Magnetically Coupled Rodless Cylinder New ø6, ø10, ø15, ø20, ø25, ø32, ø40
 RoHS

Weight

Overall length

max 15 \% reduced

0.96 kg (Existing model 1.13 kg) (CY1S 15-100 stroke)
max 15 mimshiofiened
240 mm (Existing model 255 mm) (CY1S 40-100 stroke)

Reduged in length

Improved durability

Lub-retainers are mounted on the internal and external surfaces of the cylinder tube to maintain the lubrication.

Adjustment bolt improves stroke accuracy/repeatability.

Stroke position can be maintained with the adjustment bolt positioned next to the shock absorber, so stroke adjustment is not necessary.

Series CY1S

CAT.ES20-227A

Series CY1S

Reduced in weight

Weight is reduced with the redesign of the slide block and reducing the thickness of the plate.

Bore size (mm)	NewCY1S	Reduction rate Existing model	
$\mathbf{6}$	$\mathbf{0 . 3 4}$	$\mathbf{8 \%}$	0.37
$\mathbf{1 0}$	$\mathbf{0 . 5 9}$	$\mathbf{1 3 \%}$	0.68
$\mathbf{1 5}$	$\mathbf{0 . 9 6}$	$\mathbf{1 5 \%}$	1.13
$\mathbf{2 0}$	$\mathbf{1 . 6 8}$	$\mathbf{1 3 \%}$	1.93
$\mathbf{2 5}$	$\mathbf{2 . 0 2}$	$\mathbf{1 0 \%}$	2.25
$\mathbf{3 2}$	$\mathbf{3 . 4 5}$	$\mathbf{1 2 \%}$	3.94
$\mathbf{4 0}$	$\mathbf{5 . 3 6}$	$\mathbf{1 4 \%}$	6.23

* At 100 stroke

Reduced in length

Overall length is reduced, but interchangeable with the existing model.

Bore size (mm)	NewCY1S				Existing model
	Bilateral piping type Centralized piping type				
	Overall lengt	Lenghtreduction	Overall leng	L Length revicion	Overall length
6	162	6	166	2	168
10	172	8	176	4	180
15	187	10	192	5	197
20	206	9	211	4	215
25	206	9	211	4	215
32	228	10	234	4	238
40	240	15	246	9	255

Bilateral piping and centralized piping versions available

- Bilateral piping type

- Centralized piping type

3-Options available for stroke adjustment

- Bumper bolt (resin tipped)

- Shock absorber + Adjustment bolt (metal ended)

- Shock absorber + Adjustment bolt (metal ended) on one side
- Bumper bolt (resin tipped) on one side

Reduced in lengith

New Improved auto switch mounting

1 Auto switch can be mounted in any desired position. (D-M9 $\square, \mathrm{D}-\mathrm{A} 9 \square$)

- The auto switch can be fixed in any desired position with a switch spacer.
- This reduces man-hours for mounting.

2 Auto switch mounting

 rail fitted as standardAuto switch rail is suitable for various switch specifications. Refer to page 1 for applicable auto switches.

New Shock absorber

The RJ series soft stop shock absorbers fitted as standard

Magnetically Coupled Rodless Cylinder Series Variations

Selection Flow Chart

Model determination

Note 1) Stroke adjustment with either a bumper bolt or adjustment bolt is considered as an intermediate stop.
Note 2) When an intermediate stop is performed with an external stopper, consider the dynamic load as shown below.

- Bumper bolt: $\delta=4 / 100$
- Shock absorber and air cushion: $\delta=1 / 100$

In addition to this, check the judgement results of the guide load factor. (δ : Bumper coefficient)
Note 3) When an external stopper is used in conjunction with a shock absorber, check the model selection of shock absorber separately.
Note 4) This cylinder cannot perform an intermediate stop with the pneumatic circuit in vertical operation.
The intermediate stop is only performed with a bumper bolt, adjustment bolt or external stopper.
Note 5) When an intermediate stop is performed with the pneumatic circuit, the stopping accuracy may vary significantly.
If accuracy is required, be sure to perform the intermediate stop with a bumper bolt, adjustment bolt or external stopper.

1 Check allowable load mass by thrust.

In this series, the work load and the maximum operating pressure are restricted to prevent the magnetic coupling from being separated. Ensure that the work load mass and operating pressure are within the values in Table 1.
Table 1. Allowable load mass by thrust and maximum operating pressure

Bore size (mm)	Horizontal operation $\mathrm{mh}[\mathrm{kg}]$	Horizontal operation Max. operating pressure $\left.\mathrm{Ph}_{\mathrm{h}}[\mathrm{MPa}]^{\text {Note }}\right)$	Vertical operation m_{v} [kg]	Vertical operation Max. operating pressure $\mathrm{P}_{\mathrm{v}}[\mathrm{MPa}]$
6	1.8	0.70	1.0	0.55
10	3.0		2.7	
15	7.0		7.0	0.65
20	12		11	
25	20		18.5	
32	30		30	
40	50		47	

Note) Without stroke adjustment
When stroke adjustment is performed with bumper bolt, adjustment bolt, or intermediate stop is performed with an external stopper, the maximum operating pressure should be as shown in the front matter 11.

2 Check allowable load mass by stroke.

In this series, guide shafts are assembled to support the load.
Deflection of the guide shaft increases due to work load mass and rolling moment (M_{2}), so the work load mass and stroke is restricted. Check that the load mass is within the allowable load mass by stroke: mst from Graphs (1) to (7) for each bore size.

[Horizontal mounting and Ceiling mounting]

The allowable load mass by stroke range varies depending on the y direction of the loads center of gravity.

[Wall mounting]

The allowable load mass by stroke range varies depending on the z direction of the loads center of gravity.
[Vertical mounting]
Load mass is not restricted by stroke.

A: Distance between the center of the guide shaft and the upper surface of the slide block

Series CY1S

2 Check allowable load mass by stroke.

Selection Graph

[Graph 3] Allowable load mass by stroke $\quad \varnothing 15$

[Graph 5] Allowable load mass by stroke

[Graph 7] Allowable load mass by stroke

[Graph 4] Allowable load mass by stroke $\quad \varnothing 20$

[Graph 6] Allowable load mass by stroke
$\varnothing 32$

Front matter 3

3 Consider load factor on guides.

3-(1) Types of moment applied to rodless cylinders

Multiple moments may be generated depending on the mounting orientation, load, and position of the center of gravity.

Coordinates and Moments

* The direction of the axis, X, Y and Z are based on the cylinder mounting orientation shown on the right.
Consider the direction of the axis for each mounting direction.

Static moment calculation by mounting style

[Horizontal mounting]

[Ceiling mounting]

[Wall mounting]

[Vertical mounting]

Table 2. Mounting orientation and static moment

Mounting orientation		Horizontal mounting	Ceiling mounting	Wall mounting	Vertical mounting
Static load		m			
	M1	m x g x	m x g x	-	$m \times g \times(z+A)$
	M 2	mxgxy	mxgxy	$m \times g x(z+A)$	-
	M3	-	-	mxgxx	m x gxy

* A: Distance between the center of the guide shaft and the upper surface of the slide block (See the table on the right.)

Bore size (mm)	A $[\mathrm{mm}]$
$\mathbf{6}$	19
$\mathbf{1 0}$	21
$\mathbf{1 5}$	25
$\mathbf{2 0}$	27
$\mathbf{2 5}$	33
$\mathbf{3 2}$	40
$\mathbf{4 0}$	49

Dynamic moment calculation by mounting style

Table 3. Mounting orientation and static moment

Mounting orientation		Horizontal mounting	Ceiling mounting	Wall mounting	Vertical mounting
Dynamic load FE		$\delta \times 1.4 \times \mathrm{Va} \times \mathrm{m} \times \mathrm{g} \quad$Bumper bolt: $\delta=4 / 100$ Shock absorber: $\delta=1 / 100$			
	M1E	$1 / 3 \times \operatorname{FEx}(\mathrm{z}+\mathrm{A})$			
	M2E	Dynamic moment does not occur.			
	Мзе	$1 / 3 \times$ Fex y			

Regardless of the mounting orientation, dynamic moment is calculated with the formulas above.

