32.5 | 57.5 | 81.5 | 107.5 | 132.5 |

[^15]
## CVM3 Series <br> Auto Switch Mounting 2

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height
Auto Switch Mounting Height

|  | $\begin{aligned} & \text { D-A9 } \square(\mathrm{V}) \\ & \text { D-M9 } \square(\mathrm{V}) \\ & \text { D-M9 } \square \mathbf{W}(\mathrm{V}) \\ & \text { D-M9 } \square \mathbf{A}(\mathrm{V}) \end{aligned}$ | $\begin{aligned} & \text { D-B5 } \\ & \text { D-B64 } \\ & \text { D-B59W } \\ & \text { D-G5NT } \\ & \text { D-H7C } \end{aligned}$ | $\begin{aligned} & \text { D-C7口 } \\ & \text { D-C80 } \\ & \text { D-H7■ } \\ & \text { D-H7■W } \\ & \text { D-H7NF } \end{aligned}$ | $\begin{aligned} & \text { D-C73C } \\ & \text { D-C80C } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | Hs | Hs | Hs | Hs |
| 20 | 23 | 25.5 | 22.5 | 25 |
| 25 | 25.5 | 28 | 25 | 27.5 |
| 32 | 29 | 31.5 | 28.5 | 31 |
| 40 | 33 | 35.5 | 32.5 | 35 |

## Minimum Auto Switch Mounting Stroke

| Auto switch model | No. of auto switch mounted |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 |  | n |  |
|  |  | Different surfaces | Same surface | Different surfaces | Same surface |
| $\begin{aligned} & \text { D-A9 } \square \\ & \text { D-M9 } \square \\ & \text { D-M9 } \square \text { W } \end{aligned}$ | 10 | $15^{\text {Note 1) }}$ | $45^{\text {Note }}{ }^{1)}$ | $\begin{gathered} 15+45 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note2 })} \end{gathered}$ | $\begin{gathered} 45+45(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
| D-M9 $\square$ V | 5 | 20 | 35 | $\begin{gathered} 20+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note2 })} \end{gathered}$ | $\begin{gathered} 35+35(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
| D-A9 $\square$ V | 5 | 15 | 25 | $\begin{gathered} 15+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note2 })} \end{gathered}$ | $\begin{gathered} 25+35(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
| $\begin{aligned} & \text { D-M9 } \square W V \\ & \text { D-M9 } \square \text { AV } \end{aligned}$ | 10 | 20 | 35 | $\begin{gathered} 20+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note2 })} \end{gathered}$ | $\begin{gathered} 35+35(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
| $\begin{aligned} & \text { D-C7口 } \\ & \text { D-C80 } \end{aligned}$ | 10 | 15 | 50 | $\begin{gathered} 15+45 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note2 })} \end{gathered}$ | $\begin{gathered} 50+45(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
| $\begin{aligned} & \text { D-H7 } \square \\ & \text { D-H7 } \square \mathbf{W} \\ & \text { D-H7NF } \end{aligned}$ | 10 | 15 | 60 | $\begin{gathered} 15+45 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note2 })} \end{gathered}$ | $\begin{gathered} 60+45(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
| $\begin{aligned} & \text { D-C73C } \\ & \text { D-C80C } \\ & \text { D-H7C } \end{aligned}$ | 10 | 15 | 65 | $\begin{gathered} 15+50 \frac{(n-2)}{2} \\ (n=2,4,6 \cdots)^{\text {Note2 })} \end{gathered}$ | $\begin{gathered} 65+50(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
| $\begin{aligned} & \text { D-B5■/B64 } \\ & \text { D-G5NT } \end{aligned}$ | 10 | 15 | 75 | $\begin{gathered} 15+50 \frac{(n-2)}{2} \\ (n=2,4,6 \cdots)^{\text {Note2 })} \end{gathered}$ | $\begin{gathered} 75+55(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
| D-B59W | 15 | 20 | 75 | $\begin{gathered} 20+50 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note2 })} \end{gathered}$ | $\begin{gathered} 75+55(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |

Note 2) When " $n$ " is an odd number, an even number that is one larger than this odd number is used for the calculation.
Note 1) Auto switch mounting (The adjustment as shown in the figures below is required with the following stroke ranges.)

| Auto switch model | With 2 auto switches |  |
| :---: | :---: | :---: |
|  | Different surfaces ${ }^{\text {Note 1) }}$ | Same surface ${ }^{\text {Note 1) }}$ |
|  | The proper auto switch mounting position is 6 mm inward from the switch holder edge. | The auto switch is mounted by slightly displacing it in a direction (cylinder tube circumferential exterior) so that the auto switch and lead wire do not interfere with each other. |
| D-A93 | - | 45 to less than 50 stroke |
| $\begin{aligned} & \text { D-M9 } \\ & \text { D-M9 } \end{aligned}$ | 15 to less than 20 stroke | 45 to less than 55 stroke |

## Operating Range

|  | （mm） |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Auto switch model | Bore size |  |  |  |
|  | 20 | 25 | 32 | 40 |
| D－A9 $\square$（V） | 6 | 6 | 6 | 6 |
| $\begin{aligned} & \text { D-M9 } \square(\mathrm{V}) / \text { M9 } \square \mathrm{W}(\mathrm{~V}) \\ & \text { D-M9 } \square \mathbf{A}(\mathrm{V}) \end{aligned}$ | 3.5 | 3 | 3.5 | 3 |
| $\begin{aligned} & \hline \text { D-C7 } \square / C 80 \\ & \text { D-C73C/C80C } \end{aligned}$ | 7 | 8 | 8 | 8 |
| D－B5 $\square / B 64$ | 8 | 8 | 9 | 9 |
| D－B59W | 12 | 12 | 13 | 13 |
| D－H7 $\square / \mathrm{H} 7 \square \mathrm{~W}$ <br> D－G5NT／H7NF | 4 | 4 | 4.5 | 5 |
| D－H7C | 7 | 8.5 | 9 | 10 |

＊Since the operating range is provided as a guideline including hysteresis，it cannot be guaranteed（assuming approximately $\pm 30 \%$ dispersion）．
It may vary substantially depending on an ambient environment．

Auto Switch Mounting Bracket：Part No．

| Auto switch mounting | Bore size（mm） |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | ø20 | ø25 | ø32 | ø40 |
| D－M9 $\square(V)$ D－M9 $\square$ W（V） D－A9 $\square(V)$ | BM5－020 ${ }^{\text {Note }}$ 1） | BM5－025 ${ }^{\text {Note 1）}}$ | BM5－032 ${ }^{\text {Note 1）}}$ | BM5－040 ${ }^{\text {Note }}$ 1） |
| D－M9 $\square$ A（V） | BM5－020 ${ }^{\text {Note } 2)}$ | BM5－025S ${ }^{\text {Note 2）}}$ | BM5－032 ${ }^{\text {Note }}$ 2） | BM5－040 ${ }^{\text {Note }}$ 2） |
| $\begin{aligned} & \text { D-H7 } \square \\ & \text { D-H7 } \square W \\ & \text { D-H7NF } \\ & \text { D-C7■/C80 } \\ & \text { D-C73C/C80C } \end{aligned}$ | BM2－020A | BM2－025A | BM2－032A | BM2－040A |
| $\begin{aligned} & \text { D-B5■/B64 } \\ & \text { D-B59W } \\ & \text { D-G5NT } \\ & \text { D-G5NB } \end{aligned}$ | BA2－020 | BA2－025 | BA2－032 | BA2－040 |

Note 1）Set part number which includes the auto switch mounting band（BM2－$\square \square \square A$ ）and the holder kit（BJ5－1／ Switch bracket：Transparent）．
Since the switch bracket（made from nylon）are affected in an environment where alcohol，chloroform， methylamines，hydrochloric acid or sulfuric acid is splashed over，so it cannot be used．Please consult SMC regarding other chemicals．
Note 2）Set part number which includes the auto switch mounting band（BM2－■口ロAS／tainless steel screw）and the holder kit（BJ4－1／Switch bracket：White）．
Note 3）For the D－M9■A（V）type auto switch，do not install the switch bracket on the indicator light．
（1）$B J \square-1$ is a set of＂a＂and＂b＂．
（2）BM2－$\square \square \square A(S)$ is a set of＂$c$＂and＂$d$＂． Band（c）is mounted so that the projected part is on the internal side （contact side with the tube）． BJ4－1（Switch bracket：White） BJ5－1（Switch bracket：Transparent）


Besides the models listed in How to Order，the following auto switches are applicable．
Refer to pages 941 to 1067 for detailed specifications．

| Auto switch type | Part no． | Electrical entry（Fetching direction） | Features |
| :---: | :---: | :---: | :---: |
| Reed | D－B53，C73，C76 | Grommet（ln－let） | － |
|  | D－C80 |  | Without indicator light |
| Solid state | D－H7A1，H7A2，H7B |  | － |
|  | D－H7NW，H7PW，H7BW |  | Diagnostic indication（2－color） |
|  | D－G5NT |  | With timer |

[^16]
# Valve Mounted Cylinder Double Acting 

 CV3 SeriesLube/Non-lube Type: $\varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100$ How to Order
Built-in Magnet Cylinder Model
If a built-in magnet cylinder without an auto
switch is required, there no need to enter
the symbol for auto switch.
(Example) CDV3LN50-100-1

Applicable Auto Switches/Refer to pages 941 to 1067 for further information on auto switches.

*1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
Consult with SMC regarding water resistant types with the above model numbers.
*2 1 m type lead wire is only applicable to D-A93.

* Lead wire length symbols: $0.5 \mathrm{~m} \ldots \ldots . . .$. Nil (Example) M9NW
$1 \mathrm{~m} . . . . . . . .$. M (Example) M9NWM
$\begin{array}{ll}3 \mathrm{~m} . . . . . . . . . . ~ & \mathrm{~L} \\ 5 \mathrm{~m} \ldots \ldots \ldots . . & \text { (Example) M9NWL } \\ \text { (Example) M9NWZ }\end{array}$
$5 \mathrm{~m} \cdot \ldots . . . . .$. Z (Example) M9NWZ

Since there are other applicable auto switches than listed, refer to page 831 for details.

* For details about auto switches with pre-wired connector, refer to pages 1014 and 1015. * D-A9■/M9■/M9■W/M9■A auto switches are shipped together (not assembled). (Only auto switch mounting brackets are assembled before shipped.)
* Solid state auto switches marked with " $\bigcirc$ " are produced upon receipt of order.
**D-G5■W/K59W/G59F cannot be mounted on ø40 and ø50 lube type cylinder.
*** D-B5■/B64/G5/K5 types are mountable only upon a receipt of order. (Not mountable after the time of shipment)
**** D-A9 cannot be mounted on $\varnothing 50$. Select auto switches in brackets.
- Operation type can be changed to rod extended when energized or rod retracted when energized.
- Ease of maintenance and inspection.
The solenoid valve can be separated easily and the cylinder can also be disassembled.
- A manual operation mechanism is provided as standard equipment (non-locking).



## Symbol

Air cushion


| Made to Order | Made to Order Specifications Click here for details |
| :---: | :---: |
| Symbol | Specifications |
| -XAD | Change of rod end shape |
| -XC4 | With heavy duty scraper |
| -XC6 | Made of stainless steel |
| -XC7 | Tie-rod, cushion valve, and tie-rod nut and similar parts made of stainless steel |
| -XC15 | Change of tie-rod length |
| -XC22 | Fluororubber seals |
| -XC29 | Double knuckle joint with spring pin |
| -XC65 | -XC6 +-XC7 |

## $\triangle$ Precautions

## Minimum stroke for auto switch mounting

## © Caution

1. Each switch and mounting type of cylinder has different minimum mountable stroke. Be careful especially of the center trunnion type. (For details, refer to pages 828 and 829.)
[^17]Specifications

| Applicable bore size (mm) | 40 | 50 | 63 | 80 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Lubrication | Lube/Non-lube |  |  |  |  |
| Action | Double acting |  |  |  |  |
| Fluid | Air |  |  |  |  |
| Proof pressure | 1.35 MPa |  |  |  |  |
| Maximum operating pressure | 0.9 MPa |  |  |  |  |
| Minimum operating pressure | 0.15 MPa |  |  |  |  |
| Ambient and fluid temperature | -10 to $50^{\circ} \mathrm{C}$ (No freezing) |  |  |  |  |
| Cushion | Air cushion |  |  |  |  |
| Stroke length tolerance | Up to $250{ }^{\text {st }}:{ }_{0}^{+1.0}, 251$ to $1000{ }^{\text {st: }}$ ( ${ }_{0}^{+1.4}$ |  |  |  |  |
| Port size | Rc 1/4 |  |  |  |  |
| Piston speed | 50 to $500 \mathrm{~mm} / \mathrm{s}^{*}$ |  |  |  | 50 to $350 \mathrm{~mm} / \mathrm{s}^{*}$ |
| Mouting | Basic type, Axial foot type, Rod side flange type Single clevis type, Double clevis type, Center trunnion type |  |  |  |  |
| Allowable kinetic energy | 2.4 J | 4.4 J | 7.8 J | 11.7 J | 20.5 J |

* Operate within the range of absorbed energy.


## Solenoid Valve Specifications

| Applicable solenoid valve model |  | V3口08 |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Coil rated voltage |  | 100/200 VAC ( $50 / 60 \mathrm{~Hz}$ ), 24 VDC |  |  |
| Effective area of valve (Cv factor) |  | $18 \mathrm{~mm}^{2}(1.00)$ |  |  |
| Electrical entry |  | Grommet, DIN terminal |  |  |
| Allowable voltage |  | -15 to 10\% of the rated voltage |  |  |
| Coil insulation |  | Class B or equivalent ( $130^{\circ} \mathrm{C}$ ) |  |  |
| Apparent power ${ }^{\text {Note) }}$ | AC | Inrush | 50 Hz | 8.5 VA |
|  |  |  | 60 Hz | 7.5 VA |
|  |  | Holding | 50 Hz | 7.0 VA |
|  |  |  | 60 Hz | 5.5 VA |
| Power consumption Note) | DC |  |  |  |

Note) At the rated voltage.

## Standard Stroke

| Bore size $(\mathrm{mm})$ | Standard stroke $(\mathrm{mm})$ |
| :---: | :---: |
| $\mathbf{4 0}$ | $25,50,75,100,125,150,200,250,300,350,400,450,500$ |
| $\mathbf{5 0 , 6 3}$ | $25,50,75,100,125,150,200,250,300,350,400,450,500,600$ |
| $\mathbf{8 0 , 1 0 0}$ | $25,50,75,100,125,150,200,250,300,350,400,450,500,600,700$ |

Note) The cylinders with the standard strokes indicated above can be delivered in a short term. Intermediate stroke except mentioned above is manufactured upon receipt of order. When the auto switch is attached, the minimum stroke is going to be different. Refer to pages 828 and 829. The minimum stroke length is different in the trunnion type. For further information, refer to pages 828 and 829.

## Rod Boot Material

| Symbol | Rod boot material | Maximum ambient temperature |
| :---: | :---: | :---: |
| $\mathbf{J}$ | Nylon tarpaulin | $70^{\circ} \mathrm{C}$ |
| $\mathbf{K}$ | Heat resistant tarpaulin | $110^{\circ} \mathrm{C}^{*}$ |

* Maximum ambient temperature for the rod boot itself.


## Accessory

| Mounting |  | Basic type | Foot type | $\begin{array}{\|c} \hline \begin{array}{c} \text { Rod side } \\ \text { flange } \\ \text { type } \end{array} \\ \hline \end{array}$ | Single clevis type | $\begin{array}{\|c\|} \hline \text { Double* } \\ \text { clevis } \\ \text { type } \\ \hline \end{array}$ | Center trunnion type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Standard equipment | Rod end nut | $\bigcirc$ | - | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | Clevis pin | - | - | - | - | - | - |
| Option | Single knuckle joint | $\bigcirc$ | $\bullet$ | - | $\bigcirc$ | - | $\bigcirc$ |
|  | Double knuckle joint * (with pin) | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ |
|  | With rod boot | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | - | - |

* Pin, plain washer and cotter pin are packaged together with double clevis and double knuckle joint.
* Refer to page 821 for dimensions and part numbers of the option.

Refer to page 818 for dimensions of the rod boot.

## CV3 Series

## Weight

(kg)

| Bore size (mm) |  | 40 | 50 | 63 | 80 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Basic weight | Basic type | 1.30 (1.35) | 1.73 (1.77) | 2.57 (2.61) | 4.29 (4.44) | 6.01 (6.21) |
|  | Axial foot type | 1.47 (1.52) | 1.93 (1.97) | 2.86 (2.9) | 5.08 (5.23) | 6.94 (7.14) |
|  | Rod side flange type | 1.56 (1.61) | 2.14 (2.18) | 3.19 (3.23) | 5.39 (5.54) | 7.40 (7.6) |
|  | Single clevis type | - | 2.46 (2.5) | 3.68 (3.72) | 6.23 (6.38) | 8.66 (8.86) |
|  | Double clevis type | - | 2.51 (2.55) | 3.73 (3.77) | 6.29 (6.44) | 8.73 (8.93) |
|  | Trunnion type | 1.95 (2.05) | 2.52 (3.52) | 3.96 (4.16) | 6.67 (6.96) | 9.58 (9.97) |
| Additional weight per each 50 mm of stroke | All mounting brackets ( $\left.\begin{array}{c}\text { Except trunnion } \\ \text { type of iron tube }\end{array}\right)$ | 0.22 (0.28) | 0.28 (0.35) | 0.37 (0.43) | 0.52 (0.70) | 0.65 (0.87) |
|  | Trunnion type of steel | (0.36) | (0.46) | (0.65) | (0.86) | (1.07) |
| Accessory bracket | Single knuckle | 0.23 | 0.26 | 0.26 | 0.60 | 0.83 |
|  | Double knuckle (with pin) | 0.37 | 0.43 | 0.43 | 0.87 | 1.27 |

Calculation: (Example) CV3L40-100-1

* ( ): Steel tube type.
- Basic weight.............. 1.47 (kg)
- Additional weight........ 0.22 (kg/50 st)
- Cylinder stroke $\cdots \cdots . . . . . .100$ (st) $1.47+0.22 \times 100 \div 50=1.9 \mathrm{~kg}$


## Opening Range of Throttle Valve and Driving Speed



Conditions: Operating pressure 0.5 MPa , Horizontal mounting, No load, Spring return side

- Driving speeds indicated above are for reference.


## Mounting Bracket Part No.

Mounting Bracket Part No.

| Bore size (mm) | $\mathbf{4 0}$ | $\mathbf{5 0}$ | $\mathbf{6 3}$ | $\mathbf{8 0}$ | $\mathbf{1 0 0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Axial foot ${ }^{*}$ | CA1-L04 | CA1-L05 | CA1-L06 | CA1-L08 | CA1-L10 |
| Flange | CA1-F04 | CA1-F05 | CA1-F06 | CA1-F08 | CA1-F10 |
| Single clevis | - | CV3-C05 | CV3-C06 | CV3-C08 | CV3-C10 |
| Double clevis ${ }^{* *}$ | - | CV3-D05 | CV3-D06 | CV3-D08 | CV3-D10 |

* Order two foot brackets per cylinder.
** Accessories for each mounting bracket are as follows.
Foot, Flange: Body mounting bolts, Spring washer
Single clevis: Body mounting bolts, Nut, Spring washer
Double clevis: Body mounting bolts, Nut, Spring washer, Clevis pin, Flat washer, Cotter pin


## Precautions

## $\triangle$ Warning

1. Do not loosen the cushion valve more than 2 turns from the fully closed state.
Do not loosen it more than 2 turns because this could cause the cushion valve to be ejected.

## $\triangle$ Caution

1. Do not use an air cylinder as an air-hydro cylinder, because this could result in oil leakage.
2. Do not turn the piston rod with the rod boot kept locked. When turning the piston rod, loosen the band once and do not twist the rod boot.
3. Set the breathing hole in the rod boot downward or in the direction that prevents entry of dust or water content.

4. Use a socket wrench when replacing mounting brackets. The use of other tools could cause parts such as nuts to become deformed or affect their ease of service. For the sockets to be used, refer to the table below.

| Bore size (mm) | Nut | Width across flats | Socket |
| :---: | :---: | :---: | :---: |
| 40, 50 | DA00180 | 13 | JIS B $4636+2$ point angle socket 13 |
|  | (M8 $\times 1.25$, Hexagon nut 3 types) |  |  |
| 63 | DA00008 | 17 | JIS B $4636+2$ point angle socket 17 |
|  | (M10 $\times 1.25$, Hexagon nut 3 types) |  |  |
| 80, 100 | DA00013 | 19 | JIS B $4636+2$ point angle socket 19 |
|  |  |  |  |

5. Do not replace the bushings or the cushion seals.

The bushings and the cushion seals are press-fitted. To replace them, they must be replaced together as a cover assembly.
6. To replace a seal, apply grease to the new seal before installing it.
If the cylinder is put into operation without applying grease to the seal, it could cause the seal to wear significantly, leading to premature air leakage.
7. Do not disassemble a trunnion type cylinder.

It is extremely difficult to align the axial center of the trunnion with the axial center of the cylinder. Thus, if this type of cylinder is disassembled and reassembled, there is the likelihood that the required dimensional accuracy cannot be attained, which could lead to a malfunction.
8. Operate the cylinder at a drive speed within the range of 50 and $500 \mathrm{~mm} / \mathrm{s}$.
(Operate within the range of absorbed energy. Refer to the front matters (Air cylinder model selection) of Best Pneumatics No. 2-1.)

## Selection

## © Warning

1. Confirm the specifications.

Products in this catalog are designed to be used for compressed air systems. If not operated within the designated pressure or temperature, it may damage the products or cause malfunction. (Refer to specifications.)
2. Energizing continuously for a long period of time When the valve is continuously energized for a long period of time, the performance may deteriorate or effect peripheral equipment adversely since temperature rises when coils generate heat.

## CV3 Series

## Piston Speed Adjustment

1．To slow down the piston speed，screw in the needle of the silencer exhaust throttle valve clockwise，to reduce the amount of air that is discharged．
2．The throttle valve needle opens fully when it is loosened 11 turns from its fully closed position．


3．After the specified speed has been set，se－ cure the needle with the lock nut．

## Manual Operation

Manual operation（non－locking）is possible by pushing the manual button about 3 mm ．


## Solenoid Valve Replacement and Order No．

## 〈Single solenoid〉



〈Double solenoid〉


Construction


A-A' view


## Component Parts

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1}$ | Rod cover | Aluminum alloy | Matt black painted |
| $\mathbf{2}$ | Head cover | Aluminum alloy | Matt black painted |
| $\mathbf{3}$ | Cylinder tube | Aluminum alloy | Hard anodized |
| $\mathbf{4}$ | Piston rod | Carbon steel | Hard chrome plated |
| $\mathbf{5}$ | Piston | Aluminum alloy | Chromated |
| $\mathbf{6}$ | Cushion ring A | Rolled steel | Zinc chromated |
| $\mathbf{7}$ | Cushion ring B | Rolled steel | Zinc chromated |
| $\mathbf{8}^{*}$ | Bushing | Lead-bronze casted |  |
| $\mathbf{9}$ | Cushion valve | Rolled steel | Electroless nickel plated |
| $\mathbf{1 0}$ | Piston nut | Rolled steel | Zinc chromated |
| $\mathbf{1 1}$ | Spring washer | Steel wire | Zinc chromated |
| $\mathbf{1 2}$ | Tie-rod | Carbon steel | Zinc chromated |
| $\mathbf{1 3}$ | Tie-rod nut | Carbon steel | Black zinc chromated |
| $\mathbf{1 4}$ | Spring washer | Steel wire | Black zinc chromated |
| $\mathbf{1 5}$ | Pipe | Carbon steel tube | Chromated |
| $\mathbf{1 6}$ | Needle | Sulfur easy chipping steel | Electroless nickel plated |
| $\mathbf{1 7}$ | Lock nut | Carbon steel | Nickel plated |
| $\mathbf{1 8}$ | Lock nut | Carbon steel | Nickel plated |
| $\mathbf{1 9}$ | Needle guide | Sulfur easy chipping steel Electroless nickel plated |  |
| $\mathbf{2 0}$ | Plug | Chromium molybdenum steel | Black zinc chromated |
| $\mathbf{3 0}$ | Wear ring | Resin |  |


| No. | Description | No. of <br> solenoids | Rod extended <br> when energized | Rod retracted <br> when energized |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3 1}$ | Solenoid <br> valve | Single | (1) | $(2)$ |
|  |  | Double | (3) |  |

[^18]
## Component Parts

|  | Description | Material | Note |
| :--- | :--- | :---: | :---: |
| $\mathbf{2 1}$ | Piston seal | NBR |  |
| $\mathbf{2 2}$ | Rod seal | NBR |  |
| $\mathbf{2 3}$ | Cushion seal | NBR |  |
| $\mathbf{2 4}$ | Cylinder tube gasket | NBR |  |
| $\mathbf{2 5}$ | Cushion valve seal | NBR |  |
| $\mathbf{2 6}$ | Piston gasket | NBR |  |
| $\mathbf{2 7}$ | Pipe gasket | NBR |  |
| $\mathbf{2 8}$ | Head cover gasket | NBR |  |
| $\mathbf{2 9}$ | Single solenoid gasket | NBR |  |
|  | Double solenoid gasket | NBR |  |
|  |  |  |  |

* Not replaceable.

