SSNC

Electric Actuators

Simplified Selection Flow C hart

Single Axis Electric Actuator Series LJ1 (Ac Servomotor)

Series	Clean room	Dust seal	Brake	Work load kg	Maximum speed mm / s	Positioning repeatability mm	Lead screw	Guide type	Motor type	Capacity
Horizontal mount specification Series LJ1	-	-	Without brake	5	300	± 0.1	Slide screw	Slider guide	Standard motor [Tamagawa Seiki Co., Ltd.]	50W
	-	-		10	300	± 0.1				100W
	-	-			500	± 0.1		High rigidity direct acting guide		50W
	-	-			600	± 0.02	Ground ball screw			50W
	-	-				± 0.05	Rolled ball screw			50W
	-	-		15	500	± 0.1	Slide screw			100W
	-	-		20	300	± 0.1		Slider guide		200W
	-	-				± 0.02	Ground ball screw		Non-standard motor [Matsushita Electric] Industrial Co., Ltd. Mitsubishi Electric Corporation Yaskawa Electric Corporation	100W
	-	-			500	± 0.05	Rolled ball screw			100W
	-	-		30		± 0.1	Slide screw			200W
	-	-				± 0.02	Ground ball screw	High rigidity direct acting		100W
	-	-				± 0.05	Rolled ball screw	guide		100W
	-	-				± 0.02	Ground ball screw			200W
	-	-				± 0.05	Rolled ball screw			200W
Vertical mount specification Series LJ1	-	-	With brake	5	400	± 0.02	Ground ball screw	High rigidity direct acting guide	Standard motor [Tamagawa Seiki Co., Ltd.] Non-standard motor [Matsushita Electric Industrial Co., Ltd. Mitsubishi Electric Corporation Yaskawa Electric Corporation	100W
	-	-				± 0.05	Rolled ball screw			100W
	-	-		8	500	± 0.02	Ground ball screw			100W
	-	-				± 0.05	Rolled ball screw			100W
	-	-		10	600	± 0.02	Ground ball screw			100W
	-	-				± 0.05	Rolled ball screw			100W
	-	-		15	250	± 0.02	Ground ball screw			100W
	-	-				± 0.05	Rolled ball screw			100W
	-	-		20	500	± 0.02	Ground ball screw			200W
	-	-				± 0.05	Rolled ball screw			200W

Simplified Selection Flow Chart

Short Stroke Type Electric Actuator Series LX (Stepper Motor)

Short Stroke Type Electric Actuator Series LX (AC Servomotor)

Series	$\underset{\substack{\text { Low } \\ \text { particulate } \\ \text { generation }}}{ }$	Brake	$\begin{aligned} & \text { Work load } \\ & \text { kg } \end{aligned}$	Maximum speed mm / s	Positioning repeatability mm	Lead screw	Guide type	Motor
								Manufacturer
Series LXF -FIT	-	Without motor brake	3	50	± 0.03	Ball screw	Direct acting guide	Tamagawa Seiki Co., Ltd.
	-			100				
Series LXP	-	Without motor brake	6	50	± 0.03	Ball screw	Ball bushing guide	Matsushita Electric Industrial Co., Ltd. Mitsubishi Electric Corporation Yaskawa Electric Corporation
	-			100				
	-	With motor brake	5	50				
	-			100				
Series LXS	-	Without motor brake	10	50	± 0.03	Ball screw	High rigidity direct acting guide	Note) Series LXF is only compatible with motors manufactured by Mitsubishi Electric Corporation.
	-			100				
	-	With motor brake	5	50				
	-			100				

	Standard stroke (mm) and Maximum speed (mm/s)								Model	Page			
Phases	25	50	75	100	125	150	175	200		Standard	CE marking	$\begin{array}{\|c\|} \hline \text { Low particulate } \\ \text { generation } \\ \hline \end{array}$	Deflection
5 phase		to 200		-					LXFH5SB	216	282	-	
5 phase		to 30							LXFH5BC	210	-		
5 phase		to 80							LXFH5BD	212	-	294	304
5 phase		to 100							LXFH5SA	214	282	-	
5 phase					to 200				LXPB5SB	240		-	
2 phase					to 200				LXPB2SB	224	284	-	
5 phase					to 100				LXPB5SA	238		-	
2 phase					to 30				LXPB2BC	218	-		
5 phase					to 30				LXPB5BC	234	-		
2 phase					to 80				LXPB2BD	220	-	294	
5 phase					to 80				LXPB5BD	236	-		
2 phase					to 100				LXPB2SA	222		-	
5 phase					to 200				LXPB5SB- \square B	248	284	-	304
2 phase					to 200				LXPB2SB- \square B	232	284	-	
5 phase					to 100				LXPB5SA- \square B	246		-	
2 phase					to 30				LXPB2BC- \square B	226	-		
5 phase					to 30				LXPB5BC- \square B	242	-		
2 phase					to 80				LXPB2BD- \square B	228	-	294	
5 phase					to 80				LXPB5BD- \square B	244	-		
2 phase					to 100				LXPB2SA- \square B	230	284	-	
5 phase				to 200					LXSH5SB	272		-	
2 phase				to 200					LXSH2SB	256	286	-	
5 phase				to 100					LXSH5SA	270	286	-	
2 phase				to 100					LXSH2SA	254		-	
5 phase				to 30					LXSH5BC	266	-		
2 phase				to 30					LXSH2BC	250	-		
5 phase				to 80					LXSH5BD	268	-	294	
2 phase				to 80					LXSH2BD	252	-		
5 phase				to 200					LXSH5SB- \square B	280		-	304
2 phase				to 200					LXSH2SB- \square B	264	286	-	
5 phase				to 100					LXSH5SA- \square B	278	286	-	
2 phase				to 100					LXSH2SA- \square B	262		-	
5 phase				to 30					LXSH5BC- \square B	274	-		
2 phase				to 30					LXSH2BC- \square B	258	-	294	
5 phase				to 80					LXSH5BD- \square B	276	-	294	
2 phase				to 80					LXSH2BD- \square B	260	-		

Model	Page	
	Standard	Deflection
LXFHABC	288	304
LXFHABD		
LXPBABC	290	304
LXPBABD		
LXPBABC- \square -		
LXPBABD- \square B		
LXSHABC	292	304
LXSHABD		
LXSHABC- \square B		
LXSHABD- \square B		

Line-up of Products

Low Profile Electric Actuator Seríes LG1

LG1 \square H20/Without Coupling P. 148

Horizontal mount specification

LG1 \square H21/With Coupling P. 158

Horizontal mount

 specification

Short Stroke Electric Actuator Seríes L

Stepper motor
Low Profile Slide Table
Series LXF P. 210 Guide Rod Type
Series LXP

AC servomotor

Series LXF P .288 Series LXP

Without brake

Stepper Motor Driver

Series LC6D
P. 306

Positioning Driver
Series LC6C
P. 309

Single Axis Electric Actuator

High rigidity

High rigidity achieved by the use of a hollow box type aluminum construction.

Model		Sectional secondary moment		W	H
		Ix	Ir		
Linear guide	LJ1H10 \square^{\square}	7	48	70	24.7
	LJ1H20]	40	374	122	44.8
	LJ1H30 \square^{\square}	84	836	151	55
Slider guide	LJ1S10 $\square^{\text {a }}$	15	52	70	36
	LJ1S20■	60	402	122	56.3
	LJ1S30■	177	1000	151	73.3

Table traveling accuracy

Model	Traveling accuracy	
	C side against A side	D side against \mathbf{B} side
LJ1H10	$\mathbf{0 . 0 7}$ or less	$\mathbf{0 . 0 7}$ or less
LJ1H20	$\mathbf{0 . 0 6}$ or less	$\mathbf{0 . 0 3}$ or less
LJ1H30	$\mathbf{0 . 0 3}$ or less	$\mathbf{0 . 0 9}$ or less
LJ1S10	$\mathbf{0 . 0 1 5}$ or less	$\mathbf{0 . 1 2}$ or less
LJ1S20	$\mathbf{0 . 1}$ or less	$\mathbf{0 . 1}$ or less
LJ1S30	$\mathbf{0 . 1}$ or less	$\mathbf{0 . 1}$ or less

Two mounting styles T-slots enable highly flexible mounting.

Variations

Series	Motor type	Guide type	Mounting orientation	Lead screw type	Made to order
LJ1H10	Standard motor [Tamagawa Seiki Co., Ltd.] Non-standard motor [Matsushita Electric Industrial Co., Ltd.] Mitsubishi Electric Corporation Yaskawa Electric Corporation.	High rigidity direct acting guide	Horizontal Vertical	Ground ball screw Rolled ball screw Slide screw	Clean room Dust cover TSUBAKI CABLEVEYOR
LJ1H20					
LJ1H30					
LJ1S10		Slider guide	Horizontal	Slide screw	Dust coverTSUBAKI CABLEVEYOR
LJ1S20					
LJ1S30					

Series LG1

Low Profile/N on-coupling Type with R educed Height and Length

Low profile: 55 mm (35mm less than LJ1H20)

Reduced length (62 mm shorter than LJ1H20 with coupling and 300 mm stroke)

Series with coupling available

Can be used for non-standard motor mounting.

Two types of body material

In addition to aluminum frames, stainless steel frames are available for customers requiring more rigidity.

Table traveling accuracy

Two mounting styles

Variations

Series	MotoriScrew connection	Moto	or type	Guide type	Mounting	Lead screw type
LG1 $\square 120$	Without coupling	Standa [Tamagawa	ard motor Seiki Co., Ltd.]	High rigidity direct acting guide	Horizontal	Ground ball screw Rolled ball screw Slide screw
LG1 \square H21	With coupling	Standard motor [Tamagawa Seiki Co., Ltd.]	Non-standard motor [Matsushita Electric Industrial Co. Ltd.] Mitsubishi Electric Corporation Yaskawa Electric Corporation]			

Short Stroke Electric Actuator

Series LX

Short Stroke Type with Three G uide V ariations

Se Low profile slide table type with stepper motor

Thickness: $\mathbf{3 1} \mathrm{mm}$

Series LXP

Guide rod type with stepper motor

High rigidity slide table type with stepper motor
 Series LXS

AC servomotor specification/Made to Order

CE marking available as standard

Series LXF
Series LXP
Series LXS

Improved body mounting accuracy: $\pm \mathbf{0 . 0 7} \mathrm{mm}$

An NC machined reference plane and positioning pin hole provided on each series body improves the repeatability of actuator body mounting.

Variations

Series	Motor type (Stepper motor)	Guide type	Mounting orientation	Lead screw type	Sensor	Made to order
LXF	5 phase	Direct acting guide	Horizontal	Ball screw Slide screw	Auto switch Proximity switch	AC servomotor specification
LXP	2 phase 5 phase	Ball bushing	Horizontal Vertical		Auto switch	
LXS		High rigidity direct acting guide			Auto switch Proximity switch	Low particulate generation specification

Applications

Marking

Center line marking of tires for varying tire width

Series

Standard D edicated A C Servomotor C ontroller

Controller with built-in driver

Programming support function

Gontroller Setup Software

Programming, operation, test operation, parameter setting, alarm reset, monitor function, JOG teaching, direct teaching (LC1-1-W \square only)

Teaching Box (LC1-1-T1)

Programming, operation, parameter setting, alarm reset, monitor function (except I/O), JOG teaching

Regenerative Absorption Unit

Series LC7R

- Absorbs the energy (regenerative energy) generated by deceleration of a standard motor with vertical mounting
- Prevents driver power troubles inside the controller (for LC1 only)
- DIN rail mount

Program capacity

127 steps $\times 8$ programs

General purpose input/output 6 points each

External input operation (control panel, PLC)

Program operation and step operation

- Program operation

Operation of full programs is possible/Continuous step operation

- Step operation

Individual step operation is possible/Step by step operation/Actuator control commands (ASET, MOVA, MOVI) only

Non-standard motor compatible drivers

- Included with non-standard motor specification electric actuators
- Drivers by Matsushita Electric Industrial Co., Ltd., Mitsubishi Electric Corporation, and Yaskawa Electric Corporation are available.

Series LX Dedicated Stepper M otor D river \& Positioning D river

Series LC6D

DIN rail mount

Controls positioning by pulse signals

The driver can be controlled by general purpose positioning unit or controller.

With built-in positioning (pulse) output function
Movement pattern can be directly specified by PLC.

Reduces design requirements

Eliminates the selection and arrangement of a positioning (pulse) unit by the customer

Space saving

Allows the reduction of PLC side installation space
\{Positioning driver dimensions are the same as the driver (LC6D).

Maximum of 16 units can be set with one teaching box.

Electric Actuator

Series LJ1
Series LG1
Series LX

Table of Contents

Single Acting Electric Actuator Series LJ1
LJ1H/High Rigidity Guide Page 1
Standard motor 2
Non-standard motor 44
LJ1S/Slider Guide 87
Standard motor 88
Non-standard motor 94
Options 100
Made to Order Page 101
Clean room specification 104
Dust seal specification 110
TSUBAKI CABLEVEYOR specification 122
Construction 134
Mounting 140
Non-standard Motor Mounting Dimensions 143
Deflection Data 145

Low Profile Electric Actuator Series LG1

LG1 $\square H /$ High Rigidity Guide Page 147
Standard motor 148
Non-standard motor 168
Options 178
Construction Page179
Mounting Dimensions 181
Non-standard Motor Mounting Dimensions 182
Deflection Data 183
Dedicated AC Servomotor Controller Series LC1
Dedicated Controller/LC1 Page 185
Controller setup software 194
Dedicated teaching box 196
Options 199
Regenerative Absorption Unit/LC7R Page 200
Non-standard Motor Compatible Drivers 205
Short Stroke Electric Actuator Series LX
Short Stroke Electric Actuator/LX Page 209
LXF/5 phase stepper motor 210
LXP/2 phase stepper motor 218
LXP/5 phase stepper motor 234
LXS/2 phase stepper motor 250
LXS/5 phase stepper motor 266
CE Marking Page 282
Made to Order 288
AC servomotor specification 294
Low particulate generation specification 296
Mounting 299
Acceleration Time Guide 302
Table Deflection 304

Stepper Motor Driver/Positioning Driver Series LC6D/LC6C

Stepper Motor Driver/Positioning DriverLC6D/LC6CPage 305Stepper motor driver/LC6D 306
Positioning driver/LC6C 309
Dedicated Teaching Box Page 313
Options 315
Switches
Solid State Switches Page 316
Proximity Switches 318
Proximity Switches
Photo Micro Sensor Page319

Single Axis Electric Actuator Series LJ1H

 High Rigidity Direct Acting Guide

 High Rigidity Direct Acting Guide}

Series	Motor type	Guid	Mounting	Model		ad screw lead m		Page
Series	Motor type	G	orientation	Model	Ground ball screw	Rolled ball screw	Slide screw	age
LJ1H	Standard motor	High rigidity direct acting guide	Horizontal	LJ1H10	12	12	20	2
				LJ1H20	1020	1020	20	8
				LJ1H30	25	25	40	18
			Vertical	LJ1H10	812	812		24
				LJ1H20	510	510		32
				LJ1H30	10	10		40
	Non-standard motor		Horizontal	LJ1H10	12	12	20	44
				LJ1H20	1020	1020	20	50
				LJ1H30	25	25	40	60
			Vertical	LJ1H10	812	812		66
				LJ1H20	510	510		74
				LJ1H30	10	10		82

$\boldsymbol{\Omega}$

- Clean room specification - 104
- Dust seal specification $\longrightarrow 110$
- TSUBAKI CABLEVEYOR specification - 122
\square Construction 134
Mounting —— 140
Non-standard Motor Mounting —— 143
Part Number Designations
\square Deflection Data 145

How to Order

Cable entry direction

Bottom entry

Specifications

	Standard stroke	mm	100	200	300	400	500
Performance	Body weight	kg	5.2	6.0	6.8	7.5	8.3
	Operating temperature range		5 to 40 (with no condensation)				
	Work load	kg	10				
	Rated thrust	N	74				
	Maximum speed	mm / s	600				
	Positioning repeatability	mm	± 0.02				
Main parts	Motor		AC servomotor (50W)				
	Encoder		Incremental system				
	Lead screw		Ground ball screw $\varnothing 12 \mathrm{~mm}, 12 \mathrm{~mm}$ lead				
	Guide		High rigidity direct acting guide				
	Motor/Screw connection		With coupling				
Controller	Model		LC1-1B1H $\square-\square \square$ (Refer to page 185 for details.)				

Intermediate strokes

For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number.
Applicable strokes: 150, 250, 350,

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	10.2
Rolling	12.8
Yawing	10.2

m: Transfer load (kg)
a : Work piece acceleration (mm/s²)
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Dimensions/LJ1H101 \square PB

Scale: 15\%

A section detai (Switch groove)

T-slot dimensions

* The body mounting reference plane and work piece mounting reference
plane should be used as standards when mounting onto equipment.
Refer to pages starting with 140 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)			1	10	100	250	
	10	0.4	1.3	10.3	25.3	500	
Speed $(\mathbf{m m} / \mathbf{s})$	100	0.4	0.5	1.4	2.9	5.4	
	300	0.4	0.5	0.8	1.3	2.1	
	600	0.4	0.5	0.7	1.0	1.4	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.3 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

How to Order

Cable entry direction

Specifications

	Standard stroke	mm	100	200	300	400	500
Performance	Body weight	kg	5.2	6.0	6.8	7.5	8.3
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)				
	Work load	kg	10				
	Rated thrust	N	74				
	Maximum speed	mm/s	600				
	Positioning repeatability	mm	± 0.05				
Main parts	Motor		AC servomotor (50W)				
	Encoder		Incremental system				
	Lead screw		Rolled ball screw $\varnothing 12 \mathrm{~mm}$, 12 mm lead				
	Guide		High rigidity direct acting guide				
	Motor/Screw connection		With coupling				
Controller	Model		LC1-1B1H $\square-\square \square$ (Refer to page 185 for details.)				

Intermediate strokes

For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number.
Applicable strokes: 150, 250, 350,
450
Example) LJ1H1011NB-150-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	10.2
Rolling	12.8
Yawing	10.2

m: Transfer load (kg)
a : Work piece acceleration ($\mathrm{mm} / \mathrm{s}^{2}$)
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

	orientation ment direction		LJ1H10	
$\begin{aligned} & \text { 을 } \\ & \underline{\bar{I}} \\ & \text { ■ } \end{aligned}$				
$\begin{aligned} & \text { 옺N } \\ & \underset{\pi}{3} \end{aligned}$			$\underbrace{2000}{ }^{2000}$	

Refer to page 145 for deflection data.

Dimensions/LJ1H101 \square NB

A section detail
(Switch groove)
(Switch groove)

T-slot dimensions

* The body mounting reference plane and work piece mounting reference
plane should be used as standards when mounting onto equipment.
Refer to pages starting with 140 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)	1	10	100	250	500		
	10	0.4	1.3	10.3	25.3	50.3	
	100	0.4	0.5	1.4	2.9	5.4	
	300	0.4	0.5	0.8	1.3	2.1	
	600	0.4	0.5	0.7	1.0	1.4	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.3 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$ Horizontal Mount

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight	kg	5.3	6.2	7.2	8.0	8.8	9.7	10.5	11.3	12.2	13.0
	Operating temperature range ${ }^{\circ}$		5 to 40 (with no condensation)									
	Work load	kg	10									
	Rated thrust	N	24									
	Maximum speed	mm / s	500									
	Positioning repeatability	mm	± 0.1									
Main parts	Motor		AC servomotor (50W)									
	Encoder		Incremental system									
	Lead screw		Slide screw ø20mm, 20 mm lead									
	Guide		High rigidity direct acting guide									
	Motor/Screw connection		With coupling									
Controller	Model		LC1-1B1M $\square-\square \square$ (Refer to page 185 for details.)									
Intermediate strokes For manufacture of strokes other than the standard strokes above, add "-X2" at the end of the part number. Applicable strokes: 150, 250, 350, 450, 550, 650, 750, 850, 950 Example) LJ1H1011SC-150-F2-X2												

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	10.2
Rolling	12.8
Yawing	10.2

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

	orientation ement direction	del	LJ1H10	
$\begin{aligned} & \text { 을 } \\ & \text { 든 } \\ & \text { 름 } \end{aligned}$				
$\begin{aligned} & \text { 을 } \\ & \frac{1}{3} \\ & > \end{aligned}$				

Refer to page 145 for deflection data.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)	1	10	100	500	1000		
	10	0.5	1.4	10.4	50.4	100.4	
	100	0.4	0.5	1.4	5.4	10.4	
	250	0.4	0.5	0.9	2.5	4.5	
	500	0.4	0.5	0.8	1.6	2.6	

* Values will vary slightly depending on the operating conditions.

$A B C D$

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.3 sec .)
Maximum acceleration: $2000 \mathrm{~mm} / \mathrm{s}^{\mathbf{2}}$

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight	kg	7.7	8.9	10.1	11.2	12.6	13.7
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load	kg	30					
	Rated thrust	N	180					
	Maximum speed	mm / s	500					
	Positioning repeatability	mm	± 0.02					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Ground ball screw $\varnothing 15 \mathrm{~mm}$, 10 mm lead					
	Guide		High rigidity direct acting guide					
	Motor/Screw connection		With coupling					
Controller	Model		LC1-1B2H $\square-\square \square$ (Refer to page 185 for details.)					

Intermediate strokes
For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number.
Applicable strokes: 150, 250, 350,
Example) LJ1H2021PA-150-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	71
Rolling	83
Yawing	75

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Mounting orientation			LJ1H20	
	录		$\begin{array}{\|r} \\ \hline \end{array}$	
$\begin{aligned} & \text { ㅇ } \\ & \stackrel{\rightharpoonup}{3} \\ & \underset{\sim}{\pi} \end{aligned}$				

Refer to page 145 for deflection data.

Dimensions/LJ1H202 \square PA

Scale: 10\%

Z section detail

A section detail
(Switch groove)

* The body mounting reference plane and work piece mounting reference plane
should be used as standards when mounting onto equipment.
Refer to pages starting with 140 for mounting.

		Positioning time (sec.)											
Positioning distance (mm)									1	10	100	300	600
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.5	1.4	10.4	30.4	60.4							
	100	0.5	0.6	1.5	3.5	6.5							
	250	0.5	0.6	0.9	1.7	2.9							
	500	0.5	0.6	0.8	1.2	1.8							

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Positioning Time Guide

Ground Ball Screw

Specifications

	Standard stroke	mm	500	600	700	800	900	1000
Performance	Body weight	kg	12.6	13.7	14.5	15.3	17.2	18.6
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)					
	Work load	kg	30					
	Rated thrust	N	90					
	Maximum speed Note)	mm / s	1000	1000	930	740	600	500
	Positioning repeatability	mm	± 0.02					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Ground ball screw $\varnothing 15 \mathrm{~mm}$, 20 mm lead					
	Guide		High rigidity direct acting guide					
	Motor/Screw connection		With coupling					
Controller	Model		LC1-1B2H $\square-\square \square$ (Refer to page 185 for details.)					

Intermediate strokes

For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number.
Applicable strokes: 550, 650, 750 ,
850, 950
Example) LJ1H2021PC-550-F2-X2

Note) The speed is limited by the transfer load. Refer to the maximum speeds for each transfer load on the next page.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable static moment

Pitching	71
Rolling	83
Yawing	75

m: Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Dimensions/LJ1H202 \square PC

When two dimensions are shown, the top dimension is for 500 and 600 mm stokes, and the bottom dimension is for 700 to 1000 mm strokes.

Z section detail

A section detail (Switch groove)

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 140 for mounting.

T-slot dimensions

Positioning Time Guide

		Positioning time (sec.)										
Positioning distance (mm)								1	10	100	500	1000
Speed $(\mathrm{mm} / \mathbf{s})$	10	0.6	1.5	10.5	50.5	100.5						
	100	0.5	0.6	1.5	5.5	10.5						
	500	0.5	0.6	0.9	1.7	2.7						
	1000	0.5	0.6	0.9	1.4	1.9						

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

Maximum Speeds for Each Transfer Load

					Unit (mm/s)
Model	Transfer load (kg)				Note
	15	20	25	30	
LJ1H202 \square PC-500- $\square \square$	1000	700	500	500	Power supply: 100/110(V)AC $\pm 10 \%$ Compatible controller: LC1-1B2H1-
LJ1H202 \square PC-600- $\square \square$	1000	700	500	500	
LJ1H202 \square PC-700- $\square \square$	930	600	500	500	
LJ1H202 \square PC-800- $\square \square$	740	600	500	500	Power supply: 200/220(V)AC $\pm 10 \%$ Compatible controller: LC1-1B2H2-
LJ1H202 \square PC-900- $\square \square$	600	500	500	500	
LJ1H202 \square PC-1000- $\square \square$	500	500	500	500	

How to Order

Specifications

Standard stroke		mm	100	200	300	400	500	600
Performance	Body weight	kg	7.7	8.9	10.1	11.2	12.6	13.7
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load	kg	30					
	Rated thrust	N	180					
	Maximum speed	mm / s	500					
	Positioning repeatability	mm	± 0.05					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 10 mm lead					
	Guide		High rigidity direct acting guide					
	Motor/Screw connection		With coupling					
Controller	Model		LC1-1B2H $\square-\square \square$ (Refer to page 185 for details.)					

Intermediate strokes

For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number.
Applicable strokes: 150, 250, 350,
450, 550
Example) LJ1H2021NA-150-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	71
Rolling	83
Yawing	75

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Dynamic moment
L: Overhang to work piece center of gravity (mm)

Allowable dynamic moment

	orientation ement direction		LJ1H20	
$\begin{aligned} & \text { O } \\ & \text { 를 } \\ & \text { 른 } \end{aligned}$				
$\begin{aligned} & \text { ס } \\ & \stackrel{\overline{\bar{O}}}{\mathbf{o x}} \\ & \hline \end{aligned}$				

Refer to page 145 for deflection data.

Dimensions/LJ1H202 \square NA

T-slot dimensions

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 140 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)	1	10	100	300	600		
	10	0.5	1.4	10.4	30.4	60.4	
	100	0.5	0.6	1.5	3.5	6.5	
	250	0.5	0.6	0.9	1.7	2.9	
	500	0.5	0.6	0.8	1.2	1.8	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

How to Order

Specifications

	Standard stroke	mm	500	600	700	800	900	1000
Performance	Body weight	kg	12.6	13.7	14.5	15.3	17.2	18.6
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load	kg	30					
	Rated thrust	N	90					
	Maximum speed Note)	mm / s	1000	1000	930	740	600	500
	Positioning repeatability	mm	± 0.05					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 20 mm lead					
	Guide		High rigidity direct acting guide					
	Motor/Screw connection		With coupling					
Controller	Model		LC1-1B2H $\square-\square \square$ (Refer to page 185 for details.)					

Note) The speed is limited by the transfer load. Refer to the maximum speeds for each transfer load on the next page.

Intermediate strokes

For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number. Applicable strokes: 550, 650, 750, 850, 950
Example) LJ1H2021NC-550-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	71
Rolling	83
Yawing	75

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Dimensions/LJ1H202 \square NC

When two dimensions are shown, the top dimension is for 500 and 600 mm stokes, and the bottom dimension is for $\mathbf{7 0 0}$ to 1000 mm strokes.

Scale: 10\%

Z section detail

A section detail
(Switch groove)

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 140 for mounting.

T-slot dimensions

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)	1	10	100	500	1000		
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.6	1.5	10.5	50.5	100.5	
	100	0.5	0.6	1.5	5.5	10.5	
	500	0.5	0.6	0.9	1.7	2.7	
	1000	0.5	0.6	0.9	1.4	1.9	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$
$A \xrightarrow{B} \xrightarrow{C}$

Maximum Speeds for Each Transfer Load

					Unit (mm/s)
Model	Transfer load (kg)				Note
	15	20	25	30	
LJ1H202 \square NC-500- $\square \square$	1000	700	500	500	Power supply: 100/110(V)AC $\pm 10 \%$ Compatible controller: LC1-1B2H1-
LJ1H202 \square NC-600- $\square \square$	1000	700	500	500	
LJ1H202 \square NC-700- $\square \square$	930	600	500	500	
LJ1H202 \square NC-800- $\square \square$	740	600	500	500	Power supply: 200/220(V)AC $\pm 10 \%$ Compatible controller: LC1-1B2H2-
LJ1H202 \square NC-900- $\square \square$	600	500	500	500	
LJ1H202 \square NC-1000- $\square \square$	500	500	500	500	

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600	700	800	900	1000	1200
Performance	Body weight	kg	9.0	10.0	11.1	12.2	13.3	14.3	15.3	17.2	19.1	20.6	24.7
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)										
	Work load	kg	15										
	Rated thrust	N	50										
	Maximum speed	mm / s	500										
	Positioning repeatability	mm	± 0.1										
Main parts	Motor		AC servomotor (100W)										
	Encoder		Incremental system										
	Lead screw		Slide screw ø20mm, 20mm lead										
	Guide		High rigidity direct acting guide										
	Motor/Screw connection		With coupling										
Controller	Model		LC1-1B2M $\square-\square \square$ (Refer to page 185 for details.)										

Intermediate strokes
For manufacture of strokes other than the standard strokes above, add "-X2" at the end of the part number. Applicable strokes:150, 250, 350, 450, 550, 650, 750, 850, 950
Example) LJ1H2021SC-150-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	71
Rolling	83
Yawing	75

m : Transfer load (kg)
a : Work piece acceleration ($\mathrm{mm} / \mathrm{s}^{2}$)
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Standard Motor/Horizontal Mount Specification
 Series LJ1H20

Dimensions/LJ1H202 \square SC

When two dimensions are shown, the top dimension is for $\mathbf{1 0 0}$ to $\mathbf{6 0 0} \mathrm{mm}$ stokes, and the bottom dimension is for 700 to 1200 mm strokes.

A section detail (Switch groove)

T-slot dimensions

* The body mounting reference plane and work piece mounting reference
plane should be used as standards when mounting onto equipment.
Refer to pages starting with 140 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)	1	10	100	600	1200		
Speed (mm/s)	10	0.6	1.5	10.5	60.5	120.5	
	100	0.5	0.6	1.5	6.5	12.5	
	250	0.5	0.6	1.0	3.0	5.4	
	500	0.5	0.6	0.9	1.9	3.1	

[^0]A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

Ground Ball Screw

How to Order

Specifications

	Standard stroke	mm	200	300	400	500	600	800	1000	1200	1500
Performance	Body weight	kg	16.0	18.0	20.0	22.0	24.0	28.5	33.0	37.0	43.0
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)								
	Work load	kg	60								
	Rated thrust	N	144								
	Maximum speed Note)	mm / s	1000							700	500
	Positioning repeatability	mm	± 0.02								
Main parts	Motor		AC servomotor (200W)								
	Encoder		Incremental system								
	Lead screw		Ground ball screw ø25mm, 25 mm lead								
	Guide		High rigidity direct acting guide								
	Motor/Screw connection		With coupling								
Controller	Model		LC1-1B3H $\square-\square \square$ (Refer to page 185 for details.)								

Note) The speed is limited by the transfer load. Refer to the maximum speeds for each transfer load on the next page.

- Intermediate strokes

For manufacture of strokes other than the standard strokes above, add "-X2" at the end of the part number.
Applicable strokes: 250, 350, 450, 550, 650, 700, 750, 850, 900, 950, 1050, 1100, 1150, 1250, 1300, 1350, 1400, 1450
Example) LJ1H3031PD-250-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	117
Rolling	137
Yawing	123

m : Transfer load (kg)
a : Work piece acceleration (mm/s²)
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Dimensions/LJ1H303 \square PD

Scale: 10\%

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 140 for mounting

T-slot dimensions
A section detail (Switch groove)

Positioning Time Guide

		Positioning time (sec.)										
Positioning distance (mm)								1	10	100	750	1500
Speed (mm/s)	10	1.1	2.0	11.0	76.0	151.0						
	100	1.1	1.2	2.1	8.6	16.1						
	500	1.1	1.2	1.4	2.7	4.2						
	1000	1.1	1.2	1.4	2.1	2.9						

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (1.0sec.)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Maximum Speeds for Each Transfer Load
Unit (mm/s)

Model	Transfer load (kg)					
	10	20	30	40	50	60
LJ1H3031PD-200 to 1000- $\square \square$	1000	1000	1000	1000	900	800
LJ1H3031PD-1200- \square	700	700	700	700	700	700
LJ1H3031PD-1500- \square	500	500	500	500	500	500
LJ1H3032PD-200 to 1000- $\square \square$	1000	900	800	700	650	600
LJ1H3032PD-1200- \square	700	700	700	700	650	600
LJ1H3032PD-1500- \square	$\square 00$	500	500	500	500	500

Power supply: 100/110(V)AC $\pm 10 \%$ Compatible controller: LC1-1B3H1- $\square \square$

Power supply: 200(V)AC $\pm 10 \%$ Compatible controller: LC1-1B3H2- $\square \square$

* Consult SMC if outside of the above conditions.

Horizontal Mount

Rolled Ball Screw

Specifications

Standard stroke		mm	200	300	400	500	600	800	1000	1200	1500
Performance	Body weight	kg	16.0	18.0	20.0	22.0	24.0	28.5	33.0	37.0	43.0
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)								
	Work load	kg	60								
	Rated thrust	N	144								
	Maximum speed Note)	mm / s	1000							700	500
	Positioning repeatability	mm	± 0.05								
Main parts	Motor		AC servomotor (200W)								
	Encoder		Incremental system								
	Lead screw		Rolled ball screw $\varnothing 25 \mathrm{~mm}$, 25 mm lead								
	Guide		High rigidity direct acting guide								
	Motor/Screw connection		With coupling								
Controller	Model		LC1-1B3H \square - $\square \square$ (Refer to page 185 for details.)								

Note) The speed is limited by the transfer load. Refer to the maximum speeds for each transfer load on the next page.

- Intermediate strokes

For manufacture of strokes other than the standard strokes above, add "-X2" at the end of the part number.
Applicable strokes: 250, 350, 450, 550, 650, 700, 750, 850, 900, 950, 1050, 1100, 1150, 1250, 1300, 1350, 1400, 1450
Example) LJ1H3031ND-250-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable static moment

Pitching	117
Rolling	137
Yawing	123

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Dimensions/LJ1H303 \square ND

Scale: 10\%

Z section detail

A section detail
(Switch groove)

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 140 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance(mm)		1	10	100	750	1500	
Speed (mm/s)	10	1.1	2.0	11.0	76.0	151.0	
	100	1.1	1.2	2.1	8.6	16.1	
	500	1.1	1.2	1.4	2.7	4.2	
	1000	1.1	1.2	1.4	2.1	2.9	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (1.0sec.)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Maximum Speeds for Each Transfer Load

Model	Transfer load (kg)						Note
	10	20	30	40	50	60	
LJ1H3031ND-200 to 1000- $\square \square$	1000	1000	1000	1000	900	800	Power supply: 100/110(V)AC $\pm 10 \%$ Compatible controller: LC1-1B3H1-
LJ1H3031ND-1200- $\square \square$	700	700	700	700	700	700	
LJ1H3031ND-1500- $\square \square$	500	500	500	500	500	500	
LJ1H3032ND-200 to 1000- $\square \square$	1000	900	800	700	650	600	Power supply: 200(V)AC $\pm 10 \%$ Compatible controller: LC1-1B3H2-
LJ1H3032ND-1200- $\square \square$	700	700	700	700	650	600	
LJ1H3032ND-1500- $\square \square$	500	500	500	500	500	500	

[^1]
How to Order

Specifications

	Standard stroke	mm	200	300	400	500	600	800	1000	1200	1500
Performance	Body weight	kg	14.9	17.0	19.0	21.1	23.2	27.3	31.5	35.6	41.9
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)								
	Work load	kg	30								
	Rated thrust	N	50								
	Maximum speed	mm / s	500								
	Positioning repeatability	mm	± 0.1								
Main parts	Motor		AC servomotor (200W)								
	Encoder		Incremental system								
	Lead screw		Slide screw $\varnothing 30 \mathrm{~mm}$, 40 mm lead								
	Guide		High rigidity direct acting guide								
	Motor/Screw connection		With coupling								
Controller	Model		LC1-1B3M $\square-\square \square$ (Refer to page 185 for details.)								

Intermediate strokes
For manufacture of strokes other than the standard strokes above, add "-X2" at the end of the part number. Applicable strokes: $250,350,450,550,650,700,750,850,900,950,1050,1100,1150,1250,1300,1350,1400,1450$ Example) LJ1H3031SE-250-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable static moment

Pitching	117
Rolling	137
Yawing	123

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Dimensions/LJ1H303 \square SE

A section detail (Switch groove)

Positioning Time Guide

		Positioning time (sec.)										
Positioning distance (mm)								1	10	100	750	1500
Speed $(\mathbf{m m} / \mathbf{s})$	10	1.2	2.1	11.1	76.1	151.1						
	100	1.1	1.2	2.1	8.6	16.1						
	250	1.1	1.2	1.6	4.2	7.2						
	500	1.1	1.2	1.5	2.8	4.3						

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (1.0sec.)
Maximum acceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 140 for mounting.

T-slot dimensions

How to Order

Specifications

Intermediate strokes
For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number.
Applicable strokes: 150, 250, 350,
Example) LJ1H1021PH-150K-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	10.2
Yawing	10.2

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Regenerative Absorption Unit Selection Guide

When an actuator is operated under conditions that exceed the lines in the graphs above, be sure to use a regenerative absorption unit.
Be sure to refer to page 200 regarding regenerative absorption units. Refer to page 204 regarding brake wiring.

Positioning Time Guide

		Positioning time (sec.)				
Positioning distance (mm)	1	10	100	250	500	
	10	0.4	1.3	10.3	25.3	50.3
	100	0.4	0.5	1.4	2.9	5.4
	200	0.4	0.5	0.9	1.7	2.9
	400	0.4	0.5	0.7	1.1	1.7

[^2]
How to Order

Specifications

Intermediate strokes

For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number.
Applicable strokes: 150, 250, 350,

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment
Pitching 10.2 Yawing 10.2

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)
Allowable dynamic moment

Refer to page 145 for deflection data.

Regenerative Absorption Unit Selection Guide

It is not necessary to mount a regenerative absorption unit when the work piece load, speed, and stroke are within the actuator rating. However, use of the regenerative absorption unit is recommended under all conditions.

Actuator rating

Work load	5 kg
Maximum speed	$600 \mathrm{~mm} / \mathrm{s}$
Maximum stroke	500 mm

Refer to page 204 regarding brake wiring.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)	1	10	100	250	500		
	10	0.4	1.3	10.3	25.3	50.3	
	100	0.4	0.5	1.4	2.9	5.4	
	300	0.4	0.5	0.8	1.3	2.1	
	600	0.4	0.5	0.7	1.0	1.4	

[^3]
$\xrightarrow{A} \xrightarrow{B} \xrightarrow{C}$

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.3 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LJivH10

Rolled Ball Screw
$\boldsymbol{\varnothing 1 2} \mathbf{m m} \mathbf{8 m m}_{\mathrm{mm}}$ lead
Vertical Mount

How to Order

Specifications

Intermediate strokes

For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number.
Applicable strokes: 150, 250, 350,
450
Example) LJ1H1021NH-150K-F2-X2

Allowable Moment (N.m)

Allowable static moment

Pitching	10.2
Yawing	10.2

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Regenerative Absorption Unit Selection Guide

When an actuator is operated under conditions that exceed the lines in the graphs above, be sure to use a regenerative absorption unit.
Be sure to refer to page 200 regarding regenerative absorption units.
Refer to page 204 regarding brake wiring.

A section detail (Switch groove)

T-slot dimensions

* The body mounting reference plane and work piece mounting reference
plane should be used as standards when mounting onto equipment.
Refer to pages starting with 140 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)	1	10	100	250	500		
	10	0.4	1.3	10.3	25.3	50.3	
	100	0.4	0.5	1.4	2.9	5.4	
	200	0.4	0.5	0.9	1.7	2.9	
	400	0.4	0.5	0.7	1.1	1.7	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.3 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

How to Order

Specifications

Intermediate strokes
For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number.
Applicable strokes: 150, 250, 350,
450
Example) LJ1H1021NB-150K-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	10.2
Yawing	10.2

Regenerative Absorption Unit Selection Guide

It is not necessary to mount a regenerative absorption unit when the work piece load, speed, and stroke are within the actuator rating. However, use of a regenerative absorption unit is recommended under all conditions.
Actuator rating

Work load	5 kg
Maximum speed	$600 \mathrm{~mm} / \mathrm{s}$
Maximum stroke	500 mm

Refer to page 204 regarding brake wiring.

* The body mounting reference plane and work piece mounting reference
plane should be used as standards when mounting onto equipment.
Refer to pages starting with 140 for mounting.

Positioning Time Guide

		Positioning time (sec.)										
Positioning distance (mm)								1	10	100	250	500
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.4	1.3	10.3	25.3	50.3						
	100	0.4	0.5	1.4	2.9	5.4						
	300	0.4	0.5	0.8	1.3	2.1						
	600	0.4	0.5	0.7	1.0	1.4						

[^4]

How to Order

Specifications

Intermediate strokes

For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number.
Applicable strokes: 150, 250, 350,
450, 550
Example) LJ1H2021PF-150K-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment	
Pitching 71 Yawing 75	

m : Transfer load (kg)
a : Work piece acceleration ($\mathrm{mm} / \mathrm{s}^{2}$)
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Regenerative Absorption Unit Selection Guide

LJ1H2021PF- $\square \square \square \mathrm{K}$
(Power supply voltage 100VAC)

LJ1H2022PF- $\square \square \square K$ (Power supply voltage 200VAC)

When an actuator is operated under conditions that exceed the lines in the graphs above, be sure to use a regenerative absorption unit.
Be sure to refer to page 200 regarding regenerative absorption units.
Refer to page 204 regarding brake wiring.

Refer to page 145 for deflection data.

Dimensions/LJ1H202 \square PF

Scale: 10\%

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 140 for mounting.

A section detail
(Switch groove)

T-slot dimensions

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)				1	10	100	
300	600						
Speed (mm/s)	10	0.5	1.4	10.4	30.4	60.4	
	100	0.5	0.6	1.5	3.5	6.5	
	125	0.5	0.6	1.3	2.9	5.3	
	250	0.5	0.6	0.9	1.7	2.9	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Ground Ball Screw

How to Order

Specifications

	Standard stroke		100	200	300	400	500	600
Performance	Body weight kg		8.0	9.2	10.4	11.5	12.9	14.0
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)					
	Work load kg		8					
	Rated thrust N		180					
	Maximum speed mm / s		500					
	Positioning repeatability		± 0.02					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Ground ball screw $\varnothing 15 \mathrm{~mm}$, 10 mm lead					
	Guide		High rigidity direct acting guide					
	Motor/Screw connection		With coupling					
	Electromagnetic brake	Specifications	De-energized operation type, Rated voltage $24 \mathrm{VDC} \pm 10 \%, 0.4 \mathrm{~A}$					
		Holding torque	$0.4 \mathrm{~N} \cdot \mathrm{~m}$					
		Connection method			1 scre	mountin		
Controller	Model		LC1-1B2VA $\square-\square \square$ (Refer to page 185 for details.)					
Regenerative absorption unit	Model		LC7R-K1 \square A $\square \square$ (Refer to page 200 for details.)					

Intermediate strokes
For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number.
Applicable strokes: $150,250,350$,
450, 550
Example) LJ1H2021PA-150K-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable static moment

Pitching	71
Yawing	75

Allowable dynamic moment

Refer to page 145 for deflection data.

Regenerative Absorption Unit Selection Guide

LJ1H2021PA- $\square \square \square$ K (Power supply voltage 100VAC)

It is not necessary to mount a regenerative absorption unit when the work piece load, speed, and stroke are within the actuator rating. However, use of a regenerative absorption unit is recommended under all conditions.

Actuator rating

Work load	8 kg
Maximum speed	$500 \mathrm{~mm} / \mathrm{s}$
Maximum stroke	600 mm

LJ1H2022PA- $\square \square \square K$ (Power supply voltage 200VAC)

When an actuator is operated under conditions that exceed the lines in the graphs above, be sure to use a regenerative absorption unit.
Be sure to refer to page 200 regarding regenerative absorption units.
Refer to page 204 regarding brake wiring.

Dimensions/LJ1H202 \square PA

Scale: 10\%

Positioning Time Guide

								Positioning time (sec.)					
Positioning distance (mm)			1	10	100	300							
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.5	1.4	10.4	30.4	60.4							
	100	0.5	0.6	1.5	3.5	6.5							
	250	0.5	0.6	0.9	1.7	2.9							
	500	0.5	0.6	0.8	1.2	1.8							

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

How to Order

Specifications

Standard stroke mm			100	200	300	400	500	600
Performance	Body weight $\quad \mathrm{kg}$		8.0	9.2	10.4	11.5	12.9	14.0
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)					
	Work load kg		15					
	Rated thrust N		360					
	Maximum speed mm / s		250					
	Positioning repeatability mm		± 0.05					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 5 mm lead					
	Guide		High rigidity direct acting guide					
	Motor/Screw connection		With coupling					
	Electromagnetic brake	Specifications	De-energized operation type, Rated voltage 24VDC $\pm 10 \%, 0.4 \mathrm{~A}$					
		Holding torque	$0.4 \mathrm{~N} \cdot \mathrm{~m}$					
		Connection method	Ball screw mounting					
Controller	Model		LC1-1B2VF $\square-\square$ (Refer to page 185 for details.)					
Regenerative absorption unit	Model		LC7R-K1 \square A $\square \square$ (Refer to page 200 for details.)					

Intermediate strokes

For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number.
Applicable strokes: 150, 250, 350,
Example) LJ1H2021NF-150K-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable static moment

Pitching	71
Yawing	75

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Regenerative Absorption Unit Selection Guide
LJ1H2021NF- $\square \square \square K$
(Power supply voltage 100VAC)

LJ1H2022NF- $\square \square \square K$ (Power supply voltage 200VAC)

When an actuator is operated under conditions that exceed the lines in the graphs above, be sure to use a regenerative absorption unit.
Be sure to refer to page 200 regarding regenerative absorption units.
Refer to page 204 regarding brake wiring.

Dimensions/LJ1H202 \square NF

Scale: 10\%

Z section detail

A section detail (Switch groove)

T-slot dimensions

Positioning Time Guide

		Positioning time (sec.)											
Positioning distance (mm)									1	10	100	300	600
Speed (mm/s)	10	0.5	1.4	10.4	30.4	60.4							
	100	0.5	0.6	1.5	3.5	6.5							
	125	0.5	0.6	1.3	2.9	5.3							
	250	0.5	0.6	0.9	1.7	2.9							

* Values will vary slightly depending on the operating conditions.

A	B	C

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LJilH20
Motor Output
100_{w}
High Rigidity Direct Acting Guide

Rolled Ball Screw

How to Order

Specifications

Intermediate strokes
For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number.
Applicable strokes: 150, 250, 350,
Example) LJ1H2021NA-150K-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	71
Yawing	75

Allowable dynamic moment

Refer to page 145 for deflection data.
m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Regenerative Absorption Unit Selection Guide

LJ1H2021NA- $\square \square \square \mathrm{K}$ (Power supply voltage 100 VAC)

It is not necessary to mount a regenerative absorption unit when the work piece load, speed, and stroke are within the actuator rating. However, use of a regenerative absorption unit is recommended under all conditions.

Actuator rating

Work load	8 kg
Maximum speed	$500 \mathrm{~mm} / \mathrm{s}$
Maximum stroke	600 mm

LJ1H2022NA- $\square \square \square \mathrm{K}$ (Power supply voltage 200VAC)

When an actuator is operated under conditions that exceed the lines in the graphs above, be sure to use a regenerative absorption unit.
Be sure to refer to page 200 regarding regenerative absorption units.
Refer to page 204 regarding brake wiring.

Scale: 10\%

A section detail
(Switch groove)

T-slot dimensions

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment Refer to pages starting with 140 for mounting.

Positioning Time Guide

		Positioning time (sec.)				
Positioning distance (mm)		1	10	100	300	600
Speed (mm / s)	10	0.5	1.4	10.4	30.4	60.4
	100	0.5	0.6	1.5	3.5	6.5
	250	0.5	0.6	0.9	1.7	2.9
	500	0.5	0.6	0.8	1.2	1.8

[^5]

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Ground Ball Screw

How to Order

Specifications

	Standard stroke		200	300	400	500	600
Performance	Body weight kg		16.3	18.3	20.3	22.3	24.3
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)				
	Work load kg		20				
	Rated thrust N		360				
	Maximum speed mm / s		500				
	Positioning repeatability mm		± 0.02				
Main parts	Motor		AC servomotor (200W)				
	Encoder		Incremental system				
	Lead screw		Ground ball screw ø20mm, 10 mm lead				
	Guide		High rigidity direct acting guide				
	Motor/Screw connection		With coupling				
	Electromagnetic brake	Specifications	De-energized operation type, Rated voltage 24VDC $\pm 10 \%, 0.5 \mathrm{~A}$				
		Holding torque	$1.0 \mathrm{~N} \cdot \mathrm{~m}$				
		Connection method	Ball screw mounting				
Controller	Model		LC1-1B3VA $\square-\square$ (Refer to page 185 for details.)				
Regenerative absorption unit	Model		LC7R-K1 \square A $\square \square$ (Refer to page 200 for details.)				

Intermediate strokes
For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number.
Applicable strokes: 250, 350, 450, 550
Example) LJ1H3031PA-250K-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment	
Pitching	117
Yawing	123

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Regenerative Absorption Unit Selection Guide

When an actuator is operated under conditions that exceed the lines in the graphs above, be sure to use a regenerative absorption unit.
Be sure to refer to page 200 regarding regenerative absorption units.
Refer to page 204 regarding brake wiring.

Standard Motor/Vertical Mount Specification

Dimensions/LJ1H303 \square PA

Scale: 10\%

A section detail
(Switch groove)

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm) Speed $(\mathrm{mm} / \mathbf{s})$	10	1.1	2.0	11.0	31.0	61.0	
	100	1.1	1.2	2.1	4.1	7.1	
	250	1.1	1.2	1.5	2.3	3.5	
	500	1.1	1.2	1.4	1.8	2.4	

[^6]

Standard Motor

Vertical Mount

Rolled Ball Screw

How to Order

Specifications

[^7]Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable static moment

Pitching	117
Yawing	123

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)
Allowable dynamic moment

Refer to page 145 for deflection data.

Regenerative Absorption Unit Selection Guide

When an actuator is operated under conditions that exceed the lines in the graphs above, be sure to use a regenerative absorption unit.
Be sure to refer to page 200 regarding regenerative absorption units.
Refer to page 204 regarding brake wiring.

Dimensions/LJ1H303 \square NA

Scale: 10\%

A section detail
(Switch groove)

Positioning Time Guide

								Positioning time (sec.)					
Positioning distance (mm)								1	10	100	300	600	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.5	2.0	11.0	31.0	61.0							
	100	1.1	1.2	2.1	4.1	7.1							
	250	1.1	1.2	1.5	2.3	3.5							
	500	1.1	1.2	1.4	1.8	2.4							

* Values will vary slightly depending on the operating conditions.

Ground Ball Screw 50_{w}

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500
Performance	Body weight (without motor)	kg	4.8	5.6	6.4	7.1	7.9
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)				
	Work load	kg	10				
	Maximum speed	mm / s	600				
	Positioning repeatability	mm	± 0.02				
Main parts	Motor		AC servomotor (50W)				
	Encoder		Incremental system				
	Lead screw		Ground ball screw $\varnothing 12 \mathrm{~mm}$, 12 mm lead				
	Guide		High rigidity direct acting guide				
	Motor/Screw connection		With coupling				
Switch	Model		D-Y7GL				
	Specifications		Power supply voltage: 4.5 to 28 VDC Current consumption: 10 mA or less Control output: Open collector, Load current: 40mA or less Internal voltage drop: 1.5 V or less				

Intermediate strokes

Stokes other than the standard strokes on the left are available by special order. Consult SMC.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	10.2
Rolling	12.8
Yawing	10.2

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Dimensions/LJ1H10 $\square 1 \square \mathrm{~PB}(\mathrm{X} 10)$

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)	1	10	100	250	500		
	10	0.4	1.3	10.3	25.3	50.3	
	100	0.4	0.5	1.4	2.9	5.4	
	300	0.4	0.5	0.8	1.3	2.1	
	600	0.4	0.5	0.7	1.0	1.4	

* Values will vary slightly depending on the operating conditions.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	50	100/115	MSM5AZP1A	MSD5A1P1E
		200/230		MSD5A3P1E
Mitsubishi Electric Corporation	50	100/115	HC-PQ053	MR-C10A1
		200/230		MR-C10A
Yaskawa Electric Corporation	50	100/115	SGME-A5BF12	SGDE-A5BP
		200/230	SGME-A5AF12	SGDE-A5AP

[^8]
Switch Internal Circuit

D-Y7GL

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.3 sec.$)^{*}$
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LCl controller is used and may vary depending on the driver capacity.

Rolled Ball Screw 50 Direct Acting ${ }^{\circ} 12 \mathrm{~mm} / 12 \mathrm{~mm}$ lead

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500
Performance	Body weight (without motor)	kg	4.8	5.6	6.4	7.1	7.9
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)				
	Work load	kg	10				
	Maximum speed	mm/s	600				
	Positioning repeatability	mm	± 0.05				
Main parts	Motor		AC servomotor (50W)				
	Encoder		Incremental system				
	Lead screw		Rolled ball screw $\varnothing 12 \mathrm{~mm}$, 12 mm lead				
	Guide		High rigidity direct acting guide				
	Motor/Screw connection		With coupling				
Switch	Model		D-Y7GL				
	Specifications		Power supply voltage: 4.5 to 28 VDC Current consumption: 10 mA or less Control output: Open collector, Load current: 40 mA or less Internal voltage drop: 1.5 V or less				

Intermediate strokes
Stokes other than the standard strokes on the left are available by special order. Consult SMC.

Allowable Moment (N.m)
Allowable static moment

Pitching	10.2
Rolling	12.8
Yawing	10.2

m : Transfer load (kg)
a : Work piece acceleration (mm/s²)
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Dimensions/LJ1H10 $\square 1 \square \mathrm{NB}(\mathrm{X} 10)$

Positioning Time Guide

		Positioning time (sec.)				
Positioning distance (mm)		1	10	100	250	500
Speed (mm/s)	10	0.4	1.3	10.3	25.3	50.3
	100	0.4	0.5	1.4	2.9	5.4
	300	0.4	0.5	0.8	1.3	2.1
	600	0.4	0.5	0.7	1.0	1.4

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.3 sec.$)^{*}$
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LCl controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is speciifed.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	50	100/115	MSM5AZP1A	MSD5A1P1E
		200/230		MSD5A3P1E
Mitsubishi Electric Corporation	50	100/115	HC-PQ053	MR-C10A1
		200/230		MR-C10A
Yaskawa Electric Corporation	50	100/115	SGME-A5BF12	SGDE-A5BP
		200/230	SGME-A5AF12	SGDE-A5AP

Switch Internal Circuit

*For motor mounting dimensions, refer to the dimensions for series LJ1 S 10 on page 143 as a reference for mounting and design.

* Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight (without motor)	kg	4.9	5.8	6.8	7.6	8.4	9.3	10.1	10.9	11.8	12.6
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load	kg	10									
	Maximum speed	mm/s	500									
	Positioning repeatability	mm	± 0.1									
Main parts	Motor		AC servomotor (50W)									
	Encoder		Incremental system									
	Lead screw		Slide screw ø20mm, 20 mm lead									
	Guide		High rigidity direct acting guide									
	Motor/Screw connection		With coupling									
Switch	Model		D-Y7GL									
	Specifications		Power supply voltage: 4.5 to 28VDC, Current consumption: 10 mA or less Control output: Open collector, Load current: 40 mA or less, Internal voltage drop: 1.5 V or less									

Intermediate strokes
Strokes other than the standard strokes above are available by special order. Consult SMC.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	10.2
Rolling	12.8
Yawing	10.2

m : Transfer load (kg)
a : Work piece acceleration ($\mathrm{mm} / \mathrm{s}^{2}$)
$\mathrm{Me}:$ Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

$\frac{\text { Mo }}{\mathrm{LO}}$	orientation vement directio		LJ1H10	
				 ransfer load m(kg)
$\begin{aligned} & \text { 옫 } \\ & \underline{\bar{I}} \\ & \text { © } \end{aligned}$				
$\begin{aligned} & \text { 을 } \\ & \underset{\pi}{\pi} \\ & \hline \end{aligned}$				

Refer to page 145 for deflection data.

Dimensions/LJ1H10 $\square 1 \square$ SC(X10)

Scale: 15\%

Positioning Time Guide

		Positioning time (sec.)				
Positioning distance (mm)		1	10	100	500	1000
Speed (mm/s)	10	0.5	1.4	10.4	50.4	100.4
	100	0.4	0.5	1.4	5.4	10.4
	250	0.4	0.5	0.9	2.5	4.5
	500	0.4	0.5	0.8	1.6	2.6

* Values will vary slightly depending on the operating conditions.

T-slot dimensions

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time $(0.3 \mathrm{sec} .)^{*}$ Maximum acceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LCl controller is used and may vary depending on the driver capacity.

Switch Internal Circuit

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight (without motor)	kg	7.2	8.4	9.6	10.7	12.1	13.2
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load	kg	30					
	Maximum speed	mm/s	500					
	Positioning repeatability	mm	± 0.02					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Ground ball screw $\varnothing 15 \mathrm{~mm}, 10 \mathrm{~mm}$ lead					
	Guide		High rigidity direct acting guide					
	Motor/Screw connection		With coupling					
Switch	Model		D-Y7GL					
	Specifications		Power supply voltage: 4.5 to 28 VDCCurrent consumption: 10 mA or lessControl output: Open collector, Load current: 40 mA or lessInternal voltage drop: 1.5 V or less					

Intermediate strokes

Stokes other than the standard strokes on the left are available by special order. Consult SMC.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	71
Rolling	83
Yawing	75

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

	orientation		LJ1H20	
$\begin{aligned} & \text { 을 } \\ & \text { 芝 } \\ & \text { خ } \end{aligned}$				 Transfer load m(kg)

Refer to page 145 for deflection data.

Dimensions/LJ1H20 $\square 2 \square$ PA(X10)

A section detail
(Switch groove)

T-slot dimensions

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 140 for mounting.
 - \qquad

Positioning Time Guide

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time $(0.4 \mathrm{sec}$.)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LCl controller is used and may vary depending on the driver capacity.

$$
\xrightarrow{A}{ }^{B}{ }^{C}{ }^{D}
$$

Non-standard Motors: The following motors will be mounted when a motor mounted type is speciified.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	100	100/115	MSM011P1A	MSD011P1E
		200/230	MSM012P1A	MSD013P1E
Mitsubishi Electric Corporation	100	100/115	HC-PQ13	MR-C10A1
		200/230		MR-C10A
Yaskawa Electric Corporation	100	100/115	SGME-01BF12	SGDE-01BP
		200/230	SGME-01AF12	SGDE-01AP

* For motor mounting dimensions, refer to the dimensions for series $L J 1{ }_{S} \mathrm{H}_{2} 2$ on page 143 as a reference for mounting and design.
* Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

Switch Internal Circuit

D-Y7GL

Series LJVH20

Ground Ball Screw Horizontal Mount

How to Order

Specifications

	Standard stroke	mm	500	600	700	800	900	1000
Performance	Body weight (without motor)	kg	12.1	13.2	14.4	15.6	16.8	18.0
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load	kg	30					
	Maximum speed Note)	mm/s	1000	1000	930	740	600	500
	Positioning repeatability	mm	± 0.02					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Ground ball screw $\varnothing 15 \mathrm{~mm}$, 20 mm lead					
	Guide		High rigidity direct acting guide					
	Motor/Screw connection		With coupling					
Switch	Model		D-Y7GL					
	Specifications		Power supply voltage: 4.5 to 28 VDCCurrent consumption: 10 mA or lessControl output: Open collector, Load current: 40 mA or lessInternal voltage drop: 1.5 V or less					

Note) The speed is limited by the transfer load.
Consult each motor manufacturer regarding the maximum speed for each transfer load.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	71
Rolling	83
Yawing	75

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

	orientation ement directio		LJ1H20	

Intermediate strokes

Stokes other than the standard strokes on the left are available by special order. Consult SMC.

Dimensions/LJ1H20 $\square \mathbf{2} \square \mathrm{PC}(\mathrm{X} 10)$

When two dimensions are shown, the top dimension is for 500 and 600 mm stokes, and the bottom dimension is for $\mathbf{7 0 0}$ to 1000 mm strokes.

Z section detail

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)				1	10	100	
500	1000						
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.6	1.5	10.5	50.5	100.5	
	100	0.5	0.6	1.5	5.5	10.5	
	500	0.5	0.6	0.9	1.7	2.7	
	1000	0.5	0.6	0.9	1.4	1.9	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LCl controller is used and may vary depending on the driver capacity.
* Values will vary slightly depending on the operating conditions.

T-slot dimensions

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	100	$100 / 115$	MSM011P1A	MSD011P1E
Mitsubishi Electric Corporation		$200 / 230$	MSM012P1A	MSD013P1E
	$100 / 115$	$200 / 230$	HC-PQ13	MR-C10A1
Yaskawa Electric Corporation	100	$100 / 115$		SGDE10A
		SGME-01AF12	SGDE-01AP	

* For motor mounting dimensions, refer to the dimensions for series $L J 1{ }_{S}^{H} 20$ on page 143 as a reference for mounting and design.
* Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

Switch Internal Circuit

D-Y7GL

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight (without motor)	kg	7.2	8.4	9.6	10.7	12.1	13.2
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load	kg	30					
	Maximum speed	mm / s	500					
	Positioning repeatability	mm	± 0.05					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 10 mm lead					
	Guide		High rigidity direct acting guide					
	Motor/Screw connection		With coupling					
Switch	Model		D-Y7GL					
	Specifications		Power supply voltage: 4.5 to 28 VDC Current consumption: 10 mA or less Control output: Open collector Load current: 40 mA or less, Internal voltage drop: 1.5 V or less					

Intermediate strokes

Stokes other than the standard strokes on the left are available by special order. Consult SMC.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	71
Rolling	83
Yawing	75

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Non-standard Motor/Horizontal Mount Specification Series LJ1H20

Dimensions/LJ1H20 $\square 2 \square$ NA(X10)

Positioning Time Guide

		Positioning time (sec.)					
Speed Speitioning distance (mm)	1	10	100	300	600		
	10	0.5	1.4	10.4	30.4	60.4	
	100	0.5	0.6	1.5	3.5	6.5	
	250	0.5	0.6	0.9	1.7	2.9	
	500	0.5	0.6	0.8	1.2	1.8	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LCl controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	100	$100 / 115$		MSD011P1E
Mitsubishi Electric Corporation		$200 / 230$	MSM012P1A	MSD013P1E
	$100 / 115$	$200 / 230$	HC-PQ13	MR-C10A1
Yaskawa Electric Corporation	100	$100 / 115$		SGDE-C10A
		SGME-01AF12	SGDE-01AP	

[^9]
Switch Internal Circuit

How to Order

Standard stroke		mm	500	600	700	800	900	1000
Performance	Body weight (without motor)	kg	12.1	13.2	14.4	15.6	16.8	18.0
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load	kg	30					
	Maximum speed Note)	mm / s	1000	1000	930	740	600	500
	Positioning repeatability	mm	± 0.05					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 20 mm lead					
	Guide		High rigidity direct acting guide					
	Motor/Screw connection		With coupling					
Switch	Model		D-Y7GL					
	Specifications		Power supply voltage: 4.5 to 28 VDC Current consumption: 10 mA or less Control output: Open collector, Load current: 40 mA or less Internal voltage drop: 1.5 V or less					

Note) The speed is limited by the transfer load.
Consult each motor manufacturer regarding the maximum speed for each transfer load.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	71
Rolling	83
Yawing	75

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

$\frac{\mathrm{Mc}}{\mathrm{Lo}}$	orientation ement direction		LJ1H20	
			$\underbrace{{\underset{E}{E}}_{E}^{E}}{ }^{2000}$	
$\begin{aligned} & \text { 을 } \\ & \underline{\overline{\bar{O}}} \\ & \text { © } \end{aligned}$				
$\begin{aligned} & \text { ㅇ } \\ & \underset{\pi}{3} \\ & \text { त } \end{aligned}$			${\underset{\widehat{S}}{\underset{J}{E}}}^{2000}$	 Transfer load m(kg)

Refer to page 145 for deflection data.

Dimensions/LJ1H20 $\square \mathbf{2} \square$ NC(X10)

When two dimensions are shown, the top dimension is for 500 and 600 mm stokes, and the bottom dimension is for 700 to 1000 mm strokes.

A section detail

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 140 for mounting.
Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)	1	10	100	500	1000		
Speed (mm/s)	10	0.6	1.5	10.5	50.5	100.5	
	100	0.5	0.6	1.5	5.5	10.5	
	500	0.5	0.6	0.9	1.7	2.7	
	1000	0.5	0.6	0.9	1.4	1.9	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)* Maximum acceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LCl controller is used and may vary depending on the driver capacity.

Switch Internal Circuit
D-Y7GL

* For motor mounting dimensions, refer to the dimensions for series $L J 1_{S}^{H} 20$ on page 143 as a reference for mounting and design.
* Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

How to Order

Specifications

Standard stroke		mm	100	200	300	400	500	600	700	800	900	1000	1200
Performance	Body weight (without motor)	kg	7.5	8.5	9.6	10.8	12.3	13.8	16.3	16.8	18.6	20.4	24.2
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)										
	Work load	kg	15										
	Maximum speed	mm / s	500										
	Positioning repeatability	mm	± 0.1										
Main parts	Motor		AC servomotor (100W)										
	Encoder		Incremental system										
	Lead screw		Slide screw ø20mm, 20 mm lead										
	Guide		High rigidity direct acting guide										
	Motor/Screw connection		With coupling										
Switch	Model		D-Y7GL										
	Specifications		Power supply voltage: 4.5 to 28 VDC , Current consumption: 10 mA or less Control output: Open collector, Load current: 40mA or less, Internal voltage drop: 1.5V or less										

Immediate strokes
Strokes other than the standard strokes above are available by special order. Consult SMC.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	71
Rolling	83
Yawing	75

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Dimensions/LJ1H20 $\square 2 \square \mathrm{PC}(\mathrm{X} 10)$

When two dimensions are shown, the top dimension is for 100 to 600 mm stokes, and the bottom dimension is for $\mathbf{7 0 0}$ to 1200 mm strokes.

Scale: 10\%

A section detail

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 140 for mounting.
Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	500	1000	
Speed (mm/s)	10	0.6	1.5	10.5	60.5	120.5	
	100	0.5	0.6	1.5	6.5	12.5	
	250	0.5	0.6	1.0	3.0	5.4	
	500	0.5	0.6	0.9	1.9	3.1	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LCI controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is speciifed.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	100	$100 / 115$	MSM011P1A	MSD011P1E
		MSM012P1A	MSD013P1E	
Mitsubishi Electric Corporation	100	$100 / 115$	HC-PQ13	MR-C10A1
		MR-C10A		
Yaskawa Electric Corporation	100	$100 / 115$	SGME-01BF12	SGDE-01BP
		SGME-01AF12	SGDE-01AP	

Switch Internal Circuit

* For motor mounting dimensions, refer to the dimensions for series $\mathrm{LJ} 1 \mathrm{~S}_{\mathrm{S}}^{\mathrm{H}} 20$ on page 143 as a reference for mounting and design.
* Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

Series LJiH30 Motor Output $\begin{aligned} & \text { High Rigidity } \\ & \text { Direct Acting }\end{aligned}$
200_{w} Direct Acting

Ground Ball Screw

How to Order

Specifications

	Standard stroke	mm	200	300	400	500	600	800	1000	1200	1500
Performance	Body weight (without motor)	kg	14.9	16.9	18.9	20.9	22.9	27.4	31.9	35.9	41.9
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)								
	Work load	kg	60								
	Maximum speed	mm / s	1000							700	500
	Positioning repeatability	mm	± 0.02								
Main parts	Motor		AC servomotor (200W)								
	Encoder		Incremental system								
	Lead screw		Ground ball screw ø25mm, 25 mm lead								
	Guide		High rigidity direct acting guide								
	Motor/Screw connection		With coupling								
Switch	Model		D-Y7GL								
	Specifications		Power supply voltage: 4.5 to 28VDC, Current consumption: 10 mA or less Control output: Open collector, Load current: 40 mA or less, Internal voltage drop: 1.5 V or less								

Immediate strokes
Strokes other than the standard strokes above are available by special order. Consult SMC.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	117
Rolling	137
Yawing	123

m:Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Dimensions/LJ1H30 $\square \mathbf{3} \square \mathrm{PD}(\mathrm{X10})$
Scale: 10\%

Z section detail

A section detail
(Switch groove)

Positioning Time Guide

		Positioning time (sec.)				
Positioning distance (mm)			1	10	100	750
Speed $(\mathbf{m m} / \mathbf{s})$	10	1.1	2.0	11.0	76.0	1500
	100	1.1	1.2	2.1	8.6	16.1
	500	1.1	1.2	1.4	2.7	4.2
	1000	1.1	1.2	1.4	2.1	2.9

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (1.0sec.)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LCl controller is used and may vary depending on the driver capacity.

Switch Internal Circuit
D-Y7GL

* For motor mounting dimensions, refer to the dimensions for series $\mathrm{LJ} \mathrm{S}_{\mathrm{S}}^{\mathrm{H}} 30$ on page 143 as a reference for mounting and design.
* Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

Rolled Ball Screw ${ }^{6} 25_{\mathrm{mm}} \mathbf{2 5} \mathrm{mm}_{\text {lead }}$

How to Order

Specifications

	Standard stroke	mm	200	300	400	500	600	800	1000	1200	1500
Performance	Body weight (without motor)	kg	14.9	16.9	18.9	20.9	22.9	27.4	31.9	35.9	41.9
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)								
	Work load	kg	60								
	Maximum speed	mm / s	1000							700	500
	Positioning repeatability	mm	± 0.05								
Main parts	Motor		AC servomotor (200W)								
	Encoder		Incremental system								
	Lead screw		Rolled ball screw ø25mm, 25 mm lead								
	Guide		High rigidity direct acting guide								
	Motor/Screw connection		With coupling								
Switch	Model		D-Y7GL								
	Specifications		Power supply voltage: 4.5 to 28VDC, Current consumption: 10 mA or less Control output: Open collector, Load current: 40 mA or less, Internal voltage drop: 1.5 V or less								

Immediate strokes

Strokes other than the standard strokes above are available by special order. Consult SMC.