Series CY1S

3 Consider load factor on guides.

3-(2) Allowable load mass on guides/Allowable moment
Table 4. Allowable load mass on guides and moment

Bore size (mm)	Allowable load mass on guides $\mathrm{m}[\mathrm{kg}]$	Allowable moment [N•m]		
	9	M 1	M 2	M 3
$\mathbf{6}$	9	1.3	1.4	1.3
$\mathbf{1 0}$	15	2.6	2.9	2.6
$\mathbf{1 5}$	35	8.6	8.9	8.6
$\mathbf{2 0}$	60	17	18	17
$\mathbf{2 5}$	104	30	35	30
$\mathbf{3 2}$	195	67	82	67
$\mathbf{4 0}$	244	96	124	96

The table above indicates the maximum performance of the guide, but does not show the actual allowable work load mass. Refer to Graphs (8) to (13) for correct allowable mass by piston speed.
[Graph 8] Allowable load mass on guides (\varnothing 6 to $\varnothing 15$) $\quad \mathrm{m}$

[Graph 12] Allowable moment ($\varnothing 6$ to $\varnothing 15$)
M2

[Graph 9] Allowable load mass on guides ($\varnothing 20$ to $\varnothing 40$) m

[Graph 13] Allowable moment (ø20 to ø40) M2

Front matter 5

3-(3) Consideration of guide load factor
Work load mass and allowable moment varies depending on the load mounting method, stroke, cylinder mounting orientation and piston speed.

Whether the cylinder is suitable or not is decided by the allowable load mass on guides in the graphs.
The selection calculation is shown below.
It is necessary to consider i) allowable load mass on guides, ii) static moment and iii) dynamic moment (when the slide block collides with the stopper).

* i) \cdot ii) is calculated with Va (average speed) and iii) is calculated with V (collision speed $\mathrm{V}=1.4 \mathrm{Va}$).

Calculate $m_{\text {max }}$ of i) from the allowable load mass on guides in Graphs (8) and (9),
and calculate $M m a x$ of $i i$) and iii) from the allowable moment ($\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}$) in Graphs (10), (11), (12) and (13).

$$
\begin{aligned}
& \text { Sum of guide } \Sigma \alpha=\frac{\text { Load mass }(m)}{\text { Allowable load mass on guides }\left(m_{\max }\right)}+\frac{\text { Static moment }(M) \text { Note } 1)}{\text { Allowable static moment }\left(M_{\max }\right)}+\frac{\text { Dynamic moment }\left(\mathrm{ME}_{\mathrm{E}}\right) \text { Note 2) }}{\text { Allowable dynamic moment }\left(\mathrm{M}_{\max }\right)} \leq 1
\end{aligned}
$$

Note 1) Moment caused by the load etc., with cylinder in resting condition
Note 2) Moment caused by the load equivalent to impact at the stroke end (at the time of impact with stopper)
Note 3) Several moments might be generated depending on the cylinder mounting orientation or the load center of gravity, so the sum of the allowable load mass on guides, allowable static moment and allowable dynamic moment will be the sum of all these guide load factors.

Calculation method to determine the center of gravity when several loads are mounted on the cylinder

When several loads are mounted on the cylinder, it is difficult to calculate the center of gravity.
As shown in the figure below, the center of gravity of the load is calculated from the total load mass and of center of gravity for all the loads.

- Load Blocking

Mass and center of gravity of the load

Load no. $\mathbf{W n}$	Mass mn	Center of gravity		
		X -axis Xn	Y -axis yn	Z -axis Zn
$\mathbf{W a}$	Xa	ya	Za	
$\mathbf{W b}$	Xb	yb	Zb	
$\mathbf{W} \mathbf{c}$	mc	Xc	yc	Zc
$\mathbf{W} \mathbf{d}$	md	Xd	yd	Zd

■ Calculation for Overall Center of Gravity

$$
\begin{aligned}
m t= & \Sigma m n \ldots(1) \\
X= & \frac{1}{m t} \times \Sigma(m n \times x n) \ldots \ldots \ldots \\
Y= & \frac{1}{m t} \times \Sigma(m n \times y n) \ldots \ldots \ldots \\
Z= & \frac{1}{m t} \times \Sigma\{m n \times(A+z n)\} \\
& (n=a, b, c, d)
\end{aligned}
$$

Refer to the following sections 1 to 4 to calculate the center of gravity and the total load.

Calculation of Guide Load Factor

The selection calculation finds the load factors ($\alpha \mathrm{n}$) of the items below, where the total does not exceed 1.

Item	Load factor α n	Note
1: Maximum load mass	$\alpha_{1}=\mathrm{m} / \mathrm{mmax}^{\text {max }}$	Examine m. mmax is the max. load mass for Va.
2: Static moment	$\alpha_{2}=\mathrm{M} / \mathrm{Mmax}$	Examine $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}$. Mmax is the allowable moment for Va.
3: Dynamic moment	$\alpha_{3}=\mathrm{ME} / \mathrm{MEmax}$	Examine M1E, Мзе. Memax is the allowable moment for V.

Calculation example 1 Mounting on horizontal wall

[1] Operating Conditions

Cylinder: CY1SG25-600
Cushion: Shock absorber
Mounting: Horizontal wall mounting
Speed: $\mathrm{Va}=250[\mathrm{~mm} / \mathrm{s}]$

[2] Load Blocking

[3] Calculation for Overall Center of Gravity

Mass and center of gravity of the load

Load no. Wn	Mass mn	Center of gravity		
		Y-axis yn	Z-axis $\mathbf{Z n}$	
$\mathbf{W a}$	1.5 kg	0 mm	0 mm	5 mm
$\mathbf{W} \mathbf{b}$	1.0 kg	0 mm	0 mm	50 mm
$\mathbf{W} \mathbf{c}$	0.5 kg	0 mm	25 mm	105 mm
$\mathbf{W} \mathbf{d}$	2.5 kg	0 mm	50 mm	105 mm

$$
\begin{aligned}
\mathrm{mt} & =\Sigma \mathrm{mn} \\
& =1.5+1.0+0.5+2.5 \\
& =5.5 \mathrm{~kg} \\
\mathrm{X} & =0 \mathrm{~mm} \\
& (\text { The center of gravity in the } \times \text { direction of all work pieces is } 0, \mathrm{so} \mathrm{X}=0 \mathrm{~mm} .) \\
\mathrm{Y} & =\frac{1}{\mathrm{mt}} \times \Sigma(\mathrm{mn} \times \mathrm{yn}) \\
& =\frac{1}{5.5} \times(1.5 \times 0+1.0 \times 0+0.5 \times 25+2.5 \times 50) \\
& =25 \mathrm{~mm} \\
\mathrm{Z} & =\frac{1}{\mathrm{mt}} \times \Sigma\{\mathrm{mn} \times(\mathrm{A}+\mathrm{zn})\} \\
& =\frac{1}{5.5} \times\{1.5 \times(33+5)+1.0 \times(33+50)+0.5 \times(33+105)+2.5 \times(33+105)\} \\
& =100 \mathrm{~mm}
\end{aligned}
$$

[4] Check the allowable load.

Item	Result	Note
(1) Check allowable load mass by thrust.	Work load is $5.5 \mathrm{~kg}<20 \mathrm{~kg} . \mathrm{OK}$	Check allowable load by thrust. The bore size is $\varnothing 25$, so the allowable load by thrust will be 20 kg.
(2) Allowable load by stroke	Work load is $5.5 \mathrm{~kg}<20 \mathrm{~kg} . \mathrm{OK}$	The load is restricted to 20 kg when the stroke is 600 mm and $\mathrm{Z}=100 \mathrm{~mm}$ taken from Graph (5) 1 (See the next page).