Replacement Parts: Seal Kit

| Lube Type | Non-lube Type |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bore size (mm) | Kit no. | Contents | $\begin{aligned} & \text { Bore size } \\ & (\mathrm{mm}) \end{aligned}$ | Kit no. | Contents |
| 40 | CV3-40-PS | Set of nos. above(21), (27), (24), (25, (27), (28) | 40 | CV3N40-PS | Set of nos. above(21), (22), (24), (25), (27), (28) |
| 50 | CV3-50-PS |  | 50 | CV3N50-PS |  |
| 63 | CV3-63-PS |  | 63 | CV3N63-PS |  |
| 80 | CV3-80-PS |  | 80 | CV3N80-PS |  |
| 100 | CV3-100-PS |  | 100 | CV3N100-PS |  |

* Seal kit includes (21), (22, (24), (25), (27), (28). Order the seal kit, based on each bore size.
(The parts indicated with numbers (23) and (26) are not replaceable.)
* Seal kit includes a grease pack ( $\varnothing 40, \varnothing 50: 10 \mathrm{~g}, \varnothing 63, \varnothing 80: 20 \mathrm{~g}, \varnothing 100: 30 \mathrm{~g}$ ).

Order with the following part number when only the grease pack is needed.
Grease pack part no.: GR-S-010 (10 g), GR-S-020 (20 g)

## CV3 Series

## Basic Type: CV3B $\square$

Lube type (CV3B), Non-lube type (CV3BN)


| $\begin{gathered} \hline \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$ | Stroke range* (mm) | A | AL | B | $\mathrm{B}_{1}$ | C | D | E | F | $\mathrm{H}_{1}$ | I | $J$ | K | KA | LL | MM | N | Q | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40 | Up to 500 | 30 | 27 | 60 | 22 | 44 | 16 | 32 | 10 | 8 | 18 | M $8 \times 1.25$ | 6 | 14 | 86 | M14 $\times 1.5$ | 27 | 38 | 84 |
| 50 | Up to 600 | 35 | 32 | 70 | 27 | 52 | 20 | 40 | 10 | 11 | 18 | M $8 \times 1.25$ | 7 | 18 | 83 | M18 $\times 1.5$ | 30 | 43.5 | 90 |
| 63 | Up to 600 | 35 | 32 | 85 | 27 | 64 | 20 | 40 | 10 | 11 | 18 | M10 $\times 1.25$ | 7 | 18 | 83 | M18 $\times 1.5$ | 31 | 49 | 98 |
| 80 | Up to 750 | 40 | 37 | 102 | 32 | 78 | 25 | 52 | 14 | 13 | 20 | M12 $\times 1.75$ | 10 | 22 | 84 | M $22 \times 1.5$ | 37 | 63 | 116 |
| 100 | Up to 750 | 40 | 37 | 116 | 41 | 92 | 30 | 52 | 14 | 16 | 20 | M12 $\times 1.75$ | 10 | 26 | 85 | M26 x 1.5 | 40 | 73 | 126 |


| Bore size <br> $(\mathbf{m m})$ | $\mathbf{W}$ | Without rod boot |  |  |  |  |  |  |  |  | With rod boot |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathbf{H}$ | $\mathbf{Z Z}$ | $\mathbf{d}$ | $\mathbf{e}$ | $\mathbf{f}$ | $\mathbf{h}$ | $\boldsymbol{l}$ | $\mathbf{Z Z}$ |  |  |  |  |  |  |  |
| $\mathbf{4 0}$ | 8 | 51 | 221 | 56 | 43 | 11.2 | 59 | $1 / 4$ stroke | 229 |  |  |  |  |  |  |  |
| $\mathbf{5 0}$ | 0 | 58 | 231 | 64 | 52 | 11.2 | 66 | $1 / 4$ stroke | 239 |  |  |  |  |  |  |  |
| $\mathbf{6 3}$ | 0 | 58 | 239 | 64 | 52 | 11.2 | 66 | $1 / 4$ stroke | 247 |  |  |  |  |  |  |  |
| $\mathbf{8 0}$ | 0 | 71 | 271 | 76 | 65 | 12.5 | 80 | $1 / 4$ stroke | 280 |  |  |  |  |  |  |  |
| $\mathbf{1 0 0}$ | 0 | 72 | 283 | 76 | 65 | 14.0 | 81 | $1 / 4$ stroke | 292 |  |  |  |  |  |  |  |

## Axial Foot Type: CV3L $\square$

Lube type (CV3L), Non-lube type (CV3LN)


| Bore size (mm) | Stroke range* (mm) | A | AL | B | $\mathrm{B}_{1}$ | C | D | E | F | $\mathrm{H}_{1}$ | J | K | KA | LD | LH | LL | LS | LT | LX | LY |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40 |  | 30 | 27 | 60 | 22 | 44 | 16 | 32 | 10 | 8 | M $8 \times 1.25$ | 6 | 14 | 9 | 40 | 86 | 138 | 3.2 | 42 | 70 |
| 50 | Up to 600 cot to $1000^{* * *}$ | 35 | 32 | 70 | 27 | 52 | 20 | 40 | 10 | 11 | M $8 \times 1.25$ | 7 | 18 | 9 | 45 | 83 | 144 | 3.2 | 50 | 80 |
| 63 |  | 35 | 32 | 85 | 27 | 64 | 20 | 40 | 10 | 11 | M10 1.25 | 7 | 18 | 11.5 | 50 | 83 | 166 | 3.2 | 59 | 93 |
| 80 | 7519 to $70000^{* * *}$ | 40 | 37 | 102 | 32 | 78 | 25 | 52 | 14 | 13 | M12 $\times 1.75$ | 10 | 22 | 13.5 | 65 | 84 | 204 | 4.5 | 76 | 116 |
| 100 | Up to 750 751 to $1000 * *$ | 40 | 37 | 116 | 41 | 92 | 30 | 52 | 14 | 16 | M12 $\times 1.75$ | 10 | 26 | 13.5 | 75 | 85 | 212 | 6 | 92 | 133 |


| Bore size (mm) | MM | N | S | W | X | Y | Without rod boot |  | With rod boot |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | H | ZZ | d | e | f | h | $\ell$ | ZZ |
| 40 | M14 $\times 1.5$ | 27 | 84 | 8 | 27 | 13 | 51 | 221 | 56 | 43 | 11.2 | 59 | 1/4 stroke | 229 |
| 50 | M18 $\times 1.5$ | 30 | 90 | 0 | 27 | 13 | 58 | 231 | 64 | 52 | 11.2 | 66 | 1/4 stroke | 239 |
| 63 | M18 $\times 1.5$ | 31 | 98 | 0 | 34 | 16 | 58 | 239 | 64 | 52 | 11.2 | 66 | 1/4 stroke | 247 |
| 80 | M $22 \times 1.5$ | 37 | 116 | 0 | 44 | 16 | 71 | 271 | 76 | 65 | 12.5 | 80 | 1/4 stroke | 280 |
| 100 | M26 $\times 1.5$ | 40 | 126 | 0 | 43 | 17 | 72 | 283 | 76 | 65 | 14.0 | 81 | 1/4 stroke | 292 |

[^19]Rod Side Flange Type: CV3F $\square$
Lube type (CV3F), Non-lube type (CV3FN)


## Single Clevis Type: CV3C $\square$

Lube type (CV3C), Non-lube type (CV3CN)

## Bore size $\varnothing 40$ is not available.



** Bore size ø40 is not available.
(mm)

| $\begin{gathered} \hline \text { Bore size }{ }^{* *} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { Stroke range * } \\ (\mathrm{mm}) \end{array}$ | A | AL | B | B1 | C | CDH10 | CX | D | E | F | $\mathrm{H}_{1}$ | I | $J$ | K | KA | L | LL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | Up to 600 | 35 | 32 | 70 | 27 | 52 | $12^{+0.070}$ | ${ }_{18}{ }_{-0.3}^{-0.1}$ | 20 | 40 | 10 | 11 | 18 | M8 $\times 1.25$ | 7 | 18 | 98 | 83 |
| 63 | Up to 600 | 35 | 32 | 85 | 27 | 64 | $16_{0}^{+0.070}$ | $25_{-0.3}^{-0.1}$ | 20 | 40 | 10 | 11 | 18 | M10 $\times 1.25$ | 7 | 18 | 100 | 83 |
| 80 | Up to 750 | 40 | 37 | 102 | 32 | 78 | $20{ }_{0}^{+0.084}$ | $31.5{ }_{-0.3}^{-0.1}$ | 25 | 52 | 14 | 13 | 20 | M12 $\times 1.75$ | 10 | 22 | 105 | 84 |
| 100 | Up to 750 | 40 | 37 | 116 | 41 | 92 | $25^{+0.084}$ | $35.5{ }_{-0.3}^{-0.1}$ | 30 | 52 | 14 | 16 | 20 | $\mathrm{M} 12 \times 1.75$ | 10 | 26 | 110 | 85 |


| $\begin{gathered} \hline \text { Bore size }{ }^{* *} \\ (\mathrm{~mm}) \end{gathered}$ | MM | N | Q | RR | S | Without rod boot |  |  | With rod boot |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | H | Z | ZZ | d | e | f | h | $\ell$ | Z | ZZ |
| 50 | M18 $\times 1.5$ | 30 | 43.5 | 12 | 90 | 58 | 246 | 258 | 64 | 52 | 11.2 | 66 | 1/4 stroke | 254 | 266 |
| 63 | M18 $\times 1.5$ | 31 | 49 | 16 | 98 | 58 | 256 | 272 | 64 | 52 | 11.2 | 66 | 1/4 stroke | 264 | 280 |
| 80 | M $22 \times 1.5$ | 37 | 63 | 20 | 116 | 71 | 292 | 312 | 76 | 65 | 12.5 | 80 | 1/4 stroke | 301 | 321 |
| 100 | M26 x 1.5 | 40 | 73 | 25 | 126 | 72 | 308 | 333 | 76 | 65 | 14.0 | 81 | 1/4 stroke | 317 | 342 |

[^20]
## CV3 Series

## Double Clevis Type: CV3D $\square$

Lube type (CV3D), Non-lube type (CV3DN)


| $\begin{gathered} \hline \text { Bore size }{ }^{* *}(\mathrm{~mm}) \\ \hline \end{gathered}$ | LL | MM | N | Q | RR | S | Without rod boot |  |  | With rod boot |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | H | Z | ZZ | d | e | f | h | $\ell$ | Z | ZZ |
| 50 | 83 | M18 $\times 1.5$ | 30 | 43.5 | 12 | 90 | 58 | 246 | 258 | 64 | 52 | 11.2 | 66 | 1/4 stroke | 254 | 266 |
| 63 | 83 | M18 $\times 1.5$ | 31 | 49 | 16 | 98 | 58 | 256 | 272 | 64 | 52 | 11.2 | 66 | 1/4 stroke | 264 | 280 |
| 80 | 84 | M22 $\times 1.5$ | 37 | 63 | 20 | 116 | 71 | 292 | 312 | 76 | 65 | 12.5 | 80 | 1/4 stroke | 301 | 321 |
| 100 | 85 | M26 $\times 1.5$ | 40 | 73 | 25 | 126 | 72 | 308 | 333 | 76 | 65 | 14.0 | 81 | 1/4 stroke | 317 | 342 |

* Clevis pin, flat washer and cotter pin are shipped together. The minimum stroke with rod boot is 20 mm or more.


## Center Trunnion Type: CV3T $\square$

## Lube type (CV3T), Non-lube type (CV3TN)

| $\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$ | $ø \mathrm{TD}_{\text {e } 8}$ | TI | TQ | TT | TX | TY | TZ | W | I | Q | Without rod boot |  |  | With rod boot |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  | H | Z | ZZ | d | e | f | h | $\ell$ | Z | ZZ |
| 40 | $15_{-0.059}^{-0.032}$ | 20 | 45 | 23 | 85 | 77.5 | 115 | 8 | 18 | 38 | 51 | 93 | 221 | 56 | 43 | 11.2 | 59 | 1/4 stroke | 101 | 229 |
| 50 | $15^{-0.0059}$ | 20 | 50 | 23 | 95 | 87.5 | 125 | 0 | 18 | 43.5 | 58 | 103 | 231 | 64 | 52 | 11.2 | 66 | 1/4 stroke | 111 | 239 |
| 63 | $18{ }_{-0.059}^{-0.032}$ | 20 | 57 | 28 | 110 | 102 | 146 | 0 | 18 | 49 | 58 | 107 | 239 | 64 | 52 | 11.2 | 66 | 1/4 stroke | 115 | 247 |
| 80 | $25_{-0.073}^{-0.040}$ | 24 | 69.5 | 35 | 140 | 124.5 | 190 | 0 | 20 | 63 | 71 | 129 | 271 | 76 | 65 | 12.5 | 80 | 1/4 stroke | 138 | 280 |
| 100 | $25_{-0.073}^{-0.040}$ | 24 | 79.5 | 43 | 162 | 144.5 | 212 | 0 | 20 | 73 | 72 | 135 | 283 | 76 | 65 | 14.0 | 81 | 1/4 stroke | 144 | 292 |

* The minimum stroke of the one with rod boot is 20 mm or more.

820

## Valve Mounted Cylinder Double Acting

Electrical Entry: Dimensions for DIN Terminal

## Single Double



| Bore size <br> $(\mathrm{mm})$ | LL | HV | HY |
| :---: | :---: | :---: | :---: |
| $\mathbf{4 0}$ | 95.5 | 55 | 64 |
| $\mathbf{5 0}$ | 92.5 | 60 | 69 |
| $\mathbf{6 3}$ | 92.5 | 68 | 77 |
| $\mathbf{8 0}$ | 93.5 | 76 | 85 |
| $\mathbf{1 0 0}$ | 94.5 | 83 | 92 |


| Mat | : Free c | utting |  |  |  |  |  |  |  | (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Part no. | Applicable bore size (mm) | A | $\mathrm{A}_{1}$ | $ø \mathrm{E}_{1}$ | $L_{1}$ | MM | $\mathrm{R}_{1}$ | $\mathbf{U}_{1}$ | ${ }_{\text {ø }} \mathrm{ND}_{\text {H10 }}$ | NX |
| I-04 | 40 | 69 | 22 | 24 | 55 | M14 1.5 | 15.5 | 20 | $12^{+0.070}$ | $16_{-0.3}^{-0.1}$ |
| I-05 | 50, 63 | 74 | 27 | 28 | 60 | M18 $\times 1.5$ | 15.5 | 20 | $12^{+0.070}$ | $16{ }_{-0.3}^{-0.1}$ |
| I-08 | 80 | 91 | 37 | 36 | 71 | M $22 \times 1.5$ | 22.5 | 26 | $18^{+0.070}$ | $28{ }_{-0.3}^{-0.1}$ |
| I-10 | 100 | 105 | 37 | 40 | 83 | M26 $\times 1.5$ | 24.5 | 28 | 20+0.084 | $30-0.13$ |


| Material: Cast iron |  |  |  |  |  |  |  |  |  |  |  |  | (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Part no. | Applicable bore size (mm) | A1 | E1 | L1 | MM | R1 | $\mathrm{U}_{1}$ | ND | NX | NZ | L | $\begin{array}{\|c} \hline \begin{array}{c} \text { Cotter pin } \\ \text { size } \end{array} \\ \hline \end{array}$ | $\begin{gathered} \text { Plain washer } \\ \text { size } \end{gathered}$ |
| Y-04D | 40 | 22 | 24 | 55 | M14 $\times 1.5$ | 13 | 25 | 12 | $16_{+0.1}^{+0.3}$ | 38 | 55.5 | $\varnothing 3 \times 18 \ell$ | Polished round 12 |
| Y-05D | 50, 63 | 27 | 28 | 60 | M18 $\times 1.5$ | 15 | 27 | 12 | $16{ }_{+0.1}^{+0.3}$ | 38 | 55.5 | ø3 $\times 18 \ell$ | Polished round 12 |
| Y-08D | 80 | 37 | 36 | 71 | M $22 \times 1.5$ | 19 | 28 | 18 | $28_{+0.1}^{+0.3}$ | 55 | 76.5 | $ø 4 \times 25 \ell$ | Polished round 18 |
| Y-10D | 100 | 37 | 40 | 83 | M26 $\times 1.5$ | 21 | 38 | 20 | $30+0.3$ | 61 | 83 | $04 \times 30 \ell$ | Polished round 20 |


*Knuckle pin, cotter pin, and plain washer are shipped together.
Y Type Double Knuckle Joint


Rod End Nut


| Material: Rolled steel |  |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Part no. | Applicable <br> bore size <br> $(\mathrm{mm})$ | $\mathbf{d}$ | $\mathbf{H}$ | $\mathbf{B}$ | $\mathbf{C}$ | D |
| NT-04 | $\mathbf{4 0}$ | $\mathrm{M} 14 \times 1.5$ | 8 | 22 | 25.4 | 21 |
| NT-05 | $\mathbf{5 0}, \mathbf{6 3}$ | $\mathrm{M} 18 \times 1.5$ | 11 | 27 | 31.2 | 26 |
| NT-08 | $\mathbf{8 0}$ | $\mathrm{M} 22 \times 1.5$ | 13 | 32 | 37 | 31 |
| NT-10 | $\mathbf{1 0 0}$ | $\mathrm{M} 26 \times 1.5$ | 16 | 41 | 47.3 | 39 |

# Valve Mounted Cylinder: Non-rotating Rod Type Double Acting 

 CV3K SeriesNon-lube Type: $\varnothing 40, \varnothing 50, \varnothing 63$

## How to Order



Applicable Auto Switches/Refer to pages 941 to 1067 for further information on auto switches.

|  | Special function | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Electrical } \\ \text { entry } \end{array} \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \frac{2}{2} \text { 훌훈 } \\ \hline \end{array}$ | Wiring (Output) | Load voltage |  |  | Auto switch model |  | Lead wire length (m) |  |  |  | Pre-wired connector | Applicable load |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type |  |  |  |  | DC |  | AC | Te-rod mounting | Band mounting | 0.5 (Nil) | 1 (M) | 3(L) | 5 (Z) |  |  |  |
|  |  | Grommet | $\stackrel{\infty}{\infty}$ | 3 -wire (NPN) | 24 V | $5 \mathrm{~V}, 12 \mathrm{~V}$ | - | M9N | - | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | IC circuit | Relay, PLC |
|  |  |  |  | 3-wire (NPN) |  |  |  | - | G59*** | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  |  |  |  |  | M9P | - | - | - | - | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 3-wire (PNP) |  |  |  | - | G5P*** | - | - | - | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 2-wire |  | 12 V |  | M9B | - | $\bigcirc$ | - | - | $\bigcirc$ | $\bigcirc$ | - |  |
|  |  |  |  |  |  |  |  | - | K59*** | - | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  | Terminal |  | 3-wire (NPN) | 24 V | 12 V | - | G39C | G39 | - | - | - | - | - |  |  |
|  |  |  |  | 2-wire |  |  |  | K39C | K39 | - | - |  | - | - | IC circuit |  |
|  | Diagnostic indication (2-color indicator) | Grommet |  | 3-wire (NPN) |  | $5 \mathrm{~V}, 12 \mathrm{~V}$ |  | M9NW | - | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 3-wire (NPN) |  |  |  | - | G59W*** | - | - | O | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 3 -wire (PNP) |  |  |  | M9PW | G5PW*** | - | - | - | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  |  |  |  |  | - | G5PW*** | - | - | - | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 2-wire |  | 12 V |  | M9BW | - | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | - |  |
|  | Water resistant |  |  | 3-wire (PNP) |  | $5 \mathrm{~V}, 12 \mathrm{~V}$ |  | M9PA*1 | - | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | IC circuit |  |
|  | (2-color indicator) |  |  | 2-wire |  | 12 V |  |  | - |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | (2-color indica |  |  | 4-19 (N) |  | $5 \mathrm{~V}, 12 \mathrm{~V}$ |  | F59F | G59F** |  | - |  | - | $\bigcirc$ | IC Circuit |  |
|  |  | Grommet | $\stackrel{\square}{8}$ | 3 -wire (NPN equivalent) | - | 5 V | - | A96 [Z76] ${ }^{\text {Pa88 }}$ | - | $\bigcirc$ | - |  | - | - | IC circuit | - |
|  |  |  | $\rangle$ | 2-wire | 24 V | 12 V | 100 V | A93 [Z73] ${ }_{\text {\% }}^{\text {zax }}$ | - | $\bigcirc$ | - | $\bigcirc$ | - | - | - | Relay, PLC |
|  |  |  | $\stackrel{\square}{2}$ |  |  |  | 100 V or less | A90 [Z80] ${ }^{\text {388 }}$ | - | - | - | $\bigcirc$ | - | - | IC circuit |  |
|  |  |  | -8 |  |  |  | $100 \mathrm{~V}, 200 \mathrm{~V}$ | A54 | B54*** | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | - |  |  |
|  |  |  | 2 |  |  |  | 200 Vorless | A64 | B64*** | $\bigcirc$ | - | $\bigcirc$ | - | - |  |  |
|  |  |  | $\stackrel{\bullet}{\underset{\sim}{\infty}}$ |  |  |  | - | A33C | A33 | - | - | - | - | - |  | PLC |
|  |  | conduit |  |  |  |  | $100 \mathrm{~V}, 200 \mathrm{~V}$ | A34C | A34 | - | - | - | - | - |  |  |
|  |  | DIN terminal |  |  |  |  | $100 \mathrm{~V}, 200 \mathrm{~V}$ | A44C | A44 ${ }^{\text {B59 }}$ *** | $\bigcirc$ | - | - | - | - |  | PLC |
|  | Diagnostic indication (2-color indicator) | Grommet |  |  |  | - | - | A59W | B59W*** | $\bigcirc$ |  | $\bigcirc$ |  |  |  |  |

[^21]* For details about auto switches with pre-wired connector, refer to pages 1014 and 1015
* D-A9■/M9■/M9■W/M9■A auto switches are shipped together (not assembled). (Only auto switch mounting brackets are assembled before shipped.)


## Valve Mounted Cylinder: Non-rotating Rod Type <br> Double Acting <br> CV3K Series

## Adjustable speed.

Built-in throttle valves are provided to enable speed adjustments in each direction.
Operation type can be changed to rod extended when energized or rod retracted when energized.
A manual operation mechanism is provided as standard equipment (non-locking).
An auto switch cylinder with the switch installed can also be manufactured.