Allowable Moment (N.m)

Allowable static moment

Pitching	117
Rolling	137
Yawing	123

m: Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Dimensions/LJ1H30 \square 3 \square ND(X10)

Scale: 10\%

Z section detail

Positioning Time Guide

							A: Acceleration time B: Constant velocity time C: Deceleration time D: Resting time (1.0 sec.$)^{*}$ Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$ *The value is a guide when SMC's series LCl controller is used and may vary depending on the driver capacity.					
		Positioning time (sec.)										
Positioning distance (mm)		1	10	100	750	1500						
Speed (mm/s)	10	1.1	2.0	11.0	76.0	151.0						
	100	1.1	1.2	2.1	8.6	16.1						
	500	1.1	1.2	1.4	2.7	4.2						
	1000	1.1	1.2	1.4	2.1	2.9						
* Values will vary slightly depending on the operating conditions.												

Non-standard Motors: The following motors will be mounted when a motor mounted type is speciifed.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	200	$100 / 115$		MSD021P1E
Mitsubishi Electric Corporation		MSM022P1A	MSD023P1E	
Yaskawa Electric Corporation	200	$100 / 115$	HC-PQ23	MR-C20A1
		$100 / 115$		SGR-C20A
	$200 / 230$	SGME-02AF12	SGDE-02AP	

* For motor mounting dimensions, refer to the dimensions for series $\mathrm{LJ} 1_{\mathrm{S}}^{\mathrm{H}} 30$ on page 143 as a reference for mounting and design.
* Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

Switch Internal Circuit

 D-Y7GL

How to Order

Specifications

	Standard stroke	mm	200	300	400	500	600	800	1000	1200	1500
Performance	Body weight (without motor)	kg	13.8	15.9	17.9	20.0	22.1	26.2	30.4	34.5	40.8
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)								
	Work load	kg	30								
	Maximum speed	mm/s	500								
	Positioning repeatability	mm	± 0.1								
Main parts	Motor		AC servomotor (200W)								
	Encoder		Incremental system								
	Lead screw		Slide screw $\varnothing 30 \mathrm{~mm}$, 40 mm lead								
	Guide		High rigidity direct acting guide								
	Motor/Screw connection		With coupling								
Switch	Model		D-Y7GL								
	Specifications		Power supply voltage: 4.5 to 28VDC, Current consumption: 10 mA or less Control output: Open collector, Load current: 40 mA or less, Internal voltage drop: 1.5 V or less								

Immediate strokes

Strokes other than the standard strokes above are available by special order. Consult SMC.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	117
Rolling	137
Yawing	123

m: Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

	orientation ement directio		LJ1H30	
$\begin{aligned} & \text { O } \\ & \text { 를 } \\ & \text { 으 } \\ & \text { ì } \end{aligned}$				
$\begin{aligned} & \text { 오 } \\ & \underline{\overline{\bar{I}}} \\ & \text { ヘ } \end{aligned}$				

Refer to page 145 for deflection data.

Dimensions/LJ1H30 $\square 3 \square \mathrm{SE}(\mathrm{X} 10)$
Scale: 10\%

Z section detail

Positioning Time Guide

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	200	$100 / 115$		MSD021P1E
Mitsubishi Electric Corporation		MSM022P1A	MSD023P1E	
Yaskawa Electric Corporation	200	$100 / 115$	HC-PQ23	MR-C20A1
		$100 / 115$		SGR-C20A
	$200 / 230$	SGME-02AF12	SGDE-02AP	

[^10]
Switch Internal Circuit

D-Y7GL

How to Order

\section*{LJ1H10 G 2 1 PH-Stroke K - F W-X10
 Motor specification
 | \mathbf{G} | Matsushita Electric
 Industrial Co., Ltd. |
| :---: | :--- |
| \mathbf{R} | Mitsubishi Electric
 Corporation |
| \mathbf{Y} | Yaskawa Electric
 Corporation |
 | Power supply voltage | | Cable entry direction | | |
| :---: | :---: | :---: | :---: | :---: |
| | | | Actuator cable | Brake cable |
| 1 | $\begin{array}{\|l} \hline \begin{array}{l} 100 / 115 \mathrm{VAC} \\ (50 / 60 \mathrm{~Hz}) \end{array} \\ \hline \end{array}$ | F | Axial | Left |
| | | R | Right | Axial |
| 2 | $\begin{array}{\|l} \hline 200 / 230 \mathrm{VAC} \\ (50 / 60 \mathrm{~Hz}) \end{array}$ | L | Left | Axial |
| | | T | Top | Axial |
| 0 | Without motor | B | Bottom | Axial |
 \section*{Specifications}}

Intermediate strokes

Strokes other than the standard strokes on the left are available by special order. Consult SMC.

Allowable Moment (N.m)

Allowable static moment

Pitching	10.2
Yawing	10.2

m: Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Regenerative Absorption Unit/Regenerative Resistor Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.
Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections. Regenerative absorption units and regenerative resistors are available as options, therefore, separately order a model compatible with the motor and driver selection from the options ordering procedures on page 100.

Refer to page 145 for deflection data.

Dimensions/LJ1H10 $\square 2 \square \mathrm{PH}(\mathrm{X} 10)$

Z section detail

A section detail
(Switch groove)

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 140 for mounting.

T-slot dimensions

Positioning Time Guide

		Positioning time (sec.)				
Positioning distance (mm) Speed (mm/s)	10	0.4	10	100	250	500
	100	0.4	0.5	10.3	25.3	50.3
	200	0.4	0.5	0.9	1.7	2.9
	400	0.4	0.5	0.7	1.1	1.7

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	100	$100 / 115$		MSD011P1E
Mitsubishi Electric Corporation		$200 / 230$	MSM012P1A	MSD013P1E
Yaskawa Electric Corporation	$100 / 115$	$200 / 230$	HC-PQ13	MR-C10A1

* For motor mounting dimensions, refer to the dimensions for series $\mathrm{LJ} 1 \mathrm{H}_{\mathrm{S}} 10$ on page 143 as a reference for mounting and design.
* Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

Switch Internal Circuit

Ground Ball Screw © 12 mm 12 mmiaad

How to Order

Specifications

Intermediate strokes

Strokes other than the standard strokes on the left are available by special order. Consult SMC.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	10.2
Yawing	10.2

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Regenerative Absorption Unit/Regenerative Resistor Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mounting specification. How to determine regenerative energy is shown below.
Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections. Regenerative absorption units and regenerative resistors are available as options, therefore, separately order a model compatible with the motor and driver selection from the options ordering procedures on page 100.

Refer to page 145 for deflection data.

Dimensions/LJ1H10 $\square \mathbf{2} \square \mathrm{PB}(\mathrm{X} 10)$

Z section detail

A section detai
(Switch groove)

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 140 for mounting.

T-slot dimensions

Positioning Time Guide

		Positioning time (sec.)										
Positioning distance (mm)								1	10	100	250	500
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.4	1.3	10.3	25.3	50.3						
	100	0.4	0.5	1.4	2.9	5.4						
	300	0.4	0.5	0.8	1.3	2.1						
	600	0.4	0.5	0.7	1.0	1.4						

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.3 sec .) ${ }^{\text {* }}$
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LCl controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	100	$100 / 115$	MSM011P1A	MSD011P1E
		MSM012P1A	MSD013P1E	
Mitsubishi Electric Corporation	100	$100 / 115$	HC-PQ13	MR-C10A1
		MR-C10A		
Yaskawa Electric Corporation	100	$100 / 115$	SGME-01BF12	SGDE-01BP
		SGME-01AF12	SGDE-01AP	

Switch Internal Circuit

D-Y7GL

For motor mounting dimensions, refer to the dimensions for series $\mathrm{LJ} 1 \mathrm{H}_{\mathrm{S}} 10$ on page 143 as a reference for mounting and design.

* Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
*For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers

Series LJivH10

Rolled Ball Screw
$\varnothing 12 \mathrm{~mm} / \mathbf{8 m}_{\mathrm{mm}}$ lead

Vertical Mount

How to Order

	Standard stroke $\quad \mathrm{mm}$		100	200	300	400	500
Performance	Body weight (without motor) kg		5.1	5.9	6.7	7.4	8.2
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)				
	Work load ${ }^{\text {c }}$	kg	10				
	Rated thrust N		225				
	Maximum speed mm / s		400				
	Positioning repeatability mm		± 0.05				
Main parts	Motor		AC servomotor (100W)				
	Encoder		Incremental system				
	Lead screw		Rolled ball screw $\varnothing 12 \mathrm{~mm}$, 8mm lead				
	Guide		High rigidity direct acting guide				
	Motor/Screw connection		With coupling				
	Electromagnetic brake	Specifications	De-energized operation type, Rated voltage 24VDC $\pm 10 \%, 0.4 \mathrm{~A}$				
		Holding torque	$0.4 \mathrm{~N} \cdot \mathrm{~m}$				
		Connection method	Ball screw mounting				
Switch	Model		D-Y7GL				
	Specifications		Power supply voltage: 4.5 to 28 VDCCurrent consumption: 10 mA or lessControl output: Open collector, Load current: 40 mA or lessInternal voltage drop: 1.5 V or less				
Regenerative absorption unit			Refer to the selection guide below.				

Intermediate strokes

Strokes other than the standard strokes on the left are available by special order. Consult SMC.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment		m : Transfer load (kg)
Pitching	10.2	a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Yawing	10.2	L : Overhang to work piece

Allowable dynamic moment

Regenerative Absorption Unit/Regenerative Resistor Selection Guide
Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mounting specification. How to determine regenerative energy is shown below.

Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections. Regenerative absorption units and regenerative resistors are available as options, therefore, separately order a model compatible with the motor and driver selection from the options ordering procedures on page 100.

Refer to page 145 for deflection data.

Dimensions/LJ1H10 $\square \mathbf{2} \square \mathbf{N H}(\mathbf{X 1 0})$

Scale: 15\%

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 140 for mounting.

Positioning Time Guide

	Positioning time (sec.)					
Positioning distance (mm)		1	10	100	250	500
Speed (mm/s)	10	0.4	1.3	10.3	25.3	50.3
	100	0.4	0.5	1.4	2.9	5.4
	200	0.4	0.5	0.9	1.7	2.9
	400	0.4	0.5	0.7	1.1	1.7

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.3 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LCl controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	100	$100 / 115$	MSM011P1A	MSD011P1E
		$100 / 230$	MSM012P1A	MSD013P1E
	$200 / 230$	HC-PQ13	MR-C10A1	
Yaskawa Electric Corporation	100		SGME-01BF12	SGDE-01BP
		SGME-01AF12	SGDE-01AP	

*For motor mounting dimensions, refer to the dimensions for series LJ 1 H 10 on page 143 as a reference for mounting and design.

* Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

Switch Internal Circuit D-Y7GL

Series LJivH10

How to Order

	Standard stroke mm		100	200	300	400	500
Performance	Body weight (without motor) kg		5.1	5.9	6.7	7.4	8.2
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)				
	Work load kg		5				
	Rated thrust N		150				
	Maximum speed mm / s		600				
	Positioning repeatability mm		± 0.05				
Main parts	Motor		AC servomotor (100W)				
	Encoder		Incremental system				
	Lead screw		Rolled ball screw $\varnothing 12 \mathrm{~mm}$, 12 mm lead				
	Guide		High rigidity direct acting guide				
	Motor/Screw connection		With coupling				
	Electromagnetic brake	Specifications	De-energized operation type, Rated voltage 24VDC $\pm 10 \%, 0.4 \mathrm{~A}$				
		Holding torque	$0.4 \mathrm{~N} \cdot \mathrm{~m}$				
		Connection method	Ball screw mounting				
Switch	Model		D-Y7GL				
	Specifications		Power supply voltage: 4.5 to 28 VDC Current consumption: 10 mA or less Control output: Open collector, Load current: 40mA or less Internal voltage drop: 1.5 V or less				
Regenerative absorption unit			Refer to the selection guide below.				

Allowable Moment (N.m)

Allowable static moment

Pitching	10.2
Yawing	10.2

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Regenerative Absorption Unit/Regenerative Resistor Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mounting specification. How to determine regenerative energy is shown below.
Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections. Regenerative absorption units and regenerative resistors are available as options, therefore, separately order a model compatible with the motor and driver selection from the options ordering procedures on page 100.

Refer to page 145 for deflection data.

Dimensions/LJ1H10 $\square 2 \square \mathrm{NB}(\mathrm{X} 10)$

\mathbf{Z} section detail

A section detail (Switch groove)

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 140 for mounting.

T-slot dimensions

Positioning Time Guide

		Positioning time (sec.)										
Positioning distance (mm)								1	10	100	250	500
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.4	1.3	10.3	25.3	50.3						
	100	0.4	0.5	1.4	2.9	5.4						
	300	0.4	0.5	0.8	1.3	2.1						
	600	0.4	0.5	0.7	2.0	1.4						

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.3 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LCl controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	100	$100 / 115$	MSM011P1A	MSD011P1E
Mitsubishi Electric Corporation		$200 / 230$	MSM012P1A	MSD013P1E
Yaskawa Electric Corporation	$100 / 115$	$200 / 230$	HC-PQ13	MR-C10A1

* For motor mounting dimensions, refer to the dimensions for series $\mathrm{LJ} 1 \mathrm{~S}_{\mathrm{H}} 10$ on page 143 as a reference for mounting and design.
* Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer
* For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

Switch Internal Circuit

D-Y7GL

Series LJVH20

Vertical Mount

Specifications

	Standard stroke mm		100	200	300	400	500	600
Performance	Body weight (without motor) kg		7.5	8.7	9.9	11.0	12.4	13.5
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)					
	Work load ${ }^{\text {kg }}$		15					
	Rated thrust N		360					
	Maximum speed mm / s		250					
	Positioning repeatability mm		± 0.02					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Ground ball screw $\varnothing 15 \mathrm{~mm}, 5 \mathrm{~mm}$ lead					
	Guide		High rigidity direct acting guide					
	Motor/Screw connection		With coupling					
	Electromagnetic brake	Specifications	De-energized operation type, Rated voltage 24VDC $\pm 10 \%, 0.4 \mathrm{~A}$					
		Holding torque	$0.4 \mathrm{~N} \cdot \mathrm{~m}$					
		Connection method	Ball screw mounting					
Switch	Model		D-Y7GL					
	Specifications		Power supply voltage: 4.5 to 28VDC Current consumption: 10 mA or less Control output: Open collector, Load current: 40mA or less Internal voltage drop: 1.5 V or less					
Regenerative absorption unit			Refer to the selection guide below.					

Intermediate strokes
Strokes other than the standard strokes on the left are available by special order. Consult SMC.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	71
Yawing	75

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Regenerative Absorption Unit/Regenerative Resistor Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.
Regenerative energy = Motor coil energy consumption

+ Driver capacitor energy consumption (A)
+ Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections. Regenerative absorption units and regenerative resistors are available as options, therefore, separately order a model compatible with the motor and driver selection from the options ordering procedures on page 100.

Refer to page 145 for deflection data.

Scale: 10\%

Positioning Time Guide

		Positioning time (sec.)										
Positioning distance (mm)								1	10	100	300	600
Speed $(\mathrm{mm} / \mathbf{s})$	10	0.5	1.4	10.4	30.4	60.4						
	100	0.5	0.6	1.5	3.5	6.5						
	125	0.5	0.6	1.3	2.9	5.3						
	250	0.5	0.6	0.9	1.7	2.9						

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LCI controller is used and may vary depending on the driver capacity.

Switch Internal Circuit

D-Y7GL

[^11]
Vertical Mount

How to Order

Specifications

Intermediate strokes
Strokes other than the standard strokes on the left are available by special order. Consult SMC.

Allowable Moment (N.m)

Allowable static moment

Pitching	71
Yawing	75

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Regenerative Absorption Unit/Regenerative Resistor Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.
Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections. Regenerative absorption units and regenerative resistors are available as options, therefore, separately order a model compatible with the motor and driver selection from the options ordering procedures on page 100.

Refer to page 145 for deflection data.

Dimensions/LJ1H20 $\square 2 \square \mathrm{PA}(\mathrm{X} 10)$

Positioning Time Guide

Non-standard Motors: The following motors will be mounted when a motor mounted type is speciied.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	100	$100 / 115$		MSD011P1E
		$200 / 230$	MSM012P1A	MSD013P1E
	$100 / 115$	$200 / 230$	HC-PQ13	MR-C10A1
Yaskawa Electric Corporation	100	$100 / 115$		SGR-C10A
		SGME-01AF12	SGDE-01AP	

[^12]Switch Internal Circuit

Vertical Mount

Specifications

	Standard stroke mm		100	200	300	400	500	600
Performance	Body weight (without motor) kg		7.5	8.7	9.9	11.0	12.4	13.5
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)					
	Work load kg		15					
	Rated thrust N		360					
	Maximum speed mm / s		250					
	Positioning repeatability		± 0.05					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Rolled ball screw $\varnothing 15 \mathrm{~mm}, 5 \mathrm{~mm}$ lead					
	Guide		High rigidity direct acting guide					
	Motor/Screw connection		With coupling					
	Electromagnetic brake	Specifications	De-energized operation type, Rated voltage 24VDC $\pm 10 \%, 0.4 \mathrm{~A}$					
		Holding torque	0.4 Nm					
		Connection method	Ball screw mounting					
Switch	Model		D-Y7GL					
	Specifications		Power supply voltage: 4.5 to 28 VDCCurrent consumption: 10 mA or lessControl output: Open collector, Load current: 40 mA or lessInternal voltage drop: 1.5 V or less					
Regenerative absorption unit			Refer to the selection guide below.					

Intermediate strokes
Strokes other than the standard strokes on the left are available by special order. Consult SMC.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	71
Yawing	75

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)
Allowable dynamic moment

Regenerative Absorption Unit/Regenerative Resistor Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.
Regenerative energy = Motor coil energy consumption

+ Driver capacitor energy consumption (A)
+ Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections. Regenerative absorption units and regenerative resistors are available as options, therefore, separately order a model compatible with the motor and driver selection from the options ordering procedures on page 100.

Refer to page 145 for deflection data.

Dimensions/LJ1H20 $\square \mathbf{2} \square \mathrm{NF}(\mathrm{X} 10)$

Scale: 10\%

A section detail
(Switch groove)
Positioning Time Guide
The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 140 for mounting.
T-slot dimensions

		Positioning time (sec.)					
Positioning distance(mm)		1	10	100	300	600	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.5	1.4	10.4	30.4	60.4	
	100	0.5	0.6	1.5	3.5	6.5	
	125	0.5	0.6	1.3	2.9	5.3	
	250	0.5	0.6	0.9	1.7	2.9	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)* Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$
* The value is a guide when SMC's series LCl controller is used and may vary depending on the driver capacity.
Switch Internal Circuit

D-Y7GL

* For motor mounting dimensions, refer to the dimensions for series $\mathrm{LJ} 1 \mathrm{H}_{\mathrm{S}} 20$ on page 143 as a reference for mounting and design.
* Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

Series LwiH2O
High Rigidity
Rolled Ball Screw
Vertical Mount

How to Order

Specifications

	Standard stroke $\quad \mathrm{mm}$		100	200	300	400	500	600
Performance	Body weight (without motor) kg		7.5	8.7	9.9	11.0	12.4	13.5
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)					
	Work load kg		8					
	Rated thrust N		180					
	Maximum speed mm / s		500					
	Positioning repeatability mm		± 0.05					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 10 mm lead					
	Guide		High rigidity direct acting guide					
	Motor/Screw connection		With coupling					
	Electromagnetic brake	Specifications	De-energized operation type, Rated voltage 24VDC $\pm 10 \%, 0.4 \mathrm{~A}$					
		Holding torque	$0.4 \mathrm{~N} \cdot \mathrm{~m}$					
		Connection method	Ball screw mounting					
Switch	Model		D-Y7GL					
	Specifications		Power supply voltage: 4.5 to 28 VDCCurrent consumption: 10 mA or lessControl output: Open collector, Load current: 40 mA or lessInternal voltage drop: 1.5 V or less					
Regenerative absorption unit			Refer to the selection guide below.					

Intermediate strokes

Stokes other than the standard strokes on the left are available by special order. Consult SMC

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	71
Yawing	75

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Regenerative Absorption Unit/Regenerative Resistor Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.
Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections. Regenerative absorption units and regenerative resistors are available as options, therefore, separately order a model compatible with the motor and driver selection from the options ordering procedures on page 100.

Refer to page 145 for deflection data.

Dimensions/LJ1H20 $\square 2 \square$ NA(X10)

Positioning Time Guide

				ing tim	ec.)	
Positioning distance (mm)		1	10	100	300	600
Speed (mm / s)	10	0.5	1.4	10.4	30.4	60.4
	100	0.5	0.6	1.5	3.5	6.5
	250	0.5	0.6	0.9	1.7	2.9
	500	0.5	0.6	0.8	1.2	1.8

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .) ${ }^{*}$
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LCl controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	100	$100 / 115$	MSM011P1A	MSD011P1E
		$100 / 230$	MSM012P1A	MSD013P1E
	$200 / 230$	HC-PQ13	MR-C10A1	
Yaskawa Electric Corporation	100		SGME-01BF12	SR-C10A
		SGME-01AF12	SGDE-01AP	

Switch Internal Circuit
D-Y7GL

* For motor mounting dimensions, refer to the dimensions for series $L J 1_{S} \mathrm{H}_{2} 20$ on page 143 as a reference for mounting and design.
* Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

Ground Ball Screw
Vertical Mount

Specifications

	Standard stroke $\quad \mathrm{mm}$		200	300	400	500	600
Performance	Body weight (without motor) kg		15.2	17.2	19.2	21.2	23.2
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)				
	Work load kg		20				
	Rated thrust N		360				
	Maximum speed mm / s		500				
	Positioning repeatability mm		± 0.02				
Main parts	Motor		AC servomotor (200W)				
	Encoder		Incremental system				
	Lead screw		Ground ball screw ø20mm, 10mm lead				
	Guide		High rigidity direct acting guide				
	Motor/Screw connection		With coupling				
	Electromagnetic brake	Specifications	De-energized operation type, Rated voltage $24 \mathrm{VDC} \pm 10 \%, 0.5 \mathrm{~A}$				
		Holding torque	$1.0 \mathrm{~N} \cdot \mathrm{~m}$				
		Connection method	Ball screw mounting				
Switch	Model		D-Y7GL				
	Specifications		Power supply voltage: 4.5 to 28 VDC Current consumption: 10 mA or less Control output: Open collector, Load current: 40mA or less Internal voltage drop: 1.5 V or less				
Regenerative absorption unit			Refer to the selection guide below.				

Intermediate strokes

Strokes other than the standard strokes on the left are available by special order. Consult SMC.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment		m : Transfer load (kg)
Pitching	117	a : Work piece acceleration (mm Me : Dynamic moment
Yawing	123	L : Overhang to work piece

Allowable dynamic moment

Regenerative Absorption Unit/Regenerative Resistor Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.

Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections. Regenerative absorption units and regenerative resistors are available as options, therefore, separately order a model compatible with the motor and driver selection from the options ordering procedures on page 100.

Refer to page 145 for deflection data.

Dimensions/LJ1H30 \square 3 \square PA(X10)

Scale: 10\%

Z section detail

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)	1	10	100	300	600		
	10	1.1	2.0	11.0	31.0	61.0	
	100	1.1	1.2	2.1	4.1	7.1	
	250	1.1	1.2	1.5	2.3	3.5	
	500	1.1	1.2	1.4	1.8	2.4	

* Values will vary slightly depending on the operating conditions.

Switch Internal Circuit

D-Y7GL

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (1.0sec.)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LCl controller is used and may vary depending on the driver capacity.
* For motor mounting dimensions, refer to the dimensions for series LJ1 ${ }_{S}^{\mathrm{H}} 30$ on page 143 as a reference for mounting and design.
* Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.
Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	200	$100 / 115$	MSM021P1A	MSD021P1E
		MSM022P1A	MSD023P1E	
Yaskawa Electric Corporation	200	$100 / 115$	HC-PQ23	MR-C20A1
		$100 / 115$		SGDE-02BP
	$200 / 230$	SGME-02AF12	SGDE-02AP	

How to Order

Specifications

	Standard stroke mm		200	300	400	500	600
Performance	Body weight (without motor) kg		15.2	17.2	19.2	21.2	23.2
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)				
	Work load kg		20				
	Rated thrust N		360				
	Maximum speed mm / s		500				
	Positioning repeatability		± 0.05				
Main parts	Motor		AC servomotor (200W)				
	Encoder		Incremental system				
	Lead screw		Rolled ball screw ø20mm, 10 mm lead				
	Guide		High rigidity direct acting guide				
	Motor/Screw connection		With coupling				
	Electromagnetic brake	Specifications	De-energized operation type, Rated voltage 24VDC $\pm 10 \%, 0.5 \mathrm{~A}$				
		Holding torque	$1.0 \mathrm{~N} \cdot \mathrm{~m}$				
		Connection method	Ball screw mounting				
Switch	Model		D-Y7GL				
	Specifications		Power supply voltage: 4.5 to 28 VDCCurrent consumption: 10 mA or lessControl output: Open collector, Load current: 40 mA or lessInternal voltage drop: 1.5 V or less				
Regenerative absorption unit			Refer to the selection guide below.				

Intermediate strokes

Strokes other than the standard strokes on the left are available by special order. Consult SMC.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	117
Yawing	123

Regenerative Absorption Unit/Regenerative Resistor Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.
Regenerative energy = Motor coil energy consumption

+ Driver capacitor energy consumption (A)
+ Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections. Regenerative absorption units and regenerative resistors are available as options, therefore, separately order a model compatible with the motor and driver selection from the options ordering procedures on page 100.

Refer to page 145 for deflection data.

Dimensions/LJ1H30 \square 3 \square NA(X10)

\mathbf{Z} section detail

A section detail
(Switch groove)

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)				1	10	100	
300	600						
Speed (mm/s)	10	1.1	2.0	11.0	31.0	61.0	
	100	1.1	1.2	2.1	4.1	7.1	
	250	1.1	1.2	1.5	2.3	3.5	
	500	1.1	1.2	1.4	1.8	2.4	

* Values will vary slightly depending on the operating conditions.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	200	100/115	MSM021P1A	MSD021P1E
		200/230	MSM022P1A	MSD023P1E
Mitsubishi Electric Corporation	200	100/115	HC-PQ23	MR-C20A1
		200/230		MR-C20A
Yaskawa Electric Corporation	200	100/115	SGME-02BF12	SGDE-02BP
		200/230	SGME-02AF12	SGDE-02AP

Switch Internal Circuit

D-Y7GL

* For motor mounting dimensions, refer to the dimensions for series $\mathrm{LJ1} \mathrm{H}_{\mathrm{S}} 30$ on page 143 as a reference for mounting and design.
* Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

Single Axis Electric Actuator Series LJ1S Slider Guide

Series	Motor type	Guide type	Mounting orientation	Model	$\frac{\text { Lead screw lead mm }}{\text { Slide screw }}$	Page
LJ1S	Standard motor	Slider guide	Horizontal	LJ1S10	20	88
				LJ1S20	20	90
				LJ1S30	20	92
	Standard motor			LJ1S10	20	94
				LJ1S20	20	96
				LJ1S30	20	98

Option specifications
Page 100
Made to Order —— 101

- Dust seal specification

116

- TSUBAKI CABLEVEYOR specification - 128

Construction —— 137
Mounting
140
Non-standard Motor Mounting143

Deflection Data $\longrightarrow 145$

Part Number Designations

Motor specification

Motor output d

$\mathbf{1}$	50 W
$\mathbf{2}$	100 W
$\mathbf{3}$	200 W

Power supply voltage
1 100/110VAC $50 / 60 \mathrm{~Hz}$ $100 / 115 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$ 200/220VAC $50 / 60 \mathrm{~Hz}$ 2 200/230VAC $50 / 60 \mathrm{~Hz}$ Without motor

S C-100-FW-X10
-Lead screw type

S	Slide screw

Cable entry direction

F	Axial
R	Right
L	Left
T	Top
B	Bottom

Limit switch

Nil	None		
W	B contact specification 2 pcs.		
	Cable length		
2 2 m 3 3 m 4 4 m 5 5 m		$.$	
:---			

X10 Non-standard motor

The tables above show the definition for each symbol only and cannot be used for actual model selection.

How to Order

Cable entry direction

Bottom entry

Specifications

	Standard stroke	mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight	kg	5.4	6.1	6.9	7.7	8.5	9.3	10.0	10.8	11.6	12.4
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load	kg	5									
	Rated thrust	N	24									
	Maximum speed	mm / s	300									
	Positioning repeatability	mm	± 0.1									
Main parts	Motor		AC servomotor (50W)									
	Encoder		Incremental system									
	Lead screw		Slide screw ø20mm, 20 mm lead									
	Guide		Slider guide									
	Motor/Screw connection		With coupling									
Controller	Model		LC1-1B1S $\square-\square \square$ (Refer to page 185 for details.)									

Intermediate strokes

For manufacture of strokes other than the standard strokes above, add "-X2" at the end of the part number.
Applicable strokes: 150, 250, 350, 450, 550, 650, 750, 850, 950
Example) LJ1S1011SC-150-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable static moment

Pitching	1.3
Rolling	1.5
Yawing	0.7

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Dimensions/LJ1S101 \square SC

Scale: 15\%

* The body mounting reference plane and work piece mounting reference
plane should be used as standards when mounting onto equipment.
Refer to pages starting with 140 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)				1	10	100	
500	1000						
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.5	1.4	10.4	50.4	100.4	
	100	0.4	0.5	1.4	5.4	10.4	
	150	0.4	0.5	1.1	3.8	7.1	
	300	0.4	0.5	0.8	2.2	3.8	

[^13]

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.1 sec .)
Maximum acceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600	700	800	900	1000	1200
Performance	Body weight	kg	6.8	7.9	9.0	10.1	11.1	12.2	13.3	14.3	15.4	16.4	18.6
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)										
	Work load	kg	10										
	Rated thrust	N	50										
	Maximum speed	mm / s	300										
	Positioning repeatability	mm	± 0.1										
Main parts	Motor		AC servomotor (100W)										
	Encoder		Incremental system										
	Lead screw		Slide screw $\varnothing 20 \mathrm{~mm}$, 20 mm lead										
	Guide		Slider guide										
	Motor/Screw connection		With coupling										
Controller	Model		LC1-1B2S $\square-\square \square$ (Refer to page 185 for details.)										

Intermediate strokes
For manufacture of strokes other than the standard strokes above, add "-X2" at the end of the part number.
Applicable strokes:150, 250, 350, 450, 550, 650, 750, 850, 950, 1050
Example) LJ1S2021SC-150-F2-X2
Allowable Moment (N.m)

Allowable static moment

Pitching	5.5
Rolling	6.0
Yawing	8.5

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Dimensions/LJ1S202 \square SC

When two dimensions are shown, the top dimension is for 100 to 600 mm stokes, and the bottom dimension is for 700 to 1200 mm strokes.

A section detail (Switch groove)

T-slot dimensions

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 140 for mounting.

Positioning Time Guide

		Positioning time (sec.)										
Positioning distance (mm)								1	10	100	600	1200
Speed (mm/s)	10	0.6	1.5	10.5	60.5	120.5						
	100	0.5	0.6	1.5	6.5	12.5						
	150	0.5	0.6	1.2	4.5	8.5						
	300	0.5	0.6	0.9	2.6	4.6						

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

How to Order

Specifications

Intermediate strokes

For manufacture of strokes other than the standard strokes above, add "-X2" at the end of the part number.
Applicable strokes: 250, 350, 450, 550, 650, 700, 750, 850, 900, 950, 1050, 1100, 1150, 1250, 1300, 1350, 1400, 1450
Example) LJ1S3031SC-250-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	26.6
Rolling	40.2
Yawing	25.8

m : Transfer load (kg)
a : Work piece acceleration ($\mathrm{mm} / \mathrm{s}^{2}$)
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Dimensions/LJ1S303 \square SC

Scale: 10\%

Z section detail

A section detail

(Switch groove)

T-slot dimensions

* The body mounting reference plane and work piece mounting reference
plane should be used as standards when mounting onto equipment.
Refer to pages starting with 140 for mounting.

Positioning Time Guide

		Positioning time (sec.)					-	A: Acceleration time
Positioning distance (mm)		1	10	100	750	1500		C: Deceleration time
Speed (mm / s)	10	0.5	2.1	11.1	76.1	151.1	:	D: Resting time (0.4 sec .)
	100	1.1	1.2	2.1	8.6	16.1	-	
	500	1.1	1.2	1.6	4.2	7.2	1 :	
	1000	1.1	1.2	1.5	2.8	4.3	$\mathrm{A} \xrightarrow{\mathrm{B}}{ }^{\text {C }}$	

[^14]Horizontal Mount

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight (without motor)	kg	5.0	5.7	6.5	7.3	8.1	8.9	9.6	10.4	11.2	12.0
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load	kg	5									
	Maximum speed	mm / s	300									
	Positioning repeatability	mm	± 0.1									
Main parts	Motor		AC servomotor (50W)									
	Encoder		Incremental system									
	Lead screw		Slide screw ø20mm, 20 mm lead									
	Guide		Slider guide									
	Motor/Screw connection		With coupling									
Switch	Model		D-Y7GL									
	Specifications		Power supply voltage: 4.5 to 28 VDC , Current consumption: 10 mA or less Control output: Open collector, Load current: 40 mA or less, Internal voltage drop: 1.5 V or less									

Intermediate strokes
Strokes other than the standard strokes above are available by special order. Consult SMC.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	1.3
Rolling	1.5
Yawing	0.7

m : Transfer load (kg) a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

	orientation ement directio		LJ1S10	

Refer to page 145 for deflection data.

Dimensions/LJ1S10 $\square 1 \square$ SC(X10)

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	500	1000	
Speed (mm/s)	10	0.5	1.4	10.4	50.4	100.4	
	100	0.4	0.5	1.4	5.4	10.4	
	150	0.4	0.5	1.1	3.8	7.1	
	300	0.4	0.5	0.8	2.2	3.8	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.1 sec .)*
Maximum acceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LCl controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is speciifed.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	50	100/115	MSM5AZP1A	MSD5A1P1E
		200/230		MSD5A3P1E
Mitsubishi Electric Corporation	50	100/115	HC-PQ053	MR-C10A1
		200/230		MR-C10A
Yaskawa Electric Corporation	50	100/115	SGME-A5BF12	SGDE-A5BP
		200/230	SGME-A5AF12	SGDE-A5AP

* For motor mounting dimensions, refer to the dimensions for series LJ1 ${ }_{S} 10$ on page 143 as a reference for mounting and design.
* Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

Switch Internal Circuit

Ground Ball Screw Guide

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600	700	800	900	1000	1200
Performance	Body weight (without motor)	kg	6.3	7.4	8.5	9.6	10.6	11.7	12.8	13.8	14.9	15.9	18.1
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)										
	Work load	kg	10										
	Maximum speed	mm / s	300										
	Positioning repeatability	mm	± 0.1										
Main parts	Motor		AC servomotor (100W)										
	Encoder		Incremental system										
	Lead screw		Slide screw ø20mm, 20 mm lead										
	Guide		Slider guide										
	Motor/Screw connection		With coupling										
Switch	Model		D-Y7GL										
	Specifications		Power supply voltage: 4.5 to 28VDC, Current consumption: 10 mA or less Control output: Open collector, Load current: 40 mA or less, Internal voltage drop: 1.5 V or less										

Immediate strokes

Strokes other than the standard strokes above are available by special order. Consult SMC.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	5.5
Rolling	6.0
Yawing	8.5

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Dimensions/LJ1S20 $\square 2 \square$ SC(X10)

When two dimensions are shown, the top dimension is for $\mathbf{1 0 0}$ to 600 mm stokes, and the bottom dimension is for 700 to 1200 mm strokes.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)			1	10	100	500	
	10	0.6	1.5	10.5	50.5	120.5	
Speed $(\mathbf{m m} / \mathbf{s})$	100	0.5	0.6	1.5	6.5	12.5	
	150	0.5	0.6	1.2	4.5	8.5	
	300	0.5	0.6	0.9	2.6	4.6	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LCl controller is used and may vary depending on the driver capacity.

Switch Internal Circuit

Blue lead wire

[^15]
How to Order

Specifications

Standard stroke		mm	200	300	400	500	600	800	1000	1200	1500
Performance	Body weight (without motor)	kg	13.3	15.1	16.9	18.7	20.4	24.6	28.6	32.2	37.6
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)								
	Work load	kg	20								
	Maximum speed	mm / s	300								
	Positioning repeatability	mm	± 0.1								
Main parts	Motor		AC servomotor (200W)								
	Encoder		Incremental system								
	Lead screw		Slide screw ø25mm, 20 mm lead								
	Guide		Slider guide								
	Motor/Screw connection		With coupling								
Switch	Model		D-Y7GL								
	Specifications		Control	ower sup ut: Op	y volt ollect	$4.5 \text { to } 2$ oad cur	$\begin{aligned} & \mathrm{DC}, \mathrm{C} \\ & \mathrm{t}: 40 \mathrm{~m} \end{aligned}$	t cons less,	ption: 1 nal volt	or les drop:	or less

Immediate strokes
Strokes other than the standard strokes above are available by special order. Consult SMC.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	26.6
Rolling	40.2
Yawing	25.8

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 145 for deflection data.

Dimensions/LJ1S30 \square 3 \square SC(X10)

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)	1	10	100	750	1500		
	10	0.5	2.1	11.1	76.1	151.1	
	100	1.1	1.2	2.1	8.6	16.1	
	250	1.1	1.2	1.6	4.2	7.2	
	500	1.1	1.2	1.5	2.8	4.3	

* Values will vary slightly depending on the operating conditions.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	200	$100 / 115$		MSD021P1E
		MSM022P1A	MSD023P1E	
Mitsubishi Electric Corporation	200	$100 / 115$	HC-PQ23	MR-C20A1
		MR-C20A		
Yaskawa Electric Corporation	200	$100 / 115$	SGME-02BF12	SGDE-02BP
		SGME-02AF12	SGDE-02AP	

* For motor mounting dimensions, refer to the dimensions for series LJ 1 S 30 on page 143 as a reference for mounting and design.
* Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

Switch Internal Circuit

D-Y7GL

Series LJ1 Options

T-nuts for mounting electric actuators

Use T-nuts for T-slot mounting of an actuator. When mounting by means of T-nuts alone, the quantity of nuts indicated below should be used as a minimum.

Model LJ1-T8 (Weight 8.4 g)

T-nut quantity

Model	Quantity
LJ1 ${ }_{\text {S10 }}$	200mm stroke or less: 6 pcs.
	300 mm stroke or more: 8 pcs.
LJ1 ${ }_{\mathrm{S}}{ }_{2} 0$	8 pcs.
LJ1 ${ }_{S} 30$	8 pcs.

* Only series LJ1s 10 has the T-nuts built into the body.

Non-standard Motor Cables
These are cables for connecting non-standard motors and drivers.
Cable lengths other than those shown below should be arranged by the customer.

Applicable cables
LJ1 (non-standard motor), LXP/LXS (AC servomotor)

Model	Manufacturer part no.
LJ1-1-G05*1	MFMCA0050AEB (for motor) MFECA0050EAB (for encoder)
LJ1-1-G05B	MFECA0050FAB (for motor) MFMCA0050AEB (for encoder) MFMCB0050CET (for brake)
LJ1-1-R05	(for motor)*2 MR-JCCBL5M (for encoder)
LJ1-1-Y05*3	DP9320081-2 (for motor) DP9320089-2 (for encoder)
LJ1-1-Y05B	DP9320083-2 (for motor/brake) DP9320089-2 (for encoder)

LXF (AC servomotor by Mitsubishi Electric Corporation)

Model	Manufacturer part no.
LJ1-1-RJ-05	MR-JRCBL5M-H (motor/encoder/brake)

*1 When the Matsushita Electric Industrial Co., Ltd. motor driver is selected, in addition to the cable, a power connector (MOLEX 5569 - 10R) and an interface connector (Sumitomo/3-M Limited 10126-3000VE) are also required.
*2 A cable is not provided for the Mitsubishi Electric Corporation motor and brake, and therefore, the customer should arrange a 4 core, $0.75 \mathrm{~mm}^{2}$ electric cable.
*3 When the Yaskawa Electric Corporation motor driver is selected, a digital operator and PC are required for selecting the various parameters.
Please refer to the technical literature of each manufacturer for further details.

Non-standard Motor Driver

Regenerative Absorption Unit/Regenerative Resistor
This is a regenerative absorption unit and regenerative resistor for a nonstandard motor. Make a selection providing an allowance beyond the calculated capacity.
How to order
LJ1-7- G
Compatible model

G	Matsushita Electric Industrial Co., Ltd.
\mathbf{R}	Mitsubishi Electric Corporation
\mathbf{Y}	Yaskawa Electric Corporation

Applicable types

LJ1 (non-standard motor), LXP/LXS (AC servomotor)

Model	Manufacturer part no.
LJ1-7-G	DVO P0820
LJ1-7-R	MR-RB013
LJ1-7-Y	JUSP-RG08

LJ1-7-G/Matsushita Electric Industrial Co., Ltd.

LJ1-7-R/Mitsubishi Electric Corporation

LJ1-7-Y/Yaskawa Electric Corporation

Electric Actuator Series LJ1H/LJ1S Made to Order Specifications

Clean room specification (-X60)
LJ1H 10/20/30 (Horizontal mount/Vertical mount) - Page 104
Dust seal specification (-X70)
LJ1H 10/20/30 (Horizontal mount/Vertical mount) 110
LJ1S 10/20/30 (Horizontal mount) 116
TSUBAKI CABLEVEYOR specification (-X40) LJ1H 10/20/30 (Horizontal mount) 122
LJ1S 10/20/30 (Horizontal mount) 128

Clean Room Specification (-X60)

Change of materials, anti-corrosive treatment, use of a special grease, and vacuum cleaning of the inside of the actuator allow operation in a clean room.

Particulate Generation Performance

Test method

An actuator was placed inside a clean bench and particle concentration was measured at each neighboring point.

Test environment:	<Clean bench> Nippon Airtek: VS-1603L
	<Size> \times L $\times H=620 \mathrm{~mm} \times 1550 \mathrm{~mm} \times 730 \mathrm{~mm}$
	<Clean level F Fed--st class 10
	<Down flow velocity> Approx. $0.3 \mathrm{~m} / \mathrm{s}$

Actuator placement and test points

Vacuuming Graphs

Grease Application Areas

Caution

(1) Maintenance of the greased parts of the dust seal is necessary.
With this specification, a vacuum grease is applied to the sliding parts of the dust seal in order to prevent particulate generation. Maintenance should be performed at $4000 \mathrm{~km}, 4$ million reciprocations or within 6 months, whichever occurs first.
Specified grease: Barrierta IEL/V [fluorine grease (70g) for vacuum equipment manufactured by NOK Kluber]
(2) A down flow environment with a flow velocity of $0.3 \mathrm{~m} / \mathrm{s}$ or more is required.
The particulate generation performance of this specification has been tested in the environment shown on the left.

Dust Seal Specification (-X70)

The dust seal (dust cover) prevents the entry of dust, paper dust and scraps, etc.

TSUBAKI CABLEVEYOR Specification (-X40)

Dust Cover

Note 1) Dust seal material: Polyurethane
Consult SMC for details.
Note 2) Measures for use in an mist environment are not provided.
Also, depending on the environment, it may not be possible to use the dust seal. Consult SMC.

Able to compactly arrange supporting guides for cables and hoses.

Construction

Parts list

No.	Description	Material	Note
$\mathbf{1}$	TSUBAKI CABLEVEYOR	-	-
2	Cable side cover	Aluminum alloy	-
3	Mounting plate	Aluminum alloy	-
4	Cable flange	Aluminum alloy	-
5	End cap	EP	-

Precautions on handling of the TSUBAKI CABLEVEYOR

1. When handling, connecting or disconnecting the TSUBAKI CABLEVEYOR:

- Wear suitable clothing and appropriate protective gear (safety glasses, gloves, safety shoes, etc.).
- Use suitable tools.
- Provide support so that the TSUBAKI CABLEVEYOR and parts do not move freely.

2. Implement protective measures (safety cover, etc.).
3. Be sure to turn off the power and ensure that it cannot be turned on accidentally before installation, removal or maintenance of the equipment.
4. In order to prevent secondary accidents, put the surrounding area in good order and operate under safe conditions.
5. The total cross-sectional area of the cable inserted into the TSUBAKI CABLEVEYOR should be no more than 60% of the TSUBAKI CABLEVEYOR cross-sectional area.
6. The minimum clearance between the cable and TSUBAKI CABLEVEYOR internal width should be "the larger of 10% of the cable O.D. or 2 mm ".

TSUBAKI CABLEVEYOR

Example) For LJ1 ${ }_{S}^{\mathrm{H}} 10$

Correct: 60\% or less cross-sectional dimensions

(mm)		
Series	A	B
LJ1 ${ }_{\mathrm{s}} \mathbf{H} \mathbf{1 0}$	10	20
LJ1 ${ }_{\mathrm{s}} \mathbf{2} \mathbf{2 0}$	10	20
LJ1 ${ }_{\mathbf{S}} \mathbf{H} \mathbf{3 0}$	14	40

Incorrect: More than 60\%

How to Order

	Standard motor	Non-standard motor
$\mathbf{1}$	$100 / 110 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$	$100 / 115 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$
$\mathbf{2}$	$200 / 220 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$	$200 / 230 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$
$\mathbf{0}$	-	Without motor

$$
\begin{aligned}
& \text { Lead screw type } \\
& \text { Refer to Table (1) to the right. } \\
& \begin{array}{|c|l|}
\hline \mathbf{P} & \text { Ground ball screw } \\
\hline \mathbf{N} & \text { Rolled ball screw } \\
\hline
\end{array}
\end{aligned}
$$

Specifications

Table (1) Lead screw/Lead/Stroke combinations

Model	Stroke (mm)				
	100	200	300	400	500
LJ1H10 $\square 1 \square$ PB-Stroke-F \square-X60	\bullet	\bullet	\bullet	\bullet	\bullet
LJ1H10 $\square 1 \square$ NB-Stroke-F \square-X60	\bullet	\bullet	\bullet	\bullet	\bullet
LJ1H10 \square 2 \square PH-Stroke K-F \square-X60	\bullet	\bullet	\bullet	\bullet	\bullet
LJ1H10 $\square 2 \square$ NH-Stroke $\mathrm{K}-\mathrm{F} \square$-X60	\bullet	\bullet	\bullet	\bullet	\bullet
LJ1H10 $\square 2 \square$ PB-Stroke $\mathrm{K}-\mathrm{F} \square$-X60	\bullet	\bullet	\bullet	\bullet	\bullet
LJ1H10 \square 2 \square NB-Stroke $\mathrm{K}-\mathrm{F} \square$-X60	\bullet	\bullet	\bullet	\bullet	\bullet

Standard stroke mm						100	200	300	400	500		
Weight kg		Without brake	With motor (standard)			5.4	6.2	7.0	7.7	8.5		
		Without motor (non-standard)	5.0	5.8	6.6	7.3	8.1					
		With brake bre	With motor (standard)			5.9	6.7	7.5	8.2	9.0		
		Without motor (non-standard)	5.5	6.3	7.1	7.8	8.6					
Operating temperature range ${ }^{\circ} \mathrm{C}$						5 to 40 (with no condensation)						
Work load kg			${ }_{\text {Horizontal }}^{\text {Hpecification }}$		12 mm lead	50W	10					
		Vertical specification		12 mm lead	100W	5						
		8 mm lead	100W			10						
Maximum speed mm / s				$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { Hperizontal } \\ \text { specifation } \end{array}$		12 mm lead	50W	600				
		Vertical specification		12 mm lead	100W	600						
		8 mm lead	100W	400								
Positioning repeatability mm				Rolled ball screw				± 0.05				
		Ground ball screw				± 0.02						
Motor output		Horizontal specification				AC servomotor (50W)						
		Vertical specification				AC servomotor (100W) with brake						
Lead screw	Black chroming	Horizontal specification	Rolled ball screw			$\varnothing 12 \mathrm{~mm}, 12 \mathrm{~mm}$ lead						
			Ground ball screw			$\varnothing 12 \mathrm{~mm}, 12 \mathrm{~mm}$ lead						
	coating and grease	Vertical specification	Rolled ball screw			$\varnothing 12 \mathrm{~mm}, 12 \mathrm{~mm} / 8 \mathrm{~mm}$ lead						
	application			ound ball sc	crew	$\varnothing 12 \mathrm{~mm}, 12 \mathrm{~mm} / 8 \mathrm{~mm}$ lead						
Guide						High rigidity direct acting guide, Stainless steel rail, AFE grease (made by THK) applied						
Switch						Power supply voltage: 4.5 to 28 VDC , Current consumption: 10 mA or less Control output: Open collector, Load current: 40 mA or less, Internal voltage drop: 1.5 V or less						
Table specification						With dust seal						
Grease for dust seal application						Fluorine grease for vacuum equipment made by NOK Kluber						
Grease maintenance schedule						Traveling distance of $4000 \mathrm{~km}, 4$ million reciprocations, or operation period of 6 months, whichever comes first						
Vacuum suction port						Rc $1 / 4$, one each on both axial surfaces Seal the unused port with a plug.						
Suction flow rate						$501 / \mathrm{min}$ (ANR)						

For basic specifications such as allowable moment, refer to the "Standard motor" pages for equivalent products listed on Features pages 1 and 2.

Dimensions/LJ1H10 $\square 2$ (X60)

Scale: 20\%

* The body mounting reference plane should be used as a standard when mounting onto equipment. Refer to pages starting with 140 for mounting.

Compatible Motors

Manufacturer	Motor specification symbol	Brake	Motor output (W)	Power supply voltage (VAC)	Motor model	Controller driver model*
$\begin{gathered} \text { SMC } \\ \text { controller } \\ \text { LC1 compatible } \end{gathered}$	Nil	Without brake (Horizontal specification)	50	100/110	-	LC1-1B1H1- $\square \square$
				200/220	-	LC1-1B1H2- $\square \square$
		With brake (Vertical specification)	100	100	-	LC1-1B1V $\square 1-\square \square$
				200	-	LC1-1B1V \square 2- $\square \square$
Non-standard Matsushita Electric Industrial Co., Ltd. motor	G	Without brake (Horizontal specification)	50	100/115	MSM5AZP1A	MSD5A1P1E
				200/230		MSD5A3P1E
		With brake (Vertical specification)	100	100/115	MSM011P1B	MSD011P1E
				200/230	MSM012P1B	MSD013P1E
Non-standard Mitsubishi Electric Corporation motor	R	Without brake (Horizontal specification)	50	100/115	HC-PQ053	MR-C10A1
				200/230		MR-C10A
		With brake (Vertical specification)	100	100/115	HC-PQ13B	MR-C10A1
				200/230		MR-C10A
Non-standard Yaskawa Electric Corporation motor	Y	Without brake (Horizontal specification)	50	100/115	SGME-A5BF12	SGDE-A5BP
				200/230	SGME-A5AF12	SGDE-A5AP
		With brake (Vertical specification)	100	100/115	SGME-01BF12B	SGDE-01BP
				200/230	SGME-01AF12B	SGDE-01AP

[^16]27 (82)

T-slot 1 dimensions (switch groove)

T-slot 2 dimensions
Switch Internal Circuit
D-Y7GL

LX

Blue lead wire

How to Order

For basic specifications such as allowable moment, refer to the "Standard motor" pages for equivalent products listed on Features
pages 1 and 2 . pages 1 and 2.

Dimensions/LJ1H20 $\square 2$ (X60)

When two dimensions are shown, the top dimension is for 100 to 600 mm strokes,
Scale: 15\% and the bottom dimension is for 700 to 1200 mm strokes.

T-slot 2 dimensions
Switch Internal Circuit
D-Y7GL

* The body mounting reference plane should be used as a standard when mounting onto equipment.

Compatible Motors

Manufacturer	Motor specification symbol	Brake	Motor output (W)	Power supply voltage (VAC)	Motor model	Controller driver model*
SMC controller LC1 compatible	Nil	Without brake (Horizontal specification)	100	100/110	-	LC1-1B2H1- $\square \square$
				200/220		LC1-1B2H2- $\square \square$
		With brake (Vertical specification)	100	100		LC1-1B2V $\square 1-\square \square$
				200		LC1-1B2V \square 2-
Non-standard Matsushita Electric Industrial Co., Ltd. motor	G	Without brake (Horizontal specification)	100	100/115	MSM011P1A	MSD011P1E
				200/230	MSM012P1A	MSD013P1E
		With brake (Vertical specification)	100	100/115	MSM011P1B	MSD011P1E
				200/230	MSM012P1B	MSD013P1E
Non-standard Mitsubishi Electric Corporation motor	R	Without brake (Horizontal specification)	100	100/115	HC-PQ013	MR-C10A1
				200/230		MR-C10A
		With brake (Vertical specification)	100	100/115	HC-PQ13B	MR-C10A1
				200/230		MR-C10A
Non-standard Yaskawa Electric Corporation motor	Y	Without brake (Horizontal specification)	100	100/115	SGME-01BF12	SGDE-01BP
				200/230	SGME-01AF12	SGDE-01AP
		With brake (Vertical specification)	100	100/115	SGME-01BF12B	SGDE-01BP
				200/230	SGME-01AF12B	SGDE-01AP

[^17]
How to Order

For basic specifications such as allowable moment, refer to the "Standard motor" pages for equivalent products listed on Features pages 1 and 2.

Dimensions/LJ1H30 $\square \mathbf{3}$ (X60)

Dimensions inside () are for the model with brake.

Scale: 15\%

$$
\begin{aligned}
& \text { T-slot } 1 \text { dimensions } \\
& \text { (Switch groove) }
\end{aligned}
$$

T-slot 2 dimensions

Switch Internal Circuit

D-Y7GL

x7

LC6D/LC6C Switches

Compatible Motors

Manufacturer	$\begin{array}{\|c\|} \hline \text { Motor } \\ \text { specification } \\ \text { symbol } \end{array}$	Brake	Motor output (W)	Power supply voltage (VAC)	Motor model	Controller driver model*
SMC controller LC1 compatible	Nil	Without brake (Horizontal specification)	200	100/110	-	LC1-1B3H1- $\square \square$
				200	-	LC1-1B3H2- $\square \square$
		With brake (Vertical specification)	200	100	-	LC1-1B3VA1- $\square \square$
				200	-	LC1-1B3VA2- $\square \square$
Non-standard Matsushita Electric Industrial Co., Ltd. motor	G	Without brake (Horizontal specification)	200	100/115	MSM021P1A	MSD021P1E
				200/230	MSM022P1A	MSD023P1E
		With brake (Vertical specification)	200	100/115	MSM021P1B	MSD021P1E
				200/230	MSM022P1B	MSD023P1E
Non-standard Mitsubishi Electric Corporation motor	R	Without brake (Horizontal specification)	200	100/115	HC-PQ23	MR-C20A1
				200/230		MR-C20A
		With brake (Vertical specification)	200	100/115	HC-PQ23B	MR-C20A1
				200/230	HC-PQ23B	MR-C20A
Non-standard Yaskawa Electric Corporation motor	Y	Without brake (Horizontal specification)	200	100/115	SGME-02BF12	SGDE-02BP
				200/230	SGME-02AF12	SGDE-02AP
		With brake (Vertical specification)	200	100/115	SGME-02BF12B	SGDE-02BP
				200/230	SGME-02AF12B	SGDE-02AP

* Refer to pages starting with 205 for driver dimensions. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.
* The body mounting reference plane should be used as a standard when mounting onto equipment.

Refer to pages starting with 140 for mounting.

How to Order

Standard stroke mm					100	200	300	400	500	600	700	800	900	1000	
Weight kg	Ball screw	Without brake	With motor		5.4	6.2	7.0	7.7	8.5	-	-	-	-	-	
			Without m	motor	5.0	5.8	6.6	7.3	8.1	-	-	-	-	-	
		With brake	With motor		5.9	6.7	7.5	8.2	9.0	-	-	-	-	-	
			Without motor		5.5	6.3	7.1	7.8	8.6	-	-	-	-	-	
	Slide screw	Without brake	With motor Without motor		5.3	6.2	7.2	8.0	8.8	9.7	10.5	11.3	12.2	13.0	
					4.9	5.8	6.8	7.6	8.4	9.3	10.1	10.9	11.8	12.6	
Operating temperature range ${ }^{\circ} \mathrm{C}$					5 to 40 (with no condensation)										
Work load kg		Horizontal specification	12 mm lead 50 W		10										
		$\begin{array}{c\|c} 20 \mathrm{~mm} \text { lead } & 50 \mathrm{~W} \\ \hline 12 \mathrm{~mm} \text { lead } & 100 \mathrm{~W} \\ \hline \end{array}$		10											
		Vertical specification	5					-							
		8 mm lead 100W	10					-							
Maximum speed mm / s			Horizontal specification	12 mm lead	50W	600									
		20 mm lead		50W	500										
		Vertical specification	12 mm lead	100W	600					-					
		8mm lead	100W	400					-						
Positioning repeatability mm						± 0.05									
		Ground ball screw			± 0.02										
		Slide screw			± 0.1										
Motor output		Horizontal specification			AC servomotor (50W)										
		Vertical specification			AC servomotor (100W) with brake										
Lead screw		Horizontal specification Rolled ball screw			$\varnothing 12 \mathrm{~mm}, 12 \mathrm{~mm}$ lead										
		ه12mm, 12 mm lead													
		Vertical specification	Rolled ball screw		ø12mm, $12 \mathrm{~mm} / 8 \mathrm{~mm}$ lead					-					
		Ground ball screw	ø12mm, $12 \mathrm{~mm} / 8 \mathrm{~mm}$ lead					-							
Guide					High rigidity direct acting guide										
Switch					Power supply voltage: 4.5 to 28 VDC, Current consumption: 10 mA or less Control output: Open collector, Load current: 40 mA or less, Internal voltage drop: 1.5 V or less										
Table specification					With dust seal										
Grease for dust seal application					Special lubricant										

For basic specifications such as allowable moment, refer to the "Standard motor" pages for equivalent products listed on Features pages 1 and 2.

Dimensions/LJ1H10 \square_{2}^{1} (X70)
Dimensions inside () are for the model with brake.
Scale: 20\%

4-Limit switch mounting groove
The two grooves at the bottom cannot be used.

* The body mounting reference plane should be used as a standard when mounting onto equipment. Refer to pages starting with 140 for mounting.

Compatible Motors

Manufacturer	Motor specification symbol	Brake	Motor output (W)	Power supply voltage (VAC)	Motor model	Controller driver model*
SMC controller LC1 compatible	Nil	Without brake (Horizontal specification)	50	100/110	-	LC1-1B1 $\square 1-\square \square$
				200/220	-	LC1-1B1 $\square 2-\square \square$
		With brake (Vertical specification)	100	100	-	LC1-1B1V $\square 1-\square \square$
				200	-	LC1-1B1V \square 2- $\square \square$
Non-standard Matsushita Electric Industrial Co., Ltd. motor	G	Without brake (Horizontal specification)	50	100/115	MSM5AZP1A	MSD5A1P1E
				200/230		MSD5A3P1E
		With brake (Vertical specification)	100	100/115	MSM011P1B	MSD011P1E
				200/230	MSM012P1B	MSD013P1E
Non-standard Mitsubishi Electric Corporation motor	R	Without brake (Horizontal specification)	50	100/115	HC-PQ053	MR-C10A1
				200/230		MR-C10A
		With brake (Vertical specification)	100	100/115	HCPO13B	MR-C10A1
				200/230	HC-PQ13B	MR-C10A
Non-standard Yaskawa Electric Corporation motor	Y	Without brake (Horizontal specification)	50	100/115	SGME-A5BF12	SGDE-A5BP
				200/230	SGME-A5AF12	SGDE-A5AP
		With brake (Vertical specification)	100	100/115	SGME-01BF12B	SGDE-01BP
				200/230	SGME-01AF12B	SGDE-01AP

* Refer to pages starting with 205 for driver dimensions. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

Switch Internal Circuit
D-Y7GL

How to Order

Standard stroke mm					100	200	300	400	500	600	700	800	900	1000	1200	
Weight kg	Ball screw	Without brake		With motor	7.9	9.1	10.3	11.4	12.8	13.9	15.1	16.3	17.5	18.7	-	
				Without motor	7.4	8.6	9.8	10.9	12.3	13.4	14.6	15.8	17.0	18.2	-	
		With brake		With motor	8.6	9.8	11.0	12.1	13.5	14.6	-	-	-	-	-	
				Without motor	8.1	9.3	10.5	11.6	13.0	14.1	-	-	-	-	-	
	Slide screw	Without brake		With motor	9.0	10.0	11.1	12.2	13.3	14.3	15.3	17.2	19.1	20.6	24.7	
				Without motor	7.5	8.5	9.6	10.8	12.3	13.8	16.3	16.8	18.6	20.4	24.2	
Operating temperature range ${ }^{\circ} \mathrm{C}$					5 to 40 (with no condensation)											
Work load kg		Horizontal specification	Ball screw	10 mm lead	30						-					
		20mm lead		-				15						-		
		Slide screw	20 mm lead 100 W	15												
		Vertical specification	Ball screw	5 mm lead	15						-					
		10 mm lead		8						-						
Maximum speed mm / s			Horizontal specification	Ball screw	10 mm lead	500						-				
		20 mm lead									930	740	600	500	-	
		Slide screw		10 mm lead 100 W	500											
		Vertical specification	Ball screw	5 mm lead	250						-					
		10 mm lead		500						-						
Positioning repeatability mm			Rolled ball screw			± 0.05										-
		Ground ball screw			± 0.02										-	
		Slide screw			± 0.1											
Motor output		Horizontal specification			AC servomotor (100W)											
		Vertical specification			AC servomotor (100W) with brake						-					
Lead screw		Horizontal specification	Rolled/Grand ball screw		$\varnothing 15 \mathrm{~mm}, 10 \mathrm{~mm}$ lead						-					
		-			$15 \mathrm{~mm}, 20 \mathrm{~mm}$ lead				-							
		Slide	screw	ø20mm, 20mm lead												
		Vertical specification	Rolled/Grand ball screw		$\varnothing 15 \mathrm{~mm}, 5 \mathrm{~mm}$ lead						-					
		$\varnothing 15 \mathrm{~mm}, 10 \mathrm{~mm}$ lead			-											
Guide					High rigidity direct acting guide											
Switch					Power supply voltage: 4.5 to 28VDC, Current consumption: 10 mA or less Control output: Open collector, Load current: 40 mA or less, Internal voltage drop: 1.5 V or less											
Table specifications					With dust seal											
Grease for dust seal application					Special lubricant											

For basic specifications such as allowable moment, refer to the "Standard motor" pages for equivalent products listed on Features pages 1 and 2.

Dimensions/LJ1H20 $\square 2$ (X70)

When two dimensions are shown, the top dimension is for $\mathbf{1 0 0}$ to $\mathbf{6 0 0 m m}$ strokes,
Scale: 15\% and the bottom dimension is for $\mathbf{7 0 0}$ to 1200 mm strokes.
Dimensions inside () are for the model with brake.

* The body mounting reference plane should be used as a standard when mounting onto equipment. Refer to pages starting with 140 for mounting.

T-slot 2 dimensions

Switch Internal Circuit

* Refer to pages starting with 205 for driver dimensions. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

How to Order

Specifications

For basic specifications such as allowable moment, refer to the "Standard motor" pages for equivalent products listed on Features pages 1 and 2.

Dimensions/LJ1H30 \square 3 (X70)
Dimensions inside () are for the model with brake.
Scale: 15\%

Work piece mounting reference plane*

* The body mounting reference plane should be used as a standard when mounting onto equipment. Refer to pages starting with 140 for mounting.

T-slot 2 dimensions
Switch Internal Circuit
D-Y7GL

X 7

LC6D/LC6C Switches

* Refer to pages starting with 205 for driver dimensions. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

How to Order

Specifications

Standard stroke mm		100	200	300	400	500	600	700	800	900	1000
Weight kg	With motor (Standard)	5.4	6.1	6.9	7.7	8.5	9.3	10.0	10.8	11.6	12.4
	Without motor (Non-standard)	5.0	5.7	6.5	7.3	8.1	8.9	9.6	10.4	11.2	12.0
Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)									
Work load kg		5									
Maximum speed mm/s		300									
Positioning repeatability mm		± 0.1									
Motor output		AC servomotor (50W)									
Lead screw		Slide screw ø20mm, 20 mm lead									
Guide		Slider guide									
Switch		Power supply voltage: 4.5 to 28 VDC, Current consumption: 10 mA or less Control output: Open collector, Load current: 40 mA or less, Internal voltage drop: 1.5 V or less									
Table specifications		With dust seal									
Grease for dust seal application		Special lubricant									

For basic specifications such as allowable moment, refer to the "Standard motor" pages for equivalent products listed on Features pages 1 and 2.

Dimensions/LJ1S10 \square 1SC (X70)

* The body mounting reference plane should be used as a standard when mounting onto equipment. Refer to pages starting with 140 for mounting.

Compatible Motors

Manufacturer	Motor specification symbo	Brake	Motor output (W)	$\begin{gathered} \text { Power supply } \\ \text { voltage } \\ \text { (VAC) } \end{gathered}$	Motor model	Controller driver model*
SMC controller LC1 compatible	Nil	Without brake (Horizontal specification)	50	100/110	-	LC1-1B1S1- $\square \square$
				200/220	-	LC1-1B1S2- $\square \square$
Non-standard Matsushita Electric Industrial Co., Ltd. motor	G	Without brake (Horizontal specification)	50	100/115	MSM5AZP1A	MSD5A1P1E
				200/230		MSD5A3P1E
Mon-standard Corporation motor	R	Without brake (Horizontal specification)	50	100/115	HC-PQ053	MR-C10A1
				200/230		MR-C10A
Non-standard Yaskawa Electric Corporation motor	Y	Without brake (Horizontal specification)	50	100/115	SGME-A5BF12	SGDE-A5BP
				200/230	SGME-A5AF12	SGDE-A5AP

* Refer to pages starting with 205 for driver dimensions. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

Switch Internal Circuit D-Y7GL

How to Order

Specifications

Standard stroke mm		100	200	300	400	500	600	700	800	900	1000	1200
Weight kg	With motor (Standard)	6.8	7.9	9.0	10.1	11.1	12.2	13.3	14.3	15.4	16.4	18.6
	Without motor (Non-standard)	6.3	7.4	8.5	9.6	10.7	11.7	12.8	13.8	14.9	15.9	18.1
Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)										
Work load kg		10										
Maximum speed mm/s		300										
Positioning repeatability mm		± 0.1										
Motor output		AC servomotor (100W)										
Lead screw		Slide screw $\varnothing 20 \mathrm{~mm}$, 20 mm lead										
Guide		Slider guide										
Switch		Power supply voltage: 4.5 to 28 VDC, Current consumption: 10 mA or less Control output: Open collector, Load current: 40 mA or less, Internal voltage drop: 1.5 V or less										
Table specifications		With dust seal										
Grease for dust seal application		Special lubricant										

For basic specifications such as allowable moment, refer to the "Standard motor" pages for equivalent products listed on Features pages 1 and 2.

Dimensions/LJ1S20 $\square \mathbf{2} \square$ SC (X70)

When two dimensions are shown, the top dimension is for $\mathbf{1 0 0}$ to 600 mm strokes,
Scale: 15\%
and the bottom dimension is for $\mathbf{7 0 0}$ to 1200 mm strokes.

Work piece mounting reference plane*

T-slo
(S

How to Order

Specifications

Standard stroke mm	200	300	400	500	600	800	1000	1200	1500
Weight kg ${ }^{\text {k }}$ (With motor (Standard)	14.4	16.2	18.0	19.8	21.5	25.7	29.7	33.3	38.7
Weight kg ${ }^{\text {W }}$ (Without motor (Non-standard)	13.3	15.1	16.9	18.7	20.4	24.6	28.6	32.2	37.6
Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)								
Work load kg	20								
Maximum speed mm/s	300								
Positioning repeatability mm	± 0.1								
Motor output	AC servomotor (200W)								
Lead screw	Slide screw ø25mm, 20mm lead								
Guide	Slider guide								
Switch	Power supply voltage: 4.5 to 28VDC, Current consumption: 10 mA or less Control output: Open collector, Load current: 40 mA or less, Internal voltage drop: 1.5 V or less								
Table specifications	With dust seal								
Grease for dust seal application	Special lubricant								

For basic specifications such as allowable moment, refer to the "Standard motor" pages for equivalent products listed on Features pages 1 and 2.

Dimensions/LJ1S30 \square 3 \square SC (X70)

Scale: 15\%

> Work piece mounting reference plane*

T-slot 1 dimensions (Switch groove)

* The body mounting reference plane should be used as a standard when mounting onto equipment. Refer to pages starting with 140 for mounting.

T-slot 2 dimensions

Compatible Motors

Manufacturer	Motor specification symbol	Brake	Motor output (W)	Power supply voltage (VAC)	Motor model	Controller driver model*
SMC controller LC1 compatible	Nil	Without brake (Horizontal specification)	200	100/110	-	LC1-1B3S1- $\square \square$
				200	-	LC1-1B3S2-■
Non-standard Matsus-hita Electric Industrial Co., Ltd. motor	G	Without brake (Horizontal specification)	200	100/115	MSM021P1A	MSD021P1E
				200/230	MSM022P1A	MSD023P1E
Non-standardMitsubishi Electric Corporation motor	R	Without brake (Horizontal specification)	200	100/115	HC-PQ023	MR-C20A1
				200/230		MR-C20A
Non-standardYaskawa Electric Corporation motor	Y	Without brake (Horizontal specification)	200	100/115	SGME-02BF12	SGDE-02BP
				200/230	SGME-02AF12	SGDE-02AP

* Refer to pages starting with 205 for driver dimensions. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

Switch Internal Circuit

D-Y7GL

How to Order

- entry directio
F
Axial
R
Right
L
Left
B
Top

$\mathbf{2}$	2 m
$\mathbf{3}$	3 m
$\mathbf{4}$	4 m
$\mathbf{5}$	5 m

Nil	None
W	N.C. (B contact) 2 pcs.