[5] Judgement of Guide Load Factor

Item	Load factor α n	Note
1 Load mass	$\begin{aligned} \alpha_{1} & =m / m \max \\ & =5.5 / 83.2 \\ & =0.07 \end{aligned}$	Examine m. Find the value of $m_{\text {max }}$ when $\mathrm{Va}=250 \mathrm{~mm} / \mathrm{s}$ from Graph (9) 2 .
2 Static moment	$\begin{aligned} \mathrm{M}_{2} & =\mathrm{m} \times \mathrm{g} \times \mathrm{Z} \\ & =5.5 \times 9.8 \times 100 / 1000 \\ & =5.4[\mathrm{~N} \cdot \mathrm{~m}] \\ \alpha_{2} & =\mathrm{M} 2 / \mathrm{M} 2 \max \\ & =5.4 / 28.0 \\ & =0.19 \end{aligned}$	Examine M2. M_{1}, M_{3} values do not apply to this example. Refer to [3] Calculation for Overall Center of Gravity in the Z-axis on front matter 7. Find the value $\mathrm{M}_{2} \max$ when $\mathrm{Va}=250 \mathrm{~mm} / \mathrm{s} \text { from Graph (13) } 3$
3 Dynamic moment	$\begin{aligned} \mathrm{FE} & =1.4 \times \mathrm{Va} \times \mathrm{m} \times \mathrm{g} \times \delta \\ & =1.4 \times 250 \times 5.5 \times 9.8 \times 1 / 100 \\ & =188.7[\mathrm{~N}] \\ & \\ \mathrm{M} 1 \mathrm{E} & =1 / 3 \times \mathrm{FE} \times \mathrm{Z} \\ & =1 / 3 \times 188.7 \times 100 / 1000 \\ & =6.3[\mathrm{~N} \cdot \mathrm{~m}] \\ & \\ \alpha_{3 A} & =\mathrm{M}_{1 \mathrm{E}} / \mathrm{M}_{1 \max } \\ & =6.3 / 17.1 \\ & =0.37 \end{aligned}$	Calculate for the impact load. Since the impact is absorbed by shock absorber, the bumper coefficient $\delta=1 / 100$ Examine M1E. Calculate the collision speed V. $\begin{aligned} & \mathrm{V}=1.4 \times \mathrm{Va} \\ & \mathrm{~V}=1.4 \times 250 \\ & \mathrm{~V}=350 \mathrm{~mm} / \mathrm{s} \end{aligned}$ Find the value M1Emax when $\mathrm{Va}=350 \mathrm{~mm} / \mathrm{s} \text { from Graph (11) } 4$
	$\begin{aligned} \text { M3E } & =1 / 3 \times F_{E} \times Y \\ & =1 / 3 \times 188.7 \times 25 / 1000 \\ & =1.6[\mathrm{~N} \cdot \mathrm{~m}] \\ \alpha_{3 B} & =\text { MзE/M3max } \\ & =1.6 / 17.1 \\ & =0.09 \end{aligned}$	Examine Мзе. Refer to [3] Calculation for Overall Center of Gravity in the Y -axis on front matter 7. From the results above, Find the value МзEmax when $\mathrm{Va}=350 \mathrm{~mm} / \mathrm{s}$ from Graph (11) 5 .
4 Judgement	$\begin{aligned} \Sigma \alpha_{n} & =\alpha_{1}+\alpha_{2}+\alpha_{3 A}+\alpha_{3 B} \\ & =0.07+0.19+0.37+0.09 \\ & =0.72 \end{aligned}$	$\Sigma \alpha_{n}=0.72 \leq 1$, so the cylinder can be used.

[Graph 5] Allowable load mass by stroke $\varnothing 25$

[Graph 9] Allowable load mass on guides
m

[Graph 11] Allowable moment M1, M3

Series CY1S

Calculation of Guide Load Factor

Calculation example 2 Vertical mounting

[1] Operating Conditions

Cylinder: CY1SG20-700

Cushion: Shock absorber Mounting: Vertical mounting Speed: $\mathrm{Va}=200[\mathrm{~mm} / \mathrm{s}]$

[2] Load Blocking

Mass and center of gravity of the load

Load no. Wn	Mass mn	X-axis Xn		
		0 mm	Y-axis yn	Z-axis Zn
$\mathbf{W b}$	1.0 kg	0 mm	0 mm	50 mm
$\mathbf{W c}$	0.5 kg	0 mm	25 mm	100 mm
$\mathbf{W d}$	3.0 kg	0 mm	50 mm	100 mm
$\mathrm{C}=\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$				

[3] Calculation for Overall Center of Gravity
$\begin{aligned} \mathrm{mt} & =\Sigma \mathrm{mn} \\ & =1.0+1.0+0.5+3.0 \\ & =5.5 \mathrm{~kg}\end{aligned}$
$X=0 \mathrm{~mm}$
(The center of gravity in the x direction of all work pieces is 0 , so $X=0 \mathrm{~mm}$.)
$Y=\frac{1}{m \mathrm{t}} \times \Sigma(\mathrm{mn} \times \mathrm{yn})$
$=\frac{1}{5.5} \times(1.0 \times 0+1.0 \times 0+0.5 \times 25+3.0 \times 50)$
$=30 \mathrm{~mm}$
$Z=\frac{1}{m \mathrm{t}} \times \Sigma\left\{\mathrm{mn}_{\mathrm{n}} \times(\mathrm{A}+\mathrm{zn})\right\}$
$=\frac{1}{5.5} \times\{1.0 \times(27+5)+1.0 \times(27+50)+0.5 \times(27+100)+3.0 \times(27+100)\}$
$=101 \mathrm{~mm}$
[4] Check the allowable load.

Item	Result	Note
(1) Check allowable load mass by thrust.	Work load is $5.5 \mathrm{~kg}<11 \mathrm{~kg}$. OK	Check the allowable load for vertical mounting. The bore size is $\varnothing 20$, so the maximum load for vertical mounting will be 11 kg.
(2) Allowable load by stroke	No restriction	The cylinder is mounted in the vertical direction, and the load generates no rolling moment, so there is not restriction.

[5] Judgement of Guide Load Factor

Item	Load factor α n	Note
1 Load mass	$\alpha_{1}=0$	In case of vertical mounting, no static load is applied.
2 Static moment	$\begin{aligned} \mathrm{M}_{1} & =\mathrm{m} \times \mathrm{g} \times \mathrm{Z} \\ & =5.5 \times 9.8 \times 101 / 1000 \\ & =5.4[\mathrm{~N} \cdot \mathrm{~m}] \\ \alpha_{2 A} & =\mathrm{M}_{1} / \mathrm{M}_{1} \max \\ & =5.4 / 17.0 \\ & =0.32 \end{aligned}$	Examine M_{1}. Refer to [3] Calculation for Overall Center of Gravity in the Z -axis on front matter 7. Find the value of $\mathrm{M}_{1 \text { max }}$ when $\mathrm{Va}=200 \mathrm{~mm} / \mathrm{s}$ from Graph (11) 1 .
	$\begin{aligned} \mathrm{M}_{3} & =m \times g \times Y \\ & =5.5 \times 9.8 \times 30 / 1000 \\ & =1.6[\mathrm{~N} \cdot \mathrm{~m}] \\ \alpha_{2 B} & =M_{3} / \mathrm{M} 3 \max \\ & =1.6 / 17.0 \\ & =0.10 \end{aligned}$	Examine M3. Refer to [3] Calculation for Overall Center of Gravity in the Y -axis on front matter 7. Find the value of $\mathrm{M}_{3} \max$ when $\mathrm{Va}=200 \mathrm{~mm} / \mathrm{s}$ from Graph (11) 2 . M2 value does not apply to this example.
3 Dynamic moment	$\begin{aligned} \mathrm{FE} & =1.4 \times \mathrm{Va} \times \mathrm{m} \times \mathrm{g} \times \delta \\ & =1.4 \times 200 \times 5.5 \times 9.8 \times 1 / 100 \\ & =150.9[\mathrm{~N}] \\ & \\ \mathrm{M}_{1 \mathrm{E}} & =1 / 3 \times \mathrm{FE} \times \mathrm{Z} \\ & =1 / 3 \times 150.9 \times 101 / 1000 \\ & =5.1[\mathrm{~N} \cdot \mathrm{~m}] \\ \alpha_{3 A} & =M_{1 E} / \mathrm{M}_{1 \max } \\ & =5.1 / 12.1 \\ & =0.42 \end{aligned}$	Calculate the impact load. Since the impact is absorbed by shock absorber, the bumper coefficient $\delta=1 / 100$ Examine M1E. Calculate the collision speed V . $\begin{aligned} & \mathrm{V}=1.4 \times \mathrm{Va} \\ & \mathrm{~V}=1.4 \times 200 \\ & \mathrm{~V}=280 \mathrm{~mm} / \mathrm{s} \end{aligned}$ Find the value of M1Emax when $\mathrm{Va}=280 \mathrm{~mm} / \mathrm{s} \text { from Graph (11) } 3$
	$\begin{aligned} M_{3 E} & =1 / 3 \times \text { FE } \times Y \\ & =1 / 3 \times 150.9 \times 30 / 1000 \\ & =1.5[\mathrm{~N} \cdot \mathrm{~m}] \\ \alpha_{3 B} & =M 3 E / \mathrm{M} 3 \max \\ & =1.5 / 12.1 \\ & =0.12 \end{aligned}$	Examine $\mathrm{M}_{3} \mathrm{E}$. From the results above, Find the value of M3Emax when $\mathrm{Va}=280 \mathrm{~mm} / \mathrm{s}$ from Graph (11) 4
4 Judgement	$\begin{aligned} \Sigma \alpha_{n} & =\alpha_{1}+\alpha_{2 A}+\alpha_{2 B}+\alpha_{3 A}+\alpha_{3 B} \\ & =0+0.32+0.10+0.42+0.12 \\ & =0.96 \end{aligned}$	$\Sigma \alpha_{n}=0.96 \leq 1$, so the cylinder can be used.