Symbol
Air cushion


| Made to <br> Order | Made to Order Specifications <br> Click here for details |  |
| :--- | :--- | :---: |
| Symbol Specifications <br> - XA $\square$ Change of rod end shape <br> $-X C 7$ Tie-rod, cushion valve, and tie-rod nut <br> made of stainless steel <br> $-\mathbf{X C 1 5}$ Change of tie-rod length |  |  |

[^22]Specifications

| Applicable bore size (mm) | 40 | 50 | 63 |
| :---: | :---: | :---: | :---: |
| Action | Double acting |  |  |
| Fluid | Air |  |  |
| Proof pressure | 1.35 MPa |  |  |
| Maximum operating pressure | 0.9 MPa |  |  |
| Minimum operating pressure | 0.15 MPa |  |  |
| Ambient and fluid temperature | -10 to $50^{\circ} \mathrm{C}$ (No freezing) |  |  |
| Cushion | Air cushion |  |  |
| Stroke length tolerance | Up to 250 st ${ }_{0}^{+1.0}$, 251 to 600 st $^{+1.4}{ }_{0}$ |  |  |
| Port size | Rc 1/4 |  |  |
| Lubrication | Not required (Non-lube) |  |  |
| Piston speed | 50 to $500 \mathrm{~mm} / \mathrm{s}^{\text {* }}$ |  |  |
| Rod non-rotating accuracy | $\pm 0.8^{\circ}$ |  |  |
| Allowable rotational torque | $0.44 \mathrm{~N} \cdot \mathrm{~m}$ or less |  |  |
| Mouting | Basic type, Axial foot type, Rod side flange type, Single clevis type, Double clevis type, Center trunnion type |  |  |
| Allowable kinetic energy | 2.4 J | 4.4 J | 7.8 J |


| Applicable solenoid valve model |  | V3口08 |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Coil rated voltage |  | 100/200 VAC ( $50 / 60 \mathrm{~Hz}$ ), 24 VDC |  |  |
| Effective area of valve (Cv factor) |  | 18 mm ${ }^{2}$ (1.0) |  |  |
| Electrical entry |  | Grommet, DIN terminal |  |  |
| Allowable voltage |  | -15 to 10\% of the rated voltage |  |  |
| Coil insulation |  | Class B or equivalent ( $130^{\circ} \mathrm{C}$ ) |  |  |
| Apparent power Note) | AC | Inrush | 50 Hz | 8.5 VA |
|  |  |  | 60 Hz | 7.5 VA |
|  |  | Holding | 50 Hz | 7.0 VA |
|  |  |  | 60 Hz | 5.5 VA |
| Power consumption ${ }^{\text {Note) }}$ | DC |  |  | 6 W |

Note) At the rated voltage.

## Standard Stroke

| Bore size (mm) | Standard stroke (mm) |
| :---: | :---: |
| $\mathbf{4 0}$ | $25,50,75,100,125,150,200,250,300,350,400,450,500^{*}$ |
| $\mathbf{5 0 , 6 3}$ | $25,50,75,100,125,150,200,250,300,350,400,450,500,600^{*}$ |

Note) The cylinders with the standard strokes indicated above can be delivered in a short term. Intermediate stroke except mentioned above is manufactured upon receipt of order.

- When the auto switch is attached, the minimum stroke is going to be different. Refer to pages 828 and 829.
The minimum stroke length is different in the trunnion type. Refer to pages 828 and 829 for further information.
Please consult with SMC for longer strokes than the strokes marked with *.
Opening Range of Throttle Valve and Driving Speed


Conditions: Operating pressure 0.5 MPa , Horizontal mounting, No load, Spring return side - The speeds shown in the graph are for reference.

## Rod Boot Material

| Symbol | Rod boot material | Max. ambient temperature |
| :---: | :---: | :---: |
| J | Nylon tarpaulin | $70^{\circ} \mathrm{C}$ |
| K | Heat resistant tarpaulin | $110^{\circ} \mathrm{C} *$ |

* Maximum ambient temperature for the rod boot itself.
Weight

| (kg) |  |  |  |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Basic <br> weight | Bore size (mm) | $\mathbf{4 0}$ | $\mathbf{5 0}$ | $\mathbf{6 3}$ |  |  |  |  |
|  | Boot type | 1.30 | 1.73 | 2.57 |  |  |  |  |
|  | Rod side flange type | 1.47 | 1.93 | 2.86 |  |  |  |  |
|  | Single clevis type | - | 2.46 | 3.68 |  |  |  |  |
|  | Double clevis type | - | 2.51 | 3.73 |  |  |  |  |
|  | Trunnion type | 1.95 | 2.52 | 3.96 |  |  |  |  |
| Additional weight per each 50 mm of stroke |  |  |  |  |  | 0.22 | 0.28 | 0.37 |
| Accessory <br> bracket | Single knuckle | 0.23 | 0.26 | 0.26 |  |  |  |  |
|  | Double knuckle (with pin) | 0.37 | 0.43 | 0.43 |  |  |  |  |

Calculation: (Example) CV3KL40-100-1

- Basic weight..............1.47 (kg)
- Additional weight....... 0.22 (kg/50 st)
- Cylinder stroke $\cdots \cdots . . . . . .100$ (st) $1.47+0.22 \times 100 \div 50=1.91 \mathrm{~kg}$


## Accessory

| Mounting |  | Basic <br> type | Foot <br> type | Rod side <br> flange type | Single <br> clevis type | Double <br> clevis type | Center <br> trunnion type |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Standard <br> equipment | Rod end nut | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
|  | Clevis pin | Single knuckle joint | - | - | - | - | $\bullet$ |
|  | Double knuckle joint* <br> (with pin) | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | - |  |
|  | With rod boot | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |  |  |

* Pin, plain washer and cotter pin are shipped together with double clevis and double knuckle joint.
* Refer to page 821 for dimensions and part numbers of the option.

Refer to page 825 for dimensions of the rod boot.

Handling

1. Adjusting of the piston speed
2. Change of voltage specifications
3. Manual operation
4. Changing between rod extended when energized and rod retracted when energized.
Since the operations above 1. to 4. are the same as the CV3 series, refer to page 816.

## $\triangle$ Precautions

TBe sure to read this before handing the I products.
I Refer to back page 50 for Safety Instructions I and pages 722 to 724 for Common Precautions. I
L- $-\boldsymbol{- 1} \boldsymbol{- 1}$

## Operating Precautions

## $\triangle$ Caution

1. Avoid using the air cylinder in such a way that rotational torque would be applied to the piston rod.
If rotational torque is applied, the non-rotating guide will become deformed, causing a loss of non-rotating accuracy. Also, to screw a bracket or a nut onto the threaded portion at the end of the piston rod, make sure the retract the piston rod entirely, and place a wrench on the parallel sections of the rod that protrudes. To tighten, take precautions to prevent the tightening torque from being applied to the non-rotating guide.


## Disassembly/Replacement

## $\triangle$ Caution

1. When replacing rod seals, please contact SMC.
Air leakage may be happened, depending on the position in which a rod seal is fitted. Thus, please contact SMC when replacing them.

## Selection

## $\triangle$ Warning

1. Confirm the specifications.

Products in this catalog are designed to be used for compressed air systems. If not operated within the designated pressure or temperature, it may damage the products or cause malfunction. (Refer to specifications.)
2. Energizing continuously for a long period of time
When the valve is continuously energized for a long period of time, the performance may deteriorate or effect peripheral equipment adversely since temperature rises when coils generate heat.

## Construction



## Component Parts

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1}$ | Rod cover | Aluminum alloy | Matt black painted |
| $\mathbf{2}$ | Head cover | Aluminum alloy | Matt black painted |
| $\mathbf{3}$ | Cylinder tube | Aluminum alloy | Hard anodized |
| $\mathbf{4}$ | Piston rod | Carbon steel | Hard chrome plated |
| $\mathbf{5}$ | Piston | Aluminum alloy | Chromated |
| $\mathbf{6}$ | Cushion ring A | Rolled steel | Zinc chromated |
| $\mathbf{7}$ | Cushion ring B | Rolled steel | Zinc chromated |
| $\mathbf{8}$ | Non-rotating guide | Oilimpregnated |  |
| $\mathbf{\text { sintered alloy }}$ |  |  |  |
| $\mathbf{9}$ | Cushion valve | Rolled steel | Electroless nickel plated |
| $\mathbf{1 0}$ | Piston nut | Rolled steel | Zinc chromated |
| $\mathbf{1 1}$ | Spring washer | Steel wire | Zinc chromated |
| $\mathbf{1 2}$ | Tie-rod | Carbon steel | Zinc chromated |
| $\mathbf{1 3}$ | Tie-rod nut | Carbon steel | Black zinc chromated |
| $\mathbf{1 4}$ | Spring washer | Steel wire | Black zinc chromated |
| $\mathbf{1 5}$ | Pipe | Caron steel tube | Uni-chromated |
| $\mathbf{1 6}$ | Needle | Sultur easy chippingsteel | Electroless nickel plated |
| $\mathbf{1 7}$ | lock nut | Carbon steel | Nickel plated |
| $\mathbf{1 8}$ | lock nut | Carbon steel | Nickel plated |


| No. | Description |  | Material | Note |
| :---: | :---: | :---: | :---: | :---: |
| 19 | Needle guide |  | Sulur easy chipping steel | Electroless nickel plated |
| 20 | Plug |  | Chromium molybdenum steel | Black zinc chromated |
| 21 | Wear ring |  | Resin |  |
| No. | Description | No.otsienois | Rod extenced when energized | Rod detacteded when nenegized |
| 22 | Solenoid | Single | (1) | (2) |
|  | valve | Double | (3) | (3) |

* How to order solenoid valves

Note 1) V3108-00 Voltage Electrical entry Note 2) V3108-00 Voltage Electrical entry -X23 Note 3) V3208-00 Voltage Electrical entry

| No. | Description | Material | Note |
| :--- | :--- | :---: | :---: |
| $\mathbf{2 3}$ | Piston seal | NBR |  |
| $\mathbf{2 4}$ | Rod seal | NBR |  |
| $\mathbf{2 5}$ | Cushion seal | NBR |  |
| $\mathbf{2 6}$ | Cylinder tube gasket | NBR |  |
| $\mathbf{2 7}$ | Cushion valve seal | NBR |  |


| No. | Description | Material | Note |
| :--- | :---: | :---: | :---: |
| $\mathbf{2 8 *}$ | Piston gasket | NBR |  |
| $\mathbf{2 9}$ | Pipe gasket | NBR |  |
| $\mathbf{3 0}$ | Head cover gasket | NBR |  |
| $\mathbf{3 1}$ | Single solenoid gasket | NBR |  |
|  | Double solenoid gasket | NBR |  |
| *N |  |  |  |

* Not replaceable.

Replacement Parts: Seal Kit

| Bore size (mm) | Kit no. | Contents |
| :---: | :---: | :---: |
| 40 | CV3K40-PS | Set of nos. above (23), (24), (26), (27), (29, (30). |
| 50 | CV3K50-PS |  |
| 63 | CV3K63-PS |  |

* Seal kit includes (23), (24), (26), (27), (29), (30). Order the seal kit, based on each bore size. (Not possible to replace (25), (28.)
* Seal kit includes a grease pack ( $\varnothing 40, \varnothing 50: 10 \mathrm{~g}, \varnothing 63$ or more: 20 g ).
Order with the following part number when only the grease pack is needed.
Grease pack part no.: GR-S-010 (10 g), GR-S-020 (20 g)

Basic Type: CV3KB $\square$


# CV3 Series <br> Auto Switch Mounting 1 

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height
<Band mounting type>
D-B5 $\square / B 64 / B 59 W$


D-A3 $\square$


D-G5 $\square / K 59$
D-G5 $\quad$ W/K59W
D-G59F/G5NT


D-A44

<Tie-rod mounting type>
D-A9 $\square / A 9 \square V$
D-M9 $\square /$ M9 $\square$ V
D-Z7 $\square / Z 80$
D-Y59■/Y69■/Y7P/Y7PV
D-Y7 $\square W / Y 7 \square W V$

D-M9 $\square$ A/M9 $\square$ AV


D-A5 $\square /$ A6 $\square$
D-A59W


D-A3 $\square$ C
D-G39C/K39C


D-F5 $\square / J 59$
D-F5NT
D-F5 $\square$ W/J59W
D-F59F


D-A44C


Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height
Auto Switch Proper Mounting Position

|  | $\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9■V } \end{aligned}$ |  | $\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square V \\ & \text { D-M9 } \square \text { W } \\ & \text { D-M9 } \square \mathbf{W V} \\ & \text { D-M9 } \square \text { A } \\ & \text { D-M9 } \square \text { AV } \end{aligned}$ |  | D-A5 <br> D-A6 <br> D-A3 <br> D-A3 $\square$ C <br> D-A44/A44C <br> D-G39/G39C <br> D-K39/K39C |  | $\begin{aligned} & \text { D-B5 } \\ & \text { D-B64 } \end{aligned}$ |  | $\begin{aligned} & \text { D-F5 } \\ & \text { D-J59 } \\ & \text { D-F5 } \square \text { W } \\ & \text { D-J59W } \\ & \text { D-F59F } \end{aligned}$ |  | $\begin{aligned} & \text { D-G5■W } \\ & \text { D-K59W } \\ & \text { D-G59F } \\ & \text { D-G5■ } \\ & \text { D-K59 } \\ & \text { D-G5NT } \end{aligned}$ |  | D-A59W |  | D-F5NT |  | D-B59W <br> D-Z7■ <br> D-Z80 <br> D-Y59 <br> D-Y69■ <br> D-Y7P <br> D-Y7PV <br> D-Y7口W <br> D-Y7 $\square W V$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | A | B | A | B | A | B | A | B | A | B | A | B | A | B | A | B |
| 40 | $\begin{array}{r} 3 \\ (6) \end{array}$ | $\begin{array}{r} 7 \\ (4) \end{array}$ | $\begin{gathered} 7 \\ (10) \end{gathered}$ | $\begin{aligned} & 11 \\ & (8) \\ & \hline \end{aligned}$ | $\begin{gathered} 0 \\ (0) \end{gathered}$ | $\begin{gathered} 1 \\ (0) \end{gathered}$ | $\begin{gathered} 0 \\ (0.5) \end{gathered}$ | $\begin{aligned} & 1.5 \\ & \text { (0) } \end{aligned}$ | $\begin{array}{r} 3.5 \\ (6.5) \\ \hline \end{array}$ | $\begin{array}{r} 7.5 \\ (4.5) \end{array}$ | $\begin{gathered} 0 \\ (2) \end{gathered}$ | $\begin{gathered} \hline 3 \\ (0) \end{gathered}$ | $\begin{gathered} \hline 1 \\ (4) \\ \hline \end{gathered}$ | $\begin{gathered} 5 \\ (2) \\ \hline \end{gathered}$ | $\begin{array}{r} 8.5 \\ (11.5) \end{array}$ | $\begin{aligned} & 12.5 \\ & (9.5) \end{aligned}$ | $\begin{gathered} \hline 0.5 \\ (3.5) \end{gathered}$ | $\begin{array}{r} 4.5 \\ (1.5) \end{array}$ |
| 50 | - | - | $\begin{gathered} 7 \\ (10) \end{gathered}$ | $\begin{aligned} & 11 \\ & (8) \\ & \hline \end{aligned}$ | $\begin{gathered} 0 \\ (0) \end{gathered}$ | $\begin{gathered} 1 \\ (0) \end{gathered}$ | $\begin{gathered} 0 \\ (0.5) \end{gathered}$ | $\begin{aligned} & 1.5 \\ & (0) \end{aligned}$ | $\begin{array}{r} 3.5 \\ (6.5) \end{array}$ | $\begin{array}{r} 7.5 \\ (4.5) \end{array}$ | $\begin{gathered} 0 \\ (2) \end{gathered}$ | $\begin{gathered} 3 \\ (0) \\ \hline \end{gathered}$ | $\begin{gathered} 1 \\ (4) \end{gathered}$ | $\begin{aligned} & 5 \\ & \text { (2) } \end{aligned}$ | $\begin{array}{r} 8.5 \\ (11.5) \end{array}$ | $\begin{aligned} & 12.5 \\ & (9.5) \end{aligned}$ | $\begin{gathered} 0.5 \\ (3.5) \end{gathered}$ | $\begin{array}{r} 4.5 \\ (1.5) \end{array}$ |
| 63 | $\begin{gathered} 5 \\ (8.5) \end{gathered}$ | $\begin{gathered} 11 \\ (7.5) \end{gathered}$ | $\begin{gathered} 9 \\ (12.5) \\ \hline \end{gathered}$ | $\begin{gathered} 15 \\ (11.5) \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ (2.5) \end{gathered}$ | $\begin{array}{r} 5.5 \\ (1.5) \\ \hline \end{array}$ | $\begin{aligned} & 0 \\ & \text { (3) } \end{aligned}$ | $\begin{aligned} & 6 \\ & (2) \end{aligned}$ | $\begin{aligned} & \hline 5.5 \\ & \text { (9) } \\ & \hline \end{aligned}$ | $12$ (8) | $\begin{gathered} \hline 1 \\ (4.5) \end{gathered}$ | $\begin{array}{r} 7.5 \\ (3.5) \\ \hline \end{array}$ | $\begin{gathered} 3 \\ (6.5) \end{gathered}$ | $\begin{array}{r} 9.5 \\ (5.5) \end{array}$ | $\begin{aligned} & 10.5 \\ & (14) \end{aligned}$ | $\begin{aligned} & \hline 17 \\ & (13) \end{aligned}$ | $\begin{aligned} & 2.5 \\ & (6) \\ & \hline \end{aligned}$ | $\begin{aligned} & 9 \\ & (5) \end{aligned}$ |
| 80 | $\begin{gathered} 8 \\ (12) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 14 \\ (10) \end{gathered}$ | $\begin{gathered} 12 \\ (16) \end{gathered}$ | $\begin{gathered} \hline 18 \\ (14) \end{gathered}$ | $2$ <br> (6) | $\begin{aligned} & \hline 8.5 \\ & (4) \\ & \hline \end{aligned}$ | $\begin{gathered} \hline 2.5 \\ (6.5) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 9 \\ (4.5) \\ \hline \end{gathered}$ | $\begin{gathered} 8.5 \\ (12.5) \\ \hline \end{gathered}$ | $\begin{aligned} & \hline 15 \\ & (10.5) \\ & \hline \end{aligned}$ | $\begin{gathered} \hline 4 \\ (8) \\ \hline \end{gathered}$ | $\begin{gathered} 10.5 \\ (6) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 6 \\ (10) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 12.5 \\ (8) \\ \hline \end{gathered}$ | $\begin{array}{r} 13.5 \\ (17.5) \\ \hline \end{array}$ | $\begin{aligned} & \hline 20 \\ & (15.5) \\ & \hline \end{aligned}$ | $\begin{gathered} \hline 5.5 \\ (9.5) \\ \hline \end{gathered}$ | $\begin{aligned} & \hline 12 \\ & (7.5) \\ & \hline \end{aligned}$ |
| 100 | $\begin{gathered} 10 \\ (13.5) \end{gathered}$ | $\begin{gathered} 16 \\ (12.5) \end{gathered}$ | $\begin{gathered} 14 \\ (17.5) \end{gathered}$ | $\begin{gathered} 20 \\ (16.5) \end{gathered}$ | $\begin{gathered} 4 \\ (7.5) \end{gathered}$ | $\begin{aligned} & \hline 10.5 \\ & (6.5) \\ & \hline \end{aligned}$ | $\begin{aligned} & 4.5 \\ & \text { (8) } \end{aligned}$ | $\begin{gathered} 11 \\ (7) \end{gathered}$ | $\begin{aligned} & \hline 10.5 \\ & (14) \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 17 \\ & (13) \end{aligned}$ | $\begin{gathered} \hline 6 \\ (9.5) \end{gathered}$ | $\begin{aligned} & 12.5 \\ & (8.5) \end{aligned}$ | $\begin{gathered} 8 \\ (11.5) \\ \hline \end{gathered}$ | $\begin{gathered} 14.5 \\ (10.5) \end{gathered}$ | $\begin{aligned} & \hline 15.5 \\ & (19) \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 22 \\ & (18) \end{aligned}$ | $\begin{gathered} 7.5 \\ (11) \end{gathered}$ | $\begin{aligned} & \hline 14 \\ & (10) \end{aligned}$ |

Note 1) (): Denotes the values of non-lube type.
Note 2) D-G5 $\square$ W/K59W/G59F types cannot be mounted on the ø40 or ø50 lube type.
Note 3) D-B5 $\square, ~ D-G 5 \square$ and D-K5 $\square$ types are mountable only upon a receipt of order. (Not mountable after the time of shipment)
Note 4) D-A9 $\square$ and D-A9 $\square$ V types cannot be mounted on $\varnothing 50$
Note 5) Adjust the auto switch after confirming the operating conditions in the actual setting.
Auto Switch Mounting Height

|  | $\begin{aligned} & \text { D-A9 } \square \\ & \text { D-M9 } \square \\ & \text { D-M9 } \square \mathbf{W} \\ & \text { D-M9 } \square \mathbf{A} \end{aligned}$ |  | D-A9■V |  | $\left\lvert\, \begin{aligned} & \text { D-M9 } \square V \\ & \text { D-M9 } \square W V \\ & \text { D-M9 } \square \text { AV } \end{aligned}\right.$ |  | D-B5 $\square$ <br> D-B64 <br> D-B59W <br> D-G5 $\square$ <br> D-K59 <br> D-G5NT <br> D-G5 $\square$ W <br> D-K59W <br> D-G59F | $\begin{aligned} & \text { D-A3 } \\ & \text { D-G39 } \\ & \text { D-K39 } \end{aligned}$ | D-A44 | $\begin{aligned} & \text { D-A5 } \square \\ & \text { D-A6 } \square \\ & \text { D-A59W } \end{aligned}$ |  | D-F5 $\square$ <br> D-J59 <br> D-F5 $\square$ W <br> D-J59W <br> D-F59F <br> D-F5NT |  | $\begin{aligned} & \text { D-A3■C } \\ & \text { D-G39C } \\ & \text { D-K39C } \end{aligned}$ |  | D-A44C |  | $\begin{aligned} & \text { D-Z7 } \square \\ & \text { D-Z80 } \\ & \text { D-Y59 } \\ & \text { D-Y7P } \\ & \text { D-Y7 } \square \mathbf{W} \end{aligned}$ |  | $\begin{aligned} & \text { D-Y69 } \square \\ & \text { D-Y7PV } \\ & \text { D-Y7 } \square W V \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Hs | Ht | Hs | Ht | Hs | Ht | Hs | Hs | Hs | Hs | Ht | Hs | Ht | Hs | Hw | Hs | Hw | Hs | Ht | Hs | Ht |
| 40 | 30 | 30 | 32 | 30 | 35 | 30 | 38 | 72.5 | 80.5 | 40 | 31 | 38.5 | 31 | 73 | 69 | 81 | 69 | 30 | 30 | 30.5 | 30 |
| 50 | 34 | 34 | - | - | 39 | 34 | 43.5 | 78 | 86 | 43.5 | 35 | 42.5 | 35 | 78.5 | 77 | 86.5 | 77 | 34 | 34 | 35 | 34 |
| 63 | 41 | 41 | 43.5 | 41 | 46 | 41 | 50.5 | 85 | 93 | 49 | 42 | 48 | 42 | 85.5 | 91 | 93.5 | 91 | 41 | 41 | 42.5 | 41 |
| 80 | 49.5 | 49 | 51.5 | 49 | 54 | 49 | 59 | 93.5 | 101.5 | 55.5 | 50 | 54 | 50 | 94 | 107 | 102 | 107 | 49.5 | 48.5 | 51 | 48.5 |
| 100 | 57 | 56 | 59.5 | 56 | 62.5 | 56 | 69.5 | 104 | 112 | 63 | 57.5 | 62 | 57.5 | 104 | 121 | 112 | 121 | 58.5 | 56 | 59 | 56 |