Cable/TSUBAKI CABLEVEYOR entry direction
Table (1) Lead screw/Lead/Stroke combinations

Model	Stroke (mm)									
	100	200	300	400	500	600	700	800	900	1000
LJ1H10 $\square 1 \square$ PB-Stroke $\square \square$-X40 \square	-	-	\bullet	\bullet	\bullet					
LJ1H10 $\square 1 \square$ NB-Stroke $\square \square$-X40 \square	\bullet	\bullet	\bullet	\bullet	\bullet					
LJ1H10 $\square 1 \square$ SC-Stroke $\square \square$-X40 \square	\bullet									

Specifications

Bottom entry

Standard stroke mm			100	200	300	400	500	600	700	800	900	1000
Weight kg	With motor (Standard)	Ball screw	6.0	6.9	7.9	8.7	9.6	-	-	-	-	-
		Slide screw	6.1	7.1	8.3	9.2	10.1	11.1	12.0	13.0	14.0	14.9
	Without motor (Non-Standard)	Ball screw	5.6	6.5	7.5	8.3	9.2	-	-	-	-	-
		Slide screw	5.7	6.7	7.9	8.8	9.7	10.7	11.6	12.6	13.6	14.5
Mounting orientation			Horizontal									
Operating temperature range ${ }^{\circ} \mathrm{C}$			5 to 40 (with no condensation)									
Work load kg	Ball screw	12 mm lead	10					-				
	Slide screw	20mm lead	10									
Maximum speed mm / s	Ball screw	12 mm lead	600					-				
	Slide screw	20mm lead	500									
Positioning repeatability mm	Rolled ball screw		± 0.05					-				
	Ground ball screw		± 0.02					-				
	Slide screw		± 0.1									
Motor output			AC servomotor (50W)									
Lead screw	Rolled ball screw		$ø 12 \mathrm{~mm}, 12 \mathrm{~mm}$ lead					-				
	Ground ball screw							-				
	Slide screw		ø20mm, 20mm lead									
Guide			High rigidity direct acting guide									
Switch			Power supply voltage: 4.5 to 28VDC, Current consumption: 10 mA or less Control output: Open collector, Load current: 40 mA or less, Internal voltage drop: 1.5 V or less									
TSUBAKI CABLEVEYOR			TKP0130-2BR18 manufactured by TSUBAKIMOTO CHAIN CO.									
Side cover			Cover with switch groove									

For basic specifications such as allowable moment, refer to the "Standard motor" pages for equivalent products listed on Features pages 1 and 2.

Dimensions/LJ1H10 $\square 1$ (X40)

. Dimensions other than those shown in the drawing are the same as standard.

* This drawing shows the TSUBAKI CABLEVEYOR with left hand entry.

Compatible Motors

Manufacturer	Motor specification symbol	Brake	Motor output (W)	Power supply voltage (VAC)	Motor model	Controller driver model
SMC controller LC1 compatible	Nil	Without brake (Horizontal specification)	50	100/110	-	LC1-1B1 $\square 1-\square \square$
				200/220	-	LC1-1B1 $\square 2-\square \square$
Non-standard Matsushita Electric Industrial Co., Ltd. motor	G	Without brake (Horizontal specification)	50	100/115	MSM5AZP1A	MSD5A1P1E
				200/230		MSD5A3P1E
Non-standard Mitsubishi Electric Corporation motor	R	Without brake (Horizontal specification)	50	100/115	HC-PQ053	MR-C10A1
				200/230		MR-C10A
Non-standard Yaskawa Electric Corporation motor	Y	Without brake (Horizontal specification)	50	100/115	SGME-A5BF12	SGDE-A5BP
				200/230	SGME-A5AF12	SGDE-A5AP

[^18]

Work piece mounting dimensions

Switch Internal Circuit
D-Y7GL

How to Order

Specifications

Standard stroke mm			100	200	300	400	500	600	700	800	900	1000	1200
Weight kg	With motor (Standard)	Ball screw	8.7	9.9	11.1	12.3	13.5	14.7	15.9	17.1	18.3	19.5	-
		Slide screw	10.0	11.2	12.4	13.6	14.8	16.0	17.2	18.4	19.6	20.8	23.2
	Without motor (Non-Standard)	Ball screw	8.2	9.4	10.6	11.8	13.0	14.2	15.4	16.6	17.8	19.0	-
		Slide screw	9.5	10.7	11.9	13.1	14.3	15.5	16.7	17.9	19.1	20.3	22.7
Mounting orientation			Horizontal										
Operating temperature range ${ }^{\circ} \mathrm{C}$			5 to 40 (with no condensation)										
Work load kg	Ball screw	10 mm lead	30						-				
		20 mm lead	-				15						-
	Slide screw	20 mm lead	15										
Maximum speed mm / s	Ball screw	10mm lead	500						-				
		20 mm lead	-				1000		930	740	600	500	-
	Slide screw	20 mm lead	500										
Positioning repeatability mm	Rolled ball screw							± 0.05					
	Ground ball screw		± 0.02										
	Slide screw		± 0.1										
Motor output			AC servomotor (100W)										
Lead screw	Rolled ball screw		$\varnothing 15 \mathrm{~mm}, 10 \mathrm{~mm}$ lead						-				
	Ground ball screw		-				$\varnothing 15 \mathrm{~mm}, 20 \mathrm{~mm}$ lead						-
	Slide screw		ø20mm, 20 mm lead										
Guide			High rigidity direct acting guide										
Switch			Power supply voltage: 4.5 to 28 VDC, Current consumption: 10 mA or less Control output: Open collector, Load current: 40 mA or less, Internal voltage drop: 1.5 V or less										
TSUBAKI CABLEVEYOR			TKP0130-2BR28 manufactured by TSUBAKIMOTO CHAIN CO.										
Side cover			Cover with switch groove										

For basic specifications such as allowable moment, refer to the "Standard motor" pages for equivalent products listed on Features pages 1 and 2.

Dimensions/LJ1H20 $\square \mathbf{2}$ (X40)

Dimensions other than those shown in the drawing are the same as standard.
Scale: 25\%

Work piece mounting dimensions

* This drawing shows the TSUBAKI CABLEVEYOR with left hand entry.

Switch Internal Circuit

Compatible Motors

Manufacturer	Motor specification symbol	Brake	Motor output (W)	Power supply voltage (VAC)	Motor model	Controller driver model*
SMC controller LC1 compatible	Nil	Without brake (Horizontal specification)	100	100/110	-	LC1-1B2 $\square 1-\square \square$
				200/220	-	LC1-1B2 $\square 2-\square \square$
Non-standard Matsushita Electric Industrial Co., Ltd. motor	G	Without brake (Horizontal specification)	100	100/115	MSM011P1A	MSD011P1E
				200/230	MSM012P1A	MSD013P1E
Non-standard Mitsubishi Electric Corporation motor	R	Without brake (Horizontal specification)	100	100/115	HC-PQ13	MR-C10A1
				200/230		MR-C10A
Non-standard Yaskawa Electric Corporation motor	Y	Without brake (Horizontal specification)	100	100/115	SGME-01BF12	SGDE-01BP
				200/230	SGME-01AF12	SGDE-01AP

[^19]
How to Order

Power supply voltage TSUBAKI CABLEVEYOR
TSUBAKI - entry direction

\qquad | L | Left |
| :---: | :---: |
| R | Right |

Cable entry direction		Standard motor cable length	
		2	2 m
		3	3 m
F	Axial	4	4 m
R	Right	5	5 m

- Non-standard motor switch

	Standard motor	Non-standard motor
$\mathbf{1}$	$100 / 110 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$	$100 / 115$ VAC $(50 / 60 \mathrm{~Hz})$
$\mathbf{2}$	$200 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$	$200 / 230 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$
$\mathbf{0}$	-	Without motor

Lead screw type

\mathbf{P}	Ground ball screw
\mathbf{N}	Rolled ball screw
\mathbf{S}	Slide screw

Nil	None
W	N.C. (B contact) 2 pcs.

Cable/TSUBAKI CABLEVEYOR entry direction

Bottom entry

Standard stroke mm			200	300	400	500	600	800	1000	1200	1500
Weight kg	With motor (Standard)	Ball screw	17.5	19.7	21.9	24.1	26.2	31.1	36.0	40.3	46.9
		Slide screw	16.4	18.7	20.9	23.2	25.4	29.9	34.5	39.0	45.8
	Without motor (Non-Standard)	Ball screw	16.4	18.6	20.8	23.0	25.1	30.0	34.9	39.2	45.8
		Slide screw	15.3	17.6	19.8	22.1	24.3	28.8	33.4	37.8	44.7
Mounting orientation			Horizontal								
Operating temperature range ${ }^{\circ} \mathrm{C}$			5 to 40 (with no condensation)								
Work load kg	Ball screw	25 mm lead	60								
	Slide screw	40 mm lead	30								
Maximum speed mm / s	Ball screw	25 mm lead	1000							700	500
	Slide screw	40 mm lead	500								
Positioning repeatability mm	Rolled ball screw		± 0.05								
	Ground ball screw		± 0.02								
	Slide screw		± 0.1								
Motor output			AC servomotor (200W)								
Lead screw	Rolled ball screw		ø25mm, 25 mm lead								
	Ground ball screw										
	Slide screw		$\varnothing 30 \mathrm{~mm}, 40 \mathrm{~mm}$ lead								
Guide			High rigidity direct acting guide								
Switch			Power supply voltage: 4.5 to 28 VDC, Current consumption: 10 mA or less Control output: Open collector, Load current: 40 mA or less, Internal voltage drop: 1.5 V or less								
TSUBAKI CABLEVEYOR			TKP0180-2BR28 manufactured by TSUBAKIMOTO CHAIN CO.								
Side cover			Cover with switch groove								

For basic specifications such as allowable moment, refer to the "Standard motor" pages for equivalent products listed on Features pages 1 and 2.

Dimensions/LJ1H30 $\square \mathbf{3}$ (X40)

Dimensions other than those shown in the drawing are the same as standard.

Work piece mounting dimensions

* This drawing shows the TSUBAKI CABLEVEYOR with left hand entry.

Switch Internal Circuit

Compatible Motors

Manufacturer	Motor specification symbol	Brake	Motor output (W)	Power supply voltage (VAC)	Motor model	Controller driver model*
SMC controller LC1 compatible	Nil	Without brake (Horizontal specification)	200	100/110	-	LC1-1B3 $\square 1-\square \square$
				200	-	LC1-1B3 $\square 2-\square \square$
Non-standard Matsushita Electric Industrial Co., Ltd. motor	G	Without brake (Horizontal specification)	200	100/115	MSM021P1A	MSD021P1E
				200/230	MSM022P1A	MSD023P1E
Non-standard Mitsubishi Electric Corporation motor	R	Without brake (Horizontal specification)	200	100/115	HC-PQ23	MR-C20A1
				200/230		MR-C20A
Non-standard Yaskawa Electric Corporation motor	Y	Without brake (Horizontal specification)	200	100/115	SGME-02BF12	SGDE-02BP
				200/230	SGME-02AF12	SGDE-02AP

[^20]
D-Y7GL

How to Order

Stroke
Lead screw type: Slide screw
Lead screw lead: 20mm

$\mathbf{1 0 0}$	100 mm
$\mathbf{2 0 0}$	200 mm
$\mathbf{3 0 0}$	300 mm
$\mathbf{4 0 0}$	400 mm
$\mathbf{5 0 0}$	500 mm
$\mathbf{6 0 0}$	600 mm
$\mathbf{7 0 0}$	700 mm
$\mathbf{8 0 0}$	800 mm
$\mathbf{9 0 0}$	900 mm
$\mathbf{1 0 0 0}$	1000 mm

Cable/TSUBAKI CABLEVEYOR entry direction

Bottom entry

Specifications

For basic specifications such as allowable moment, refer to the "Standard motor" pages for equivalent products listed on Features pages 1 and 2.

Dimensions/LJ1S10 $\square 1 \square$ SC (X40)

Dimensions other than those shown in the drawing are the same as standard.

* This drawing shows the TSUBAKI CABLEVEYOR with left hand entry.

Compatible Motors

Manufacturer	$\begin{array}{c\|} \text { Motor } \\ \text { specification } \\ \text { symbol } \end{array}$	Brake	Motor output (W)	Power supply voltage (VAC)	Motor model	Controller driver model*
SMC controller LC1 compatible	Nil	Without brake (Horizontal specification)	50	100/110	-	LC1-1B1S1- $\square \square$
				200/220	-	LC1-1B1S2- $\square \square$
Non-standard Matsushita Electric Industrial Co., Ltd. motor	G	Without brake (Horizontal specification)	50	100/115	MSM5AZP1A	MSD5A1P1E
				200/230		MSD5A3P1E
Non-standard Mitsubishi Electric Corporation motor	R	Without brake (Horizontal specification)	50	100/115	HC-PQ053	MR-C10A1
				200/230		MR-C10A
Non-standard Yaskawa Electric Corporation motor	Y	Without brake (Horizontal specification)	50	100/115	SGME-A5BF12	SGDE-A5BP
				200/230	SGME-A5AF12	SGDE-A5AP

* Refer to pages starting with 205 for driver dimensions. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

Work piece mounting dimensions

Scale: 20\%

Switch Internal Circuit

D-Y7GL

How to Order

Standard stroke mm		100	200	300	400	500	600	700	800	900	1000	1200
Weight kg	With motor (Standard)	7.8	9.0	10.3	11.5	12.6	13.8	15.0	16.2	17.4	18.5	20.9
	Without motor (Non-Standard)	7.3	8.5	9.8	11.0	12.1	13.3	14.5	15.7	16.9	18.0	20.4
Mounting orientation		Horizontal										
Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)										
Work load kg		10										
Maximum speed mm/s		300										
Positioning repeatability mm		± 0.1										
Motor output		AC servomotor (100W)										
Lead screw		$ø 20 \mathrm{~mm}, 20 \mathrm{~mm}$ lead										
Guide		Slide guide										
Switch		Power supply voltage: 4.5 to 28 VDC , Current consumption: 10 mA or less Control output: Open collector, Load current: 40 mA or less, Internal voltage drop: 1.5 V or less										
TSUBAKI CABLEVEYOR		TKP0130-2BR28 manufactured by TSUBAKIMOTO CHAIN CO.										
Side cover		Cover with switch groove										

For basic specifications such as allowable moment, refer to the "Standard motor" pages for equivalent products listed on Features pages 1 and 2.

Dimensions/LJ1S20 $\square \mathbf{2} \square$ SC (X40)

Dimensions other than those shown in the drawing are the same as standard.

* This drawing shows the TSUBAKI CABLEVEYOR with left hand entry.

Compatible Motors

Manufacturer	Motor specification symbol	Brake	Motor output (W)	Power supply voltage (VAC)	Motor model	Controller driver model
SMC controller LC1 compatible	Nil	Without brake (Horizontal specification)	100	100/110	-	LC1-1B2S1- $\square \square$
				200/220	-	LC1-1B2S2- $\square \square$
Non-standard Matsushita Electric Industrial Co., Ltd. motor	G	Without brake (Horizontal specification)	100	100/115	MSM011P1A	MSD011P1E
				200/230	MSM012P1A	MSD013P1E
Non-standard Mitsubishi Electric Corporation motor	R	Without brake (Horizontal specification)	100	100/115	HC-PQ013	MR-C10A1
				200/230		MR-C10A
Non-standardYaskawa Electric Corporation motor	Y	Without brake (Horizontal specification)	100	100/115	SGME-01BF12	SGDE-01BP
				200/230	SGME-01AF12	SGDE-01AP

* Refer to pages starting with 205 for driver dimensions. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

Work piece mounting dimensions

Switch Internal Circuit

How to Order

Standard stroke mm		200	300	400	500	600	800	1000	1200	1500
Weight kg	With motor (Standard)	15.9	17.9	19.9	21.9	23.8	28.3	32.7	36.6	42.6
	Without motor (Non-Standard)	14.8	16.8	18.8	20.8	22.7	27.2	31.6	35.5	41.5
Mounting orientation		Horizontal								
Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)								
Work load kg		20								
Maximum speed mm/s		300								
Positioning repeatability mm		± 0.1								
Motor output		AC servomotor (200W)								
Lead screw		ø25mm, 20 mm lead								
Guide		Slide guide								
Switch		Power supply voltage: 4.5 to 28 VDC, Current consumption: 10 mA or less Control output: Open collector, Load current: 40 mA or less, Internal voltage drop: 1.5 V or less								
TSUBAKI CABLEVEYOR		TKP0180-2BR28 manufactured by TSUBAKIMOTO CHAIN CO.								
Side cover		Cover with switch groove								

For basic specifications such as allowable moment, refer to the "Standard motor" pages for equivalent products listed on Features pages 1 and 2.

Dimensions/ LJ1S30 \square 3 \square SC (X40)

Dimensions other than those shown in the drawing are the same as standards.
Scale: 20\%

Work piece mounting dimensions

* This drawing shows the TUBAKI CABLE VEYOR with left hand entry.

Compatible Motors

Manufacturer	Motor specification symbol	Brake	Motor output (W)	Power supply voltage (VAC)	Motor model	Controller driver model
SMC controller LC1 compatible	Nil	Without brake (Horizontal specification)	200	100/110	-	LC1-1B3S1- $\square \square$
				200/220	-	LC1-1B3S2- $\square \square$
Non-standardMatsushitaElectric IndustrialCo., Ltd. motor	G	Without brake (Horizontal specification)	200	100/115	MSM021P1A	MSD021P1E
				200/230	MSM022P1A	MSD023P1E
Non-standard Mitsubishi Electric Corporation motor	R	Without brake (Horizontal specification)	200	100/115	HC-PQ023	MR-C20A1
				200/230		MR-C20A
Non-standard Yaskawa Electric Corporation motor	Y	Without brake (Horizontal specification)	200	100/115	SGME-02BF12	SGDE-02BP
				200/230	SGME-02AF12	SGDE-02AP

* Refer to pages starting with 205 for driver dimensions. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

Switch Internal Circuit

Series LJ1H Construction

Construction

LJ1H10

With brake

Parts list

No.	Description	Material	Note
$\mathbf{1}$	AC servomotor	-	$50 \mathrm{~W} / 100 \mathrm{~W}$
2	Lead screw	-	Ball screw/Slide screw
3	High rigidity direct acting guide	-	
4	Coupling	-	
5	Bearing R	-	
6	Bearing F	-	
7	Body A	Aluminum alloy	
8	Table	Aluminum alloy	
9	Housing A	Aluminum alloy	
10	Housing B	Aluminum alloy	
11	Top cover		

No.	Description	Material	Note
$\mathbf{1 2}$	Side cover	Aluminum alloy	
13	Bearing retainer	Aluminum alloy	
14	Sensor rail	Aluminum alloy	
15	Bumper	IIR	
16	End cover A	PC	
17	End cover B	PC	
18	Inner cover	PC	
19	Motor cover	PC	
20	Auto switch	-	
21	Magnet	Rare earth magnet	
22	Brake	-	

Construction

LJ1H20

With brake

Parts list

No.	Description	Material	Note
1	AC servomotor	-	100 W
2	Lead screw	-	Ball screw/Slide screw
3	High rigidity direct acting guide	-	
4	Coupling	-	
5	Bearing R	-	
6	Bearing F	-	
7	Body A	Aluminum alloy	
8	Table	Aluminum alloy	
9	Housing A	Aluminum alloy	
10	Housing B	Aluminum alloy	
11	Top cover		

No.	Description	Material	Note
12	Side cover	Aluminum alloy	
13	Bearing retainer	Aluminum alloy	
14	Bumper	IIR	
15	End cover A	PC	
16	End cover B	PC	
17	Inner cover	PC	
18	Motor cover R	PC	
19	Motor cover L	PC	
20	Auto switch	-	
21	Magnet	Rare earth magnet	
22	Brake	-	

Construction

LJ1H30

With brake

Section AA

Parts list

Description	Material	Note	
No.	AC servomotor	-	200 W
$\mathbf{2}$	Lead screw	-	Ball screw/Slide screw
3	High rigidity direct acting guide	-	
4	Coupling	-	
5	Bearing R	-	
6	Bearing F	-	
7	Body A	Aluminum alloy	
8	Table	Aluminum alloy	
9	Housing A	Aluminum alloy	
10	Housing B	Aluminum alloy	
11	Top cover		

No.	Description	Material	Note
12	Side cover	Aluminum alloy	
13	Bearing retainer	Carbon steel	Electroless nickel plated
14	Bumper	IIR	
15	End cover A	PC	
16	End cover B	PC	
17	Inner cover	PC	
18	Motor cover A	PC	
19	Motor cover B	PC	
20	Auto switch	-	
21	Magnet	Rare earth magnet	
22	Brake	-	

Series LJ1S Construction

Construction

LJ1s10

Section AA

Parts list

No.	Description	Material	Note
$\mathbf{1}$	AC servomotor	-	50 W
$\mathbf{2}$	Lead screw	-	Slide screw
$\mathbf{3}$	Guide frame	Aluminum alloy	
4	Guide plate A	Special resin	
5	Guide plate B	Special resin	
6	Push bar	Carbon steel	Zinc plated
7	Frame cover	Stainless steel	
8	Coupling	-	
9	Bearing R	-	
10	Bearing F	-	
11	Body A	Aluminum alloy	
12	Table	Aluminum alloy	
13	Housing B	Aluminum alloy	

No.	Description	Material	Note
$\mathbf{1 4}$	Housing A	Aluminum alloy	
$\mathbf{1 5}$	Top cover	Aluminum alloy	
$\mathbf{1 6}$	Side cover	Aluminum alloy	
$\mathbf{1 7}$	Sensor rail	Aluminum alloy	
18	Bearing retainer	Aluminum alloy	
19	Bumper	IIR	
20	End cover A	PC	
21	End cover B	PC	
22	Inner cover	PC	
23	Magnet	Rare earth magnet	
24	Hexagon socket head set screw	Chrome molybdenum steel	M3 x 8
25	Nut	Mild steel	M3
26	Auto switch	-	

Series LJ1S

Construction

LJ1S20

Parts list

No.	Description	Material	Note
$\mathbf{1}$	AC servomotor	-	100 W
$\mathbf{2}$	Lead screw	-	Slide screw
3	Guide frame	Aluminum alloy	
4	Guide plate A	Special resin	
5	Guide plate B	Special resin	
6	Push bar	Carbon steel	Zinc plated
7	Frame cover	Stainless steel	
8	Coupling	-	
9	Bearing R	-	
10	Bearing F	-	
11	Body A	Aluminum alloy	
12	Table	Aluminum alloy	
13	Housing A	Aluminum alloy	

No.	Description	Material	Note
14	Housing B	Aluminum alloy	
15	Top cover	Aluminum alloy	
16	Side cover	Aluminum alloy	
17	Bearing retainer	Aluminum alloy	
18	Bumper	IIR	
19	End cover A	PC	
20	End cover B	PC	
21	Inner cover	PC	
22	Motor cover R	PC	
23	Motor cover L	PC	
24	Auto switch	-	
25	Magnet	Rare earth magnet	
26	Hexagon socket head set screw	Chrome molybdenum steel	M4 $\times 8$
27	Nut	Mild steel	M4

Construction
 Series LJ1S

Construction
LJ1s30

Parts list

No.	Description	Material	Note
$\mathbf{1}$	AC servomotor	-	200W
2	Lead screw	-	Slide screw
3	Guide frame	Aluminum alloy	
4	Guide plate A	Special resin	
5	Guide plate B	Special resin	
6	Push bar	Carbon steel	Zinc plated
7	Frame cover	Stainless steel	
8	Coupling	-	
9	Bearing R	-	
10	Bearing F	-	
11	Body A	Aluminum alloy	
12	Table	Aluminum alloy	
13	Housing A	Aluminum alloy	

No.	Description	Material	Note
14	Housing B	Aluminum alloy	
15	Top cover	Aluminum alloy	
16	Side cover	Aluminum alloy	
17	Bearing retainer	Carbon steel	Electroless nickel plated
18	Bumper	IIR	
19	End cover A	PC	
20	End cover B	PC	
21	Inner cover	PC	
22	Motor cover R	PC	
23	Motor cover L	PC	
24	Auto switch	-	
25	Magnet	Rare earth magnet	
26	Hexagon socket head set screw	Chrome molybdenum steel	M5 x 8
27	Nut	Mild steel	M5

Series LJ1 Mounting

T-slot Bottom Mount

LJ1H10/LJ1S10

LJ1H30/LJ1S30

LJ1H20/LJ1S20

LJ1H20/LJ1S20

LJ1H30/LJ1S30

E

Series LJ1

Top Mount (Using T-slots on the Mounting Frame)

LJ1H20/LJ1S20

LJ1H30/LJ1S30

Standard/TSUBAKI CABLEVEYOR Specifications

Motor mounting area dimensions

Manufacturer	Mitsubishi Electric Corporation Yaskawa Electric Corporation	Matsushita Electric Industrial Co., Ltd.
Thread size	$\mathrm{M} 4 \times 0.7$	$\mathrm{M} 3 \times 0.5$
Effective thread lenghth (mm)	8	6
Quantity	2	4
P.C.D.	46	45

VIII \triangle Motor mounting area

* When mounting a coupling on the motor, mount it within the dimensional range shown on the left.

Dimensions

	C	D	E	F
With brake (mm)	101	26	32	8.5
Without brake (mm)	93	19	27.5	17

Section AA (Housing interior)
Coupling mounting dimensions*

Series LJ1 ${ }_{5}^{\mathrm{H}} 2 \mathrm{O}$

Motor mounting area dimensions

Manufacturer	Mitsubishi Electric Corporation Yaskawa Electric Corporation	Matsushita Electric Industrial Co.,. Ltd.
Thread size	$\mathrm{M} 4 \times 0.7$	$\mathrm{M} 3 \times 0.5$
Effective thread length (mm)	8	6
Quantity	2	4
P.C.D.	46	45

VIIII Motor mounting area
*1 For the motor mounting area dimensions of the models below, refer to the long stroke type dimensions.

LJ1H20 $\square \square \square{ }_{\mathrm{P}}^{\mathrm{N}} \mathrm{C}$	700 to 1000 mm stroke
LJ1H20 $\square \square \square$ SC	700 to 1200 mm stroke
LJ1S20 $\square \square \square$ SC	700 to 1200 mm stroke

*2 When mounting a coupling on the motor, mount it within the dimensional range shown on the left.

Series LJ1 ${ }_{5}^{\mathrm{H}} 30$

Section AA (Housing interior)

Section BB

Motor mounting area dimensions

Manufacturer	Mitsubishi Electric Corporation Yaskawa Electric Corporation	Matsushita Electric Industrial Co., Ltd.
Thread size	$\mathrm{M} 5 \times 0.8$	$\mathrm{M} 4 \times 0.7$
Effective thread length (mm)	6	6
Quantity	4	4
P.C.D.	70	70

VIIIT Motor mounting area

* When mounting a coupling on the motor, mount it within the dimensional range shown on the left.

Coupling mounting dimensions*

Series LJ1

Clean Room Specification/Dust Seal Specification

Section BB (Housing interior)

Motor mounting area detail

Series LJ1 ${ }_{\mathrm{s}}{ }^{\mathrm{H}} \mathbf{2 0}$

Section BB

Motor mounting area dimensions

Manufacturer	Mitsubishi Electric Corporation Yaskawa Electric Corporation	Matsushita Electric Industrial Co.,. Ltd.
Thread size	$\mathrm{M} 4 \times 0.7$	$\mathrm{M} 3 \times 0.5$
Effective thread length (mm)	8	6
Quantity	2	4
P.C.D.	46	45

Dimensions

	D	E	F	G
With brake (mm)	171	32	26	9.5
Without brake (mm)	116	27.5	19	15

Motor mounting area dimensions

Long stroke type
LJ1H20 $\square 2 \square{ }_{S}^{\mathrm{H}} \mathrm{C}-700$ to $1000-\square \square$
LJ1H20 $\square 2 \square$ SC-700 to 1200- $\square \square$

Manufacturer	Mitsubishi Electric Corporation Yaskawa Electric Corporation	Matsushita Electric Industrial Co., Ltd.
Thread size	$\mathrm{M} 4 \times 0.7$	$\mathrm{M} 3 \times 0.5$
Effective thread length (mm)	8	6
Quantity	2	4
P.C.D.	46	45

Series LJ1 ${ }_{5}^{\mathrm{H}} 30$

Section BB

Motor mounting area dimensions

Manufacturer	Mitsubishi Electic Corporation Yaskawa Electric Corporation	Matsushita Electric Industrial Co., Ltd.
Thread size	M5 $\times 0.8$	M4 $\times 0.7$
Effective thread length (mm)	6	6
Quantity	4	4
P.C.D.	70	70

Series LJ1 Deflection Data

Deflection Data/LJ1H

The load and the amount of deflection at load point W are shown in the graphs below for each series.

LJ1H10

Figure 1. Horizontal

Figure 2. Lateral

LJ1H2O

Series LJ1

Deflection Data/LJ1S

The load and the amount of deflection at load point W are shown in the graphs below for each series.

LJ1S20

Series	Motor type	Guide type	Mounting orientation	Motor/Screw connection	Model	Lead screw lead mm			Page
						Ground ball screw	Rolled ball screw	Slide screw	
LG1H	Standard	High rigidity direct acting guide	Horizontal	Without coupling	LG1 $\square \mathrm{H} 20$	1020	1020	20	148
	motor			With coupling	LG1■H21	1020	1020	20	158
	Non-standard motor motor			With coupling	LG1■H21	1020	1020	20	168

| \square Options |
| ---: | ---: | ---: |
| \square Construction |
| Mounting |
| Non-standard |
| Motor Mounting |
| Deflection Data |

Part Number Designations

How to Order
LG1

- Frame material

Nil	Aluminum alloy
\mathbf{T}	Stainless steel

Specifications

Standard stroke			mm	100	200	300	400
Performance	Body weight	Aluminum	kg	5.3	6.1	6.9	7.7
		Stainless steel	kg	8.3	9.6	10.8	12.0
	Operating temperature range		${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)			
	Work load		kg	30			
	Rated thrust		N	180			
	Maximum speed		mm / s	500			
	Positioning repeatability		mm	± 0.02			
Main parts	Motor			AC servomotor (100W)			
	Encoder			Incremental system			
	Lead screw			Ground ball screw $\varnothing 15 \mathrm{~mm}$, 10 mm lead			
	Guide			High rigidity direct acting guide			
	Motor/Screw connection			Without coupling			
Controller	Model			LC1-1F2HA $\square-\square \square$ (Refer to page 185 for details.)			

Intermediate strokes

For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number.
Applicable strokes: 150, 250, 350
Example) LG1H2021PA-150-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	71
Rolling	79
Yawing	75

m : Transfer load (kg)
a : Work piece acceleration ($\mathrm{mm} / \mathrm{s}^{2}$)
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 183 for deflection data.

Standard Motor/Horizontal Mount Specification
 Series LG1 $\square \mathbf{H} 20$

Dimensions/LG1 \square H202 \square PA

Model	Stroke	A	B
LG1 \square H202 \square PA-100-F $\square *$	100	-	-
LG1 \square H202 \square PA-200-F \square	200	50	70
LG1 \square H202 \square PA-300-F \square	300	150	170
LG1 \square H202 \square PA-400-F \square	400	250	270

* Dimenstions inside () are for a 100 mm stroke.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	200	400	
Speed (mm/s)	10	0.5	1.4	10.4	20.4	40.4	
	100	0.5	0.6	1.5	2.5	4.5	
	250	0.5	0.6	0.9	1.3	2.1	
	500	0.5	0.6	0.8	1.0	1.4	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

[^21]How to Order

Specifications

Standard stroke			mm	500	600	700	800	900	1000
Performance	Body weight	Aluminum	kg	8.5	9.3	10.1	10.9	11.7	12.5
		Stainless steel	kg	13.3	14.5	15.8	17.1	18.3	19.6
	Operating temperature range		${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load		kg	30					
	Rated thrust		N	90					
	Maximum speed Note)		mm / s	1000	1000	930	740	600	500
	Positioning repeatability		mm	± 0.02					
Main parts	Motor			AC servomotor (100W)					
	Encoder			Incremental system					
	Lead screw			Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 20 mm lead					
	Guide			High rigidity direct acting guide					
	Motor/Screw connection			Without coupling					
Controller	Model			LC1-1F2HC $\square-\square \square$ (Refer to page 185 for details.)					

Intermediate strokes

For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number. Applicable strokes: 450, 550, 650,

750, 850, 950
Example) LG1H2021PC-550-F2-X2

Note) The speed is limited by the transfer load. Refer to the maximum speeds for each transfer load on the next page.
Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	71
Rolling	79
Yawing	75

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right.$)
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 183 for deflection data.

Dimensions/LG1 \square H202 \square PC

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	500	1000	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.5	1.5	10.5	50.5	100.5	
	100	0.5	0.6	1.5	5.5	10.5	
	500	0.5	0.6	0.9	1.7	2.7	
	1000	0.5	0.6	0.9	1.4	1.9	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

* Values will vary slightly depending on the operating conditions.

Maximum Speeds for Each Transfer Load

					Unit (mm/s)
Model	Transfer load (kg)				Note
	15	20	25	30	
LG1 \square H202 \square PC-500-F \square	1000	700	500	500	Power supply: 100/110(V)AC $\pm 10 \%$ Compatible controller: LC1-1 $\square 2 \mathrm{HC} 1$
LG1 $\square \mathrm{H} 202 \square \mathrm{PC}$-600-F \square	1000	700	500	500	
LG1 $\square \mathrm{H} 202 \square \mathrm{PC}-700-\mathrm{F} \square$	930	600	500	500	
LG1 \square H202 \square PC-800-F \square	740	600	500	500	Power supply: 200/220(V)AC $\pm 10 \%$ Compatible controller: LC1-1 $\square 2 \mathrm{HC} 2-$
LG1 \square H202 \square PC-900-F \square	600	500	500	500	
LG1 $\square \mathrm{H} 202 \square \mathrm{PC}-1000-\mathrm{F} \square$	500	500	500	500	

[^22]How to Order

Specifications

Standard stroke			mm	100	200	300	400
Performance	Body weight	Aluminum	kg	5.3	6.1	6.9	7.7
		Stainless steel	kg	8.3	9.6	10.8	12.0
	Operating temperature range		${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)			
	Work load		kg	30			
	Rated thrust		N	180			
	Maximum speed		mm / s	500			
	Positioning repeatability		mm	± 0.05			
Main parts	Motor			AC servomotor (100W)			
	Encoder			Incremental system			
	Lead screw			Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 10 mm lead			
	Guide			High rigidity direct acting guide			
	Motor/Screw connection			Without coupling			
Controller	Model			LC1-1F2HAD- $\square \square$ (Refer to page 185 for details.)			

Intermediate strokes

For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number. Applicable strokes: 150, 250, 350
Example) LG1H2021NA-150-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	71
Rolling	79
Yawing	75

m: Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 183 for deflection data.

Dimensions/LG1 \square H202 \square PA

Model	Stroke	A	B
LG1 \square H202 \square PA-100-F \square *	100	-	-
LG1 \square H202 \square PA-200-F \square	200	50	70
LG1 \square H202 \square PA-300-F \square	300	150	170
LG1 \square H202 \square PA-400-F \square	400	250	270

* Dimenstions inside () are for a 100 mm stroke.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)	1	10	100	200	400		
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.5	1.4	10.4	20.4	40.4	
	100	0.5	0.6	1.5	2.5	4.5	
	250	0.5	0.6	0.9	1.3	2.1	
	500	0.5	0.6	0.8	1.0	1.4	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

[^23]How to Order

Specifications

Standard stroke			mm	500	600	700	800	900	1000
Performance	Body weight	Aluminum	kg	8.5	9.3	10.1	10.9	11.7	12.5
		Stainless steel	kg	13.3	14.5	15.8	17.1	18.3	19.6
	Operating temperature range ${ }^{\circ} \mathrm{C}$			5 to 40 (with no condensation)					
	Work load		kg	30					
	Rated thrust		N	90					
	Maximum speed Note)		mm / s	1000	1000	930	740	600	500
	Positioning repeatability		mm	± 0.05					
Main parts	Motor			AC servomotor (100W)					
	Encoder			Incremental system					
	Lead screw			Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 20 mm lead					
	Guide			High rigidity direct acting guide					
	Motor/Screw connection			Without coupling					
Controller	Model			LC1-1F2HCD- $\square \square$ (Refer to page 185 for details.)					

Intermediate strokes

For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number.
Applicable strokes: 450, 550, 650,
750, 850, 950
Example) LG1H2021NC-550-F2-X2

Note) The speed is limited by the transfer load. Refer to the maximum speeds for each transfer load on the next page.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	71
Rolling	79
Yawing	75

m: Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 183 for deflection data.

Dimensions/LG1 \square H202 \square NC

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)	1	10	100	500	1000		
Speed (mm/s)	10	0.5	1.5	10.5	50.5	100.5	
	100	0.5	0.6	1.5	5.5	10.5	
	500	0.5	0.6	0.9	1.7	2.7	
	1000	0.5	0.6	0.9	1.4	1.9	

* Values will vary slightly depending on the operating conditions.

Maximum Speeds for Each Transfer Load

					Unit (mm/s)
Model	Transfer load (kg)				Note
	15	20	25	30	
LG1 \square H202 \square NC-500-F \square	1000	700	500	500	Power supply: 100/110(V)AC $\pm 10 \%$ Compatible controller: LC1-1 $\square 2 \mathrm{HC} 1-$
LG1 \square H202 \square NC-600-F \square	1000	700	500	500	
LG1 \square H202 \square NC-700-F \square	930	600	500	500	
LG1 $\square \mathrm{H} 202 \square$ NC-800-F \square	740	600	500	500	Power supply: 200/220(V)AC $\pm 10 \%$ Compatible controller: LC1-1 $\square 2 \mathrm{HC} 2-$
LG1 \square H202 \square NC-900-F \square	600	500	500	500	
LG1 $\square \mathrm{H} 202 \square$ NC-1000-F \square	500	500	500	500	

[^24]How to Order

Specifications

Standard stroke			mm	100	200	300	400	500	600	700	800	900	1000	1200
Performance	Body weight	Aluminum	kg	5.8	6.7	7.6	8.5	9.4	10.2	11.1	12.0	12.9	13.8	15.9
		Stainless steel	kg	9.1	10.5	11.9	13.2	14.6	16.0	17.4	18.8	20.1	21.6	24.9
	Operating temperature range		${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)										
	Work load		kg	15										
	Rated thrust		N	50										
	Maximum speed		mm / s	500										
	Positioning repeatability		mm	± 0.1										
Main parts	Motor			AC servomotor (100W)										
	Encoder			Incremental system										
	Lead screw			Slide screw ø20mm, 20 mm lead										
	Guide			High rigidity direct acting guide										
	Motor/Screw connection			Without coupling										
Controller	Model			LC1-1F2MC \square - $\square \square$ (Refer to page 185 for details.)										

Intermediate strokes

For manufacture of strokes other than the standard strokes above, add "-X2" at the end of the part number. Applicable strokes: $150,250,350,450,550,650,750,850,950,1050$
Example) LG1H2021SC-150-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	71
Rolling	79
Yawing	75

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 183 for deflection data.

Dimensions/LG1 \square H202 \square SC

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	600	1200	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.5	1.5	10.5	60.5	120.5	
	100	0.5	0.6	1.5	6.5	12.5	
	250	0.5	0.6	1.0	3.0	5.4	
	500	0.5	0.6	0.9	1.9	3.1	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

* Values will vary slightly depending on the operating conditions.

Series LGi $\square H 21$ With Coupling

How to Order

Specifications

Standard stroke			100	200	300	400
Performance	Body weight	Aluminum $\quad \mathrm{kg}$	5.3	6.1	6.9	7.7
		Stainless steel kg	8.3	9.6	10.8	12.0
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)			
	Work load		30			
	Rated thrust		180			
	Maximum speed		500			
	Positioning repeatability mm		± 0.02			
Main parts	Motor		AC servomotor (100W)			
	Encoder		Incremental system			
	Lead screw		Ground ball screw $\varnothing 15 \mathrm{~mm}, 10 \mathrm{~mm}$ lead			
	Guide		High rigidity direct acting guide			
	Motor/Screw connection		With coupling			
Controller	Model		LC1-1D2HA $\square-\square \square$ (Refer to page 185 for details.)			

Intermediate strokes

For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number.
Applicable strokes: 150, 250, 350
Example) LG1H2121PA-150-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	142
Rolling	79
Yawing	150

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 183 for deflection data.

Dimensions/LG1 $\square \mathrm{H} 212 \square \mathrm{PA}$

* Dimenstions inside () are for a 100 mm stroke.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	200	400	
Speed (mm/s)	10	0.5	1.4	10.4	20.4	40.4	
	100	0.5	0.6	1.5	2.5	4.5	
	250	0.5	0.6	0.9	1.3	2.1	
	500	0.5	0.6	0.8	1.0	1.4	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

[^25]How to Order

Specifications

Standard stroke			mm	500	600	700	800	900	1000
Performance	Body weight	Aluminum	kg	8.5	9.3	10.1	10.9	11.7	12.5
		Stainless steel		13.3	14.5	15.8	17.1	18.3	19.6
	Operating temperature range ${ }^{\circ} \mathrm{C}$			5 to 40 (with no condensation)					
	Work load		kg	30					
	Rated thrust		N	90					
	Maximum speed Note)		mm / s	1000	1000	930	740	600	500
	Positioning repeatability mm			± 0.02					
Main parts	Motor			AC servomotor (100W)					
	Encoder			Incremental system					
	Lead screw			Ground ball screw $\varnothing 15 \mathrm{~mm}$, 20 mm lead					
	Guide			High rigidity direct acting guide					
	Motor/Screw connection			With coupling					
Controller	Model			LC1-1D2HCD-प] (Refer to page 185 for details.)					

Intermediate strokes

For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number.
Applicable strokes: 450, 550, 650, 750, 850, 950
Example) LG1H2121PC-550-F2-X2

Note) The speed is limited by the transfer load. Refer to the maximum speeds for each transfer load on the next page.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	142
Rolling	79
Yawing	150

m: Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 183 for deflection data.

Dimensions/LG1 \square H212 \square PC

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	500	1000	
Speed (mm/s)	10	0.5	1.5	10.5	50.5	100.5	
	100	0.5	0.6	1.5	5.5	10.5	
	500	0.5	0.6	0.9	1.7	2.7	
	1000	0.5	0.6	0.9	1.4	1.9	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

* Values will vary slightly depending on the operating conditions.

Maximum Speeds for Each Transfer Load

					Unit (mm/s)
Model	Transfer load (kg)				Note
	15	20	25	30	
LG1 $\square \mathrm{H} 202 \square \mathrm{PC}-500-\mathrm{F} \square$	1000	700	500	500	Power supply: 100/110(V)AC $\pm 10 \%$ Compatible controller: LC1-1 $\square 2 \mathrm{HC} 1-$
LG1 \square H202 \square PC-600-F \square	1000	700	500	500	
LG1 $\square \mathrm{H} 202 \square \mathrm{PC-700-F} \square$	930	600	500	500	
LG1 $\square \mathrm{H} 202 \square \mathrm{PC}-800-\mathrm{F} \square$	740	600	500	500	Power supply: 200/220(V)AC $\pm 10 \%$ Compatible controller: LC1-1 $\square 2 \mathrm{HC} 2-$
LG1 \square H202 \square PC-900-F \square	600	500	500	500	
LG1 $\square \mathrm{H} 202 \square \mathrm{PC-1000-F} \square$	500	500	500	500	

[^26]How to Order

Specifications

Standard stroke			mm	100	200	300	400
Performance	Body weight	Aluminum	kg	5.3	6.1	6.9	7.7
		Stainless steel		8.3	9.6	10.8	12.0
	Operating temperature range ${ }^{\circ} \mathrm{C}$			5 to 40 (with no condensation)			
	Work load		kg	30			
	Rated thrust		N	180			
	Maximum speed		mm / s	500			
	Positioning repeatability		mm	± 0.05			
Main parts	Motor			AC servomotor (100W)			
	Encoder			Incremental system			
	Lead screw			Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 10 mm lead			
	Guide			High rigidity direct acting guide			
	Motor/Screw connection			With coupling			
Controller	Model			LC1-1D2HAD- $\square \square$ (Refer to page 185 for details.)			

Intermediate strokes

For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number.
Applicable strokes: 150, 250, 350
Example) LG1H2121NA-150-F2-X2

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	142
Rolling	79
Yawing	150

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 183 for deflection data.

Dimensions/LG1 $\square \mathrm{H} 212 \square \mathrm{NA}$

* Dimenstions inside () are for a 100 mm stroke.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance(mm)	1	10	100	200	400		
	10	0.5	1.4	10.4	20.4	40.4	
	100	0.5	0.6	1.5	2.5	4.5	
	250	0.5	0.6	0.9	1.3	2.1	
	500	0.5	0.6	0.8	1.0	1.4	

| | Positioning time
 A: Acceleration time
 B: Constant velocity time |
| :--- | :--- | :--- |
| C: Deceleration time | |

[^27]Series LGi $\square H 21$
Motor Output
High Rigidity
Rolled Ball Screw

With Coupling

How to Order

Specifications

Standard stroke			mm	500	600	700	800	900	1000
Performance	Body weight	Aluminum	kg	8.5	9.3	10.1	10.9	11.7	12.5
		Stainless steel	kg	13.3	14.5	15.8	17.1	18.3	19.6
	Operating temperature range		${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load		kg	30					
	Rated thrust		N	90					
	Maximum speed Note)		mm / s	1000	1000	930	740	600	500
	Positioning repeatability		mm	± 0.05					
Main parts	Motor			AC servomotor (100W)					
	Encoder			Incremental system					
	Lead screw			Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 20 mm lead					
	Guide			High rigidity direct acting guide					
	Motor/Screw connection			With coupling					
Controller	Model			LC1-1D2HCD- \square (Refer to page 185 for details.)					

Intermediate strokes
For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number.
Applicable strokes: $450,550,650$,
750, 850, 950
Example) LG1H2121NC-550-F2-X2

Note) The speed is limited by the transfer load. Refer to the maximum speeds for each transfer load on the next page.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	142
Rolling	79
Yawing	150

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 183 for deflection data.

Dimensions/LG1 \square H212 \square NC

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)	1	10	100	500	1000		
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.5	1.5	10.5	50.5	100.5	
	100	0.5	0.6	1.5	5.5	10.5	
	500	0.5	0.6	0.9	1.7	2.7	
	1000	0.5	0.6	0.9	1.4	1.9	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

* Values will vary slightly depending on the operating conditions.

Maximum Speeds for Each Transfer Load

					Unit (mm/s)
Model	Transfer load (kg)				Note
	15	20	25	30	
LG1 $\square \mathrm{H} 202 \square$ NC-500-F \square	1000	700	500	500	Power supply: 100/110(V)AC $\pm 10 \%$ Compatible controller: LC1-1 $\square 2 \mathrm{HC} 1-\square$
LG1 \square H202 \square NC-600-F \square	1000	700	500	500	
LG1 \square H202 \square NC-700-F \square	930	600	500	500	
LG1 \square H202 \square NC-800-F \square	740	600	500	500	Power supply: 200/220(V)AC $\pm 10 \%$ Compatible controller: LC1-1 $\square 2 \mathrm{HC} 2-\square$
LG1 \square H202 \square NC-900-F \square	600	500	500	500	
LG1 $\square \mathrm{H} 202 \square$ NC-1000-F \square	500	500	500	500	

* Consult SMC if outside of the above conditions.

How to Order

Specifications

Standard stroke			mm	100	200	300	400	500	600	700	800	900	1000	1200
Performance	Body weight	Aluminum	kg	5.8	6.7	7.6	8.5	9.4	10.2	11.1	12.0	12.9	13.8	15.9
		Stainless steel	kg	9.1	10.5	11.9	13.2	14.6	16.0	17.4	18.8	20.1	21.6	24.9
	Operating temperature range		${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)										
	Work load		kg	15										
	Rated thrust		N	50										
	Maximum speed		mm	500										
	Positioning repeatability		mm	± 0.1										
Main parts	Motor			AC servomotor (100W)										
	Encoder			Incremental system										
	Lead screw			Slide screw ø20mm, 20 mm lead										
	Guide			High rigidity direct acting guide										
	Motor/Screw connection			With coupling										
Controller	Model			LC1-1D2MC \square - $\square \square$ (Refer to page 185 for details.)										

Intermediate strokes
For manufacture of strokes other than the standard strokes above, add "-X2" at the end of the part number.
Applicable strokes: 150, 250, 350, 450, 550, 650, 750, 850, 950, 1050
Example) LG1H2121SC-150-F2-X2
Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	142
Rolling	79
Yawing	150

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 183 for deflection data.

Dimensions/LG1 \square H212 \square SC

* Dimenstions inside () are for a 100 mm stroke.

Positioning Time Guide

[^28] Motor Output High Rigidity Direct Acting Guide

Ground ball Screw

How to Order

Specifications

Standard stroke			mm	100	200	300	400
Performance	Body weight	Aluminum (without motor)	kg	5.2	6.0	6.8	7.6
		Stainless steel (without motor)		8.4	9.7	10.9	12.2
	Operating temperature range		${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)			
	Work load		kg	30			
	Maximum speed		mm / s	500			
	Positioning repeatability		mm	± 0.02			
Main parts	Motor			AC servomotor (100W)			
	Encoder			Incremental system			
	Lead screw			Ground ball screw $\varnothing 15 \mathrm{~mm}$, 10 mm lead			
	Guide			High rigidity direct acting guide			
	Motor/Screw connection			With coupling			
Switch	Model			Photo micro sensor EE-SX674 (Refer to page 319 for details.)			
	Specifications			5 to 24VDC Load current (1C): 100 mA , Internal voltage drop: 0.8 V or less Load current (1 C): 40 mA , Internal voltage drop: 0.4 V or less			

Intermediate strokes

Strokes other than the standard strokes on the left are available by special order. Consult SMC.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	142
Rolling	79
Yawing	150

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right.$)
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 183 for deflection data.

Dimensions/LG1 $\square \mathrm{H} 21 \square 2 \square$ PA (X10)

Model	Stroke	A	B
LG1 \square H21 \square 2 \square PA-100-F $\square-X 10$	100	-	-
LG1 \square H21 \square 2 \square PA-200-F \square-X10	200	60	80
LG1 \square H21 \square 2 \square PA-300-F \square-X10	300	160	180
LG1 \square H21 $\square \mathbf{2} \square$ PA-400-F \square-X10	400	260	280

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment.
Refer to pages starting with 181 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	200	400	
Speed (mm/s)	10	0.5	1.4	10.4	20.4	40.4	
	100	0.5	0.6	1.5	2.5	4.5	
	250	0.5	0.6	0.9	1.3	2.1	
	500	0.5	0.6	0.8	1.0	1.4	

A: Acceleration time B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LCI controller is used and may vary depending on the driver capacity.
* Values will vary slightly depending on the operating conditions.
Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	100	$100 / 115$	MSM011P1A	MSD011P1E
		MSM012P1A	MSD013P1E	
Yaskawa Electric Corporation	100	$100 / 115$	HC-PQ13	MR-C10A1
		$100 / 115$		SR-C10A
	$200 / 230$	SGME-01AF12	SGDE-01AP	

* For motor mounting dimensions, refer to the dimensions on page 182 as a reference for mounting and design.
Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 178 for part numbers.

Ground Ball Screw

How to Order

Specifications

Standard stroke			mm	500	600	700	800	900	1000
Performance	Body weight	Aluminum (without motor)	kg	8.4	9.2	10.0	10.8	11.6	12.4
		Stainless steel (without motor)	kg	13.4	14.7	15.9	17.2	18.4	19.7
	Operating temperature range ${ }^{\circ} \mathrm{C}$			5 to 40 (with no condensation)					
	Work load		kg	30					
	Maximum speed ${ }^{\text {Note) }}$		mm / s	1000	1000	930	740	600	500
	Positioning repeatability		mm	± 0.02					
Main parts	Motor			AC servomotor (100W)					
	Encoder			Incremental system					
	Lead screw			Ground ball screw $\varnothing 15 \mathrm{~mm}$, 20mm lead					
	Guide			High rigidity direct acting guide					
	Motor/Screw connection			With coupling					
Switch	Model			Photo micro sensor EE-SX674 (Refer to page 319 for details.)					
	Specifications			5 to 24VDC Load current (1C): 100 mA , Internal voltage drop: 0.8 V or less Load current (1 C): 40 mA , Internal voltage drop: 0.4 V or less					

Intermediate strokes
Strokes other than the standard strokes on the left are available by special order. Consult SMC.

Note) When the work load exceeds 15 kg , the speed may be limited. Contact SMC in this case.
Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	142
Rolling	79
Yawing	150

m : Transfer load (kg)
a : Work piece acceleration (mm/s²)
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 183 for deflection data.

Dimensions/LG1 $\square \mathrm{H} 21 \square \mathbf{2} \square \mathrm{PC}(\mathrm{X} 10)$

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment.
Refer to pages starting with 181 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	500	1000	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.5	1.5	10.5	50.5	100.5	
	100	0.5	0.6	1.5	5.5	10.5	
	500	0.5	0.6	0.9	1.7	2.7	
	1000	0.5	0.6	0.9	1.4	1.9	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LCI controller is used and may vary depending on the driver capacity.
* Values will vary slightly depending on the operating conditions.
Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage $($ VAC $)$	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	100	$100 / 115$		MSD011P1E
Mitsubishi Electric Corporation		$200 / 230$	MSM012P1A	MSD013P1E
	$100 / 115$	$200 / 230$	HC-PQ13	MR-C10A1
Yaskawa Electric Corporation	100	$100 / 115$		SGR-C10A
		SGME-01AF12	SGDE-01AP	

* For motor mounting dimensions, refer to the dimensions on page 182 as a reference for mounting and design.
Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 178 for part numbers.

Series LGi $\square H 21$ With Coupling

How to Order

Specifications

Standard stroke			mm	100	200	300	400
Performance	Body weight	Aluminum (without motor)	kg	5.2	6.0	6.8	7.6
		Stainless steel (without motor)	kg	8.4	9.7	10.9	12.2
	Operating temperature range ${ }^{\circ} \mathrm{C}$			5 to 40 (with no condensation)			
	Work load		kg	30			
	Maximum speed		mm / s	500			
	Positioning repeatability		mm	± 0.05			
Main parts	Motor			AC servomotor (100W)			
	Encoder			Incremental system			
	Lead screw			Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 10 mm lead			
	Guide			High rigidity direct acting guide			
	Motor/Screw connection			With coupling			
Switch	Model			Photo micro sensor EE-SX674 (Refer to page 319 for details.)			
	Specifications			5 to 24VDC Load current (1C): 100 mA , Internal voltage drop: 0.8 V or less Load current (1 C): 40 mA , Internal voltage drop: 0.4 V or less			

Intermediate strokes

Strokes other than the standard strokes on the left are available by special order. Consult SMC.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	142
Rolling	79
Yawing	150

m : Transfer load (kg)
a : Work piece acceleration (mm/s²)
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

	orientation ement directio			LG1H21

Refer to page 183 for deflection data.

Dimensions/LG1 $\square \mathrm{H} 21 \square 2 \square$ NA (X10)

Model	Stroke	A	B
LG1 \square H21 $\square \mathbf{2} \square$ NA-100-F $\square-X 10 *$	100	-	-
LG1 \square H21 $\square \mathbf{2} \square$ NA-200-F $\square-\mathbf{X 1 0 ~}$	200	60	80
LG1 \square H21 $\square \mathbf{2} \square$ NA-300-F $\square-\mathbf{X 1 0}$	300	160	180
LG1 \square H21 $\square \mathbf{2} \square$ NA-400-F $\square-X 10$	400	260	280

* Dimensions inside () are for a 100 mm stroke.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	200	400	
Speed (mm/s)	10	0.5	1.4	10.4	20.4	40.4	
	100	0.5	0.6	1.5	2.5	4.5	
	250	0.5	0.6	0.9	1.3	2.1	
	500	0.5	0.6	0.8	1.0	1.4	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LCl controller is used and may vary depending on the driver capacity.
* Values will vary slightly depending on the operating conditions.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	100	$100 / 115$	MSM011P1A	MSD011P1E
		MSM012P1A	MSD013P1E	
Mitsubishi Electric Corporation	100	$100 / 115$	HC-PQ13	MR-C10A1
		MR-C10A		
Yaskawa Electric Corporation	100	$100 / 115$	SGME-01BF12	SGDE-01BP
		SGME-01AF12	SGDE-01AP	

* For motor mounting dimensions, refer to the dimensions on page 182 as a reference for mounting and design.
* Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 178 for part numbers.

How to Order

Specifications

Standard stroke			mm	500	600	700	800	900	1000
Performance	Body weight	Aluminum (without motor)	kg	8.4	9.2	10.0	10.8	11.6	12.4
		Stainless steel (without motor)	kg	13.4	14.7	15.9	17.2	18.4	19.7
	Operating temperature range ${ }^{\circ} \mathrm{C}$			5 to 40 (with no condensation)					
	Work load		kg	30					
	Maximum speed Note)		mm/s	1000	1000	930	740	600	500
	Positioning repeatability		mm	± 0.05					
Main parts	Motor			AC servomotor (100W)					
	Encoder			Incremental system					
	Lead screw			Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 20 mm lead					
	Guide			High rigidity direct acting guide					
	Motor/Screw connection			With coupling					
Switch	Model			Photo micro sensor EE-SX674 (Refer to page 319 for details.)					
	Specifications			5 to 24VDC Load current (1C): 100 mA , Internal voltage drop: 0.8 V or less Load current (1C): 40 mA , Internal voltage drop: 0.4 V or less					

Intermediate strokes

Strokes other than the standard strokes on the left are available by special order. Consult SMC.

Note) The speed is limited by the transfer load. Contact each motor manufacturer regarding the maximum speeds for each transfer load.
Allowable Moment (N.m)

Allowable static moment

Pitching	142
Rolling	79
Yawing	150

m : Transfer load (kg)
a : Work piece acceleration ($\mathrm{mm} / \mathrm{s}^{2}$)
Me : Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 183 for deflection data.

Dimensions/LG1 $\square H 21 \square 2 \square$ NC (X10)

Model	Stroke	A	B
LG1 \square H21 \square 2 \square NC-500-F \square-X10	500	360	380
LG1 \square H21 \square 2 \square NC-600-F \square-X10	600	460	480
LG1 \square H21 \square 2 \square NC-700-F \square-X10	700	560	580
LG1 \square H21 \square 2 \square NC-800-F \square-X10	800	660	680
LG1 \square H21 \square 2 \square NC-900-F \square-X10	900	760	780
LG1 \square H21 \square 2 \square NC-1000-F \square-X10	1000	860	880

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment.
Refer to pages starting with 181 for mounting.

Positioning Time Guide

		Positioning time (sec.)										
Positioning distance(mm)								1	10	100	500	1000
Speed (mm/s)	10	0.5	1.5	10.5	50.5	100.5						
	100	0.5	0.6	1.5	5.5	10.5						
	500	0.5	0.6	0.9	1.7	2.7						
	1000	0.5	0.6	0.9	1.4	1.9						

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time $(0.4 \mathrm{sec}$.)* Maximum acceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LCI controller is used and may vary depending on the driver capacity.
* Values will vary slightly depending on the operating conditions.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	100	$100 / 115$	MSM011P1A	MSD011P1E
		MSM012P1A	MSD013P1E	
Mitsubishi Electric Corporation	100	$100 / 115$	HC-PQ13	MR-C10A1
		MR-C10A		
Yaskawa Electric Corporation	100	$100 / 115$	SGME-01BF12	SGDE-01BP
		SGME-01AF12	SGDE-01AP	

* For motor mounting dimensions, refer to the dimensions on page 182 as a reference for mounting and design.
* Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 178 for part numbers.

How to Order

Specifications

Standard stroke			mm	100	200	300	400	500	600	700	800	900	1000	1200
Performance	Body weight	Aluminum (without motor)	kg	5.8	6.7	7.5	8.4	9.3	10.2	11.1	11.9	12.8	13.7	15.9
		Stainless steel (without motor)	kg	9.3	10.7	12.0	13.5	14.8	16.2	17.5	19.0	20.3	21.7	25.2
	Operating temperature range		${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)										
	Work load		kg	15										
	Maximum speed		mm / s	500										
	Positioning repeatability mm			± 0.1										
Main parts	Motor			AC servomotor (100W)										
	Encoder			Incremental system										
	Lead screw			Slide screw ø20mm, 20 mm lead										
	Guide			High rigidity direct acting guide										
	Motor/Screw connection			With coupling										
Switch	Model			Photo micro sensor EE-SX674 (Refer to page 319 for details.)										
	Specifications			5 to 24VDC Load current (1C): 100 mA , Internal voltage drop: 0.8 V or less Load current (1C): 40mA, Internal voltage drop: 0.4 V or less										

Intermediate strokes
Strokes other than the standard strokes above are available by special order. Consult SMC.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	142
Rolling	79
Yawing	150

m:Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Dynamic moment
L : Overhang to work piece center of gravity (mm)

Allowable dynamic moment

Refer to page 183 for deflection data.

Dimensions/LG1 \square H21 $\square \mathbf{2} \square$ SC (X10)

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 181 for mounting.

Model	Stroke	A	B
LG1 \square H21 \square 2 \square SC- 100-F \square-X10*	100	-	-
LG1 \square H21 $\square \mathbf{2} \square$ SC- 200-F \square-X10	200	60	80
LG1 \square H21 $\square \mathbf{2} \square$ SC- 300-F \square-X10	300	160	180
LG1 \square H21 $\square \mathbf{2} \square$ SC- 400-F \square-X10	400	260	280
LG1 \square H21 $\square \mathbf{2} \square$ SC- 500-F \square-X10	500	360	380
LG1 \square H21 $\square \mathbf{2} \square$ SC- 600-F \square-X10	600	460	480

Model	Stroke	A	B
LG1 \square H21 \square 2 \square SC-700-F \square-X10	700	560	580
LG1 \square H21 $\square \mathbf{2} \square$ SC-800-F \square-X10	800	660	680
LG1 \square H21 $\square \mathbf{2} \square$ SC-900-F \square-X10	900	760	780
LG1 $\square \mathbf{H 2 1} \square \mathbf{2} \square$ SC-1000-F \square-X10	1000	860	880
LG1 $\square \mathbf{H 2 1} \square \mathbf{2} \square$ SC-1200-F \square-X10	1200	1060	1080

* Dimensions inside () are for a 100 mm stroke.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	600	1200	
Speed (mm/s)	10	0.5	1.5	10.5	60.5	120.5	
	100	0.5	0.6	1.5	6.5	12.5	
	250	0.5	0.6	1.0	3.0	5.4	
	500	0.5	0.6	0.9	1.9	3.1	

A: Acceleration time
B: Constant velocity time C: Deceleration time D: Resting time (0.4 sec.$)^{*}$
Maximum acceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$
*The value is a guide when SMC's series LCl controller is used and may vary depending on the driver capacity.

* Values will vary slightly depending on the operating conditions.
Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (VAC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., Ltd.	100	$100 / 115$		MSD011P1E
		MSM012P1A	MSD013P1E	
Mitsubishi Electric Corporation	100	$100 / 115$	HC-PQ13	MR-C10A1
		MR-C10A		
Yaskawa Electric Corporation	100	$100 / 115$	SGME-01BF12	SGDE-01BP
		SGME-01AF12	SGDE-01AP	

[^29]
Actuator cable

This cable connects the actuator and the controller.
(Included with the actuator)

How to Order
LG1-1- B 02

Non-standard motor cables

These cables are used to connect non-standard motors and drivers Cable lengths other than those shown below should be arranged by the customer.

How to Order

\mathbf{G}	Matsushita Electric Industrial Co., Ltd.
\mathbf{R}	Mitsubishi Electric Corporation
\mathbf{Y}	Yaskawa Electric Corporation

Applicable cables

Model	Manufacturer part no.
LG1-1-G05 *1	MFMCA0050AEB (for motor) MFECA0050EAB (for encoder)
LG1-1-R05	(for motor) *2 MR-JCCBL5M (for encoder)
LG1-1-Y05 *3	DP9320081-2 (for motor) DP9320089-2 (for encoder)

[^30]Please refer to the technical literature of each manufacturer for further details.

Series LG1H Construction

Construction/ Without coupling

LG1H20

Parts list

No.	Description	Material	Note
$\mathbf{1}$	AC servomotor	-	100 W
2	Lead screw	-	Ball screw/Slide screw
3	High rigidity direct acting guide	-	
$\mathbf{4}$	Bearing R	-	
5	Bearing F	-	
6	Body	Aluminum alloy/Stainless steel	
7	Table	Aluminum alloy	
8	Housing A	Aluminum alloy	
9	Housing B	Aluminum alloy	
10	Top cover	Aluminum alloy	

No.	Description	Material	Note
$\mathbf{1 1}$	Head cover	Aluminum alloy	
12	Encoder cover	Aluminum alloy	
13	Bumper	IIR	
14	End cover A	PC	
15	End cover B	PC	
16	Photo micro sensor	-	
17	Sensor plate	-	
18	Connector A	-	
19	Connector B	-	

Series LG1H Construction

Construction/ Without coupling

LG1H21

Parts list

No.	Description	Material	Note
$\mathbf{1}$	AC servomotor	-	100 W
2	Lead screw	-	Ball screw/Slide screw
3	High rigidity direct acting guide	-	
4	Coupling	-	
5	Bearing R	-	
6	Bearing F	-	
7	Body	Aluminum alloy/Stainless steel	
8	Table	Aluminum alloy	
9	Housing A	Aluminum alloy	
10	Housing B	Aluminum alloy	

No.	Description	Material	Note
11	Top cover	Aluminum alloy	
12	Bearing retainer	Aluminum alloy	
13	Bumper	IIR	
14	End cover A	PC	
15	End cover B	PC	
16	Photo micro sensor	-	
17	Sensor plate	-	
18	Connector A	-	
19	Connector B	-	

Series LG1H Mounting

Top Mount

LG1H20/ without coupling

LG1H21/ With coupling

Dimensions inside () are for a 100 mm stroke.

LG1H21 / With coupling

Stroke	A	B	Stroke	A	B
100	-	-	700	580	655
200	80	155	800	680	755
300	180	255	900	780	855
400	280	355	1000	880	955
500	380	455	1200	1080	1155
600	480	555			

LG1H20/ Without coupling

Stroke	A	B	Stroke	A	B
100	-	-	700	570	645
200	70	145	800	670	745
300	170	245	900	770	845
400	270	345	1000	870	945
500	370	445	1200	1070	1145
600	470	545			

Dimensions inside () are for a 100 mm stroke.

Series
 LG1H

Non-standard Motor Mounting Dimensions/ With Coupling

LG1H21

Motor mounting area dimensions

Manufacturer	Mitsubishi Electric Corporation Yaskawa Electric Corporation	Matsushita Electric Industrial Co., Ltd.
Thread size	$\mathrm{M} 4 \times 0.7$	$\mathrm{M} 3 \times 0.5$
Effective thread length (mm)	8	6
Quantity	2	4
P.C.D.	46	45

VIIIIA Motor mounting area

* When mounting a coupling on the motor, mount it within the dimensional range shown on the left

Section AA (Housing interior)

Thread

P.C.D.

Coupling mounting dimensions

Series LG1H Deflection Data

Deflection Data

The load and the amount of deflection at load point W are shown in the graphs below.

LG1H/ Aluminum body

LG1TH/ Stainless steel body

Dedicated Controller Series LC1
 \section*{Dedicated Controller for Standard AC Servomotor}

Driver
 Matsushita Electric Industrial Co., Ltd. Mitsubishi Electric Corporation
 Yaskwa Electric Corporation (Used on actuators with non-standard motor)

Positioning unit (Not incl. To be provided by customer.)

Regenerative Absorption Unit
(Used for vertical application)

> To PLC, etc.
(Not incl. To be provided by customer.)