Load factors on the guides can be calculated with the SMC Pneumatic CAD system.

Series CY1S

Caution on Design

Vertical Operation

When operating a load vertically, it should be operated within the allowable load mass and allowable pressure as shown in the table below.
Operating the cylinder above the specified values may lead to the load dropping. If accurate stopping position is required, consider using a metal-ended external stopper.

Bore size (mm)	Allowable load mass (mv) (kg)	Allowable pressure (Pv) (MPa)
$\mathbf{6}$	1.0	0.55
$\mathbf{1 0}$	2.7	
$\mathbf{1 5}$	7.0	
$\mathbf{2 0}$	11.0	0.65
$\mathbf{2 5}$	18.5	
$\mathbf{3 2}$	30.0	
40	47.0	

Note1) Use caution, as operating the cylinder above the allowable pressure may lead to the magnetic coupling separating and allowing the load to fall.
Note 2) The allowable load mass above indicates the allowable load mass in the vertical operation. The actual load mass must be determined by referring to the model selection flow chart on front matter 1.
Note 3) As a guide, the load mass should be approximately 60% of the thrust load factor.

Intermediate Stop

1. When an intermediate stop is performed with an external stopper etc.
When stopping a load in mid-stroke using an external stopper, adjustment bolt or bumper bolt, operate within operating pressure limits shown in the table below. Use caution, as operating the cylinder above these pressures may lead to the breaking of the magnetic coupling.
(The piston speed should be the allowable value or less.)

Bore size (mm)	Allowable pressure for the intermediate stop with an external stopper (Ps) (MPa)		
$\mathbf{6}$	0.55		
$\mathbf{1 0}$			
$\mathbf{1 5}$			
$\mathbf{2 0}$	0.65		
$\mathbf{2 5}$			
$\mathbf{3 2}$			
40			

Note 1) Exceeding the allowable pressure will lead to the breaking of the magnetic coupling and cause the piston slider and external slider becoming separated.
Note 2) Fine stroke adjustment for the external slider is also considered as an intermediate stop, so pay attention to the operating pressure.

2. When an intermediate stop is performed with the pneumatic circuit.

When an intermediate stop is performed with the pneumatic circuit with 3-position solenoid valve, the kinetic energy should be as stated or less than the values in the table below.
(The piston speed should be the allowable value or less.)

Bore size (mm)	Allowable kinetic energy for the intermediate stop with the pneumatic circuit (Es) (J)
$\mathbf{6}$	0.007
$\mathbf{1 0}$	0.03
$\mathbf{1 5}$	0.13
$\mathbf{2 0}$	0.24
$\mathbf{2 5}$	0.45
$\mathbf{3 2}$	0.88
$\mathbf{4 0}$	1.53

Note 1) Exceeding the allowable kinetic energy will lead to the breaking of the magnetic coupling and cause the piston slider and external slider becoming separated.

Magnetically Coupled Rodless Cylinder Slider Type: Slide Bearing Series CY1S

 $ø 6, \varnothing 10, \varnothing 15, \varnothing 20, \varnothing 25, \varnothing 32, \varnothing 40$
How to Order

Applicable Auto Switches/Refer to pages 1263 to 1371 in Best Pneumatics No. 2 for further information on auto switches.

Type	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch model		Lead wire length (m)				Pre-wired connector	Applicable load	
					DC		AC	Perpendicular	In-line	$\begin{array}{\|c\|} \hline 0.5 \\ \text { (Nil) } \\ \hline \end{array}$	$\begin{gathered} 1 \\ (\mathrm{M}) \end{gathered}$	$\begin{array}{\|c} \hline 3 \\ (\mathrm{~L}) \\ \hline \end{array}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$			
		Grommet	Yes 3	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	M9NV	M9N	\bullet	\bullet	\bullet	\bigcirc	\bigcirc	IC circuit	Relay, PLC
				3-wire (PNP)				M9PV	M9P	-	\bullet	\bullet	\bigcirc	\bigcirc		
				2-wire		12 V		M9BV	M9B	\bullet	\bullet	\bullet	\bigcirc	\bigcirc	-	
				3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NWV	M9NW	\bullet	\bullet	\bullet	\bigcirc	\bigcirc	IC circuit	
	(2-color indication)			3-wire (PNP)				M9PWV	M9PW	\bullet	\bullet	\bullet	\bigcirc	\bigcirc		
				2-wire		12 V		M9BWV	M9BW	\bullet	\bullet	\bullet	\bigcirc	\bigcirc	-	
				3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NAV**	M9NA**	\bigcirc	\bigcirc	\bullet	\bigcirc	\bigcirc	IC circuit	
	Water resistant (2-color indication)			3-wire (PNP)				M9PAV**	M9PA**	\bigcirc	0	\bullet	\bigcirc	\bigcirc		
				2-wire		12 V		M9BAV**	M9BA**	\bigcirc	\bigcirc	\bullet	\bigcirc	\bigcirc	-	
©		Grommet	Yes (N	3-wire (NPN equivalent)	-	5 V	-	A96V	A96	-	-	-	-	-	IC circuit	-
-				2-wire	$24 \mathrm{~V}$	$12 \mathrm{~V}$	100 V	A93V	A93	-	-	\bullet	\bullet	-	-	Relay,
¢			No				100 V or less	A90V	A90	\bullet	-	\bullet	-	-	IC circuit	PLC

** Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
Please consult with SMC regarding water resistant types with the above model numbers.

* Lead wire length symbols: $0.5 \mathrm{~m} \ldots$. . Nil (Example) M9NW * Solid state auto switches marked with "O" are produced upon receipt of order.

$1 \mathrm{~m} \ldots \ldots \ldots \ldots .$. M	
$3 \mathrm{~m} \ldots \ldots \ldots \ldots . \mathrm{L}$	
$5 \mathrm{~m} \ldots \ldots \ldots \ldots . \mathrm{Z}$	(Example) M9NWM
(Example) M9NWL M9NWZ	

* There are other applicable auto switches other than listed above. For details, refer to page 7.
* For details about auto switches with pre-wired connector, refer to pages 1328 and 1329 in Best Pneumatics No. 2.
* Auto switches are shipped together, (but not assembled).

Magnetically Coupled Rodless Cylinder Slider Type: Slide Bearing Series CY1S

JIS Symbol Rubber bumper (Magnet type)

$\begin{array}{\|c} \hline \text { Made to } \\ \text { Order } \\ \hline \end{array}$	Made to Order (For details, refer to pages 9 and 10.)
Symbol	Specifications
-XB9	Low speed (15 to $50 \mathrm{~mm} / \mathrm{s}$)
-XB13	Ultra low speed (7 to $50 \mathrm{~mm} / \mathrm{s}$)
-X116	Air-hydro
-X168	Helical insert thread
-X210	Non-lubricated exterior (without dust seal)
-X322	Outside of cylinder tube with hard chrome plated
-X324	Non-lubricated exterior (with dust seal)
-X431	Switch rails on both sides (with 2 pcs.)
-X2423	Mounting surface tapped hole type

Specifications

Bore size (mm)	6	10	15	20	25	32	40
Fluid	Air						
Proof pressure	1.05 MPa						
Maximum operating pressure	0.7 MPa						
Minimum operating pressure	0.18 MPa						
Ambient and fluid temperature	-10 to $60^{\circ} \mathrm{C}$ (No freezing)						
Piston speed*	50 to $400 \mathrm{~mm} / \mathrm{s}$						
Cushion	Rubber bumper/Shock absorber						
Lubrication	Non-lube						
Stroke length tolerance (mm)	0 to 250 st: ${ }^{+1.0}$, 251 to 1000 st: ${ }_{0}^{+1.4}, 1001$ st or longer: ${ }^{+1.8}{ }_{0}$						
Magnetic holding force (N)	19.6	53.9	137	231	363	588	922

* In the case of setting an auto switch at the intermediate position, the maximum piston speed is subject to restrict for detection upon the response time of a load (relays, sequence controller, etc.).