# CV3 Series <br> Auto Switch Mounting 2 

## Minimum Stroke For Auto Switch Mounting

|  |  |  |  | n : Number of auto switches (mm) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Auto switch model | No. of auto switches mounted |  | Mounting brackets other than center trunnion | Center trunnion |  |  |  |
|  |  |  | ø40 $\quad$ ø50 | $\varnothing 63$ | $\varnothing 80$ | $\varnothing 100$ |
| D-A9 $\square$ | 2 (Different surfaces, Same surface), 1 |  |  | 15 | 80 | 90 | 105 | 115 |
|  | n |  | $\begin{gathered} 15+40 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ | $\begin{array}{\|c\|} \hline 80+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 90+40 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{array}$ | $\begin{gathered} 105+40 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note 2) }} \end{gathered}$ | $\begin{gathered} 115+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2 })} \end{gathered}$ |
| D-A9 $\square$ V | 2 (Different surfaces, Same surface), 1 |  | 10 | 80 | 90 | 105 | 115 |
|  |  | n | $\begin{gathered} 10+30 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots)^{\text {Note 1 })} \end{gathered}$ | $\begin{gathered} 80+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \end{gathered}$ | $\begin{array}{\|c\|} \hline 90+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \\ \hline \end{array}$ | $\begin{gathered} 105+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 115+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \end{gathered}$ |
| $\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \text { W } \\ & \text { D-M9 } \square \mathbf{A} \end{aligned}$ | 2 (Different surfaces, Same surface), 1 |  | 15 | 85 | 100 | 115 | 120 |
|  |  | n | $\begin{gathered} 15+40 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ | $\begin{gathered} 85+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{array}{\|c\|} \hline 100+40 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \\ \hline \end{array}$ | $\begin{gathered} 115+40 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note 2) }} \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline 120+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \\ \hline \end{array}$ |
| $\begin{aligned} & \text { D-M9 } \square V \\ & \text { D-M9 } \square \text { WV } \\ & \text { D-M9 } \square \text { AV } \end{aligned}$ | 2 (Different surfaces, Same surface), 1 |  | 10 | 85 | 100 | 115 | 120 |
|  | n |  | $\begin{gathered} 10+30 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 85+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{array}{\|c\|} \hline 100+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 115+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \\ \hline \end{array}$ | $\begin{gathered} 120+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \end{gathered}$ |
| D-A5 $\square /$ A6 $\square$ <br> D-F5 $\square / J 59$ <br> D-F5 $\square$ W/J59W <br> D-F59F | 2 (Different surfaces, Same surface), 1 |  | 15 | 90 | 100 | 110 | 120 |
|  | n (Same surface) |  | $\begin{gathered} 15+55 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 90+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{array}{\|c\|} \hline 100+55 \frac{(n-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 110+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 120+55 \\ \hline(\mathrm{n}=4,8,12,16 \cdots)^{2} \\ \hline \end{array}$ |
| D-A59W | 2 (Different surfaces, Same surface) |  | 20 | 90 | 100 | 110 | 120 |
|  | n (Same surface) |  | $\begin{gathered} 20+55 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ | $\begin{gathered} 90+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \text { Note } 2) \end{gathered}$ | $\begin{array}{\|c\|} \hline 100+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \\ \hline \end{array}$ | $\begin{array}{\|c} 110+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \end{array}$ | $\begin{array}{\|c\|} \hline 120+55 \\ \hline(n=4,8,12,16 \cdots)^{\text {Note } 2)} \\ \hline \end{array}$ |
|  |  | 1 | 15 | 90 | 100 | 110 | 120 |
| D-F5NT | 2 (Different surfaces, Same surface), 1 |  | 25 | 110 | 120 | 130 | 140 |
|  | n (Same surface) |  | $\begin{gathered} 25+55 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 110+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 120+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \end{gathered}$ | $\begin{gathered} 130+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \end{gathered}$ | $\begin{gathered} \hline 140+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ |
| $\begin{aligned} & \text { D-B5 } \square / B 64 \\ & \text { D-G5 } \square / K 59 \\ & \text { D-G5 } \square \text { W } \\ & \text { D-K59W } \\ & \text { D-G59F } \\ & \text { D-G5NT } \end{aligned}$ | 2 | Different surfaces | 15 75 | 90 | 100 | 110 |  |
|  | n | Different surfaces | $\begin{array}{\|c\|} \hline 15+50 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots)^{\text {Note 1 })} \\ \hline \end{array}$ | $\begin{gathered} 90+50 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{array}{\|c\|} \hline 100+50 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \\ \hline \end{array}$ | $\begin{gathered} 110+50 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ |  |
|  |  | Same surface | $\begin{gathered} 75+50(n-2) \\ (n=2,4,6,8 \cdots) \end{gathered}$ | $\begin{gathered} 90+50(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline 100+50(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{array}$ | $\begin{array}{r} 110+5 \\ (n=2,4,6 \\ \hline \end{array}$ | $\begin{aligned} & 0(n-2) \\ & , 8 \cdots)^{\text {Note 1) }} \end{aligned}$ |
|  |  | 1 | 10 | 90 | 100 |  | 10 |
| D-B59W | 2 | Different surfaces <br> Same surface | 20 | 90 | 100 | 110 |  |
|  | n | Different surfaces | $\begin{array}{\|c\|} \hline 20+50 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note 1 })} \\ \hline \end{array}$ | $\begin{gathered} 90+50 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 100+50 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{array}{r} 110+5 \\ (n=4,8,12 \\ \hline \end{array}$ | $\begin{aligned} & \frac{(n-4)}{2} \\ & 16 \cdots)^{\text {Note } 2)} \end{aligned}$ |
|  |  | Same surface | $\begin{aligned} & 75+50(n-2) \\ & (n=2,3,4, \cdots) \\ & \hline \end{aligned}$ | $\begin{gathered} 90+50(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline 100+50(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{array}$ | $\begin{array}{r} 110+5 \\ (n=2,4,6 \end{array}$ | $\begin{aligned} & 0(n-2) \\ & , 8 \cdots)^{\text {Note 1) }} \end{aligned}$ |
|  |  | 1 | 15 | 90 | 100 |  | 10 |
| $\begin{aligned} & \text { D-A3 } \\ & \text { D-G39 } \\ & \text { D-K39 } \end{aligned}$ | 2 | Different surfaces | 35 100 | 100 | 100 | 110 |  |
|  | n | Different surfaces | $\begin{aligned} & 35+30(n-2) \\ & (n=2,3,4, \cdots) \end{aligned}$ | $\begin{gathered} 100+30(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 100+30(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ | $\begin{array}{r} 110+3 \\ (n=2,4,6 \\ \hline \end{array}$ | $\begin{aligned} & 0(n-2) \\ & 6,8 \cdots)^{\text {Note 1) }} \end{aligned}$ |
|  |  | Same surface | $\begin{gathered} 100+100(n-2) \\ (n=2,3,4, \cdots) \\ \hline \end{gathered}$ | $\begin{gathered} 100+100(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ |  | $\begin{array}{r} 110+10 \\ (n=2,4,6 \end{array}$ | $\begin{aligned} & 00(n-2) \\ & , 8 \cdots)^{\text {Note 1) }} \end{aligned}$ |
|  |  | 1 | 10 | 100 | 100 | 110 |  |
| D-A44 | 2 | Different surfaces | 35 | 90 | 100 | 110 |  |
|  |  | Same surface | 55 |  |  |  |  |
|  | n | Different surfaces | $\begin{aligned} & 35+30(n-2) \\ & (n=2,3,4, \cdots) \\ & \hline \end{aligned}$ | $\begin{gathered} 90+30(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline 100+30(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{array}$ | $\begin{array}{r} 110+3 \\ (n=2,4,6 \\ \hline \end{array}$ | $\begin{aligned} & 30(n-2) \\ & 6,8 \cdots)^{\text {Note 1) }} \end{aligned}$ |
|  |  | Same surface | $\begin{aligned} & 55+50(n-2) \\ & (n=2,3,4, \cdots) \\ & \hline \end{aligned}$ | $\begin{gathered} 90+50(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline 100+50(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{array}$ | $\begin{array}{r} 110+5 \\ (n=2,4,6 \\ \hline \end{array}$ | $\begin{aligned} & 0(n-2) \\ & 0,8 \cdots)^{\text {Note 1) }} \end{aligned}$ |
|  |  | 1 | 10 | 90 | 100 |  | 10 |

Note 1) When " n " is an odd number, an even number that is one larger than this odd number is used for the calculation.
Note 2) When " $n$ " is an odd number, a multiple of 4 that is larger than this odd number is used for the calculation.
n : Number of auto switches (mm)

| Auto switch model | No. of auto switches mounted |  | Mounting brackets other than center trunnion | Center trunnion |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\varnothing 40$ | $\varnothing 50$ | $\varnothing 63$ | $\varnothing 80$ | $\varnothing 100$ |
| $\begin{aligned} & \text { D-A3 } \square \mathrm{C} \\ & \text { D-G39C } \\ & \text { D-K39C } \end{aligned}$ | 2 | Different surfaces |  | 20 | 100 |  | 100 | 110 |  |
|  |  | Same surface | 100 |  |  |  |  |  |
|  | n | Different surfaces | $\begin{aligned} & 20+35(\mathrm{n}-2) \\ & (\mathrm{n}=2,3,4, \ldots) \end{aligned}$ | $\begin{gathered} 100+35(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ |  | $\begin{gathered} 100+35(n-2) \\ \left.(n=2,4,6,8 \cdots)^{\text {Note 1 }}\right) \end{gathered}$ | $\begin{gathered} 110+35(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ |  |
|  |  | Same surface | $\begin{aligned} & 100+100(\mathrm{n}-2) \\ & (\mathrm{n}=2,3,4,5, \cdots) \\ & \hline \end{aligned}$ | $\begin{gathered} 100+100(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ |  |  | $\begin{gathered} 110+100(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ |  |
|  |  | 1 | 10 | 100 |  | 100 | 110 |  |
| D-A44C | 2 | Different surfaces | 20 | 90 |  | 100 | 110 |  |
|  |  | Same surface | 55 |  |  |  |  |  |  |  |  |  |
|  | n | Different surfaces | $\begin{aligned} & 25+35(\mathrm{n}-2) \\ & (\mathrm{n}=2,3,4, \cdots) \\ & \hline \end{aligned}$ | $\begin{gathered} 90+35(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ |  | $\begin{gathered} 100+35(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 110+35(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ |  |
|  |  | Same surface | $\begin{aligned} & 55+50(\mathrm{n}-2) \\ & (\mathrm{n}=2,3,4, \cdots) \end{aligned}$ | $\begin{gathered} 90+50(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ |  | $\begin{gathered} 100+35(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 110+50(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ |  |
|  |  | 1 | 10 | 90 |  | 100 | 110 |  |
| $\begin{aligned} & \text { D-Z7 } \square / Z 80 \\ & \text { D-Y59 } \square / \mathrm{Y} 7 \mathrm{P} \\ & \mathrm{D}-\mathrm{Y} 7 \square \mathrm{~W} \end{aligned}$ |  | Different surfaces, me surface), 1 | 15 | 80 | 85 | 90 | 95 | 105 |
|  |  | n | $\begin{gathered} 15+40 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 80+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note 2 })} \end{gathered}$ | $\begin{gathered} 85+40 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note 2) }} \end{gathered}$ | $\begin{gathered} 90+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note 2 })} \end{gathered}$ | $\begin{gathered} 95+40 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note 2) }} \end{gathered}$ | $\begin{array}{\|c\|} \hline 105+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note } 2)} \end{array}$ |
| $\begin{aligned} & \text { D-Y69■/Y7PV } \\ & \text { D-Y7 } \square W V \end{aligned}$ |  | Different surfaces, me surface), 1 | 10 | 65 |  | 75 | 80 | 90 |
|  |  | n | $\begin{array}{\|c\|} \hline 10+30 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \end{array}$ | $\begin{array}{r} 65+3 \\ (n=4,8,12 \end{array}$ | $\begin{aligned} & 0 \frac{(n-4)}{2} \\ & 16 \cdots)^{\text {Note 2) }} \end{aligned}$ | $\begin{gathered} 75+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 80+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 90+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Nole 2) }} \end{gathered}$ |

Note 1) When " $n$ " is an odd number, an even number that is one larger than this odd number is used for the calculation.
Note 2) When " $n$ " is an odd number, a multiple of 4 that is larger than this odd number is used for the calculation.

# CV3 Series <br> Auto Switch Mounting 3 

## Operating Range

| (mm) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Auto switch model | Bore size (mm) |  |  |  |  |
|  | 40 | 50 | 63 | 80 | 100 |
| D-A9 $\square /$ A9 $\square$ V | 7 | - | 9 | 9 | 9 |
| D-M9 $\square / M 9 \square V$ <br> D-M9 $\square$ W/M9 $\square W V$ <br> D-M9■A/M9■AV | 4.5 | 5 | 5.5 | 5 | 6 |
| D-Z7 $\square / \mathbf{Z 8 0}$ | 8 | 7 | 9 | 9.5 | 10.5 |
| $\begin{aligned} & \text { D-A3 } \square / \text { A44 } \\ & \text { D-A3 } \square \text { C/A44C } \end{aligned}$ | 9 | 10 | 11 | 11 | 11 |
| D-A5 $\square /$ A6 $\square$ |  |  |  |  |  |
| D-B5■/B64 |  |  |  |  |  |
| D-A59W | 13 | 13 | 14 | 14 | 15 |
| D-B59W | 14 | 14 | 17 | 16 | 18 |
| $\begin{aligned} & \hline \text { D-Y59 } \square \text { /Y69 } \square \\ & \text { D-Y7P/Y7PV } \\ & \text { D-Y7 } \square W / Y 7 \square W V \\ & \hline \end{aligned}$ | 8 | 7 | 5.5 | 6.5 | 6.5 |
| $\begin{aligned} & \text { D-F5 } \square / J 59 \\ & \text { D-F5 } \square \text { W/J59W } \\ & \text { D-F5NT/F59F } \end{aligned}$ | 4 | 4 | 4.5 | 4.5 | 4.5 |
| $\begin{aligned} & \text { D-G5 } \square / K 59 \\ & \text { D-G5 } \square \text { W/K59W } \\ & \text { D-G5NT/G59F } \end{aligned}$ | 5 | 6 | 6.5 | 6.5 | 7 |
| $\begin{aligned} & \text { D-G39/K39 } \\ & \text { D-G39C/K39C } \end{aligned}$ | 9 | 9 | 10 | 10 | 11 |

* D-A9 $\square$ and D-A9 $\square \mathrm{V}$ types cannot be mounted on ø50.
* Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately $\pm 30 \%$ dispersion.)
There may be the case it will vary substantially depending on an ambient environment.


## Auto Switch Mounting Bracket Part No.

## <Tie-rod mounting type>

| Auto switch model | Bore size (mm) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\varnothing 40$ | $ø 50$ | ø63 | $\varnothing 80$ | $ø 100$ |
| D-A9 $\square /$ A9 $\square V$ D-M9 $\square /$ M9 $\square V$ D-M9 W/M9 $\square W V$ D-M9 $\square$ A/M9 | BA7-040 | BA7-040 | BA7-063 | BA7-080 | BA7-080 |
| D-A5■/A6■/A59W <br> D-F5 $\square / J 59 / F 5 \square W / J 59 W$ <br> D-F5NT/F59F | BT-04 | BT-04 | BT-06 | BT-08 | BT-08 |
| D-A3 $\square$ C/A44C/G39C/K39C | BA3-040 | ВАЗ-050 | BA3-063 | ВАЗ-080 | ВАЗ-100 |
| D-Z7■/Z80 <br> D-Y59■/Y69 <br> D-Y7P/Y7PV <br> D-Y7 $\square W / Y 7 \square W V$ | BA4-040 | BA4-040 | BA4-063 | BA4-080 | BA4-080 |

## <Band mounting type>

| Auto switch model | Bore size (mm) |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | $\varnothing \mathbf{4 0}$ | $\varnothing 50$ | $\varnothing 63$ | $\varnothing 80$ | $\varnothing 100$ |
| D-A3 $\square /$ A44/G39/K39 | BD1-04M | BD1-05M | BD1-06M | BD1-08M | BD1-10M |
| D-B5 $\square / B 64 / B 59 W ~$ <br> D-G5 $\square / K 59 / G 5 ~$ <br> W/K59W <br> D-G59F/G5NT | BA-04 | BA-05 | BA-06 | BA-08 | BA-10 |

* D-A9 $\square$ and D-A9 $\square$ V types cannot be mounted on $\varnothing 50$.
* Auto switch mounting brackets are included in D-A3 $\square$ C/A44C/G39C/K39C. When the auto switch mounting bracket is needed separately, order it with the above part number. When ordering an auto switch alone, specify it as shown below according to the cylinder size.
Ex.) ø40: D-A3 $\square \mathrm{C}-4, \varnothing 50$ : D-A3 $\square \mathrm{C}-5$
$ø 63: \mathrm{D}-\mathrm{A} 3 \square \mathrm{C}-6, ø 80: \mathrm{D}-\mathrm{A} 3 \square \mathrm{C}-8, \varnothing 100: \mathrm{D}-\mathrm{A} 3 \square \mathrm{C}-10$

- Mounting example of D-A9 $\square(\mathrm{V}) / \mathrm{M} 9 \square(\mathrm{~V}) / \mathrm{M} 9 \square \mathrm{~W}(\mathrm{~V})$ /M9■A(V)

| Auto switch type | Model | Electrical entry (Fetching direction) | Features |
| :---: | :---: | :---: | :---: |
| Reed | D-A93V, A96V | Grommet (Perpendicular) | - |
|  | D-A90V |  | Without indicator light |
|  | D-A53, A56, B53, Z73, Z76 | Grommet (In-line) | - |
|  | D-A67, Z80 |  | Without indicator light |
| Solid state | D-M9NV, M9PV, M9BV | Grommet (Perpendicular) | - |
|  | D-Y69A, Y69B, Y7PV |  |  |
|  | D-M9NWV, M9PWV, M9BWV |  | Diagnostic indication (2-color indicator) |
|  | D-Y7NWV, Y7PWV, Y7BWV |  |  |
|  | D-M9NAV, M9PAV, M9BAV |  | Water resistant (2-color indicator) |
|  | D-Y59A, Y59B, Y7P | Grommet (In-line) | - |
|  | D-F59, F5P, J59 |  |  |
|  | D-Y7NW, Y7PW, Y7BW |  | Diagnostic indication (2-color iindicator) |
|  | D-F59W, F5PW, J59W |  |  |
|  | D-F5NT, G5NT |  | With timer |
| * With pre-wired connector is also available in solid state auto switches. <br> For details, refer to pages 1014 and 1015. <br> * Normally closed ( $\mathrm{NC}=\mathrm{b}$ contact), solid state auto switch (D-F9G/F9H/Y7G/Y7H type) are also available. For details, refer to pages 959 and 961. <br> * Wide range detection type, solid state auto switches (D-G5NB type) are also available. Refer to page 1004 for details. |  |  |  |

# Valve Mounted Cylinder Double Acting 

 CVS1 Series$\varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100$
How to Order


Applicable Auto Switches/Refer to pages 941 to 1067 for further information on auto switches.

|  | Special function | Electrical entry | $\begin{array}{\|l\|} \hline \text { 害 } \\ \text { 䅉 } \end{array}$ | Wiring (Output) | Load voltage |  |  | Auto switch model |  | Lead wire length ( m ) |  |  |  | Pre-wired connector | Applicable load |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | DC |  | AC | Tie-rod mounting | Band mounting | 0.5 (Nil) | 1 (M) | 3(L) | 5 (Z) |  |  |  |
|  |  | Grommet | 3-wire (NPN) |  | 24 V | $5 \mathrm{~V}, 12 \mathrm{~V}$ | - | M9N | - | - | - | - | $\bigcirc$ | $\bigcirc$ | IC circuit | Relay, PLC |
|  |  |  |  |  | - |  |  | G59** | - | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |  |
|  |  |  |  | 3-wire (PNP) |  |  |  | M9P | - | - | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  |  |  |  |  | - | G5P** | - | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  |  |  | 12 V |  | M9B | - | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - |  |
|  |  |  |  | 2-wire |  |  |  | - | K59** | - | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  | Terminal |  | 3-wire (NPN) |  | 24 V | 12 V | - | G39C | G39 | - | - | - | - |  |  | - |
|  |  | conduit |  | 2-wire | K39C |  |  |  | K39 | - | - | - | - | - | IC circuit |  |
|  | Diagnostic indication (2-color indicator) | Grommet |  |  | $5 \mathrm{~V}, 12 \mathrm{~V}$ |  | M9NW |  | - | $\bigcirc$ | - | - | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  | $\stackrel{\otimes}{>}$ | 3-wire (NPN) |  |  | - |  | G59W** | - | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 3 -wire (PNP) |  |  | M9PW |  | - | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 3-wire (PNP) |  |  | - |  | G5PW** | $\bigcirc$ | - | - | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 2-wire | 12 V |  | M9BW |  | - | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - |  |
|  |  |  |  |  |  |  | - |  | K59W** | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 3-wire (NPN) | $5 \mathrm{~V}, 12 \mathrm{~V}$ |  | M9NA*1 |  | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | IC circuit |  |
|  | (2-color indicator) |  |  | 3-wire (PNP) |  |  | M9PA*1 |  | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  | (2-color indicator) |  |  | 2-wire | 12 V |  | M9BA*1 |  | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - |  |
|  | With diagnostic output (2-color indicator) |  |  | 4-wire (NPN) | $5 \mathrm{~V}, 12 \mathrm{~V}$ |  | F59F |  | G59F** | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | IC circuit |  |
|  |  | Grommet | $\begin{array}{\|l\|} \hline \infty \\ \stackrel{\infty}{\succ} \\ \hline \end{array}$ | 3-vire (NPN equivalent) | - | 5 V | - | A96 [276]*** | - | $\bigcirc$ | - | $\bigcirc$ | - | - | IC circuit | - |
|  |  |  |  | 2-wire | 24 V | 12 V | 100 V | A93 [Z73]*** | - | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - | - | Relay, <br> PLC |
|  |  |  | \% |  |  |  | 100 V or less | A90 [Z80]*** | - | - | - | $\bigcirc$ | - | - | 1 C circuit |  |
|  |  |  | - |  |  |  | $100 \mathrm{~V}, 200 \mathrm{~V}$ | A54 | B54** | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | - |  |  |
|  |  |  | $\stackrel{\square}{2}$ |  |  |  | 200 V or less | A64 | B64** | $\bigcirc$ | - | $\bigcirc$ | - | - |  |  |
|  |  | Terminal | $\stackrel{\mathscr{y}}{\stackrel{\Delta}{\succ}}$ |  |  |  | - | A33C | A33 | - | - | - | - | - |  | PLC |
|  |  | conduit |  |  |  |  | $100 \mathrm{~V}, 200 \mathrm{~V}$ | A34C | A34 | - | - | - | - | - |  | Relay, <br> PLC |
|  |  | DIN terminal |  |  |  |  |  | A44C | A44 | - | - | - | - | - |  |  |
|  | Diagnosicic indication (2-color indicator) | Grommet |  |  |  | - | - | A59W | B59W** | $\bigcirc$ | - | $\bigcirc$ | - | - |  |  |

[^23]Speed controller installed
Operation type can be changed to rod extended when energized or rod retracted when energized.
A selection of solenoid valves is possible.
Single, double and 3 position solenoid valves are mountable.