Dedicated Controller/LC1 Page 186

- Controller setup software - 194
- Dedicated teaching box $\quad 196$
- Options

199
Dedicated Regenerative Absorption Unit/LC7R
200
Non-standard Motor Compatible Drivers

\square	Dedicated Controller/LC1	Page 186
\cdot Controller setup software	194	
• Dedicated teaching box	196	
Options	199	
Dedicated Regenerative Absorption Unit/LC7R	200	205

Controller

Series LJ1／LG1：Standard Motor Compatible

How to Order
d Mounting bracket

$\mathbf{3}$	M3
$\mathbf{5}$	M5

Mounting＊
$\left.\begin{array}{|c|c|}\hline \text { B } & \text { Series LJ1（Incremental encoder）} \\ \hline \text { D } & \text { Series LG with coupling（Series LG1 } \square \mathrm{H} 21 \text { ）} \\ \text { Incremental encoder }\end{array}\right]$

Symbol	Motor capacity	Compatible actuator models	
1H	50W	LJ1H101 \square B	Ball screw High rigidity direct acting guide Without brake
2 H	100W	LJ1H202 $\square \square$ A LJ1H202■ดC	
3H	200W	LJ1H303 \square D ${ }^{\text {d }}$	
1 S	50W	LJ1S101■SC	Slide screw Slider guide
2 S	100W	LJ1S202■SC	
3 S	200W	LJ1S303■SC	
1M	50W	LJ1H101口SC	Slide screw High rigidity direct acting guide
2M	100W	LJ1H202■SC	
3M	200W	LJ1H303口SE	
1VH ${ }^{+1)}$	100W	LJ1H102 $\square \square \mathrm{H}-\square \square \square \mathrm{K}$	Ball screw High rigidity direct acting guide With brake
1VB＊1）	100W	LJ1H102口ロB－$\square \square \square \mathrm{K}$	
2VF＊1）	100W		
2VA＊1）	100W	LJ1H202■ดA－$\square \square \square \mathrm{K}$	
3VA＊1）	200W	LJ1H303 $\square \square \mathrm{A}-\square \square \square \mathrm{K}$	
2HA	100W	$\begin{aligned} & \text { LG1H } \square \square 2 \square \mathrm{PA} \\ & \text { LG1H } \square 2 \square \mathrm{NA} \end{aligned}$	Ball screw High rigidity direct acting guide Thread lead 10mm
2HC	100W	$\begin{aligned} & \text { LG1H } \square \square 2 \square \mathrm{PC} \\ & \text { LG1H } \square \square 2 \square \mathrm{NC} \end{aligned}$	Ball screw High rigidity direct acting guide Thread lead 20 mm
2MC	100W	LG1H $\square \square 2 \square$ SC	Slide screw High rigidity direct acting guide Thread lead 20 mm

＊1）Consult SMC if the supply voltage for LC1－1B $\square \mathrm{V} \square 1$ will be 110 VAC or more，or the supply voltage for LC1－1B $\square \mathrm{V} \square 2$ will be 220 VAC or more．

Power supply

$\mathbf{1}^{* 1)}$	$100 / 110 \operatorname{VAC}(50 / 60 \mathrm{~Hz})$
$\mathbf{2}^{* 1)}$	$200 / 220 \operatorname{VAC}(50 / 60 \mathrm{~Hz})$

＊This controller includes the accessories listed below．
LC1－1－$\square \square$（Either T－nuts or T－brackets for mounting）
LC1－1－1000（Controller connector）
LC1－1－2000（Controller connector）
（Refer to page 199．）
Note）The following options are necessary for operating and setting the controller．
$\left[\begin{array}{l}\left(\begin{array}{l}\text { LC1－1－S1 PC－98（MS－DOS）} \\ \text { LC1－1－W1（Windows 95 Japanese）} \\ \text { LC1－1－W2（Windows 95 English）}\end{array}\right) \\ \text { and } \\ \text { LC1－1－R } \square \square \text {（dedicated communication cable）}\end{array}\right]$
（Refer to pages 194，195，and 199．）
or
LC1－1－T1－$\square \square$（Teaching box）are required． For ordering information，refer to the option part numbers on page 196.
$\mathrm{N}:$ T－nut mounting

Performance/Specifications

General specifications

Item Model	LC1-1B $\square \square 1$	LC1-1B $\square \square 2$
Power supply	$\begin{gathered} 100 / 110 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz} \\ (100 \mathrm{VAC}, 50 / 60 \mathrm{~Hz} \text { for LC1-1B } \square \square 1) \end{gathered}$	$200 / 220 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}$ ($200 \mathrm{VAC} \pm 10 \%$ for LC1-1B3H2) (200VAC, $50 / 60 \mathrm{~Hz}$ for LC1-1B $\square \mathrm{V} \square 2$)
Leakage current	5 mA or less	
Dimensions	$80 \times 120 \times 244 \mathrm{~mm}$	
Weight	2.2 kg	

Actuator control

Item	LC1- 1B1H	LC1- $1 \mathrm{~B} 2 \mathrm{H}$	$\begin{aligned} & \text { LC1- } \\ & \text { 1B3H } \end{aligned}$	LC1- 1B1M	$\begin{aligned} & \text { LC1- } \\ & \text { 1B2M } \square \end{aligned}$	$\begin{aligned} & \text { LC1- } \\ & \text { 1B3M } \end{aligned}$	$\begin{aligned} & \text { LC1- } \\ & \text { 1B1V } \end{aligned}$	$\begin{aligned} & \text { LC1- } \\ & \text { 1B2V } \end{aligned}$	$\begin{aligned} & \mathrm{LC} 1- \\ & \text { 1B3V } \end{aligned}$	$\begin{aligned} & \text { LC1- } \\ & \text { 1B1S } \end{aligned}$	$\begin{aligned} & \text { LC1- } \\ & \text { 1B2S } \square \end{aligned}$	$\begin{aligned} & \text { LC1- } \\ & \text { 1B3S } \end{aligned}$	LC1- 1D2H	LC1- 1D2MC	LC1- 1F2H	LC1- 1F2MC
Compatible actuator model	LJ1H101 —PB LJ1H101 -NB	LJ1H202 \square PA LJ1H202 -NA	LJ1H303 -PD LJ1H303 -ND	LJ1H101 \square SC	$\begin{aligned} & \text { LJ1H202 } \\ & \square \text { SC } \end{aligned}$	$\begin{aligned} & \text { LJ1H303 } \\ & \square \text { SE } \end{aligned}$				$\begin{array}{\|l} \mid \text { LJ1S101 } \\ \square S C \end{array}$	$\begin{aligned} & \text { LJ1S202 } \\ & \square \mathrm{CC} \end{aligned}$	$\begin{array}{\|l} \left\lvert\, \begin{array}{l} \text { LJ1S303 } \\ \text { ■SC } \end{array}\right. \end{array}$	$\begin{aligned} & \text { LG1H212 } \\ & \square \mathrm{P} \square \\ & \text { LG1H212 } \\ & \square \mathrm{N} \square \end{aligned}$	$\begin{aligned} & \text { LG1H212 } \\ & \text { GSC } \end{aligned}$	$\begin{aligned} & \text { LG1H202 } \\ & \square \mathrm{P} \square \\ & \text { LG1H202 } \\ & \square \mathrm{N} \square \end{aligned}$	$\begin{aligned} & \text { LG1H202 } \\ & \text { GSC } \end{aligned}$
Compatible guide	High rigidity direct acting guide									Slider guide			High rigidity direct acting guide			
Motor capacity	50W	100W	200W	50W	100W	200W	100	W	200W	50W	100W	200W			OW	
Operating temperature range	5 to $50^{\circ} \mathrm{C}$		5 to $40^{\circ} \mathrm{C}$	5 to $50^{\circ} \mathrm{C}$		5 to $40^{\circ} \mathrm{C}$	5 to $50^{\circ} \mathrm{C}$		5 to $40^{\circ} \mathrm{C}$	5 to $50^{\circ} \mathrm{C}$		5 to $40^{\circ} \mathrm{C}$	5 to $50^{\circ} \mathrm{C}$			
Electric power	180VA	300 VA	640VA	180VA	300VA	640VA	300 VA		640VA	180VA	300 VA	640VA	300 VA			
Control system	AC software servo/PTP control															
Position detection system	Incremental encoder															
Home position return direction	Can be selected between the motor side and the side opposite the motor.															
Maximum positioning point setting	1008 points (when step designation is actuated)															
Movement command	Absolute and incremental used in combination															
Position designation range	0.00 mm to 4000.00 mm Note)															
Speed designation range	$1 \mathrm{~mm} / \mathrm{s}$ to $2500 \mathrm{~mm} / \mathrm{s}$ Note)															
Acceleration/deceleration designation range	Trapezoidal acceleration/deceleration $1 \mathrm{~mm} / \mathrm{s}^{2}$ to $9800 \mathrm{~mm} / \mathrm{s}^{2}$ Note)															

Note) There are cases in which the position, speed and acceleration designations are not realized, depending on the actuator that is connected and the operating conditions.
Programming

Item	Performance/Specifications
Means of programming	Dedicated controller setup software (LC1-1-S1, LC1-1-W1, LC1-1-W2) and dedicated teaching box (LC1-1-T1- $\square \square$)
Functions	Programming (JOG teaching, direct teaching*), Operation, Monitor, Test, Alarm reset
Number of programs	8 programs
Number of steps	1016 steps (127 steps $\times 8$ programs)

* Direct teaching is only available with LC1-1-W1 and LC1-1-W2.

Operating configuration

Item	Performance/Specifications
Operating methods	Operation by PLC, operating panel, etc., via control terminal; Operation by PC (controller setup software); Operation by teaching box
Summary of operations	Program batch execution (program designated operation), Step designated execution (position movement, point designated operation)
Test run functions	Program test, Step no. designated operation, JOG operation, Input/output operation
Monitor functions	Executed program indication, Input/output monitor

Peripheral device control

Item	Performance/Specifications
General purpose input	6 inputs, Photo-coupler insulation, 24VDC, 5mA
General purpose output	6 outputs, Open collector output, 35VDC max., 80mA/output (maximum load current)
Control commands	Output ON/OFF, Input condition wait, Condition jump, Time limit input wait

Safety items

Item	Performance/Specifications
Protection functions	Over current, Over load, Over speed, Encoder error, Abnormal driver temperature, Abnormal drive power supply,
Communication error, Battery error, Abnormal parameter, Limit out	

Dimensions
LC1-1B $\square \mathrm{H} \square$
LC1-1D2H $\square \square$
LC1-1F2H $\square \square$
LC1-1B \square S \square
LC1-1B $\square \mathrm{M} \square$

LC1-1F2MC \square

CN5 motor power line connector (Molex 6P)

With regenerative

absorption unit

LC1-1B $\square V \square \square$

Stroke

$\mathbf{5 0}$	50 mm
$\mathbf{7 5}$	75 mm
$\mathbf{1 0 0}$	100 mm
$\mathbf{1 2 5}$	125 mm
$\mathbf{1 5 0}$	150 mm
$\mathbf{1 7 5}$	175 mm
$\mathbf{2 0 0}$	200 mm

- Mounting bracket

$\mathbf{3}$	M3
$\mathbf{5}$	M5

Mounting*

* This controller includes the accessories listed below.

LC1-1- $\square \square / E i t h e r ~ T-n u t s ~ o r ~ T-b r a c k e t s ~ f o r ~ m o u n t i n g ~$
LC1-1-1000/Controller connector
LC1-1-2000/Controller connector
(Refer to page 199.)
Note) The following options are necessary for operating and setting the controller.
$\left.\begin{array}{l}{\left[\begin{array}{l}\text { LC1-1-S1 PC-98 (MS-DOS) } \\ \text { LC1-1-W1 (Windows 95 Japanese) } \\ \text { LC1-1-W2 (Windows 95 English) }\end{array}\right)} \\ \text { and } \\ \text { LC1-1-R } \square \square \text { (dedicated communication cable) }\end{array}\right]$.

Series LC1

Performance/Specifications

General specifications

Model Item	LC1-1B1V $\square 1-\square \square-\square \square \square-X 180$ LC1-1B1V $\square 1-\square \square-\square \square \square-X 233$	LC1-1B1V $\square 2-\square \square-\square \square \square-X 180$ LC1-1B1V $\square 2-\square \square-\square \square \square-X 233$
Power supply	$100 \mathrm{~V} / 110 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}$	$200 \mathrm{~V} / 220 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}$
Leakage current	5 mA or less	
Dimensions	$80 \times 120 \times 244 \mathrm{~mm}$	
Weight	2.2 kg	

Actuator control

Model Item	LC1-1B1V $\square 1-\square \square-\square \square \square-\mathrm{X} 180$	LC1-1B1V $\square 1-\square \square-\square \square \square-X 233$	LC1-1B1V $\square 2-\square \square-\square \square \square-X 180$	LC1-1B1V $\square 2-\square \square-\square \square \square-X 233$
Compatible actuator	LXSAB $\square-\square \square \square S \square-\square \square \square-X 12$	LXPAB $\square-\square \square \square S \square-\square \square \square-X 12$	LXSAB \square - $\square \square \square$ S \square - $\square \square \square$-X13	LXPAB \square - $\square \square \square S \square-\square \square \square-X 13$
Compatible guide	High rigidity direct acting guide	Guide rod	High rigidity direct acting guide	Guide rod
Motor capacity	30 W			
Operating temperature range	5 to $5^{\circ} \mathrm{C}$			
Electric power	180VA			
Control system	AC software servo/PTP control			
Position detection system	Incremental encoder			
Home position return direction	Can be selected between the motor side and the side opposite the motor.			
Maximum positioning point setting	1008 points (when step designation is actuated)			
Movement command	Absolute and incremental used in combination			
Position designation range	0.00 mm to 4000.00 mm Note)			
Speed designation range	$1 \mathrm{~mm} / \mathrm{s}$ to $2500 \mathrm{~mm} / \mathrm{s}^{\text {Note) }}$			
Acceleration/deceleration designation range	Trapezoidal acceleration/deceleration $1 \mathrm{~mm} / \mathrm{s}^{2}$ to $9800 \mathrm{~mm} / \mathrm{s}^{2}$ Note)			

Note) There are cases in which the position, speed and acceleration designations are not realized, depending on the actuator that is connected and the operating conditions.

Dimensions

LC1-1B1V $\square \square \square-\square \square-\square \square \square-X 180$

LC1-1B1V $\square \square \square-\square \square-\square \square \square-X 233$

Controller Mounting

Mounting of the controller is performed by means of the two T-grooves provided on the bottom surface.
Mounting is possible from above or below using the special T-nuts or T-brackets. Refer to page 199 for further details.
Note) This controller comes with either the T-nuts or T-brackets as accessories.

Controller model	Mounting screw	Mounting bracket assembly
LC1-1 $\square \square \square-$ N3	M3 $\times 0.5$	LC1-1-N3
LC1-1 $\square \square \square$-N5	M5 $\times 0.8$	LC1-1-N5
LC1-1 $\square \square \square-$ L3	M3	LC1-1-L3
LC1-1 $\square \square \square-$ L5	M5	LC1-1-L5

Mounting with T-nuts

Mounting with T-brackets

Part Descriptions

Controller Command Setting List

Actuator control commands

Classification	Function	Instruction	Parameter value
Movement	Absolute movement command	MOVA	Address (speed)
	Incremental movement command	MOVI	\pm Movement (speed)
Setting	Acceleration setting command	ASET	Acceleration

I/O control commands

Classification	Function	Instruction	Parameter value
Output control	Output ON command	O-SET	General purpose output no.
	Output OFF command	O-RES	General purpose output no.
	Output reversal command	O-NOT	General purpose output no.
Input wait	AND input wait command	I-AND	General purpose input no., State
	OR input wait command	I-OR	General purpose inputno., State
Input wait with time out function	AND input time out jump command	T-AND	General purpose input no., State (P-no.) label
	OR input time out jump command	T-OR	General purpose input no., State (P-no.) label
	AND input time out subroutine call command	C-AND	General purpose input no., State (P-no.) label
	OR input time out subroutine call command	C-OR	General purpose input no., State (P-no.) label
Condition jump	AND input condition jump command	J-AND	General purpose input no., State (P-no.) label
	OR input condition jump command	J-OR	General purpose input no., State (P-no.) label

Program control commands

Classification	Function	Instruction	Parameter value
Jump	Unconditional jump command	JMP	(P-no.) label
Subroutine	Subroutine call command	CALL	(P-no.) label
	Subroutine end declaration	RET	
Loop	Loop start command	FOR	Loop frequency
	Loop end command	NEXT	
End	Program end declaration	END	
Timer	Timer command	TIM	Timer amount

ᄃ

Connection Examples

Control Input/Output Terminal: CN1

Terminal to perform actuator operation (connects PLC and operating panel)

CN1. Control input terminal list

Terminal	Pin no.	Description	Function
+24V	1,14	Common	The positive common of the input terminal.
SET-UP	2	Starting preparation	The terminal that performs setup operations (actuator starting preparation).
RUN	15	Starting	The terminal that performs program start.
Pro-no. bit1	17	Program designation	The terminal that designates the program to be executed. Can designate 8 types of programs with a total of 3 bits. (Set by the binary system.)
Pro-no. bit2	5		
Pro-no. bit3	18		
Stp-no. bit1	6	Step designation	The terminal that designates the step to be executed. Used when executing steps (position movement). (Set by the binary system.)
Stp-no. bit2	19		
Stp-no. bit3	7		
Stp-no. bit4	20		
Stp-no. bit5	8		
Stp-no. bit6	21		
Stp-no. bit7	9		
HOLD	3	Temporary stop	Temporarily stops the program run by means of the ON input.
STOP	16	Emergency stop (nonlogical input)	Performs an emergency stop when ON input stops.
ALARM RESET	4	Alarm release	Releases the alarm being generated by means of the ON input.

CN1. Control output terminal list

Terminal	Pin no.	Description	Function
READY	23	System ready signal	Indicates ability to perform control terminal input and communication via the dedicated communication cable when ON.
SET-ON	10	Start readiness signal	Indicates that the SET-UP operation (start ready operation: return to home position after servo ON) is complete when ON. The state in which the program can be run.
BUSY	11	Operating signal	Indicates operation in progress when ON. ON when program is being executed and when returning to the home position.
$\overline{\text { ALARM }}$	24	Alarm output	When this signal is OFF, an alarm is being generated for the actuator/controller.
COM	12,25	Common	The output terminal common.

Control input/output terminal: CN1

General purpose input/output terminal: CN2

Timing for READY signal generation immediately after turning on power

Timing for home position return

Timing for program/step execution

Timing for alarm reset

Timing for temporary stop during operation

Timing for stop by ALARM-RESET during operation

Timing for emergency stop during operation

Response time with respect to controller input signals

The following factors exist for delay of response with respect to controller input signals.

1) Scanning delay of the controller input signal
2) Delay by the input signal analysis computation
3) Delay of command analysis processing

Factors (1) and (2) above apply to delay with respect to the SET-ON, ALARM-RESET and STOP signals.
Factors (1), (2) and (3) above apply to delay with respect to cancellation of the RUN and HOLD signals.

When signals are applied to the controller by means of a PLC, the PLC processing delay and the controller input signal scan delay should be considered, and the signal state should be maintained for 50 ms or longer.
It is recommended that the input signal state be initialized with the response signal to the input signal as a condition.

Windows/LC1-1-W2 (English)

Windows edition controller setup software includes all of the functions of PC-98 (MS-DOS) edition software, and the following functions have also been added.

- Direct teaching
- Program printing
- Batch editing and sending/receiving of all programs
- Batch management and multiple saving of parameters and programs

Operating environment

Computer	A model with a Pentium 75 MHz or faster CPU, and able to fully operate Windows 95.
OS	Windows 95
Memory	16 MB or more
Hard disk	5 MB or more of disk space required

- The dedicated communications cable (LC1-1-R $\square \square \square$) is required when using this software.
- This software cannot be used with Windows 3.1.

Screen example

- The contents of this software and the registered product specifications may change without prior notice.
- Duplicating, copying or reproducing of this software, in whole or in part, is prohibited without prior consent from SMC.
- SMC owns the copyright of this software.
- The intellectual property rights and other rights concerning this software are solely owned by SMC. This also applies to any future version upgrades and revised versions of this software.
- SMC does not assume any compensatory responsibility for any damage or loss of profit, etc., resulting from the use of this software.
- Windows and Microsoft are registered trade marks of Microsoft Corporation.
- MS-DOS is a registered trade mark of Microsoft Corporation.
- Pentium is a trade mark of Intel Corporation.
- PC-98 Series is a registered trade mark of NEC Corporation.

How to Order
LC1-1-T1-0 2

- Cable length
- Interactive input display
- Programming with the same language as PC software

Able to execute operations such as programming and parameter changes, which up until now have been performed from a PC.

* The special cable is packed with the teaching box. (2 to 5 m)

Performance/Specifications

General specifications

	LC1-1-T1-0
Power supply	Supplied from LC1
Dimensions (mm)	$170 \times 76 \times 20$
Weight (g)	158
Case type	Resin case
Display unit	$46 \times 55 \mathrm{~mm}$ LCD
Operating unit	Key switches, LED indicators
Cable length	$2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$

Basic performance

	Performance/Specifications
Compatible controller	LC1 (all models)
Operating temperature range	5 to $50^{\circ} \mathrm{C}$
Functions	Programming, Parameter change, Setup, Operation, JOG operation, Monitor, Alarm reset, JOG teaching
Monitor functions	Movement position, Movement speed
Protection functions	Over current, Over load, Over speed, Encoder error, Abnormal driver temperature, Abnormal drive power supply, Communication error, Battery error, Limit out, Abnormal driver parameter, RAM malfunction
Protection function indicator	Alarm code

Dimensions

Alarm Code List

Alarm code	Alarm	Reset	Description
10	Emergency stop	\bigcirc	An emergency stop condition exists or has occurred in the past due to the controller setup software or the CN1 control STOP terminal.
11	Limit switch ON	\bigcirc	Limit switch is turned ON.
12	Battery error	\bullet	The memory backup battery voltage is low. Contact SMC.
13	Communication error	\bigcirc	Communication with the controller is interrupted.
14	RAM malfunction	\bullet	The parameter is damaged.
15	Soft stroke limit	\bigcirc	The program is about to exceed the stroke length set by the parameter.
20	Over current	\bullet	Three times the rated current or more is flowing into the driver unit.
21	Over load	\bullet	The driver unit continuously received a current exceeding the rated current for a prescribed time or longer.
22	Over speed	\bullet	The controller exceeded the maximum operational speed.
24	Abnormal driver temperature	\bullet	A temperature increase of the driver unit activated the temperature sensor.
25	Encoder error	\bullet	An encoder or actuator cable malfunction has occurred.
26	Abnormal drive current	\bullet	The driver unit power supply is shut off due to a regeneration problem, etc.
28	Abnormal driver parameter	\bullet	A driver parameter abnormality in the controller system has occurred.
30	Unsuccessful home position return	\bigcirc	Trying to execute a program/step without completing the setup (home position return).
31	No designated speed	\bigcirc	No speed designation with MOVA or MOVI, and no prior speed designation found.
32	No jump destination	\bigcirc	No label found at the program designated jump destination.
33	Nesting exceeded	\bigcirc	Sub-routine nesting (calling a sub-routine from another sub-routine) exceeds 14 levels.
34	No return destination	\bigcirc	No return destination found for the RET command operation.
35	Executing FOR	\bigcirc	A forbidden command is found between FOR and NEXT.
36	No FOR	\bigcirc	NEXT command was executed without executing FOR command.
37	No operation program	\bigcirc	Trying to execute a program/step with no commands.
38	Invalid movement command	\bigcirc	Trying to execute a command other than MOVA, MOVI, or ASET with a step (position movement) designated operation.
39	Format error	\bigcirc	An error is found in the attached value of a command being programmed.

* Refer to the Series LC1 instruction manual for alarm details.
* Explanation of "Reset" symbols above:

O : Can be reset by the alarm reset.

- Turning OFF the controller power is required for resetting.

Key Arrangement and Functions

For the operation of each mode, refer to the product's instruction manual.

Key	Functions
UP	Moves upward for item selections. Also used to increase values for data entry. In combination with L/R keys, this key drives the actuator at high speed during a JOG operation.
DOWN	Moves downward for item selections. Also used to decrease values for data entry. Loves to the left for item selections. Also used to move a numerical valve place to the left for data entry. It drives the actuator to the end side during a JOG operation.
R	Moves to the right for item selections. Also used to move a numerical valve place to the right for data entry. It drives the actuator to the motor side during a JOG operation.
HOLD/BS	Returns to the previous mode during item selections. It becomes the temporary stop key during actuator operation.
MODE/ESC	Returns to the main mode during item selections. It exits all modes. STOP In combination with the ENT key, it launches JOG teaching and aids program editing.
ENT	Determines data during item selections. In combination with the STOP key, it launches JOG teaching and aids program editing.

Series LC1 Options

T-nuts and T-brackets for Mounting

Be sure to use when mounting the controller.
Note) The controller unit includes either T-nuts or T-brackets.

T-nuts
(Weight: 10.0 g)

T-brackets

Controller Connectors
These are connectors 'all halfpitch type' used for CN1 (control input/output) and CN2 (general purpose input/output).
Note) The controller unit includes a controller connector for use with CN1 and CN2.

CN1 (Control input/output)

Controller connector (CN1: Control input/output)
Model LC1-1-1000

Single side wired controller connector (CN1: Control input/output) Model LC1-1-1050

Cable is connected to LC1-1-1000.

CN2 (General purpose input/output)

Controller connector (CN2: General purpose input/output) Model LC1-1-2000

Single side wired controller connector (CN2: General purpose input/output) Model LC1-1-2050

Cable is connected to LC1-1-2000.

Dedicated Communication Cables

These are cables used to connect controllers and PCs.
Note) Be aware of the configuration of the connector on the PC when selecting a dedicated communication cable.

Dedicated communication cable (halfpitch) (For NEC PC-98 Series)
Model LC1-1-R $\square \mathbf{H}$

* PC-98 Series is a registered trade mark of NEC Corporation.

Dedicated communication cable (IBM PC/AT compatible computer)

The regenerative absorption unit absorbs the energy (regenerative energy) that is generated by the motor when it decelerates. It is used to prevent drive power abnormality in the controller.

Standard motor
vertical mount specification

\triangle Danger

1. Contact SMC if the connected controller power supply voltage will be 110VAC or 220 VAC , as this may cause fire or malfunction.
2. Secure a distance of 50 mm or more between the body and control panel interior or other equipment, as this may cause fire or malfunction.
3. Confirm that there are no problems with terminal polarity, pin numbers, and crimping before connecting, as they may cause damage, malfunction, injuries, or fire.
4. Set up a circuit that shuts off the connected controller main power supply if trouble occurs in the regenerative absorption unit.
5. The regenerative absorption unit (LC7R) is exclusively for use with series LC1 controller connection. Therefore, never connect it to other equipment as this may cause fire or malfunction.

How to Order

Regenerative Absorption Unit

$\mathbf{1}$	100 VAC $(50 / 60 \mathrm{~Hz})$
$\mathbf{2}$	$200 \operatorname{VAC}(50 / 60 \mathrm{~Hz})$

Nil	Without accessory
S1	Series LC1 connector and contact pin + Regenerative absorption unit connector and contact pin
C1	Series LC1 connection cable (0.5 m) Note 2)

Note 1) Consult SMC if the connected controller power supply voltage will be 110 VAC or 220VAC.
Note 2) The temperature control output cable length is 1 m . Also, the connector cable already has the required contact pin and connector assembled.

Single Option

S0	Regenerative absorption unit connector and pin
S1	Series LC1 connector and pin
C1	Series LC1 connection cable $(0.5 \mathrm{~m})$ Note 3)

Note 3) The temperature control output cable length is 1 m . Also, the connector cable already has the required contact pin and connector assembled.

Specifications

Model	LC7R-K11A $\square \square$	LC7R-K12A $\square \square$
Regeneration method	Heat exchange method based on resistance	
Regenerative resistance capacity	40W	
Regenerative operation voltage	180 V	380 V
Protective circuit	Regenerative voltage input mis-wiring protection Over current protection, Overheating protection (Normally closed, Radiator sensor OFF at $100^{\circ} \mathrm{C}$)	
Ambient operating temperature	0 to $40^{\circ} \mathrm{C}$	
Connected controller power voltage	100VAC	200VAC
External connection method	Connector	
Insulation resistance	$500 \mathrm{VDC}, 50 \mathrm{M} \Omega$ or more	
Mounting	DIN rail mount	

Dimensions

Connection Examples

- Electrical wire

——_Cover O.D.: Max. 3.1 mm (AWG18 to 20) [0.5m or less] -- Cover O.D.: Max. 3.1mm (AWG18 to 24) [1m or less]

- Temperature control output terminal

Maximum rated voltage: 30 V
Maximum rated current: 6 mA

Note) Select 6 mA or less for resistor R after confirming the input capacity of the control equipment.

- Regenerative absorption unit connectors
[Manufacturer: Molex Japan Co., Ltd.]

Description	Part no.	Quantity
Receptacle	$5557-06 R$	1
Female terminal	5556PBTL	6

- Wiring tools [Manufacturer: Molex Japan Co., Ltd.] Wiring tools should be provided by customer.

Description	Part no.
Crimping tool	$57026-5000$ (for UL1007) $57027-5000$ (for UL1015)
Puller	$57031-6000$

- Contact pin number

Terminal	Pin no.	Description
Vin (P)	$\mathbf{2}$	Regenerative absorption unit power input (positive)
Vin (N)	$\mathbf{3}$	Regenerative absorption unit power input (negative)
Vout (P)	$\mathbf{1}$	Extended regenerative resistance output (positive)
Vout (N)	$\mathbf{4}$	Extended regenerative resistance output (negative)
ALM (P)	$\mathbf{5}$	Temperature control output terminal (positive)
ALM (N)	$\mathbf{6}$	Temperature control output terminal (negative)

Insertion side

Regenerative Absorption Unit Selection Guide

The graphs show the relationship between speed and distance where the use of a regenerative absorption unit becomes necessary for each vertical specification actuator based on the desired work piece load.
When setting a speed and distance that are above the line on the graphs, based on the work piece load for the actuator to be used, be sure to use a regenerative absorption unit.
Note 1) If a graph line for the work piece load (within the actuator's maximum load weight) on the actuator is not found, be sure to refer to the graph line for the heavier work piece load that is closest to the desired load.
Note 2) The use of a regenerative absorption unit is recommended for any operating conditions
Applicable Controller Power Supply Voltage 100VAC Specification

Series LJ1H10

*When an actuator is operated under conditions that exceed the lines on the graph above, be sure to use a regenerative absorption unit.

LJ1H1021 $\square \mathrm{B}-\square \square \square \mathbf{K}_{\text {(12mm lead) }}$

It is not necessary to mount a regenerative absorption unit when the work piece load, speed, and stroke are within the actuator rating. However, use of a regenerative absorption unit is recommended under all conditions.
Actuator rating
Maximum work piece load: 5kg
Maximum speed: $600 \mathrm{~mm} / \mathrm{s}$
Maximum stroke: 500 mm

Series LJ1H20

*When an actuator is operated under conditions that exceed the lines on the graph above, be sure to use a regenerative absorption unit.

LJ1H2021 \square A- $\square \square \square \mathbf{K}_{\text {(10 mm lead) }}$

It is not necessary to mount a regenerative absorption unit when the work piece load, speed, and stroke are within the actuator rating. However, use of a regenerative absorption unit is recommended under all conditions.

Actuator rating

Maximum work piece load: $\mathbf{8 k g}$
Maximum speed: $500 \mathrm{~mm} / \mathrm{s}$
Maximum stroke: 600 mm

Series LJ1H30

Danger Consult SMC if the connected controller power supply voltage is 110 VAC , as this may cause fire or malfunction.

Applicable Controller Power Supply Voltage 200VAC Specification

Series LJ1H10

*When an actuator is operated under conditions that exceed the lines on the graph above, be sure to use a regenerative absorption unit.

LJ1H1022 \square B- $\square \square \square(12 \mathrm{~mm}$ lead)

It is not necessary to mount a regenerative absorption unit when the work piece load, speed, and stroke are within the actuator rating. However, use of a regenerative absorption unit is recommended under all conditions.

Actuator rating

Maximum work piece load: 5kg
Maximum speed: $600 \mathrm{~mm} / \mathrm{s}$
Maximum stroke: 500 mm

Series LJ1H30

Series LJ1H20

* When an actuator is operated under conditions that exceed the lines on the graph above, be sure to use a regenerative absorption unit.

LJ1H2022 \square A- $\square \square \square$ (10mm lead)

* When an actuator is operated under conditions that exceed the lines on the graph above, be sure to use a regenerative absorption unit

LJ1H3032 $\square \mathbf{A}-\square \square \square \mathbf{K}$ (10mm lead)

*When an actuator is operated with conditions that exceed the lines on the graph to the left, be sure to use a regenerative absorption unit.

Example)
Actuator: LJ1H3032 \square A- $\square \square \square \mathbf{K}$
Work piece load: 17kg
Speed: $400 \mathrm{~mm} / \mathrm{s}$
Stroke: 100mm
When the above conditions are used, mark a position based on the speed and stroke. (See point A on the graph for Series LJ1H30.)
Since point A is above the line for 18 kg , a regenerative absorption unit is required.

Brake Wiring Example

A wiring example for controller (Series LC1) connectors and a brake is shown below. The brake is in a de-energized condition and locked. 24 VDC is required to unlock it. The brake terminal is located in the motor power line connector (CN5), and it is connected to the relay switch inside the controller. By connecting the wiring to this terminal, turning on and off of the brake is controlled by the controller. (The brake does not have polarity.)

Note) For standard type electric actuators

\triangle Danger

1. When not connecting a regenerative absorption unit, use a blanking plate to cover CN6, as there is a danger of electrocution or injury.
2. The manual brake unlocking switch unlocks the brake during maintenance or an emergency. Mount the switch when it is necessary for maintenance, etc. Be sure to turn the switch off for purposes other than maintenance, etc. The brake will not operate with the switch on.
3. If the manual brake unlocking switch is not mounted, the brake cannot be unlocked for an emergency.

\triangle Caution

1. A regenerative absorption unit is required depending on actuator operating conditions. Read the instruction manual for the regenerative absorption unit when one is connected.

Non-Standard Motor Compatible Drivers

Matsushita Electric Industrial Co., Ltd. Drivers for LJ1, LG1, LX

Dimensions

Driver

Driver dimensions

For LJ1, LG1

Driver model	
MSD5A1P1E	
MSD5A3P1E	35
MSD013P1E	
MSD011P1E	45
MSD023P1E	
MSD021P1E	60

For LX

Driver model	A
MSD3A1P1E	35
MSD3A3P1E	35

Example for driver connection between equipment

Driver input/output signal list (CN-1/F connector)

Pin no.	Symbol	Signal description	Pin no.	Symbol	Signal description
1	COM +	Control signal power supply	12	IM	Torque monitor signal
2	SRV-ON	Servo ON input	13	COM-	Control signal power supply
3	A-CLR	Alarm clear input	14	GND	
4	CL	Counter clear input	19	OZ+	Z phase output
5	GAIN	Gain switching input	20	OZ-	Z phase output
6	DIV	Command divider switching input	21	CZ	Z phase output
7	CWL	CW drive suppression input	22	CW+	CW pulse input
8	CCWL	CCW drive suppression input	23	CW-	CW pulse input
9	ALM	Servo alarm output	24	CCW+	CCW pulse input
10	COIN	Positioning complete signal output	25	CCW-	CCW pulse input
11	SP	Speed monitor signal	26	FG	Frame ground

Dimensions (RS-232C without optional unit)

Driver

Driver dimensions
Driver input/output signal list (CN-1/F connector)
For LJ1, LG1, LX

Driver model
MR-C10A
MR-C20A
MR-C10A1
MR-C20A1

Pin no.	Symbol	Signal description	Pin no.	Symbol	Signal description
1	V+	Digital output power supply	11	SD	Shield
2	ALM	Failure	12	SG	Interface power supply common
3	PF	Positioning complete	13	CR	Clear
4	OP	Z phase pulse	14	LSN	Reverse stroke end
5	SG	Interface power supply common	15	LSP	Normal stroke end
7	NP	Reverse pulse line	16	V5	Interface power supply
8	NG	Reverse pulse line	17	SON	Servo ON
9	PP	Normal pulse line	19	OPC	Open collector power supply
10	PG	Normal pulse line	20	V24	Interface power supply

Example for driver connection between equipment

Note 1) Do not orient diodes incorrectly. The amp will fail if connected incorrectly
Note 2) Wiring for a standard cable less than 10 m . When the cable length is 10 m or longer, four lines each of P5 and LG wires should be connected in parallel. (Maximum 50m)
Note 3) Signals having the same description should be connected to the same pin on the connector.
Note 4) The failure (ALM) signal is ON under normal conditions when there is no alarm. When it goes OFF (when an alarm is generated), the controller output should be stopped by the sequence program.
Note 5) The LSP and LSN signals do not require wiring, because they are automatically turned on internally at the time of shipment. (They can also be validated by parameters.)
Note 6) A sequence should be implemented to turn on the RDY relay after confirming that there is no trouble with the servo (ALM signal is ON).
Note 7) For motor with electromagnetic brake.

Yaskawa Electric Corporation Drivers for LJ1, LG1, LX

Dimensions

 DriverDriver dimensions
For LJ1, LG1

Driver model	A	B
SGDE-A5AP		
SGDE-A5BP	50	
SGDE-01AP		
SGDE-01BP		
SGDE-02AP		
SGDE-02BP	65	75

For LX

Driver model	A	B
SGDE-A3BP	50	55
SGDE-A3AP	50	55

Driver input/output signal list (CN-1/F connector)

Pin no.	Signal	Signal description
1	PULS	Command pulse input
2	*PULS	Command pulse input
3	SIGN	Command code input
4	*SIGN	Command code input
5	CLR	Deviation counter clear input
6	*CLR	Deviation counter clear input
7	$\overline{\text { BK }}$	Brake interlock signal output
8	$\overline{\mathrm{COIN}}$	Positioning complete signal output
10	SG	OV
13	P-IN	External power supply input

Pin no.	Signal	Signal description
14	$\overline{\text { S-ON }}$	Servo ON input
15	$\overline{\text { P-ON }}$	P actuation input
16	P-OT	Normal rotation suppression input
17	N-OT	Reverse rotation suppression input
18	$\overline{\text { ALMRST }}$	Alarm reset input
32	PCO	PG output C phase
33	SG	OV
34	ALM	Servo alarm output
35	SG	OV
36	FG	Frame ground

Example for driver connection between equipment

Series LXF

Series LXP
 \section*{Short Stroke
 \section*{Short Stroke Electric Actuator} Electric Actuator} Series LX
Direct Acting Guide/Ball Bushing
Series LXS

Series	Motor type	Brake	Guide type	Model	Lead screw Lead mm		Page
					Ball screw	Slide screw	
LXF	5 phase stepper	Without brake	Direct acting guide	LXFH5	25	612	210
LXP	2 phase stepper	Without brake	Ball bushing	LXPB2	25	612	218
		With brake			25	612	226
	5 phase stepper	Without brake		LXPB5	2 5	612	234
		With brake			25	612	242
LXS	2 phase stepper	Without brake	High rigidity direct acting guide	LXSH2	25	612	250
		With brake			25	612	258
	5 phase stepper	Without brake		LXSH5	2) 5	612	266
		With brake			25	612	274

Made to Order

- AC servomotor specification ___ 288
- Low particulate generation specification ___ 294

Construction $\quad 296$
Mounting __ 299
Acceleration Time Guide 302
Table Deflection 304

Part Number Designations

Low Profile Slide Table Type
Series LXIF

LXFH5 BC-Stroke S-GD 1

Home position switch	
Nil	None
S	Yes (cable length 0.3 m)

Proximity switch type

Nil	None		
Refer to the table on the right for			
proximity switch part numbers.			
Number of proximity switches			
Number\|$\mathbf{1}$ 1 pc. $\mathbf{2}$ 2 pcs \vdots \vdots $\mathbf{6}$ 6 pcs.		$.$	
:---			

Proximity switch types

Symbol	Model	Wiring/ Output type	Lead wire length (m)	Contact
GN	With sensor rail and sensor plate without proximity switch			
G	GXL-8F	3 wire/NPN	1	N.O. (A contact)
GD	GXL-8FI	3 wire/NPN	1	N.O. (A contact)
GB	GXL-8FB	3 wire/NPN	1	N.C. (B contact)
GDB	GXL-8FIB	3 wire/NPN	1	N.C. (B contact)
GU	GXL-8FU	2 wire/solid state	1	N.O. (A contact)
GUB	GXL-8FUB	2 wire/solid state	1	N.C. (B contact)

* Refer to page 318 for detailed specifications of proximity switches.

Specifications

	Standard stroke	mm	25	50	75	100
Performance	Body weight	kg	0.8	1.0	1.1	1.2
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)			
	Work load	kg	3 (2) horizontal Note 1)			
	Speed	mm / s	to 30 Note 2)			
	Positioning repeatability	mm	± 0.03			
Main parts	Motor		5 phase stepper motor (without brake)			
	Lead screw		Ball screw ø8mm, 2mm lead			
	Guide		Direct acting guide			
Home position switch	Model		Photo micro sensor EE-SX672			
Driver	Model		LC6D-507AD (Refer to page 306 for details.)			

Note 1) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().
Note 2) Since vibration may increase with low speed operation, use $2 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	4
Rolling	3
Yawing	4

m : Transfer load (kg)
L : Overhang to work piece center of gravity (mm)
a : Work piece acceleration ($\mathrm{mm} / \mathrm{sec}^{2}$)
Me: Dynamic moment

Allowable dynamic moment

Load Model movement direction			LXF	
$\begin{aligned} & \text { 오 } \\ & \stackrel{\underline{\bar{I}}}{\bar{O}} \\ & \text { 区 } \end{aligned}$		$\begin{array}{cc} \widehat{\Xi}_{\underline{E}} & 300 \\ \boldsymbol{E} & 200 \\ \boldsymbol{Y} & 100 \end{array}$		

Refer to page $\mathbf{3 0 4}$ for deflection data.

5 Phase Stepper Motor/Without Motor Brake Series LXF

Dimensions/LXFH5BC

Positioning Time Guide (for Horizontal Mount)

For transfer load of 0 kg

							Positioning time (sec)			
Positioning distance (mm)		1	10	50	100					
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1					
	20	0.1	0.6	2.6	5.1					
	30	0.1	0.4	1.7	3.4					

For transfer load of $\mathbf{1 k g}$

		Positioning time (sec)			
Positioning distance (mm)		1	10	50	100
Speed (mm/s)	10	0.2	1.1	5.1	10.1
	20	0.1	0.6	2.6	5.1
	30	0.1	0.4	1.7	3.4

For transfer load of 2kg

			Positioning time (sec)			
Positioning distance (mm)		1	10	50	100	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	
	20	0.1	0.6	2.6	5.1	
	30	0.1	0.4	1.7	3.4	

For transfer load of 3kg

		Positioning time (sec)			
Positioning distance (mm)		1	10	50	100
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1
	20	0.1	0.6	2.6	5.1
	30	0.1	0.4	1.7	3.4

Low Profile Slide Table Type

Series LXIF

LXFH5 BD- Stroke S-GD 1

Refer to the table on the right for proximity switch part numbers.

Number of proximity switches -

$\mathbf{1}$	1 pc.
2	2 pcs.
\vdots	\vdots
$\mathbf{6}$	6 pcs.

Proximity switch types

Symbol	Model	Wiring/ Output type	Lead wire length (m)	Contact
GN	With sensor rail and sensor plate without proximity switch			
G	GXL-8F	3 wire/NPN	1	N.O. (A contact)
GD	GXL-8FI	3 wire/NPN	1	N.O. (A contact)
GB	GXL-8FB	3 wire/NPN	1	N.C. (B contact)
GDB	GXL-8FIB	3 wire/NPN	1	N.C. (B contact)
GU	GXL-8FU	2 wire/solid state	1	N.O. (A contact)
GUB	GXL-8FUB	2 wire/solid state	1	N.C. (B contact)

* Refer to page 318 for detailed specifications of proximity switches.

Specifications

	Standard stroke	mm	25	50	75	100
Performance	Body weight	kg	0.8	1.0	1.1	1.2
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)			
	Work load	kg	3 (2) horizontal Note 1)			
	Speed	mm / s	to 80 Note 2)			
	Positioning repeatability	mm	± 0.03			
Main parts	Motor		5 phase stepper motor (without brake)			
	Lead screw		Ball screw ø8mm, 5 mm lead			
	Guide		Direct acting guide			
Home position switch	Model		Photo micro sensor EE-SX672			
Driver	Model		LC6D-507AD (Refer to page 306 for details.)			

Note 1) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().
Note 2) Since vibration may increase with low speed operation, use $5 \mathrm{~mm} /$ s or more as a guide for speed.

Allowable Moment (N.m)

Allowable static moment

Pitching	4
Rolling	3
Yawing	4

m : Transfer load (kg)
L : Overhang to work piece center of gravity (mm)
a : Work piece acceleration ($\mathrm{mm} / \mathrm{sec}^{2}$)
Me: Dynamic moment

Allowable dynamic moment

Refer to page 304 for deflection data.

Positioning Time Guide (for Horizontal Mount)

For transfer load of $\mathbf{0 k g}$

		Positioning time (sec)			
Positioning distance (mm)		1	10	50	100
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1
	40	0.1	0.3	1.3	2.6
	80	0.1	0.2	0.7	1.3

For transfer load of $\mathbf{1 k g}$

		Positioning time (sec)			
Positioning distance (mm)		1	10	50	100
Speed (mm/s)	10	0.2	1.1	5.1	10.1
	40	0.1	0.3	1.3	2.6
	80	0.1	0.2	0.7	1.3

For transfer load of $\mathbf{2 k g}$

		Positioning time (sec)			
Positioning distance (mm)		1	10	50	100
Speed (mm/s)	10	0.2	1.1	5.1	10.1
	40	0.1	0.3	1.3	2.6
	80	0.1	0.2	0.7	1.3

For transfer load of $\mathbf{3 k g}$

		Positioning time (sec)			
Positioning distance (mm)		1	10	50	100
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10
	40	0.1	0.3	1.3	2.6
	80	0.1	0.2	0.7	1.3

[^31]Low Profile Slide Table Type Series LXF

How to Order

Home position switch e	
Nil	None
\mathbf{S}	Yes (cable length 0.3 m$)$

Auto/Proximity switch type
Refer to the table on the right for auto/proximity switch part numbers.

Specifications

	Standard stroke mm	25	50	75	100
Performance	Body weight kg	0.8	1.0	1.1	1.2
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)			
	Work load kg	3 (2) horizontal Note 1)			
	Speed mm/s	to 100 Note 2)			
	Positioning repeatability mm	± 0.05			
Main parts	Motor	5 phase stepper motor (without brake)			
	Lead screw	Ball screw ø8mm, 6 mm lead			
	Guide	Direct acting guide			
Home position switch	Model	Photo micro sensor EE-SX672			
Driver	Model	LC6D-507AD (Refer to page 306 for details.)			

Auto switch types

Symbol	Model	Wiring/Output type	Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Proximity switch types

Symbol	Model		Wiring/Output type	Lead wire length (\mathbf{m})
GN	Contact			
G	GXL-8F sensor rail and sensor ple without proximity switch			
GD	GXL-8FI	3 wire/NPN	1	N.O. (A contact)
GB	GXL-8FB	3 wire/NPN	1	N.O. (A contact)
GDB	GXL-8FIB	3 wire/NPN	1	N.C. (B contact)
GU	GXL-8FU	2 wire/solid state	1	N.C. (B contact)
GUB	GXL-8FUB	2 wire/solid state	1	N.O. (A contact)

Note 1) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().
Note 2) Since vibration may increase with low speed operation, use $6 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	4
Rolling	3
Yawing	4

m : Transfer load (kg)
L : Overhang to work piece center of gravity (mm)
a : Work piece acceleration ($\mathrm{mm} / \mathrm{sec}^{2}$)
Me: Dynamic moment

Allowable dynamic moment

Refer to page 304 for deflection data.

Dimensions/LXFH5SA

Model	D	E	F	G
LXFH5SA-25	4	60	30	(50)
LXFH5SA-50	4	90	60	(50)
LXFH5SA-75	6	90	60	100
LXFH5SA-100	6	90	60	100

* The dimension inside [] shows the location at which the home position switch operates.

T-slot dimensions (2/1)

Positioning Time Guide (for Horizontal Mount)

For transfer load of Okg

		Positioning time (sec)			
Positioning distance (mm)		1	10	50	100
Speed (mm/s)	10	0.2	1.1	5.1	10.1
	50	0.1	0.3	1.1	2.1
	100	0.1	0.2	0.6	1.1

For transfer load of $\mathbf{1 k g}$

		Positioning time (sec)			
Positioning distance (mm)		1	10	50	100
Speed (mm/s)	10	0.2	1.1	5.1	10.1
	50	0.1	0.3	1.1	2.1
	100	0.1	0.2	0.6	1.1

For transfer load of 2kg

		Positioning time (sec)			
Positioning distance (mm)		1	10	50	100
Speed (mm/s)	10	0.2	1.1	5.1	10.1
	50	0.1	0.3	1.1	2.1
	100	0.1	0.3	0.7	1.2

For transfer load of $\mathbf{3 k g}$

		Positioning time (sec)			
Positioning distance (mm)		1	10	50	100
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1
	50	0.1	0.3	1.1	2.1
	100	0.1	0.3	0.7	1.2

Refer to page 302 for acceleration time.

Low Profile Slide Table Type
Series $\llcorner X F$

How to Order

LXFH5 SB-Stroke S-F9N 1
 Home position switch | Nil | None |
| :---: | :---: |
| S | Yes (cable length 0.3 m) |
 Auto/Proximity switch type
 Refer to the table on the right for auto/proximity switch part numbers.

Specifications

	Standard stroke	mm	25	50	75	100
Performance	Body weight	kg	0.8	1.0	1.1	1.2
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)			
	Work load	kg	2 (2) horizontal Note 1)			
	Speed	mm/s	to 200 Note 2)			
	Positioning repeatability		± 0.05			
Main parts	Motor		5 phase stepper motor (without brake)			
	Lead screw		Slide screw $\varnothing 8 \mathrm{~mm}$, 12 mm lead			
	Guide		Direct acting guide			
Home position switch	Model		Photo micro sensor EE-SX672			
Driver	Model		LC6D-507AD (Refer to page 306 for details.)			

Auto switch types

Symbol	Model	Wiring/Output type	Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Proximity switch types

Symbol	Model	Wiring/Output type	Lead wire length (\mathbf{m})	Contact
GN	With sensor rail and sensor plate without proximity switch			
G	GXL-8F	3 wire/NPN	1	N.O. (A contact)
GD	GXL-8FI	3 wire/NPN	1	N.O. (A contact)
GB	GXL-8FB	3 wire/NPN	1	N.C. (B contact)
GDB	GXL-8FIB	3 wire/NPN	1	N.C. (B contact)
GU	GXL-8FU	2 wire/solid state	1	N.O. (A contact)
GUB	GXL-8FUB	2 wire/solid state	1	N.C. (B contact)

Note 1) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().
Note 2) Since vibration may increase with low speed operation, use $12 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	4
Rolling	3
Yawing	4

m : Transfer load (kg)
L : Overhang to work piece center of gravity (mm)
a : Work piece acceleration (mm/sec ${ }^{2}$)
Me: Dynamic moment

Allowable dynamic moment

Refer to page 304 for deflection data.

Dimensions/LXFH5SB

Scale: 35\%

§

T-slot dimensions (2/1)
${ }^{\circ}{ }^{05}{ }^{+0.0 .030}{ }_{0}$ depth 5

Model	D	E	F	G
LXFH5SB-25	4	60	30	(50)
LXFH5SB-50	4	90	60	(50)
LXFH5SB-75	6	90	60	100
LXFH5SB-100	6	90	60	100

Refer to page 299 for mounting

Positioning Time Guide (for Horizontal Mount)

For transfer load of Okg

		Positioning time (sec)			
Positioning distance (mm)		1	10	50	100
Speed (mm/s)	50	0.1	0.3	1.1	2.1
	100	0.1	0.2	0.6	1.1
	200	0.1	0.2	0.4	0.6

For transfer load of 2kg

		Positioning time (sec)			
Positioning distance (mm)		1	10	50	100
Speed $(\mathbf{m m} / \mathbf{s})$	50	0.1	0.3	1.1	2.1
	100	0.1	0.2	0.6	1.1
	200	0.1	0.2	0.5	0.7

For transfer load of $\mathbf{1 k g}$

		Positioning time (sec)			
Positioning distance (mm)		1	10	50	100
Speed (mm/s)	50	0.1	0.3	1.1	2.1
	100	0.1	0.2	0.6	1.1
	200	0.1	0.2	0.4	0.7

[^32]
Guide Rod Type
 Series LXP

How to Order

\section*{LXPB2 BC-Stroke S-F9N 1
 Home position switch 6
 | Nil | None |
| :---: | :---: |
| \mathbf{S} | Yes (cable length 0.3 m) |
 | Auto switch type |
| :--- |
| Nil None |
| Refer to the table on the right for auto
 switch part numbers. |}

Number of auto switches -

$\mathbf{1}$	1 pc.
$\mathbf{2}$	2 pcs.
\vdots	\vdots
$\mathbf{6}$	6 pcs.

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (m)	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Specifications

	Standard stroke	mm	50	75	100	125	150	175	200
Performance	Body weight	kg	2.0	2.2	2.3	2.6	2.8	2.9	3.1
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)						
	Work load	kg	6 horizontal/5 vertical Note 1)						
	Speed	mm / s	to 30 Note 2)						
	Positioning repeatability		± 0.03						
Main parts	Motor		2 phase stepper motor (without brake)						
	Lead screw		Ball screw ø8mm, 2 mm lead						
	Guide		Ball bushing						
Home position switch	Model		Photo micro sensor EE-SX673						
Driver	Model		LC6D-220AD (Refer to page 306 for details.)						
Positioning driver	Model		LC6C-220AD (Refer to page 309 for details.)						

Note 1) Based on the operating conditions, establish a separate guide when exceeding the maximum allowable lateral load.
Note 2) Since vibration may increase with low speed operation, use $2 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Operating Conditions

Allowable lateral load (F)

Stroke	Load (N)
$\mathbf{5 0}$	42
$\mathbf{7 5}$	42
$\mathbf{1 0 0}$	40
$\mathbf{1 2 5}$	42
$\mathbf{1 5 0}$	32
$\mathbf{1 7 5}$	24
$\mathbf{2 0 0}$	17

Allowable plate rotation torque (T)

Stroke	Torque (N•m)
$\mathbf{5 0}$	2.87
$\mathbf{7 5}$	2.47
$\mathbf{1 0 0}$	2.17
$\mathbf{1 2 5}$	2.38
$\mathbf{1 5 0}$	2.16
$\mathbf{1 7 5}$	1.98
$\mathbf{2 0 0}$	1.82

Plate non-rotating accuracy (θ)

Non-rotating accuracy (θ)
$\pm 0.09^{\circ}$

Refer to page $\mathbf{3 0 4}$ for deflection data.

Section F detail (Scale: 2/1)

Section C detail (Scale: 2/1)

* The dimension inside [] shows the location at which the home position switch operates.

Refer to page 300 for mounting.

Positioning Time Guide (for Horizontal Mount)

For transfer load of $\mathbf{0 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	20.1	
	20	0.1	0.6	2.6	5.1	10.1	
	30	0.1	0.4	1.7	3.4	6.7	

For transfer load of $\mathbf{3 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	20.1	
	20	0.7	0.6	2.6	5.1	10.1	
	30	0.1	0.4	1.7	3.4	6.7	

[^33]For transfer load of $\mathbf{6 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	20.1	
	20	0.1	0.6	2.6	5.1	10.1	
	30	0.1	0.4	1.7	3.4	6.7	

Model	D	E
LXPB2BC-50	44	52
LXPB2BC-75		
LXPB2BC-100		
LXPB2BC-125	120	90
LXPB2BC-150		
LXPB2BC-175		
LXPB2BC-200		

2 Phase Stepper Motor
 Without Motor Brake
 Guide Rod Type
 Series LXX

How to Order

## Home position switch	Nil
Refer to the table on the right for auto	
switch part numbers.	

Number of auto switches -

$\mathbf{1}$	1 pc.
$\mathbf{2}$	2 pcs.
\vdots	\vdots
$\mathbf{6}$	6 pcs.

Auto switch types

Symbol	Model	Wiring/ Output type				Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch						
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)			
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)			
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)			
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)			
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)			
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)			
F9B	D-F9B	2 wire	0.5	N.O. (A contact)			
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)			
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)			
F9BL	D-F9BL	2 wire	3	N.O. (A contact)			

Specifications

	Standard stroke mm	50	75	100	125	150	175	200
Performance	Body weight kg	2.0	2.2	2.3	2.6	2.8	2.9	3.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)						
	Work load kg	6 horizontal/5 vertical Note 1)						
	Speed mm / s	to 80 Note 2)						
	Positioning repeatability mm	± 0.03						
Main parts	Motor	2 phase stepper motor (without brake)						
	Lead screw	Ball screw ø8mm, 5mm lead						
	Guide	Ball bushing						
Home position switch	Model	Photo micro sensor EE-SX673						
Driver	Model	LC6D-220AD (Refer to page 306 for details.)						
Positioning driver	Model	LC6C-220AD (Refer to page 309 for details.)						

Note 1) Based on the operating conditions, establish a separate guide when exceeding the maximum allowable lateral load.
Note 2) Since vibration may increase with low speed operation, use $5 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Operating Conditions

Allowable lateral load (F)

Stroke	Load (N)
$\mathbf{5 0}$	42
$\mathbf{7 5}$	42
$\mathbf{1 0 0}$	40
$\mathbf{1 2 5}$	42
$\mathbf{1 5 0}$	32
$\mathbf{1 7 5}$	24
$\mathbf{2 0 0}$	17

Allowable plate rotation torque (T)

Stroke	Torque (N.m)
$\mathbf{5 0}$	2.87
$\mathbf{7 5}$	2.47
$\mathbf{1 0 0}$	2.17
$\mathbf{1 2 5}$	2.38
$\mathbf{1 5 0}$	2.16
$\mathbf{1 7 5}$	1.98
$\mathbf{2 0 0}$	1.82

Plate non-rotating accuracy (θ)
Non-rotating accuracy $(\boldsymbol{\theta})$

Refer to page $\mathbf{3 0 4}$ for deflection data.

2 Phase Stepper Motor/Without Motor Brake Series LXP

Dimensions/LXPB2BD

Scale: 30\%

* The dimension inside [] shows the location at which the home position switch operates.

Model	D	E
LXPB2BD-50	44	52
LXPB2BD-75		
LXPB2BD-100		
LXPB2BD-125	120	90
LXPB2BD-150		
LXPB2BD-175		
LXPB2BD-200		

Refer to page 300 for mounting.

Positioning Time Guide (for Horizontal Mount)

For transfer load of Okg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	20.1	
	40	0.1	0.3	1.3	2.6	5.1	
	80	0.1	0.2	0.7	1.3	2.6	

For transfer load of $\mathbf{3 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	20.1	
	40	0.1	0.3	1.3	2.6	5.1	
	80	0.1	0.2	0.7	1.3	2.6	

[^34]For transfer load of 6kg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	20.1	
	40	0.1	0.3	1.3	2.6	5.1	
	80	0.1	0.2	0.7	1.3	2.6	

2 Phase

LXPB2 SA-Stroke S-F9N 1

Number of auto switches -

$\mathbf{1}$	1 pc.
$\mathbf{2}$	$\mathbf{2} \mathrm{pcs}$.
\vdots	\vdots
$\mathbf{6}$	6 pcs.

Auto switch types

Symbol	Model	Wiring/ Output type				Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch						
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)			
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)			
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)			
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)			
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)			
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)			
F9B	D-F9B	2 wire	0.5	N.O. (A contact)			
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)			
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)			
F9BL	D-F9BL	2 wire	3	N.O. (A contact)			

Specifications

	Standard stroke	mm	50	75	100	125	150	175	200
Performance	Body weight	kg	2.0	2.2	2.3	2.6	2.8	2.9	3.1
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)						
	Work load	kg	6 horizontal/5 vertical Note 1)						
	Speed	mm / s	to 100 Note 2)						
	Positioning repeatability		± 0.05						
Main parts	Motor		2 phase stepper motor (without brake)						
	Lead screw		Slide screw ø8mm, 6mm lead						
	Guide		Ball bushing						
Home position switch	Model		Photo micro sensor EE-SX673						
Driver	Model		LC6D-220AD (Refer to page 306 for details.)						
Positioning driver	Model		LC6C-220AD (Refer to page 309 for details.)						

Note 1) Based on the operating conditions, establish a separate guide when exceeding the maximum allowable lateral load.
Note 2) Since vibration may increase with low speed operation, use $6 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Operating Conditions

Allowable lateral load (F)

Stroke	Load (N)
$\mathbf{5 0}$	42
$\mathbf{7 5}$	42
$\mathbf{1 0 0}$	40
$\mathbf{1 2 5}$	42
$\mathbf{1 5 0}$	32
$\mathbf{1 7 5}$	24
$\mathbf{2 0 0}$	17

Allowable plate rotation torque (T)

Stroke	Torque (N•m)
$\mathbf{5 0}$	2.87
$\mathbf{7 5}$	2.47
$\mathbf{1 0 0}$	2.17
$\mathbf{1 2 5}$	2.38
$\mathbf{1 5 0}$	2.16
$\mathbf{1 7 5}$	1.98
$\mathbf{2 0 0}$	1.82

Refer to page 304 for deflection data.

Plate non-rotating accuracy (θ)

Non-rotating accuracy (θ)
$\pm 0.09^{\circ}$

* The dimension inside [] shows the location at which the home position switch operates.

Cross section BB

Refer to page 300 for mounting.

Positioning Time Guide (for Horizontal Mount)

For transfer load of $\mathbf{0 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	20.1	
	50	0.1	0.3	1.1	2.1	4.1	
	100	0.1	0.2	0.6	1.1	2.1	

For transfer load of $\mathbf{3 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	20.1	
	50	0.1	0.3	1.1	2.1	4.1	
	100	0.1	0.2	0.6	1.1	2.1	

[^35]For transfer load of $\mathbf{6 k g}$

	Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200
Speed $(\mathrm{mm} / \mathbf{s})$	10	0.1	1.1	5.1	10.1	20.1
	50	0.1	0.3	1.1	2.1	4.1
	100	0.1	0.2	0.6	1.1	2.1

Model	D	E
LXPB2SA-50	44	52
LXPB2SA-75		
LXPB2SA-100		
LXPB2SA-125	120	90
LXPB2SA-150		
LXPB2SA-175		
LXPB2SA-200		

\section*{LXPB2 SB-Stroke S-F9N 1
 | Home position switch | |
| :---: | :---: |
| Nil | None |
| S | Yes (cable length 0.3 m) |
 | Auto switch type | |
| :---: | :---: |
| Nil | None |
 Refer to the table on the right for auto switch part numbers.}

Number of auto switches -

$\mathbf{1}$	1 pc.
$\mathbf{2}$	2 pcs.
\vdots	\vdots
$\mathbf{6}$	6 pcs.

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Specifications

	Standard stroke mm	50	75	100	125	150	175	200
Performance	Body weight kg	2.0	2.2	2.3	2.6	2.8	2.9	3.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)						
	Work load kg	3 horizontal/3 vertical Note 1)						
	Speed $\quad \mathrm{mm} / \mathrm{s}$	to 200 Note 2)						
	Positioning repeatability mm	± 0.05						
Main parts	Motor	2 phase stepper motor (without brake)						
	Lead screw	Slide screw ø8mm, 12mm lead						
	Guide	Ball bushing						
Home position switch	Model	Photo micro sensor EE-SX673						
Driver	Model	LC6D-220AD (Refer to page 306 for details.)						
Positioning driver	Model	LC6C-220AD (Refer to page 309 for details.)						

Note 1) Based on the operating conditions, establish a separate guide when exceeding the maximum allowable lateral load.
Note 2) Since vibration may increase with low speed operation, use $12 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Operating Conditions

Allowable lateral load (F)

Stroke	Load (N)
$\mathbf{5 0}$	42
$\mathbf{7 5}$	42
$\mathbf{1 0 0}$	40
$\mathbf{1 2 5}$	42
$\mathbf{1 5 0}$	32
$\mathbf{1 7 5}$	24
$\mathbf{2 0 0}$	17

Allowable plate rotation torque (T)

Stroke	Torque (N•m)
$\mathbf{5 0}$	2.87
$\mathbf{7 5}$	2.47
$\mathbf{1 0 0}$	2.17
$\mathbf{1 2 5}$	2.38
$\mathbf{1 5 0}$	2.16
$\mathbf{1 7 5}$	1.98
$\mathbf{2 0 0}$	1.82

Refer to page $\mathbf{3 0 4}$ for deflection data.

Plate non-rotating accuracy (θ)

Non-rotating accuracy $(\boldsymbol{\theta})$
$\pm 0.09^{\circ}$

* The dimension inside [] shows the location at which the home position switch operates.

Section F detail (Scale: 2/1)

Section C detail
(Scale: 2/1)

Refer to page 300 for mounting.

Positioning Time Guide (for Horizontal Mount)

For transfer load of Okg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	50	0.1	0.3	1.1	2.1	4.2	
	100	0.1	0.2	0.6	1.1	2.1	
	200	0.1	0.1	0.3	0.6	1.1	

For transfer load of $\mathbf{1 . 5 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	50	0.1	0.3	1.1	2.1	4.1	
	100	0.1	0.2	0.6	1.1	2.1	
	200	0.1	0.1	0.3	0.6	1.1	

[^36]For transfer load of $\mathbf{3 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	50	0.1	0.3	1.1	2.1	4.1	
	100	0.1	0.2	0.6	1.1	2.1	
	200	0.1	0.1	0.3	0.6	1.1	

Model	D	E
LXPB2SB-50	44	52
LXPB2SB-75		
LXPB2SB-100		
LXPB2SB-125	120	90
LXPB2SB-150		
LXPB2SB-175		
LXPB2SB-200		

With Motor Brake

How to Order

Specifications

	Standard stroke mm		50	75	100	125	150	175	200
Performance	Body weight kg		2.2	2.4	2.5	2.8	3.0	3.1	3.3
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)						
	Work load kg		6 horizontal/5 vertical Note 1)						
	Speed $\quad \mathrm{mm}$		to 30 Note 2)						
	Positioning repeatability mm		± 0.03						
Main parts	Motor		2 phase stepper motor (with brake)						
	Lead screw		Ball screw ø8mm, 2mm lead						
	Guide		Ball bushing						
	Electromagnetic brake	Model	De-energized operating type						
		Static torque	$0.1 \mathrm{~N} \cdot \mathrm{~m}$ or more						
		Rated voltage	24VDC $\pm 5 \%$						
		Power consumption	5W						
Home position switch	Model		Photo micro sensor EE-SX673						
Driver	Model		LC6D-220AD (Refer to page 306 for details.)						
Positioning driver	Model		LC6C-220AD (Refer to page 309 for details.)						

Auto switch types

Symbol	Model	Wiring/ Output type				Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch						
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)			
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)			
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)			
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)			
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)			
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)			
F9B	D-F9B	2 wire	0.5	N.O. (A contact)			
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)			
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)			
F9BL	D-F9BL	2 wire	3	N.O. (A contact)			

Note 1) Based on the operating conditions, establish a separate guide when exceeding the maximum allowable lateral load.
Note 2) Since vibration may increase with low speed operation, use $2 \mathrm{~mm} /$ s or more as a guide for speed.

Lifter Operation Range

This is the operating range for ball bushings. Use within the allowable thrust range.

50 to 200mm stroke

Operating Conditions

Allowable lateral load (F)

Stroke	Load (N)
$\mathbf{5 0}$	42
$\mathbf{7 5}$	42
$\mathbf{1 0 0}$	40
$\mathbf{1 2 5}$	42
$\mathbf{1 5 0}$	32
$\mathbf{1 7 5}$	24
$\mathbf{2 0 0}$	17

Plate non-rotating accuracy (θ)
Non-rotating accuracy (θ) $\pm 0.09^{\circ}$

Refer to page 304 for deflection data.
Allowable plate rotation torque (T)

Stroke	Torque (N.m)
$\mathbf{5 0}$	2.87
$\mathbf{7 5}$	2.47
$\mathbf{1 0 0}$	2.17
$\mathbf{1 2 5}$	2.38
$\mathbf{1 5 0}$	2.16
$\mathbf{1 7 5}$	1.98
$\mathbf{2 0 0}$	1.82

$y(\theta)$

2 Phase Stepper Motor/With Motor Brake Series LXP

Dimensions/LXPB2BC

Positioning Time Guide (for Vertical Mount)

For transfer load of Okg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	20.1	
	20	0.1	0.6	2.6	5.1	10.1	
	30	0.1	0.4	1.7	3.4	6.7	

For transfer load of $\mathbf{2 . 5 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	20.1	
	20	0.1	0.6	2.6	5.1	10.1	
	30	0.1	0.4	1.7	3.4	6.7	

[^37]For transfer load of $\mathbf{5 k g}$

			Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200		
Speed (mm/s)	10	0.2	1.1	5.1	10.1	20.1		
	20	0.1	0.6	2.6	5.1	10.1		
	30	0.1	0.4	1.7	3.4	6.7		

With Motor Brake

How to Order

\section*{LXPB2 BD-Stroke SB-F9N 1
 | Home position switch | |
| :---: | :---: |
| Nil | None |
| S | Yes (cable length 0.3 m) |

 Refer to the table on the right for auto switch part numbers.}

Specifications

	Standard stroke		50	75	100	125	150	175	200
Performance	Body weight kg		2.2	2.4	2.5	2.8	3.0	3.1	3.3
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)						
	Work load kg		6 horizontal/5 vertical Note 1)						
	Speed $\quad \mathrm{mm} / \mathrm{s}$		to 80 Note 2)						
	Positioning repeatability mm		± 0.03						
Main parts	Motor		2 phase stepper motor (with brake)						
	Lead screw		Ball screw ø8mm, 5 mm lead						
	Guide		Ball bushing						
	Electromagnetic brake	Model	De-energized operating type						
		Static torque	$0.1 \mathrm{~N} \cdot \mathrm{~m}$ or more						
		Rated voltage	24VDC $\pm 5 \%$						
		Power consumption	5W						
Home position switch	Model		Photo micro sensor EE-SX673						
Driver	Model		LC6D-220AD (Refer to page 306 for details.)						
Positioning driver	Model		LC6C-220AD (Refer to page 309 for details.)						

Auto switch types

Symbol	Model	Wiring/ Output type				Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch						
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)			
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)			
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)			
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)			
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)			
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)			
F9B	D-F9B	2 wire	0.5	N.O. (A contact)			
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)			
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)			
F9BL	D-F9BL	2 wire	3	N.O. (A contact)			

Note 1) Based on the operating conditions, establish a separate guide when exceeding the maximum allowable lateral load.
Note 2) Since vibration may increase with low speed operation, use $5 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Lifter Operation Range

This is the operating range for ball bushings. Use within the allowable thrust range.

50 to 200 mm stroke

Operating Conditions

Allowable lateral load (F)

Stroke	Load (N)
$\mathbf{5 0}$	42
$\mathbf{7 5}$	42
$\mathbf{1 0 0}$	40
$\mathbf{1 2 5}$	42
150	32
$\mathbf{1 7 5}$	24
200	17

Refer to page $\mathbf{3 0 4}$ for deflection data.

Plate non-rotating accuracy (θ)
Non-rotating accuracy (θ) $\pm 0.09^{\circ}$
Allowable plate rotation torque (T)

Stroke	Torque (N.m)
$\mathbf{5 0}$	2.87
$\mathbf{7 5}$	2.47
$\mathbf{1 0 0}$	2.17
$\mathbf{1 2 5}$	2.38
$\mathbf{1 5 0}$	2.16
$\mathbf{1 7 5}$	1.98
$\mathbf{2 0 0}$	1.82

cy (θ)

Dimensions/LXPB2BD

Scale: 30\%

Model	D	E
LXPB2BD-50	44	52
LXPB2BD-75		
LXPB2BD-100		
LXPB2BD-125	120	90
LXPB2BD-150		
LXPB2BD-175		
LXPB2BD-200		

Section F detail (Scale: 2/1)

Cross section BB

Brown $\xlongequal{+24 \mathrm{~V}}$
White $0 V$
[Yellow]

Refer to page 300 for mounting.