Standard Strokes

Bore size (mm)	Standard stroke (mm)	Maximum manufacturable stroke (mm)
$\mathbf{6}$	$50,100,150,200$	300
$\mathbf{1 0}$	$50,100,150,200,250,300$	500
$\mathbf{1 5}$	$50,100,150,200,250,300,350,400,450,500$	750
20	$100,150,200,250,300,350,400,450$,	1000
$\mathbf{2 5}$	$500,600,700,800$	1500
$\mathbf{3 2}$	$100,150,200,250,300,350,400,450$, $500,600,700,800,900,1000$	1500
40		

Note 1) Intermediate stroke is available by the 1 mm interval. (Produced upon receipt of order)
Note 2) Minimum stroke available without auto switch or with one auto switch is 15 mm and minimum 25 mm for with 2 auto switches.
Note 3) For 2 or more auto switches with stroke less than 25 mm (minimum 15 mm), consider "-X431" (2 switch rails).

Weights

								(kg)
Bore size (mm)		6	10	15	20	25	32	40
CY1S \square	Basic weight	0.231	0.428	0.743	1.317	1.641	2.870	4.508
	Additional weight for 50 stroke	0.053	0.082	0.111	0.184	0.186	0.284	0.430
CY1SG \square	Basic weight	0.236	0.435	0.743	1.331	1.662	2.903	4.534
	Additional weight for 50 stroke	0.050	0.079	0.108	0.176	0.178	0.273	0.411

Calculation: (Example) CY1SG25-500Z
Basic weight (At 0 stroke) ... 1.662 kg Additional weight for 50 stroke $\ldots 0.178 \mathrm{~kg}$
Cylinder stroke ... 500 st
$1.662+0.178 \times 500 \div 50=3.442 \mathrm{~kg}$

Shock Absorber Specifications

Applicable cylinder	CY1S $\square \mathbf{6}$	CY1S $\square \mathbf{1 0}$	CY1S $\square \mathbf{1 5}$	CY1S $\square \mathbf{2 0}$	CY1S $\square \mathbf{2 5}$	CY1S $\square \mathbf{3 2}$	CY1S $\square \mathbf{4 0}$
Shock absorber model	RJ0604	RJ0806H	RJ0806L	RJ1007L	RJ1412L	RJ2015H	RJ2015L
Max. absorbed energy (J)	0.5	1	3	10	30		
Stroke absorption (mm)	4	6	7	12	15		
Collision speed (m/s)	0.05 to 1	0.05 to 2	0.05 to 1	0.05 to 1	0.05 to 1	0.05 to 2	0.05 to 1
Max. operating frequency (cycle/min)	80	80	70	45	25		
Max. allowable thrust (N)	150	245	422	814	1961		
Ambient temperature (${ }^{\circ}$ C)	-10 to 60° C (No freezing)						

Note) The maximum absorbed energy and maximum operating frequency was measured at ordinary temperature (approximately 20 to $25^{\circ} \mathrm{C}$.)

Series CY1S

Construction

With bumper bolt

CY1SG/Centralized piping type

For $\varnothing 6$

For $\varnothing 6$

SSMC

Magnetically Coupled Rodless Cylinder Slider Type: Slide Bearing

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Magnet A	-	
$\mathbf{2}$	Piston side yoke	Rolled steel	
$\mathbf{3}$	Piston	Aluminum alloy	
$\mathbf{4}^{*}$	Piston seal	NBR	
$\mathbf{5}^{*}$	Wear ring A	Special resin	
$\mathbf{6}^{*}$	Lub-retainer A	Special resin	Except $\varnothing 6, \varnothing 10$
$\mathbf{7}$	Shaft	Stainless steel	
$\mathbf{8}$	Piston nut	Carbon steel	Except ø6 to $\varnothing 15$
$\mathbf{9}$	Slide block	Aluminum alloy	
$\mathbf{1 0}$	Bushing	Bearing alloy	
$\mathbf{1 1}$	Parallel pin	Carbon steel	
$\mathbf{1 2}$	Slider spacer	NBlled steel	
$\mathbf{1 3 *}$	Slider gasket		
$\mathbf{1 4}$	Retaining ring	Carbon tool steel	
$\mathbf{1 5}$	Magnet for switch	-	
$\mathbf{1 6}$	External slider tube	Aluminum alloy	
$\mathbf{1 7}$	Magnet B	-	
$\mathbf{1 8}$	External slider side yoke	Rolled steel	
$\mathbf{1 9 *}$	Wear ring B	Special resin	
$\mathbf{2 0}$	Lub-retainer B	Special resin	Except $\varnothing 6$
$\mathbf{2 1}$	Spacer	Rolled steel	Except $\varnothing 6$
$\mathbf{2 2}$	Plate A	Aluminum alloy	
$\mathbf{2 3 a}$	Plate C	Aluminum alloy	Bilateral piping
$\mathbf{2 3 b}$	Plate B	Aluminum alloy	Centralized piping

No.	Description	Material	Note
$\mathbf{2 4}$	Cylinder tube gasket	NBR	
$\mathbf{2 5}$	Bumper bolt	Chromium molybdenum steel	
$\mathbf{2 6}$	Bumper	Urethane rubber	
$\mathbf{2 7}$	Cylinder tube	Stainless steel	
$\mathbf{2 8}$	Guide shaft B	Carbon steel	Hard chrome plated
$\mathbf{2 9 a}$	Guide shaft C	Carbon steel	Hard chrome plated
$\mathbf{2 9 b}$	Guide shaft A	Carbon steel	Hard chrome plated
$\mathbf{3 0}$	Switch rail	Aluminum alloy	
$\mathbf{3 1}$	Hexagon socket head set screw	Chromium molybdenum steel	
$\mathbf{3 2}$	Hexagon socket head cap screw	Chromium molybdenum steel	
$\mathbf{3 3}$	Hexagon nut	Chromium molybdenum steel	
$\mathbf{3 4}$	Hexagon nut	Chromium molybdenum steel	
$\mathbf{3 5}$	Square nut	Chromium molybdenum steel	
$\mathbf{3 6}$	Crossrecessed head machine screw with SW	Chromium molybdenum steel	
$\mathbf{3 7}$	Switch spacer	Special resin	
$\mathbf{3 8}$	Port plug	Chromium molybdenum steel	$\varnothing 6$, Bilateral piping only
$\mathbf{3 9 *}$	Guide shaft gasket	NBR	Centralized piping
$\mathbf{4 0}$	Steel ball	Bearing steel	Centralized piping
$\mathbf{4 1}$	Adjustment bolt	Chromium molybdenum steel	
$\mathbf{4 2}$	Auto switch	-	
$\mathbf{4 3}$	Shock absorber	-	
$\mathbf{4 4}$	Liner	Aluminum alloy	
$\mathbf{4 5}$	Washer	Rolled steel	

Note 1) * denotes parts that are included in the seal kit.
Note 2) Auto switch and switch spacer are shipped together with the product, but not assembled.

Replacement Parts/Seal Kit

Bore size (mm)	Seal kit		Bumper bolt assembly		Switch spacer	
	Kit no.	Contents	Kit no.	Contents	Kit no.	Contents
6	CY1S6-Z-PS	Set of the nos. 4, 5, 13, 19, 24, 39	CYS06-37-AJ024-R	Set of the nos.$25,26,33$	BMY3-016	Set of the nos. 37
10	CY1S10-Z-PS	Set of the nos. 4, 13, 19, 20, 24, 39	CYS10-37-AJ025-R			
15	CY1S15-Z-PS	$\begin{aligned} & \text { Set of the nos. } \\ & 4,5,6,13,19 \text {, } \\ & 20,24,39 \end{aligned}$				
20	CY1S20-Z-PS		CYS20-37-AJ027-R			
25	CY1S25-Z-PS		CYS25-37-AJ028-R			
32	CY1S32-Z-PS		CYS32-37-AJ029-R			
40	CY1S40-Z-PS					

Note 1) Seal kit includes $4,5,13,19,24,39$ for $\varnothing 6.4,13,19,20,24,39$ for $\varnothing 10.4,5,6,13,19,20,24,39$ are for $\varnothing 15$ to $\varnothing 40$.
Order the seal kit, based on each bore size.
Note 2) Seal kit includes a grease pack (10 g).
Order with the following part number when only the grease pack is needed.
Grease pack part number: GR-S-010
Note 3) A switch spacer, as specified in the table above will be required if an auto switch is mounted afterward.
When ordering an additional auto switch, also order an additional switch spacer.
(Refer to "Auto Switch Mounting" on page 7 for details.)