## An auto switch cylinder with the switch installed can also be manufactured.



## Symbol

Air cushion


|  | Made to Order Specifications <br> Click here for details |
| :---: | :---: |
| Symbol | Specifications |
| -XAD | Change of rod end shape |
| -xC4 | With heavy duty scraper |
| -xC6 | Made of stainless steel |
| -xC7 | Tie-rod, cushion valve, and tie-rod nut made of stainless steel |
| -XC14 | Change of trunnion bracket mounting position |
| -XC15 | Change of tie-rod length |
| -XC22 | Fluororubber seals |
| -XC27 | Double clevis and double knuckle joint pins made of stainless steel |
| -XC28 | Compact flange made of SS400 |
| -XC29 | Double knuckle joint with spring pin |
| -XC35 | With coil scraper |
| -XC65 | -XC6 +-XC7 |

Refer to pages 844 to 849 for cylinders with auto switches.

- Proper auto switch mounting position (detection at stroke end) and mounting height
- Minimum auto switch mounting stroke
- Operating range
- Auto switch mounting bracket: Part no.

Specifications

| Bore size (mm) |  |  | 40 | 50 | 63 | 80 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fluid |  |  | Air |  |  |  |  |
| Action |  |  | Double acting |  |  |  |  |
| Proof pressure |  |  | 1.5 MPa |  |  |  |  |
| Maximum operating pressure |  |  | 1.0 MPa |  |  |  |  |
| Ambient and fluid temperatures |  |  | -10 to $60^{\circ} \mathrm{C} * 1$ |  |  |  |  |
| Minimum operating pressure |  |  | 0.05 MPa |  |  |  |  |
| Piston speed |  |  | 50 to $500 \mathrm{~mm} / \mathrm{s}^{* 3}$ |  |  |  |  |
| Cushion |  |  | Air cushion or Rubber bumper |  |  |  |  |
| Stroke length tolerance |  |  |  |  |  |  |  |
| Lubrication |  |  | Not required (Non-lube) |  |  |  |  |
| Mounting |  |  | Basic type, Foot type, Rod side flange type, Head side flange type, Single clevis type, Double clevis type, Center trunnion type |  |  |  |  |
| Port size |  |  | Rc 1/4 |  |  |  |  |
| Allowable kinetic energy <br> (J) *2 | Air cushion | When activated | 2.8 | 4.6 | 7.8 | 16 | 29 |
|  |  | When not activated | 0.33 | 0.56 | 0.91 | 1.5 | 2.68 |
|  | Rubber bumper |  | 1.8 | 3.6 | 6.0 | 12.0 | 12.0 |

*1 No freezing
*2 Activate the air cushion when operating the cylinder. If this is not done, the piston rod assembly or the tie-rods will be damaged when the allowable kinetic energy exceeds the values shown in the above table.
*3 For operating piston speed for each size, refer to page 834.
Solenoid Valve Specifications

| Applicable solenoid valve model |  | VS4■24 |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Coil rated voltage |  | Refer to the solenoid valve voltage shown below. |  |  |
| Electrical entry |  | Grommet, Conduit terminal, DIN terminal, DIN terminal with indicator light, Conduit terminal with surge voltage suppressor |  |  |
| Allowable voltage |  | -15 to $10 \%$ of the rated voltage |  |  |
| Coil insulation |  | Class B or equivalent ( $130^{\circ} \mathrm{C}$ ) |  |  |
| Apparent power Note) | AC | Inrush | 50 Hz | 100 VA |
|  |  |  | 60 Hz | 90 VA |
|  |  | Holding | 50 Hz | 20 VA |
|  |  |  | 60 Hz | 14 VA |
| Power consumption ${ }^{\text {Note) }}$ | DC | 13.2 W |  |  |

Note) At the rated voltage.

Solenoid valve voltage

| $\mathbf{1}$ | $100 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$ |
| :---: | :---: |
| $\mathbf{2}$ | $200 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$ |
| $\mathbf{3}$ | $110 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$ |
| $\mathbf{4}$ | $220 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$ |
| $\mathbf{5}$ | 24 VDC |
| $\mathbf{6}$ | 12 VDC |
| $\mathbf{7}$ | $240 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$ |
| $\mathbf{8}$ | $48 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$ |
| $\mathbf{A}$ | $12 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$ |
| $\mathbf{B}$ | $24 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$ |
| $\mathbf{F}$ | $32 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$ |
| $\mathbf{P}$ | 100 VDC |
| $\mathbf{W}$ | 32 VDC |
| $\mathbf{Y}$ | 48 VDC |
| $\mathbf{Z}$ | 110 VDC |

For other rated voltages, please contact SMC.

Standard Strokes
(mm)

| Bore size | Standard stroke |  |
| :---: | :--- | :--- |
|  | Stroke range (1) | Stroke range (2) |
| $\mathbf{4 0}$ | $25,50,75,100,125,150,200$, <br> $250,300,350,400,450,500$ |  |
|  | $25,50,75,100,125,150,200$, <br> $250,300,350,400,450,500,600$ | Up to 1000 |
| $\mathbf{8 0}, \mathbf{1 0 0}$ | $25,50,75,100,125,150,200,250$, <br> $300,350,400,450,500,600,700$ |  |

Note 1) Intermediate strokes not listed above are produced upon receipt of order.
Note 2) Applicable strokes should be confirmed according to the usage. For details, refer to "Air Cylinders Model Selection" on front matter pages of the Best Pneumatics No. 2 or the Web Catalog. In addition, the products that exceed the stroke range (1) might not be able to fulfill the specifications due to the deflection etc.
Note 3) Please consult with SMC for manufacturability and the part numbers when exceeding the stroke range (2).
Note 4) The minimum stroke length is different in the trunnion type and types with auto switch. Refer to pages 828 and 829.

## Rod Boot Material

| Symbol | Rod boot material | Max ambient <br> temperature |
| :---: | :---: | :---: |
| $\mathbf{J}$ | Nylon tarpaulin | $70^{\circ} \mathrm{C}$ |
| K | Heat resistant tarpaulin | $110^{\circ} \mathrm{C}^{*}$ |

* Maximum ambient temperature for the rod boot itself.


## Accessory

| Mounting |  | Basic type | Axial <br> foot type | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Rod side } \\ \text { flange } \\ \text { type } \end{array} \\ \hline \end{array}$ | Head side <br> flange <br> type | Single clevis type | Double* clevis type | Center trunnion type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Standard equipment | Rod end nut | - | - | - | O | - | - | - |
|  | Clevis pin | - | - | - | - | - | - | - |
| Option | Single knuckle joint | - | - | - | - | - | - | - |
|  | Double knuckle joint * (with pin) |  | - | - | - | - | - | 0 |
|  | With rod boot |  |  | $\bigcirc$ | ) | - | - |  |

* Pin, plain washer and cotter pin are packaged together with double clevis and double knuckle joint.
* Refer to page 839 for dimensions and part numbers of the option. Refer to page 836 for dimensions of the rod boot.


## Weight

| Weight |  |  |  |  |  | (kg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bore size (mm) | 40 | 50 | 63 | 80 | 100 |
| Basic weight | Basic type | 2.32(2.42) | 2.73(2.86) | 3.67(3.88) | 5.25(5.56) | 6.81(7.21) |
|  | Axial foot type | 2.49(2.59) | 2.93(3.06) | 3.96(4.17) | 6.04(6.35) | 7.74(8.14) |
|  | Rod side flange type | 2.72(2.82) | 3.33(3.46) | 4.63(4.84) | 7.09(7.40) | 9.13(9.53) |
|  | Head side flange type | 2.82(2.92) | 3.47(3.60) | 4.63(4.84) | 7.09(7.40) | 9.13(9.53) |
|  | Single clevis type | 2.58(2.68) | 3.17(3.30) | 4.42(4.63) | 6.63(6.94) | 9.11(9.51) |
|  | Double clevis type | 2.57(2.67) | $3.15(3.28)$ | 4.44(4.65) | 6.62(6.93) | 9.13(9.53) |
|  | Trunnion type | 2.92(3.07) | 3.47(3.66) | 5.01(5.38) | 7.58(8.03) | 10.33(10.92) |
| Additional weight per each 50 mm of stroke |  | 0.20(0.28) | 0.25(0.35) | 0.31(0.43) | 0.46(0.70) | 0.58(0.87) |
| Accessory bracket | Single knuckle | 0.23 | 0.26 | 0.26 | 0.60 | 0.83 |
|  | Double knuckle (with pin) | 0.37 | 0.43 | 0.43 | 0.87 | 1.27 |

Calculation: (Example) CVS1L40-100-1

* ( ): Steel tube type

> - Basic weight.............. $2.48(\mathrm{~kg})$ - Additional weight....... $0.20(\mathrm{~kg} / 50 \mathrm{st})$ - Cylinder stroke.......... 100 (st) $2.48+0.20 \times 100 \div 50=2.88 \mathrm{~kg}$

## Mounting Bracket Part No.

| Bore size (mm) | $\mathbf{4 0}$ | $\mathbf{5 0}$ | $\mathbf{6 3}$ | $\mathbf{8 0}$ | $\mathbf{1 0 0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Axial foot * | CA1-L04 | CA1-L05 | CA1-L06 | CA1-L08 | CA1-L10 |
| Flange | CA1-F04 | CA1-F05 | CA1-F06 | CA1-F08 | CA1-F10 |
| Single clevis | CA1-C04 | CA1-C05 | CA1-C06 | CA1-C08 | CA1-C10 |
| Double clevis ** | CA1-D04 | CA1-D05 | CA1-D06 | CA1-D08 | CA1-D10 |

* Order two foot brackets per cylinder.
** Accessories for each mounting bracket are as follows.
Foot, Flange, Single clevis: Body mounting bolts, Spring washer
Double clevis: Body mounting bolts, Spring washer, Clevis pin, Flat washer, Cotter pin.

Opening Range of Throttle Valve and Piston Speed


Conditions: Operating pressure 0.5 MPa ,
Horizontal mounting, No load, Extending stroke

- The speed shown above are for reference.


## Piston Speed Adjustment Procedure

1. To slow down the piston speed, screw in the speed controller needle clockwise, which reduces the amount of air that is discharged.
2. The speed controller needle opens fully when it is loosened $31 / 2$ turns from its fully closed position. After the specified speed has been set, secure the needle with the lock nut.


Changing between Rod Extended when Energized and Rod Retracted when Energized

1. This is possible by reversing the SUP port and EXH port piping.

2. This is possible by inverting the solenoid valve direction $180^{\circ}$.


Using a screwdriver or its equivalent, push the center of the rubber plug on the head of the solenoid cap of the solenoid valve.
(It is not necessary to remove the rubber plug.)



Component Parts

| No. | Description | Material | Q'ty | Note |
| :---: | :--- | :---: | :---: | :---: |
| $\mathbf{1}$ | Rod cover | Aluminum die-casted | 1 | Black painted |
| $\mathbf{2}$ | Head cover | Aluminum alloy | 1 | Black painted |
| $\mathbf{3}$ | Cylinder tube | Aluminum alloy | 1 | Hard anodized |
| $\mathbf{4}$ | Piston rod | Carbon steel | 1 | Hard chrome plating |
| $\mathbf{5}$ | Piston | Aluminum alloy | 1 |  |
| $\mathbf{6}$ | Cushion ring A | Aluminum alloy | 1 | Anodized |
| $\mathbf{7}$ | Cushion ring B | Aluminum alloy | 1 | Anodized |
| $\mathbf{8}^{*}$ | Bushing | Bearing alloy | 1 |  |
| $\mathbf{9}$ | Cushion valve | Steel wire | 2 | Trivalent zinc chromated |
| $\mathbf{1 0}$ | Retaining ring | Spring steel | 2 | Phosphate coating |
| $\mathbf{1 1}$ | Tie-rod | Carbon steel | 4 | Trivalent zinc chromated |
| $\mathbf{1 2}$ | Tie-rod nut | Rolled steel | 8 | Trivalent black zinc chromated |
| $\mathbf{1 3}$ | Spring washer | Steel wire | 8 | Trivalent black zinc chromated |
| $\mathbf{1 4}$ | Pipe | Carbon steel tube | 1 | Trivalent zinc chromated |
| $\mathbf{1 5}$ | Sub-plate | Aluminum die-casted | 1 | Platinum silver |
| $\mathbf{1 6 *}$ | Guide tube fitting | Aluminum die-casted | 1 | Platinum silver |
| $\mathbf{1 7 *}$ | Valve port | Rolled steel | 2 | Electroless nickel plating |
| $\mathbf{1 8 *}$ | Check spring | Spring steel | 2 | Trivalent zinc chromated |


| No. | Description | Material | Q'ty | Note |
| :---: | :--- | :---: | :---: | :---: |
| $\mathbf{1 9}$ | Check ball | Polyurethane rubber | 2 | Ball 9/32 |
| $\mathbf{2 0}$ | Hex. sockethead cap screw with SW | Chromium molybdenum steel | 4 | Trivalent zinc chromated |
| $\mathbf{2 1}$ | Needle guide | Carbon steel | 2 | Trivalent zinc chromated |
| $\mathbf{2 2}$ | Speed adjustment needle | Rolled steel | 2 | Electroless nickel plating |
| $\mathbf{2 3}$ | Lock nut | Carbon steel | 2 | Trivalent zinc chromated |
| $\mathbf{2 4}$ | Wear ring | Resin | 1 |  |
| $\mathbf{2 5}$ | Rod seal | NBR | 1 |  |
| $\mathbf{2 6}$ | Piston seal | NBR | 1 |  |
| $\mathbf{2 7 *}$ | Cushion seal | Urethane | 2 |  |
| $\mathbf{2 8}$ | Cylinder tube gasket | NBR | 2 |  |
| $\mathbf{2 9}$ | Cushion valve seal | NBR | 2 |  |
| $\mathbf{3 0}$ | Pipe gasket | NBR | 2 |  |
| $\mathbf{3 1}$ | Gasket | NBR | 1 |  |
| $\mathbf{3 2}$ | Speed adjustment needle seal | NBR | 2 |  |
| $\mathbf{3 3}$ | Valve port gasket | NBR | 4 |  |
| $\mathbf{3 4}$ | Magnet | - | $(1)$ |  |
| $\mathbf{3 5}$ | Rod end nut | Rolled steel | 1 | Trivalent zinc chromated |
| $\mathbf{3 6}$ | Solenoid valve | - | 1 | VS4124-00 $\square$-X46 |

Note) Add "-X46" to the end of the part numbers for single solenoid type.

- How to order solenoid valves/VS4 $\square 24-00$ Voltage Electrical entry
* Not replaceable.


## Replacement Parts: Seal Kit

| Bore size <br> $(\mathrm{mm})$ | Kit no. | Contents |
| :---: | :---: | :---: |
| $\mathbf{4 0}$ | CVS1N40-PS |  |
| $\mathbf{5 0}$ | CVS1N50-PS | Set of nos. above |
| $\mathbf{6 3}$ | CVS1N63-PS |  |
| $\mathbf{8 0}$ | CVS1N80-PS |  |
| $\mathbf{1 0 0}$ | CVS1N100-PS |  |

* Seal kit includes (25), (26), (28), (30), and (33). Order the seal kit based on each bore size (The parts indicated with numbers (27) and 29 are not replaceable.)
* Seal kit includes a grease pack ( $\varnothing 40, \varnothing 50: 10 \mathrm{~g}, \varnothing 63, \varnothing 80: 20 \mathrm{~g}, \varnothing 100: 30 \mathrm{~g}$ ). Order with the following part number when only the grease pack is needed. Grease pack part no.: GR-S-010 (10 g), GR-S-020 (20 g)


## CVS1 Series

Basic Type: CVS1B


Axial Foot Type: CVS1L


| Bore size <br> $(\mathbf{m m})$ | $\mathbf{N}$ | $\mathbf{S}$ | $\mathbf{W}$ | $\mathbf{X}$ | $\mathbf{Y}$ | Without rod boot | With rod boot |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\mathbf{H}$ | $\mathbf{Z Z}$ | $\mathbf{d}$ | $\mathbf{e}$ | $\mathbf{f}$ | $\mathbf{h}$ | $\boldsymbol{\ell}$ | $\mathbf{Z Z}$ |  |
| $\mathbf{4 0}$ | 27 | 130.6 | 8 | 27 | 13 | 51 | 221.6 | 56 | 43 | 11.2 | 59 | $1 / 4$ stroke | 229.6 |
| $\mathbf{5 0}$ | 30 | 133.6 | 8 | 27 | 13 | 58 | 231.6 | 64 | 52 | 11.2 | 66 | $1 / 4$ stroke | 239.6 |
| $\mathbf{6 3}$ | 31 | 140.6 | 8 | 34 | 16 | 58 | 248.6 | 64 | 52 | 11.2 | 66 | $1 / 4$ stroke | 256.6 |
| $\mathbf{8 0}$ | 37 | 152.6 | 0 | 44 | 16 | 71 | 283.6 | 76 | 65 | 12.5 | 80 | $1 / 4$ stroke | 292.6 |
| $\mathbf{1 0 0}$ | 40 | 159.6 | 0 | 43 | 17 | 72 | 291.6 | 76 | 65 | 14 | 81 | $1 / 4$ stroke | 300.6 |

* The minimum stroke of the one with rod boot is 20 mm or more. ** Long stroke


## Valve Mounted Cylinder <br> Double Acting CVS1 Series

Rod Side Flange Type: CVS1F


Head Side Flange Type: CVS1G


## CVS1 Series

Single Clevis Type: CVS1C


## Double Clevis Type: CVS1D



[^24]
## Valve Mounted Cylinder <br> Double Acting CVS1 Series

Center Trunnion Type: CVS1T


## Accessory Dimensions

## I Type Single Knuckle Joint



## Knuckle Pin, Clevis Pin



[^25]
## Y Type Double Knuckle Joint

## Rod End Nut <br> Rod End Nut

| Material: Rolled steel |  |  |  |  |  | (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Part no. | Applicable bore size ( mm ) | d | H | B | C | D |
| NT-04 | 40 | M14 $\times 1.5$ | 8 | 22 | 25.4 | 21 |
| NT-05 | 50, 63 | M18 $\times 1.5$ | 11 | 27 | 31.2 | 26 |
| NT-08 | 80 | M22 $\times 1.5$ | 13 | 32 | 37 | 31 |
| NT-10 | 100 | M26 x 1.5 | 16 | 41 | 47.3 | 39 |



| Partno. | $\begin{array}{\|c} \left\lvert\, \begin{array}{c} \text { Applicable } \\ \text { bore size } \\ (\mathrm{mm}) \end{array}\right. \\ \hline \end{array}$ | $A_{1}$ | $\mathrm{E}_{1}$ | $L_{1}$ | MM | RR1 | $\mathrm{U}_{1}$ | ND | NX | NZ | L | Cotter pin size | size |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 04D | 40 | 22 | 24 | 55 | M14 1.5 | 13 | 25 | 12 | $16_{+0.1}^{+0.3}$ | 38 | 55.5 | $\varnothing 3 \times 18 \mathrm{~L}$ | ned round |
| Y-05D | 50, 63 | 27 | 28 | 60 | M18 1.5 | 15 | 27 | 12 | $16_{+0.1}^{+0.3}$ | 38 | 55.5 | $\varnothing 3 \times 18 \mathrm{~L}$ | Poished ro |
| Y-08D | 80 | 37 | 36 | 71 | M $22 \times 1.5$ | 19 | 28 | 18 | $28_{+0.1}^{+0.3}$ | 55 | 76.5 | $\varnothing 4 \times 25 \mathrm{~L}$ | Polished roun |
| Y-10D | 100 | 37 | 40 | 83 | M26 x 1.5 | 21 | 38 | 20 | $30_{+0.1}^{+0.3}$ | 61 | 83 | $\varnothing 4 \times 30 \mathrm{~L}$ | Polished roun |

## Selection

## . Warning

1. Confirm the specifications.

Products in this catalog are designed to be used for compressed air systems. If not operated within the designated pressure or temperature, it may damage the products or cause malfunction. (Refer to specifications.)
2. Energizing continuously for a long period of time When the valve is continuously energized for a long period of time, the performance may deteriorate or effect peripheral equipment adversely since temperature rises when coils generate heat.

## 3. Mounting orientation

Metal seal: For single solenoids, mounting orientation is flexible. For double solenoids and 3 position valves, mount a spool valve horizontally.

## Handling

## © Warning

1. Do not open the cushion valve beyond the stopper. A retaining ring is installed as a cushion valve retention mechanism. Do not open the cushion valve beyond it.
If not operated in accordance with the above precautions, the cushion valve may be ejected from the cover when air pressure is supplied.

| Bore size (mm) | Width across flats | Socket wrench |
| :---: | :---: | :---: |
| $\mathbf{4 0 , 5 0}$ | 2.5 | JIS 4648 Hexagonal wrench key 2.5 |
| $\mathbf{6 3 , 8 0 , 1 0 0}$ | 4 | JIS 4648 Hexagonal wrench key 4 |

2. Use the air cushion at the end of cylinder stroke. Otherwise, the tie-rod or piston rod assembly will be damaged.

## Handling

## © Caution

1. Do not use a pneumatic type as an air-hydro cylinder. It can cause oil leak.
2. Do not rotate the piston rod when the rod boot is fixed.
Before rotating the piston rod, loosen the band to avoid twisting the rod boot.
3. Install the rod boot with the breathing hole facing downwards or in a direction suitable to prevent dust, moisture etc. from entering easily into the rod boot.


## Disassembly/Replacement

## $\triangle$ Caution

1. Use a socket wrench when the bracket is replaced. If other tools are used, the nut or other parts may be deformed or the work efficiency may decrease.
For applicable sockets, refer to the table below.

| Bore size (mm) | Nut | Width across flats | Socket | Tightening torque (N.m) |
| :---: | :---: | :---: | :---: | :---: |
| 40, 50 | DA00040 | 13 | JIS B4636+ Two-angle socket 13 | 7.4 |
|  | (M8 x 1.25, Hexagon nut 3 types) |  |  |  |
| 63 | DA00010 | 17 | $\begin{array}{\|c\|} \hline \text { JIS B4636 } \\ + \text { + Two-angle socket } 17 \end{array}$ | 20 |
|  | (M10 x 1.25, Hexagon nut 3 types) |  |  |  |
| 80, 100 | DA00131 | 19 | $\begin{array}{\|c\|} \hline \text { JIS B4636 } \\ + \text { Two-angle socket } 19 \\ \hline \end{array}$ | 29 |
|  | (M12 x 1.75, Hexagon nut 3 types) |  |  |  |

2. Do not replace the bushing.

As the bushing is press-fit, replace the cover assembly when the bushing must be replaced.
3. When a seal is replaced, apply grease to the new seal before it is assembled.
Operation of the cylinder without greasing will result in extreme abrasion of the seal, causing premature air leakage.
4. The trunnion type cylinder requires accuracy in assembly.
The trunnion type cylinder may lose dimensional accuracy and malfunction when it is disassembled and reassembled because the axial center of the trunnion and that of the cylinder will not be aligned easily.