Positioning Time Guide (for Vertical Mount)

For transfer load of 0kg

									Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200								
Speed (mm/s)	10	0.2	1.1	5.1	10.1	20.1								
	40	0.1	0.3	1.3	2.6	5.1								
	80	0.1	0.2	0.7	1.3	2.6								

For transfer load of $\mathbf{2 . 5 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	20.1	
	40	0.1	0.3	1.3	2.6	5.1	
	80	0.1	0.2	0.7	1.3	2.6	

[^38]For transfer load of $\mathbf{5 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	20.1	
	40	0.1	0.3	1.3	2.6	5.1	
	80	0.1	0.2	0.7	1.3	2.6	

How to Order

Specifications

	Standard stroke mm		50	75	100	125	150	175	200
Performance	Body weight kg		2.2	2.4	2.5	2.8	3.0	3.1	3.3
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)						
	Work load		6 horizontal/5 vertical Note 1)						
	Speed $\quad \mathrm{mm} / \mathrm{s}$		to 100 Note 2)						
	Positioning repeatability mm		± 0.05						
Main parts	Motor		2 phase stepper motor (with brake)						
	Lead screw		Slide screw ø8mm, 6mm lead						
	Guide		Ball bushing						
	Electromagnetic brake	Model	De-energized operating type						
		Static torque	$0.1 \mathrm{~N} \cdot \mathrm{~m}$ or more						
		Rated voltage	24VDC $\pm 5 \%$						
		Power consumption	5W						
Home position switch	Model		Photo micro sensor EE-SX673						
Driver	Model		LC6D-220AD (Refer to page 306 for details.)						
Positioning driver	Model		LC6C-220AD (Refer to page 309 for details.)						

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Note 1) Based on the operating conditions, establish a separate guide when exceeding the maximum allowable lateral load.
Note 2) Since vibration may increase with low speed operation, use $6 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Lifter Operation Range

This is the operating range for ball bushings. Use within the allowable thrust range.

50 to 200mm stroke

Operating Conditions

Allowable lateral load (F)

Stroke	Load (N)
$\mathbf{5 0}$	42
$\mathbf{7 5}$	42
$\mathbf{1 0 0}$	40
125	42
150	32
$\mathbf{1 7 5}$	24
$\mathbf{2 0 0}$	17

Allowable plate rotation torque (T)

Stroke	Torque (N•m)
$\mathbf{5 0}$	2.87
$\mathbf{7 5}$	2.47
$\mathbf{1 0 0}$	2.17
$\mathbf{1 2 5}$	2.38
$\mathbf{1 5 0}$	2.16
$\mathbf{1 7 5}$	1.98
$\mathbf{2 0 0}$	1.82

Plate non-rotating accuracy (θ)
Non-rotating accuracy (θ)

$$
\pm 0.09^{\circ}
$$

2 Phase Stepper Motor/With Motor Brake Series LXP

Dimensions/LXPB2SA

Positioning Time Guide (for Vertical Mount)

For transfer load of Okg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	20.1	
	50	0.1	0.3	1.1	2.1	4.1	
	100	0.1	0.2	0.6	1.1	2.1	

For transfer load of $\mathbf{2 . 5 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	20.1	
	50	0.1	0.3	1.1	2.1	4.1	
	100	0.1	0.2	0.6	1.1	2.1	

[^39]For transfer load of 5kg

			Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200		
Speed $(\mathrm{mm} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	20.1		
	50	0.1	0.3	1.1	2.1	4.1		
	100	0.1	0.2	0.6	1.1	2.1		

With Motor Brake

How to Order

Specifications

	Standard stroke mm		50	75	100	125	150	175	200
Performance	Body weight kg		2.2	2.4	2.5	2.8	3.0	3.1	3.3
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)						
	Work load		3 horizontal/3 vertical Note 1)						
	Speed mm		to 200 Note 2)						
	Positioning repeatability mm		± 0.05						
Main parts	Motor		2 phase stepper motor (with brake)						
	Lead screw		Slide screw ø8mm, 12 mm lead						
	Guide		Ball bushing						
	Electromagnetic brake	Model	De-energized operating type						
		Static torque	$0.1 \mathrm{~N} \cdot \mathrm{~m}$ or more						
		Rated voltage	24VDC $\pm 5 \%$						
		Power consumption	5 W						
Home position switch	Model		Photo micro sensor EE-SX673						
Driver	Model		LC6D-220AD (Refer to page 306 for details.)						
Positioning driver	Model		LC6C-220AD (Refer to page 309 for details.)						

Auto switch types

Symbol	Model	Wiring/ Output type				Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch						
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)			
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)			
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)			
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)			
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)			
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)			
F9B	D-F9B	2 wire	0.5	N.O. (A contact)			
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)			
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)			
F9BL	D-F9BL	2 wire	3	N.O. (A contact)			

Note 1) Based on the operating conditions, establish a separate guide when exceeding the maximum allowable lateral load.
Note 2) Since vibration may increase with low speed operation, use $12 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Lifter Operation Range

This is the operating range for ball bushings.
Use within the allowable thrust range.

50 to 200mm stroke

Operating Conditions

Plate non-rotating accuracy (θ)

Non-rotating accuracy (θ)
$\pm 0.09^{\circ}$

Refer to page 304 for deflection data.

Dimensions/LXPB2SB

Model	D	E
LXPB2SB-50	44	52
LXPB2SB-75		
LXPB2SB-100		
LXPB2SB-125	120	90
LXPB2SB-150		
LXPB2SB-175		
LXPB2SB-200		

Section F detail (Scale: 2/1)

Brake electrical circuit

[Yellow]

For transfer load of 3kg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed $(\mathbf{m m} / \mathbf{s})$	50	0.1	0.3	1.1	2.1	4.1	
	100	0.1	0.2	0.6	1.1	2.1	
	200	0.1	0.2	0.5	0.7	1.2	

For transfer load of $\mathbf{1 . 5 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	50	0.1	0.3	1.1	2.1	4.1	
	100	0.1	0.2	0.6	1.1	2.1	
	200	0.1	0.1	0.3	0.6	1.1	

[^40]

Number of auto switches

$\mathbf{1}$	1 pc.
$\mathbf{2}$	2 pcs.
\vdots	\vdots
$\mathbf{6}$	6 pcs.

Auto switch types

Symbol	Model	Wiring/ Output type				Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch						
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)			
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)			
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)			
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)			
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)			
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)			
F9B	D-F9B	2 wire	0.5	N.O. (A contact)			
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)			
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)			
F9BL	D-F9BL	2 wire	3	N.O. (A contact)			

Specifications

	Standard stroke	mm	50	75	100	125	150	175	200
Performance	Body weight	kg	2.0	2.2	2.3	2.6	2.8	2.9	3.1
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)						
	Work load	kg	6 horizontal/5 vertical Note 1)						
	Speed	mm / s	to 30 Note 2)						
	Positioning repeatability		± 0.03						
Main parts	Motor		5 phase stepper motor (without brake)						
	Lead screw		Ball screw ø8mm, 2mm lead						
	Guide		Ball bushing						
Home position switch	Model		Photo micro sensor EE-SX673						
Driver	Model		LC6D-507AD (Refer to page 306 details.)						

Note 1) Based on the operating conditions, establish a separate guide when exceeding the maximum allowable lateral load. Note 2) Since vibration may increase with low speed operation, use $2 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Operating Conditions

Allowable lateral load (F)

Stroke	Load (N)
$\mathbf{5 0}$	42
$\mathbf{7 5}$	42
$\mathbf{1 0 0}$	40
$\mathbf{1 2 5}$	42
$\mathbf{1 5 0}$	32
$\mathbf{1 7 5}$	24
$\mathbf{2 0 0}$	17

Allowable plate rotation torque (T)

Stroke	Torque (N.m)
$\mathbf{5 0}$	2.87
$\mathbf{7 5}$	2.47
$\mathbf{1 0 0}$	2.17
$\mathbf{1 2 5}$	2.38
$\mathbf{1 5 0}$	2.16
$\mathbf{1 7 5}$	1.98
$\mathbf{2 0 0}$	1.82

Refer to page 304 for deflection data.

Plate non-rotating accuracy (θ)
Non-rotating accuracy (θ)
$\pm 0.09^{\circ}$

* The dimension inside [] shows the location at which the home position switch operates.

Cross section BB

Section F detail (Scale: 2/1)

Refer to page 300 for mounting.

Model	D	E
LXPB5BC-50	44	52
LXPB5BC-75		
LXPB5BC-100		
LXPB5BC-125	120	90
LXPB5BC-150		
LXPB5BC-175		
LXPB5BC-200		

Positioning Time Guide (for Horizontal Mount)

For transfer load of Okg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	20.1	
	20	0.1	0.6	2.6	5.1	10.1	
	30	0.1	0.4	1.7	3.4	6.7	

For transfer load of $\mathbf{3 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	20.1	
	20	0.1	0.6	2.6	5.1	10.1	
	30	0.1	0.4	1.7	3.4	6.7	

[^41]
For transfer load of 6kg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	20.1	
	20	0.1	0.6	2.6	5.1	10.1	
	30	0.1	0.4	1.7	3.4	6.7	

How to Order

LXPB5 BD-stroke S-F9N 1
Home position switch -

Nil	None
\mathbf{S}	Yes (cable length 0.3m)

Refer to the table on the right for auto switch part numbers.
Number of auto switches -

$\mathbf{1}$	1 pc.
$\mathbf{2}$	2 pcs.
\vdots	\vdots
$\mathbf{6}$	6 pcs.

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Specifications

	Standard stroke	mm	50	75	100	125	150	175	200
Performance	Body weight	kg	2.0	2.2	2.3	2.6	2.8	2.9	3.1
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)						
	Work load	kg	6 horizontal/5 vertical Note 1)						
	Speed	mm / s	to 80 Note 2)						
	Positioning repeatability		± 0.03						
Main parts	Motor		5 phase stepper motor (without brake)						
	Lead screw		Ball screw ø8mm, 5 mm lead						
	Guide		Ball bushing						
Home position switch	Model		Photo micro sensor EE-SX673						
Driver	Model		LC6D-507AD (Refer to page 306 for details.)						

Note 1) Based on the operating conditions, establish a separate guide when exceeding the maximum allowable lateral load. Note 2) Since vibration may increase with low speed operation, use $5 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Operating Conditions

Allowable lateral load (F)

Stroke	Load (N)
$\mathbf{5 0}$	42
$\mathbf{7 5}$	42
$\mathbf{1 0 0}$	40
$\mathbf{1 2 5}$	42
$\mathbf{1 5 0}$	32
$\mathbf{1 7 5}$	24
$\mathbf{2 0 0}$	17

Allowable plate rotation torque (T)

Stroke	Torque (N.m)
$\mathbf{5 0}$	2.87
$\mathbf{7 5}$	2.47
$\mathbf{1 0 0}$	2.17
$\mathbf{1 2 5}$	2.38
$\mathbf{1 5 0}$	2.16
$\mathbf{1 7 5}$	1.98
$\mathbf{2 0 0}$	1.82

Plate non-rotating accuracy (θ)
Non-rotating accuracy (θ)
$\pm 0.09^{\circ}$

Refer to page 304 for deflection data.

Cross section BB

Section F detail (Scale: 2/1)

Refer to page 300 for mounting.

Positioning Time Guide (for Horizontal Mount)

For transfer load of $\mathbf{0 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	20.1	
	40	0.1	0.3	1.3	2.6	5.1	
	80	0.1	0.2	0.7	1.3	2.6	

For transfer load of $\mathbf{3 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	20.1	
	40	0.1	0.3	1.3	2.6	5.1	
	80	0.1	0.2	0.7	1.3	2.6	

[^42]
For transfer load of $\mathbf{6 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	20.1	
	40	0.1	0.3	1.3	2.6	5.1	
	80	0.1	0.2	0.7	1.3	2.6	

Series LXP

How to Order

LXPB5 SA-Stroke $\mathbf{S}-$ F9N 1

Number of auto switches d

$\mathbf{1}$	1 pc.
$\mathbf{2}$	2 pcs.
\vdots	\vdots
$\mathbf{6}$	6 pcs.

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Specifications

	Standard stroke	mm	50	75	100	125	150	175	200
Performance	Body weight	kg	2.0	2.2	2.3	2.6	2.8	2.9	3.1
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)						
	Work load	kg	4 horizontal/4 vertical Note 1)						
	Speed	mm / s	to 100 Note 2)						
	Positioning repeatability		± 0.05						
Main parts	Motor		5 phase stepper motor (without brake)						
	Lead screw		Slide screw ø8mm, 6 mm lead						
	Guide		Ball bushing						
Home position switch	Model		Photo micro sensor EE-SX673						
Driver	Model		LC6D-507AD (Refer to page 306 for details.)						

Note 1) Based on the operating conditions, establish a separate guide when exceeding the maximum allowable lateral load. Note 2) Since vibration may increase with low speed operation, use $5 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Operating Conditions

Allowable lateral load (F)

Stroke	Load (N)
$\mathbf{5 0}$	42
$\mathbf{7 5}$	42
$\mathbf{1 0 0}$	40
$\mathbf{1 2 5}$	42
$\mathbf{1 5 0}$	32
$\mathbf{1 7 5}$	24
$\mathbf{2 0 0}$	17

Refer to page $\mathbf{3 0 4}$ for deflection data.

Allowable plate rotation torque (T)

Stroke	Torque (N $\cdot \mathrm{m}$)
$\mathbf{5 0}$	2.87
$\mathbf{7 5}$	2.47
$\mathbf{1 0 0}$	2.17
$\mathbf{1 2 5}$	2.38
$\mathbf{1 5 0}$	2.16
$\mathbf{1 7 5}$	1.98
$\mathbf{2 0 0}$	1.82

Plate non-rotating accuracy (θ)

Non-rotating accuracy (θ)
$+0.09^{\circ}$

[^43]

Cross section BB

Section C detail
(Scale: 2/1)

Refer to page 300 for mounting.

Positioning Time Guide (for Horizontal Mount)

For transfer load of 0 kg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	20.1	
	50	0.1	0.3	1.1	2.1	4.1	
	100	0.1	0.2	0.6	1.1	2.1	

For transfer load of $\mathbf{2 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	20.1	
	50	0.1	0.3	1.1	2.1	4.1	
	100	0.1	0.2	0.6	1.1	2.1	

[^44]For transfer load of 4kg

			Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200		
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	20.1		
	50	0.1	0.3	1.1	2.1	4.1		
	100	0.1	0.2	0.6	1.1	2.1		

Model	D	E
LXPB5SA-50	44	52
LXPB5SA-75		
LXPB5SA-100		
LXPB5SA-125	120	90
LXPB5SA-150		
LXPB5SA-175		
LXPB5SA-200		

Ball
Slide Screw
Bushing $\varnothing 8 \mathrm{~mm} / 12_{\mathrm{mm} \text { lead }}$

How to Order

LXPB5 SB-Stroke \mathbf{S}-F9N 1

Auto switch type

Nil	None
Refer to the table on the right for auto	
switch part numbers.	
Number of auto switches	
$\mathbf{1}$ 1 pc. $\mathbf{2}$ 2 pcs. \vdots \vdots $\mathbf{6}$ 6 pcs.	

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Specifications

	Standard stroke	mm	50	75	100	125	150	175	200
Performance	Body weight	kg	2.0	2.2	2.3	2.6	2.8	2.9	3.1
	Operating temperature range		5 to 40 (with no condensation)						
	Work load	kg	2 horizontal/2 vertical Note 1)						
	Speed	mm / s	to 200 Note 2)						
	Positioning repeatability		± 0.05						
Main parts	Motor		5 phase stepper motor (without brake)						
	Lead screw		Slide screw ø8mm, 12mm lead						
	Guide		Ball bushing						
Home position switch	Model		Photo micro sensor EE-SX673						
Driver	Model		LC6D-507AD (Refer to page 306 for details.)						

Note 1) Based on the operating conditions, establish a separate guide when exceeding the maximum allowable lateral load.

Note 2) Since vibration may increase with low speed operation, use $5 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Operating Conditions

Allowable lateral load (F)

Stroke	Load (N)
$\mathbf{5 0}$	42
$\mathbf{7 5}$	42
$\mathbf{1 0 0}$	40
$\mathbf{1 2 5}$	42
$\mathbf{1 5 0}$	32
$\mathbf{1 7 5}$	24
$\mathbf{2 0 0}$	17

Allowable plate rotation torque (T)

Stroke	Torque (N $\cdot \mathrm{m}$)
$\mathbf{5 0}$	2.87
$\mathbf{7 5}$	2.47
$\mathbf{1 0 0}$	2.17
$\mathbf{1 2 5}$	2.38
$\mathbf{1 5 0}$	2.16
$\mathbf{1 7 5}$	1.98
$\mathbf{2 0 0}$	1.82

Plate non-rotating accuracy (θ)
Non-rotating accuracy (θ)
$\pm 0.09^{\circ}$

Refer to page 304 for deflection data

Dimensions/LXPB5SB

* The dimension inside [] shows the location at which the home position switch operates.

Refer to page 300 for mounting.

Model	D	E
LXPB5SB-50	44	52
LXPB5SB-75		
LXPB5SB-100		
LXPB5SB-125	120	90
LXPB5SB-150		
LXPB5SB-175		
LXPB5SB-200		

Positioning Time Guide (for Horizontal Mount)

For transfer load of 0 kg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed $(\mathbf{m m} / \mathbf{s})$	50	0.1	0.3	1.1	2.1	4.1	
	100	0.1	0.2	0.6	1.1	2.1	
	200	0.1	0.1	0.3	0.6	1.1	

For transfer load of $\mathbf{1 k g}$
For transfer load of $\mathbf{1 k g}$

								Positioning time (sec)				
Positioning distance (mm)		1	10	50	100	200						
Speed $(\mathbf{m m} / \mathbf{s})$	50	0.1	0.3	1.1	2.1	4.1						
	100	0.1	0.2	0.6	1.1	2.1						
	200	0.1	0.1	0.3	0.6	1.1						

[^45]For transfer load of 2kg

	Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200
Speed (mm/s)	50	0.1	0.3	1.1	2.1	4.1
	100	0.1	0.2	0.6	1.1	2.1
	200	0.1	0.1	0.3	0.6	1.1

How to Order

Specifications

	Standard stroke		50	75	100	125	150	175	200
Performance	Body weight kg		2.2	2.4	2.5	2.8	3.0	3.1	3.3
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)						
	Work load kg		6 horizontal/5 vertical Note 1)						
	Speed mm / s		to 30 Note 2)						
	Positioning repeatability mm		± 0.03						
Main parts			5 phase stepper motor (with brake)						
	Lead screw		Ball screw $\varnothing 8 \mathrm{~mm}$, 2 mm lead						
	Guide		Ball bushing						
	Electromagnetic brake	Model	De-energized operating type						
		Static torque	$0.1 \mathrm{~N} \cdot \mathrm{~m}$ or more						
		Rated voltage	24VDC $\pm 5 \%$						
		Power consumption	5W						
Home position switch	Model		Photo micro sensor EE-SX673						
Driver	Model		LC6D-507AD (Details on page 306)						

Auto switch types

Symbol	Model	Wiring/ Output type				Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch						
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)			
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)			
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)			
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)			
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)			
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)			
F9B	D-F9B	2 wire	0.5	N.O. (A contact)			
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)			
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)			
F9BL	D-F9BL	2 wire	3	N.O. (A contact)			

Note 1) Based on the operating conditions, establish a separate guide when exceeding the maximum allowable lateral load.
Note 2) Since vibration may increase with low speed operation, use $5 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Lifter Operation Range

This is the operating range for ball bushings. Use within the allowable thrust range.

50 to 200 mm stroke

Operating Conditions

Allowable lateral load (F)

Stroke	Load (N)
$\mathbf{5 0}$	42
$\mathbf{7 5}$	42
$\mathbf{1 0 0}$	40
$\mathbf{1 2 5}$	42
$\mathbf{1 5 0}$	32
$\mathbf{1 7 5}$	24
$\mathbf{2 0 0}$	17

Refer to page 304 for deflection data.

Dimensions/LXPB5BC

* The dimension inside [] shows the location at which the home position switch operates.

Srake electrical circuit
Section C detail (Scale: 2/1)

Refer to page 300 for mounting.
Positioning Time Guide (for Vertical Mount)

For transfer load of $\mathbf{0 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	20.1	
	20	0.1	0.6	2.6	5.1	10.1	
	30	0.1	0.4	1.7	3.4	6.7	

For transfer load of $\mathbf{2 . 5 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	20.1	
	20	0.1	0.6	2.6	5.1	10.1	
	30	0.1	0.4	1.7	3.4	6.7	

[^46]For transfer load of $\mathbf{5 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	20.1	
	20	0.1	0.6	2.6	5.1	10.1	
	30	0.1	0.4	1.7	3.4	6.7	

How to Order

Specifications

	Standard	stroke mm	50	75	100	125	150	175	200
	Body weig	ht $\quad \mathrm{kg}$	2.2	2.4	2.5	2.8	3.0	3.1	3.3
	Operating tem	erature range ${ }^{\circ} \mathrm{C}$		to 4	(with	no	de	atio	
Performance	Work load	kg		6 ho	izont	I/5 ve	rtical	Note 1)	
	Speed	mm / s				80 N			
	Positioning	epeatability mm				± 0.03			
	Motor			hase	stepp	r mo	or (w	th bra	ke)
	Lead scre			Ball	crew	8 mm	, 5mm	lead	
	Guide					bush	ing		
Main parts		Model		De-e	ergiz	d op	ratin	type	
	Electromagnetic	Static torque			0.1 N	m or	more		
	brake	Rated voltage				DC \pm	5\%		
		Power consumption				5W			
Home position switch	Model			hoto	micro	sens	r EE	SX67	
Driver	Model		LC6D	-507A	(Ref	r to pa	ge 30	for d	tails.)

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (m)	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Note 1) Based on the operating conditions, establish a separate guide when exceeding the maximum allowable lateral load.
Note 2) Since vibration may increase with low speed operation, use $5 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Lifter Operation Range

This is the operating range for ball bushings.
Use within the allowable thrust range.

50 to 200 mm stroke

Operating Conditions

Allowable lateral load (F)

Stroke	Load (N)
$\mathbf{5 0}$	42
$\mathbf{7 5}$	42
$\mathbf{1 0 0}$	40
$\mathbf{1 2 5}$	42
$\mathbf{1 5 0}$	32
$\mathbf{1 7 5}$	24
$\mathbf{2 0 0}$	17

Allowable plate rotation torque (T)

Stroke	Torque (N•m)
$\mathbf{5 0}$	2.87
$\mathbf{7 5}$	2.47
$\mathbf{1 0 0}$	2.17
$\mathbf{1 2 5}$	2.38
$\mathbf{1 5 0}$	2.16
$\mathbf{1 7 5}$	1.98
$\mathbf{2 0 0}$	1.82

Plate non-rotating accuracy (θ)

Non-rotating accuracy (θ)
$+0.09^{\circ}$

Refer to page $\mathbf{3 0 4}$ for deflection data.
Note) A contact protection circuit is required when connecting a brake.

Model	D	E
LXPB5BD-50 ${ }^{\text {B }}$	44	52
LXPB5BD-75 \square B		
LXPB5BD-100 \square B		
LXPB5BD-125 ${ }^{\text {a }}$	120	90
LXPB5BD-150ПB		
LXPB5BD-175 \square B		
LXPB5BD-200ПB		

Section F detail (Scale: 2/1)

Positioning Time Guide (for Vertical Mount)

For transfer load of $\mathbf{0 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	20.1	
	40	0.1	0.3	1.3	2.6	5.1	
	80	0.1	0.2	0.7	1.3	2.6	

For transfer load of $\mathbf{2 . 5 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	20.1	
	40	0.1	0.3	1.3	2.6	5.1	
	80	0.1	0.2	0.7	1.3	2.6	

[^47]For transfer load of $\mathbf{5 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	20.1	
	40	0.1	0.3	1.3	2.6	5.1	
	80	0.1	0.2	0.7	1.3	2.6	

For transfer load of 5kg

How to Order

\section*{LXPB5 SA-Stroke SB-F9N 1
 | Home position switch | |
| :---: | :---: |
| Nil | None |
| S | Yes (cable length 0.3 m) |

 Refer to the table on the right for auto switch part numbers.}

Specifications

	Standard stroke mm		50	75	100	125	150	175	200
Performance	Body weight kg		2.2	2.4	2.5	2.8	3.0	3.1	3.3
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)						
	Work load kg		4 horizontal/4 vertical Note 1)						
	Speed mm/s		to 100 Note 2)						
	Positioning repeatability mm		± 0.05						
Main parts	Motor		5 phase stepper motor (with brake)						
	Lead screw		Slide screw $\varnothing 8 \mathrm{~mm}$, 6 mm lead						
	Guide		Ball bushing						
	Electromagnetic brake	Model	De-energized operating type						
		Static torque	$0.1 \mathrm{~N} \cdot \mathrm{~m}$ or more						
		Rated voltage	24VDC $\pm 5 \%$						
		Power consumption	5W						
Home position switch	Model		Photo micro sensor EE-SX673						
Driver	Model		LC6D-507AD (Refer to page 306 for details.)						

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Note 1) Based on the operating conditions, establish a separate guide when exceeding the maximum allowable lateral load.
Note 2) Since vibration may increase with low speed operation, use $6 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Lifter Operation Range

This is the operating range for ball bushings. Use within the allowable thrust range.

50 to 200 mm stroke

Operating Conditions

Allowable lateral load (F)

Stroke	Load (N)
$\mathbf{5 0}$	42
$\mathbf{7 5}$	42
$\mathbf{1 0 0}$	40
$\mathbf{1 2 5}$	42
$\mathbf{1 5 0}$	32
$\mathbf{1 7 5}$	24
$\mathbf{2 0 0}$	17

Refer to page $\mathbf{3 0 4}$ for deflection data.
Note) A contact protection circuit is required when connecting a brake.

Model	D	E
LXPB5SA-50 \square B	44	52
LXPB5SA-75 \square B		
LXPB5SA-100ПB		
LXPB5SA-125 \square B	120	90
LXPB5SA-150 \square B		
LXPB5SA-175 \square B		
LXPB5SA-200■B		

Section F detail (Scale: 2/1)

* The dimension inside [] shows the location at which the home position switch operates.

Brake electrical circuit

Section C detail (Scale: 2/1)

Positioning Time Guide (for Vertical Mount)

For transfer load of $\mathbf{0 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	20.1	
	50	0.1	0.3	1.1	2.1	4.1	
	100	0.1	0.2	0.6	1.1	2.1	

For transfer load of $\mathbf{2 k g}$

									Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200								
Speed (mm/s)	10	0.2	1.1	5.1	10.1	20.1								
	50	0.1	0.3	1.1	2.1	4.1								
	100	0.1	0.2	0.6	1.1	2.1								

[^48]
For transfer load of $\mathbf{4 k g}$
 For transfer load of 4 kg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	20.1	
	50	0.1	0.3	1.1	2.1	4.1	
	100	0.1	0.3	0.7	1.2	2.2	

How to Order

\section*{LXPB5 SB-Stroke SB-F9N 1
 | Home position switch | |
| :---: | :---: |
| Nil | None |
| S | Yes (cable length 0.3 m) |
 | Auto switch type | | 1 | 1 pc . |
| :---: | :---: | :---: | :---: |
| | | 2 | 2 pcs. |
| Nil | None | ! | \vdots |
| Refer to the table on the right for | | 6 | 6 pcs. |

Specifications

	Standard stroke mm		50	75	100	125	150	175	200
Performance	Body weight kg		2.2	2.4	2.5	2.8	3.0	3.1	3.3
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)						
	Work load		2 horizontal/2 vertical Note 1)						
	Speed		to 200 Note 2)						
	Positioning repeatability mm		± 0.05						
Main parts	Motor		5 phase stepper motor (with brake)						
	Lead screw		Slide screw $\varnothing 8 \mathrm{~mm}$, 12 mm lead						
	Guide		Ball bushing						
	Electromagnetic brake	Model	De-energized operating type						
		Static torque	$0.1 \mathrm{~N} \cdot \mathrm{~m}$ or more						
		Rated voltage	24VDC $\pm 5 \%$						
		Power consumption	5W						
Home position switch	Model		Photo micro sensor EE-SX673						
Driver	Model		LC6D-507AD (Refer to page 306 for details.)						

Auto switch types

Symbol	Model	Wiring/ Output type				Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch						
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)			
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)			
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)			
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)			
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)			
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)			
F9B	D-F9B	2 wire	0.5	N.O. (A contact)			
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)			
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)			
F9BL	D-F9BL	2 wire	3	N.O. (A contact)			

Note 1) Based on the operating conditions, establish a separate guide when exceeding the maximum allowable lateral load.
Note 2) Since vibration may increase with low speed operation, use $12 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Lifter Operation Range

This is the operating range for ball bushings. Use within the allowable thrust range.

50 to 200 mm stroke

Operating Conditions

Allowable lateral load (F)

Stroke	Load (N)
$\mathbf{5 0}$	42
$\mathbf{7 5}$	42
$\mathbf{1 0 0}$	40
$\mathbf{1 2 5}$	42
$\mathbf{1 5 0}$	32
$\mathbf{1 7 5}$	24
$\mathbf{2 0 0}$	17

Plate non-rotating accuracy (θ)
Non-rotating accuracy (θ) $\pm 0.09^{\circ}$

Refer to page $\mathbf{3 0 4}$ for deflection data.
Allowable plate rotation torque (T)

Stroke	Torque (N•m)
$\mathbf{5 0}$	2.87
$\mathbf{7 5}$	2.47
$\mathbf{1 0 0}$	2.17
$\mathbf{1 2 5}$	2.38
$\mathbf{1 5 0}$	2.16
$\mathbf{1 7 5}$	1.98
$\mathbf{2 0 0}$	1.82

\qquad

248

Positioning Time Guide (for Vertical Mount)

For transfer load of Okg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	50	0.1	0.3	1.1	2.1	4.1	
	100	0.1	0.2	0.6	1.1	2.1	
	200	0.1	0.1	0.3	0.6	1.1	

For transfer load of $\mathbf{1 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed $(\mathbf{m m} / \mathbf{s})$	50	0.1	0.3	1.1	2.1	4.1	
	100	0.1	0.2	0.6	1.1	2.1	
	200	0.1	0.1	0.3	0.6	1.1	

[^49]For transfer load of $\mathbf{2 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	50	0.1	0.2	1.1	2.1	4.1	
	100	0.1	0.2	0.6	1.1	2.1	
	200	0.1	0.2	0.4	0.6	1.1	

How to Order

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Proximity switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
GN	With sensor rail, without proximity switch			
G	GXL-8F	3 wire/NPN	1	N.O. (A contact)
GD	GXL-8FI	3 wire/NPN	1	N.O. (A contact)
GB	GXL-8FB	3 wire/NPN	1	N.C. (B contact)
GDB	GXL-8FIB	3 wire/NPN	1	N.C. (B contact)
GU	GXL-8FU	2 wire/solid state	1	N.O. (A contact)
GUB	GXL-8FUB	2 wire/solid state	1	N.C. (B contact)

Note 1) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().
Note 2) Since vibration may increase with low speed operation, use $2 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	15.7
Rolling	15.7
Yawing	7.84

m : Transfer load (kg)
L : Overhang to work piece center of gravity (mm)
a : Work piece acceleration ($\mathrm{mm} / \mathrm{sec}^{2}$)
Me : Dynamic moment

Allowable dynamic moment

Refer to page 304 for deflection data.

Cross section C-C

Model	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{N}	\mathbf{P}	\mathbf{U}
LXSH2BC-50	4	6	107	55	1	65	2	6	55	2	52
LXSH2BC-75	4	6	112	65	1	75	2	6	65	2	47
LXSH2BC-100	4	8	122	75	1	65	3	6	75	2	47
LXSH2BC-125	4	8	132	85	1	70	3	6	85	2	47
LXSH2BC-150	6	8	112	65	2	75	3	8	65	3	47

Refer to page 301 for mounting.

Positioning Time Guide (for Horizontal Mount)

For transfer load of $\mathbf{0 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	15.1	
	20	0.1	0.6	2.6	5.1	7.6	
	30	0.1	0.4	1.7	3.4	5.1	

For transfer load of $\mathbf{5 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	15.1	
	20	0.1	0.6	2.6	5.1	7.6	
	30	0.1	0.4	1.7	3.4	5.1	

[^50]For transfer load of $\mathbf{1 0 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	15.1	
	20	0.1	0.6	2.6	5.1	7.6	
	30	0.1	0.4	1.7	3.4	5.1	

High Rigidity Slide Table Type
Series LXS

How to Order

Auto switch types

Symbol	Model	Wiring/ Output type				Lead wire length (m)	Contact
Nil	Without auto switch						
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)			
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)			
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)			
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)			
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)			
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)			
F9B	D-F9B	2 wire	0.5	N.O. (A contact)			
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)			
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)			
F9BL	D-F9BL	2 wire	3	N.O. (A contact)			

Proximity switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
GN	With sensor rail, without proximity switch			
G	GXL-8F	3 wire/NPN	1	N.O. (A contact)
GD	GXL-8FI	3 wire/NPN	1	N.O. (A contact)
GB	GXL-8FB	3 wire/NPN	1	N.C. (B contact)
GDB	GXL-8FIB	3 wire/NPN	1	N.C. (B contact)
GU	GXL-8FU	2 wire/solid state	1	N.O. (A contact)
GUB	GXL-8FUB	2 wire/solid state	1	N.C. (B contact)

* Refer to page 318 for detailed specifications of proximity switches.

Note 1) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().
Note 2) Since vibration may increase with low speed operation, use $5 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	15.7
Rolling	15.7
Yawing	7.84

m : Transfer load (kg)
L : Overhang to work piece center of gravity (mm)
a : Work piece acceleration ($\mathrm{mm} / \mathrm{sec}^{2}$)
Me: Dynamic moment

Allowable dynamic moment

Refer to page 304 for deflection data.

Dimensions/LXSH2BD

Positioning Time Guide (for Horizontal Mount)

For transfer load of $\mathbf{0 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	15.1	
	40	0.1	0.3	1.3	2.6	3.8	
	80	0.4	0.2	0.7	1.3	1.9	

For transfer load of $5 \mathbf{k g}$

			Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150		
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	15.1		
	40	0.1	0.3	1.3	2.6	3.8		
	80	0.1	0.2	0.7	1.3	1.9		

For transfer load of $\mathbf{1 0 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	15.1	
	40	0.1	0.3	1.3	2.6	3.8	
	80	0.1	0.2	0.7	1.3	1.9	

[^51]High Rigidity Slide Table Type
Series LXS

How to Order

Home position switch
Home position switch

Nil	None
\mathbf{S}	Yes (cable length 0.3 m)

Auto/Proximity switch type | Nil | None |
| :---: | :---: |

Refer to the table on the right for auto/proximity switch part numbers.

Specifications

proximity switches

1	1 pc.
2	2 pcs.
\vdots	\vdots
6	6 pcs.

When using both auto and proximity switches, list the proximity switch part number after the auto switch part number. Example) F9N1G2

	Standard stroke mm	50	75	100	125	150
Performance	Body weight kg	1.9	2.1	2.3	2.5	2.7
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)				
	Work load kg	9 (4) horizontal/4 (4) vertical Note 1)				
	Speed mm/s	to 100 Note 2)				
	Positioning repeatability mm	± 0.05				
Main parts	Motor	2 phase stepper motor (without brake)				
	Lead screw	Slide screw $\varnothing 8 \mathrm{~mm}$, 6 mm lead				
	Guide	High rigidity direct acting guide				
Home position switch	Model	Photo micro sensor EE-SX673				
Driver	Model	LC6D-220AD (Refer to page 306 for details.)				
Positioning driver	Model	LC6C-220AD (Refer to page 309 for details.)				

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Proximity switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
GN	With sensor rail, without proximity switch			
G	GXL-8F	3 wire/NPN	1	N.O. (A contact)
GD	GXL-8FI	3 wire/NPN	1	N.O. (A contact)
GB	GXL-8FB	3 wire/NPN	1	N.C. (B contact)
GDB	GXL-8FIB	3 wire/NPN	1	N.C. (B contact)
GU	GXL-8FU	2 wire/solid state	1	N.O. (A contact)
GUB	GXL-8FUB	2 wire/solid state	1	N.C. (B contact)

Note 1) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().
Note 2) Since vibration may increase with low speed operation, use $6 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	15.7
Rolling	15.7
Yawing	7.84

m : Transfer load (kg)
L : Overhang to work piece center of gravity (mm)
a : Work piece acceleration ($\mathrm{mm} / \mathrm{sec}^{2}$)
Me: Dynamic moment

Allowable dynamic moment

Refer to page $\mathbf{3 0 4}$ for deflection data.

Dimensions/LXSH2SA

§

T-slot A dimension

T-slot B dimension

Model	D	E	F	G	I	J	K	L	\mathbf{N}	\mathbf{P}	\mathbf{U}
LXSH2SA-50	4	6	107	55	1	65	2	6	55	2	52
LXSH2SA-75	4	6	112	65	1	75	2	6	65	2	47
LXSH2SA-100	4	8	122	75	1	65	3	6	75	2	47
LXSH2SA-125	4	8	132	85	1	70	3	6	85	2	47
LXSH2SA-150	6	8	112	65	2	75	3	8	65	3	47

Refer to page 301 for mounting.

Positioning Time Guide (for Horizontal Mount)

For transfer load of Okg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed $(\mathrm{mm} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	15.1	
	50	0.1	0.3	1.1	2.1	3.1	
	100	0.1	0.2	0.6	1.1	1.6	

For transfer load of $\mathbf{4 . 5 \mathrm { kg }}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	15.1	
	50	0.1	0.3	1.1	2.1	3.1	
	100	0.1	0.2	0.6	1.1	1.6	

Refer to page 302 for acceleration time.

For transfer load of 9kg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	15.1	
	50	0.1	0.3	1.1	2.1	3.1	
	100	0.1	0.2	0.6	1.1	1.6	

How to Order

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Proximity switch types

Symbol	Model	Wiring/ Output type		Lead wire length (m)
Contact				
GN	With sensor rail, without proximity switch			
G	GXL-8F	3 wire/NPN	1	N.O. (A contact)
GD	GXL-8FI	3 wire/NPN	1	N.O. (A contact)
GB	GXL-8FB	3 wire/NPN	1	N.C. (B contact)
GDB	GXL-8FIB	3 wire/NPN	1	N.C. (B contact)
GU	GXL-8FU	2 wire/solid state	1	N.O. (A contact)
GUB	GXL-8FUB	2 wire/solid state	1	N.C. (B contact)

* Refer to page 318 for detailed specifications of proximity switches.

Note 1) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().
Note 2) Since vibration may increase with low speed operation, use $12 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	15.7
Rolling	15.7
Yawing	7.84

m : Transfer load (kg)
L : Overhang to work piece center of gravity (mm)
a : Work piece acceleration (mm/sec${ }^{2}$)
Me: Dynamic moment

Allowable dynamic moment

Refer to page $\mathbf{3 0 4}$ for deflection data.

Positioning Time Guide (for Horizontal Mount)

For transfer load of $\mathbf{0 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed (mm/s)	50	0.1	0.3	1.1	2.1	3.1	
	100	0.1	0.2	0.6	1.1	1.6	
	200	0.1	0.1	0.3	0.6	0.8	

For transfer load of $\mathbf{2 . 5 k g}$

			Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150		
Speed (mm/s)	50	0.1	0.3	1.1	2.1	3.1		
	100	0.1	0.2	0.6	1.1	1.6		
	200	0.1	0.1	0.3	0.6	0.8		

Refer to page 302 for acceleration time.

For transfer load of 4.5kg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed $(\mathbf{m m} / \mathbf{s})$	50	0.1	0.3	1.1	2.1	3.1	
	100	0.1	0.2	0.6	1.1	1.6	
	200	0.1	0.2	0.4	0.6	0.9	

How to Order

LXSH2 BC-Stroke $\mathbf{S B}$ - F9N 1
 Home position switch | Nil | None |
| :---: | :---: |
| Refer to the table on the right for | | auto/proximity switch part numbers.

Specifications

	Standard stroke		50	75	100	125	150
Performance	Body weight kg		2.1	2.3	2.5	2.7	2.9
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)				
	Work load kg		10 (4) horizontal/5 (4) vertical Note 1)				
	Speed $\quad \mathrm{mm} / \mathrm{s}$		to 30 Note 2)				
	Positioning repeatability mm		± 0.03				
Main parts	Motor		2 phase stepper motor (with brake)				
	Lead screw		Ball screw $\varnothing 8 \mathrm{~mm}$, 2 mm lead				
	Guide		High rigidity direct acting guide				
	Electromagnetic brake	Model	De-energized operating type				
		Static torque	$0.1 \mathrm{~N} \cdot \mathrm{~m}$ or more				
		Rated voltage	24VDC $\pm 5 \%$				
		Power consumption	5W				
Home position switch	Model		Photo micro sensor EE-SX673				
Driver	Model		LC6D-220AD (Refer to page 306 for details.)				
Positioning driver	Model		LC6C-220AD (Refer to page 309 for details.)				

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Proximity switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
GN	With sensor rail, without proximity switch			
G	GXL-8F	3 wire/NPN	1	N.O. (A contact)
GD	GXL-8FI	3 wire/NPN	1	N.O. (A contact)
GB	GXL-8FB	3 wire/NPN	1	N.C. (B contact)
GDB	GXL-8FIB	3 wire/NPN	1	N.C. (B contact)
GU	GXL-8FU	2 wire/solid state	1	N.O. (A contact)
GUB	GXL-8FUB	2 wire/solid state	1	N.C. (B contact)

Note 1) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().
Note 2) Since vibration may increase with low speed operation, use $2 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Refer to page 304 for deflection data.

Dimensions/LXSH2BC

Scale: 25\%

 Brake electrical circuit

Brown $[$ Yellow] +24 V White oV $[$ Yellow]

Note) A contact protection circuit is required when connecting a brake.

* The dimension inside [] shows the location at which the home position switch operates.

Cross section C-C
Refer to page 301 for mounting.

Positioning Time Guide (for Vertical Mount)

For transfer load of 0 kg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	15.1	
	20	0.1	0.6	2.6	5.1	7.6	
	30	0.1	0.4	1.7	3.4	5.1	

For transfer load of 2.5 kg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	15.1	
	20	0.1	0.6	2.6	5.1	7.6	
	30	0.1	0.4	1.7	3.4	5.1	

Refer to page 303 for acceleration time.
259

How to Order

\section*{LXSH2 BD-Stroke $\mathbf{S B}$ - F9N 1
 Home position switch e
 | $\mathbf{N i l}$ | None |
| :---: | :---: |
| \mathbf{S} | Yes (cable length 0.3 m) |
 Auto/Proximity switch type
 | Nil | None |
| :---: | :---: |
| Refer to the table on the right for | | auto/proximity switch part numbers.}

Specifications

	Standard stroke		50	75	100	125	150
Performance	Body weight kg		2.1	2.3	2.5	2.7	2.9
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)				
	Work load kg		10 (4) horizontal/5 (4) vertical Note 1)				
	Speed mm/s		to 80 Note 2)				
	Positioning repeatability mm		± 0.03				
Main parts	Motor		2 phase stepper motor (with brake)				
	Lead screw		Ball screw ø8mm, 5 mm lead				
	Guide		High rigidity direct acting guide				
	Electromagnetic brake	Model	De-energized operating type				
		Static torque	$0.1 \mathrm{~N} \cdot \mathrm{~m}$ or more				
		Rated voltage	24VDC $\pm 5 \%$				
		Power consumption	5 W				
Home position switch	Model		Photo micro sensor EE-SX673				
Driver	Model		LC6D-220AD (Refer to page 306 for details.)				
Positioning driver	Model		LC6C-220AD (Refer to page 309 for details.)				

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (m)	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Proximity switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
GN	With sensor rail, without proximity switch			
G	GXL-8F	3 wire/NPN	1	N.O. (A contact)
GD	GXL-8FI	3 wire/NPN	1	N.O. (A contact)
GB	GXL-8FB	3 wire/NPN	1	N.C. (B contact)
GDB	GXL-8FIB	3 wire/NPN	1	N.C. (B contact)
GU	GXL-8FU	2 wire/solid state	1	N.O. (A contact)
GUB	GXL-8FUB	2 wire/solid state	1	N.C. (B contact)

Note 1) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().
Note 2) Since vibration may increase with low speed operation, use $5 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	15.7
Yawing	7.84

m : Transfer load (kg)
L : Overhang to work piece center of gravity (mm)
a : Work piece acceleration (mm/sec ${ }^{2}$)
Me : Dynamic moment

Allowable dynamic moment

Refer to page 304 for deflection data.

Cross section C-C

Model	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{N}	\mathbf{P}	\mathbf{U}
LXSH2BD-50 $\square \mathbf{B}$	4	6	107	55	1	65	2	6	55	2	52
LXSH2BD-75 $\square \mathbf{B}$	4	6	112	65	1	75	2	6	65	2	47
LXSH2BD-100 $\square \mathbf{B}$	4	8	122	75	1	65	3	6	75	2	47
LXSH2BD-125 $\square \mathbf{B}$	4	8	132	85	1	70	3	6	85	2	47
LXSH2BD-150 $\square \mathbf{B}$	6	8	112	65	2	75	3	8	65	3	47

Refer to page 301 for mounting.

Positioning Time Guide (for Vertical Mount)

For transfer load of Okg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	15.1	
	40	0.1	0.3	1.3	2.6	3.8	
	80	0.1	0.2	0.7	1.3	1.9	

For transfer load of $\mathbf{2 . 5} \mathbf{~ k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	100	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	15.1	
	40	0.1	0.3	1.3	2.6	3.8	
	80	0.1	0.2	0.7	1.3	2.0	

Refer to page 303 for acceleration time.

For transfer load of 5kg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	200	
Speed (mm/s)	10	0.1	1	5	10	20	
	40	0.1	0.3	1.3	2.6	5.1	
	80	0.1	0.2	0.7	1.3	2.6	

How to Order

\section*{LXSH2 SA-Stroke $\mathbf{S B}$ - F9N 1
 Home position switch e-
 | Nil | None |
| :---: | :---: |
| \mathbf{S} | Yes (cable length 0.3 m) |
 Auto/Proximity switch type
 | Nil | None |
| :---: | :---: |}

Specifications

	Standard stroke		50	75	100	125	150
Performance	Body weight kg		2.1	2.3	2.5	2.7	2.9
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)				
	Work load kg		9 (4) horizontal/4 (4) vertical Note 1)				
	Speed $\quad \mathrm{mm} / \mathrm{s}$		to 100 Note 2)				
	Positioning repeatability mm		± 0.05				
Main parts	Motor		2 phase stepper motor (with brake)				
	Lead screw		Slide screw $\varnothing 8 \mathrm{~mm}$, 6 mm lead				
	Guide		High rigidity direct acting guide				
	Electromagnetic brake	Model	De-energized operating type				
		Static torque	$0.1 \mathrm{~N} \cdot \mathrm{~m}$ or more				
		Rated voltage	24VDC $\pm 5 \%$				
		Power consumption	5W				
Home position switch	Model		Photo micro sensor EE-SX673				
Driver	Model		LC6D-220AD (Refer to page 306 for details.)				
Positioning driver	Model		LC6C-220AD (Refer to page 309 for details.)				

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (m)	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Proximity switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
GN	With sensor rail, without proximity switch			
G	GXL-8F	3 wire/NPN	1	N.O. (A contact)
GD	GXL-8FI	3 wire/NPN	1	N.O. (A contact)
GB	GXL-8FB	3 wire/NPN	1	N.C. (B contact)
GDB	GXL-8FIB	3 wire/NPN	1	N.C. (B contact)
GU	GXL-8FU	2 wire/solid state	1	N.O. (A contact)
GUB	GXL-8FUB	2 wire/solid state	1	N.C. (B contact)

* Refer to page 318 for detailed specifications of proximity switches.

Note 1) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().
Note 2) Since vibration may increase with low speed operation, use $6 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	15.7
Yawing	7.84

m : Transfer load (kg)
L : Overhang to work piece center of gravity (mm)
a : Work piece acceleration (mm/sec${ }^{2}$)
Me : Dynamic moment

Allowable dynamic moment

Refer to page 304 for deflection data.

Dimensions/LXSH2SA

Positioning Time Guide (for Vertical Mount)

For transfer load of 0kg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	15.1	
	50	0.1	0.3	1.1	2.1	3.1	
	100	0.1	0.2	0.6	1.1	1.6	

For transfer load of $\mathbf{2 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	15.1	
	50	0.1	0.3	1.1	2.1	3.1	
	100	0.1	0.2	0.6	1.1	1.6	

[^52]
How to Order

\section*{LXSH2 SB-Stroke $\mathbf{S B}$ - F9N 1

 Auto/Proximity switch type | Nil | None |
| :---: | :---: |
| Refer to the table on the right for | |
| auto/proximity switch part numbers | |}

Specifications

	Standard stroke		50	75	100	125	150
Performance	Body weight kg		2.1	2.3	2.5	2.7	2.9
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)				
	Work load kg		4.5 (4) horizontal/2 (2) vertical Note 1)				
	Speed $\quad \mathrm{mm} / \mathrm{s}$		to 200 Note 2)				
	Positioning repeatability mm		± 0.05				
Main parts	Motor		2 phase stepper motor (with brake)				
	Lead screw		Slide screw $\varnothing 8 \mathrm{~mm}$, 12mm lead				
	Guide		High rigidity direct acting guide				
	Electromagnetic brake	Model	De-energized operating type				
		Static torque	$0.1 \mathrm{~N} \cdot \mathrm{~m}$ or more				
		Rated voltage	24VDC $\pm 5 \%$				
		Power consumption	5W				
Home position switch	Model		Photo micro sensor EE-SX673				
Driver	Model		LC6D-220AD (Refer to page 306 for details.)				
Positioning driver	Model		LC6C-220AD (Refer to page 309 for details.)				

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Proximity switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
GN	With sensor rail, without proximity switch			
G	GXL-8F	3 wire/NPN	1	N.O. (A contact)
GD	GXL-8FI	3 wire/NPN	1	N.O. (A contact)
GB	GXL-8FB	3 wire/NPN	1	N.C. (B contact)
GDB	GXL-8FIB	3 wire/NPN	1	N.C. (B contact)
GU	GXL-8FU	2 wire/solid state	1	N.O. (A contact)
GUB	GXL-8FUB	2 wire/solid state	1	N.C. (B contact)

* Refer to page 318 for detailed specifications of proximity switches.

Note 1) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().
Note 2) Since vibration may increase with low speed operation, use $12 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	15.7
Yawing	7.84

m : Transfer load (kg)
L : Overhang to work piece center of gravity (mm)
a : Work piece acceleration ($\mathrm{mm} / \mathrm{sec}^{2}$)
Me : Dynamic moment

Allowable dynamic moment

Refer to page 304 for deflection data.

Dimensions/LXSH2SB

Positioning Time Guide (for Vertical Mount)

For transfer load of Okg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed $(\mathrm{mm} / \mathbf{s})$	50	0.1	0.3	1.1	2.1	4.1	
	100	0.1	0.2	0.6	1.1	2.1	
	200	0.1	0.1	0.3	0.6	1.1	

For transfer load of $\mathbf{1 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed $(\mathbf{m m} / \mathbf{s})$	50	0.1	0.3	1.1	2.1	4.1	
	100	0.1	0.2	0.6	1.1	2.1	
	200	0.1	0.1	0.3	0.6	1.1	

For transfer load of 2kg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed $(\mathbf{m m} / \mathbf{s})$	50	0.1	0.3	1.1	2.1	4.1	
	100	0.1	0.2	0.6	1.1	2.1	
	200	0.1	0.2	0.4	0.6	1.1	

How to Order

LXSH5 BC-Stroke $\mathbf{S}-$ F9N 1
 Home position switch | Nil | None |
| :---: | :---: |
| Refer to the table on the right for | |
 auto/proximity switch part numbers.

Dimensions/LXSH5BC

Positioning Time Guide (for Horizontal Mount)

For transfer load of Okg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	15.1	
	20	0.1	0.6	2.6	5.1	7.6	
	30	0.1	0.4	1.7	3.4	5.1	

For transfer load of $5 \mathbf{k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	15.1	
	20	0.1	0.6	2.6	5.1	7.6	
	30	0.1	0.4	1.7	3.4	5.1	

[^53]| Nil | None |
| :--- | :---: |
| Refer to the table on the right for | |

- Number of auto/proximity switches

$\mathbf{1}$	1 pc.
$\mathbf{2}$	2 pcs.
\vdots	\vdots
$\mathbf{6}$	6 pcs.

When using both auto and proximity switches, list the proximity switch part number after the auto switch part number. Example) F9N1G2
Specifications

	Standard stroke mm	50	75	100	125	150
Performance	Body weight kg	1.9	2.1	2.3	2.5	2.7
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)				
	Work load $\quad \mathrm{kg}$	10 (4) horizontal/5 (4) vertical Note 1)				
	Speed $\quad \mathrm{mm} / \mathrm{s}$	to 80 Note 2)				
	Positioning repeatability mm	± 0.03				
Main parts	Motor	5 phase stepper motor (without brake)				
	Lead screw	Ball screw ø8mm, 5mm lead				
	Guide	High rigidity direct acting guide				
Home position switch	Model	Photo micro sensor EE-SX673				
Driver	Model	LC6D-507AD (Refer to page 306 for details.)				

Auto switch types

Symbol	Model	Wiring/ Output type Without auto switch length				Coad wire
Nil						
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)		
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)		
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)		
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)		
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)		
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)		
F9B	D-F9B	2 wire	0.5	N.O. (A contact)		
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)		
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)		
F9BL	D-F9BL	2 wire	3	N.O. (A contact)		

Proximity switch types

Symbol	Model	Wiring/ Output type	Lead wire length (m)	Contact
GN	With sensor plate, without proximity switch			
G	GXL-8F	3 wire/NPN		1
N.O. (A contact)				
GD	GXL-8FI	3 wire/NPN	1	N.O. (A contact)
GB	GXL-8FB	3 wire/NPN	1	N.C. (B contact)
GDB	GXL-8FIB	3 wire/NPN	1	N.C. (B contact)
GU	GXL-8FU	2 wire/Solid state	1	N.O. (A contact)
GUB	GXL-8FUB	2 wire/Solid state	1	N.C. (B contact)

* Refer to page 318 for detailed specifications of proximity switches.

Note 1) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().
Note 2) Since vibration may increase with low speed operation, use $5 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	15.7
Rolling	15.7
Yawing	7.84

m : Transfer load (kg)
L : Overhang to work piece center of gravity (mm)
a : Work piece acceleration (mm/sec$\left.{ }^{2}\right)$
Me : Dynamic moment

Allowable dynamic moment

Refer to page 304 for deflection data.

Positioning Time Guide (for Horizontal Mount)

For transfer load of 0 kg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	15.1	
	40	0.1	0.3	1.3	2.6	3.8	
	80	0.1	0.2	0.7	1.3	1.9	

For transfer load of $5 \mathbf{k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	15.1	
	40	0.1	0.3	1.3	2.6	3.8	
	80	0.1	0.2	0.7	1.3	2.0	

[^54]Series LXS

High Rigidity	Slide Screw
Direct Acting Guide	${ }_{\varnothing} 8 \mathrm{~mm} / 6_{\text {mm lead }}$

How to Order

 Refer to the table on the right for auto/proximity switch part numbers.

Specifications

Standard stroke mm		50	75	100	125	150
Performance	Body weight kg	1.9	2.1	2.3	2.5	2.7
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)				
	Work load kg	6 (4) horizontal/2 (2) vertical Note 1)				
	Speed $\quad \mathrm{mm} / \mathrm{s}$	to 100 Note 2)				
	Positioning repeatability mm	± 0.05				
Main parts	Motor	5 phase stepper motor (without brake)				
	Lead screw	Slide screw ø8mm, 6mm lead				
	Guide	High rigidity direct acting guide				
Home position switch	Model	Photo micro sensor EE-SX673				
Driver	Model	LC6D-507AD (Refer to page 306 for details.)				

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.0. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.0. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Proximity switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
GN	With sensor plate, without proximity switch			
G	GXL-8F	3 wire/NPN	1	N.O. (A contact)
GD	GXL-8FI	3 wire/NPN	1	N.O. (A contact)
GB	GXL-8FB	3 wire/NPN	1	N.C. (B contact)
GDB	GXL-8FIB	3 wire/NPN	1	N.C. (B contact)
GU	GXL-8FU	2 wire/Solid state	1	N.O. (A contact)
GUB	GXL-8FUB	2 wire/Solid state	1	N.C. (B contact)

* Refer to page 318 for detailed specifications of proximity switches.

Note 1) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().
Note 2) Since vibration may increase with low speed operation, use $6 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	15.7
Rolling	15.7
Yawing	7.84

m : Transfer load (kg)
L : Overhang to work piece center of gravity (mm)
a : Work piece acceleration ($\mathrm{mm} / \mathrm{sec}^{2}$)
Me : Dynamic moment

Allowable dynamic moment

Refer to page 304 for deflection data.

Dimensions/LXSH5SA

Positioning Time Guide (for Horizontal Mount)

For transfer load of $\mathbf{0 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	15.1	
	50	0.1	0.3	1.1	2.1	3.1	
	100	0.1	0.2	0.6	1.1	1.6	

For transfer load of $\mathbf{3 k g}$

	Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150
Speed (mm/s)	10	0.2	1.1	5.1	10.1	15.1
	50	0.1	0.3	1.1	2.1	3.1
	100	0.1	0.2	0.6	1.1	1.6

For transfer load of 6kg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	15.1	
	50	0.1	0.3	1.1	2.1	3.1	
	100	0.1	0.2	0.6	1.1	1.6	

How to Order

LXSH5SB-Stroke

 When using both auto and proximity switches, list the proximity switch part number after the auto switch part number. Example) F9N1G2

Specifications

Standard stroke mm		50	75	100	125	150
Performance	Body weight $\quad \mathrm{kg}$	1.9	2.1	2.3	2.5	2.7
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)				
	Work load kg	3 (3) horizontal/1 (1) vertical Note 1)				
	Speed mm/s	to 200 Note 2)				
	Positioning repeatability mm	± 0.05				
Main parts	Motor	5 phase stepper motor (without brake)				
	Lead screw	Slide screw $\varnothing 8 \mathrm{~mm}$, 12 mm lead				
	Guide	High rigidity direct acting guide				
Home position switch	Model	Photo micro sensor EE-SX673				
Driver	Model	LC6D-507AD (Refer to page 306 for details.)				

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (m)	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Proximity switch types

Symbol	Model	Wiring/ Output type	Lead wire length (m)	Contact
GN	With sensor plate, without proximity switch			
G	GXL-8F	3 wire/NPN	1	N.O. (A contact)
GD	GXL-8FI	3 wire/NPN	1	N.O. (A contact)
GB	GXL-8FB	3 wire/NPN	1	N.C. (B contact)
GDB	GXL-8FIB	3 wire/NPN	1	N.C. (B contact)
GU	GXL-8FU	2 wire/Solid state	1	N.O. (A contact)
GUB	GXL-8FUB	2 wire/Solid state	1	N.C. (B contact)

Note 1) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().
Note 2) Since vibration may increase with low speed operation, use $12 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	15.7
Rolling	15.7
Yawing	7.84

m : Transfer load (kg)
L : Overhang to work piece center of gravity (mm)
a : Work piece acceleration (mm/sec${ }^{2}$)
Me : Dynamic moment

Allowable dynamic moment

Refer to page 304 for deflection data.

Dimensions/LXSH5SB

Cross section C-C

Model	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{N}	\mathbf{P}	\mathbf{U}
LXSH5SB-50	4	6	107	55	1	65	2	6	55	2	52
LXSH5SB-75	4	6	112	65	1	75	2	6	65	2	47
LXSH5SB-100	4	8	122	75	1	65	3	6	75	2	47
LXSH5SB-125	4	8	132	85	1	70	3	6	85	2	47
LXSH5SB-150	6	8	112	65	2	75	3	8	65	3	47

Refer to page 301 for mounting.

Positioning Time Guide (for Horizontal Mount)

For transfer load of $\mathbf{O k g}$

								Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150							
Speed $(\mathbf{m m} / \mathbf{s})$	50	0.1	0.3	1.1	2.1	3.1							
	100	0.1	0.2	0.6	1.1	1.6							
	200	0.1	0.1	0.3	0.6	0.8							

For transfer load of 1.5 kg

		Positioning time (sec)				
Positioning distance (mm)		1	10	50	100	150
Speed (mm/s)	50	0.1	0.3	1.1	2.1	3.1
	100	0.1	0.2	0.6	1.1	1.6
	200	0.1	0.1	0.3	0.6	0.8

For transfer load of $\mathbf{3 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed (mm/s)	50	0.1	0.3	1.1	2.1	3.1	
	100	0.1	0.2	0.6	1.1	1.6	
	200	0.1	0.2	0.4	0.6	0.9	

High Rigidity Slide Table Type

Series LXX

How to Order

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Proximity switch types

Symbol	Model	Wiring/ Output type	Lead wire length (m)	Contact
GN	With sensor plate, without proximity switch			
G	GXL-8F	3 wire/NPN	1	N.O. (A contact)
GD	GXL-8FI	3 wire/NPN	1	N.O. (A contact) $)$
GB	GXL-8FB	3 wire/NPN	1	N.C. (B contact)
GDB	GXL-8FIB	3 wire/NPN	1	N.C. (B contact)
GU	GXL-8FU	2 wire/Solid state	1	N.O. (A contact)
GUB	GXL-8FUB	2 wire/Solid state	1	N.C. (B contact)

* Refer to page 318 for detailed specifications of proximity switches.

Note 1) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().
Note 2) Since vibration may increase with low speed operation, use $2 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	15.7
Yawing	7.84

m : Transfer load (kg)
L : Overhang to work piece center of gravity (mm)
a : Work piece acceleration ($\mathrm{mm} / \mathrm{sec}^{2}$)
Me: Dynamic moment

Allowable dynamic moment

Refer to page 304 for deflection data.

Dimensions/LXSH5BC

Model	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{N}	\mathbf{P}	\mathbf{U}
LXSH5BC-50 $\square \mathbf{B}$	4	6	107	55	1	65	2	6	55	2	52
LXSH5BC-75 $\square \mathbf{B}$	4	6	112	65	1	75	2	6	65	2	47
LXSH5BC-100 $\square \mathbf{B}$	4	8	122	75	1	65	3	6	75	2	47
LXSH5BC-125 $\square \mathbf{B}$	4	8	132	85	1	70	3	6	85	2	47
LXSH5BC-150 $\square \mathbf{B}$	6	8	112	65	2	75	3	8	65	3	47

Refer to page 301 for mounting.

Positioning Time Guide (for Vertical Mount)

For transfer load of $\mathbf{0 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	15.1	
	20	0.1	0.6	2.6	5.1	7.6	
	30	0.1	0.4	1.7	3.4	5.1	

For transfer load of 2.5 kg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	15.1	
	20	0.1	0.6	2.6	5.1	7.6	
	30	0.1	0.4	1.7	3.4	5.1	

Refer to page 303 for acceleration time.

For transfer load of 5 kg

	Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150
Speed (mm/s)	10	0.2	1.1	5.1	10.1	15.1
	20	0.1	0.6	2.6	5.1	7.6
	30	0.1	0.4	1.7	3.4	5.1

How to Order

LXSH5 BD-Stroke S|B-F9N 1

Specifications

	Standard stroke		50	75	100	125	150
Performance	Body weight kg		2.1	2.3	2.5	2.7	2.9
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)				
	Work load kg		10 (4) horizontal/5 (4) vertical Note 1)				
	Speed mm / s		to 80 Note 2)				
	Positioning repeatability mm		± 0.03				
Main parts	Motor		5 phase stepper motor (with brake)				
	Lead screw		Ball screw ø8mm, 5mm lead				
	Guide		High rigidity direct acting guide				
	Electromagnetic brake	Model	De-energized operating type				
		Static torque	$0.1 \mathrm{~N} \cdot \mathrm{~m}$ or more				
		Rated voltage	24VDC $\pm 5 \%$				
		Power consumption	5W				
Home position switch	Model		Photo micro sensor EE-SX673				
Driver	Model		LC6D-507AD (Refer to page 306 for details.)				

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Proximity switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
GN	With sensor plate, without proximity switch			
G	GXL-8F	3 wire/NPN	1	N.O. (A contact)
GD	GXL-8FI	3 wire/NPN	1	N.O. (A contact)
GB	GXL-8FB	3 wire/NPN	1	N.C. (B contact)
GDB	GXL-8FIB	3 wire/NPN	1	N.C. (B contact)
GU	GXL-8FU	2 wire/Solid state	1	N.O. (A contact)
GUB	GXL-8FUB	2 wire/Solid state	1	N.C. (B contact)

* Refer to page 318 for detailed specifications of proximity switches.

Note 1) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().
Note 2) Since vibration may increase with low speed operation, use $5 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	15.7
Yawing	7.84

m : Transfer load (kg)
L : Overhang to work piece center of gravity (mm)
a : Work piece acceleration ($\mathrm{mm} / \mathrm{sec}^{2}$)
Me: Dynamic moment

Allowable dynamic moment

Refer to page $\mathbf{3 0 4}$ for deflection data.

Positioning Time Guide (for Vertical Mount)

For transfer load of 0 kg

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	15.1	
	40	0.1	0.3	1.3	2.6	3.8	
	80	0.1	0.2	0.7	1.3	1.9	

For transfer load of $\mathbf{2 . 5 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	15.1	
	40	0.1	0.3	1.3	2.6	3.8	
	80	0.1	0.2	0.7	1.3	2.0	

For transfer load of $\mathbf{5 k g}$

			Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150		
Speed (mm/s)	10	0.2	1.1	5.1	10.1	15.1		
	40	0.1	0.3	1.3	2.6	3.8		
	80	0.1	0.2	0.7	1.3	2.0		

How to Order

\section*{LXSH5 SA-Stroke SB-F9N 1

 | Auto/Proximity switch type | |
| :---: | :---: |
| Nil | None |
 Refer to the table on the right for auto/proximity switch part numbers
 When using both auto and proximity switches, list the proximity switch part number after the auto switch part number. Example) F9N1G2
 }

Specifications

	Standard stroke		50	75	100	125	150
Performance	Body weight kg		2.1	2.3	2.5	2.7	2.9
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)				
	Work load kg		6 (4) horizontal/2 (2) vertical Note 1)				
	Speed $\quad \mathrm{mm} / \mathrm{s}$		to 100 Note 2)				
	Positioning repeatability mm		± 0.05				
Main parts	Motor		5 phase stepper motor (with brake)				
	Lead screw		Slide screw $ø 8 \mathrm{~mm}$, 6 mm lead				
	Guide		High rigidity direct acting guide				
	Electromagnetic brake	Model	De-energized operating type				
		Static torque	$0.1 \mathrm{~N} \cdot \mathrm{~m}$ or more				
		Rated voltage	24VDC $\pm 5 \%$				
		Power consumption	5W				
$\begin{array}{c}\text { Home position } \\ \text { switch }\end{array}$	Model		Photo micro sensor EE-SX673				
Driver	Model		LC6D-507AD (Refer to page 306 for details.)				

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (m)	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Proximity switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
GN	With sensor plate, without proximity switch			
G	GXL-8F	3 wire/NPN	1	N.O. (A contact)
GD	GXL-8FI	3 wire/NPN	1	N.O. (A contact)
GB	GXL-8FB	3 wire/NPN	1	N.C. (B contact)
GDB	GXL-8FIB	3 wire/NPN	1	N.C. (B contact)
GU	GXL-8FU	2 wire/Solid state	1	N.O. (A contact)
GUB	GXL-8FUB	2 wire/Solid state	1	N.C. (B contact)

* Refer to page 318 for detailed specifications of proximity switches.

Note 1) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().
Note 2) Since vibration may increase with low speed operation, use $6 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment Allowable dynamic moment

Pitching	15.7
Yawing	7.84

m : Transfer load (kg)
L : Overhang to work piece center of gravity (mm)
a : Work piece acceleration (mm/sec ${ }^{2}$)
Me: Dynamic moment

Refer to page 304 for deflection data.

Dimensions/LXSH5SA

Positioning Time Guide (for Vertical Mount)

For transfer load of $\mathbf{0 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	15.1	
	50	0.1	0.3	1.1	2.1	3.1	
	100	0.1	0.2	0.6	1.1	1.6	

For transfer load of $\mathbf{1 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed (mm/s)	10	0.2	1.1	5.1	10.1	15.1	
	50	0.1	0.3	1.1	2.1	3.1	
	100	0.1	0.2	0.6	1.1	1.6	

[^55]For transfer load of $\mathbf{2 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.2	1.1	5.1	10.1	15.1	
	50	0.1	0.3	1.1	2.1	3.1	
	100	0.1	0.2	0.6	1.1	1.6	

How to Order

\section*{LXSH5 SB-Stroke| $\mathbf{S B}$ B-F9N
 Home position switch .
 | Nil | None |
| :---: | :---: |
| \mathbf{S} | Yes (cable length 0.3m) |
 Auto/Proximity switch type

| Nil | None |
| :---: | :---: | | Refer to the table on the right for auto/proximity |
| :--- |
| switch part numbers. |}

When using both auto and proximity switches, list the proximity switch part number after the auto switch par number. Example) F9N1G2

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact
Nil	Without auto switch			
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)
F9B	D-F9B	2 wire	0.5	N.O. (A contact)
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)
F9BL	D-F9BL	2 wire	3	N.O. (A contact)

Proximity switch types

Symbol	Model	Wiring/ Output type	Lead wire length (m)	Contact
GN	With sensor plate, without proximity switch			
G	GXL-8F	3 wire/NPN	1	N.O. (A contact)
GD	GXL-8FI	3 wire/NPN	1	N.O. (A contact)
GB	GXL-8FB	3 wire/NPN	1	N.C. (B contact)
GDB	GXL-8FIB	3 wire/NPN	1	N.C. (B contact)
GU	GXL-8FU	2 wire/Solid state	1	N.O. (A contact)
GUB	GXL-8FUB	2 wire/Solid state	1	N.C. (B contact)

Note 1) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().
Note 2) Since vibration may increase with low speed operation, use $12 \mathrm{~mm} / \mathrm{s}$ or more as a guide for speed.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable static moment

Pitching	15.7
Yawing	7.84

m : Transfer load (kg)
L : Overhang to work piece center of gravity (mm)
a : Work piece acceleration (mm/ sec^{2})
Me: Dynamic moment

Allowable dynamic moment

Refer to page 304 for deflection data.