Dimensions

CY1S/Bilateral piping type

Dimensions
(mm)

Model	A	B	C	D	d	E	F	G	GA	GB	GP	H	HA	HB	HC	HG	HP	HT	JJ	K	L	LD	M	MM	NA	NB	NC
CY1S6-Z	6	6.5	3.3	7.6	8	2	25	5	5	5	30	27	20.5	20.5	15.5	8	26	15.5	M4 x 0.7	3	40	3.5	6	M4 x 0.7	11	14	19
CY1S10-Z	7.5	8	4.4	12	10	2.5	31.5	6.5	5	6	40	34	25	27	17	13.5	33	17	M 4×0.7	6	45	4.6	6	M4 x 0.7	10.5	16.5	28
CY1S15-Z	7.5	9.5	5.4	16.6	12	2	38	6.5	5	6	52	40	28	29.5	20.5	15	39	20.5	M 4×0.7	11	60	5.8	8	M5 x 0.8	10.5	16.5	28
CY1S20-Z	10	9.5	5.4	21.6	16	2	44	8.5	5.5	8	62	46	36	37.5	24	19	45	20	M6x 1	16	70	5.8	10	M6x1	10.5	22	28
CY1S25-Z	10	11	6.5	26.4	16	2	52	8.5	5.5	8	70	54	40.5	40.5	27.5	21.5	53	21	M6 x 1	20	70	7	10	M6 x 1	12.5	22	49
CY1S32-Z	12.5	14	8.6	33.6	20	2	64	9.5	5.5	9	86	66	50	50	33	26	64	24	M 8×1.25	26	85	9	12	M8 $\times 1.25$	11.5	23.5	52
CY1S40-Z	12.5	14	8.6	41.6	25	2	74	10.5	5.5	10	104	76	55.5	55.5	38	27	74	27	M8 $\times 1.25$	28	95	9	12	M8x 1.25	10.5	22.5	51

Model	NN	P			PA	PB	PW	Q	QW	R	R1	Bumper bot adiustable range Both sides: 11×2	S	T	UU	W	Y1	Adiusment bolt adjustable range Both sides: Yix2)	Z	Shock absorber
		Nil	TN	TF																
CY1S6-Z	M4 x 0.7	M3×0.5	-	-	25	25	48	52	16	1	7.5	15	42	10	M6 x 0.75	46	11.5	23	62	RJ0604N
CY1S10-Z	M 4×0.7	M 5×0.8	-	-	25	38	60	60	24	1	5.5	11	47	12.5	M8 x 1	58	14	28	72	RJ0806HN
CY1S15-Z	M 4×0.7	M 5×0.8	-	-	30	50	75	75	30	1	5.5	11	62	12.5	M8 $\times 1$	73	14	28	87	RJ0806LN
CY1S20-Z	M6 x 1	Rc1/8	NPT1/8	G1/8	40	70	89	90	38	1.5	4.5	9	73	16.5	M10 x 1	87	18.5	37	106	RJ1007LN
CY1S25-Z	M6 x 1	Rc1/8	NPT1/8	G1/8	40	70	98	90	42	1.5	4.5	9	73	16.5	M14 $\times 1.5$	96	18.5	37	106	RJ1412LN
CY1S32-Z	M 8×1.25	Rc1/8	NPT1/8	G1/8	40	75	118	110	50	3	5.5	11	91	18.5	M 20×1.5	116	18.5	37	128	RJ2015HN
CY1S40-Z	M8 $\times 1.25$	Rc1/4	NPT1/4	G1/4	65	105	141	120	64	2	4.5	9	99	20.5	M 20×1.5	139	17.5	35	140	RJ2015LN

[^0]
Magnetically Coupled Rodless Cylinder Slider Type: Slide Bearing Series CY1S

Dimensions

CY1SG/Centralized piping type

Dimensions

Model	A	B C	D d	E	F G	GA	GB	GP	H	HA	HB	HC	HG	HP	HT	J		K L	LD	M	MM	NA	NB	NC	ND	NE
CY1SG6-Z	6	6.53 .3	7.68	82	25	5	5	30	27	20.5	20.5	15.5	8	26	15.5	M 4	$\times 0.7$	340	3.5	6	M4 x 0.7	11	14	19	7	10
CY1SG10-Z	7.5	8	$12 \quad 10$	2.5	31.56 .5	5	6	40	34	25	27	17	13.5	33	17	M 4	$\times 0.7$	6 45	4.6	6	M 4×0.7	10.5	16.5	28	6.5	12.5
CY1SG15-Z	7.5	9.55 .4	16.612	2	386.5	5	6	52	40	28	29.5	20.5	15	39	20.5	M $4 \times$	$\times 0.7$	1160	5.8	8	M5 x 0.8	10.5	16.5	28	5.5	11.5
CY1SG20-Z	10	9.5 5.4	21.616	16	448.5	5.5	8	62	46	36	37.5	24	19	45	20	M6	$\times 1$	1670	5.8	10	M6 x 1	10.5	22	28	5.5	17
CY1SG25-Z	10	116.5	26.4	12	528.5	5.5	8	70	54	40.5	40.5	27.5	21.5	53	21	M6	$\times 1$	2070	7	10	M6 x 1	12.5	22	49	7.5	17
CY1SG32-Z	12.5	148.6	33.620	2	64	5.5	9	86	66	50	50	33	26	64	24	M8x	1.25	2685	9	12	M8 $\times 1.2$	11.5	23.5	52	5.5	17.5
CY1SG40-Z	12.5	1488	41.625	2	7410.5	5.5	10	104	76	55.5	55.5	38	27	74	27	M8x	1.25	$28 \quad 95$	9	12	M8 $\times 1.2$	10.5	22.5	51	4.5	16.5
Model	NF	NN			TF	PA	PB	PW	Q	QW	R	R1	Bumper bot adisstable range Both sides: R1 12 2		S	T	TT	UU	W	Y1	$\mathbf{Y}_{2} \text { ac }$	Adjusment bot adistade range Bons sice: $Y_{1}+Y_{2}$)	ZZ	Shock absorber		
CY1SG6-Z	15	M 4×0.7	M3 $\times 0.5$	-	-	25	25	48	52	16	1	7.5		5	42	10	14	M6 x 0.75	46	11.5	7.5	19	66	RJO	604N	
CY1SG10-Z	24	M 4×0.7	M5 $\times 0.8$	-	-	25	38	60	60	24	1	5.5		1	47	12.5	16.5	M8×1	58	14	10	24	76	RJO	0806	HN
CY1SG15-Z	23	M 4×0.7	M5 $\times 0.8$	-	-	30	50	75	75	30	1	5.5		1	62	12.5	17.5	M8 x 1	73	14	9	23	92	RJ0	0806L	
CY1SG20-Z	23	M6x1	Rc1/8	NPT1/8	G1/8	40	70	89	90	38	1.5	4.5		9	73	16.5	21.5	M10 $\times 1$	87	18.5	13.5	32	111	RJ1	1007L	
CY1SG25-Z	44	M6×1	Rc1/8	NPT1/8	G1/8	40	70	98	90	42	1.5	4.5		9	73	16.5	21.5	M14 $\times 1.5$	96	18.5	13.5	32	111	RJ1	1412L	
CY1SG32-Z	46	M8× 1.25	Rc1/8	NPT1/8	G1/8	40	75	118	110	50	3	5.5		1	91	18.5	24.5	M20 $\times 1.5$	116	18.5	12.5	31	134	RJ2	2015	HN
CY1SG40-Z	45	M8 $\times 1.25$	Rc1/4	NPT1/4	4 G1/4	65	105	141	120	64	2	4.5		9	99	20.5	26.5	M20 $\times 1.5$	139	17.5	11.5	29	146	RJ2	2015L	

[^1]
Series CY1S
 Auto Switch Mounting

Auto Switch Proper Mounting Position (Detection at stroke end)

Note 1) The minimum stroke when 2 in-line auto switches are mounted as shown above is 50 mm . The minimum stroke when the mounting screws of the auto switches face each other is 25 mm .
Note 2) The minimum stroke when no auto switch is mounted is 15 mm .
Auto Switch Proper Mounting Position

	K dimension (Switch rail height)	A		B		C		D	
		D-M9 \square D-M9 \mathbf{V} D-M9 $\square \mathbf{W}$ D-M9 $\square \mathbf{W V}$ D-M9 $\square \mathbf{A}$ D-M9 $\square \mathbf{A V}$	$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \end{aligned}$	D-M9 \square D-M9 \mathbf{V} D-M9 $\square \mathbf{W}$ D-M9 $\square \mathbf{W V}$ D-M9 $\square \mathbf{A}$ D-M9 \square AV	$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \end{aligned}$	D-M9 \square D-M9 $\square \mathbf{V}$ D-M9 $\square \mathbf{W}$ D-M9 $\square \mathbf{W}$ D-M9 \square A D-M9 \square AV	$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \text { V } \end{aligned}$	D-M9 \square D-M9 \mathbf{V} D-M9 $\square \mathbf{W}$ D-M9 $\square \mathbf{W V}$ D-M9 \square A D-M9 \square AV	$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \text { V } \end{aligned}$
6	3	5.5	1.5	36.5	40.5	17.5	21.5	24.5	20.5
10	6	5.5	1.5	41.5	45.5	17.5	21.5	29.5	25.5
15	11	5.5	1.5	56.5	60.5	17.5	21.5	44.5	40.5
20	16	6	2	67	71	18	22	55	51
25	20	6	2	67	71	18	22	55	51
32	26	7.5	3.5	83.5	87.5	19.5	23.5	71.5	67.5
40	28	6.5	2.5	92.5	96.5	18.5	22.5	80.5	76.5

Note 1) The values in the above list are used as a guide for the auto switch mounting position for end of stroke detection.
Adjust the auto switch after confirming the operating conditions in the actual setting.
Note 2) If the switch rail is reassembled or mounted on the other side of the cylinder, maintain the \mathbf{K} dimension (switch rail height) in the table above. The switch rail is secured by screwing the cross-recessed round head screw into a square nut in the T-slots of the end plates. Care must be taken when removing the switch rail so that the washers, screws or nuts are not lost.