# Valve Mounted Cylinder: Non-rotating Rod Type Double Acting 

## CVS1K Series

Non-lube Type: $\varnothing 40, \varnothing 50, \varnothing 63$
How to Order


Applicable Auto Switches/Refer to pages 941 to 1067 for further information on auto switches.

|  | Special function | Electrical entry |  | Wiring (Output) | Load voltage |  |  | Auto switch model |  | Lead wire length ( m ) |  |  |  | Pre-wired connector | Applicable load |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type |  |  |  |  | DC |  | AC | Tie-rod mounting | Band mounting | 0.5 (Nil) | 1 (M) | 3(L) | 5 (Z) |  |  |  |
|  |  | Grommet | 3 -wire (NPN) |  | 24 V | $5 \mathrm{~V}, 12 \mathrm{~V}$ | - | M9N | - | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | IC circuit | Relay, PLC |
|  |  |  |  |  | - |  |  | G59*** | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |  |
|  |  |  |  | 3-wire (PNP) |  |  |  | M9P | - | $\bigcirc$ | - | - | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  |  |  |  |  | - | G5P*** | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 2-wire |  | 12 V |  | M9B | - | - | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - |  |
|  |  |  |  | 2-wire |  |  |  | - | K59*** | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  | Terminal |  | 3 -wire (NPN) |  | 24 V | 12 V | - | G39C | G39 | - | - | - | - |  |  | - |
|  |  | conduit |  | 2-wire | K39C |  |  |  | K39 | - | - | - | - | - | IC circuit |  |
|  | Diagnostic indication (2-color indicator) | Grommet |  |  | $5 \mathrm{~V}, 12 \mathrm{~V}$ |  | M9NW |  | - | - | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  | $\stackrel{\otimes}{>}$ | 3-wire (NPN) |  |  | - |  | G59W*** | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 3-wire (PNP) |  |  | M9PW |  | - | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 3 -wire (PNP) |  |  | - |  | G5PW*** | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  |  | 12 V |  | M9BW |  | - | $\bigcirc$ | - | $\bullet$ | $\bigcirc$ | $\bigcirc$ | - |  |
|  |  |  |  | 2-wire |  |  | - |  | K59W*** | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 3 -wire (NPN) | $5 \mathrm{~V}, 12 \mathrm{~V}$ |  | M9NA*1 |  | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | IC circuit |  |
|  | (2-color indicator) |  |  | 3-wire (PNP) |  |  | M9PA* ${ }^{\text {* }}$ |  | - | $\bigcirc$ | $\bigcirc$ | $\bullet$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 2-wire | 12 V |  | M9BA*1 |  | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - |  |
|  | With diagnostic output (2-color indicator) |  |  | 4-wire (NPN) | $5 \mathrm{~V}, 12 \mathrm{~V}$ |  | F59F |  | G59F*** | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | IC circuit |  |
|  |  | Grommet | $\stackrel{ \pm}{\sim}$ | 3-wire (NPN equivalent) | - | 5 V | - | A96 [Z76] ${ }^{* * *}$ | - | $\bigcirc$ | - | $\bigcirc$ | - | - | IC circuit | - |
|  |  |  |  | 2-wire | 24 V | 12 V | 100 V | A93 [Z73] ${ }_{2}^{* * *}$ | - | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | - | - | Relay, PLC |
|  |  |  | 2 |  |  |  | 100 V or less | A90 [Z80] ${ }^{* * *}$ | - | $\bigcirc$ | - | $\bigcirc$ | - | - | IC circuit |  |
|  |  |  | $\stackrel{\square}{\square}$ |  |  |  | $100 \mathrm{~V}, 200 \mathrm{~V}$ | A54 | B54*** | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | - |  |  |
|  |  |  | 2 |  |  |  | 200 V or less | A64 | B64*** | $\bigcirc$ | - | $\bigcirc$ | - | - |  |  |
|  |  | Terminal | $\stackrel{\Delta}{\underset{\sim}{\infty}}$ |  |  |  | - | A33C | A33 | - | - | - | - | - |  | PLC |
|  |  | conduit |  |  |  |  | $100 \mathrm{~V}, 200 \mathrm{~V}$ | A34C | A34 | - | - | - | - | - |  | Relay, <br> PLC |
|  |  | DIN terminal |  |  |  |  |  | A44C | A44 | - | - | - | - | - |  |  |
|  | Diagnostic indication (2-color indicator) | Grommet |  |  |  | - | - | A59W | B59W*** | $\bigcirc$ | - | $\bigcirc$ | - | - |  |  |

[^26]
## Speed controller installed Operation type can be changed to rod extended when energized or rod retracted when energized.

## A selection of solenoid valves is possible.

Single, double and 3 position solenoid valves are mountable.


Symbol
Air cushion


|  | Made to Order Specifications Click here for details |
| :---: | :---: |
| Symbol | Specifications |
| -XA■ | Change of rod end shape |
| -XC7 | Tie-rod, cushion valve, and tie-rod nut made of stainless steel |
| -xC14 | Change of trunnion bracket mounting position |
| -XC15 | Change of tie-rod length |
| -XC27 | Double clevis and double knuckle joint pins made of stainless steel |
| -XC28 | Compact flange made of SS400 |

[^27]Specifications

| Bore size (mm) | 40 | 50 | 6 |
| :---: | :---: | :---: | :---: |
| Type | Non-lube |  |  |
| Action | Double acting |  |  |
| Fluid | Air |  |  |
| Proof pressure | 1.5 MPa |  |  |
| Maximum operating pressure | 1.0 MPa |  |  |
| Minimum operating pressure | 0.05 MPa |  |  |
| Ambient and fluid temperature | -10 to $60^{\circ} \mathrm{C}$ (No freezing) |  |  |
| Cushion | Air cushion |  |  |
| Stroke length tolerance | Up to $250 \mathrm{st}^{+{ }_{0}^{+1.0},} 251$ to $600 \mathrm{st}^{+1.4}{ }_{6}$ |  |  |
| Port size | Rc 1/4 |  |  |
| Lubrication | Not required (Non-lube) |  |  |
| Electrical entry | Grommet, Conduit terminal, DIN terminal, DIN terminal with indicator light, Conduit terminal with surge voltage suppresso |  |  |
| Rod non-rotating accuracy | $\pm 0.8^{\circ}$ |  |  |
| Allowable rotational torque | $0.44 \mathrm{~N} \cdot \mathrm{~m}$ or less |  |  |
| Piston speed | 50 to $500 \mathrm{~mm} / \mathrm{s}^{*}$ Note) |  |  |
| Allowable kinetic energy | 2.4 J | 4.4 J | 7.8 |
| Mounting type | Basic type, Axial foot type, Rod side flange type, Head side flange type, Single clevis type, Double clevis type, Center trunnion type |  |  |

* Operate within the range of absorbed energy.

Note) Refer to page 842 for operating piston speed for each size.
Solenoid Valve Specifications

| Applicable solenoid valve model |  | VS4■24 |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Coil rated voltage |  | 100/200 VAC ( $50 / 60 \mathrm{~Hz}$ ), 24 VDC |  |  |
| Effective area of valve (Cv factor) |  | Single $26.5 \mathrm{~mm}^{2}$ (1.47) |  |  |
| Allowable voltage |  | -15 to 10\% of the rated voltage |  |  |
| Coil insulation |  | Class B or equivalent ( $130^{\circ} \mathrm{C}$ ) |  |  |
| Apparent power ${ }^{\text {Note) }}$ | AC | Inrush | 50 Hz | 100 VA |
|  |  |  | 60 Hz | 90 VA |
|  |  | Holding | 50 Hz | 20 VA |
|  |  |  | 60 Hz | 14 VA |
| Power consumption ${ }^{\text {Note) }}$ | DC |  |  |  |

Note) At the rated voltage

## Standard Stroke

| Bore size (mm) | Standard stroke (mm) |
| :---: | :---: |
| $\mathbf{4 0}$ | $25,50,75,100,125,150,200$, <br> $250,300,350,400,450,500^{*}$ |
|  | $25,50,75,100,125,150,200$, <br> $250,300,350,400,450,500,600^{*}$ |

Please consult with SMC for longer strokes than the strokes marked with *.

Rod Boot Material

| Symbol | Rod boot material | Max. ambient <br> temperature |
| :---: | :---: | :---: |
| $\mathbf{J}$ | Nylon tarpaulin | $70^{\circ} \mathrm{C}$ |
| $\mathbf{K}$ | Heat resistant tarpaulin | $110^{\circ} \mathrm{C}^{*}$ |

* Maximum ambient temperature for the rod boot itself.


## CVS1K Series

## Opening Range of Throttle

 Valve and Piston Speed

## Handling

1. Adjusting of the piston speed
2. Interchange between the spring return type and the spring extend type
3. Manual override

Since the operations above 1. to 3. are the same as the CVS1 series, refer to page 834.

Conditions: Operating pressure 0.5 MPa , Horizontal mounting,
No load, Spring return side

- The actuating speeds above are for reference.

Accessory

| Mounting |  | Basic type | Foot type | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Rod side } \\ \text { flange } \\ \text { type } \end{array} \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { Head side } \\ \text { flange } \\ \text { type } \\ \hline \end{array}$ | Single clevis type | $\begin{gathered} \text { Double } \\ \text { clevis } \\ \text { type } \\ \hline \end{gathered}$ | Center trunnion type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rod end nut | $\bigcirc$ | $\bigcirc$ | - | - | $\bullet$ | $\bigcirc$ | $\bigcirc$ |
|  | Clevis pin | - | - | - | - | - | - | - |
| $\begin{aligned} & \text { 들 } \\ & \text { O } \end{aligned}$ | Single knuckle joint | - | - | - | - | $\bigcirc$ | - | $\bigcirc$ |
|  | Double knuckle joint * (With pin) | - | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ |
|  | With rod boot | $\bigcirc$ |

* Pin, plain washer and cotter pin are shipped together with double clevis and double knuckle joint.
* Refer to page 839 for dimensions and part numbers of the option.

Refer to page 843 for dimensions of the rod boot.

## Weight

Weight

|  |  |  |  | Bore size (mm) |
| :--- | :--- | :---: | :---: | :---: |
| $\mathbf{4 y y y}$ | $\mathbf{4 0}$ | $\mathbf{5 0}$ | $\mathbf{6 3}$ |  |
| Basic <br> weight | Basic type | 2.48 | 3.04 | 4.12 |
|  | Foot type | 2.65 | 3.24 | 4.41 |
|  | Rod side flange type | 2.88 | 3.64 | 5.08 |
|  | Head side flange type | 2.98 | 3.78 | 5.08 |
|  | Single clevis type | 2.74 | 3.48 | 4.87 |
|  | Double clevis type | 2.73 | 3.46 | 4.89 |
|  | Trunnion type | 3.08 | 3.78 | 5.46 |
| Additional weight per each 50 mm of stroke | 0.22 | 0.28 | 0.37 |  |
| Accessory <br> bracket | Single knuckle | 0.23 | 0.26 | 0.26 |
|  | Double knuckle (With pin) | 0.37 | 0.43 | 0.43 |

Calculation: (Example) CVS1KL40-100-1

- Standard weight......... 2.65 (kg)
- Premium weight $\cdots \cdots \ldots . . . .0 .22$ (kg/50 st)
- Cylinder stroke $\ldots \ldots . . . . . .100$ (st) $2.65+0.22 \times 100 \div 50=3.09 \mathrm{~kg}$
* Add 0.34 kg for the double solenoid type.


## $\triangle$ Precautions

I Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 722 to I
I 724 for Common Precautions.

## Operating Precautions

## $\triangle$ Caution

1. Avoid using the air cylinder in such a way that rotational torque would be applied to the piston rod.

- If rotational torque is applied, the non-rotating guide will become deformed, causing a loss of non-rotating accuracy. Also, to screw a bracket or a nut onto the threaded portion at the end of the piston rod, make sure the retract the piston rod entirely, and place a wrench on the parallel sections of the rod that protrudes. To tighten, take precautions to prevent the tightening torque from being applied to the non-rotating guide.



## Disassembly/Replacement

## $\triangle$ Caution

1. When replacing rod seals, please contact SMC.

Air leakage may be happened, depending on the position in which a rod seal is fitted. Thus, please contact SMC when replacing them.
2. Do not replace the non-rotating guide.

Since the non-rotating guide is press fitted, the entire cover assembly needs to be replaced instead of a single part.

Construction
Lube type


Component Parts

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1}$ | Rod cover | Aluminum alloy | Matt black painted |
| $\mathbf{2}$ | Head cover | Aluminum alloy | Matt black painted |
| $\mathbf{3}$ | Cylinder tube | Aluminum alloy | Hard anodized |
| $\mathbf{4}$ | Piston rod | Carbon steel | Hard chrome plated |
| $\mathbf{5}$ | Piston | Aluminum alloy | Chromated |
| $\mathbf{6}$ | Cushion ring A | Rolled steel | Zinc chromated |
| $\mathbf{7}$ | Cushion ring B | Rolled steel | Zinc chromated |
| $\mathbf{8}$ | Non-rotating guide | Oil impregnated sinteredaloy |  |
| $\mathbf{9}$ | Tie-rod | Carbon steel | Zinc chromated |
| $\mathbf{1 0}$ | Piston nut | Rolled steel | Zinc chromated |
| $\mathbf{1 1}$ | Spring washer | Steel wire | Zinc chromated |
| $\mathbf{1 2}$ | Tie-rod nut | Carbon steel | Black zinc chromated |
| $\mathbf{1 3}$ | Spring washer | Steel wire | Black zinc chromated |
| $\mathbf{1 4}$ | Needle guide | Carbon steel | Electroless nickel plated |
| $\mathbf{1 5}$ | Speed adjustment needle | Carbon steel | Electroless nickel plated |
| $\mathbf{1 6}$ | Check spring | Steel wire | Zinc chromated |
| $\mathbf{1 7}$ | Guide tube fitting | Aluminum alloy | Platinum silver |
| $\mathbf{1 8}$ | Pipe | Carbon steel tube | Chromated |
| * Not replaceable |  |  |  |


| No. | Description | Material | Note |
| :--- | :--- | :---: | :---: |
| $\mathbf{1 9 *}$ | Check ball | Polyurethane rubber | $9 / 32$ |
| $\mathbf{2 0}$ | lock nut | Carbon steel | Nickel plated |
| $\mathbf{2 1}$ | Sub-plate | Aluminum alloy | Platinum silver |
| $\mathbf{2 2}$ | Cushion valve | Rolled steel | Electroless nickel plated |
| $\mathbf{2 3}$ * | Valve port | Brass |  |
| $\mathbf{2 4}$ | Solenoid valve | - | Refer to the note below.* |
| $\mathbf{2 5}$ | Wear ring | Resin |  |
| $\mathbf{2 6}$ | Hexagn sodethead cap screin | Chromium molybdenum steel | Black zinc chromated |
| Note) | Add "X46" at the end of the part number for |  |  |
| single solenoid type. |  |  |  |
| * How to order solenoid valves |  |  |  |
| VS4 $\square \mathbf{2 4 -}$ | Voltage | Electrical entry |  |


| No. | Description | Material | Note |
| :--- | :--- | :---: | :---: |
| $\mathbf{2 7}$ | Piston seal | NBR |  |
| $\mathbf{2 8}$ | Rod seal | NBR |  |
| $\mathbf{2 9}$ | Cushion seal | NBR |  |
| $\mathbf{3 0}$ | Cylinder tube gasket | NBR |  |


| No. | Description | Material | Note |
| :--- | :--- | :---: | :---: |
| $\mathbf{3 1}$ | Cushion valve seal | NBR |  |
| $\mathbf{3 2}^{*}$ | Piston gasket | NBR |  |
| $\mathbf{3 3}$ | Pipe gasket | NBR |  |
| $\mathbf{3 4}$ | Speed adusimentvalve seal | NBR |  |
| $\mathbf{3 5}$ | Gasket | NBR |  |
| $\mathbf{3 6}$ | Valve port gasket | NBR |  |

Replacement Parts: Seal Kit

| Bore size (mm) | Kit no. | Contents |
| :---: | :---: | :---: |
| $\mathbf{4 0}$ | CVS1K40-PS | Set of nos. above |
| $\mathbf{5 0}$ | CVS1K50-PS | (27), (28), (30), (31), |
| $\mathbf{6 3}$ | CVS1K63-PS |  |

* Seal kit includes (27), (28), (30), (31), (33), (36). Order the seal kit, based on each bore size.
* Seal kit includes a grease pack ( $\varnothing 40, \varnothing 50: 10 \mathrm{~g}, ø 63$ or more: 20 g ).
Order with the following part number when only the grease pack is needed.
Grease pack part no.: GR-S-010 (10 g), GR-S-020 (20 g)


## Basic Type: CVS1K



# CVS1 Series <br> Auto Switch Mounting 

## Auto Switch Proper Mounting Position (Detection at Stroke End) and Mounting Height

<Tie-rod mounting type>


D-A5 $\square /$ A6 $\square / A 59 W$


D-A3 $\square$ C
D-G39C/K39C


D-F5 $\square / J 59$
D-F5NT
D-F5 $\square W / J 59 W / F 59 F$


D-A44C

<Band mounting type>
D-B5 $\square / B 64 / B 59 W$


D-A3 $\square / G 39 / K 39$


D-G5 $\square / K 59 / G 5 \square W / K 59 W$
D-G59F/G5NT


D-A44


## Auto Switch Proper Mounting position (Detection at Stroke End) and Mounting Height

Auto Switch Proper Mounting Position (Standard type)

|  | $\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \mathbf{V} \\ & \text { D-M9 } \square \mathbf{W} \\ & \text { D-M9 } \square \mathbf{W V} \\ & \text { D-M9 } \square \mathbf{A} \\ & \text { D-M9 } \square \text { AV } \end{aligned}$ |  | $\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \text { V } \end{aligned}$ |  | $\begin{aligned} & \text { D-Y59 } \square \\ & \text { D-Y69 } \\ & \text { D-Y7P } \\ & \text { D-Y7PV } \\ & \text { D-Y7 } \square W \\ & \text { D-Y7 } \square W V \\ & \text { D-Y7BA } \\ & \text { D-Z7 } \square \\ & \text { D-Z80 } \\ & \text { D-B59W } \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \text { D-F5 } \\ & \text { D-J59 } \\ & \text { D-F59F } \\ & \text { D-F5 W W } \\ & \text { D-J59W } \\ & \text { D-F5BA } \end{aligned}$ |  | D-F5NT |  | D-A59W |  | $\begin{aligned} & \hline \text { D-G39 } \\ & \text { D-G39C } \\ & \text { D-K39 } \\ & \text { D-K39C } \\ & \text { D-A5 } \square \\ & \text { D-A6 } \square \\ & \text { D-A3 } \square \\ & \text { D-A3 } \square \text { C } \\ & \text { D-A44 } \\ & \text { D-A44C } \end{aligned}$ |  | $\begin{aligned} & \text { D-G5 } \\ & \text { D-K59 } \\ & \text { D-G5NT } \\ & \text { D-G5 } \square \text { W } \\ & \text { D-K59W } \\ & \text { D-G5BA } \\ & \text { D-G59F } \end{aligned}$ |  | $\begin{aligned} & \text { D-B5 } \square \\ & \text { D-B64 } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | A | B | A | B | A | B | A | B | A | B | A | B | A | B | A | B |
| 40 | 9 | 9 | 5 | 5 | 2.5 | 2.5 | 5.5 | 5.5 | 10.5 | 10.5 | 3 | 3 | 0 | 0 | 1 | 1 | 0 | 0 |
| 50 | 9.5 | 8.5 | 5.5 | 4.5 | 3 | 2 | 6 | 5 | 11 | 10 | 3.5 | 2.5 | 0 | 0 | 1.5 | 0.5 | 0 | 0 |
| 63 | 12.5 | 11.5 | 8.5 | 7.5 | 6 | 5 | 9 | 8 | 14 | 13 | 6.5 | 5.5 | 2.5 | 1.5 | 4.5 | 3.5 | 3 | 2 |
| 80 | 16.5 | 13.5 | 12.5 | 9.5 | 10 | 7 | 13 | 10 | 18 | 15 | 10.5 | 7.5 | 6.5 | 3.5 | 8.5 | 5.5 | 7 | 4 |
| 100 | 18 | 16 | 14 | 12 | 11.5 | 9.5 | 14.5 | 12.5 | 19.5 | 17.5 | 12 | 10 | 8 | 6 | 10 | 8 | 8.5 | 6.5 |

Note 1) D-B5 $\square$ type, D-G5 $\square$ type, D-K5 $\square$ type are mountable only upon a receipt of order. (Not mountable after the time of shipment)
Note 2) Adjust the auto switch after confirming the operating conditions in the actual setting.

## Auto Switch Mounting Height (Standard type)

|  | $\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \mathbf{W} \\ & \text { D-M9 } \square \mathbf{A} \\ & \text { D-A9 } \end{aligned}$ |  | $\begin{aligned} & \text { D-M9 } \square V \\ & \text { D-M9 } \square \text { WV } \\ & \text { D-M9 } \square \text { AV } \end{aligned}$ |  | D-A9 $\square \mathrm{V}$ |  | $\begin{aligned} & \text { D-Y59 } \square \\ & \text { D-Y7P } \\ & \text { D-Y7BA } \\ & \text { D-Y7 } \square W \\ & \text { D-Z7 } \square \\ & \text { D-Z80 } \end{aligned}$ |  | $\begin{aligned} & \text { D-Y69 } \square \\ & \text { D-Y7PV } \\ & \text { D-Y7 } \square W V \end{aligned}$ |  | $\begin{aligned} & \hline \text { D-G5 } \square \\ & \text { D-K59 } \\ & \text { D-G5NT } \\ & \text { D-G5 } \square \text { W } \\ & \text { D-K59W } \\ & \text { D-G5BA } \\ & \text { D-G59F } \\ & \text { D-B5 } \square \\ & \text { D-B64 } \\ & \text { D-B59W } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { D-G39 } \\ & \text { D-K39 } \\ & \text { D-A3 } \end{aligned}$ | D-A44 | D-F5 $\square$ <br> D-J59 <br> D-F5 $\square$ W <br> D-J59W <br> D-F5BA <br> D-F59F <br> D-F5NT |  | $\begin{aligned} & \text { D-A5 } \square \\ & \text { D-A6 } \square \\ & \text { D-A59W } \end{aligned}$ |  | $\begin{aligned} & \text { D-G39C } \\ & \text { D-K39C } \\ & \text { D-A3 } \square \text { C } \end{aligned}$ |  | D-A44C |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Hs | Ht | Hs | Hs | Hs | Hs | Ht | Hs | Ht | Hs | Ht | Hs | Ht |
| 40 | 30 | 30 | 34 | 30 | 31 | 30 | 30 | 30 | 30 | 30 | 37 | 71.5 | 81.5 | 38 | 31.5 | 38.5 | 31.5 | 73 | 69 | 81 | 69 |
| 50 | 34 | 34 | 38 | 34 | 35 | 34 | 34 | 34 | 34 | 34 | 42 | 76.5 | 86.5 | 42 | 35.5 | 42 | 35.5 | 78.5 | 77 | 86.5 | 77 |
| 63 | 41 | 41 | 44 | 41 | 41.5 | 41 | 41 | 41 | 41 | 41 | 49 | 83.5 | 93.5 | 47 | 43 | 46.5 | 43 | 85.5 | 91 | 93.5 | 91 |
| 80 | 49.5 | 49 | 52.5 | 49 | 50 | 49 | 49.5 | 49 | 49.5 | 49 | 57.5 | 92 | 102 | 53.5 | 51 | 53.5 | 51 | 94 | 107 | 102 | 107 |
| 100 | 56.5 | 56 | 61 | 56 | 58.5 | 56 | 56.5 | 55.5 | 57.5 | 55.5 | 68 | 102.5 | 112.5 | 61 | 57.5 | 61.5 | 57.5 | 104 | 121 | 112 | 121 |

## Auto Switch Proper Mounting Position (Non-rotating rod type)

|  | D-M9 $\square$D-M9 $\square \mathbf{V}$D-M9 $\square \mathbf{W}$D-M9 $\square \mathbf{W V}$D-M9 $\square A$D-M9 $\square A V$ |  | $\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \text { V } \end{aligned}$ |  | $\begin{aligned} & \text { D-A5 } \square \\ & \text { D-A6 } \square \\ & \text { D-A3 } \square \\ & \text { D-A3 } \square \text { C } \\ & \text { D-A44/A44C } \\ & \text { D-G39/G39C } \\ & \text { D-K39/K39C } \end{aligned}$ |  | $\begin{aligned} & \text { D-B5 } \square \\ & \text { D-B64 } \end{aligned}$ |  | $\begin{aligned} & \text { D-F5 } \square \\ & \text { D-J59 } \\ & \text { D-F5 } \square \mathbf{W} \\ & \text { D-J59W } \\ & \text { D-F59F } \end{aligned}$ |  | $\begin{aligned} & \text { D-G5 } \square \text { W } \\ & \text { D-K59W } \\ & \text { D-G59F } \\ & \text { D-G5■ } \\ & \text { D-K59 } \\ & \text { D-G5NT } \end{aligned}$ |  | D-A59W |  | D-F5NT |  | D-B59WD-Z7 $\square$D-Z80D-Y59 $\square$D-Y69 $\square$D-Y7PD-Y7PVD-Y7 $\square W$D-Y7 $\square W V$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | A | B | A | B | A | B | A | B | A | B | A | B | A | B | A | B |
| 40 | 10 | 8 | 6 | 4 | 0 | 0 | 0.5 | 0 | 6.5 | 4.5 | 2 | 0 | 4 | 2 | 11.5 | 9.5 | 3.5 | 1.5 |
| 50 | 10 | 8 | - | - | 0 | 0 | 0.5 | 0 | 6.5 | 4.5 | 2 | 0 | 4 | 2 | 11.5 | 9.5 | 3.5 | 1.5 |
| 63 | 12.5 | 11.5 | 8.5 | 7.5 | 2.5 | 1.5 | 3 | 2 | 9 | 8 | 4.5 | 3.5 | 6.5 | 5.5 | 14 | 13 | 6 | 5 |
| 80 | 16 | 14 | 12 | 10 | 6 | 4 | 6.5 | 4.5 | 12.5 | 10.5 | 8 | 6 | 10 | 8 | 17.5 | 15.5 | 9.5 | 7.5 |
| 100 | 17.5 | 16.5 | 13.5 | 12.5 | 7.5 | 6.5 | 8 | 7 | 14 | 13 | 9.5 | 8.5 | 11.5 | 10.5 | 19 | 18 | 11 | 10 |

Note 1) D-B5 $\square$ type, D-G5 $\square$ type, D-K5 $\square$ type are mountable only upon a receipt of order. (Not mountable after the time of shipment)
Note 2) D-A9 $\square$ and D-A9 $\square \mathrm{V}$ types cannot be mounted on ø50.
Note 3) Adjust the auto switch after confirming the operating conditions in the actual setting.