Dimensions/LXSH5SB

Positioning Time Guide (for Vertical Mount)

For transfer load of $\mathbf{O k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed (mm/s)	50	0.1	0.3	1.1	2.1	3.1	
	100	0.1	0.2	0.6	1.1	1.6	
	200	0.1	0.1	0.3	0.6	0.8	

For transfer load of $\mathbf{1 k g}$

		Positioning time (sec)					
Positioning distance (mm)		1	10	50	100	150	
Speed (mm/s)	50	0.1	0.3	1.1	2.1	3.1	
	100	0.1	0.2	0.6	1.1	1.6	
	200	0.1	0.1	0.3	0.6	0.8	

How to Order

Specifications

Motor		5 phase stepper motor (without brake)	
Lead screw		Slide screw $ø 8 \mathrm{~mm}$	
Positioning repeatability		$\pm 0.05 \mathrm{~mm}$	
Lead		6 mm	12 mm
Speed Note 1)		3 to $100 \mathrm{~mm} / \mathrm{s}$	6 to $200 \mathrm{~mm} / \mathrm{s}$
Work load Note 2)	Horizontal	3 (2)kg	2 (2)kg
Guide type		Direct acting guide	
Operating temperature range		5° to $40^{\circ} \mathrm{C}$ (with no condensation)	
Home position switch		Photo micro sensor EE-SX672 (Refer to page 319 for details.)	
Applicable driver		LC6D-507AD-Q (Refer to page 306 for details.)	
CE marking accessories		Holding plate: MB1(1 pc.), Phillips countersunk head screw M3 x6l (1 pc.) Phillips binding head screw: M3 $\times 4 \mathrm{l}$ (2 pcs .), Toothed lock washer M3 (2 pcs.) Binding band: T18S (1 pc.)	

Note 1) Since vibration may increase with low speed operation, use $6 \mathrm{~mm} / \mathrm{s}$ or more for 6 mm lead, and $12 \mathrm{~mm} / \mathrm{s}$ or more for 12 mm lead as a guide for speed.
Note 2) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().

Weights

(kg)				
Model	Standard stroke (mm)			
LXFH5S	$\mathbf{2 5}$	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$

For basic specifications such as allowable moment, refer to the "Standard" pages for equivalent products listed on Features pages 3 and 4.

CE Marking Series LXF

Dimensions/LXFH5S

How to Order

Specifications

Stroke	
$\mathbf{5 0}$	50 mm
$\mathbf{7 5}$	75 mm
$\mathbf{1 0 0}$	100 mm
$\mathbf{1 2 5}$	125 mm
$\mathbf{1 5 0}$	150 mm
$\mathbf{1 7 0}$	170 mm
$\mathbf{2 0 0}$	200 mm

Auto switch type
Lead screw type

Lead screw lead

A	6 mm
B	12 mm

Use a driver with CE marking.

Motor		2 phase stepper motor (with/without brake)		5 phase stepper motor (with/without brake)	
Lead screw		Slide screw ø8mm			
Positioning repeatability		$\pm 0.05 \mathrm{~mm}$			
Lead		6 mm	12 mm	6 mm	12 mm
Speed Note 1)		3 to $100 \mathrm{~mm} / \mathrm{s}$	6 to $200 \mathrm{~mm} / \mathrm{s}$	3 to $100 \mathrm{~mm} / \mathrm{s}$	6 to 200mm/s
Work load	Horizontal	6 kg	3 kg	4 kg	2 kg
	Vertical	5 kg	3 kg	4kg	2 kg
Guide type		Ball bushing			
Operating temperature range		5° to $40^{\circ} \mathrm{C}$ (with no condensation)			
Home position switch		Photo micro sensor EE-SX673 (Refer to page 319 for details.)			
Brake specifications	Model	De-energized operating type			
	Static torque	$0.1 \mathrm{~N} \cdot \mathrm{~m}$			
	Rated voltage	24VDC $\pm 5 \%$			
	Power consumption	5 W (at $75^{\circ} \mathrm{C}$)			
Applicable driver		LC6D-220AD-Q	page 306 details.)	LC6D-507AD-Q (Refer to page 306 for details.)	
CE marking accessories		Holding plate: MB1 (1 pc.), Phillips countersunk head screw M3 x6l (1 pc.) Phillips binding head screw: M3 $\times 4 \mid$ (2 pcs .), Toothed lock washer M3 (2 pcs .) Binding band: T18S (1 pc.)			

Note 1) Since vibration may increase with low speed operation, use $6 \mathrm{~mm} / \mathrm{s}$ or more for 6 mm lead, and $12 \mathrm{~mm} / \mathrm{s}$ or more for 12 mm lead as a guide for speed.

Weights

Model	Standard stroke (mm)							
	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 5 0}$	$\mathbf{1 7 5}$	$\mathbf{2 0 0}$	With brake
LXPB $_{5}^{2} \mathbf{S}$	2.0	2.2	2.3	2.6	2.8	2.9	3.1	0.2

For basic specifications such as allowable moment, refer to the "Standard" pages for equivalent products listed on Features pages 3 and 4.

ce Marking Series LXP

Dimensions/LXPB ${ }_{5}^{2}$ S

When two dimensions are shown,

the top dimensions is for 50 to 75 and 100 mm stokes, and the bottom dimension is for $125,150,175$, and 200 mm strokes.

With brake

Section F detail (Scale: 2/1)

Without brake

* When using a PE terminal, use accessories included as shown above.

	(mm)	
Model	D	E
LXPB \square S \square - 50	44	52
LXPB \square S \square - 75		
LXPB \square S \square-100		
LXPB \square S \square-125	120	90
LXPB \square S \square-150		
LXPB \square S \square-175		
LXPB \square S \square-200		

How to Order

Motor		2 phase stepper motor (with/without brake)		5 phase stepper motor (with/without brake)	
Lead screw		Slide screw ø8mm			
Positioning repeatability		$\pm 0.05 \mathrm{~mm}$			
Lead		6 mm	12 mm	6 mm	12 mm
Speed Note1)		3 to $100 \mathrm{~mm} / \mathrm{s}$	6 to $200 \mathrm{~mm} / \mathrm{s}$	3 to $100 \mathrm{~mm} / \mathrm{s}$	6 to $200 \mathrm{~mm} / \mathrm{s}$
Work load Note 2	2) Horizontal	9 (4)kg	4.5 (4)kg	6 (4)kg	3 (3)kg
	Vertical	4 (4)kg	2 (2)kg	2 (2)kg	1 (1)kg
Guide type		High rigidity direct acting guide			
Operating temperature range		5° to $40^{\circ} \mathrm{C}$ (with no condensation)			
Home position switch (optional)		Photo micro sensor EE-SX673 (Refer to page 319 for details.)			
Brake specifications	Model	De-energized operating type			
	Static torque	$0.1 \mathrm{~N} \cdot \mathrm{~m}$			
	Rated voltage	24VDC $\pm 5 \%$			
	Power consumption	5 W (at $75^{\circ} \mathrm{C}$)			
Applicable driver		LC6D-220AD-Q (Refer to page 306 for details.)		LC6D-507AD-Q (Refer to page 306 for details.)	
Positioning repeatability		$\pm 0.05 \mathrm{~mm}$			
CE marking accessories		Holding plate: MB1 (1 pc.), Phillips countersunk head screw: M3 $\times 6 \mathrm{l}$ (1 pc.) Phillips binding head screw: M3 $\times 4 \mathrm{l}$ (2 pcs.), Toothed lock washer M3 (2 pcs.) Binding band: T18S (1 pc.)			

Note 1) Since vibration may increase with low speed operation, use $6 \mathrm{~mm} / \mathrm{s}$ or more for 6 mm lead, and $12 \mathrm{~mm} / \mathrm{s}$ or more for 12 mm lead as a guide for speed. Note 2) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().

Weights

Model	Standard stroke (mm)					
	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 5 0}$	Additional weight with motor
$\mathbf{L X S H}_{\mathbf{5}} \mathbf{S}$	1.9	2.1	2.3	2.5	2.7	0.2

For basic specifications such as allowable moment, refer to the "Standard" pages for equivalent products listed on Features pages 3 and 4.

Dimensions/LXSH ${ }_{5}^{2}$ S

With brake
Scale: 25\%

Brake electrical circuit

[Yellow]
Note) A contact protection circuit is required when connecting a brake.

* When using a PE terminal, use accessories included as shown above.

Cross Section C-C
Refer to page 301 for mounting

How to Order

Specifications

Motor		AC servomotor (30w)	
Lead screw		Ball screw ø8mm	
Positioning repeatability		$\pm 0.03 \mathrm{~mm}$	
Lead		2mm	5 mm
Maximum speed		40mm/s	100mm/s
Work load Note 1)	Horizontal	3 (2)kg	3 (2)kg
	Vertical	2 kg	2 kg
Guide type		Direct acting guide	
Operating temperature range		5° to $40^{\circ} \mathrm{C}$ (with no condensation)	
Home position switch		Photo micro sensor EE-SX674 (Refer to page 319 for details.)	

* Contact motor manufacturers for brake specifications.

Note 1) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().

Weights

Model	Standard stroke (mm)				Additional weight with brake
	$\mathbf{2 5}$	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	With brake
LXFHAB \square-X20	0.9	1.1	1.2	1.3	0.3

For basic specifications such as allowable moment, refer to the "Standard" pages for equivalent products listed on Features pages 3 and 4.
Refer to page 299 for mounting.

Model	B	D	E	F	G
LXFHAB $\square-\mathbf{2 5} \square \square-\square \square \square \square-\mathbf{X} \square$	1	4	60	30	60
LXFHAB $-\mathbf{5 0} \square \square-\square \square \square \square-\mathbf{X} \square \square$	1	4	90	60	90
LXFHAB $\square-75 \square \square-\square \square \square \square-\mathbf{X} \square \square$	2	6	90	60	90
LXFHAB \square-100 $\square \square-\square \square \square \square-$ X $\square \square$	2	6	90	60	90

Note) The overall length of an actuator is Stroke + $105.5+$ Motor dimension.

Applicable Motor List

Symbol	Manufacturer	Motor output	Power supply voltage	Brake	Motor model	Applicable Note) driver model	Motor dimension (mm)	
							Without brake	With brake
X20	Mitsubishi Electric Corporation	30W	24VDC	Without brake	HC-AQ335D	MR-J2-03A5	85	112
				With brake	HC-AQ335BD	MR-J2-03A5		

[^56]
How to Order

Motor	AC servomotor (30w)	
Lead screw	Ball screw ø8mm	
Positioning repeatability	$\pm 0.03 \mathrm{~mm}$	
Lead	2 mm	5 mm
Speed	$50 \mathrm{~mm} / \mathrm{s}$	$100 \mathrm{~mm} / \mathrm{s}$
Work load	Horizontal	6 kg
Gertical	5 kg	6 kg
Guide type	Ball bushing	
Operating temperature range	5° to $40^{\circ} \mathrm{C}$ (with no condensation)	
Home position switch	Photo micro sensor EE-SX673 [OMRON Corporation] (Refer to page 319 for details.)	

* Contact motor manufacturers for brake specifications.

Weights

(kg)										
Model	Standard stroke $(\mathbf{m m})$									Additional weight with motor
	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 5 0}$	$\mathbf{1 7 5}$	$\mathbf{2 0 0}$	With brake		
LXPBAB $\square-\mathbf{X 1 2 / X 1 3 ~}$	2.0	2.2	2.3	2.6	2.8	2.9	3.1	0.3		
LXPBAB $\square-\mathbf{X 1 5 / X 1 6 ~}$	1.9	2.1	2.2	2.5	2.7	2.8	3.0	0.2		
LXPBAB $\square \mathbf{- X 1 8 / X 1 9 ~}$	2.0	2.2	2.3	2.6	2.8	2.9	3.1	0.3		
LXPBAB $\square-X 21 / X 22 ~$	2.0	2.2	2.3	2.6	2.8	2.9	3.1	0.3		

For basic specifications such as allowable moment, refer to the "Standard" pages for equivalent products listed on Features pages 3 and 4.

Dimensions/LXPBAB

When two dimensions are shown,
the top dimension is for 50 and 100 mm strokes, and the $\quad * *$ The dimension inside [] shows the bottom dimension is for $125,150,175$, and 200 mm strokes.
location at which the home position switch operates.

Refer to "Applicable Motor List" below for dimensions. (This drawing shows a Tamagawa Seiki, Co., Ltd. motor.)

Section C detail (Scale: 5/1)

Refer to page 300 for mounting.

Model	D	E
LXPBAB \square - 50S $\square-\square \square \square \square-\mathrm{Q} \square \square$	44	52
LXPBAB \square - 75S $\square-\square \square \square \square-\mathrm{X} \square \square$		
LXPBAB \square-100S $\square-\square \square \square \square-\mathrm{Q} \square \square$		
LXPBAB \square-125S $\square-\square \square \square \square-X \square \square$	120	90
LXPBAB \square-150S $\square-\square \square \square \square-X \square \square$		
LXPBAB \square-175S $\square-\square \square \square \square-\mathrm{\square} \square \square$		
LXPBAB \square-200S $\square-\square \square \square \square-X \square \square$		

Note) The overall length of an actuator is Stroke +124 (141) + Motor dimension.

Applicable Motor List

Symbol	Manufacturer	Motor output	Power supply voltage	Brake	Motor model	Applicable Note) driver model	Motor dimension (mm)	
							Without brake	With brake
X12	Tamagawa Seiki Co., Ltd.	30W	100/110VAC	Without brake	TS4501N	SMC controller Series LC1 (X233) Refer to page 189 for details.	80.5	111.5
				With brake	TS4501N			
X13			200/220VAC	Without brake	TS4501N			
				With brake	TS4501N			
X15	Matsushita Electric Industrial Co., Ltd.		100/115VAC	Without brake	MSM3AZP1A	MSD3A1P1E	91	123
				With brake	MSM3AZP1B	MSD3A1P1E		
X16			200VAC	Without brake	MSM3AZP1A	MSD3A3P1E		
				With brake	MSM3AZP1B	MSD3A3P1E		
X18	Mitsubishi Electric Corporation		100/115VAC	Without brake	HC-PQ033	MR-C10A1	87.5	111.5
				With brake	HC-PQ033B	MR-C10A1		
X19			200/230VAC	Without brake	HC-PQ033	MR-C10A		
				With brake	HC-PQ033B	MR-C10A		
X21	Yaskawa Electric Corporation		100/115VAC	Without brake	SGME-A3BF12	SGDE-A3BP	91.5	123
				With brake	SGME-A3BF12B	SGDE-A3BP		
X22			200/230VAC	Without brake	SGME-A3BF12	SGDE-A3AP		
				With brake	SGME-A3BF12B	SGDE-A3AP		

[^57]A driver is included with motors by Matsushita Electric Industrial Co., Ltd., Mitsubishi Electric Corporation, and Yaskawa Electric Corporation. However, the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

How to Order

Proximity switch types

Symbol	Model	Wiring/ Output type	Lead wire length (m)	Contact	
GN	With sensor rail and sensor plate, without proximity switch				
G	GXL-8F	3 wire/NPN		1	N.O (A contact)
GD	GXL-8FI	3 wire/NPN	1	N.O (A contact)	
GB	GXL-8FB	3 wire/NPN	1	N.C (B contact)	
GDB	GXL-8FIB	3 wire/NPN	1	N.C (B contact)	
GU	GXL-8FU	2 wire/Solid state	1	N.O (A contact)	
GUB	GXL-8FUB	2 wire/Solid state	1	N.C (B contact)	

* Refer to page 318 for detailed specifications of proximity switches.

Note 2) For Tamagawa Seiki Co., Ltd. motors (X12, X13), only "Yes" is applicable for the home position switch setting. Also, auto switch F9N (1 pc.) is always attached for this specification. When using another switch in addition, list its part number next. Example) LXSHABC-100SB-F9N1F9G1-X12

* Contact motor manufacturers for brake specifications.

Note 1) When mounting a work piece to the actuator's end plate, its weight should be within the value inside ().

Weights

(kg)						
Model	Standard stroke (mm)					
	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 5 0}$	Wdditional weight with motor
LXSHAB $\square-\mathbf{X 1 2 / X 1 3 ~}$	1.9	2.1	2.3	2.5	2.7	0.3
LXSHAB $\square-\mathbf{X 1 5 / X 1 6 ~}$	1.8	2.0	2.2	2.4	2.6	0.2
LXSHAB $\square-\mathbf{X 1 8 / X 1 9 ~}$	1.9	2.1	2.3	2.5	2.7	0.3
LXSHAB $\square-\mathbf{X 2 1 / X 2 2 ~}$	1.9	2.1	2.3	2.5	2.7	0.3

For basic specifications such as allowable moment, refer to the "Standard" pages for equivalent products listed on Features pages 3 and 4.

Dimensions/LXSHAB

 connects the motor and driver is optional. Refer to page 100 for part numbers.

Refer to the tables below for auto/proximity switch part numbers.

Brake

Nil	Without brake
\mathbf{B}	With brake

.Home position switch

Auto switch types

Symbol	Model	Wiring/ Output type	Lead wire length (m)	Contact	Applicable actuator
F9N	D-F9N	3 wire/NPN	0.5	N.O. (A contact)	$\begin{aligned} & \text { LXP } \\ & \text { LXS } \end{aligned}$
F9P	D-F9P	3 wire/PNP	0.5	N.O. (A contact)	
F9G	D-F9G	3 wire/NPN	0.5	N.C. (B contact)	
F9H	D-F9H	3 wire/PNP	0.5	N.C. (B contact)	
F9GL	D-F9GL	3 wire/NPN	3	N.C. (B contact)	
F9HL	D-F9HL	3 wire/PNP	3	N.C. (B contact)	
F9B	D-F9B	2 wire	0.5	N.O. (A contact)	
F9NL	D-F9NL	3 wire/NPN	3	N.O. (A contact)	
F9PL	D-F9PL	3 wire/PNP	3	N.O. (A contact)	
F9BL	D-F9BL	2 wire	3	N.O. (A contact)	

* When using both auto and proximity switches, list the proximity switch part number after the auto switch part number. Example) F9N1G2

Nil	None
\mathbf{S}	Yes (cable length 0.3 m)

Proximity switch types

Symbol	Model	Wiring/ Output type	Lead wire length (\mathbf{m})	Contact	Applicable actuator
GN	With sensor rail and sensor plate, without proximity switch				
G	GXL-8F	3 wire/NPN	1	N.O. (A contact)	LXF
GD	GXL-8FI	3 wire/NPN	1	N.O. (A contact)	
GB	GXL-8FB	3 wire/NPN	1	N.C. (B contact)	LXS
GDB	GXL-8FIB	3 wire/NPN	1	N.C. (B contact)	
GU	GXL-8FU	2 wire/Solid state	1	N.O. (A contact) $)$	
GUB	GXL-8FUB	2 wire/Solid state	1	N.C. (B contact)	

* Refer to page 318 for detailed specifications of proximity switches.

Specifications

Model	LXF	LXP	LXS
Guide type	Direct acting guide Stainless steel, With low particulate generating grease	Ball bushing Stainless seel, With low particulate geneating grease	High rigidity direct acting guide Stainless steel, With low particulate generating grease
Lead screw	Ball screw $\varnothing 8 \mathrm{~mm}$ $2 \mathrm{~mm} / 5 \mathrm{~mm}$ lead		

For basic specifications such as allowable moment, refer to the "Standard" pages for equivalent products listed on Features pages 3 and 4.

Series LX

Construction

Construction

Series LXF

Parts list

No.	Description	Material	Note
$\mathbf{1}$	Motor	-	
$\mathbf{2}$	Direct acting guide	-	
3	Nut	Resin/Alloy steel	
4	Rolled screw	Alloy steel	
5	Body	Aluminum alloy	Anodized
6	Table	Aluminum alloy	Anodized
7	End plate	Aluminum alloy	Anodized
8	Tube	Aluminum alloy	Anodized
9	Stopper A	-	

Parts list

No.	Description	Material	Note
$\mathbf{1 0}$	Stopper B	Aluminum alloy	
$\mathbf{1 1}$	Sensor plate	Mild steel	Chromated
$\mathbf{1 2}$	Coupling	Aluminum alloy	
13	Magnet	-	
14	Bumper	Rubber	
15	Motor cover	Resin	
16	Photo micro sensor	-	

Construction

Series LXP

Parts list

No.	Description	Material	Note
$\mathbf{1}$	Motor	-	Stepper motor
$\mathbf{2}$	Rolled screw	Alloy steel	
$\mathbf{3}$	Nut	Resin	
$\mathbf{4}$	Coupling	-	
$\mathbf{5}$	Bearing	-	
$\mathbf{6}$	Body	Aluminum alloy	Anodized
$\mathbf{7}$	Mounting plate	Mild steel	Nickel plated
$\mathbf{8}$	Ball bushing	-	
$\mathbf{9}$	Guide rod	Bearing steel	Chrome plated
$\mathbf{1 0}$	Tube	Aluminum alloy	Anodized
$\mathbf{1 1}$	Sensor pin	Stainless steel	

No.	Description	Material	Note
12	Photo micro sensor	-	
13	Lock nut	Carbon steel	Black zinc chromated
14	Stopper nut	Aluminum alloy	
15	Bumper bolt	Bearing steel	Nickel plated
16	Bumper	Resin	
17	Motor cover	Resin	
18	Tension ring	Stainless steel	
19	Cable cap		
20	Plug		
21	Magnet	-	
22	Adaptor	Aluminum alloy	
23	Plate mounting bolt	Carbon steel	Nickel plated

Səપગપ!MS
Switches

Construction

Series LXS

Parts list

No.	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Table	Aluminum alloy	Anodized
3	Adaptor	Aluminum alloy	Anodized
4	Plate	Aluminum alloy	Anodized
5	Tube	Aluminum alloy	Anodized
6	Rod assembly	-	With magnet
7	Stopper A	-	With bumper
8	Stopper B	-	
9	Direct acting guide (block, rail)	-	
10	Rolled screw (shaft only)	Alloy steel	
11	Tension ring	Stainless steel	
12	Bearing retainer	Stainless steel	
13	Bearing	-	

Parts list

No.	Description	Material	Note
$\mathbf{1 4}$	Lock nut	Carbon steel	Black zinc chromated
$\mathbf{1 5}$	Coupling	-	
$\mathbf{1 6}$	Motor	-	
$\mathbf{1 7}$	Magnet holder	Resin	
18	Magnet	Rare earth magnet	
19	Sensor plate	Mild steel	With home position switch
20	Photo micro sensor	-	With home position switch
21	Motor cover	Resin	
22	Plug A		
23	Plug B		
24	Cap	Carbon steel	
25	Parallel pin	Resin/Alloy steel	
26	Nut		

Series LX

Mounting

Series LXF

Actuator mounting

An actuator can be mounted from two directions, which can be selected depending on the equipment or work piece.

Model	Bolt	Max. tightening torque $\mathrm{N} \cdot \mathrm{m}$	Max. screw-in depth $(\mathrm{l} \mathrm{mm})$
LXF	M5 $\times 0.8$	4.4	8

. Caution Use bolts at least 0.5 mm shorter than the maximum screw-in depth, so they do not touch the body.

Work piece mounting

Work pieces can be mounted on two sides of the actuator.

Mounting

Series LXP

Actuator mounting

3. T-slots

Model	Bolt	Max. tightening torque $\mathrm{N} \cdot \mathrm{m}$	Max. screw-in depth $(\mathrm{I} \mathrm{mm})$
LXP	$\mathrm{M} 5 \times 0.8$	7.4	8.5

§ Caution Use bolts at least 0.5 mm shorter than the maximum screw-in depth, so they do not touch the body.

2. Through holes

Model	Bolt	Max. tightening torque $\mathrm{N} \cdot \mathrm{m}$	Body thickness $(\mathrm{l} \mathrm{mm})$
LXP	$\mathrm{M} 5 \times 0.8$	4.4	37.5

Work piece mounting

Mounting

Series LXS

Actuator mounting

An actuator can be mounted from two directions, which can be selected depending on the equipment or work piece.

\triangle Caution Use bolts at least 0.5 mm shorter than the maximum screw-in depth, so they do not touch the body.

© Caution Use bolts at least 0.5 mm shorter than the maximum screw-in depth, so they do not touch the body.

Work piece mounting

Work pieces can be mounted on two sides of the actuator.

4. Caution Use bolts at least 0.5 mm shorter than the maximum screw-in depth, so they do not touch the body.

Series LX

Acceleration Time Guide

Acceleration Time Guide/Slide Screw Specification (Horizontal)

LXFH5SA

LXFH5SB

LXPB2SA/LXSH2SA

LXPB2SB/LXSH2SB

LXPB5SA/LXSH5SA

LXPB5SB/LXSH5SB

Acceleration Time Guide/Slide Screw Specification (Vertical)

LXPB2SA/LXSH2SA

LXPB2SB/LXSH2SB

LXPB5SA/LXSH5SA

LXPB5SB/LXSH5SB

\triangle Caution

- Transfer loads should not exceed each model's work load specification.
- Determine the acceleration time based on the transfer load and ultimate speed.
- Operating over the graph ranges will cause loss of synchronism.
- The graphs are based on operation using an SMC DC power input type driver with halfstep energization.
- Data fluctuate depending on the operating conditions.

Acceleration Time Guide/Ball Screw Specification (Horizontal)

LXFH5BC

LXFH5BD

LXPB2BC/LXSH2BC

LXPB2BD/LXSH2BD

LXPB5BC/LXSH5BC

LXPB5BD/LXSH5BD

model's work load specification.

- Determine the acceleration time based on the transfer load and ultimate speed.
- Operating over the graph ranges will cause loss of synchronism.
- The graphs are based on operation using an SMC DC power input type driver with halfstep energization.
- Data fluctuate depending on the operating conditions.

g

Acceleration Time Guide/Ball Screw Specification (Vertical)

LXPB2BC/LXSH2BC

LXPB2BD/LXSH2BD

LXPB5BC/LXSH5BC

LXPB5BD/LXSH5BD

- Transfer loads should not exceed each

\triangle Caution

Table Deflection

Stepper Motor Driver/LC6DPage 306
Positioning Driver/LC6C 309

- LC6C dedicated teaching box 313
Options 315

$\underset{C}{C}$

Stepper Motor Driver

How to Order

- Can be mounted on a DIN rail
- Driver position controlled by pulse signal
- Can be controlled by a general positioning unit or controller

Electric Actuator

Applicable Actuators

Driver model	Applicable actuator		Motor type
LC6D-220AD	Guide rod type	LXPB2	
	High rigidity slide table type	LXSH2	
LC6D-507AD	Low profile slide table type	LXFH5	5 phase stepper motor
	High rigidity slide table type	LXSH5	
	LXPB5		

Specifications

Part no.	LC6D-220AD	LC6D-507AD
Power supply	24VDC $\pm 10 \%$, 3A	24VDC $\pm 10 \%$, 2.5A
Energization (Step angle ${ }^{\circ}$)	Full step (1.8°) Half step (0.9°)	Full step (0.72°) Half step $\left(0.36^{\circ}\right)$
Motor current	2.0A/phase	$0.75 \mathrm{~A} /$ phase
Input signal	Photo coupler input (Input impedance 330 ${ }^{\text {) }}$	
Maximum input frequency (See caution below.)	10 kHz for full step 20 kHz for half step	
Function	Auto current down, Power down input	
Connection method	Connector	
	5° to $40^{\circ} \mathrm{C}$	
Operating environment	35 to 85\% (with no condensation)	
Accessories	Connectors (receptacle, female terminal) Cable should be arranged by customer.	

CE marking

1. The combination of Series LC6D and Series LX has been certified for CE marking. When using Series LX with CE marking, use it in combination with Series LC6D with CE marking.
2. The combination of Series LC6D and Series LX has been certified for EMC conformity.
EMC changes depending on the customer's control panel configuration, and the relationship between other electrical equipment and wiring. Therefore, conformity cannot be certified for the customer's equipment in the actual operating environment. As a result, it is necessary for the customer to verify final EMC conformity for the machinery and equipment as a whole.

\triangle Caution

Maximum speeds of actuators vary depending on the type. Observe the maximum speed of the actuator in use.

Pulse Signals

LC6D positioning is controlled by the number of pulse signal inputs to the CW and CCW terminals, and speed is controlled by pulse frequencies.

- Calculation for speed and pulse frequencies

Pulse frequency [pps] = (Speed [mm/s]/Lead [mm]) x Divisions per rotation

- Calculation for moving distance and pulse numbers

Pulse numbers $=($ Moving distance $[\mathrm{mm}] /$ Lead $[\mathrm{mm}]) \times$ Divisions per rotation

- The divisions per rotation are as shown in the table below.

Driver	Energization type	Divisions per rotation
LC6D-220AD- \square	Full step	200
	Half step	400
LC6D-507AD- \square	Full step	500
	Half step	1000

Dimensions

DIN rail holding plate

- Connectors (included) [Manufacturer: Molex Japan, Co., Ltd.]

Description	Part no.	Quantity
Receptacle	$5557-14 \mathrm{R}$	1
Female terminal	5556 PBTL	14

- Wiring tools [Manufacturer: Molex Japan Co., Ltd.]

Wiring tools should be arranged by the customer.

Description	Part no.
Crimping tool	$57026-5000$ (for UL1007) $57027-5000 ~(f o r ~ U L 1015) ~$
Puller	$57031-6000$

Series LC6D

Connection Examples

- Electrical wires

- Wiring numbers

LC6D-507AD

For line driver output

For a signal power supply of 24 VDC , connect an external resistor $R(1.3 \mathrm{k} \Omega 1 / 2 \mathrm{~W})$ in order to hold the current to 15 mA or lower.

$\begin{array}{\|c\|} \hline \text { Signal } \\ \text { description } \end{array}$	Function	Pin no.
+24V	Driver power supply +24V	7
GND	Driver power supply GND	6
CW+	CW pulse input terminal (+)	3
CW-	CW pulse input terminal (-)	10
CCW+	CCW pulse input terminal (+)	2
CCW-	CCW pulse input terminal (-)	9
PD+	Power down input terminal (+)	1
PD-	Power down input terminal (-)	8
A	Motor drive output A	5
B	Motor drive output B	4
C	Motor drive output C	14
D	Motor drive output D	13
E	Motor drive output E	12
F	Motor drive output F (LC6D-2 $\square \square \square \square$ only)	11

Functions

- Function change-over switch

Use the function change-over switch to set each function. It is set as follows when shipped.

1. ON Energization type: Half step
2. OFF ... Auto current down function

	ON	OFF
1	Half step	Full step
2	Release	Set

- Input signal terminal

- CW pulse input terminal

By applying the pulse input, the actuator moves from the motor side to the end side.

- CCW pulse input terminal

By applying the pulse input, the actuator moves from the end side to the motor side.

- Power down input terminal

By applying the " H " level input, the motor current is shut off and the motor becomes de-energized.

- Functions

- Auto current down

This is a function that reduces the motor current to half when the motor stops. This will prevent the motor and driver from generating heat.
Although auto current down causes the holding torque to be reduced when the motor stops, the holding torque that supports the actuator transfer load is maintained.

- Power down

This function shuts off the motor current and de-energizes the motor. Use this function to release the electric actuator for maintenance, etc.

- Built-in position control function added to LC6D
- Up to 28 patterns of movement data can be set.
- Point movement can be easily achieved with a PLC, etc.
- Compatible with Series LX two phase stepper motor

How to Order

Applicable Actuators

Driver	Applicable actuator		Motor type
LC6C-220AD	Guide rod type	LXPB2	2 phase stepper motor
	High rigidity slide table type	LXSH2	

* Select a 3 wire NPN type when using an auto switch.

Specifications

Part no.	LC6C-220AD
Power supply	24VDC $\pm 10 \%$, Max. 3.0A
Number of position settings	28 patterns
Position setting method	Setting with dedicated teaching box (LC5-1-T1-02)
Position control method	Absolute and incremental moves Speed: 6 to 200mm/s (with lead screw lead of 12mm)
Input signal capacity	Photo coupler input $24 V D C$, Max. 6mA
Output signal capacity	Photo coupler output Max. 30VDC or less, Max. 20mA
Parameter setting	Position data setting, Speed/Acceleration setting, etc.
Indication LED	Power supply LED, Alarm LED
Operating temperature	5° to 40 ${ }^{\circ} \mathrm{C}$
Accessories	Power connector, Interface connector (Cables should be arranged by customer.)

Electric Actuator
(Should be arranged by customer.)

Absolute and incremental moves for each movement pattern.

Eight speed patterns based on the speed number and acceleration number can be set, and a speed pattern can be selected for each movement pattern.

Series LC6C

Dimensions
LC6C-220AD

Connection Example

Wiring to the teaching box

By connecting multiple drivers (maximum of 16), they can be set by one teaching box. (When the teaching box is in use, external input to the drivers become invalid.)

Connect to communication connector 1 .

Power connector wiring

Connector: Power connector (included) Manufacturer: Molex Japan, Co., Ltd.
Part no.: Receptacle 5557-18R Female terminal 5556PBTL

Switches

Home position switch: This switch indicates the home position. Connect this switch when returning to the origin point. This switch also acts as a sensor that detects overrun in the motor direction.
Limit switch: This sensor detects overrun in the end direction. Connect this switch as needed.

Power connector input/output signal details

Connector no.	Signal description	Detail
1	24 V	Connect to power supply (+24VDC)
2	0 V	Connect to power supply (OV)
3	FG	Connect to frame ground
4	Home position switch (+)	Connect to home position switch positive power supply line
5	Home position switch (OUT)	Connect to home position switch output line
6	Home position switch (-)	Connect to home position switch 0V power supply line
7	Limit switch (+)	Connect to limit switch positive power supply line
8	Limit switch (OUT)	Connect to limit switch output line
9	Limit switch (-)	Connect to limit switch 0V power supply line
10	N.C.	Do not connect.
11	N.C.	Do not connect.
12	N.C.	Do not connect.
13	b phase (Yellow)	Connect to actuator power line (Yellow)
14	B phase (Red)	Connect to actuator power line (Red)
15	a phase (Blue)	Connect to actuator power line (Blue)
16	A phase (Orange)	Connect to actuator power line (Orange)
17	COM (Black)	Connect to actuator power line (Black)
18	COM (White)	Connect to actuator power line (White)

\triangle Caution

Use a 3 wire NPN type for each switch.

Interface connector wiring

Connector: Interface connector (included) Manufacturer: OMRON Corporation Part no.: Connector XG4M-2030-T
$A \nabla$ mark is located on the connector number 1 side.

Interface connector input/output signal details

Connector no.	Signal description	Details
1	Input (+) COM	Input COM signal
2	Point input A	Point setting input (point A)
3	Point input B	Point setting input (point B)
4	Point input C	Point setting input (point C)
5	Point input D	Point setting input (point D)
6	Bank input 1	Bank setting input (binary, first bit)
7	Bank input 2	Bank setting input (binary, second bit)
8	Bank input 3	Bank setting input (binary, third bit)
9	Emergency stop input	Emergency stop input
10	Alarm reset input	When an alarm occurs, this signal turns off the alarm after the cause is resolved.
11	Output (-) COM	Output COM signal (GND)
12	Point output A	This signal indicates move completion for point input A.
13	Point output B	This signal indicates move completion for point input B.
14	Point output C	This signal indicates move completion for point input C.
15	Point output D	This signal indicates move completion for point input D.
16	READY output	This signal indicates that the controller is ready.
17	BUSY output	This signal indicates motor control in progress.
18	Home position return output	This signal indicates that home position returen is completed.
19	Alarm output	This signal indicates occurrence of alarm.
20	N.C.	Do not connect.

\triangle Caution

If input is not provided as prescribed for the operation, this may cause malfunction or failure.

Home Position Return

Operation

(1) Moves to the motor side at home position return speed
(2) Decelerates and stops at the home position sensor ON position
(3) Moves to the end side at low speed
(4) Moves and stops at 16 pulse position from the home position sensor OFF position

2 Operating procedures

1. Confirm that both READY output and alarm output are ON.
2. Turn OFF bank inputs 1 to 3 . [Specify bank 0.]
3. When point input A is turned $O N$, the actuator begins to return to the home position.
4. BUSY output is turned ON during home position return
5. BUSY output is turned OFF when the actuator reaches the home position, and home position return output turns ON.
6. Turn OFF point input A.

Note) The actuator stops if point input A is turned OFF when BUSY output is ON (home position return movement in progress).

3 Home position return speed

Speed is set by parameter number 0D.

\section*{| 1. | 015 |
| :--- | :--- |}

Acceleration no. Speed no.

4 Home position return signal

This signal output turns ON when the home position return movement completes. It turns OFF when an alarm occurs or when JOG movement takes place.

5 Time chart

Point Movement

With this driver, a maximum of 28 point positions can be set by combining banks and points. With the combination of bank and point inputs, the actuator can move to the position indicated by each point.

1 Setting detail

To set point settings, use the parameter setting and teaching functions of the dedicated teaching box.

2 Operating procedures

1. Confirm that both READY output and alarm output are ON.
2. Set bank with bank inputs 1 to 3 . [Bank 1 to 7.]
3. When points are specified with point inputs A to D, the actuator starts to move.
4. BUSY output is ON while the actuator is moving.
5. BUSY output turns OFF when the move completes and point outputs A to D turn ON. These correspond to point inputs A to D that are ON.
6. When point inputs A to D are turned OFF, point outputs A to D turn OFF.

Note) The actuator stops moving if point inputs A to D are turned OFF or two or more of point inputs A to D are turned ON while BUSY output is ON (during movement).

3 Time chart (when specifying point B)

Series LC6C
 Dedicated Teaching Box/LC5-1-T1-02

Performance/Specifications

General specifications

Part no.	LC5-1-T1-02
Power supply	Supplied by LC6C-220AD
Dimensions	$130 \mathrm{~mm} \times 50 \mathrm{~mm} \times 21 \mathrm{~mm}$
Weight	110 g
Body type	Resin body
Indication unit	7 LED numerical indicators, 9 LED indicator lights
Operation unit	Key switches
Cable length	2 m

Basic performance

	Performance/Specifications
Applicable controller	LC6C-220AD
Operating temperature range	5° to $40^{\circ} \mathrm{C}$
Communication method	Conforming to RS485
Functions	Parameter change, JOG operation, alarm reset, teaching, test
Protective function indication	Alarm code

Dimensions

Part Descriptions

Key Arrangement and Functions

Mark	Key description	Function
\wedge	UP	Increases a numerical value.
\vee	DOWN	Reduces a numerical value.
$<$	L	Moves a numerical value place to the left. Rotates the motor counter clockwise during JOG operation.
$>$	R	Moves a numerical value place to the right. Rotates the motor clockwise during JOG operation.
STOP	STOP	Becomes the emergency stop key when the actuator is moving.
ESC/ MODE	ESC/ MODE	Selects a mode. Completes each mode and returns to the mode level.
RET	RET	Determines the mode and records data.

\triangle Caution

STOP key only stops the driver that is in communication.

Alarm Details

Alarm no.	Alarm description	Presumed cause and solution
1	Emergency stop input	Emergency stop input is turned OFF (open).
2	Temperature abnormality	The temperature inside the driver is high. Check the installation environment and operation frequency.
3	Power supply abnormality	Operating beyond the range of the specified power supply. Adjust the power supply.
4	Limit switch abnormality	Home position switch and limit switch are operating. Malfunction such as loss of synchronism may have occurred. Check the equipment.

Operating Method

As shown above, 6 modes are available. (I/O mode and MON mode do not function with this driver.) When the communication mode is started by the teaching box, a menu can be selected with [ESC/MODE]. Select the mode indication LED for the mode to be implemented (all mode indication LEDs turn Off in the ID mode) and press [RET] to start each mode.
Refer to the instruction manual for the operation of each mode.

Series LC6D/LC6C
 Options

© Caution

- Do not repeatedly apply bending stress or tension to the cables.

Wiring that subjects cables to repeated bending stress and tension causes line breakage.

- Make connections based on each driver's connection example.

LC6D Connector Cable

Wiring

Pin no.	Cable description	$\begin{array}{c\|} \hline \text { Signal } \\ \text { description } \end{array}$	Color
1	Interface cable	PD+	Yellow
2		CCW+	Red
3		CW+	Black
4	Motor cable	Motor B	White
5		Motor A	Black
6	Power cable	GND	Black
7		+24V	White

Pin no.	Cable description	Signal description	Color
8	Interface cable	PD-	Brown
9		CCW-	Green
10		CW-	White
11	Motor cable	Motor F	Brown
12		Motor E	Yellow
13		Motor D	Green
14		Motor C	Red

LC6C Interface Connector Cable

View c

LC6C Power Connector Cable

Wiring

Pin no.	Cable description	Signal description	Color
1	Power cable	+24V	White
2		OV	Black
3		FG	Red
4	Switch cable	Home position switch (+)	White
5		Home position switch (OUT)	Black
6		Home position switch (-)	Brown
7		Limit switch (+)	Yellow
8		Limit switch (OUT)	Green
9		Limit switch (-)	Red
13	Motor cable	Motor wire (Yellow)	Red
14		Motor wire (Red)	Green
15		Motor wire (Blue)	Yellow
16		Motor wire (Orange)	Brown
17		Motor wire (Black)	Black
18		Motor wire (White)	White

LC6C Driver Connection Cable

Solid State Switches

Applicable Actuators

D-F9	Series LXF*, LXP, LXS
D-Y7GL	Series LJ1 (non-standard motor)

* Cannot be mounted on Series LXF with ball screw specification.

Auto Switch Specifications

Auto switch internal circuits
Lead wire colors inside [] are those prior to conformity with IEC standards.

D-F9G, D-Y7GL

D-F9P, D-F9H

D-F9B

Auto switch part no.	D-F9N	D-F9P	D-F9B	D-F9G	D-F9H
Contact	N.O. (A contact)			N.C. (B contact)	
Electrical entry	In-line				
Wiring type	3 wire		2 wire	3 wire	
Output type	NPN	PNP	-	NPN	PNP
Applicable load	IC circuit, Relay, PLC		24VDC relay, PLC	IC circuit, Relay, PLC	
Power supply voltage	5, 12, 24VDC (4.5 to 28V)		-	5, 12, 24VDC (4.5 to 28V)	
Current consumption	10 mA or less		-	10 mA or less	
Load voltage	28VDC or less	-	24VDC (10 to 28VDC)	28VDC or less	-
Load current	40 mA or less	80 mA or less	5 to 40 mA	40 mA or less	80 mA or less
Internal voltage drop	1.5 V or less (0.8 V or less at load current of 10 mA)	0.8 V or less	0.4V or less	1.5 V or less $(0.8 \mathrm{~V}$ or less at load current of 10 mA$)$	0.8 V or less
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC		80 mA or less	$100 \mu \mathrm{~A}$ or less at 24 VDC	
Indicator light	Red LED lights up when ON			Red LED lights up when OFF	

- Lead wire - Oil resistant heavy duty vinyl cord, $\varnothing 2.7,0.15 \mathrm{~mm}^{2} \times 3$ wire (Brown, Black, Blue [Red, White, Black]), $0.18 \mathrm{~mm}^{2} \times 2$ wire (Brown, Blue [Red, Black])
- Insulation resistance - $50 \mathrm{M} \Omega$ or more at 500VDC (between lead wire and case)
- Withstand voltage - 1000VAC for 1 min. (between lead wire and case)
- Indication light Lights when ON
- Ambient temperature - -10 to $60^{\circ} \mathrm{C}$
- Operating time -1 ms or less
- Impact resistance $1000 \mathrm{~m} / \mathrm{s}^{2}$

Auto switch part no.	D-Y7GL
Contact	N.C. (B contact)
Electrical entry	In-line
Wiring type	3 wire
Output type	NPN
Applicable load	IC circuit, Relay, PLC
Power supply voltage	$5,12,24 \mathrm{VDC}(4.5$ to 28 V$)$
Current consumption	10 mA or less
Load voltage	28 VDC or less
Load current	40 mA or less
Internal voltage drop	1.5 V or less $(0.8 \mathrm{~V}$ or less at load current of 10 mA$)$
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC
Indicator light	Red LED lights up when OFF

Basic Wiring

Examples of Connection to PLC

Sink input specifications,

3 wire, NPN

2 wire

Source input specifications,

 3 wire, PNP

2 wire

Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications.

Connection Examples for AND (Series) and OR (Parallel)

3 wire, AND connection for NPN output

2 wire with 2 switch AND connection

When two switches are connected in series, a load may malfunction because the load voltage will decline when in the ON state. The indicator lights will light up when both of the switches are in the ON state.

Load voltage at $\mathrm{ON}=$ Power supply voltage - Residual voltage $\times 2 \mathrm{pcs}$.

$$
\begin{aligned}
& =24 \mathrm{~V}-4 \mathrm{~V} \times 2 \mathrm{pcs} . \\
& =16 \mathrm{~V}
\end{aligned}
$$

Example: Power supply voltage is 24 VDC .
Internal voltage drop in switch is 4 V .

3 wire, OR connection for NPN output

2 wire with 2 switch OR connection

Load voltage at OFF $=$ Leakage current $\times 2$ pcs. \times Load impedance

$$
=1 \mathrm{~mA} \times 2 \mathrm{pcs} .=3 \mathrm{k} \Omega
$$

$$
=6 \mathrm{~V}
$$

Example: Load impedance is $3 \mathrm{k} \Omega$.
Leakage current from switch is 1 mA .

Proximity Switches

Applicable switch models

Applicable model	Model type	Part no.	Switch type		
$\begin{aligned} & \text { LXF } \\ & \text { LXS } \end{aligned}$	G	GXL-8F	Standard	N.O. (A contact)	3 wire
	GD	GXL-8FI	Varying frequencies	N.O. (A contact)	3 wire
	GB	GXL-8FB	Standard	N.C. (B contact)	3 wire
	GDB	GXL-8FIB	Varying frequencies	N.C. (B contact)	3 wire
	GU	GXL-8FU	Standard	N.O. (A contact)	2 wire
	GUB	GXL-8FUB	Standard	N.C. (B contact)	2 wire

Switch specifications (SUNX Corporation)

Proximity switch internal circuit

GXL-8F(I)(B)

GXL-8FU(B)(I)

Proximity Switch/Switch Plate Mounting

Be sure to use the mounting screws included, and mount the proximity switch as shown in the drawing to the right.
Mount the switch plate as shown below. Always use the proper tightening torque and use a thread locking agent on screws to prevent loosening.
The switch body is made of PBT and acrylic resin. Select a thread locking agent that will not affect these materials.

Thin head screw (M3 $\times 4$)
Tightening torque: 0.38 to $0.42 \mathrm{~N} \cdot \mathrm{~m} /$

Round head screw (M2.5 x 5)
 Proximity switch mounting position

Standard Photo Micro Sensor for Home Position (OMRON Corporation)

Rating

Power supply voltage	5 to 24VDC $\pm 10 \%$, Ripple (p-p) 10\% or less		
Current consumption	35 mA or less		
Control output	5 to 24 VDC load current (Ic) 100 mA , Residual voltage 0.8 V or less Load current (Ic) 40 mA , Residual voltage 0.4 V or less		
Ambient temperature	Operation: -25° to $55^{\circ} \mathrm{C}$ (When stored: -30° to $80^{\circ} \mathrm{C}$)		
Ambient humidity	Operation: 5 to 85\%RH (When stored: 5 to 95\%RH)		
Part no.	EE-SX672 equivalent	EE-SX673 equivalent	EE-SX674
Applicable actuator	LXF	LXP, LXS	LG1 (non-standard motor)

Terminal arrangement						

* Normally ON when light is blocked.

However, if the (L)terminal and +
terminal are shorted, it changes to ON when light enters.
Output level circuit

Operating condition of output transistor	ON when light enters	ON when light is blocked
Output circuit	* Normally ON when light is bloc terminal are shorted, it change	. However, if the (L) terminal and ON when light enters.
Time chart		

Inquiry Sheet

Fill out the form and contact the nearest SMC sales office or distributor.

Name of customer	Company name Dept.	Contact person	
Contact phone/fax no.	Telephone	Fax	
Mounting orientation	Horizontal, Horizontal wall mount, Horizontal reverse mount, Vertical		
Work piece load (kg)			
Stroke (mm)			
Speed (mm/s)			
Positioning repeatability (mm)	$\pm 0.1, \pm 0.05, \pm 0.02$		
Components Circle components provided by customer.	Units required (1) Motor/Driver: Yes (Manufacturer: : No - Proceed to (2). (2) Controller/Driver selection: a) Controller provided by customer PLC (Manufacturer: , Part no.: Positioning unit (pulse output function): Yes, No b) Driver specifications Power supply: $24 \mathrm{VDC}, 100 \mathrm{VAC}, 200 \mathrm{VAC}$ International standard compatibility: None, CE, UL c) Motor type: AC servomotor, Stepper motor (2 phase/5 phase), Brushless motor		
Operation pattern Describe in detail.			
Tact time	 Confirm the amount of time in seconds needed to cover the moving distance. Moving distance: \qquad mm t = Tact time: \qquad s S = Cycle time: \qquad s		
Work piece moment	Example) Projection		
Environment	General, Clean room, Mist environment, Dusty environment		

Electric Actuators Safety Instructions

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by a label of "Caution", "Warning" or "Danger". To ensure safety, be sure to observe ISO 10218 Note 1), JIS 8433 Note 2) and other safety practices.

Note 1) ISO 10218: Manipulating industrial robots - Safety
Note 2) JIS 8433: General Rules for Robot Safety

© Warning

1. The compatibility of electric actuators is the responsibility of the person who designs the system or decides its specifications.
Since the products specified here are used in various operating conditions, their compatibility for the specific system must be based on specifications or after analysis and/or tests to meet your specific requirements.
2. Only trained personnel should operate this equipment.

Electric actuators can be dangerous if an operator is unfamiliar with them. Assembly, handling or repair of systems using electric actuators should be performed by trained and experienced operators.
3. Do not service machinery/equipment or attempt to remove components until safety is confirmed.

1. Inspection and maintenance of machinery/equipment should only be performed after confirmation of safe locked-out control positions.
2. When equipment is to be removed, confirm the safety process as mentioned above, and shut off the power supply for this equipment.
3. Before machinery/equipment is restarted, confirm that safety measures are in effect.
4. Contact SMC if the product is to be used in any of the following conditions:
5. Conditions and environments beyond the given specifications, or if product is used outdoors.
6. Installation on equipment in conjunction with atomic energy, medical equipment, food and beverages, or safety equipment.
7. An application which has the possibility of having negative effects on people, property or animals, requiring special safety analysis.
8. To operate properly, read the instruction manual carefully, or confirm with the distributor or SMC before use.
9. Carefully read the handling precautions in this catalog for proper operation.
10. Operating applications and/or locations are restricted for some products in this catalog. Confirm with the distributor or SMC.

Electric Actuator Precautions 1
Be sure to read before handling.

General

Operation

\triangle Caution

1. In order to ensure proper operation, be certain to read the instruction manual carefully. As a rule, handling or usage/operation other than that contained in the instruction manual are prohibited.
2. If the actuator will be used in an environment where it will be exposed to chips, dust, cutting oil (water, liquids), etc., a cover or other protection should be provided.
3. Operate with cables secured. Avoid bending cables at sharp angles where they enter the actuator, and also make sure that cables do not move easily.

Design

© Warning

1. In cases where dangerous conditions may result from power failure or malfunction of the product, install safety equipment to prevent damage to machinery and human injury. Consideration must also be given to drop prevention with regard to suspension equipment and lifting mechanisms.
2. Consider possible loss of power sources.

Take measures to protect against human injury and machine damage in the event that there is a loss of air pressure, electricity or hydraulic power.
3. Consider emergency stops.

Design so that human injury and/or damage to machinery and equipment will not be caused when machinery is stopped by a safety device under abnormal conditions such as a power outage or a manual emergency stop.
4. Consider the action when operation is restarted after an emergency stop or abnormal stop.
Design the machinery so that human injury or equipment damage will not occur upon restart of operation.

Selection

© Warning

1. Confirm the specifications.

The products in this catalog should not be used outside the range of specifications, as this may cause damage or malfunction, etc. (Refer to specifications.)

Mounting

©Caution

1. Take care that cables are not caught by actuator movement.
2. Do not use in locations where there is vibration or impact shock. Contact SMC before using in this kind of environment, as damage may result.

Mounting

\triangle Caution

3. Give adequate consideration to the arrangement of wiring, etc., when mounting. If wiring is forced into inappropriate arrangement, this may lead to breaks in the wiring and result in malfunction.

Operating Environment

Caution

1. Avoid use in the following environments.
2. Locations with a lot of debris or dust, or where chips may enter.
3. Locations where the ambient temperature is outside the range of the temperature specification (refer to "Specifications").
4. Locations where the ambient humidity is outside the range of the humidity specification (refer to "Specifications").
5. Locations where corrosive or combustible gases are generated.
6. Locations where strong magnetic or electric fields are generated.
7. Locations where direct vibration or impact shock, etc., will be applied to the actuator unit.
8. Locations with a lot of dust, or where water or oil splashes on the actuator.

Maintenance

Warning

1. Perform maintenance according to the procedures indicated in the instruction manual.
If handled improperly, malfunction and damage of machinery or equipment may occur.
2. Removal of equipment

When equipment is to be removed, first confirm that measures are in place to prevent dropping or runaway of driven objects, etc., and then proceed after shutting off the electric power. When starting up again, proceed with caution after confirming that conditions are safe.

Actuator

Design

© Warning

1. There is a possibility of dangerous sudden action by actuators if sliding parts of machinery are twisted due to external forces, etc.
In such cases, human injury may occur, e.g., by catching hands or feet in the machinery, or damage to the machinery itself may occur. Therefore, the machine should be adjusted for smooth operation and designed to avoid such dangers.
2. A protective cover is recommended to minimize the risk of human injury.
If a driven object and moving parts of an actuator pose a danger of human injury, design the structure to avoid contact with the human body.

Electric Actuator Precautions 2
Be sure to read before handling.

Actuator

Design

Warning

3. Securely tighten all stationary parts and connected parts of electric actuators so that they will not become loose.
Avoid use in locations where direct vibration or impact shock, etc., will be applied to the body of the actuator.

Usage

\triangle Caution

1. Perform the following inspections before operating an actuator/controller.
a) Inspection for damage to the actuator/controller power line and each signal wire
b) Inspection for looseness of the connector to each power line and signal line
c) Inspection for looseness of the actuator/controller mounting
d) Inspection for abnormal operation of the actuator/controller
e) Emergency stop function
2. Implement preventive measures such as a fence or enclosure to prevent human entry to the operating area of the actuator/controller and related equipment.
3. Take measures to perform an emergency stop by using a sensor, etc., in case of human entry into the area described above.
4. Take necessary measures to prevent danger from related equipment in case the actuator/controller stops due to an abnormal condition.
5. Take necessary measures to prevent danger from the actuator/controller in case of the related equipment in an abnormal condition.
6. Take necessary measures to prevent cuts and damage to the actuator/controller power supply, power line, and each signal line from pinching, shearing, getting caught, scratching or rubbing, etc.
7. If abnormal heating, smoking or fire, etc., occurs in the actuator/controller, immediately shut off the power supply.
8. When installing, adjusting, inspecting or performing maintenance on the actuator/controller, be sure to shut off the power supply to the actuator/controller and related equipment. Then, lock it so that no one other than the person working can turn the power on, or implement measures such as a safety plug. Also, post a sign in a conspicuous place to inform that work is being performed.
9. When more than one person is performing work, decide on the procedures, signals, measures and resolution for abnormal conditions before beginning the work. Also, designate a person to supervise work other than those performing work.

Operation

Caution

1. This actuator can be used within its allowable range with a direct load applied, but when connected to a load having an external guide mechanism careful alignment is necessary. The longer the stroke, the greater the amount of variation in the center axis, and therefore, a method of connection which can absorb the displacement should be considered.
2. Since the bearing parts and parts surrounding the lead screw are adjusted at the time of shipment, do not change the setting of the adjusted parts.
3. This actuator can be used without lubrication. In the event that lubrication is applied, a special grease must be used. Confirm with SMC or the distributor upon purchasing.
4. If the electric actuator is repeatedly operated for short stroke cycles (20 mm for LJ, 10 mm for LX), this may cause loss of grease. Therefore, operate the actuator for a full stroke once every 40 to 60 cycles.
5. Motor rotation should be one rotation or more per second for an electric actuator with stepper motor specification.
However, since vibration from the motor is large with low rotations (2 rotations or less) and may affect the work piece, confirm the operating conditions before operating.

Mounting

© Caution

1. Do not use until you verify that the equipment can operate properly.
2. The product should be mounted and operated after thoroughly reading the instruction manual and understanding its contents.
3. Do not dent, scratch or cause other damage to the body and table mounting surfaces.
This may cause a loss of parallelism in the mounting surfaces, looseness in the guide unit, an increase in operating resistance or other problems.
4. When attaching a work load, do not apply strong impact shock or a large moment.
If an outside force exceeding the allowable moment is applied, this may cause looseness in the guide unit, an increase in sliding resistance or other problems.
5. When connecting a load having an external support or guide mechanism, be sure to select a suitable connection method and perform careful alignment. Electric Actuator Precautions 3
Be sure to read before handling.

Controller/Driver/Positioning Driver/Regenerative Absorption Unit

Handling

\triangle Warning

1. Never touch the inside of the controller/driver unit. It may cause electric shock or failure.
2. The motor and controller/driver should be used in the designated combinations.

\triangle Caution

1. Do not disassemble or modify the equipment. This may cause failure, malfunction or fire.
2. Do not touch the driver during energizing or for a few minutes after de-energizing due to high temperature.
3. When fire or danger to personnel is predicted due to abnormal heating, burning or smoking of the product, shut off the power supply to the main unit and the system immediately.

Power Supply

\triangle Caution

1. In cases where voltage fluctuations greatly exceed the prescribed voltage, a constant voltage transformer, etc., should be used to operate within the prescribed range.
2. Use a power supply that has low noise between lines and between power and ground. In cases where noise is high, an isolation transformer should be used.
3. Perform wiring by separating the power supply from the general-purpose input/output and control terminal interface power supply (24VDC).
4. Avoid bundling the power supply lines together with, or routing them near, the general-purpose input/output lines, control terminal output lines and encoder signal lines.
5. Implement measures to protect against surge from lightning. When doing this, separate the lightning surge absorber ground from the controller ground.

Grounding

\triangle Caution

1. Be sure to carry out grounding in order to ensure the noise tolerance of the controller.
2. Dedicated grounding should be used as much as possible. Grounding should be to a type 3 ground. (Ground resistance of 100Ω or less.)
3. Grounding should be as close as possible to the controller, and the ground wires should be as short as possible.
4. In the unlikely event that malfunction is caused by the ground, it may be disconnected.

Mounting

\triangle Caution

1. Mount the controller/driver on non-combustible substance. Mounting directly on or closely to combustible material may cause fire.
2. Provide cooling so that the operating temperature of the body will be within the range shown in the specifications. For that reason, each face of the body should be separated by a sufficient amount of distance from other construction or components.

3. Avoid mounting the controller/driver on a panel where a vibration source such as large size electromagnetic contactor or circuit fuse breaker is also mounted. If the driver is mounted on the same panel with such a vibration source, it should be separated from the source.
4. Design the machinery so that the product can be freely connected/disconnected after installation.
5. When there are dents, bumps or warping on the mounting surface of the controller, excessive force will be applied to the frame or case and will cause failure. Therefore, mount the controller on a flat surface.

Wiring

\triangle Danger

1. Adjusting, mounting or wiring change should never be done before shutting off the power supply to this product. There is a danger of electric shock.

\triangle Caution

1. Wiring should be properly completed.

Do not apply any voltage to the terminals other than those specified in the instruction manual. The unit may be damaged.
2. Connector should be securely connected.
3. Be sure to take measures against noise .

Noise in a signal line may cause malfunction. As a countermeasure, separate high voltage wires and low volage wires, and shorten wiring lengths, etc.
4. When connecting the electric actuator motor power line and encoder signal line, carefully confirm their corresponding indications and the connector orientation.

Electric Actuator Precautions 4

Be sure to read before handling.

Controller/Driver

Wiring

\triangle Caution

5. Never disassemble the electric actuator motor power line and encoder signal line. Also, if using a cable prepared by the customer (user), confirm that it satisfies the electrical wire size and is not subject to noise influence as described in the instruction manual.
6. Avoid bundling the electric actuator power line and encoder signal line with 100VAC wiring and other high voltage wiring. Separate them as much as possible.
7. Never connect/disconnect the control terminal, general purpose input/output terminal, motor power line or encoder signal line while the controller power supply is ON .

Brake

There exists a very slight possibility of failure of the brake mechanism; should this occur, inertial running may be seen in the system. To prepare for such a failure, safety measures for machinery should be carefully considered and implemented. Multiple safety measures should be taken particularly for use as a safety brake.

Construction

Danger

1. Do not use in flammable or explosive atmospheres.

Slip during activation or braking may generate sparks. Never use in grease or combustible gas atmospheres which have a possibility of flash or explosion.
2. Not applicable for braking.

This brake is a de-energized operating type designed only for holding and emergency stoppage. If repeatedly used for braking, its original performance and specifications can easily deteriorate within a short time and brake releasing becomes impossible. If used in this way, the brake will be damaged and holding performance will definitely be compromised, leading to accidents such as runaway of machinery. Refer to the instruction manual for the brake wiring and perform wiring securely. Confirm that the brake operates properly during a daily inspection.

Before Mounting

\triangle Danger

1. Use the appropriate wire size for the power supply capacity.
If insufficient wire size is used, the insulation covering will be melted and electric shock or fire may result.
2. Start operation after confirming proper electrical wiring for the brake.
The brake is locked in the de-energized state. 24VDC is needed to release the lock. Confirm that the wiring is appropriate for the purpose and application.

\triangle Danger

1. Immediately stop operation if abnormal operation noise or vibration occurs.
In case abnormal operation noise or vibration occurs, the product may have been improperly mounted. Unless operation is stopped for inspection, machinery may be seriously damaged.
2. Do not touch the brake unit while in operation.

The brake unit surface temperature increases to approximately $90^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ due to slip heat and heat generated by the builtin coils. As this may cause burns, do not touch the brake unit when in operation. Furthermore, since the brake unit surface may become heated to a high temperature just by energization, do not touch the brake unit.

Maintenance and Inspection

. Danger

1. Do not apply oil or water.

If water or oil is applied to friction surfaces or even to the body, torque performance will be compromised drastically, and the system may overrun causing human injury.

Operation

\triangle Caution

1. The brake coils do not have polarity.
2. The brake power supply should be provided by customer. Furthermore, do not share the brake power supply and control signal power supply (VDC).
3. Install a surge absorber to suppress the surge voltage caused by turning the relay (RY) ON/OFF. Note that when using diodes, the time required between releasing the brake and starting of operation will be longer than the type using a surge absorber. A varistor is included.
4. If the brake is to be activated in the event of power loss, make a connection that will shut off the brake power supply instantaneously.
5. When releasing the brake for an inspection, etc., the work piece will drop due to its own weight. Ensure sufficient safety before beginning work.
6. Since 0.1 s or more* is required for the opening and closing of the brake, allow for this time lapse when designing.

* The opening/closing time of the brake may change due to a sequence circuit or relay, etc.

Installation

\triangle Caution

1. When mounting the actuator vertically, select a type with brake for safety. Install the unit so that the side with brake will be the bottom end. Auto Switch Precautions 1
Be sure to read before handling.
Refer to the appropriate section in this catalog regarding detailed precautions for each series.

Design and Selection

Warning

1. Confirm the specifications.

Read the specifications carefully and use this product appropriately. The product may be damaged or malfunction if it is used outside the range of specifications of load current, voltage, temperature or impact.
2. Keep wiring as short as possible.

Although wire length should not affect switch function, use a wire 100 m or shorter.
3. Do not use a load that generates surge voltage.

Although a zener diode for surge protection is connected at the output side of a solid state auto switch, damage may still occur if the surge is applied repeatedly. When a load, such as a relay or solenoid, which generates surge is directly driven, use a type of switch with a built-in surge absorbing element.
4. Ensure sufficient clearance for maintenance activities. When designing an application, be sure to allow sufficient clearance for maintenance and inspections.

Mounting and Adjustment

\triangle Warning

1. Do not drop or bump.

Do not drop, bump, or apply excessive impacts $\left(300 \mathrm{~m} / \mathrm{s}^{2}\right.$ or more) while handling. Even if the switch body is not damaged, there may be internal damage and possible malfunction.
2. Do not carry an actuator by the auto switch lead wires. Never carry an actuator by its auto switch lead wires. This may not only cause broken lead wires, but it may cause internal elements of the switch to be damaged by the stress.
3. Mount switches using the proper tightening torque.

When a switch is tightened beyond the range of tightening torque, the mounting screws, mounting bracket or switch may be damaged. On the other hand, tightening below the range of tightening torque may allow the switch to slip out of position.
4. Mount a switch at the center of the operating range.

Adjust the mounting position of an auto switch so that the magnet stops at the center of the operating range (the range in which a switch is ON). If mounted at the end of the operating range (around the borderline of ON and OFF), operation may be unstable.

Wiring

© Warning

1. Avoid repeatedly bending or stretching lead wires.

Broken lead wires will result from applying bending stress or stretching force to the lead wires.
2. Confirm proper insulation of wiring.

Be certain that there is no faulty wiring insulation (contact with other circuits, ground fault, improper insulation between terminals, etc.). Damage may occur due to excess current flow into a switch.

3. Do not wire with power lines or high voltage lines.

Wire separately from power lines or high voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits containing auto switches may malfunction due to noise from these other lines.

4. Do not allow short circuit of loads.

All models of PNP output type switches do not have built-in short circuit protection circuits. If loads are short circuited, the switches will be instantly damaged.
Take special care to avoid reverse wiring with the brown [red] power supply line and the black [white] output line on 3 wire type switches.

5. Avoid incorrect wiring.

1) If connections are reversed (power supply line + and power supply line -) on a 3 wire type switch, the switch will be protected by a protection circuit. However, if the power supply line $(+)$ is connected to the blue [black] wire and the power supply line $(-)$ is connected to the black [white] wire, the switch will be damaged.
Note) Lead wire colors inside [] are those prior to conformity with IEC standards.

Maintenance

\triangle Warning

1. Perform the following maintenance periodically in order to prevent possible danger due to unexpected auto switch malfunction.
1) Retightening of switch mounting screws

If screws become loose or the mounting position is dislocated, retighten them after readjusting the mounting position.
2) Confirm that there is no damage to lead wires.

To prevent faulty insulation, replace switches or repair lead wires, if damage is discovered.

Auto Switch Precautions 2
Be sure to read before handling.
Refer to the appropriate section in this catalog regarding detailed precautions for each series.

Operating Environment

\triangle Warning

1. Never use in an atmosphere of explosive gases.

The construction of auto switches is not intended to prevent explosion. Never use in an atmosphere with an explosive gas since this may cause a serious explosion.
2. Do not use in an area where a magnetic field is generated.
Auto switches will malfunction or magnets inside actuators will become demagnetized.
3. Do not use in an environment where the auto switch will be continually exposed to water.
Do not use switches in applications where they will be continually exposed to water splash or spray. Poor insulation or swelling of the potting resin inside switches may cause malfunction
4. Do not use in an environment with oil or chemicals.

Consult SMC if auto switches will be used in an environment with coolant, cleaning solvent, various oils or chemicals. If auto switches are used under these conditions for even a short time, they may be adversely affected by improper insulation, malfunction due to swelling of the potting resin, or hardening of the lead wires.
5. Do not use in an environment with temperature cycles.

Consult SMC if switches are used where there are temperature cycles other than normal air temperature changes, as they may be adversely affected internally.
6. Do not use in an area where surges are generated.

When there are units (solenoid type lifter, high frequency induction furnace, motor, etc.) which generate a large amount of surge in the area around actuators with solid state auto switches, this may cause deterioration or damage to the internal circuit elements of the switch. Avoid sources of surge generation and crossed lines.
7. Avoid accumulation of iron waste or close contact with magnetic substances.
When a large amount of ferrous waste such as machining chips or spatter is accumulated, or a magnetic substance (something attracted by a magnet) is brought into close proximity with an auto switch actuator, it may cause auto switches to malfunction due to a loss of the magnetic force inside the actuator.

Other

© Warning

1. Consult SMC concerning water resistance, flexibility of lead wires, and usage at welding sites, etc.

Photo Micro Sensor and Proximity Switches

Incorrect Usage

\triangle Caution

1. Do not operate beyond the rated voltage range.

If applying voltage over the rated voltage range, equipment may be damaged.
2. Avoid incorrect wiring such as polarity of power supply.
Otherwise, equipment may be damaged.
3. Do not short circuit the load. (Do not connect to power supply.)
Otherwise, equipment may be damaged.

Note) Lead wire colors inside [] are those prior to conformity with IEC standards.

Other

\triangle Caution

1. Power lines and high voltage lines should not be in the same piping or duct with wiring of the photo micro sensor, as the system may malfunction or be damaged due to induction. Separate wiring or individual piping is required to avoid such trouble.
2. If operating with a small induction load such as a relay, wire as shown in the figure below. (In this case, be sure to connect a reverse voltage suppression diode.)