Operating Range

Auto switch	Bore size (mm)							
model	$\mathbf{6}$	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	
D-M9 \square D-M9 $\square \mathbf{V}$ D-M9 $\square \mathbf{W}$ D-M9 $\square \mathbf{W V}$ D-M9 $\square \mathbf{A}$ D-M9 $\square \mathbf{A V}$	3	3	2.5	2.5	3	2.5	3	
D-A9 \square D-A9 $\square \mathbf{V}$	5.5	5.5	5.5	5.5	5.5	5.5	6	

Note) Values which include hysteresis are for guideline purposes only, they are not a guarantee (assuming approximately $\pm 30 \%$ dispersion) and may change substantially depending on the ambient environment.

Auto Switch Mounting Bracket (Switch spacer)

Auto switch	Bore size (mm)
model	$\mathbf{6}$ to $\mathbf{4 0}$
D-M9 \square	
D-M9 $\square \mathbf{V}$	
D-M9 $\square \mathbf{W}$	
D-M9 $\square \mathbf{W V}$	
D-M9 $\square \mathbf{A}$	
D-M9 $\square \mathbf{A V}$	
D-A9 \square	
D-A9 $\square \mathbf{V}$	

Note) The part number above is the order number for the switch spacer.

Auto Switch Mounting

As shown in the figure to the right, combine the auto switch with the switch spacer (BMY3-016) to secure the auto switch in the mounting groove of the switch rail. Combine the auto switch with the switch spacer and secure into position by tightening the auto switch mounting screw with a flat blade watchmakers' screwdriver.
Note) When tightening the auto switch mounting screw, use watchmakers' screwdriver with a handle diameter of 5 to 6 mm .
Set the tightening torque to 0.1 to $0.15 \mathrm{~N} \cdot \mathrm{~m}$. As a guide, turn 90° from when the mounting screw starts to become tight.

[^2]I * Normally closed ($\mathrm{NC}=\mathrm{b}$ contact) solid state auto switches (D-F9G/F9H) are also available. For details, refer to page 1290 in Best Pneumatics No. 2. I With pre-wired connector is also available for solid state auto switches. For details, refer to pages 1328 and 1329 in Best Pneumatics No. 2.

Prior to Use
 Auto Switch Connection and Example

Sink Input Specifications

3-wire, NPN

2-wire

Source Input Specifications

3-wire, PNP

2-wire

Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications.

Example of AND (Series) and OR (Parallel) Connection

3-wire,

AND connection for NPN output (Using relays)

3-wire,
AND connection for PNP output
(Using relays)

2-wire,

AND connection

(Performed with auto switches only)

(Performed with auto switches only)

3-wire,
OR connection for NPN output

3-wire,
OR connection for PNP output

2-wire,
OR connection

Because there is no leakage current, the load voltage will not increase in the OFF state. However, depending on the number of auto switches in the ON state, the indicator lights may sometimes grow dim or not light up, due to the dispersion and reduction of the current flowing to the auto switches.

Example: Load impedance $3 \mathrm{k} \Omega$
Auto switch leakage current 1 mA

Series CY1S

Made to Order
Please contact SMC for detailed dimensions, specifications and lead times.

Made-to-Order List

Bore size (mm)	$\begin{aligned} & \text { Low } \\ & \text { speed } \end{aligned}$	Ultra low speed	Air-hydro	Helical insert thread	Non-lubricated exterior (without dust seal)	Outside of cylinder tube with hard chrome plated	Non-lubricated exterior (with dust seal)	Auto switch rails on both sides	Mounting surface tapped hole type
	-XB9	-XB13	-X116	-X168	-X210	-X322	-X324	-X431	-X2423
6	\bullet	\bullet			\bullet			\bullet	\bullet
10	\bullet	\bullet			\bullet		\bullet	-	-
15	-	-			\bullet	\bullet	\bullet	\bullet	\bullet
20	-	-		\bullet	\bullet	-	-	-	-
25	\bullet								
32	\bullet	\bullet	\bullet	-	\bullet	\bullet	\bullet	\bullet	-
40	\bullet	-	-	-	-	-	-	-	-

Note) indicates "applicable" and blank indicates "not applicable".

1 Low speed (15 to $50 \mathrm{~mm} / \mathrm{s}$) \quad-XB9

Even if driving at lower speeds 15 to $50 \mathrm{~mm} / \mathrm{s}$, there would be no stick-slip phenomenon and it can run smoothly.

Standard model no. - XB9
 Low speed (15 to $50 \mathrm{~mm} / \mathrm{s}$)

Dimensions: Same as standard type

Note 1) The operating performance may vary depending on the operating conditions.
Note 2) Do not operate the product with speeds exceeding the maximum operating speed as it may lead to failure.

© Warning

Precautions

Be aware that smoking cigarettes etc. after your hands have come into contact with the grease used in this cylinder can create a gas that is hazardous to humans.
3 Air-hydro Symbol

Air-hydro type is suitable for precise low speed feeding, intermediate stop and skip feeding.
Standard model no. $-\frac{\text { X116 }}{\varrho_{\text {Air-hydro }}}$
Specifications

Bore size (mm)	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Orifice diameter (mm)	8	8	11
Fluid	Turbine oil class 1 (ISO VG32)		
Piston speed (mm/s)	15 to 300		
Dimensions	The same dimensions as the bilateral piping type		

Note 1) This product is only applicable to the bilateral piping type
Note 2) When an intermediate stop is performed in the air-hydro circuit, the kinetic energy of the load should be the allowable value or less. (Refer to "When an intermediate stop is performed with the pneumatic circuit" for the allowable values.)
Note 3) Do not use machine oil or spindle oil.

2 Ultra low speed (7 to $50 \mathrm{~mm} / \mathrm{s}$)
 Symbol

Even if driving at lower speeds 7 to $50 \mathrm{~mm} / \mathrm{s}$, there would be no stick-slip phenomenon and it can run smoothly.

Standard model no. - XB13
 Ultra low speed ($\mathbf{7}$ to $50 \mathrm{~mm} / \mathrm{s}$)

Dimensions: Same as standard type

Note 1) The operating performance may vary depending on the operating conditions.
Note 2) Do not operate the product with speeds exceeding the maximum operating speed as it may lead to failure.

4 Helical insert thread
 Symbol

Change mounting thread on the external slider to helical insert thread.

Dimensions: Same as standard type

Suitable for environments where oil is not tolerated.
It is recommended to use this type in a special environment where standard product causes lubrication failure.

Dimensions: Same as standard type

Note) Consider installing a protective cover if the product is used in an environment where foreign matter such as paper powder might be caught in the sliding parts of the cylinder.

7 Non-lubricated exterior (with dust seal)

6 Outside of cylinder tube with hard chrome plated

The cylinder tube outer circumference is plated with hard chrome, which further reduces bearing abrasion.

Standard model no. - X322
 - Outside of cylinder tube with hard chrome plated

Dimensions: Same as standard type

Applicable for short stroke with auto switch.
Standard model no. - X431
Switch rails on both sides (with 2 pcs.)

No grease is applied to the external surface of the cylinder.
Suitable for environments where oil is not tolerated.
A felt dust seal is mounted to the external sliding part of the cylinder tube.
Standard model no. - X324

- Non-lubricated exterior (with dust seal)

Dimensions: Same as standard type

Note) Although a felt dust seal is installed, foreign matter might be caught in the sliding parts of the cylinder. In that instance, consider installing a protective cover.