## Auto Switch Mounting Height (Non-rotating rod type)

|  | $\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \mathbf{W} \\ & \text { D-M9 } \square \mathbf{A} \\ & \text { D-A9 } \end{aligned}$ |  | $\begin{aligned} & \text { D-M9 } \square V \\ & \text { D-M9 } \square W V \\ & \text { D-M9 } \square \text { AV } \end{aligned}$ |  | D-A9 $\square \mathrm{V}$ |  | $\begin{aligned} & \hline \text { D-B5 } \square \\ & \text { D-B64 } \\ & \text { D-B59W } \\ & \text { D-G5 } \square \\ & \text { D-K59 } \\ & \text { D-G5NT } \\ & \text { D-G5 } \square W \\ & \text { D-K59W } \\ & \text { D-G59F } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { D-A3 } \square \\ & \text { D-G39 } \\ & \text { D-K39 } \end{aligned}$ | D-A44 | $\begin{aligned} & \text { D-A5 } \square \\ & \text { D-A6 } \square \\ & \text { D-A59W } \end{aligned}$ |  | $\begin{aligned} & \text { D-F5 } \square \\ & \text { D-J59 } \\ & \text { D-F5 } \square \text { W } \\ & \text { D-J59W } \\ & \text { D-F59F } \\ & \text { D-F5NT } \end{aligned}$ |  | $\begin{aligned} & \text { D-A3 } \square C \\ & \text { D-G39C } \\ & \text { D-K39C } \end{aligned}$ |  | D-A44C |  | $\begin{aligned} & \text { D-Z7 } \square \\ & \text { D-Z80 } \\ & \text { D-Y59 } \square \\ & \text { D-Y7P } \\ & \text { D-Y7 } \square \mathbf{W} \end{aligned}$ |  | $\begin{aligned} & \text { D-Y69 } \\ & \text { D-Y7PV } \\ & \text { D-Y7 } \square W V \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Hs | Ht | Hs | Ht | Hs | Ht | Hs | Hs | Hs | Hs | Ht | Hs | Ht | Hs | Hw | Hs | Hw | Hs | Ht | Hs | Ht |
| 40 | 30 | 30 | 35 | 30 | 32 | 30 | 38 | 72.5 | 80.5 | 40 | 31 | 38.5 | 31 | 73 | 69 | 81 | 69 | 30 | 30 | 30.5 | 30 |
| 50 | 34 | 34 | 39 | 34 | - |  | 43.5 | 78 | 86 | 43.5 | 35 | 42.5 | 35 | 78.5 | 77 | 86.5 | 77 | 34 | 34 | 35 | 34 |
| 63 | 41 | 41 | 46 | 41 | 43.5 | 41 | 50.5 | 85 | 93 | 49 | 42 | 48 | 42 | 85.5 | 91 | 93.5 | 91 | 41 | 41 | 42.5 | 41 |
| 80 | 49.5 | 49 | 54 | 49 | 51.5 | 49 | 59 | 93.5 | 101.5 | 55.5 | 50 | 54 | 50 | 94 | 107 | 102 | 107 | 49.5 | 48.5 | 51 | 48.5 |
| 100 | 57 | 56 | 62.5 | 56 | 59.5 | 56 | 69.5 | 104 | 112 | 63 | 57.5 | 62 | 57.5 | 104 | 121 | 112 | 121 | 58.5 | 56 | 59 | 56 |

## CVS1 Series

## Minimum Stroke for Auto Switch Mounting (Standard Type)

| Auto switch model | Number of auto switches |  | Brackets other than center trunnion | Center trunnion |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\varnothing 40 \times 50$ | $\varnothing 63$ | $\varnothing 80$ | $\varnothing 100$ |
| $\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \text { W } \end{aligned}$ | 2 (Different surfaces and same surface) 1 |  |  | 15 | 80 | 85 | 90 | 95 |
|  | n |  | $\begin{gathered} 15+40 \frac{(n-2)}{2} \\ (n=2,4,6,8 \ldots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 80+40 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{array}{\|c\|} \hline 85+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{array}$ | $\begin{array}{\|c\|} \hline 90+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2 })} \end{array}$ | $\begin{array}{\|c\|} \hline 95+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note } 2)} \end{array}$ |
| $\begin{aligned} & \text { D-M9 } \square V \\ & \text { D-M9 } \square \text { WV } \end{aligned}$ | 2 (Different surfaces and same surface) 1 |  | 10 | 55 | 60 | 65 | 70 |
|  | n |  | $\begin{gathered} 10+30 \frac{(n-2)}{2} \\ (n=2,4,6,8 \ldots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 55+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 60+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{array}{\|c\|} \hline 65+30 \frac{(n-4)}{2} \\ \left.(n=4,8,12,16 \ldots)^{\text {Note 2) }}\right) \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 70+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{array}$ |
| D-M9 $\square$ A | 2 (Different surfaces and same surface) 1 |  | 15 | 80 | 85 | 95 | 100 |
|  | n |  | $\begin{gathered} 15+40 \frac{(n-2)}{2} \\ (\mathrm{n}=2,4,6,8 \ldots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 80+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{array}{\|c\|} \hline 85+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note } 2)} \end{array}$ | $\begin{gathered} 95+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note 2) }} \end{gathered}$ | $\begin{gathered} 100+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$ |
| D-M9 $\square$ AV | 2 (Different surfaces and same surface) 1 |  | 10 | 60 | 65 | 70 | 75 |
|  |  | n | $\left.\begin{gathered} 10+30 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered} \right\rvert\,$ | $\begin{gathered} 60+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\left.\begin{gathered} 65+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note 2) }} \end{gathered} \right\rvert\,$ | $\begin{gathered} 70+30 \frac{(\mathrm{n}-4)}{2} \\ \left.(\mathrm{n}=4,8,12,16 \ldots)^{\text {Note 2) }}\right) \end{gathered}$ | $\begin{gathered} 75+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note 2) }} \end{gathered}$ |
| D-A9 $\square$ | 2 (Different surfaces and same surface) 1 |  | 15 | 75 | 80 | 85 | 90 |
|  |  | n | $\left.\begin{gathered} 15+40 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered} \right\rvert\,$ | $\begin{gathered} 75+40 \frac{(n-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\left.\begin{gathered} 80+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note 2) }} \end{gathered} \right\rvert\,$ | $\begin{gathered} 85+40 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 22)} \end{gathered}$ | $\begin{gathered} 90+40 \frac{(n-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note 2) }} \end{gathered}$ |
| D-A9■V | 2 (Different surfaces and same surface) 1 |  | 10 | 50 | 55 | 60 | 65 |
|  | n |  | $\begin{gathered} 10+30 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 50+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 55+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \end{gathered}$ | $\begin{gathered} 60+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note 2) }} \end{gathered}$ | $\begin{gathered} 65+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$ |
| D-F5 $\square / J 59$ <br> D-F5■W/J59W <br> D-F5BA/F59F <br> D-A5 $\square / \mathrm{A} 6$ | 2 (Different surfaces and same surface) 1 |  | 15 | 90 | 100 | 110 | 120 |
|  | n (Same surface) |  | $\begin{gathered} 15+55 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \ldots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 90+55 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \\ \hline \end{gathered}$ | $\begin{gathered} 100+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note 2) }} \end{gathered}$ | $\begin{gathered} 110+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$ | $\begin{array}{\|c\|} \hline 120+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note } 2)} \end{array}$ |
| D-F5NT | 2 (Different surfaces and same surface) 1 |  | 25 | 110 | 120 | 130 | 140 |
|  | n (Same surface) |  | $\begin{gathered} 25+55 \frac{(n-2)}{2} \\ (\mathrm{n}=2,4,6,8 \ldots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 110+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{array}{\|c\|} \hline 120+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \\ \hline \end{array}$ | $\begin{array}{\|c} 130+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note 2) }} \end{array}$ | $\begin{array}{\|c\|} \hline 140+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note } 2)} \\ \hline \end{array}$ |
| D-A59W | 2 (Different surfaces and same surface) 1 |  | 20 | 90 | 100 | 110 | 120 |
|  | n (Same surface) |  | $\begin{gathered} 20+55 \frac{(n-2)}{2} \\ (n=2,4,6,8 \ldots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 90+55 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{array}{\|c\|} \hline 100+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note } 2)} \end{array}$ | $\begin{array}{\|c\|} \hline 110+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note 2 })} \end{array}$ | $\begin{array}{\|c\|} \hline 120+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note } 2)} \end{array}$ |
|  |  | 1 | 15 | 90 | 100 | 110 | 120 |
| D-G5 $\square / K 59$ <br> D-G5 $\square$ W <br> D-K59W <br> D-G5BA <br> D-G59F <br> D-G5NT <br> D-B5 $\square / B 64$ | 2 | Different surfaces | 15 | 90 | 100 | 110 |  |
|  | n | Different surfaces | $\begin{gathered} 15+50 \frac{(n-2)}{2} \\ (n=2,4,6,8 \ldots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 90+50 \frac{(n-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 100+50 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note 2) }} \end{gathered}$ | $\begin{array}{r} 110+50 \\ (\mathrm{n}=4,8,12, \end{array}$ | $\begin{aligned} & \frac{(\mathrm{n}-4)}{2} \\ & , 16 \cdots)^{\text {Note } 2)} \end{aligned}$ |
|  |  | Same surface | $\begin{gathered} 75+50(n-2) \\ (n=2,3,4 \cdots) \end{gathered}$ | $\begin{gathered} 90+50(n-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ | $\begin{gathered} 100+50(n-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ | $\begin{array}{r} 110+50 \\ (\mathrm{n}=2,4,6, \end{array}$ | $\begin{aligned} & 0(n-2) \\ & 8 \cdots)^{\text {Note } 1)} \end{aligned}$ |
|  |  | 1 | 10 | 90 | 100 | 11 | 10 |
| D-B59W | 2 | Different surfaces | 20 | 90 | 100 | 110 |  |
|  |  | Same surface | 75 |  |  |  |  |
|  | n | Different surfaces | $\begin{gathered} 20+50 \frac{(n-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 90+50 \frac{(n-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 100+50 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note 2 })} \end{gathered}$ | $\begin{gathered} 110+50 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ |  |
|  |  | Same surface | $\begin{gathered} 75+50(\mathrm{n}-2) \\ (\mathrm{n}=2,3,4 \cdots) \\ \hline \end{gathered}$ | $\begin{gathered} 90+50(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ | $\begin{array}{\|c\|} \hline 100+50(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note 1 })} \\ \hline \end{array}$ | $\begin{gathered} 110+50(n-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ |  |
|  |  | 1 | 15 | 90 | 100 | 110 |  |

Note 1) When " n " is an odd number, an even number that is one larger than this odd number is used for the calculation.
Note 2) When " $n$ " is an odd number, a multiple of 4 that is larger than this odd number is used for the calculation.

Minimum Stroke for Auto Switch Mounting (Standard Type)

| Auto switch model | Number of auto switches |  | Brackets other than center trunnion | Center trunnion |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\varnothing 40$ | $\varnothing 50$ | $\varnothing 63$ | $\varnothing 80$ | $\varnothing 100$ |
| $\begin{aligned} & \text { D-G39 } \\ & \text { D-K39 } \\ & \text { D-A3 } \square \end{aligned}$ | 2 | Different surfaces |  | 35 | 75 |  | 80 | 90 |  |
|  |  | Same surface | 100 | 100 |  | 100 | 100 |  |
|  | n | Different surfaces | $\begin{gathered} 35+30(n-2) \\ (\mathrm{n}=2,3,4 \cdots) \end{gathered}$ | $\begin{gathered} 75+30(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ |  | $\begin{gathered} 80+30(n-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 90+30(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ |  |
|  |  | Same surface | $\begin{gathered} 100+100(\mathrm{n}-2) \\ (\mathrm{n}=2,3,4 \cdots) \\ \hline \end{gathered}$ | $\begin{gathered} 100+100(n-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ |  |  |  |  |
|  |  | 1 | 10 | 75 |  | 80 | 90 |  |
| D-A44 | 2 | Different surfaces | 35 | 75 |  | 80 | 90 |  |
|  |  | Same surface | 55 |  |  |  |  |  |
|  | n | Different surfaces | $\begin{gathered} 35+30(n-2) \\ (\mathrm{n}=2,3,4 \cdots) \\ \hline \end{gathered}$ | $\begin{gathered} 75+30(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ |  | $\begin{array}{\|c\|} \hline 80+30(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{array}$ | $\begin{gathered} 90+30(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ |  |
|  |  | Same surface | $\begin{gathered} 55+50(n-2) \\ (\mathrm{n}=2,3,4 \cdots) \end{gathered}$ | $\begin{gathered} 75+50(n-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ |  | $\begin{gathered} 80+50(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ | $\begin{gathered} 90+50(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ |  |
|  |  | 1 | 10 | 75 |  | 80 | 90 |  |
| $\begin{aligned} & \text { D-G39C } \\ & \text { D-K39C } \\ & \text { D-A3 } \square \end{aligned}$ | 2 | Different surfaces | 20 | 75 |  | 80 | 90 |  |
|  |  | Same surface | 100 | 100 |  | 100 | 100 |  |
|  | n | Different surfaces | $\begin{gathered} 20+35(\mathrm{n}-2) \\ (\mathrm{n}=2,3,4 \cdots) \\ \hline \end{gathered}$ | $\begin{gathered} 75+35(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ |  | $\begin{gathered} 80+35(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note 1 })} \end{gathered}$ | $\begin{gathered} 90+35(n-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ |  |
|  |  | Same surface | $\begin{gathered} 100+100(n-2) \\ (n=2,3,4,5 \cdots) \\ \hline \end{gathered}$ | $\begin{gathered} 100+100(n-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ |  |  |  |  |
|  |  | 1 | 10 | 75 |  | 80 | 90 |  |
| D-A44C | 2 | Different surfaces | 20 | 75 |  | 80 | 90 |  |
|  |  | Same surface | 55 |  |  |  |  |  |
|  | n | Different surfaces | $\begin{gathered} 20+35(\mathrm{n}-2) \\ (\mathrm{n}=2,3,4 \cdots) \\ \hline \end{gathered}$ | $\begin{gathered} 75+35(n-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ |  | $\begin{array}{\|c\|} \hline 80+35(n-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note 1) }} \end{array}$ | $\begin{gathered} 90+35(n-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ |  |
|  |  | Same surface | $\begin{gathered} 55+50(\mathrm{n}-2) \\ (\mathrm{n}=2,3,4 \cdots) \\ \hline \end{gathered}$ | $\begin{gathered} 75+50(n-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ |  | $\begin{array}{\|c\|} \hline 80+50(\mathrm{n}-2) \\ \left.(\mathrm{n}=2,4,6,8 \cdots)^{\text {Note 1 }}\right) \\ \hline \end{array}$ | $\begin{gathered} 90+50(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ |  |
|  |  | 1 | 10 | 75 |  | 80 | 90 |  |
| $\begin{aligned} & \text { D-Y59 }-/ \text { Y7P } \\ & \text { D-Y7 } \square \\ & \text { D-Z7 } \square / Z 80 \end{aligned}$ | 2 (Different surfaces and same surface) 1 |  | 15 | 80 | 85 | 90 | 95 | 105 |
|  |  | n | $\begin{gathered} 15+40 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 80+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \end{gathered}$ | $\left.\begin{gathered} 85+40 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note 2 2 }} \end{gathered} \right\rvert\,$ | $\begin{gathered} 90+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note 2) }} \end{gathered}$ | $\begin{gathered} 95+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 105+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$ |
| $\begin{aligned} & \text { D-Y69■/Y7PV } \\ & \text { D-Y7 } \square W V \end{aligned}$ |  | Different surfaces d same surface) 1 | 10 | 65 |  | 75 | 80 | 90 |
|  |  | n | $\begin{gathered} 10+30 \frac{(n-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ | $\begin{array}{r} 65+3 \\ (n=4,8,12 \end{array}$ | $\begin{aligned} & 0 \frac{(n-4)}{2} \\ & 2,16 \cdots)^{\text {Note } 2)} \end{aligned}$ | $\begin{array}{\|c\|} \hline 75+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \\ \hline \end{array}$ | $\begin{gathered} 80+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 90+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$ |
| D-Y7BA | 2 (Different surfaces and same surface) 1 |  | 20 | 95 |  | 100 | 105 | 110 |
|  | n |  | $\begin{gathered} 20+45 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 95+45 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \text { Note } 2) \end{gathered}$ |  | $\begin{gathered} 100+45 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \end{gathered}$ | $\begin{gathered} 105+45 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 110+45 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$ |

Note 1) When " n " is an odd number, an even number that is one larger than this odd number is used for the calculation.
Note 2) When " $n$ " is an odd number, a multiple of 4 that is larger than this odd number is used for the calculation.

Minimum Stroke For Auto Switch Mounting (Non-rotating Rod Type)
n : Number of auto switches (mm)

| Auto switch model | No. of auto switches mounted |  | Mounting brackets other than center trunnion | Center trunnion |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | ¢40 $\varnothing 50$ | $\varnothing 63$ | $\varnothing 80$ | $\varnothing 100$ |
| $\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \quad \text { W } \end{aligned}$ | 2 (Different surfaces, Same surface), 1 |  |  | 15 | 80 | 85 | 90 | 95 |
|  |  | n | $\left.\begin{gathered} 15+40 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note 1 } 1)} \end{gathered} \right\rvert\,$ | $\begin{gathered} 80+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 85+40 \frac{(n-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 90+40 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note 2) }} \end{gathered}$ | $\begin{gathered} 95+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note 2) }} \end{gathered}$ |
| D-M9 $\square$ A | 2 (Different surfaces, Same surface), 1 |  | 15 | 85 | 90 | 95 | 105 |
|  |  | n | $\begin{gathered} 15+40 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note 11 }} \end{gathered}$ | $\begin{gathered} 85+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\left.\begin{gathered} 90+40 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered} \right\rvert\,$ | $\left.\begin{array}{c} 95+40 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note 2) }} \end{array}\right)$ | $\left.\begin{gathered} 105+40 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered} \right\rvert\,$ |
| $\begin{aligned} & \text { D-M9 } \square V \\ & \text { D-M9 } \square \text { WV } \end{aligned}$ | 2 (Different surfaces, Same surface), 1 |  | 10 | 55 | 60 | 65 | 70 |
|  |  | n | $\begin{gathered} 10+30 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \ldots)^{\text {Note 1 })} \end{gathered}$ | $\begin{gathered} 55+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 60+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 65+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \end{gathered}$ | $\begin{array}{\|c\|} \hline 70+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note 2 })} \end{array}$ |
| D-M9 $\square$ AV | 2 (Different surfaces, Same surface), 1 |  | 10 | 60 | 65 | 75 | 80 |
|  |  | n | $\begin{gathered} 10+30 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note 1 } 1)} \end{gathered}$ | $\begin{gathered} 60+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 65+30 \frac{(n-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 75+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 80+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$ |
| D-A9 $\square$ | 2 (Different surfaces, Same surface), 1 |  | 15 | 75 | 80 | 85 | 90 |
|  |  | n | $\left.\begin{gathered} 15+40 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \ldots)^{\text {Note } 1)} \end{gathered} \right\rvert\,$ | $\left\|\begin{array}{c} 75+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note 2) }} \end{array}\right\|$ | $\begin{gathered} 80+40 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$ | $\left\|\begin{array}{c} 85+40 \frac{(n-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note 2) }} \end{array}\right\|$ | $\left\|\begin{array}{c} 90+40 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note 2 2 }} \end{array}\right\|$ |
| D-A9 $\square$ V | 2 (Different surfaces, Same surface), 1 |  | 10 | 50 | 55 | 60 | 65 |
|  |  | n | $\left.\begin{gathered} 10+30 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \ldots)^{\text {Note } 1)} \end{gathered} \right\rvert\,$ | $\left.\begin{array}{c} 50+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note 2) }} \end{array}\right)$ | $\begin{gathered} 55+30 \frac{(n-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note 2 })} \end{gathered}$ | $\begin{gathered} 60+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note 2) }} \end{gathered}$ | $\begin{gathered} 65+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note 2) }} \end{gathered}$ |
| $\begin{aligned} & \text { D-A5 } \square / \text { A6 } \square \\ & \text { D-F5 } \square / J 59 \\ & \text { D-F5 } \square \text { W/J59W } \\ & \text { D-F59F } \end{aligned}$ | 2 (Different surfaces, Same surface), 1 |  | 15 | 90 | 100 | 110 | 120 |
|  | n (Same surface) |  | $\left.\begin{gathered} 15+55 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \ldots)^{\text {Note } 1)} \end{gathered} \right\rvert\,$ | $\begin{gathered} 90+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 100+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$ | $\left\|\begin{array}{c} 110+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note 2) }} \end{array}\right\|$ | $\begin{gathered} 120+55 \\ (\mathrm{n}=4,8,12,16 \cdots)^{(n-4)} \\ 2 \end{gathered}$ |
| D-A59W | 2 (Different surfaces, Same surface) |  | 20 | 90 | 100 | 110 | 120 |
|  | n (Same surface) |  | $\begin{gathered} 20+55 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \ldots)^{\text {Note 1 })} \end{gathered}$ | $\begin{gathered} 90+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 100+55 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 110+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 120+55 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$ |
|  |  | 1 | 15 | 90 | 100 | 110 | 120 |
| D-F5NT | 2 (Different surfaces, Same surface), 1 |  | 25 | 110 | 120 | 130 | 140 |
|  | n (Same surface) |  | $\begin{gathered} 25+55 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 110+55 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \\ \hline \end{gathered}$ | $\begin{gathered} 120+55 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 130+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note 2) }} \end{gathered}$ | $\begin{gathered} 140+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$ |
|  | 2 | Different surfaces | 15 | 90 | 100 | 110 |  |
|  |  | Same surface | 75 |  |  |  |  |
| $\begin{aligned} & \text { D-G5 } \square / K 59 \\ & \text { D-G5 } \square \mathbf{W} \end{aligned}$ | n | Different surfaces | $\begin{gathered} 15+50 \frac{(n-2)}{2} \\ \left.(n=2,4,6,8, \ldots)^{\text {Note 1 }}\right) \end{gathered}$ | $\begin{gathered} 90+50 \frac{(n-4)}{2} \\ (n=4,8,12,16, \cdots) \text { Note } 2) \\ \hline \end{gathered}$ | $\begin{gathered} 100+50 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16, \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{array}{r} 110+50 \\ (\mathrm{n}=4,8,12, \end{array}$ | $\begin{aligned} & 0 \frac{(n-4)}{2} \\ & , 16, \cdots) \text { Note } 2) \end{aligned}$ |
| $\begin{aligned} & \text { D-G59F } \\ & \text { D-G5NT } \end{aligned}$ |  | Same surface | $\begin{aligned} & 75+50(\mathrm{n}-2) \\ & (\mathrm{n}=2,3,4, \cdots) \\ & \hline \end{aligned}$ | $\begin{gathered} 90+50(n-2) \\ (n=2,4,6,8, \ldots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 100+50(n-2) \\ (n=2,4,6,8, \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ | $\begin{array}{r} 110+5 \\ (\mathrm{n}=2,4,6, \\ \hline \end{array}$ | $\begin{aligned} & 0(\mathrm{n}-2) \\ & , 8, \cdots)^{\text {Note } 1)} \end{aligned}$ |
|  |  | 1 | 10 | 90 | 100 |  | 10 |
| D-B59W | 2 | Different surfaces | 20 | 90 | 100 | 110 |  |
|  |  | Same surface | 75 |  |  |  |  |
|  | n | Different surfaces | $\begin{gathered} 20+50 \frac{(n-2)}{2} \\ (n=2,4,6,8, \ldots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 90+50 \frac{(n-4)}{2} \\ (n=4,8,12,16, \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 100+50 \frac{(n-4)}{2} \\ (\mathrm{n}=4,8,12,16, \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{array}{r} 110+50 \\ (n=4,8,12, \\ \hline \end{array}$ | $\begin{aligned} & 0 \frac{(n-4)}{2} \\ & , 16, \cdots)^{\text {Note } 2)} \end{aligned}$ |
|  |  | Same surface | $\begin{aligned} & 75+50(n-2) \\ & (n=2,3,4, \cdots) \\ & \hline \end{aligned}$ | $\begin{gathered} 90+50(n-2) \\ (n=2,4,6,8, \ldots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 100+50(\mathrm{n}-2) \\ \left.(\mathrm{n}=2,4,6,8, \cdots)^{\text {Note 1 }}\right) \\ \hline \end{gathered}$ | $\begin{array}{r} 110+5 \\ (\mathrm{n}=2,4,6, \\ \hline \end{array}$ | $\begin{aligned} & \hline 0(\mathrm{n}-2) \\ & , 8, \cdots) \text { Note 1) } \\ & \hline \end{aligned}$ |
|  |  | 1 | 15 | 90 | 100 | 11 | 10 |