SSNC

Electric Actuators

SMC CORPORATION

1-16-4 Shimbashi, Minato-ku, Tokyo 105-0004, JAPAN Tel: 03-3502-2740 Fax: 03-3508-2480 URL http://www.smcworld.com © 2001 SMC CORPORATION All Rights Reserved

[^58]
SSMC

Electric Actuator with Integrated Guide

Series LTF

Light-weight, compact electric Frame-type linear guide has one-piece

Space saving, Hight weight

* Values of the horizontal mounting type with standard motor and 100 mm stroke

Table traveling accuracy

Lead screw
Ground ball screw
Rolled ball screw

Simplified Selection Hlow Chart single Axis Electric Actuator Series LTF (ac servomotor)

Series	Brake	Work load kg	Maximum speed mm/s	Positioning repeatability mm	Lead screw	Guide type	Motor type	Capacity
Horizontal mounting specification Series LTF	Without motor brake	15	500	± 0.02	Ground ball screw	Frame-type linear guide	Standard motor [Tamagawa Seiki Co., Ltd.]	100W
				± 0.05	Rolled ball screw			
		25	1000	± 0.02	Ground ball screw			200W
				± 0.05	Rolled ball screw		Non-standard motor [Matsushita Electric	
		30		± 0.02	Ground ball screw		Industrial Co., Ltd.	100W
				± 0.05	Rolled ball screw		Mitsubishi Electric Corporation Yaskawa Electric Corporation	
		50	500	± 0.02	Ground ball screw			200W
				± 0.05	Rolled ball screw			
Vertical mounting specification Series LTF	With motor brake	3	500	± 0.02	Ground ball screw	Frame-type linear guide	Standard motor [Tamagawa Seiki Co., Ltd.]	100W
				± 0.05	Rolled ball screw			
		5	1000	± 0.02	Ground ball screw			200W
				± 0.05	Rolled ball screw		Non-standard motor [Matsushita Electric]	
		6	300	± 0.02	Ground ball screw		Matsushita Electric Industrial Co., Ltd.	100W
				± 0.05	Rolled ball screw		Mitsubishi Electric	
		10		± 0.02	Ground ball screw		Yaskawa Electric	200W
				± 0.05	Rolled ball screw			

Features 1

actuator requires small mounting space structure with integrated linear guide and frame

Standard stroke（mm）and Speed（mm／s）										Model	Page		
100	200	300	400	500	600	700	800	900	1000		Standard motor	Non－standard motor	Deflection
		to 500			to 390					LTF6E \square PH	4	36	
		to 500			to 390					LTF6EDNH	8	40	
		to 1000				to 890	to 710	to 580	to 480	LTF8F口PL	12	44	
		to 1000				to 890	to 710	to 580	to 480	LTF8F口NL	16	48	
		to 300			to 230					LTF6E \square PF	2	34	
		to 300			to 230					LTF6EDNF	6	38	
		to 500				to 440	to 350	to 290	to 240	LTF8F口PH	10	42	
		to 500				to 440	to 350	to 290	to 240	LTF8F口NH	14	46	
		to 500			to 390					LTF6E \square PH－$\square \mathrm{K}$	20	52	
		to 500			to 390					LTF6E \square NH－$\square \mathrm{K}$	24	56	
		to 1000				to 890	to 710	to 580	to 480	LTF8F \square PL－$\square \mathrm{K}$	28	60	
		to 1000				to 890	to 710	to 580	to 480	LTF8F口NL－$\square \mathrm{K}$	32	64	
		to 300			to 230					LTF6E \square PF－$\square \mathrm{K}$	18	50	71
		to 300			to 230					LTF6EDNF－$\square \mathrm{K}$	22	54	
		to 500				to 440	to 350	to 290	to 240	LTF8F \square PH－$\square \mathrm{K}$	26	58	
		to 500				to 440	to 350	to 290	to 240	LTF8F \square NH－$\square \mathrm{K}$	30	62	

Electric Actuator with Integrated Guide Series LTF

Series	Motor type	Guid	Mounting	Model	Lead screw	lead mm	Page
		Guid	orientation	Model	Ground ball screw	Rolled ball screw	Page
LTF	Standard motor	Frame-type linear guide	Horizontal	LTF6	610	610	P. 2
			,	LTF8	$10 \quad 20$	$10 \quad 20$	P. 10
			Vertical	LTF6	610	610	P. 18
			Verical	LTF8	$10 \quad 20$	$10 \quad 20$	P. 26
	Non-standard motor		Horizontal	LTF6	610	610	P. 34
				LTF8	$10 \quad 20$	1020	P. 42
			Vertical	LTF6	610	610	P. 50
				LTF8	1020	1020	P. 58
- 4 Options P. 66							
Construction P P. 67							
Mounting - P. 68							
\square Non-standard Motor Mounting P. 69							
Deflection Data P P. 71							

Part Number Designations

- Motor specification

Nil	Standard motor
X10	Non-standard motor

Motor specification

Nil	Standard motor	Motor output	
G	Matsushita Electric Industrial Co., Ltd.		
R	Mitsubishi Electric Corporation	E	100W
Y	Yasukawa Electric Corporation	F	200W

Power supply voltage d

$\mathbf{1}$	100 V AC $50 / 60 \mathrm{~Hz}$
$\mathbf{2}$	200 V AC $50 / 60 \mathrm{~Hz}$
$\mathbf{0}$	Without motor

- Lead screw type

\mathbf{P}	Ground ball screw
\mathbf{N}	Roled

\mathbf{N} Rolled ball screw

Motor/switch entry direction

Nil	Without motor, switch and switch rail
\mathbf{R}	Motor straight, motor cable, switch and switch rail located on the right
\mathbf{L}	Motor straight, motor cable, switch and switch rail located on the left

Nil	Without switch and switch rail
1	Photo micro sensor 1 pc., Photo micro sensor rail 1 pc.
2	Photo micro sensor 2 pcs., Photo micro sensor rail 1 pc.
3	Photo micro sensor 3 pcs., Photo micro sensor rail 1 pc.
4	Proximity switch (A contact) 1 pc., Proximity switch rail 1 pc.
5	Proximity switch (A contact) 2 pcs., Proximity switch rail 1 pc.
6	Proximity switch (B contact) 2 pcs., Proximity switch rail 1 pc.
7	Proximity switch (A contact) 1 pc., (B contact) 2 pcs, Proximity switch rail 1 pc.
A	Photo micro sensor rail 1 pc .
B	Proximity switch rail 1 pc .

How to Order

Specifications

	Standard stroke mm	100	200	300	400	500	600
Performance	Body weight kg	2.2	2.7	3.2	3.7	4.2	4.7
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load kg	30					
	Rated thrust N	300					
	Maximum speed mm / s			300			230
	Positioning repeatability mm	± 0.02					
Main parts	Motor	AC servomotor (100W)					
	Encoder	Incremental system					
	Lead screw	Ground ball screw $\varnothing 10 \mathrm{~mm}, 6 \mathrm{~mm}$ lead					
	Guide	Frame-type linear guide					
	Motor/Screw connection	With coupling					
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
Controller	Model	LC1-1H2HFD- $\square \square$ (Refer to page 73 for details.)					

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

	orientation vement direction		LTF6	
$\begin{aligned} & \text { 을 } \\ & \text { 들 } \\ & \text { 흠 } \end{aligned}$		Horizontal/Lateral	$\begin{array}{\|cc\|} \hline & 200 \\ \widehat{E} & \\ \hline \boldsymbol{E} & 100 \\ \hline \boldsymbol{J} & \\ \hline \end{array}$	
$\begin{aligned} & \text { 을 } \\ & \text { 픙 } \\ & \text { © } \end{aligned}$			$\begin{array}{\|cc} & 200 \\ \widehat{E} & \\ \text { E} & 100 \\ \text { I } & \\ \hline \end{array}$	
$\begin{aligned} & \text { 을 } \\ & \underset{\pi}{\pi} \\ & \hline \end{aligned}$				

[^59]
Dimensions/LTF6E \square PF

Scale: 18\%

Model	Stroke	\mathbf{n}_{1}
LTF6E \square PF- 100- $\square \square$	100	2
LTF6E \square PF- 200- $\square \square$	200	3
LTF6E \square PF- 300- $\square \square$	300	4
LTF6E \square PF- 400- $\square \square$	400	5
LTF6E \square PF- 500- $\square \square$	500	6
LTF6E \square PF- 600- $\square \square$	600	7

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	150	0.5	0.6	1.2	2.5	4.5	
	300	0.5	0.6	0.9	1.6	2.6	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight	kg	2.2	2.7	3.2	3.7	4.2	4.7
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load	kg	15					
	Rated thrust	N	180					
	Maximum speed	mm / s	500					390
	Positioning repeatability	mm	± 0.02					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Ground ball screw $\varnothing 10 \mathrm{~mm}$, 10 mm lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
Controller	Model		LC1-1H2HH $\square-\square$ (Refer to page 73 for details.)					

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

[^60]
Dimensions/LTF6E \square PH

Scale: 18\%

Model	Stroke	$\mathbf{n}_{\mathbf{1}}$
LTF6E \square PH- 100- $\square \square$	100	2
LTF6E \square PH- 200- \square	200	3
LTF6E \square PH- 300- \square	300	4
LTF6E \square PH- 400- \square	400	5
LTF6E \square PH- 500- \square	500	6
LTF6E \square PH- 600- \square	600	7

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	250	0.5	0.6	0.9	1.7	2.9	
	500	0.5	0.6	0.8	1.2	1.8	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight	kg	2.2	2.7	3.2	3.7	4.2	4.7
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)					
	Work load	kg	30					
	Rated thrust	N	300					
	Maximum speed	mm / s	300					230
	Positioning repeatability	mm	± 0.05					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Rolled ball screw $\varnothing 10 \mathrm{~mm}$, 6 mm lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
Controller	Model		LC1-1H2HFD- $\square \square$ (Refer to page 73 for details.)					

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

[^61]
Dimensions/LTF6E \square NF

Scale: 18\%

Model	Stroke	$\mathbf{n}_{\mathbf{1}}$
LTF6E \square NF- 100- \square	100	2
LTF6E \square NF- 200- \square	200	3
LTF6E \square NF- 300- \square	300	4
LTF6E \square NF- 400- \square	400	5
LTF6E \square NF- 500- \square	500	6
LTF6E \square NF- 600- \square	600	7

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	150	0.5	0.6	1.2	2.5	4.5	
	300	0.5	0.6	0.9	1.6	2.6	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight	kg	2.2	2.7	3.2	3.7	4.2	4.7
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)					
	Work load	kg	15					
	Rated thrust	N	180					
	Maximum speed	mm / s	500					390
	Positioning repeatability	mm	± 0.05					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Rolled ball screw $\varnothing 10 \mathrm{~mm}$, 10 mm lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
Controller	Model		LC1-1H2HH $\square-\square \square$ (Refer to page 73 for details.)					

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

[^62]
Dimensions/LTF6E \square NH

Scale: 18\%

Model	Stroke	\mathbf{n}_{1}
LTF6E \square NH- 100- $\square \square$	100	2
LTF6E \square NH- 200- $\square \square$	200	3
LTF6E \square NH- 300- $\square \square$	300	4
LTF6E \square NH- 400- $\square \square$	400	5
LTF6E \square NH- 500- $\square \square$	500	6
LTF6E \square NH- 600- $\square \square$	600	7

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	250	0.5	0.6	0.9	1.7	2.9	
	500	0.5	0.6	0.8	1.2	1.8	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight	kg	4.6	5.5	6.3	7.1	8.0	8.8	9.6	10.5	11.3	12.1
	Operating temperature ran		5 to 40 (with no condensation)									
	Work load	kg	50									
	Rated thrust	N	360									
	Maximum speed	mm / s	500						440	350	290	240
	Positioning repeatability	mm	± 0.02									
Main parts	Motor		AC servomotor (200W)									
	Encoder		Incremental system									
	Lead screw		Ground ball screw $\varnothing 15 \mathrm{~mm}$, 10 mm lead									
	Guide		Frame-type linear guide									
	Motor/Screw connection		With coupling									
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
Controller	Model		LC1-1H3HH $\square-\square$ (Refer to page 73 for details.)									

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

Mounting orientation Model Load movement direction			LTF8	
$\begin{aligned} & \text { 을 } \\ & \text { 들 } \\ & \text { 른 } \end{aligned}$				 ansfer load m(kg)
$\begin{aligned} & \text { 을 } \\ & \underset{\pi}{7} \\ & \hline \end{aligned}$				

[^63]
Dimensions/LTF8F \square PH

Model	Stroke	\mathbf{n}_{1}
LTF8F \square PH- 100- $\square \square$	100	2
LTF8F \square PH- 200- $\square \square$	200	3
LTF8F \square PH- 300- $\square \square$	300	4
LTF8F \square PH- 400- \square	400	5
LTF8F \square PH- 500- \square	500	6
LTF8F \square PH- 600- \square	600	7
LTF8F \square PH- 700- \square	700	8
LTF8F \square PH- 800- $\square \square$	800	9
LTF8F \square PH- 900- \square	900	10
LTF8F \square PH-1000- $\square \square$	1000	11

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)				
Positioning distance (mm)		1	10	100	500	1000
Speed (mm/s)	10	0.6	1.6	10.6	50.6	100.6
	100	0.6	0.7	1.6	5.6	10.6
	250	0.6	0.7	1.0	2.6	4.6
	500	0.6	0.7	0.9	1.7	2.7

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

How to Order

Specifications

	Standard stroke mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight kg	4.6	5.5	6.3	7.1	8.0	8.8	9.6	10.5	11.3	12.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load kg	25									
	Rated thrust N	180									
	Maximum speed mm / s	1000						890	710	580	480
	Positioning repeatability mm	± 0.02									
Main parts	Motor	AC servomotor (200W)									
	Encoder	Incremental system									
	Lead screw	Ground ball screw $\varnothing 15 \mathrm{~mm}$, 20 mm lead									
	Guide	Frame-type linear guide									
	Motor/Screw connection	With coupling									
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
Controller	Model	LC1-1H3HLD- $\square \square$ (Refer to page 73 for details.)									

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

Mounting orientation Model Load movement direction			LTF8	
$\begin{aligned} & \text { 을 } \\ & \text { 들 } \\ & \text { 른 } \end{aligned}$				
$\begin{aligned} & \text { 을 } \\ & \underset{\pi}{7} \\ & \hline \end{aligned}$				

[^64]
Dimensions/LTF8F \square PL

Model	Stroke	\mathbf{n}_{1}
LTF8F \square PL- 100- $\square \square$	100	2
LTF8F \square PL- 200- $\square \square$	200	3
LTF8F \square PL- 300- $\square \square$	300	4
LTF8F \square PL- 400- $\square \square$	400	5
LTF8F \square PL- 500- $\square \square$	500	6
LTF8F \square PL- 600- $\square \square$	600	7
LTF8F \square PL- 700- $\square \square$	700	8
LTF8F \square PL- 800- $\square \square$	800	9
LTF8F \square PL- 900- $\square \square$	900	10
LTF8F \square PL-1000- $\square \square$	1000	11

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)			1	10	100	500	
	10	0.6	1.6	10.6	50.6	1000	
Speed (mm/s)	100	0.6	0.7	1.6	5.6	10.6	
	500	0.6	0.7	0.9	1.7	2.7	
	1000	0.6	0.7	0.9	1.4	1.9	

[^65]

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LTF8

How to Order

Specifications

	Standard stroke mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight kg	4.6	5.5	6.3	7.1	8.0	8.8	9.6	10.5	11.3	12.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load kg	50									
	Rated thrust N	360									
	Maximum speed mm / s	500						440	350	290	240
	Positioning repeatability mm	± 0.05									
Main parts	Motor	AC servomotor (200W)									
	Encoder	Incremental system									
	Lead screw	Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 10 mm lead									
	Guide	Frame-type linear guide									
	Motor/Screw connection	With coupling									
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
Controller	Model	LC1-1H3HHD- $\square \square$ (Refer to page 73 for details.)									

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

[^66]
Dimensions/LTF8F \square NH

Model	Stroke	\mathbf{n}_{1}
LTF8F \square NH- 100- $\square \square$	100	2
LTF8F \square NH- 200- $\square \square$	200	3
LTF8F \square NH- 300- $\square \square$	300	4
LTF8F \square NH- 400- $\square \square$	400	5
LTF8F \square NH- 500- $\square \square$	500	6
LTF8F \square NH- 600- $\square \square$	600	7
LTF8F \square NH- 700- $\square \square$	700	8
LTF8F \square NH- 800- $\square \square$	800	9
LTF8F \square NH- 900- $\square \square$	900	10
LTF8F \square NH-1000- $\square \square$	1000	11

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)			1	10	100	500	
Speed (mm/s)	10	0.6	1.6	10.6	50.6	1000	
	100	0.6	0.7	1.6	5.6	10.6	
	250	0.6	0.7	1.0	2.6	4.6	
	500	0.6	0.7	0.9	1.7	2.7	

*Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LTF8

How to Order

Specifications

	Standard stroke mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight kg	4.6	5.5	6.3	7.1	8.0	8.8	9.6	10.5	11.3	12.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load kg	25									
	Rated thrust N	180									
	Maximum speed mm / s	1000						890	710	580	480
	Positioning repeatability mm	± 0.05									
Main parts	Motor	AC servomotor (200W)									
	Encoder	Incremental system									
	Lead screw	Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 20 mm lead									
	Guide	Frame-type linear guide									
	Motor/Screw connection	With coupling									
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
Controller	Model	LC1-1H3HLD- $\square \square$ (Refer to page 73 for details.)									

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

Mounting orientation Model Load movement direction			LTF8	
$\begin{aligned} & \text { 을 } \\ & \text { 듬 } \\ & \text { 흠 } \end{aligned}$		Horizontal/Lateral		 ansfer load m(kg)
$\begin{aligned} & \text { 올 } \\ & \underline{\overline{\bar{O}}} \\ & \text { 区 } \end{aligned}$				ansfer load m(kg)
$\begin{aligned} & \text { 을 } \\ & \underset{\pi}{\pi} \\ & \hline \end{aligned}$		Horizontal/Lateral		

[^67]
Dimensions/LTF8F \square NL

Model	Stroke	\mathbf{n}_{1}
LTF8F \square NL- 100- $\square \square$	100	2
LTF8F \square NL- 200- $\square \square$	200	3
LTF8F \square NL- 300- $\square \square$	300	4
LTF8F \square NL- 400- $\square \square$	400	5
LTF8F \square NL- 500- $\square \square$	500	6
LTF8F \square NL- 600- $\square \square$	600	7
LTF8F \square NL- 700- $\square \square$	700	8
LTF8F \square NL- 800- $\square \square$	800	9
LTF8F \square NL- 900- $\square \square$	900	10
LTF8F \square NL-1000- $\square \square$	1000	11

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)			1	10	100	500	
Speed (mm/s)	10	0.6	1.6	10.6	50.6	1000	
	100	0.6	0.7	1.6	5.6	10.6	
	500	0.6	0.7	0.9	1.7	2.7	
	1000	0.6	0.7	0.9	1.4	1.9	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Vertical Mount

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight	kg	2.4	2.9	3.4	3.9	4.4	4.9
	Operating temperature range		5 to 40 (with no condensation)					
	Work load	kg	6					
	Rated thrust	N	300					
	Maximum speed	mm / s	300					230
	Positioning repeatability	mm	± 0.02					
Main parts	Motor		AC servomotor (100W) with brake					
	Encoder		Incremental system					
	Lead screw		Ground ball screw $\varnothing 10 \mathrm{~mm}, 6 \mathrm{~mm}$ lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
Controller	Model		LC1-1H2VF口- \square ((Refer to page 73 for details.)					
Regenerative absorption unit	Model		LC7R-K1 \square A $\square \square$ (Refer to page 86 for details.)					

Note) Be sure to use a regenerative absorption unit with this product.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

	orientation ement direction		17F6	
		$\begin{aligned} & \overline{0} \\ & \frac{0}{ㄴ} \\ & \frac{\pi}{0} \end{aligned}$	$\begin{array}{\|cc\|} \hline & 200 \\ \widehat{E} & \\ \underline{E} & 100 \\ \bar{I} & \\ & \\ & 0 \end{array}$	
$\begin{aligned} & \text { 오 } \\ & \underline{\overline{\underline{O}}} \\ & \text { © } \end{aligned}$		$\begin{aligned} & \bar{\pi} \\ & \frac{0}{2} \\ & \frac{1}{0} \end{aligned}$		

[^68]
Dimensions/LTF6E \square PF

Scale: 18\%

Model	Stroke	\mathbf{n}_{1}
LTF6E \square PF- 100K- $\square \square$	100	2
LTF6E \square PF- 200K- $\square \square$	200	3
LTF6E \square PF- 300K- $\square \square$	300	4
LTF6E \square PF- 400K- \square	400	5
LTF6E \square PF- 500K- \square	500	6
LTF6E \square PF-600K- $\square \square$	600	7

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)			1	10	100	300	
	10	0.5	1.5	10.5	30.5	600	
Speed (mm/s)	100	0.5	0.6	1.5	3.5	6.5	
	150	0.5	0.6	1.2	2.5	4.5	
	300	0.5	0.6	0.9	1.6	2.6	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LTF6

$$
\begin{array}{|c|c}
\hline \text { Motor output } & \text { Cround Ball Screw } \\
\hline 100_{\mathrm{w}} & \boldsymbol{0 1 0}_{\mathrm{mm}} / 10_{\mathrm{mm}} \mathrm{lead} \\
\hline
\end{array}
$$

Vertical Mount

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight	kg	2.4	2.9	3.4	3.9	4.4	4.9
	Operating temperature ran		5 to 40 (with no condensation)					
	Work load	kg	3					
	Rated thrust	N	180					
	Maximum speed	mm / s	500					390
	Positioning repeatability	mm	± 0.02					
Main parts	Motor		AC servomotor (100W) with brake					
	Encoder		Incremental system					
	Lead screw		Ground ball screw $\varnothing 10 \mathrm{~mm}, 10 \mathrm{~mm}$ lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
Controller	Model		LC1-1H2VH $\square-\square \square$ (Refer to page 73 for details.)					
Regenerative absorption unit	Model		LC7R-K1 \square A $\square \square$ (Refer to page 86 for details.)					

Note) Be sure to use a regenerative absorption unit with this product.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

Standard Motor/Vertical Mount Specification Series LTF6

Dimensions/LTF6E \square PH

Scale: 18\%

Model	Stroke	\mathbf{n}_{1}
LTF6E \square PH- 100K- $\square \square$	100	2
LTF6E \square PH- 200K- $\square \square$	200	3
LTF6E \square PH- 300K- \square	300	4
LTF6E \square PH- 400K- $\square \square$	400	5
LTF6E \square PH- 500K- $\square \square$	500	6
LTF6E \square PH- 600K- \square	600	7

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	250	0.5	0.6	0.9	1.7	2.9	
	500	0.5	0.6	0.8	1.2	1.8	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Motor/switch entry direction

Power supply voltage	
$\mathbf{1}$	$100 \mathrm{~V} \mathrm{AC}(50 / 60 \mathrm{~Hz})$
$\mathbf{2}$	$200 \mathrm{~V} \mathrm{AC}(50 / 60 \mathrm{~Hz})$

Motor/switch entry direction

R	Motor straight, motor cable, switch and switch rail located on the right
L	Mer

L	Motor straight, motor cable, switch and switch rail located on the left

2	$2 m$
3	$3 m$
4	$4 m$
5	5 m

Specifications

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight	kg	2.4	2.9	3.4	3.9	4.4	4.9
	Operating temperature range		5 to 40 (with no condensation)					
	Work load	kg	6					
	Rated thrust	N	300					
	Maximum speed	mm / s			300			230
	Positioning repeatability	mm	± 0.05					
Main parts	Motor		AC servomotor (100W) with brake					
	Encoder		Incremental system					
	Lead screw		Rolled ball screw $\varnothing 10 \mathrm{~mm}$, 6 mm lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
Controller	Model		LC1-1H2VFD- $\square \square$ (Refer to page 73 for details.)					
Regenerative absorption unit	Model		LC7R-K1 \square A $\square \square$ (Refer to page 86 for details.)					

Note) Be sure to use a regenerative absorption unit with this product.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

[^69]Refer to page 71 for deflection data.

Dimensions/LTF6E \square NF

Scale: 18\%

Model	Stroke	\mathbf{n}_{1}
LTF6E \square NF- 100K- $\square \square$	100	2
LTF6E \square NF- 200K- \square	200	3
LTF6E \square NF- 300K- \square	300	4
LTF6E \square NF- 400K- $\square \square$	400	5
LTF6E \square NF- 500K- $\square \square$	500	6
LTF6E \square NF-600K- $\square \square$	600	7

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	150	0.5	0.6	1.2	2.5	4.5	
	300	0.5	0.6	0.9	1.6	2.6	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LTF6

Vertical Mount

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight	kg	2.4	2.9	3.4	3.9	4.4	4.9
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load	kg	3					
	Rated thrust	N	180					
	Maximum speed	mm / s	500					390
	Positioning repeatability	mm	± 0.05					
Main parts	Motor		AC servomotor (100W) with brake					
	Encoder		Incremental system					
	Lead screw		Rolled ball screw ø10mm, 10 mm lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
Controller	Model		LC1-1H2VH $\square-\square \square$ (Refer to page 73 for details.)					
Regenerative absorption unit	Model		LC7R-K1 \square A $\square \square$ (Refer to page 86 for details.)					

Note) Be sure to use a regenerative absorption unit with this product.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

[^70]Refer to page 71 for deflection data.

Dimensions/LTF6E \square NH

Scale: 18\%

Model	Stroke	\mathbf{n}_{1}
LTF6E \square NH- 100K- $\square \square$	100	2
LTF6E \square NH- 200K- \square	200	3
LTF6E \square NH- 300K- \square	300	4
LTF6E \square NH- 400K- $\square \square$	400	5
LTF6E \square NH- 500K- $\square \square$	500	6
LTF6E \square NH- 600K- \square	600	7

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	250	0.5	0.6	0.9	1.7	2.9	
	500	0.5	0.6	0.8	1.2	1.8	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LTF8

Vertical Mount

How to Order

Specifications

	Standard stroke mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight kg	5.0	5.9	6.7	7.5	8.4	9.2	10.0	10.9	11.7	12.5
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load kg	10									
	Rated thrust N	360									
	Maximum speed mm / s	500						440	350	290	240
	Positioning repeatability mm	± 0.02									
Main parts	Motor	AC servomotor (200W) with brake									
	Encoder	Incremental system									
	Lead screw	Ground ball screw $\varnothing 15 \mathrm{~mm}$, 10 mm lead									
	Guide	Frame-type linear guide									
	Motor/Screw connection	With coupling									
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
Controller	Model	LC1-1H3VFD- $\square \square$ (Refer to page 73 for details.)									
Regenerative absorption unit	Model	LC7R-K1 \square A $\square \square$ (Refer to page 86 for details.)									

Note) Be sure to use a regenerative absorption unit with this product.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

Dimensions/LTF8F \square PH

Model	Stroke	$\mathbf{n}_{\mathbf{1}}$
LTF8F \square PH- 100K- $\square \square$	100	2
LTF8F \square PH- 200K- \square	200	3
LTF8F \square PH- 300K- $\square \square$	300	4
LTF8F \square PH- 400K- $\square \square$	400	5
LTF8F \square PH- 500K- \square		
LTF8F \square PH- 600K- $\square \square$	500	6
LTF8F \square PH- 700K- \square	600	7
LTF8F \square PH- 800K- $\square \square$	700	8
LTF8F \square PH- 900K- $\square \square$	800	9
LTF8F \square PH-1000K- $\square \square$	900	10

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	500	1000	
Speed (mm/s)	10	0.6	1.6	10.6	50.6	100.6	
	100	0.6	0.7	1.6	5.6	10.6	
	250	0.6	0.7	1.0	2.6	4.6	
	500	0.6	0.7	0.9	1.7	2.7	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LTF8

Vertical Mount

How to Order

Specifications

	Standard stroke mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight kg	5.0	5.9	6.7	7.5	8.4	9.2	10.0	10.9	11.7	12.5
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load kg	5									
	Rated thrust N	180									
	Maximum speed mm / s	1000						890	710	580	480
	Positioning repeatability mm	± 0.02									
Main parts	Motor	AC servomotor (200W) with brake									
	Encoder	Incremental system									
	Lead screw	Ground ball screw $\varnothing 15 \mathrm{~mm}$, 20 mm lead									
	Guide	Frame-type linear guide									
	Motor/Screw connection	With coupling									
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
Controller	Model	LC1-1H3VL $\square-\square \square$ (Refer to page 73 for details.)									
Regenerative absorption unit	Model	LC7R-K1 \square A $\square \square$ (Refer to page 86 for details.)									

Note) Be sure to use a regenerative absorption unit with this product.

Allowable Moment (N.m)
Allowable dynamic moment

[^71]Refer to page 71 for deflection data.

Dimensions/LTF8F \square PL

Model	Stroke	\mathbf{n}_{1}
LTF8F \square PL- 100K- $\square \square$	100	2
LTF8F \square PL- 200K- \square	* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.	
LTF8F \square PL- 300K- \square	200	3
LTF8F \square PL- 400K- \square	300	4
LTF8F \square PL- 500K- \square	400	5
LTF8F \square PL- 600K- \square	500	6
LTF8F \square PL- 700K- \square	600	7
LTF8F \square PL- 800K- \square	700	8
LTF8F \square PL- 900K- \square	800	9
LTF8F \square PL-1000K- \square	900	10

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	500	1000	
	10	0.6	1.6	10.6	50.6	100.6	
	Speed (mm/s)	100	0.6	0.7	1.6	5.6	

*Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LTF8

Vertical Mount

How to Order

Specifications

	Standard stroke mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight kg	5.0	5.9	6.7	7.5	8.4	9.2	10.0	10.9	11.7	12.5
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load kg	10									
	Rated thrust N	360									
	Maximum speed mm / s	500						440	350	290	240
	Positioning repeatability mm	± 0.05									
Main parts	Motor	AC servomotor (200W) with brake									
	Encoder	Incremental system									
	Lead screw	Rolled ball screw $\varnothing 15 \mathrm{~mm}, 10 \mathrm{~mm}$ lead									
	Guide	Frame-type linear guide									
	Motor/Screw connection	With coupling									
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
Controller	Model	LC1-1H3VH $\square-\square \square$ (Refer to page 73 for details.)									
Regenerative absorption unit	Model	LC7R-K1 \square A $\square \square$ (Refer to page 86 for details.)									

Note) Be sure to use a regenerative absorption unit with this product.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

Dimensions/LTF8F \square NH

Model	Stroke	$\mathbf{n}_{\mathbf{1}}$
LTF8F \square NH- 100K- $\square \square$	100	2
LTF8F \square NH- 200K- \square	200	3
LTF8F \square NH- 300K- $\square \square$	300	4
LTF8F \square NH- 400K- \square	400	5
LTF8F \square NH- 500K- \square	500	6
LTF8F \square NH- 600K- \square	600	7
LTF8F \square NH- 700K- \square	700	8
LTF8F \square NH- 800K- \square	800	9
LTF8F \square NH- 900K- \square	900	10
LTF8F \square NH-1000K- $\square \square$	1000	11

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	500	1000	
Speed (mm/s)	10	0.6	1.6	10.6	50.6	100.6	
	100	0.6	0.7	1.6	5.6	10.6	
	250	0.6	0.7	1.0	2.6	4.6	
	500	0.6	0.7	0.9	1.7	2.7	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LTF8

Vertical Mount

How to Order

Specifications

	Standard stroke mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight kg	5.0	5.9	6.7	7.5	8.4	9.2	10.0	10.9	11.7	12.5
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load kg	5									
	Rated thrust N	180									
	Maximum speed mm / s	1000						890	710	580	480
	Positioning repeatability mm	± 0.05									
Main parts	Motor	AC servomotor (200W) with brake									
	Encoder	Incremental system									
	Lead screw	Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 20mm lead									
	Guide	Frame-type linear guide									
	Motor/Screw connection	With coupling									
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
Controller	Model	LC1-1H3VLD- $\square \square$ (Refer to page 73 for details.)									
Regenerative absorption unit	Model	LC7R-K1 \square A $\square \square$ (Refer to page 86 for details.)									

Note) Be sure to use a regenerative absorption unit with this product.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

[^72]Refer to page 71 for deflection data.

Dimensions/LTF8F \square NL

Model	Stroke	$\mathbf{n}_{\mathbf{1}}$
LTF8F \square NL- 100K- $\square \square$	100	2
LTF8F \square NL- 200K- \square	200	3
LTF8F \square NL- 300K- \square	300	4
LTF8F \square NL- 400K- $\square \square$	400	5
LTF8F \square NL- 500K- $\square \square$	500	6
LTF8F \square NL- 600K- \square	600	7
LTF8F \square NL- 700K- $\square \square$	700	8
LTF8F \square NL- 800K- $\square \square$	800	9
LTF8F \square NL- 900K- \square	900	10
LTF8F \square NL-1000K- $\square \square$	1000	11

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	500	1000	
	10	0.6	1.6	10.6	50.6	100.6	
Speed (mm/s)	100	0.6	0.7	1.6	5.6	10.6	
	500	0.6	0.7	0.9	1.7	2.7	
	1000	0.6	0.7	0.9	1.4	1.9	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

How to Order

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight (without motor)	kg	1.7	2.1	2.6	3.1	3.6	4.1
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load	kg	30					
	Rated thrust	N	300					
	Maximum speed	mm / s	300					230
	Positioning repeatability	mm	± 0.02					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Ground ball screw $\varnothing 10 \mathrm{~mm}, 6 \mathrm{~mm}$ lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
			Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)					
			Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)					

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

[^73]Refer to page 71 for deflection data.

Non-standard Motor/Horizontal Mount Specification Series LTF6

Dimensions/LTF6 $\square \mathrm{E} \square \mathrm{PF}(\mathrm{X10})$

Section AA
*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 69 for the guidelines for assembly and designing.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	150	0.5	0.6	1.2	2.5	4.5	
	300	0.5	0.6	0.9	1.6	2.6	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	100	100/115	MSM011P1A	MSD011P1E	103
		200/230	MSM012P1A	MSD013P1E	
Mitsubishi Electric Corporation	100	100/115	HC-PQ13	MR-C10A1	86.5
		200/230		MR-C10A	
Yasukawa Electric Corporation	100	100/115	SGME-01BF12	SGDE-01BP	94.5
		200/230	SGME-01AF12	SGDE-01AP	

[^74]Motor/switch entry direction
Left entry

-Switch specifications

Nil	Without switch and switch rail
$\mathbf{1}$	Photo micro sensor 1 pc., Photo micro sensor rail 1 pc.
$\mathbf{2}$	Photo micro sensor 2 pcs., Photo micro sensor rail 1 pc.
$\mathbf{3}$	Photo micro sensor 3 pcs., Photo micro sensor rail 1 pc.
$\mathbf{4}$	Proximity switch (A contact) 1 pc., Proximity switch rail 1 pc.
$\mathbf{5}$	Proximity switch (A contact) 2 pcs., Proximity switch rail 1 pc.
$\mathbf{6}$	Proximity switch (B contact) 2 pcs., Proximity switch rail 1 pc.
$\mathbf{7}$	Proximity switch (A contact) 1 pc., (B contact) 2 pcs., Proximity switch rail 1 pc.
\mathbf{A}	Photo micro sensor rail 1 pc.
\mathbf{B}	Proximity switch rail 1 pc.

Dog fittings for switch are attached to all types except type "Nil".

Specifications

Motor/switch entry direction ©

Nil	Without motor, switch and switch rail
\mathbf{R}	Motor straight, motor cable, switch and switch rail located on the right
\mathbf{L}	Motor straight, motor cable, switch and switch rail located on the left

	Standard stroke $\quad \mathrm{mm}$	100	200	300	400	500	600
Performance	Body weight (without motor) kg	1.7	2.1	2.6	3.1	3.6	4.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load kg	15					
	Rated thrust N	180					
	Maximum speed mm / s	500					390
	Positioning repeatability mm	± 0.02					
Main parts	Motor	AC servomotor (100W)					
	Encoder	Incremental system					
	Lead screw	Ground ball screw $\varnothing 10 \mathrm{~mm}$, 10 mm lead					
	Guide	Frame-type linear guide					
	Motor/Screw connection	With coupling					
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
		Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)					
		Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)					

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable dynamic moment

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Allowable dynamic moment
L : Overhang to work piece
center of gravity (mm)

Refer to page 71 for deflection data.

Non-standard Motor/Horizontal Mount Specification Series LTF6

Dimensions/LTF6 $\square \mathrm{E} \square \mathrm{PH}(\mathrm{X} 10)$

Scale: 20\%

Section AA (Sensor mounting dimensions)

(Sensor rail dimensions)

E section detail (Switch rail T-slot dimensions)

Model	Stroke	\mathbf{n}_{1}	\mathbf{n}_{2}
LTF6 $\square \square$ PH- 100- $\square \square-\mathbf{X 1 0}$	100	2	1
LTF6 \square E \square PH- 200- $\square \square-$ X10	200	3	1
LTF6 $\square \square$ PH- 300- $\square-\mathbf{- X 1 0 ~}$	300	4	1
LTF6 $\square \square$ PH- 400- $\square-\mathbf{X 1 0 ~}$	400	5	1
LTF6 $\square \square$ PH- 500- $\square-$ X10	500	6	2
LTF6 $\square \square$ PH- 600- $\square \square-\mathbf{X 1 0 ~}$	600	7	2

*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 69 for the guidelines for assembly and designing.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	250	0.5	0.6	0.9	1.7	2.9	
	500	0.5	0.6	0.8	1.2	1.8	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$
* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	100	100/115	MSM011P1A	MSD011P1E	103
		200/230	MSM012P1A	MSD013P1E	
Mitsubishi Electric Corporation	100	100/115	HC-PQ13	MR-C10A1	86.5
		200/230		MR-C10A	
Yasukawa Electric Corporation	100	100/115	SGME-01BF12	SGDE-01BP	94.5
		200/230	SGME-01AF12	SGDE-01AP	

[^75]
How to Order

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight (without motor)	kg	1.7	2.1	2.6	3.1	3.6	4.1
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load	kg	30					
	Rated thrust	N	300					
	Maximum speed	mm / s	300					230
	Positioning repeatability	mm	± 0.05					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Rolled ball screw $\varnothing 10 \mathrm{~mm}$, 6 mm lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
			Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)					
			Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)					

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable dynamic moment

	g orientation vement directio		LTF6	
을 를 은 ㅁ.				
$\begin{aligned} & \text { 을 } \\ & \underline{\bar{O}} \\ & \text { © } \end{aligned}$				
$\begin{aligned} & \text { 옹 } \\ & \\ & \end{aligned}$				

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Allowable dynamic moment
L : Overhang to work piece
center of gravity (mm)

Refer to page 71 for deflection data.

Non-standard Motor/Horizontal Mount Specification Series LTF6

Dimensions/LTF6 $\square \mathrm{E} \square \mathrm{NF}(\mathrm{X10})$

Model	Stroke	n1	n2
LTF6 \square E \square NF- 100- $\square \square$-X10	100	2	1
LTF6 \square E \square NF- 200- $\square \square$-X10	200	3	1
LTF6 \square E \square NF-300- $\square \square$-X10	300	4	1
LTF6 \square E \square NF- 400- $\square \square$-X10	400	5	1
LTF6 \square E \square NF-500- $\square \square$-X10	500	6	2
LTF6 \square E \square NF-600- $\square \square$-X10	600	7	2

*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
$* 3$. For the dimensions of the motor mounting position, refer to the dimensions on page 69 for the guidelines for assembly and designing.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)			1	10	100	300	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	150	0.5	0.6	1.2	2.5	4.5	
	300	0.5	0.6	0.9	1.6	2.6	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	100	$100 / 115$	MSM011P1A	MSD011P1E	103
		MSM012P1A	MSD013P1E	86.5	
	100	$100 / 115$	HC-PQ13		MR-C10A
		$100 / 115$		SGDE-01BP	94.5
	$200 / 230$	SGME-01AF12	SGDE-01AP		

[^76]Motor/switch entry direction
Left entry

- Switch specifications

Nil	Without switch and switch rail
$\mathbf{1}$	Photo micro sensor 1 pc., Photo micro sensor rail 1 pc.
$\mathbf{2}$	Photo micro sensor 2 pcs., Photo micro sensor rail 1 pc.
$\mathbf{3}$	Photo micro sensor 3 pcs., Photo micro sensor rail 1 pc.
$\mathbf{4}$	Proximity switch (A contact) 1 pc., Proximity switch rail 1 pc.
$\mathbf{5}$	Proximity switch (A contact) 2 pcs., Proximity switch rail 1 pc.
$\mathbf{6}$	Proximity switch (B contact) 2 pcs., Proximity switch rail 1 pc.
$\mathbf{7}$	Proximity switch (A contact) 1 pc., (B contact) 2 pcs., Proximity switch rail 1 pc.
\mathbf{A}	Photo micro sensor rail 1 pc.
\mathbf{B}	Proximity switch rail 1 pc.

Dog fittings for switch are attached to all types except type "Nil".

Specifications

Motor/switch entry direction ©

Nil	Without motor, switch and switch rail
\mathbf{R}	Motor straight, motor cable, switch and switch rail located on the right
\mathbf{L}	Motor straight, motor cable, switch and switch rail located on the left

 Industrial Co., Ltd. Mitsubishi Electric Corporation Yasukawa Electric Corporation

?

	Standard stroke $\quad \mathrm{mm}$	100	200	300	400	500	600
Performance	Body weight (without motor) kg	1.7	2.1	2.6	3.1	3.6	4.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load kg	15					
	Rated thrust N	180					
	Maximum speed mm / s	500					390
	Positioning repeatability mm	± 0.05					
Main parts	Motor	AC servomotor (100W)					
	Encoder	Incremental system					
	Lead screw	Rolled ball screw $\varnothing 10 \mathrm{~mm}$, 10 mm lead					
	Guide	Frame-type linear guide					
	Motor/Screw connection	With coupling					
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
		Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)					
		Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)					

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Allowable dynamic moment
L : Overhang to work piece
center of gravity (mm)

Refer to page 71 for deflection data.

Non-standard Motor/Horizontal Mount Specification Series LTF6

Dimensions/LTF6 $\square \mathrm{E} \square \mathrm{NH}(\mathrm{X} 10)$

		Positioning time (sec.)					
Positioning distance (mm)			1	10	100	300	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	250	0.5	0.6	0.9	1.7	2.9	
	500	0.5	0.6	0.8	1.2	1.8	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$
* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	100	100/115	MSM011P1A	MSD011P1E	103
		200/230	MSM012P1A	MSD013P1E	
Mitsubishi Electric Corporation	100	100/115	HC-PQ13	MR-C10A1	86.5
		200/230		MR-C10A	
Yasukawa Electric Corporation	100	100/115	SGME-01BF12	SGDE-01BP	94.5
		200/230	SGME-01AF12	SGDE-01AP	

[^77]

	Standard stroke mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight (without motor) kg	3.4	4.3	5.1	6.0	6.8	7.7	8.5	9.4	10.2	11.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load kg	50									
	Rated thrust N	360									
	Maximum speed mm / s	500						440	350	290	240
	Positioning repeatability mm	± 0.02									
Main parts	Motor	AC servomotor (200W)									
	Encoder	Incremental system									
	Lead screw	Ground ball screw $\varnothing 15 \mathrm{~mm}$, 10 mm lead									
	Guide	Frame-type linear guide									
	Motor/Screw connection	With coupling									
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
		Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)									
		Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)									

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

Mounting orientation Model Load movement direction				-1F8	m : Transfer load (kg) a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$ Me : Allowable dynamic moment L : Overhang to work piece center of gravity (mm)
$\begin{aligned} & \text { 을 } \\ & \text { 듣 } \\ & \text { 음 } \end{aligned}$					
$\begin{aligned} & \text { 을 } \\ & \underset{3}{3} \\ & \text { त } \end{aligned}$					

Refer to page 71 for deflection data.

Non-standard Motor/Horizontal Mount Specification Series LTF8

Dimensions/LTF8 $\square \mathrm{F} \square \mathrm{PH}(\mathrm{X} 10)$

Scale: 13\%

*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 70 for the guidelines for assembly and designing.

$$
\text { sensor } \quad \text { Photo micro sensor }
$$

D section detail
(Sensor rail dimensions)

Model	Stroke	\mathbf{n}_{1}	$\mathbf{n}_{\mathbf{2}}$
LTF8 \square F \square PH- 100- $\square \square$-X10	100	2	1
LTF8 \square F \square PH- 200- $\square \square$-X10	200	3	1
LTF8 \square F \square PH- 300- \square-X10	300	4	1
LTF8 \square F \square PH- 400- $\square-$-X10	400	5	1
LTF8 \square F \square PH- 500- $\square \square$-X10	500	6	2

Model	Stroke	\mathbf{n}_{1}	$\mathbf{n}_{\mathbf{2}}$
LTF8 \square F \square PH- 600- $\square \square-\mathbf{X 1 0 ~}$	600	7	2
LTF8 \square F \square PH- 700- $\square \square-\mathbf{X 1 0 ~}$	700	8	2
LTF8 \square F \square PH- 800- $\square \square$-X10	800	9	2
LTF8 \square F \square PH- 900- $\square \square-\mathbf{X 1 0 ~}$	900	10	2
LTF8 \square F \square PH-1000- $\square \square-X 10 ~$	1000	11	2

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	500	1000	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.6	1.6	10.6	50.6	100.6	
	100	0.6	0.7	1.6	5.6	10.6	
	250	0.6	0.7	1.0	2.6	4.6	
	500	0.6	0.7	0.9	1.7	2.7	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.
* Values will vary slightly depending on the operating conditions.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	200	$100 / 115$	MSM021P1A	MSD021P1E	95
		MSM022P1A	MSD023P1E	89	
	200	$100 / 115$	HC-PQ23		MR-C20A
		$100 / 115$		SGDE-02BP	96.5
	$200 / 230$	SGME-02AF12	SGDE-02AP		

[^78]How to Order

	Standard stroke $\quad \mathrm{mm}$	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight (without motor) kg	3.4	4.3	5.1	6.0	6.8	7.7	8.5	9.4	10.2	11.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load kg	25									
	Rated thrust N	180									
	Maximum speed mm / s	1000						890	710	580	480
	Positioning repeatability mm	± 0.02									
Main parts	Motor	AC servomotor (200W)									
	Encoder	Incremental system									
	Lead screw	Ground ball screw $\varnothing 15 \mathrm{~mm}$, 20mm lead									
	Guide	Frame-type linear guide									
	Motor/Screw connection	With coupling									
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
		Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)									
		Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)									

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

$\begin{aligned} & \mathrm{MoI} \\ & \hline \mathrm{LO} \end{aligned}$	g orientation vement directi		LTF8	
$\begin{aligned} & \text { 오 } \\ & \underline{\overline{\underline{E}}} \\ & \text { 응 } \end{aligned}$				ansfer load m(kg)
$\begin{aligned} & \text { 을 } \\ & \underset{\pi}{7} \\ & \hline \end{aligned}$				

m : Transfer load (kg)
a : Work piece acceleration ($\mathrm{mm} / \mathrm{s}^{2}$)
Me : Allowable dynamic moment
L : Overhang to work piece
center of gravity (mm)

Non-standard Motor/Horizontal Mount Specification Series LTF8

Dimensions/LTF8 \square F \square PL(X10)

Scale: 13\%

*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 70 for the guidelines for assembly and designing.
y sensor

Section AA
D section detail
Sensor mounting dimensions) (Sensor rail dimensions)

E section detail
(Switch rail T-slot dimensions)

Model	Stroke	\mathbf{n}_{1}	\mathbf{n}_{2}
LTF8 \square F \square PL- 100- $\square \square$-X10	100	2	1
LTF8 \square F \square PL- 200- $\square \square$-X10	200	3	1
LTF8 \square F \square PL- 300- $\square \square$-X10	300	4	1
LTF8 $\square F \square$ PL- 400- $\square \square$-X10	400	5	1
LTF8 \square F \square PL- 500- $\square-$-X10	500	6	2

Model	Stroke	\mathbf{n}_{1}	\mathbf{n}_{2}
LTF8 \square F \square PL- 600- $\square \square$-X10	600	7	2
LTF8 \square F \square PL- 700- $\square \square-X 10$	700	8	2
LTF8 \square F \square PL- 800- $\square \square-\mathbf{X 1 0 ~}$	800	9	2
LTF8 \square F \square PL- 900- $\square \square$-X10	900	10	2
LTF8 \square F \square PL-1000- $\square \square-X 10$	1000	11	2

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)			1	10	100	500	
	10	0.6	1.6	10.6	50.6	1000	
Speed (mm/s)	100	0.6	0.7	1.6	5.6	10.6	
	500	0.6	0.7	0.9	1.7	2.7	
	1000	0.6	0.7	0.9	1.4	1.9	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.
* Values will vary slightly depending on the operating conditions.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	200	100/115	MSM021P1A	MSD021P1E	95
		200/230	MSM022P1A	MSD023P1E	
Mitsubishi Electric Corporation	200	100/115	HC-PQ23	MR-C20A1	89
		200/230		MR-C20A	
Yasukawa Electric Corporation	200	100/115	SGME-02BF12	SGDE-02BP	96.5
		200/230	SGME-02AF12	SGDE-02AP	

* Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

	Standard stroke mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight (without motor) kg	3.4	4.3	5.1	6.0	6.8	7.7	8.5	9.4	10.2	11.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load kg	50									
	Rated thrust N	360									
	Maximum speed mm / s	500						440	350	290	240
	Positioning repeatability mm	± 0.05									
Main parts	Motor	AC servomotor (200W)									
	Encoder	Incremental system									
	Lead screw	Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 10 mm lead									
	Guide	Frame-type linear guide									
	Motor/Screw connection	With coupling									
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
		Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)									
		Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)									

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

Mounting orientation Model Load movement direction			LTF8	
$\begin{aligned} & \text { 오 } \\ & \text { 듣 } \\ & \text { 음 } \end{aligned}$				

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Allowable dynamic moment
L : Overhang to work piece
center of gravity (mm)

Non-standard Motor/Horizontal Mount Specification Series LTF8

Dimensions/LTF8 $\square \mathrm{F} \square \mathrm{NH}(\mathbf{X 1 0)}$

Scale: 13\%

*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 70 for the guidelines for assembly and designing.

$$
\mathrm{y} \text { sensor }
$$

Section AA
(Sensor mounting dimensions)

D section detail (Sensor rail dimensions)

(Switch rail T-slot dimensions)

Model	Stroke	\mathbf{n}_{1}	\mathbf{n}_{2}
LTF8 \square F \square NH- 100- $\square \square-X 10$	100	2	1
LTF8 $\square \square$ NH- 200- $\square \square-X 10$	200	3	1
LTF8 \square F \square NH- 300- $\square \square$-X10	300	4	1
LTF8 \square F \square NH- 400- $\square \square$-X10	400	5	1
LTF8 \square F \square NH- 500- $\square-X 10$	500	6	2

Model	Stroke	\mathbf{n}_{1}	$\mathbf{n}_{\mathbf{2}}$
LTF8 \square F \square NH- 600- $\square \square-\mathbf{X 1 0}$	600	7	2
LTF8 \square F \square NH- 700- $\square \square-\mathbf{X 1 0 ~}$	700	8	2
LTF8 \square F \square NH- 800- $\square \square-\mathbf{X 1 0 ~}$	800	9	2
LTF8 \square F \square NH- 900- $\square \square-X 10$	900	10	2
LTF8 \square F \square NH-1000- $\square \square-X 10$	1000	11	2

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)	1	10	100	500	1000		
Speed (mm/s)	10	0.6	1.6	10.6	50.6	100.6	
	100	0.6	0.7	1.6	5.6	10.6	
	250	0.6	0.7	1.0	2.6	4.6	
	500	0.6	0.7	0.9	1.7	2.7	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time $(0.5 \mathrm{sec}$.)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.
* Values will vary slightly depending on the operating conditions.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	200	100/115	MSM021P1A	MSD021P1E	95
		200/230	MSM022P1A	MSD023P1E	
Mitsubishi Electric Corporation	200	100/115	HC-PQ23	MR-C20A1	89
		200/230		MR-C20A	
Yasukawa Electric Corporation	200	100/115	SGME-02BF12	SGDE-02BP	96.5
		200/230	SGME-02AF12	SGDE-02AP	

[^79]How to Order

	Standard stroke $\quad \mathrm{mm}$	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight (without motor) kg	3.4	4.3	5.1	6.0	6.8	7.7	8.5	9.4	10.2	11.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load kg	25									
	Rated thrust N	180									
	Maximum speed mm / s	1000						890	710	580	480
	Positioning repeatability mm	± 0.05									
Main parts	Motor	AC servomotor (200W)									
	Encoder	Incremental system									
	Lead screw	Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 20 mm lead									
	Guide	Frame-type linear guide									
	Motor/Screw connection	With coupling									
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
		Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)									
		Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)									

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

	orientation vement directi		LTF8	
$\begin{aligned} & \text { O } \\ & \text { 를 } \\ & \text { त } \end{aligned}$				

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Allowable dynamic moment
L : Overhang to work piece
center of gravity (mm)

[^80]
Non-standard Motor/Horizontal Mount Specification Series LTF8

Dimensions/LTF8 $\square \mathrm{F} \square \mathrm{NL}(\mathrm{X10})$

Scale: 13\%

*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 70 for the guidelines for assembly and designing. assembly and designing.

Section AA
(Sensor mounting dimensions)

E section detail
(Switch rail T-slot dimensions)

Model	Stroke	\mathbf{n}_{1}	$\mathbf{n}_{\mathbf{2}}$
LTF8 \square F \square NL- 100- $\square \square-\mathbf{X 1 0}$	100	2	1
LTF8 \square F \square NL- 200- $\square \square-\mathbf{X 1 0}$	200	3	1
LTF8 $\square \square$ NL- 300- $\square-$-X10	300	4	1
LTF8 \square F \square NL- 400- $\square \square-\mathbf{X 1 0 ~}$	400	5	1
LTF8 \square F \square NL- 500- $\square \square-X 10$	500	6	2

Model	Stroke	\mathbf{n}_{1}	$\mathbf{n}_{\mathbf{2}}$
LTF8 \square F \square NL- 600- $\square \square-\mathbf{X 1 0}$	600	7	2
LTF8 \square F \square NL- 700- $\square \square-\mathbf{X 1 0 ~}$	700	8	2
LTF8 \square F \square NL- 800- $\square \square-\mathbf{X 1 0 ~}$	800	9	2
LTF8 \square F \square NL- 900- $\square \square-\mathbf{X 1 0 ~}$	900	10	2
LTF8 \square F \square NL-1000- $\square \square-X 10$	1000	11	2

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)			1	10	100	500	
Speed (mm/s)	10	0.6	1.6	10.6	50.6	1000	
	100	0.6	0.7	1.6	5.6	10.6	
	500	0.6	0.7	0.9	1.7	2.7	
	1000	0.6	0.7	0.9	1.4	1.9	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.
* Values will vary slightly depending on the operating conditions.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	200	100/115	MSM021P1A	MSD021P1E	95
		200/230	MSM022P1A	MSD023P1E	
Mitsubishi Electric Corporation	200	100/115	HC-PQ23	MR-C20A1	89
		200/230		MR-C20A	
Yasukawa Electric Corporation	200	100/115	SGME-02BF12	SGDE-02BP	96.5
		200/230	SGME-02AF12	SGDE-02AP	

* Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

Standard stroke		mm	100	200	300	400	500	600
Performance	Body weight (without motor)		1.7	2.1	2.6	3.1	3.6	4.1
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load	kg	6					
	Rated thrust	N	300					
	Maximum speed	mm / s	300					230
	Positioning repeatability	mm	± 0.02					
Main parts	Motor		AC servomotor (100W) with brake					
	Encoder		Incremental system					
	Lead screw		Ground ball screw $\varnothing 10 \mathrm{~mm}, 6 \mathrm{~mm}$ lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
			Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)					
			Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)					
Regenerative absorption unit			Refer to the selection guide below.					

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

m : Transfer load (kg)
Me : Allowable dynamic moment
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
Refer to page 71 for deflection data.

Regenerative Absorption Unit Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.
Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections.

Dimensions/LTF6 $\square \square \square$ PF(X10)

		Positioning time (sec.)					
Positioning distance (mm)			1	10	100	300	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	150	0.5	0.6	1.2	2.5	4.5	
	300	0.5	0.6	0.9	1.6	2.6	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	100	$100 / 115$		MSD011P1E	135
		MSM012P1B	MSD013P1E		
	100	$100 / 115$	HC-PQ13B	MR-C10A1	114.5
		$100 / 115$		SR-C10A	
	$200 / 230$	SGME-01AF12B	SGDE-01BP		

[^81]

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight (without motor)	kg	1.7	2.1	2.6	3.1	3.6	4.1
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load	kg	3					
	Rated thrust	N	180					
	Maximum speed	mm/s	500					390
	Positioning repeatability	mm	± 0.02					
Main parts	Motor		AC servomotor (100W) with brake					
	Encoder		Incremental system					
	Lead screw		Ground ball screw $\varnothing 10 \mathrm{~mm}, 10 \mathrm{~mm}$ lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
			Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)					
			Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)					
Regenerative absorption unit			Refer to the selection guide below.					

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

m : Transfer load (kg)
Me : Allowable dynamic moment
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
Refer to page 71 for deflection data.

Regenerative Absorption Unit Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.
Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections.

Non-standard Motor/Vertical Mount Specification Series LTF6

Dimensions/LTF6 $\square \mathrm{E} \square \mathrm{PH}(\mathrm{X} 10)$

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	250	0.5	0.6	0.9	1.7	2.9	
	500	0.5	0.6	0.8	1.2	1.8	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$
* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	100	$100 / 115$		MSD011P1E	135
		MSM012P1B	MSD013P1E		
	100	$100 / 115$	HC-PQ13B	MR-C10A1	114.5
		$100 / 115$		SR-C10A	
	$200 / 230$	SGME-01AF12B	SGDE-01BP		

[^82]

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight (without motor)		1.7	2.1	2.6	3.1	3.6	4.1
	Operating temperature range		5 to 40 (with no condensation)					
	Work load	kg	6					
	Rated thrust	N	300					
	Maximum speed	mm / s	300					230
	Positioning repeatability	mm	± 0.05					
Main parts	Motor		AC servomotor (100W) with brake					
	Encoder		Incremental system					
	Lead screw		Rolled ball screw $\varnothing 10 \mathrm{~mm}$, 6 mm lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
			Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)					
			Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)					
Regenerative absorption unit			Refer to the selection guide below.					

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

m : Transfer load (kg)
Me : Allowable dynamic moment
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
Refer to page 71 for deflection data.

Regenerative Absorption Unit Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.
Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections.

Non-standard Motor/Vertical Mount Specification Series LTF6

Dimensions/LTF6 $\square \mathrm{E} \square \mathrm{NF}(\mathrm{X10})$

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	150	0.5	0.6	1.2	2.5	4.5	
	300	0.5	0.6	0.9	1.6	2.6	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$
* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	100	$100 / 115$	MSM011P1B	MSD011P1E	135
		MSM012P1B	MSD013P1E		
	100	$100 / 115$	HC-PQ13B	MR-C10A1	114.5
		$100 / 115$		SR-C10A	135
	$200 / 230$	SGME-01AF12B	SGDE-01BP		

[^83]

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight (without motor)	kg	1.7	2.1	2.6	3.1	3.6	4.1
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load	kg	3					
	Rated thrust	N	180					
	Maximum speed	mm / s	500					390
	Positioning repeatability	mm	± 0.05					
Main parts	Motor		AC servomotor (100W) with brake					
	Encoder		Incremental system					
	Lead screw		Rolled ball screw $\varnothing 10 \mathrm{~mm}$, 10 mm lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
			Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)					
			Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)					
Regenerative absorption unit			Refer to the selection guide below.					

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

m : Transfer load (kg)
Me : Allowable dynamic moment
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm
Refer to page 71 for deflection data.

Regenerative Absorption Unit Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.
Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections.

Non-standard Motor/Vertical Mount Specification Series LTF6

Dimensions/LTF6 $\square \mathrm{E} \square \mathrm{NH}(\mathbf{X 1 0)}$

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	250	0.5	0.6	0.9	1.7	2.9	
	500	0.5	0.6	0.8	1.2	1.8	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$
* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	100	$100 / 115$		MSD011P1E	135
		MSM012P1B	MSD013P1E		
	100	$100 / 115$	HC-PQ13B	MR-C10A1	114.5
		$100 / 115$		SR-C10A	
	$200 / 230$	SGME-01AF12B	SGDE-01BP		

[^84]Vertical Mount

How to Order

	Standard stroke mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight (without motor) kg	3.4	4.3	5.1	6.0	6.8	7.7	8.5	9.4	10.2	11.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load kg	10									
	Rated thrust N	360									
	Maximum speed $\quad \mathrm{mm} / \mathrm{s}$	500						440	350	290	240
	Positioning repeatability mm	± 0.02									
Main parts	Motor	AC servomotor (200W) with brake									
	Encoder	Incremental system									
	Lead screw	Ground ball screw $\varnothing 15 \mathrm{~mm}$, 10 mm lead									
	Guide	Frame-type linear guide									
	Motor/Screw connection	With coupling									
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
		Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)									
		Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)									
Regenerative absorption unit											

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable dynamic moment

m: Transfer load (kg)
Me : Allowable dynamic moment
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
Refer to page 71 for deflection data.

Regenerative Absorption Unit Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.

Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections.

Non-standard Motor/Vertical Mount Specification Series LTF8

Dimensions/LTF8 $\square \mathrm{F} \square \mathrm{PH}(\mathrm{X10})$

*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 70 for the guidelines for assembly and designing.

Section AA
(Sensor mounting dimensions)

D section detail
(Sensor rail dimensions)

(Switch rail T-slot dimensions)

Model	Stroke	\mathbf{n}_{1}	$\mathbf{n}_{\mathbf{2}}$
LTF8 \square F \square PH- 100K- $\square \square-\mathbf{X 1 0}$	100	2	1
LTF8 \square F \square PH- 200K- $\square-$-X10	200	3	1
LTF8 \square F \square PH- 300K- $\square-$-X10	300	4	1
LTF8 \square F \square PH- 400K- $\square \square-X 10$	400	5	1
LTF8 \square F \square PH- 500K- $\square \square$-X10	500	6	2

Model	Stroke	\mathbf{n}_{1}	\mathbf{n}_{2}
LTF8 \square F \square PH- 600K- $\square \square$-X10	600	7	2
LTF8 \square F \square PH- 700K- $\square \square$-X10	700	8	2
LTF8 \square F \square PH- 800K- $\square \square$-X10	800	9	2
LTF8 \square F \square PH- 900K- $\square-$-X10	900	10	2
LTF8 \square F \square PH-1000K- $\square \square$-X10	1000	11	2

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)			1	10	100	500	
Speed (mm/s)	10	0.6	1.6	10.6	50.6	1000	
	100	0.6	0.7	1.6	5.6	10.6	
	250	0.6	0.7	1.0	2.6	4.6	
	500	0.6	0.7	0.9	1.7	2.7	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.
* Values will vary slightly depending on the operating conditions.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	200	100/115	MSM021P1B	MSD021P1E	128
		200/230	MSM022P1B	MSD023P1E	
Mitsubishi Electric Corporation	200	100/115	HC-PQ23B	MR-C20A1	121
		200/230		MR-C20A	
Yasukawa Electric Corporation	200	100/115	SGME-02BF12B	SGDE-02BP	136
		200/230	SGME-02AF12B	SGDE-02AP	

* Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

Vertical Mount

How to Order

	Standard stroke mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight (without motor) kg	3.4	4.3	5.1	6.0	6.8	7.7	8.5	9.4	10.2	11.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load kg	5									
	Rated thrust N	180									
	Maximum speed mm / s	1000						890	710	580	480
	Positioning repeatability mm	± 0.02									
Main parts	Motor	AC servomotor (200W) with brake									
	Encoder	Incremental system									
	Lead screw	Ground ball screw $\varnothing 15 \mathrm{~mm}$, 20mm lead									
	Guide	Frame-type linear guide									
	Motor/Screw connection	With coupling									
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
		Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)									
		Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)									
Regenerative absorption unit Refer to the selection guide below											

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable dynamic moment

[^85]Me : Allowable dynamic moment
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
Refer to page 71 for deflection data.

Regenerative Absorption Unit Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.

Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections.

Non-standard Motor/Vertical Mount Specification Series LTF8

Dimensions/LTF8 \square F \square PL(X10)

*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 70 for the guidelines for assembly and designing.

Section AA
(Sensor mounting dimensions) (Sensor rail dimensions)

Model	Stroke	\mathbf{n}_{1}	\mathbf{n}_{2}
LTF8 \square F \square PL- 100K- $\square \square-\mathbf{X 1 0}$	100	2	1
LTF8 \square F \square PL- 200K- $\square \square-$-X10	200	3	1
LTF8 \square F \square PL- 300K- $\square \square-$ X10	300	4	1
LTF8 \square F \square PL- 400K- $\square \square-X 10$	400	5	1
LTF8 \square F \square PL- 500K- $\square \square-X 10$	500	6	2

Model	Stroke	\mathbf{n}_{1}	\mathbf{n}_{2}
LTF8 \square F \square PL- 600K- $\square \square$-X10	600	7	2
LTF8 \square F \square PL- 700K- $\square \square$-X10	700	8	2
LTF8 \square FL- 800K- $\square \square$-X10	800	9	2
LTF8 \square F \square PL- 900K- $\square \square$-X10	900	10	2
LTF8 \square F \square PL-1000K- $\square \square$-X10	1000	11	2

Positioning Time Guide

		Positioning time (sec.)										
Positioning distance (mm)								1	10	100	500	1000
Speed (mm/s)	10	0.6	1.6	10.6	50.6	100.6						
	100	0.6	0.7	1.6	5.6	10.6						
	500	0.6	0.7	0.9	1.7	2.7						
	1000	0.6	0.7	0.9	1.4	1.9						

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.
* Values will vary slightly depending on the operating conditions.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	200	100/115	MSM021P1B	MSD021P1E	128
		200/230	MSM022P1B	MSD023P1E	
Mitsubishi Electric Corporation	200	100/115	HC-PQ23B	MR-C20A1	121
		200/230		MR-C20A	
Yasukawa Electric Corporation	200	100/115	SGME-02BF12B	SGDE-02BP	136
		200/230	SGME-02AF12B	SGDE-02AP	

[^86]
How to Order

	Standard stroke mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight (without motor) kg	3.4	4.3	5.1	6.0	6.8	7.7	8.5	9.4	10.2	11.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load kg	10									
	Rated thrust N	360									
	Maximum speed mm / s	500						440	350	290	240
	Positioning repeatability mm	± 0.05									
Main parts	Motor	AC servomotor (200W) with brake									
	Encoder	Incremental system									
	Lead screw	Rolled ball screw $\varnothing 15 \mathrm{~mm}, 10 \mathrm{~mm}$ lead									
	Guide	Frame-type linear guide									
	Motor/Screw connection	With coupling									
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
		Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)									
		Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)									

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable dynamic moment

$\mathrm{m}:$ Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me : Allowable dynamic moment
Refer to page 71 for deflection data.

Regenerative Absorption Unit Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.

Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections.

Non-standard Motor/Vertical Mount Specification Series LTF8

Dimensions/LTF8 $\square \mathrm{F} \square \mathrm{NH}(\mathbf{X 1 0)}$

*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 70 for the guidelines for assembly and designing.
Proximity sensor
Photo micro sensor

Section AA
(Sensor mounting dimensions)

D section detail
(Sensor rail dimensions)

(Switch rail T-slot dimensions)

Model	Stroke	\mathbf{n}_{1}	$\mathbf{n}_{\mathbf{2}}$
LTF8 \square F \square NH- 100K- $\square-$-X10	100	2	1
LTF8 \square F \square NH- 200K- $\square \square-\mathbf{X 1 0 ~}$	200	3	1
LTF8 \square F \square NH- 300K- $\square-$-X10	300	4	1
LTF8 \square F \square NH- 400K- $\square-$-X10	400	5	1
LTF8 \square F \square NH- 500K- $\square \square-X 10$	500	6	2

Model	Stroke	\mathbf{n}_{1}	$\mathbf{n}_{\mathbf{2}}$
LTF8 \square F \square NH- 600K- $\square \square$-X10	600	7	2
LTF8 \square F \square NH- 700K- $\square \square$-X10	700	8	2
LTF8 \square F \square NH- 800K- $\square \square$-X10	800	9	2
LTF8 \square F \square NH- 900K- $\square \square$-X10	900	10	2
LTF8 \square F \square NH-1000K- $\square \square$-X10	1000	11	2

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)			1	10	100	500	
Speed (mm/s)	10	0.6	1.6	10.6	50.6	100.6	
	100	0.6	0.7	1.6	5.6	10.6	
	250	0.6	0.7	1.0	2.6	4.6	
	500	0.6	0.7	0.9	1.7	2.7	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time $(0.5 \mathrm{sec}$.)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.
* Values will vary slightly depending on the operating conditions.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	200	100/115	MSM021P1B	MSD021P1E	128
		200/230	MSM022P1B	MSD023P1E	
Mitsubishi Electric Corporation	200	100/115	HC-PQ23B	MR-C20A1	121
		200/230		MR-C20A	
Yasukawa Electric Corporation	200	100/115	SGME-02BF12B	SGDE-02BP	136
		200/230	SGME-02AF12B	SGDE-02AP	

* Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

How to Order

	Standard stroke	mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight (without motor)		3.4	4.3	5.1	6.0	6.8	7.7	8.5	9.4	10.2	11.1
	Operating temperature range		5 to 40 (with no condensation)									
	Work load	kg	5									
	Rated thrust	N	180									
	Maximum speed	mm/s	1000						890	710	580	480
	Positioning repeatability	mm	± 0.05									
Main parts	Motor		AC servomotor (200W) with brake									
	Encoder		Incremental system									
	Lead screw		Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 20 mm lead									
	Guide		Frame-type linear guide									
	Motor/Screw connection		With coupling									
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
			Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)									
			Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)									
Regenerative absorption unit			Refer to the selection guide below.									

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable dynamic moment

m: Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
Refer to page $\mathbf{7 1}$ for deflection data.

Regenerative Absorption Unit Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.
Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections.

Non-standard Motor/Vertical Mount Specification Series LTF8

Dimensions/LTF8 $\square \mathrm{F} \square \mathrm{NL}(\mathrm{X10})$

*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 70 for the guidelines for assembly and designing.
Proximity sensor
Photo micro sensor

Section AA
(Sensor mounting dimensions)

D section detail
(Sensor rail dimensions)

(Switch rail T-slot dimensions)

Model	Stroke	\mathbf{n}_{1}	$\mathbf{n}_{\mathbf{2}}$
LTF8 \square F \square NL- 100K- $\square \square-\mathbf{X 1 0}$	100	2	1
LTF8 \square F \square NL- 200K- $\square \square-$-X10	200	3	1
LTF8 \square F \square NL- 300K- $\square-$-X10	300	4	1
LTF8 \square F \square NL- 400K- $\square \square-X 10$	400	5	1
LTF8 \square F \square NL- 500K- $\square \square-X 10$	500	6	2

Model	Stroke	\mathbf{n}_{1}	\mathbf{n}_{2}
LTF8 \square F \square NL- 600K- $\square \square$-X10	600	7	2
LTF8 \square F \square NL- 700K- $\square \square$-X10	700	8	2
LTF8 \square F \square NL- 800K- $\square \square$-X10	800	9	2
LTF8 \square F \square NL- 900K- $\square \square$-X10	900	10	2
LTF8 \square F \square NL-1000K- $\square \square$-X10	1000	11	2

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)			1	10	100	500	
	10	0.6	1.6	10.6	50.6	1000	
Speed (mm/s)	100	0.6	0.7	1.6	5.6	10.6	
	500	0.6	0.7	0.9	1.7	2.7	
	1000	0.6	0.7	0.9	1.4	1.9	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.
* Values will vary slightly depending on the operating conditions.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	200	100/115	MSM021P1B	MSD021P1E	128
		200/230	MSM022P1B	MSD023P1E	
Mitsubishi Electric Corporation	200	100/115	HC-PQ23B	MR-C20A1	121
		200/230		MR-C20A	
Yasukawa Electric Corporation	200	100/115	SGME-02BF12B	SGDE-02BP	136
		200/230	SGME-02AF12B	SGDE-02AP	

[^87]
Series LTF
 Options

Non-standard Motor Cables

These are cables for connecting non-standard motors and drivers. Cable lengths other than those shown below should be arranged by the customer.