9 Mounting surface tapped hole type

The through hole mounting holes on both plates are tapped to allow the cylinders to also be mounted from the equipment side (cylinder mounted surface).

Bore size (mm)	\mathbf{J} (Thread size)	\mathbf{R} (Maximum screw-in depth)
$\mathbf{6}$	$\mathrm{M} 4 \times 0.7$	6.5
$\mathbf{1 0}$	$\mathrm{M} 5 \times 0.8$	9.5
$\mathbf{1 5}$	$\mathrm{M} 6 \times 1$	9.5
$\mathbf{2 0}$	$\mathrm{M} 6 \times 1$	9.5
$\mathbf{2 5}$	$\mathrm{M} 8 \times 1.25$	10
$\mathbf{3 2}$	$\mathrm{M} 10 \times 1.5$	15
$\mathbf{4 0}$	$\mathrm{M} 10 \times 1.5$	15

Be sure to read the below before handling. Refer to back cover for Safety Instructions. For Actuator and Auto Switch Precautions, refer to "Handling Precautions for SMC Products" (M-E03-3) and Operation Manual.

Operating Precautions

© Warning

1. Be careful to the space between the plates and the slide block.
Take sufficient care to avoid getting your hands or fingers caught when the cylinder is operated.
2. Do not apply a load to a cylinder which is greater than the allowable value stated in the "Model Selection" pages.
This can cause a malfunction.
3. Be careful to the supply pressure and kinetic energy when performing an intermediate stop.
Fine end stroke adjustment is considered as an intermediate stop, so the considerations for an intermediate stop must be observed when making any fine adjustments.
When stopping the external slider in an intermediate position with an external stopper.
If the allowable pressure values are exceeded, the stopper position might be displaced or the external slider may become detached from the magnetic coupling and drop.
When stopping the piston slider in an intermediate position with the pneumatic circuit. If the allowable kinetic energy values are exceeded, the stopper position might be displaced or the external slider may become detached from the magnetic coupling and drop.

\triangle Caution

1. Do not use the cylinder in an environment where the cylinder is expose to moisture, adhesive foreign matter, dust or liquid such as water or cutting fluid.
If the cylinder is used in an environment where the lubrication of the cylinders sliding parts is compromised, please consult SMC.

Mounting

\triangle Caution

1. Avoid operation with the external slider secured to the surface.
Secure the cylinder with the plates on both sides.
2. Make sure that the cylinder mounting surface has a flatness of $0.2 \mathbf{~ m m}$ or less.
If the flatness of the mounting surface is not appropriate, the 2 guide shafts will become twisted and have an adverse effect to the performance of the product. This results in reduction of product life due to the increase in sliding resistance and premature wearing of the bushing.
The flatness of the cylinder mounting surface should be 0.2 mm or less, and the product should be mounted so that it can operate smoothly over the full stroke with the minimum operating pressure (0.18 MPa or less).

Disassembly and Maintenance

Warning

1. Use caution as the attractive power of the magnets is very strong.
When removing the external slider and piston slider from the cylinder tube for maintenance etc., handle with caution, since the magnets installed in each slider have a very strong attractive force.

\triangle Caution

1. Use caution when taking off the external slider, as the piston slider will be directly attracted to it.
When removing the external slider or piston slider from the cylinder tube, first force the sliders out of their magnetically coupled positions, and then remove them individually when there is no longer any holding force. If they are removed while still magnetically coupled, they will be directly attracted to one another and will not come apart.
2. Do not disassemble the magnetic components (piston slider, external slider).
This can cause a loss of holding force and malfunction.
3. When disassembling to replace the seals and wear ring, refer to the separate disassembly instructions.
4. The set screws in the figure below are for securing the guide shaft, so do not loosen them except for the purposes of replacing the seals.
This can cause a malfunction.

5. Use caution to the direction of the external slider and the piston slider.
There are an odd number of magnets for $\varnothing 6$ and $\varnothing 10$ ($\varnothing 6$: 5 pcs, $\varnothing 10$: 3 pcs), so the assembly direction is important. Refer to the figure below when performing disassembly or maintenance. Put the external slider and the internal slider together and insert the piston slider into the cylinder tube ensuring the positional relationship is correct as shown in Fig.1.
If assembled incorrectly as shown in Fig. 2, remove and rotate the piston slider by 180°, then re-insert in the correct position. If the direction is not correct, it will be impossible to obtain the specified holding force.

Fig. 1 Correct position

Fig. 2 Incorrect position

Series CY1S Specific Product Precautions 2

\triangle
Be sure to read the below before handling. Refer to back cover for Safety Instructions. For Actuator and Auto Switch Precautions, refer to "Handling Precautions for SMC Products" (M-E03-3) and Operation Manual.

Stroke Setting

\triangle Caution

With bumper bolt

Loosen the hexagon nut, and move the bumper bolt to the set stroke position with a hexagon wrench or by hand. Tighten the hexagon nut to the torque values shown in the table below.

With shock absorber

The cylinder stroke is controlled by the position of the adjustment bolt. Parallel pins of smaller size to the rod diameter of the shock absorber are mounted on the slide block, and these pins collide with the adjustment bolt and shock absorber. Therefore, the stopper of the shock absorber should not come into contact with the slide block directly. (See the figure below.)

It is possible to adjust the stroke time of the shock absorber by adjusting the position of the shock absorber and adjustment bolt. However, if the effective stroke of the shock absorber is extremely short, the ability to absorb the impact will be reduced, leading to failure. Therefore, the position of the shock absorber is recommended to be approximately 0.2 mm behind the contact surface of the adjustment bolt (See figure below).

Bore size (mm)	Nut for bumper bolt		Nut for shock absorber		Nut for adjustment bolt	
	Thread size	Tightening torque (N•m)	Thread size	Tightening torque (N.m)	Thread size	Tightening torque (N.m)
6	M6 x 0.75	5.2	M6 x 0.75	0.85	M4 x 0.7	1.5
10	8		M8			
15	M8×1		M8× 1	1.67		
20	M10 $\times 1$	24.5	M10 $\times 1$	3.14	M6 x 1	5.2
25	M14 $\times 1.5$	68.0	M14 $\times 1.5$	10.80		
32	M20 $\times 1.5$	204.0	M20 x 1.5	23.50	M8 x 1.25	12.5
40						

Caution when Replacing Shock Absorber

\triangle Caution

For the cylinder specification of shock absorber with adjustment bolt, the stroke will be maintained even when the shock absorber is replaced. However, if the position of the adjustment bolt is also changed, it will be necessary to reset the stroke position of the cylinder and shock absorber.

Service Life and Replacement Period of Shock Absorber

\triangle Caution

1. If the shock absorbing ability of the shock absorber is insufficient at the end of stroke, the cylinder, equipment or workpiece maybe damaged.
2. Perform maintenance for the shock absorber (RJ series) setting approximately 3 million operating cycles as a guide.

Note 1) The performance may vary depending on the operating conditions of the shock absorber.

Note 2) As a guide, the maintenance check for the shock absorber (RJ series) should be carried out after approximately 3 million operating cycles, and replace if necessary.
3. Refer to the RJ series catalog for Specific Product Precautions of the shock absorber.

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

© Caution:

Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.

Warning indicates a hazard with a medium level of
Warning: risk which, if not avoided, could result in death or serious injury.

Danger indicates a hazard with a high level of risk
 which, if not avoided, will result in death or serious injury.

\triangle Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications. Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.
2. Only personnel with appropriate training should operate machinery and equipment.
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
10. An application which could have negative effects on people, property, or animals requiring special safety analysis.
11. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.
```
*1) ISO 4414: Pneumatic fluid power - General rules relating to systems.
    ISO 4413: Hydraulic fluid power - General rules relating to systems.
    IEC 60204-1: Safety of machinery - Electrical equipment of machines.
            (Part 1: General requirements)
    ISO 10218-1: Manipulating industrial robots - Safety.
    etc.
```


\triangle Caution

1. The product is provided for use in manufacturing industries. The product herein described is basically provided for peaceful use in manufacturing industries.
If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary.
If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".
Read and accept them before using the product.

Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first. ${ }^{* 2)}$
Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided. This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.

*2) Vacuum pads are excluded from this 1 year warranty.

A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

[^0]: Note) The above figures show the product with auto switches. Auto switch and switch spacer are shipped together with the product, but not assembled.

[^1]: Note) The above figures show the product with auto switches. Auto switch and switch spacer are shipped together with the product, but not assembled.

[^2]: Other than the applicable auto switches listed in "How to Order", the following auto switches are mountable.