[^28]Note 2) When " $n$ " is an odd number, a multiple of 4 that is larger than this odd number is used for the calculation.

Minimum Stroke For Auto Switch Mounting (Non-rotating Rod Type)
n : Number of auto switches (mm)

| Auto switch model | No. of auto switches mounted |  | Mounting brackets other than center trunnion | Center trunnion |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\varnothing 40$ | $\varnothing 50$ | ø63 | $\varnothing 80$ | $\varnothing 100$ |
| $\begin{aligned} & \text { D-A3 } \square \\ & \text { D-G39 } \\ & \text { D-K39 } \end{aligned}$ | 2 | Different surfaces |  | 35 | 100 |  | 100 | 110 |  |
|  |  | Same surface | 100 |  |  |  |  |  |
|  | n | Different surfaces | $\begin{aligned} & 35+30(n-2) \\ & (n=2,3,4, \cdots) \\ & \hline \end{aligned}$ | $\begin{gathered} 100+30(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8, \cdots) \text { Note } 1) \end{gathered}$ |  | $\begin{gathered} 100+30(n-2) \\ (n=2,4,6,8, \cdots) \text { Note 1) } \end{gathered}$ | $\begin{gathered} 100+30(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8, \cdots) \text { Note } 1) \end{gathered}$ |  |
|  |  | Same surface | $\begin{gathered} 100+100(n-2) \\ (n=2,3,4, \cdots) \\ \hline \end{gathered}$ | $\begin{gathered} 100+100(n-2) \\ (n=2,4,6,8, \cdots) \text { Note } 1) \end{gathered}$ |  |  |  |  |
|  |  | 1 | 10 | 75 |  | 80 | 90 |  |
| D-A44 | 2 | Different surfaces | 35 | 100 |  | 100 | 100 |  |
|  |  | Same surface | 55 | 75 |  | 80 | 90 |  |
|  | n | Different surfaces | $\begin{aligned} & 35+30(n-2) \\ & (n=2,3,4, \cdots) \\ & \hline \end{aligned}$ | $\begin{gathered} 75+30(n-2) \\ (n=2,4,6,8, \cdots)^{\text {Note } 1)} \end{gathered}$ |  | $\begin{gathered} 80+30(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$ | $\begin{gathered} 100+30(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8, \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ |  |
|  |  | Same surface | $\begin{aligned} & 55+50(n-2) \\ & (n=2,3,4, \cdots) \\ & \hline \end{aligned}$ | $\begin{gathered} 75+50(n-2) \\ (n=2,4,6,8, \cdots) \text { Note } 1) \end{gathered}$ |  | $\begin{gathered} 80+50(n-2) \\ (n=2,4,6,8, \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$ | $\begin{gathered} 90+50(n-2) \\ (n=2,4,6,8, \cdots) \text { Note } 1) \end{gathered}$ |  |
|  |  | 1 | 10 | 75 |  | 80 | 90 |  |
| $\begin{aligned} & \text { D-A3 } \square C \\ & \text { D-G39C } \\ & \text { D-K39C } \end{aligned}$ | 2 | Different surfaces | 20 | 100 |  | 100 | 100 |  |
|  |  | Same surface | 100 |  |  |  |  |  |  |  |  |  |
|  | n | Different surfaces | $\begin{aligned} & 20+35(n-2) \\ & (n=2,3,4, \cdots) \end{aligned}$ | $\begin{gathered} 100+35(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8, \cdots)^{\text {Note } 1)} \end{gathered}$ |  |  |  |  |
|  |  | Same surface | $\begin{aligned} & 100+100(n-2) \\ & (n=2,3,4,5 \cdots) \end{aligned}$ | $\begin{gathered} 100+100(n-2) \\ (\mathrm{n}=2,4,6,8, \cdots)^{\text {Note } 1)} \end{gathered}$ |  |  |  |  |
|  |  | 1 | 10 | 75 |  | 80 | 90 |  |
| D-A44C | 2 | Different surfaces | 20 | 75 |  | 80 | 90 |  |
|  |  | Same surface | 55 |  |  | 80 |  |  |  |  |
|  | n | Different surfaces | $\begin{aligned} & 20+35(n-2) \\ & (n=2,3,4, \cdots) \\ & \hline \end{aligned}$ | $\begin{gathered} 75+35(n-2) \\ (n=2,4,6,8, \cdots)^{\text {Note } 1)} \end{gathered}$ |  | $\begin{gathered} 80+35(n-2) \\ (n=2,4,6,8, \cdots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 90+35(n-2) \\ (n=2,4,6,8, \cdots) \text { Note } 1) \end{gathered}$ |  |
|  |  | Same surface | $\begin{aligned} & 55+50(n-2) \\ & (n=2,3,4, \cdots) \end{aligned}$ | $\begin{gathered} 75+50(n-2) \\ (n=2,4,6,8, \cdots)^{\text {Note } 1)} \end{gathered}$ |  | $\begin{gathered} 80+50(n-2) \\ (n=2,4,6,8, \cdots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 90+50(n-2) \\ (n=2,4,6,8, \cdots) \text { Note } 1) \end{gathered}$ |  |
|  |  | 1 | 10 | 75 |  | 80 | 90 |  |
| $\begin{aligned} & \text { D-Z7 } \square / Z 80 \\ & \text { D-Y59 } \square / \text { Y7P } \\ & \text { D-Y7 } \square \end{aligned}$ | 2 (Different surfaces, Same surface), 1 |  | 15 | 80 | 85 | 90 | 95 | 105 |
|  |  | n | $\begin{array}{\|c\|} \hline 15+40 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \\ \hline \end{array}$ | $\begin{gathered} 80+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \\ \hline \end{gathered}$ | $\begin{gathered} 85+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \end{gathered}$ | $\begin{gathered} 90+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2 }} \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline 95+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \\ \hline \end{array}$ | $\begin{gathered} 105+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note 2) }} \end{gathered}$ |
| $\begin{aligned} & \text { D-Y69 } \square / Y 7 P V \\ & \text { D-Y7 } \square W V \end{aligned}$ | 2 (Different surfaces, Same surface), 1 |  | 10 | 65 |  | 75 | 80 | 90 |
|  | n |  | $\begin{gathered} 10+30 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$ | $\begin{gathered} 65+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots) \text { Note } 2) \end{gathered}$ |  | $\begin{gathered} 75+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note 2) }} \end{gathered}$ | $\begin{gathered} 80+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ | $\begin{gathered} 90+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$ |

Note 1) When " $n$ " is an odd number, an even number that is one larger than this odd number is used for the calculation.
Note 2) When " $n$ " is an odd number, a multiple of 4 that is larger than this odd number is used for the calculation.

## CVS1 Series

## Operating Range

| Auto switch model | Bore size |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 40 | 50 | 63 | 80 | 100 |
| D-M9 $\square /$ M9 $\square$ V <br> D-M9 $\square$ W/M9 $\square$ WV <br> D-M9 $\square$ A/M9 $\square A V$ | 4.5 | 5 | 5.5 | 5 | 6 |
| D-A9 $\square /$ A9 $\square$ V | 7 | - | 9 | 9 | 9 |
| D-Z7 $\square / \mathbf{Z 8 0}$ | 8 | 7 | 9 | 9.5 | 10.5 |
| $\begin{aligned} & \text { D-A3 } \square / \text { A44 } \\ & \text { D-A3 } \square \text { C/A44C } \end{aligned}$ | 9 | 10 | 11 | 11 | 11 |
| D-A5 $\square /$ A6 $\square$ |  |  |  |  |  |
| D-B5■/B64 |  |  |  |  |  |
| D-A59W | 13 | 13 | 14 | 14 | 15 |
| D-B59W | 14 | 14 | 17 | 16 | 18 |
| $\begin{aligned} & \text { D-Y59 } \square / \mathrm{Y} 69 \square \\ & \text { D-Y7P/Y7PV } \\ & \text { D-Y7 } \square W / Y 7 \square W V \end{aligned}$ | 8 | 7 | 5.5 | 6.5 | 6.5 |
| $\begin{aligned} & \text { D-F5 } \square / J 59 \\ & \text { D-F5 } \square \text { W/J59W } \\ & \text { D-F5NT/F59F } \end{aligned}$ | 4 | 4 | 4.5 | 4.5 | 4.5 |
| $\begin{aligned} & \text { D-G5 } \square / K 59 \\ & \text { D-G5 } \square \text { W/K59W } \\ & \text { D-G5NT/G59F } \end{aligned}$ | 5 | 6 | 6.5 | 6.5 | 7 |
| $\begin{aligned} & \text { D-G39/K39 } \\ & \text { D-G39C/K39C } \end{aligned}$ | 9 | 9 | 10 | 10 | 11 |

* D-A9 $\square$ and D-A9 $\square \mathrm{V}$ types cannot be mounted on ø50

Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately $\pm 30 \%$ dispersion.)
There may be the case it will vary substantially depending on an ambient environment.

## Auto Switch Mounting Bracket Part No.

## <Tie-rod mounting type>

| Auto switch model | Bore size (mm) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 40 | 50 | 63 | 80 | 100 |
| D-M9 $\square /$ M9 $\square V$ <br> D-M9 $\square$ W/M9 $\square$ WV <br> D-M9 $\square$ A/M9 $\square$ AV <br> D-A9 <br> -A9 | BA7-040 | BA7-040 | BA7-063 | BA7-080 | BA7-080 |
| D-F5 $\square / J 59$ <br> D-F5 $\square$ W/J59W <br> D-F59F/F5NT <br> D-A5 $\square / A 6 \square$ <br> D-A59W | BT-04 | BT-04 | BT-06 | BT-08 | BT-08 |
| $\begin{aligned} & \text { D-G39C/K39C } \\ & \text { D-A3 } \square \text { C/A44C } \end{aligned}$ | ВАЗ-040 | ВАЗ-050 | ВАЗ-063 | ВАЗ-080 | ВАЗ-100 |
| D-Y59 $\square /$ Y69 $\square$ <br> D-Y7P/Y7PV <br> D-Y7 $\square W / Y 7 \square W V$ <br> D-Y7BA <br> D-Z7 $\square / Z 80 ~$ | BA4-040 | BA4-040 | BA4-063 | BA4-080 | BA4-080 |



- The figure shows the mounting example for the $\mathrm{D}-\mathrm{M} 9 \square(\mathrm{~V})$ / M9 $\square \mathrm{W}(\mathrm{V}) / \mathrm{M} 9 \square \mathrm{~A}(\mathrm{~V}) / \mathrm{A} 9 \square(\mathrm{~V})$ types.


## <Band mounting type>

## Standard

| Auto switch <br> model |  | Bore size (mm) |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{4 0}$ | $\mathbf{5 0}$ | $\mathbf{6 3}$ | $\mathbf{8 0}$ | $\mathbf{1 0 0}$ |  |
| D-G39/K39 <br> D-A3 $\square /$ A44 | BDS-04M | BDS-05M | BMB1-063 | BMB1-080 | BMB1-100 |  |
| D-G5 $\square / K 59 ~$ <br> D-G5 $\square$ W/K59W |  |  |  |  |  |  |
| D-G59F |  |  |  |  |  |  |
| D-G5NT <br> D-G5NB <br> D-B5 $\square / B 64 ~$ | BH2-040 | BA5-050 | BAF-06 | BAF-08 | BAF-10 |  |
| D-B59W |  |  |  |  |  |  |

## Non-rotating rod

| Auto switch <br> model | Bore size (mm) |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{4 0}$ | $\mathbf{5 0}$ | $\mathbf{6 3}$ | $\mathbf{8 0}$ | $\mathbf{1 0 0}$ |  |
| D-G39/K39 <br> D-A3 $\square /$ A44 | BD1-04M | BD1-05M | BD1-06M | BD1-08M | BD1-10M |  |
| D-G5 $\square / K 59 ~$ <br> D-G5 $\square$ W/K59W <br> D-G59F |  |  |  |  |  |  |
| D-G5NT <br> D-G5NB <br> D-B5 $\square / B 64 ~$ | BA-04 | BA-05 | BA-06 | BA-08 | BA-10 |  |
| D-B59W |  |  |  |  |  |  |

Note 1) Auto switch brackets are included in the D-A3 $\square$ C/A44C/G39C/K39C types. Specify the part number as follows depending on the cylinder size when ordering. (Example) ø40: D-A3 $\square \mathrm{C}-4, \varnothing 50: \mathrm{D}-\mathrm{A3} \square \mathrm{C}-5, \varnothing 63: \mathrm{D}-\mathrm{A3} \square \mathrm{C}-6, \varnothing 80: \mathrm{D}-\mathrm{A3} \square \mathrm{C}-8, \varnothing 100: \mathrm{D}-\mathrm{A3} \square \mathrm{C}-10$



[^0]:    ＊Lead wire length symbols： $0.5 \mathrm{~m} . . . . . . . . . N$ Nil（Example）M9NW
    $1 \mathrm{~m} \ldots \ldots . . . . \mathrm{M}$（Example）M9NWM
    $3 \mathrm{~m} \ldots \ldots . . . \mathrm{L} \quad$（Example）M9NWL
    $5 \mathrm{~m} \cdot \ldots . . . . . . Z \quad$（Example）M9NWZ
    ＊Since there are other applicable auto switches than listed，refer to page 759 for details．
    ＊For details about auto switches with pre－wired connector，refer to pages 1014 and 1015.

[^1]:    *1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance. Consult with SMC regarding water resistant types with the above model numbers.
    *2 1 m type lead wire is only applicable to D-A93.

    * Lead wire length symbols: $0.5 \mathrm{~m} \ldots . . . . .$. Nil (Example) M9NW
    $1 \mathrm{~m} \cdot \ldots . . . . . . \mathrm{M}$ (Example) M9NWM
    $3 \mathrm{~m} \ldots \ldots . . .$.
    $5 \mathrm{~m} . . . . . . . . . \mathrm{Z}$ (Example) M9NWZ
    * Since there are other applicable auto switches than listed, refer to page 770 for details.
    * For details about auto switches with pre-wired connector, refer to pages 1014 and 1015.

[^2]:    Note 2）For the CDVJ3 series，note that 65 strokes cannot be manufactured．

[^3]:    ＊For solid state auto switches，auto switches with a pre－wired connector are also available．Refer to pages 1014 and 1015 for details．

[^4]:    * Since the seal kit does not include a grease pack, order it separately. Grease pack part no.: GR-S-010 (10g)

[^5]:    * For short strokes, a solenoid valve may protrude from the rod cover end. Confirm S dimension and solenoid dimensions.
    * Brackets are packaged together.

[^6]:    * Maximum ambient temperature for the rod boot itself.

[^7]:    * Since the seal kit does not include a grease pack, order it separately. Grease pack part no.: GR-S-010 (10g)

[^8]:    * For solid state auto switches, auto switches with a pre-wired connector are also available. Refer to pages 1014 and 1015 for details.
    * Normally closed ( $\mathrm{NC}=\mathrm{b}$ contact) solid state auto switches (D-F9G/F9H types) are also available. Refer to page 959 for details.
    * Wide range detection type, solid state auto switches (D-G5NB type) are also available. Refer to page 1004 for details.

[^9]:    * Brackets are packaged together.

[^10]:    * Brackets are packaged together.

[^11]:    *Clevis pin and snap ring (cotter pin for ø40) is shipped together.

[^12]:    * Brackets are packaged together

[^13]:    * Brackets are packaged together.

[^14]:    * Two foot brackets and a mounting nut are attached.

[^15]:    Note) Adjust the auto switch after confirming the operating conditions in the actual setting.

[^16]:    ＊For solid state auto switches，auto switches with a pre－wired connector are also available．Refer to pages 1014 and 1015 for details．
    ＊Normally closed（ $\mathrm{NC}=\mathrm{b}$ contact）solid state auto switches（D－F9G／F9H types）are also available．Refer to page 959 for details．
    ＊Wide range detection type，solid state auto switches（D－G5NB type）are also available．Refer to page 1004 for details．

[^17]:    Refer to pages 826 to 831 for cylinders with auto switches.

    - Proper auto switch mounting position (detection at stroke end) and mounting height
    - Minimum auto switch mounting stroke
    - Operating range
    - Auto switch mounting bracket: Part no.

[^18]:    *How to order solenoid valves
    Note 1) V3108-00 Voltage Electrical entry
    Note 2) V3108-00 Voltage Electrical entry-x 23
    Note 3) V3208-00 Voltage Electrical entry

[^19]:    The minimum stroke of the one with rod boot is 20 mm or more. * Long stroke

[^20]:    * The minimum stroke of the one with rod boot is 20 mm or more.

[^21]:    *1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
    Consult with SMC regarding water resistant types with the above model numbers.
    *2 1 m type lead wire is only applicable to D-A93.

    * Lead wire length symbols: 0.5 m ...........Nil (Example) M9NW

    | 5 m ..........Nil | (Example) M9NW |
    | :---: | :---: |
    | $1 \mathrm{~m} . . . . . . . . . ~ M ~$ | (Example) M9NWM |
    | $3 \mathrm{~m} \ldots \ldots . . . . . . ~ L$ | (Example) M9NW |
    | $5 \mathrm{~m} . . . . . . . . . ~ Z ~$ | (Example) M9NWZ |

    *Solid state auto switches marked with " $\bigcirc$ " are produced upon receipt of order.
    *** D-B5 $\square / B 64 / \mathrm{G} 5 / \mathrm{K} 5 \square$ types are mountable only upon a receipt of order. (Not mountable after the time of shipment)

    * Since there are other applicable auto switches than listed, refer to page 831 for details.
    **** D-A9■ cannot be mounted on $\varnothing 50$. Select auto switches in brackets.

[^22]:    Refer to pages 826 to 831 for cylinders with auto switches.

    - Proper auto switch mounting position (detection at stroke end) and mounting height
    - Minimum auto switch mounting stroke
    - Operating range
    - Auto switch mounting bracket: Part no.

[^23]:    1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
    Consult with SMC regarding water resistant types with the above model numbers.
    *2 1 m type lead wire is only applicable to D-A93.

    * Lead wire length symbols: $0.5 \mathrm{~m} \ldots \ldots . .$. Nil (Example) M9NW

    | $.5 \mathrm{~m} \cdots \cdots \cdots \cdot \mathrm{~N}$ | (Example) M9NW |
    | :--- | :--- |
    | $1 \mathrm{~m} \cdots \cdots \cdots \cdot \mathrm{M}$ | (Example) M9NWM |
    | $3 \mathrm{~m} \cdots \cdots \cdots \cdots \mathrm{~L}$ | (Example) M9NWL |
    | $5 \mathrm{~m} \cdots \cdots \cdots \mathrm{Z}$ | (Example) M9NWZ |

    * Solid state auto switches marked with " $\bigcirc$ " are produced upon receipt of order.
    ** D-B5 $\square / G 5 \square / K 5 \square$ types are mountable only upon a receipt of order. (Not mountable after the time of shipment)
    *** D-A9■ cannot be mounted on ø50. Select auto switches in brackets.

[^24]:    * Clevis pin, flat washer and cotter pin are shipped together.

[^25]:    * Cotter pin and plain washer are shipped together.

[^26]:    1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance. Consult with SMC regarding water resistant types with the above model numbers.
    *2 1 m type lead wire is only applicable to D-A93.

    * Lead wire length symbols: $0.5 \mathrm{~m} \ldots \ldots . . .$. Nil (Example) M9NW

    |  |  |
    | :---: | :---: |
    | M | (Example) |
    | $3 \mathrm{~m} \ldots \ldots . . . . . \mathrm{L}$ | (Example) M |
    | $5 \mathrm{~m} . . . . . . . . . ~ Z ~$ | (Example) M9NW |

    * Solid state auto switches marked with " $\bigcirc$ " are produced upon receipt of order.
    ** D-A9■ cannot be mounted on $\varnothing 50$. Select auto switches in brackets.
    *** D-B5 $\square / \mathrm{G} 5 \square / K 5 \square$ types are mountable only upon a receipt of order. (Not mountable after the time of shipment)

[^27]:    Refer to pages 844 to 849 for cylinders with auto switches.

    - Proper auto switch mounting position (detection at stroke end) and mounting height
    - Minimum auto switch mounting stroke
    - Operating range
    - Auto switch mounting bracket: Part no.

[^28]:    Note 1) When " n " is an odd number, an even number that is one larger than this odd number is used for the calculation.