How to order

LTF (non-standard motor)

Model	Manufacturer part no.
LJ1-1-G05*1	MFMCA0050AEB (for motor) MFECA0050EAB (for encoder)
LJ1-1-G05B	MFMCA0050AEB (for motor) MFECA0050EAB (for encoder) MFMCB0050CET (for brake)
LJ1-1-R05	(for motor)*2 MR-JCCBL5M-L (for encoder)
LJ1-1-Y05*3	DP9320081-2 (for motor) DP9320089-2 (for encoder)
LJ1-1-Y05B	DP9320083-2 (for motor/brake) DP9320089-2 (for encoder)

*1 When the Matsushita Electric Industrial Co., Ltd. motor driver is selected, in addition to the cable, a power connector (MOLEX 5569 - 10R) and an interface connector (Sumitomo/3-M Limited 10126-3000VE) are also required.
*2 No cable is provided for the Mitsubishi Electric Corporation motor and brake. An electric cable with a sectional area of $0.75 \mathrm{~mm}^{2}(600 \mathrm{~V}$ vinyl cable) must be procured by the customer.
*3 When the Yasukawa Electric Corporation motor driver is selected, a digital operator and PC are required for selecting the various parameters.

Please refer to the technical literature of each manufacturer for further details.

Non-standard Motor Driver
 Regenerative Absorption Unit/Regenerative Resistor

This is a regenerative absorption unit and regenerative resistor for a nonstandard motor. Make a selection providing an allowance beyond the calculated capacity.

How to order

Applicable types

LTF (non-standard motor)

Model	Manufacturer part no.
LJ1-7-G	DVO P0820
LJ1-7-R	MR-RB013
LJ1-7-Y	JUSP-RG08

LJ1-7-G/Matsushita Electric Industrial Co., Ltd.

LJ1-7-R/Mitsubishi Electric Corporation

LJ1-7-Y/Yasukawa Electric Corporation

Construction

LTF6/LTF8

Parts list

No.	Description	Material	Note
$\mathbf{1}$	AC servomotor	-	$100 \mathrm{~W} / 200 \mathrm{~W}$
2	Lead screw	-	Ball screw
3	Frame-type linear guide	-	
4	Coupling	-	
5	Bearing R	-	
6	Bearing F	-	
7	Housing A	Aluminum alloy	
8	Housing B	Aluminum alloy	
9	Bearing retainer	Carbon steel	

No.	Description	Material	Note
10	Spacer	Stainless steel	
11	Bumper bolt	Alloy steel	
12	Bumper	Resin	
13	Housing plate	Mild steel	
14	Cable clip	Resin	
15	Photo micro sensor rail	Aluminum alloy	
16	Dog fitting for switch	Mild steel	Chromate
17	Photo micro sensor		
18	Connector cable for sensor		

LTF6

LTF8

Series LTF Non-standard Motor Mounting Dimensions

Non-standard Motor Mounting Dimensions

LTF6

* When mounting a coupling on the motor, mount it within the dimensional range shown on the left.

Section AA (Housing interior)

Coupling mounting dimensions*

Series LTF Non-standard Motor Mounting Dimensions

Non-standard Motor Mounting Dimensions

LTF8

Motor mounting area dimensions

Manufacturer	Mitsubishi Electric Corporation Yasukawa Electric Corporation	Matsusustrital Electric 0 ., Ltd.
C (Thread size)	$\mathrm{M} 5 \times 0.8$	$\mathrm{M} 4 \times 0.7$
Efective thread lengh (mm)	10	8
Quantity	4	4
P.C.D.		70
75		

* When mounting a coupling on the motor, mount it within the dimensional range shown on the left.

Series LTF Deflection Data

Deflection Data

The load and the amount of deflection at load point W are shown in the graphs below for each series.

LTF6

LTF8

Figure 1. Horizontal

Figure 2. Lateral

Dedicated Controller for Standard AC Servomotor

Dedicated Controller/LC1
 P. 73

- Controller setup software - P. 80
- Dedicated teaching box P. 82

Options
P. 85

$$
\text { Dedicated Regenerative Absorption Unit/LC7R —_ P. } 86
$$

Non-standard Motor Compatible Drivers P. 89

Controller

How to Order

Screw lead

\mathbf{F}	6 mm
\mathbf{H}	10 mm
\mathbf{L}	20 mm

Power supply

100/110V AC ($50 / 60 \mathrm{~Hz}$) 200/220V AC $(50 / 60 \mathrm{~Hz})$
*1) Consult SMC if the supply voltage for LC1-1H $\square \mathrm{V} \square 1$ will be 110 V AC or more, or the supply voltage for LC1-1H $\square \mathrm{V} \square 2$ will be 220 V AC or more.

- Mounting bracket

$\mathbf{3}$	M3
$\mathbf{5}$	M5

d Mounting*

* This controller includes the accessories listed below.

LC1-1- $\square \square$ (Either T-nuts or T-brackets for mounting) LC1-1-1000 (Controller connector)
LC1-1-2000 (Controller connector)
(Refer to page 85.)

Note) The following options are necessary for operating and setting the controller.
$\left[\begin{array}{l}\left(\begin{array}{l}\text { LC1-1-S1 PC-98 (MS-DOS) } \\ \text { LC1-1-W1 (Windows 95 Japanese) } \\ \text { LC1-1-W2 (Windows } 95 \text { English) }\end{array}\right) \\ \text { and } \\ \text { LC1-1-R } \square \square \text { (dedicated communication cable) }\end{array}\right]$ (Refer to pages 80, 81, and 85.)
or
LC1-1-T1- $\square \square$ (Teaching box) are required. For ordering information, refer to the option part numbers on page 82.

Performance/Specifications

General specifications

Item Model	LC1-1H $\square \square \square 1$	LC1-1H $\square \square \square 2$
Power supply	$100 / 110 \mathrm{~V} \mathrm{AC} \pm 10 \%, 50 / 60 \mathrm{~Hz}$ (100V AC, $50 / 60 \mathrm{~Hz}$ for LC1-1H $\square \mathrm{V} \square 1$)	$200 / 220 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}(200 \mathrm{~V}$ AC $\pm 10 \%$ for LC $1-1 \mathrm{H} 3 \square 2$) (200V AC, $50 / 60 \mathrm{~Hz}$ for LC1-1H $\square \mathrm{V} \square 2$)
Leakage current		5 mA or less
Dimensions		$80 \times 120 \times 244 \mathrm{~mm}$
Weight	2.2 kg	

Actuator control

Model Item	LC1-1H2H $\square \square$	LC1-1H3H $\square \square$	LC1-1H2V $\square \square$	LC1-1H3V $\square \square$
Compatible actuator model			LTF6E $\square \square \square-\square \square \square K$	
Motor capacity	100W	200W	100W	200W
Operating temperature range	5 to $50^{\circ} \mathrm{C}$	5 to $40^{\circ} \mathrm{C}$	5 to $50^{\circ} \mathrm{C}$	5 to $40^{\circ} \mathrm{C}$
Electric power	300 VA	640VA	300VA	640VA
Control system	AC software servo/PTP control			
Position detection system	Incremental encoder			
Home position return direction	Can be selected between the motor side and the side opposite the motor.			
Maximum positioning point setting	1008 points (when step designation is actuated)			
Movement command	Absolute and incremental used in combination			
Position designation range	0.00 mm to 4000.00 mm Note)			
Speed designation range	$1 \mathrm{~mm} / \mathrm{s}$ to $2500 \mathrm{~mm} / \mathrm{s}^{\text {Note) }}$			
Acceleration/deceleration designation range	Trapezoidal acceleration/deceleration $1 \mathrm{~mm} / \mathrm{s}^{2}$ to $9800 \mathrm{~mm} / \mathrm{s}^{2}$ Note)			

Note) There are cases in which the position, speed and acceleration designations are not realized, depending on the actuator that is connected and the operating conditions.

Programming

Item	Performance/Specifications
Means of programming	Dedicated controller setup software (LC1-1-S1, LC1-1-W1, LC1-1-W2) and dedicated teaching box (LC1-1-T1- $\square \square)$
Functions	Programming (JOG teaching, direct teaching*), Operation, Monitor, Test, Alarm reset
Number of programs	8 programs
Number of steps	1016 steps (127 steps $\times 8$ programs)

* Direct teaching is only available with LC1-1-W1 and LC1-1-W2.

Operating configuration

Item	Performance/Specifications
Operating methods	Operation by PLC, operating panel, etc., via control terminal; Operation by PC (controller setup software); Operation by teaching box
Summary of operations	Program batch execution (program designated operation), Step designated execution (position movement, point designated operation)
Test run functions	Program test, Step no. designated operation, JOG operation, Input/output operation
Monitor functions	Executed program indication, Input/output monitor

Peripheral device control

Item	Performance/Specifications
General purpose input	6 inputs, Photo-coupler insulation, 24V DC, 5mA
General purpose output	6 outputs, Open collector output, 35V DC max., 80mA/output (maximum load current)
Control commands	Output ON/OFF, Input condition wait, Condition jump, Time limit input wait

Safety items

Item	Performance/Specifications
Protection functions	Over current, Over load, Over speed, Encoder error, Abnormal driver temperature, Abnormal drive power supply,

Series LC1

Dimensions

LC1-1H $\square \mathrm{H} \square \square$

With regenerative absorption unit

LC1-1H $\square \mathrm{V} \square \square$

Controller Mounting

Mounting of the controller is performed by means of the two T-grooves provided on the bottom surface.
Mounting is possible from above or below using the special T-nuts or T-brackets. Refer to page 199 for further details.
Note) This controller comes with either the T-nuts or T-brackets as accessories.

Controller model	Mounting screw	Mounting bracket assembly
LC1-1H $\square \square \square \square-$ N3	M3 $\times 0.5$	LC1-1-N3
LC1-1H $\square \square \square \square$-N5	M5 x 0.8	LC1-1-N5
LC1-1H $\square \square \square \square-$ L3	M3	LC1-1-L3
LC1-1H $\square \square \square \square-$ L5	M5	LC1-1-L5

Mounting with T-nuts

Mounting with T-brackets

Part Descriptions

Controller Command Setting List
Actuator control commands

Classification	Function	Instruction	Parameter value
Movement	Absolute movement command	MOVA	Address (speed)
	Incremental movement command	MOVI	\pm Movement (speed)
	Acceleration setting command	ASET	Acceleration

I/O control commands

Classification	Function	Instruction	Parameter value
Output control	Output ON command	O-SET	General purpose output no.
	Output OFF command	O-RES	General purpose output no.
	Output reversal command	O-NOT	General purpose output no.
Input wait	AND input wait command	I-AND	General purpose input no., State
	OR input wait command	I-OR	General purpose input no., State
Input wait with time out function	AND input time out jump command	T-AND	General purpose input no., State (P-no.) label
	OR input time out jump command	T-OR	General purpose input no., State (P-no.) label
	AND input time out subroutine call command	C-AND	General purpose input no., State (P-no.) label
	OR input time out subroutine call command	C-OR	General purpose input no., State (P-no.) label
Condition jump	AND input condition jump command	J-AND	General purpose input no., State (P-no.) label
	OR input condition jump command	J-OR	General purpose input no., State (P-no.) label

Program control commands

Classification	Function	Instruction	Parameter value
Jump	Unconditional jump command	JMP	(P-no.) label
Sub-routine	Subroutine call command	CALL	(P-no.) label
	Subroutine end declaration	RET	
Loop	Loop start command	FOR	Loop frequency
	Loop end command	NEXT	
End	Program end declaration	END	
Timer	Timer command	TIM	Timer amount

Series LC1

Connection Examples

Control Input/Output Terminal: CN1

Terminal to perform actuator operation (connects PLC and operating panel)

CN1. Control input terminal list

Terminal	Pin no.	Description	Function
+24V	1,14	Common	The positive common of the input terminal.
SET-UP	2	Starting preparation	The terminal that performs setup operations (actuator starting preparation).
RUN	15	Starting	The terminal that performs program start.
Pro-no. bit1	17	Program designation	The terminal that designates the program to be executed. Can designate 8 types of programs with a total of 3 bits. (Set by the binary system.)
Pro-no. bit2	5		
Pro-no. bit3	18		
Stp-no. bit1	6	Step designation	The terminal that designates the step to be executed. Used when executing steps (position movement). (Set by the binary system.)
Stp-no. bit2	19		
Stp-no. bit3	7		
Stp-no. bit4	20		
Stp-no. bit5	8		
Stp-no. bit6	21		
Stp-no. bit7	9		
HOLD	3	Temporary stop	Temporarily stops the program run by means of the ON input.
$\overline{\text { STOP }}$	16	Emergency stop (nonlogical input)	Performs an emergency stop when ON input stops.
ALARM RESET	4	Alarm release	Releases the alarm being generated by means of the ON input.

CN1. Control output terminal list

Terminal	Pin no.	Description	Function
READY	23	System ready signal	Indicates ability to perform control terminal input and communication via the dedicated communication cable when ON.
SET-ON	10	Start readiness signal	Indicates that the SET-UP operation (start ready operation: return to home position after servo ON) is complete when ON. The state in which the program can be run.
BUSY	11	Operating signal	Indicates operation in progress when ON. ON when program is being executed and when returning to the home position.
$\overline{\text { ALARM }}$	24	Alarm output	When this signal is OFF, an alarm is being generated for the actuator/controller.
COM	12,25	Common	The output terminal common.

Control input/output terminal: CN1

General purpose input/output terminal: CN2

Timing for READY signal generation immediately after turning on power

Timing for home position return

Timing for program/step execution

Timing for alarm reset

Timing for temporary stop during operation

Timing for stop by ALARM-RESET during operation

Timing for emergency stop during operation

Response time with respect to controller input signals

The following factors exist for delay of response with respect to controller input signals.

1) Scanning delay of the controller input signal
2) Delay by the input signal analysis computation
3) Delay of command analysis processing

Factors (1) and (2) above apply to delay with respect to the SET-ON, ALARM-RESET and STOP signals.
Factors (1), (2) and (3) above apply to delay with respect to cancellation of the RUN and HOLD signals.

When signals are applied to the controller by means of a PLC, the PLC processing delay and the controller input signal scan delay should be considered, and the signal state should be maintained for 50 ms or longer.

It is recommended that the input signal state be initialized with the response signal to the input signal as a condition.

Windows/LC1-1-W2 (English)

Windows edition controller setup software includes all of the functions of PC-98 (MS-DOS) edition software, and the following functions have also been added.

- Direct teaching
- Program printing
- Batch editing and sending/receiving of all programs
- Batch management and multiple saving of parameters and programs

Operating environment

Computer	A model with a Pentium 75MHz or faster CPU, and able to fully operate Windows 95.
OS	Windows 95
Memory	16 MB or more
Hard disk	5 MB or more of disk space required

- The dedicated communications cable (LC1-1-R $\square \square \square$) is required when using this software.
- This software cannot be used with Windows 3.1.

Windows/LC1-1-W2 (English)

Screen example

- The contents of this software and the registered product specifications may change without prior notice.
- Duplicating, copying or reproducing of this software, in whole or in part, is prohibited without prior consent from SMC.
- SMC owns the copyright of this software.
- The intellectual property rights and other rights concerning this software are solely owned by SMC. This also applies to any future version upgrades and revised versions of this software.
- SMC does not assume any compensatory responsibility for any damage or loss of profit, etc., resulting from the use of this software.
- Windows and Microsoft are registered trade marks of Microsoft Corporation.
- MS-DOS is a registered trade mark of Microsoft Corporation.
- Pentium is a trade mark of Intel Corporation.
- PC-98 Series is a registered trade mark of NEC Corporation.

- Interactive input display
- Programming with the same language as PC software

Able to execute operations such as programming and parameter changes, which up until now have been performed from a PC.

* The special cable is packed with the teaching box.
$(2$ to 5 m$)$

How to Order
LC1-1-T1-0 2

- Cable length

$\mathbf{2}$	2 m
$\mathbf{3}$	3 m
$\mathbf{4}$	4 m
$\mathbf{5}$	5 m

Performance/Specifications

General specifications

Power supply	LC1-1-T1-0
Dimensions (mm)	$170 \times 76 \times 20$
Weight (g)	158
Case type	Resin case
Display unit	$46 \times 55 \mathrm{~mm}$ LCD
Operating unit	Key switches, LED indicators
Cable length	$2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$

Basic performance

	Performance/Specifications
Compatible controller	LC1 (all models)
Operating temperature range	5 to $50^{\circ} \mathrm{C}$
Functions	Programming, Parameter change, Setup, Operation, JOG operation, Monitor, Alarm reset, JOG teaching
Monitor functions	Movement position, Movement speed
Protection functions	Over current, Over load, Over speed, Encoder error, Abnormal driver temperature, Abnormal drive power supply, Communication error, Battery error, Limit out, Abnormal driver parameter, RAM malfunction
Protection function indicator	Alarm code

Dimensions

Alarm Code List

Alarm code	Alarm	Reset	Description
10	Emergency stop	\bigcirc	An emergency stop condition exists or has occurred in the past due to the controller setup software or the CN1 control STOP terminal.
11	Limit switch ON	\bigcirc	Limit switch is turned ON.
12	Battery error	\bullet	The memory backup battery voltage is low. Contact SMC.
13	Communication error	\bigcirc	Communication with the controller is interrupted.
14	RAM malfunction	\bullet	The parameter is damaged.
15	Soft stroke limit	\bigcirc	The program is about to exceed the stroke length set by the parameter.
20	Over current	\bullet	Three times the rated current or more is flowing into the driver unit.
21	Over load	\bullet	The driver unit continuously received a current exceeding the rated current for a prescribed time or longer.
22	Over speed	\bullet	The controller exceeded the maximum operational speed.
24	Abnormal driver temperature	\bullet	A temperature increase of the driver unit activated the temperature sensor.
25	Encoder error	\bullet	An encoder or actuator cable malfunction has occurred.
26	Abnormal drive current	\bullet	The driver unit power supply is shut off due to a regeneration problem, etc.
28	Abnormal driver parameter	\bullet	A driver parameter abnormality in the controller system has occurred.
30	Unsuccessful home position return	\bigcirc	Trying to execute a program/step without completing the setup (home position return).
31	No designated speed	\bigcirc	No speed designation with MOVA or MOVI, and no prior speed designation found.
32	No jump destination	\bigcirc	No label found at the program designated jump destination.
33	Nesting exceeded	\bigcirc	Sub-routine nesting (calling a sub-routine from another sub-routine) exceeds 14 levels.
34	No return destination	\bigcirc	No return destination found for the RET command operation.
35	Executing FOR	\bigcirc	A forbidden command is found between FOR and NEXT.
36	No FOR	\bigcirc	NEXT command was executed without executing FOR command.
37	No operation program	\bigcirc	Trying to execute a program/step with no commands.
38	Invalid movement command	\bigcirc	Trying to execute a command other than MOVA, MOVI, or ASET with a step (position movement) designated operation.
39	Format error	\bigcirc	An error is found in the attached value of a command being programmed.

* Refer to the Series LC1 instruction manual for alarm details.
* Explanation of "Reset" symbols above:

O: Can be reset by the alarm reset.

- Turning OFF the controller power is required for resetting.

Series LC1

Key Arrangement and Functions

For the operation of each mode, refer to the product's instruction manual.

Key	Functions
UP	Moves upward for item selections. Also used to increase values for data entry. In combination with L/R keys, this key drives the actuator at high speed during a JOG operation.
DOWN	Moves downward for item selections. Also used to decrease values for data entry. L It drives the actuator to the end side during a JOG operation.
R	Moves to the right for item selections. Also used to move a numerical value place to the right for data entry. It drives the actuator to the motor side during a JOG operation.
HOLD/BS	Returns to the previous mode during item selections. It becomes the temporary stop key during actuator operation.
MODE/ESC	Returns to the main mode during item selections. It exits all modes. STOPBecomes the emergency stop key during actuator operation. In combination with the ENT key, it launches JOG teaching and aids program editing.
ENT	Determines data during item selections. In combination with the STOP key, it launches JOG teaching and aids program editing.

Series LC1 Options

T-nuts and T-brackets for Mounting

Be sure to use when mounting the controller.
Note) The controller unit includes either T-nuts or T-brackets.

T-nuts

(Weight: 10.0g)

T-brackets

Controller Connectors

These are connectors 'all halfpitch type' used for CN1 (control input/output) and CN2 (general purpose input/output).
Note) The controller unit includes a controller connector for use with CN1 and CN2.

CN1 (Control input/output)

Controller connector (CN1: Control input/output)
Model LC1-1-1000

10326-52A0-008 Halfpitch hood (26P) Sumitomo/3M Limited
10126-3000VE Halfpitch plug (26P) Sumitomo/3M Limited
Single side wired controller connector (CN1: Control input/output) Model LC1-1-1050

Cable is connected to LC1-1-1000.

CN2 (General purpose input/output)

Controller connector (CN2: General purpose input/output) Model LC1-1-2000

10320-52A0-008 Halfpitch hood (20P) Sumitomo/3M Limited
10120-3000VE Halfpitch plug (20P) Sumitomo/3M Limited
Single side wired controller connector (CN2: General purpose input/output) Model LC1-1-2050

Cable is connected to LC1-1-2000.

Dedicated Communication Cables

These are cables used to connect controllers and PCs.
Note) Be aware of the configuration of the connector on the PC when selecting a dedicated communication cable..

Dedicated communication cable (D-sub) (For NEC PC-98 Series)
Model LC1-1-R $\square \mathbf{D}$

- Cable length

02-2m 04-4m
03-3m 05-5m

Dedicated communication cable (halfpitch) (For NEC PC-98 Series)

* PC-98 Series is a registered trade mark of NEC Corporation.

Dedicated communication cable (IBM PC/AT compatible computer)

The regenerative absorption unit absorbs the energy (regenerative energy) that is generated by the motor when it decelerates. It is used to prevent drive power abnormality in the controller.

\triangle Danger

1. Contact SMC if the connected controller power supply voltage will be 110V AC or 220 V AC, as this may cause fire or malfunction.
2. Secure a distance of 50 mm or more between the body and control panel interior or other equipment, as this may cause fire or malfunction.
3. Confirm that there are no problems with terminal polarity, pin numbers, and crimping before connecting, as they may cause damage, malfunction, injuries, or fire.
4. Set up a circuit that shuts off the connected controller main power supply if trouble occurs in the regenerative absorption unit.
5. The regenerative absorption unit (LC7R) is exclusively for use with series LC1 controller connection. Therefore, never connect it to other equipment as this may cause fire or malfunction.

How to Order

Regenerative Absorption Unit

$\mathbf{1}$	$100 \mathrm{~V} \mathrm{AC}(50 / 60 \mathrm{~Hz})$
$\mathbf{2}$	$200 \mathrm{~V} \mathrm{AC}(50 / 60 \mathrm{~Hz})$

Nil	Without accessory
S1	Series LC1 connector and contact pin + Regenerative absorption unit connector and contact pin
C1	Series LC1 connection cable (0.5 m) Note 2)

Note 1) Consult SMC if the connected controller power supply voltage will be 110 V AC or 220 V AC.
Note 2) The temperature control output cable length is 1 m . Also, the connector cable already has the required contact pin and connector assembled.

Single Option

S0	Regenerative absorption unit connector and pin
S1	Series LC1 connector and pin
C1	Series LC1 connection cable $(0.5 \mathrm{~m})$ Note)

Note) The temperature control output cable length is 1 m . Also, the connector cable already has the required contact pin and connector assembled.

Specifications

Model	LC7R-K11A $\square \square$	LC7R-K12A $\square \square$
Regeneration method	Heat exchange method based on resistance	
Regenerative resistance capacity	40W	
Regenerative operation voltage	180V	380 V
Protective circuit	Regenerative voltage input mis-wiring protection Over current protection, Overheating protection (Normally closed, Radiator sensor OFF at $100^{\circ} \mathrm{C}$)	
Ambient operating temperature	0 to $40^{\circ} \mathrm{C}$	
Connected controller power voltage	100V AC	200V AC
External connection method	Connector	
Insulation resistance	500 V DC, $50 \mathrm{M} \Omega$ or more	
Mounting	DIN rail mount	

Dimensions

Connection Examples

- Electrical wire

__ Cover O.D.: Max. 3.1 mm (AWG18 to 20) [0.5m or less] $=-\quad$ Cover O.D.: Max. 3.1 mm (AWG18 to 24) [1m or less]

- Temperature control output terminal

Maximum rated voltage: 30V
Maximum rated current: 6 mA

Note) Select 6 mA or less for resistor R after confirming the input capacity of the control equipment.

- Regenerative absorption unit connectors [Manufacturer: Molex Japan Co., Ltd.]

Description	Part no.	Quantity
Receptacle	$5557-06 R$	1
Female terminal	5556 PBTL	6

- Wiring tools [Manufacturer: Molex Japan Co., Ltd.]

Wiring tools should be provided by customer.

Description	Part no.
Crimping tool	57026-5000 (for UL1007)
Puller	$57027-5000$ (for UL1015)

- Contact pin number

Terminal	Pin no.	Description
Vin (P)	$\mathbf{2}$	Regenerative absorption unit power input (positive)
Vin (N)	$\mathbf{3}$	Regenerative absorption unit power input (negative)
Vout (P)	$\mathbf{1}$	Extended regenerative resistance output (positive)
Vout (N)	$\mathbf{4}$	Extended regenerative resistance output (negative)
ALM (P)	$\mathbf{5}$	Temperature control output terminal (positive)
ALM (N)	$\mathbf{6}$	Temperature control output terminal (negative)

Insertion side

1	2	3
4	5	6

Series LC7R

Brake Wiring Example

A wiring example for controller (Series LC1) connectors and a brake is shown below. The brake is in a de-energized condition and locked. 24 VDC is required to unlock it. The brake terminal is located in the motor power line connector (CN5), and it is connected to the relay switch inside the controller. By connecting the wiring to this terminal, turning on and off of the brake is controlled by the controller. (The brake does not have polarity.)
 AC or single phase 200 V AC) is shut off, use a relay to shut off 24 V DC.

\triangle Danger

1. When not connecting a regenerative absorption unit, use a blanking plate to cover CN6, as there is a danger of electrocution or injury.
2. The manual brake unlocking switch unlocks the brake during maintenance or an emergency. Mount the switch when it is necessary for maintenance, etc. Be sure to turn the switch off for purposes other than maintenance, etc. The brake will not operate with the switch on at emergency.
3. If the manual brake unlocking switch is not mounted, the brake cannot be unlocked for an emergency.

\triangle Caution

1. A regenerative absorption unit is required depending on actuator operating conditions. Read the instruction manual for the regenerative absorption unit when one is connected.

Non-Standard Motor Compatible Drivers

Matsushita Electric Industrial Co., Ltd. Drivers for LTF (For the hoding brake wining, refer to technical intomaiton provided by e each manuracurver)

Dimensions

Driver

Driver dimensions

Driver model	A
MSD013P1E	35
y MSD011P1E	45
MSD023P1E	
MSD021P1E	60

Driver input/output signal list (CN-1/F connector)

Pin no.	Symbol	Signal description	Pin no.	Symbol	Signal description
1	COM+	Control signal power supply	12	IM	Torque monitor signal
2	SRV-ON	Servo ON input	13	COM-	Control signal power supply
3	A-CLR	Alarm clear input	14	GND	
4	CL	Counter clear input	19	OZ+	Z phase output
5	GAIN	Gain switching input	20	OZ-	Z phase output
6	DIV	Command divider switching input	21	CZ	Z phase output
7	CWL	CW drive suppression input	22	CW+	CW pulse input
8	CCWL	CCW drive suppression input	23	CW-	CW pulse input
9	ALM	Servo alarm output	24	CCW+	CCW pulse input
10	COIN	Positioning complete signal output	25	CCW-	CCW pulse input
11	SP	Speed monitor signal	26	FG	Frame ground

Non-standard Motor Compatible Drivers

Mitsubishi Electric Corporation Drivers for LTF (For the holding brake wiring, refer to technical information provided by each manuruacurer.)
Dimensions (RS-232C without optional unit)

Driver

Driver dimensions Driver input/output signal list (CN-1/F connector)

Driver model
MR-C10A
MR-C20A
MR-C10A1
MR-C20A1

Pin no.	Symbol	Signal description	Pin no.	Symbol	Signal description
1	V+	Digital output power supply	11	SD	Shield
2	ALM	Failure	12	SG	Interface power supply common
3	PF	Positioning complete	13	CR	Clear
4	OP	Z phase pulse	14	LSN	Reverse stroke end
5	SG	Interface power supply common	15	LSP	Normal stroke end
7	NP	Reverse pulse line	16	V5	Interface power supply
8	NG	Reverse pulse line	17	SON	Servo ON
9	PP	Normal pulse line	19	OPC	Open collector power supply
10	PG	Normal pulse line	20	V24	Interface power supply

Example for driver connection between equipment

Note 1) Do not orient diodes incorrectly. The amp will fail if connected incorrectly.
Note 2) Wiring for a standard cable less than 10 m . When the cable length is 10 m or longer, four lines each of P5 and LG wires should be connected in parallel. (Maximum 50m)
Note 3) Signals having the same description should be connected to the same pin on the connector.
Note 4) The failure (ALM) signal is ON under normal conditions when there is no alarm. When it goes OFF (when an alarm is generated), the controller output should be stopped by the sequence program.
Note 5) The LSP and LSN signals do not require wiring, because they are automatically turned on internally at the time of shipment. (They can also be validated by parameters.)
Note 6) A sequence should be implemented to turn on the RDY relay after confirming that there is no trouble with the servo (ALM signal is ON).
Note 7) For motor with electromagnetic brake

Yasukawa Electric Corporation Drivers for LTF (For the holding brake wiring, refer to tocchnical intormation provided by each manuracturer.)

Dimensions

Driver

Driver dimensions

Driver model	A	B
SGDE-01AP		
SGDE-01BP	50	55
SGDE-02AP		
SGDE-02BP	65	75

Driver input/output signal list (CN-1/F connector)

Pin no.	Signal	Signal description	Pin no.	Signal	Signal description
1	PULS	Command pulse input	14	$\overline{\text { S-ON }}$	Servo ON input
2	*PULS	Command pulse input	15	$\overline{\mathrm{P}-\mathrm{ON}}$	P actuation input
3	SIGN	Command code input	16	P-OT	Normal rotation suppression input
4	*SIGN	Command code input	17	N-OT	Reverse rotation suppression input
5	CLR	Deviation counter clear input	18	$\overline{\text { ALMRST }}$	Alarm reset input
6	*CLR	Deviation counter clear input	32	PCO	PG output C phase
7	$\overline{\mathrm{BK}}$	Brake interlock signal output	33	SG	OV
8	$\overline{\mathrm{COIN}}$	Positioning complete signal output	34	ALM	Servo alarm output
10	SG	OV	35	SG	0 V
13	P-IN	External power supply input	36	FG	Frame ground

Example for driver connection between equipment

Applicable switch models

Applicable model	Part no.	Switch type		
LTF	GXL-N12FT	Standard	N.O. (A contact)	3 wire
	GXL-N12FTB	Standard	N.C. (B contact)	3 wire

Switch specifications (SUNX Corporation)

Part no.		GXL-N12FT(B)
Repeatability		Direction of detecting axis, Perpendicular to detecting axis: 0.04 mm or less
Power supply voltage		12 to 24 V DC $\pm 10 \%$, Ripple P-P 10% or less
Current consumption		15 mA
Output		NPN Maximum load current: 100 mA Maximum applied voltage: 30 V DC Residual voltage: 1 V or less (At 100 mA inrush current) 0.4 V or less (At 16 mA inrush current)
Maximum response frequency		500 Hz
Indicator light		Red LED (lights up when ON)
Environmental resistance	Ambient temperature	-10° to $55^{\circ} \mathrm{C}$
	Ambient humidity	45 to 85\% RH
	Noise resistance	Power line: 240 Vp , pulse width of $0.5 \mu \mathrm{~s}$
Detecting distance fluctuation	Temperature characteristics	Within $+15 /-10 \%$ of detecting distance at $20^{\circ} \mathrm{C}$ within ambient temperature range
	Voltage characteristics	Within $\pm 2 \%$ with $\pm 10 \%$ fluctuation of operating voltage
Cable		CN-13-C3 ($\square 3.8 \mathrm{~mm} 3$ wire heavy duty cable 3m)

Proximity switch internal circuit

Be sure to use the mounting screws included, and mount the proximity switch as shown in the drawing to the right. Mount the dog fitting for proximity switch as illustrated to the right.
Always use the proper tightening torque and use a thread locking agent on screws to prevent loosening.

Proximity Switch/Dog Fitting for Proximity Switch Mounting

Standard Photo Micro Sensor for Home Position (OMRON Corporation)

Rating

Power supply voltage	5 to $24 \mathrm{~V} \mathrm{DC} \pm 10 \%$, Ripple (p-p) 10% or less
Current consumption	35 mA or less
Control output	5 to 24 VDC load current (Ic) 100 mA, Residual voltage 0.8 V or less Load current (lc) 40 mA , Residual voltage 0.4 V or less
Ambient temperature	Operation: -25 to $55^{\circ} \mathrm{C}$ (When stored: -30 to $80^{\circ} \mathrm{C}$)
Ambient humidity	Operation: 5 to 85% RH (When stored: 5 to $95 \% \mathrm{RH}$)
Part no.	EE-SX674
Part no. of connector with code	EE-1010
Applicable actuator	LTF

Be sure to use the attached mounting screws.

Mount the photo micro sensor as illustrated to the right.
Mount the dog fitting for photo micro sensor as illustrated to the right.
Be sure to observe the prescribed tightening torque. Use special adhesive for screws for locking.
Terminal arrangement

1	Brown	Vcc	\oplus
2	White	L^{*}	
3	Black	OUTPUT	
4	Blue	GND (OV)	\bigodot

* Normally ON when light is blocked. However, if the (L) terminal and \oplus terminal are shorted, it changes to ON when light enters.

Output level circuit

Operating condition of output transistor	ON when light enters	ON when light is blocked
Output circuit	* Normally ON when light is bloc terminal are shorted, it change	However, if the (L) terminal and ON when light enters.
Time chart		

Photo Micro Sensor/ Dog Fitting for Photo Micro Sensor Mounting

Inquiry Sheet

Fill out the form and contact the nearest SMC sales office or distributor.

Name of customer	Company name		
	Dept.	Contact person	
Contact telephone/ fax no.	Telephone	Fax	
Mounting orientation	Horizontal, Horizontal wall mount, Horizontal reverse mount, Vertical		
Work piece load (kg)			
Stroke (mm)			
Speed (mm/s)			
Positioning repeatability (mm)	$\pm 0.1, \pm 0.05, \pm 0.02$		
Components Circle components provided by customer.	Units required Controller - Actuator only - Actuator + Motor - Actuator + Motor + Driver (controller) (1) Motor/Driver: Yes (Manufacturer: : No - Proceed to (2). (2) Controller/Driver selection: a) Controller provided by customer PLC (Manufacturer: Positioning unit (pulse output function): Yes, No b) Driver specifications Power supply: 24 V DC, 100 V AC, 200 V AC International standard compatibility: None, CE, UL c) Motor type: AC servomotor, Stepper motor (2 phase/5 phase), Brushless motor		
Operation pattern Describe in detail.			
Tact time	 Confirm the amount of time in seconds needed to cover the moving distance. Moving distance: \qquad mm t = Tact time: \qquad s S = Cycle time: \qquad s		
Work piece moment	Example) Projection		
Environment	General, Clean room, Mist environment, Dusty environment		

Series LTF Safety Instructions

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by a label of "Caution", "Warning" or "Danger". To ensure safety, be sure to observe ISO 10218 Note 1), JIS 8433 Note 2) and other safety practices.

[^88]
Warning

1. The compatibility of electric actuators is the responsibility of the person who designs the system or decides its specifications.
Since the products specified here are used in various operating conditions, their compatibility for the specific system must be based on specifications or after analysis and/or tests to meet your specific requirements. The expected performance and safety assurance will be the responsibility of the person who has determined the compatibility of the system. This person should continuously review the suitability of all items specified, referring to the latest catalog information with a view to giving due consideration to any possibility of equipment failure when configuring a system.
2. Only trained personnel should operate this equipment.

Electric actuators can be dangerous if an operator is unfamiliar with them. Assembly, handling or repair of systems using electric actuators should be performed by trained and experienced operators.
3. Do not service machinery/equipment or attempt to remove components until safety is confirmed.

1. Inspection and maintenance of machinery/equipment should only be performed after confirmation of safe locked-out control positions.
2. When equipment is to be removed, confirm the safety process as mentioned above, and shut off the power supply for this equipment.
3. Before machinery/equipment is restarted, confirm that safety measures are in effect.
4. Contact SMC if the product is to be used in any of the following conditions:
5. Conditions and environments beyond the given specifications, or if product is used outdoors.
6. Installation on equipment in conjunction with atomic energy, medical equipment, food and beverages, or safety equipment.
7. An application which has the possibility of having negative effects on people, property or animals, requiring special safety analysis.

Series LTF Electric Actuator Precautions 1
Be sure to read before handling.

Design

. Warning

1. There is a possibility of dangerous sudden action by actuators if sliding parts of machinery are twisted due to external forces, etc.
In such cases, human injury may occur, e.g., by catching hands or feet in the machinery, or damage to the machinery itself may occur. Therefore, the machine should be adjusted for smooth operation and designed to avoid such dangers.
2. A protective cover is recommended to minimize the risk of human injury.
If a driven object and moving parts of an actuator pose a danger of human injury, design the structure to avoid contact with the human body.
3. Securely tighten all stationary parts and connected parts of electric actuators so that they will not become loose.
Avoid use in locations where direct vibration or impact shock, etc., will be applied to the body of the actuator.
4. In cases where dangerous conditions may result from power failure or malfunction of the product, install safety equipment to prevent damage to machinery and human injury. Consideration must also be given to drop prevention with regard to suspension equipment and lifting mechanisms.
5. Consider possible loss of power sources.

Take measures to protect against human injury and machine damage in the event that there is a loss of air pressure, electricity or hydraulic power.
6. Consider emergency stops.

Design so that human injury and/or damage to machinery and equipment will not be caused when machinery is stopped by a safety device under abnormal conditions such as a power outage or a manual emergency stop.
7. Consider the action when operation is restarted after an emergency stop or abnormal stop.
Design the machinery so that human injury or equipment damage will not occur upon restart of operation.

Operation

\triangle Caution

1. In order to ensure proper operation, be certain to read the instruction manual carefully. As a rule, handling or usage/operation other than that contained in the instruction manual are prohibited.
2. The actuator can be used with a load directly applied within the allowable range. However, design for an appropriate connecting method and careful alignment are necessary when a load with external support and guide mechanisms is connected.
Please note that the reference plane for actuator body mounting should only be used as a guideline to install the body. Never use it as a reference plane to align the entire equipment with external support and guide mechanisms.
The longer the stroke is, the larger the variation in the axial center becomes. Therefore, devise a connection method to absorb the variation.

Operation

\triangle Caution

3. Since the bearing parts and parts surrounding the lead screw are adjusted at the time of shipment, do not change the setting of the adjusted parts.
4. The product can be used without lubrication. In case the product is to be lubricated, use lithium grease (JIS 2).
5. If the actuator will be used in an environment where it will be exposed to chips, dust, cutting oil (water, liquids), etc., a cover or other protection should be provided.
6. See to it that no repeated bending stress or stretching force is applied to the motor cable.
7. Since no protective cover is installed on the product, provide an external protective cover protecting the entire product wherever possible.
Using the product in an environment where it is exposed to water, liquid coolant or dust such as iron powder will cause an adverse effect to the ball screw and the guide. Therefore, an external cover is also required for dust prevention.
8. Secure the work piece firmly on the top of the table using the four mounting holes.
Never use the actuator with the work piece mounted only on one side of the table.
9. If the electric actuator is repeatedly operated for short stroke cycles (20 mm for LJ, 10 mm for LX), this may cause loss of grease. Therefore, operate the actuator for a full stroke once every scores of cycles.

Selection

© Warning

1. Confirm the specifications.

The products in this catalog should not be used outside the range of specifications, as this may cause damage or malfunction, etc. (Refer to specifications.)

\triangle Caution

1. The operation of the actuator should be confirmed at a low speed. Operate it at the prescribed speed only after proper operation is confirmed.

Series LTF Electric Actuator Precautions 2
Be sure to read before handling.

Mounting

Caution

1. Do not use until you verify that the equipment can operate properly.
2. The product should be mounted and operated after thoroughly reading the instruction manual and understanding its contents.
3. Do not dent, scratch or cause other damage to the body and table mounting surfaces.
This may cause a loss of parallelism in the mounting surfaces, looseness in the guide unit, an increase in operating resistance or other problems.
4. When attaching a work load, do not apply strong impact shock or a large moment.
If an outside force exceeding the allowable moment is applied, this may cause looseness in the guide unit, an increase in sliding resistance or other problems.
5. When connecting a load having an external support or guide mechanism, be sure to select a suitable connection method and perform careful alignment.
6. Take care that cables are not caught by actuator movement.
7. Do not use in locations where there is vibration or impact shock. Contact SMC before using in this kind of environment, as damage may result.
8. Give adequate consideration to the arrangement of wiring, etc., when mounting. If wiring is forced into inappropriate arrangement, this may lead to breaks in the wiring and result in malfunction.
9. Avoid use in the following environments.
10. Locations with a lot of debris or dust, or where chips may enter.
11. Locations where the ambient temperature exceeds the range of 5 to $40^{\circ} \mathrm{C}$.
12. Locations where the ambient humidity exceeds the range of 10 to 90%.
13. Locations where corrosive or combustible gases are generated.
14. Locations where strong magnetic or electric fields are generated.
15. Locations where direct vibration or impact shock, etc., will be applied to the actuator unit.

Grounding

\triangle Caution

1. Be sure to carry out grounding in order to ensure the noise tolerance of the controller.
2. Dedicated grounding should be used as much as possible. Grounding should be to a type 3 ground. (Ground resistance of 100Ω or less.)
3. Use a wire with a sectional area of $2 \mathbf{~ m m}^{2}$ or larger for grounding. Grounding should be as close as possible to the controller, and the ground wires should be as short as possible.
4. In the unlikely event that malfunction is caused by the ground, it may be disconnected.

Power Supply

© Caution

1. In cases where voltage fluctuations greatly exceed the prescribed voltage, a constant voltage transformer, etc., should be used to operate within the prescribed range.
2. Use a power supply that has low noise between lines and between power and ground. In cases where noise is high, an isolation transformer should be used.
3. The power supply line to the controller and the interface power supply line to general input/output and control terminals (24V DC) must be wired separately in different systems.
4. To minimize the voltage drop, use $100 / 200 \mathrm{~V} A C$ and 24 V DC wires with the largest sectional areas possible and keep the wiring length as short as possible.
5. The $100 / 200$ V AC wire must not be bundled with or arranged in close proximity with the input/output lines of control terminals or encoder signal lines. If possible, keep a 100 mm or larger distance from such lines.
6. To prevent surges from lightening, connect a varistor for lightning. Ground the surge absorber for lightning separately from the grounding of the controller.

Operating Environment

\triangle Caution

1. Do not use the actuator in an environment where there is possible danger of corrosion.
2. Install a protective cover on the entire product in an environment where a large amount of dust is present or where the product is exposed to water or oil drops.
3. Do not use the actuator in an environment where a strong magnetic field is present.

Maintenance

© Warning

1. Perform maintenance according to the procedures indicated in the instruction manual.
If handled improperly, malfunction and damage of machinery or equipment may occur.
2. Removal of equipment

When equipment is to be removed, first confirm that measures are in place to prevent dropping or runaway of driven objects, etc., and then proceed after shutting off the electric power. When starting up again, proceed with caution after confirming that conditions are safe.

Photo Micro Sensor and Proximity Switches Precautions
Be sure to read before handling.
Refer to the main pages for precautions on respective series.

Operating Environment

\triangle Warning

1. Never use in an atmosphere of explosive gases.

The construction of auto switches is not intended to prevent explosion. Never use in an atmosphere with an explosive gas since this may cause a serious explosion.
2. Do not use in an area where a magnetic field is generated.
Auto switches will malfunction or magnets inside actuators will become demagnetized.
3. Do not use in an environment where the auto switch will be continually exposed to water.
Do not use switches in applications where they will be continually exposed to water splash or spray. Poor insulation or swelling of the potting resin inside switches may cause malfunction.
4. Do not use in an environment with oil or chemicals.

Consult SMC if auto switches will be used in an environment with coolant, cleaning solvent, various oils or chemicals. If auto switches are used under these conditions for even a short time, they may be adversely affected by improper insulation, malfunction due to swelling of the potting resin, or hardening of the lead wires.
5. Do not use in an environment with temperature cycles. Consult SMC if switches are used where there are temperature cycles other than normal air temperature changes, as they may be adversely affected internally.
6. Do not use in an area where surges are generated.

When there are units (solenoid type lifter, high frequency induction furnace, motor, etc.) which generate a large amount of surge in the area around actuators with solid state auto switches, this may cause deterioration or damage to the internal circuit elements of the switch. Avoid sources of surge generation and crossed lines.
7. Avoid accumulation of iron waste or close contact with magnetic substances.
When a large amount of ferrous waste such as machining chips or spatter is accumulated, or a magnetic substance (something attracted by a magnet) is brought into close proximity with an auto switch actuator, it may cause auto switches to malfunction due to a loss of the magnetic force inside the actuator.
8. Keep the sensor away from splashes of organic solvents, acids, alkalis aromatic hydrocarbons or chloroaliphatic hydrocarbons. Melting may be caused by such chemicals splashed on the sensor, resulting in possible decline of performance.

Other

\triangle Warning

1. Consult SMC concerning water resistance, flexibility of lead wires, and usage at welding sites, etc.

Incorrect Usage

\triangle Caution

1. Do not operate beyond the rated voltage range.

If applying voltage over the rated voltage range, equipment may be damaged.
2. Avoid incorrect wiring such as polarity of power supply.
Otherwise, equipment may be damaged.
3. Do not short circuit the load. (Do not connect to power supply.)
Otherwise, equipment may be damaged.

Note) Lead wire colors inside [] are those prior to conformity with IEC standards.

Other

\triangle Caution

1. Power lines and high voltage lines should not be in the same piping or duct with wiring of the photo micro sensor, as the system may malfunction or be damaged due to induction. Separate wiring or individual piping is required to avoid such trouble.
2. If operating with a small induction load such as a relay, wire as shown in the figure below. (In this case, be sure to connect a reverse voltage suppression diode.)

SMC'S GLOBAL MANUFACTURING, DISTRIBUTION AND SERVICE NETWORK

EUROPE

AUSTRIA
SMC Pneumatik GmbH
CZECH
SMC Industrial Automation CZ s.r.o.
DENMARK
SMC Pneumatik A/S
FINLAND
SMC Pneumatiikka Oy
FRANCE
SMC Pneumatique SA
GERMANY
SMC Pneumatik GmbH
HUNGARY
SMC Ipari Automatizálási Kft.
IRELAND
SMC Pneumatics (Ireland) Ltd.
ITALY
SMC Italia S.p.A.
LATVIA
SMC Pnuematics Latvia SIA
NETHERLANDS
SMC Pneumatics BV.
NORWAY
SMC Pneumatics Norway A/S

POLAND

SMC Industrial Automation Polska Sp.z.o.o.
ROMANIA
SMC Romania s.r.I.
RUSSIA
SMC Pneumatik LLC.

SLOVAKIA

SMC Priemyselná Automatizáciá, s.r.o.

SLOVENIA

SMC Industrijska Avtomatika d.o.o.
SPAIN/PORTUGAL
SMC España, S.A.
SWEDEN
SMC Pneumatics Sweden AB
SWITZERLAND
SMC Pneumatik AG.
UK
SMC Pneumatics (U.K.) Ltd.

ASIA

CHINA
SMC (China) Co., Ltd.
HONG KONG
SMC Pneumatics (Hong kong) Ltd.

INDIA

SMC Pneumatics (India) Pvt. Ltd.
INDONESIA
PT. SMC Pneumatics Indonesia

MALAYSIA

SMC Pneumatics (S.E.A.) Sdn. Bhd.
PHILIPPINES
SMC Pneumatics (Philippines), Inc.
SINGAPORE
SMC Pneumatics (S.E.A.) Pte. Ltd.
SOUTH KOREA
SMC Pneumatics Korea Co., Ltd.

TAIWAN
SMC Pneumatics (Taiwan) Co., Ltd.
THAILAND
SMC Thailand Ltd.

NORTH AMERICA

CANADA

SMC Pneumatics (Canada) Ltd.

MEXICO

SMC Corporation (Mexico) S.A. de C.V.
USA
SMC Corporation of America

SOUTH AMERICA

ARGENTINA

SMC Argentina S.A.
BOLIVIA
SMC Pneumatics Bolivia S.R.L.

BRAZIL

SMC Pneumaticos Do Brazil Ltda.
CHILE
SMC Pneumatics (Chile) S.A.
VENEZUELA
SMC Neumatica Venezuela S.A.
OCEANIA

AUSTRALIA

SMC Pneumatics (Australia) Pty. Ltd
NEW ZEALAND
SMC Pneumatics (N.Z.) Ltd.

SMC Corporation

1-16-4 Shimbashi, Minato-ku, Tokyo 105-8659 JAPAN
Tel: 03-3502-2740 Fax: 03-3508-2480
URL http://www.smcworld.com
© 2002 SMC CORPORATION All Rights Reserved

SMC

e-Rodless Actuator

NewRemote control type 5 -point stoppable type has been added.

Integrated
control type

Remote control type

Cam follower guide type
Series E-MY2C
High precision guide type
Series E-MY2H No programming required
Realizing electric controllability similar to that of an air cylinder by 3 step operation

Stroke adjustment

(1) Movable stroke adjusting unit (2) Small incremental adjustments can be made by using an adjusting bolt

Possible to operate by using the same signals as those for a solenoid valve (with a PLC)

Stroke learning

Press STROKE STUDY switch

Having both the operationability of an air cylinder and the speed controllability of an electric actuator

New actuator concept

Easy Maintenance

The actuating part and the guide unit can be separated from the cylinder body.

New Locking Functions

Settings for speed/acceleration can be locked.
If the speed/acceleration switch is changed in the middle of locking, the alarm light will blink. However, the motion will continue in accordance with the preprogrammed settings.

* Settings for locking a stroke and intermidiate position are not applicable.

Motor Placement: Mounting position of the motor is user selectable and can either be on the top, bottom, left, or right of the actuator.

Manual Operation Is Possible.

New
 Remote Control Type

Easy to reset after installation as a result of the remote controller
Suited for installing where it is difficult to reach because the controller can be operated in an easily accessible location
-Cable length is selectable from $1 \mathrm{~m}, 3 \mathrm{~m}$ and 5 m
-Improvement in the maximum operating temperature from $40^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (Actuator part only) -Mounting method can be selected among 3 types

DIN rail mount

L-bracket mount

Intermediate Stop Is Possible.

3-point stoppable type

(2-point for both ends and 1-point for an intermediate stop)
One intermediate stop is possible beside stops at both ends.

5-point stoppable type

(2-point for both ends and 3-point for an intermediate stop)
5 -point positioning is possible at any preferred locations.

New Stop Functions by External Inputs (5-point stoppable type only)

Stop command by an external input such as a PLC or PC makes it possible to decelerate or stop a slider (as programmed).

Repeatability of stop functions by external stop

Travelling speed (mm/s)	100	500	1000
Repeatability (mm)	± 0.5	± 1.0	± 2.0

Note) The valves shown are to be used as a selection guide and are not guaranteed.

Application example 1

Quick start-up is possible after stopping.

Stop method	Stop by external inputs	Emergency stop
Stopping acceleration (deceleration speed)	Value of a switch for setting acceleration	$4.9 \mathrm{~m} / \mathrm{s}^{2}$
Initial motion speed after stopping	Value of a switch for speed	$50 \mathrm{~mm} / \mathrm{s}$

* Settings for emergency acceleration and speed cannot be changed.

How to Reset Alarm

- Alarm reset by external input such as PLC, PC etc. Alarm ocurring in the e-rodless actuator can be reset by the controller.
- Alarm reset manually by controller
* Perform an alarm reset after the probable cause of the alarm has been removed.

Variations

Series	E-MY2C		E-MY2H	
Guide type	Cam follower guide	High precision guide		
Controller type	Integrated controller/Remote controller			
Nominal size	16	25	16	25
Payload (kg)	5	10	5	10
Stroke (mm)	$\mathbf{5 0}$ to 1000 (Available in 1 mm increments.)			

Application example 2

Signal from auto switches on the e-rodless cylinder can make it decelerate or stop.

Stoppable at both ends (2-point) and at intermediate strokes (4-point)

Series E-MY2

Model Selection 1

The following are steps for selecting the E-MY2 series best suited for your application.

Guideline for Determining the Cylinder Model Temporarily

Cylinder model	Guide type	Slide table general accuracy	

Types of Moment Applied to Rodless Cylinders

Multiple moments may be generated depending on the mounting orientation, load, and position of the center of gravity.

Coordinates and moments

Dynamic moment

a: Set acceleration degree, v: Set speed

Mounting orientation		Horizontal mounting	Ceiling mounting	Wall mounting
Dynamic load (FE_{E})		$\mathrm{m}_{\mathrm{n}} \times \mathrm{a}$		
	M1E	$\frac{1}{3} \times F_{E X X}$		
	M 2 E	Dynamic moment M2E does not occur.		
	M ${ }_{\text {3 }}$	$\frac{1}{3} \times F_{E} \times Y$		

Note) Regardless of the mounting orientation, dynamic moment is calculated with the formulas above.

Static moment

Ceiling mounting

Mounting orientation		Horizontal mounting	Ceiling mounting	Wall mounting
Static load (m)		m_{1}	m_{2}	m ${ }$
	M ${ }_{1}$	$\mathrm{m}_{1} \times \mathrm{gxX}$	$\mathrm{m}_{2} \times \mathrm{gxX}$	-
	M ${ }_{2}$	$\mathrm{m}_{1} \times \mathbf{g x} \mathbf{Y}$	$\mathrm{m}_{2} \times \mathrm{gXY}$	$\mathrm{m}_{3} \times \mathrm{gx} \mathrm{Z}$
	M_{3}	-	-	$\mathrm{m}_{3} \times \mathrm{gXX}$

g: Gravitational acceleration ($9.8 \mathrm{~m} / \mathrm{s}^{2}$)

Maximum Allowable Moment/Maximum Load Weight

Model	Nominal size $(\mathbf{m m})$	Maximum allowable moment (N.m)			Maximum load weight (kg)		
		$\mathbf{M} \mathbf{1}$	$\mathbf{M} \mathbf{2}$	$\mathbf{M} \mathbf{3}$	$\mathbf{m} \mathbf{1}$	$\mathbf{m} \mathbf{2}$	$\mathbf{m} \mathbf{3}$
E-MY2C	$\mathbf{1 6}$	5	4	3.5	18	16	14
	$\mathbf{2 5}$	13	14	10	35	35	30
E-MY2H	$\mathbf{1 6}$	7	6	7	15	13	13
	$\mathbf{2 5}$	28	26	26	32	30	30

The above values are the maximum allowable values for moment and load weight. Refer to each graph regarding the maximum allowable moment and maximum load weight for a particular slide table speed.

Load weight (kg)

Moment (N.m)

<Calculation of guide load factor>

1. Maximum allowable load (1), static moment (2), and dynamic moment (at the time of acceleration/deceleration) (3) must be examined for the selection calculations.

* Calculate m max for (1) from the maximum load weight ($m 1, m 2, m 3$) and Mmax for (2) and (3) from the maximum allowable moment graph ($\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M} 3$).

$\left(\begin{array}{l} \text { Sum of } \\ \text { guide load } \\ \text { factors } \end{array} \Sigma \alpha=\frac{\text { Load weight [m] }}{\text { Maximum load weight }}+\frac{\text { Static moment [M] Note 1) }}{[\mathrm{m} \text { max] }} \begin{array}{c} \text { Allowable static moment } \\ {[M \max]} \end{array}+\frac{\text { Dynamic moment [ME] }{ }^{\text {Note 2) }}}{\begin{array}{c} \text { Allowable dynamic moment } \\ {[M E \max]} \end{array}}\right.$			

Note 1) Moment caused by the load, etc., with actuator in resting condition.
Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of collision to stopper).
Note 3) Depending on the shape of the work piece, multiple moments may occur. When this happens, the sum of the load factors $(\Sigma \alpha)$ is the total of all such moments.
2. Reference formulas [Dynamic moment at impact]

Use the following formulas to calculate dynamic moment when taking stopper impact into consideration.
m : Load mass (kg)
L_{1} : Distance to the load's center of gravity (m)
F : Load (N)
Me: Dynamic moment ($\mathrm{N} \cdot \mathrm{m}$)
F_{E} : Load at acceleration and deceleration (N)
a : Set acceleration ($\mathrm{m} / \mathrm{s}^{2}$)
v : Set speed (mm/s)
M : Static moment (N•m)
$F_{E}=m \cdot a$
1
${ }_{3}^{\mathrm{M}}=-\cdot \mathrm{F}_{\mathrm{E}} \cdot \mathrm{L}_{1}(\mathrm{~N} \cdot \mathrm{~m}){ }^{\text {Note 4) }}$
Note 4) Average load coefficient $\left(=\frac{1}{3}\right)$:
This coefficient is for averaging the dynamic moment
according to service life calculations.
3. Refer to pages 5 and 6 for detailed model selection procedures.

Maximum Allowable Moment

Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.

Maximum Load Weight

Select the load weight from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.

The graph value is for calculating the guide load factors. Refer to the table below for actual maximum load weight.

Nominal size	Maximum load weight (kg)
$\mathbf{1 6}$	5
25	10

\triangle Caution

Select the required model by taking into consideration the operating condition specifications and any possible specification changes that may occur during operation. Contact the nearest sales representative for SMC's model selection software, which will help in selecting the correct model.

Moment / E-MY2C

E-MY2C/M1

E-MY2C/M2

E-MY2C/M3

Load Weight / E-MY2C

E-MY2C/m3

Moment / E-MY2H

E-MY2H/M1

Load Weight / E-MY2H

E-MY2H/M2

E-MY2H/M3

E-MY2H/m2

E-MY2H/m3

Series E-MY2

Model Selection 2

The following are steps for selection the E-MY2 series best suited for your application.

Calculation of Guide Load Factor

1 Operating Conditions

2

Load Blocking

Weight and Center of Gravity for Each Workpiece

Work piece no. (Wn)	Weight (mn)	Center of gravity		
		$\begin{gathered} \text { X-axis } \\ \text { Xn } \end{gathered}$	$\begin{gathered} \hline \text { Y-axis } \\ \text { Yn } \\ \hline \end{gathered}$	$\begin{gathered} \text { Z-axis } \\ \text { Zn } \end{gathered}$
Wa	0.88 kg	65 mm	0 mm	5 mm
Wb	4.35 kg	150 mm	0 mm	42.5 mm
Wc	0.795 kg	150 mm	111 mm	42.5 mm
Wd	1.0 kg	150 mm	210 mm	42.5 mm

3 Calculation of Composite Center of Gravity

$$
\begin{aligned}
\mathbf{m}_{\mathbf{3}} & =\Sigma \mathrm{mn}_{n} \\
& =0.88+4.35+0.795+1.0=7.025 \mathbf{k g} \\
\mathbf{X} & =\frac{1}{\mathrm{~m}_{3}} \times \Sigma\left(\mathrm{mn}^{\prime} \times \mathrm{xn}\right) \\
& =\frac{1}{7.025}(0.88 \times 65+4.35 \times 150+0.795 \times 150+1.0 \times 150)=139.4 \mathrm{~mm} \\
\mathbf{Y} & =\frac{1}{m_{3}} \times \Sigma(\mathrm{mn} \times \mathrm{yn}) \\
& =\frac{1}{7.025}(0.88 \times 0+4.35 \times 0+0.795 \times 111+1.0 \times 210)=\mathbf{4 2 . 5} \mathrm{mm} \\
\mathbf{Z} & =\frac{1}{\mathrm{~m}_{3}} \times \Sigma\left(\mathrm{mn}^{2} \times \mathrm{zn}\right) \\
& =\frac{1}{7.025}(0.88 \times 5+4.35 \times 42.5+0.795 \times 42.5+1.0 \times 42.5)=\mathbf{3 7 . 8} \mathbf{~ m m}
\end{aligned}
$$

4 Calculation of Load Factor for Static Load

m_{3} : Weight
m_{3} max (from 1 of graph MY2H / m3 $\mathrm{m}_{3}=22.5(\mathrm{~kg})$
Load factor $\alpha_{1}=\mathrm{m}_{3} / \mathrm{m}_{3} \max =7.025 / 22.5=0.31$
M2: Moment

M2 max (from 2 of graph MY2H / M2) $=19.5(\mathrm{~N} \cdot \mathrm{~m})$
$\mathrm{M}_{2}=\mathrm{m}_{3} \times \mathrm{g} \times \mathrm{Z}=7.025 \times 9.8 \times 37.8 \times 10^{-3}=2.60(\mathrm{~N} \cdot \mathrm{~m})$
Load factor $\alpha_{2}=\mathrm{M}_{2} / \mathrm{M}_{2} \max =2.60 / 19.5=0.13$

Series E-MY2
 Model Selection 3

The following are steps for selecting the E-MY2 series best suited for your application.

Calculation of Guide Load Factor

M3: Moment
Mз max (from 3 of graph MY2H / M3) $=19.5$ (N•m)
$\mathrm{M}_{3}=\mathrm{m}_{3} \times \mathrm{g} \times \mathrm{X}=7.025 \times 9.8 \times 139.4 \times 10^{-3}=9.59(\mathrm{~N} \cdot \mathrm{~m})$
Load factor $\alpha_{3}=\mathrm{M}_{3} / \mathrm{M}_{3} \max =9.59 / 19.5=0.49$

5 Calculation of Load Factor for Dynamic Moment

Load Fe_{E} at acceleration and deceleration

$\mathrm{FE}=\mathrm{mxa}=7.025 \times 4.9=34.42(\mathrm{~N})$
M1E: Moment
M1E max (from 4 of graph MY2H / M1) $=21.0(\mathrm{~N} \cdot \mathrm{~m})$
$\mathrm{M}_{1 \mathrm{E}}=\frac{1}{3} \times \mathrm{FE} \times \mathrm{Z}=\frac{1}{3} \times 34.42 \times 37.8 \times 10^{-3}=0.43(\mathrm{~N} \cdot \mathrm{~m})$

Load factor $\alpha_{4}=\mathrm{M}_{1 \mathrm{E}} / \mathrm{M} 1 \mathrm{E} \max =0.43 / 21.0=0.02$
M3E: Moment
M3E max (from 5 of graph MY2H / M3) $=19.5$ (N•m)
МЗе $=\frac{1}{3} \times$ FE $\times Y=\frac{1}{3} \times 34.42 \times 42.5 \times 10^{-3}=0.49(\mathrm{~N} \cdot \mathrm{~m})$
Load factor $\alpha_{5}=$ МзЕ $/$ МзЕ $\max =0.49 / 19.5=0.03$

6 Sum and Examination of Guide Load Factors

$\Sigma \alpha=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}=0.98 \leqq 1$

The above calculation is within the allowable value and therefore the selected model can be used. In an actual calculation, when sum of guide load factors $\Sigma \alpha$ in the formula above is more than 1 , consider decreasing the speed, increasing the bore size, or changing the product series.

Load Weight

E-MY2H/m3

Allowable Moment

e-Rodless Actuator

Series E-MY2C
Cam Follower Guide Type/Nominal Size: 16, 25

How to Order

Standard Stroke

Nominal size	Standard stroke (mm)
$\mathbf{1 6 , 2 5}$	$100,200,300,400,500,600,700,800,900,1000$

* Strokes are manufacturable in increments of 1 mm , up to 1000 strokes.
* When exceeding a 1000 strokes, refer to "Made to Order" on page 26.

Applicable Auto Switches/For detailed auto switch specifications, refer to page 21 through to 25.

$\stackrel{\otimes}{\stackrel{\circ}{\gtrless}}$	Special function	Electrical entry	흐끄흐응	Wiring (Output)	Load voltage			Auto switch model Electrical entry direction		Lead wire length (m) *			Pre-wired connector	Applicable load	
					DC		AC	Electrical en	$\frac{\text { lirection }}{\text { In-line }}$	$\begin{gathered} 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{array}{r} 5 \\ (\mathrm{Z}) \end{array}$			
¢	-	Grommet	Yes	3-wire (NPN equiv.)	-	5 V	-	A96V	A96	\bigcirc	\bigcirc	-	-	$\stackrel{\text { IC }}{\text { circuit }}$	-
\%				2-wire	24 V	12 V	100 V	A93V	A93	\bigcirc	\bigcirc	-	-	-	Relay PLC
$\stackrel{\text { ® }}{\text { ® }}$			-			$5 \mathrm{~V}, 12 \mathrm{~V}$	100 V or less	A90V	A90	\bigcirc	\bigcirc	-	-	$\underset{\text { circuit }}{\text { IC }}$	
	-	Grommet	Yes	3-wire (NPN)	24 V	$\begin{array}{r} 5 \mathrm{~V} \\ 12 \mathrm{~V} \end{array}$		M9NV	M9N	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	Relay PLC
				3-wire (PNP)				M9PV	M9P	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
				2-wire		12 V		M9BV	M9B	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	
	Diagnostic indication $\binom{2$-color }{ display }			3-wire (NPN)		$\begin{array}{r} 5 \mathrm{~V} \\ 12 \mathrm{~V} \end{array}$		F9NWV	F9NW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	
				3-wire (PNP)				F9PWV	F9PW	-	\bigcirc	\bigcirc	\bigcirc		
				2-wire		12 V		F9BWV	F9BW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	

[^89]* Solid state switches marked " \bigcirc " are produced upon receipt of order.

Specifications

Remote Controller Part

Controller body	Cable length		
	1 m	3 m	5 m
0.24	0.09	0.24	0.39

How to calculate/Example: E-MY2C25-300TANM
Actuator part
Basic weight 3.71 kg
Additional weight $0.21 / 50$ st
Actuator stroke 300 st
$3.71+0.21 \times 300 \div 50=4.97 \mathrm{~kg}$
Remote controller part
Controller body 0.24 kg
Cable length (3 m) 0.24 kg
$0.24+0.24=0.48 \mathrm{~kg}$

* For an integrated control type, add 0.24 kg (controller body) to the basic weight.

Replacement Parts

Drive Unit Replacement Part No.

Nominal size	E-MY2C
16	E-MY2BH16- Stroke
25	E-MY2BH25- Stroke

* Specify the motor position and output style in * parts.

For a remote control type, enter the symbol for cable
length.
Example) E-MY2BH16-300TAN

Option/Mounting Bracket

Description	Part no.
L-bracket	MYE-LB
DIN rail bracket	MYE-DB

Note) The maximum load weight shows the motor ability. Please consider it together with the guide load factor when selecting a model.

Electrical Specifications

Driving voltage	Power supply voltage	$24 \mathrm{VDC} \pm 10 \%$
	Current consumption	Rated current 2.5 A (Max. 5 A: 2 s or less) at 24 VDC
Current consumption	Power supply voltage	$24 \mathrm{VDC} \pm 10 \%$
	Current consumption	30 mA at 24 VDC and Output load capacity
Input signal capacity	6 mA or less at 24 VDC/1 circuit (Photo coupler input)	
Output signal capacity	30 VDC or less, 20 mA or less/1 circuit (Open drain output)	
Emergency stop, Output deviation, Power supply deviation, Driving deviation, Temperature deviation Stroke deviation, Motor deviation, Controller deviation		

General Specifications

Operating temperature range	Integrated control type		5 to $40^{\circ} \mathrm{C}$
	Remote control type	Actuator part	5 to $50^{\circ} \mathrm{C}$
		Remote controller part	5 to $40^{\circ} \mathrm{C}$
Operating humidity range			35 to 85% RH (with no condensation)
Storage temperature range			-10 to $60^{\circ} \mathrm{C}$ (with no condensation and freezing)
Storage humidity range			35 to 85\%RH (no condensation)
Withstand voltage			Between all of external terminals and the case: 1000 VAC for 1 minute
Insulation resistance			Between all of external terminals and the case: $50 \mathrm{M} \Omega$ (500 VDC)
Noise resistance			1000 Vp-p Pulse width $1 \mu \mathrm{~s}$, Rise time 1 ns
CE marking	Integrated control type		Standard
	Remote control type		Available with -Q suffixed products only

Speed/Acceleration

Speed setting switch no.	Speed $[\mathrm{mm} / \mathrm{s}]$
$\mathbf{1}$	100
$\mathbf{2}$	200
$\mathbf{3}$	300
$\mathbf{4}$	400
$\mathbf{5}$	500
$\mathbf{6}$	600
$\mathbf{7}$	700
$\mathbf{8}$	800
$\mathbf{9}$	900
$\mathbf{1 0}$	1000

Note) The factory default setting for the switch is No. 1 ($100 \mathrm{~mm} / \mathrm{s}$).

Acceleration setting switch no.	Acceleration $\left[\mathrm{m} / \mathrm{s}^{2}\right]$
$\mathbf{1}$	0.49
$\mathbf{2}$	0.74
$\mathbf{3}$	0.98
$\mathbf{4}$	1.23
$\mathbf{5}$	1.47
$\mathbf{6}$	1.96
$\mathbf{7}$	2.45
$\mathbf{8}$	2.94
$\mathbf{9}$	3.92
$\mathbf{1 0}$	4.90

Note) The factory default setting for the switch is No. 1 ($0.49 \mathrm{~m} / \mathrm{s}^{2}$).

Series E-MY2C

Dimensions:Integrated Control Type

E-MY2C Nominal size Stroke

Nominal size: 16

(A clearance of

Nominal size: 25

[^90]Dimensions:Remote Control Type (Actuator part)
E-MY2C Nominal size
Nome
Nominal size: 16

Nominal size: 25

Note) When the CE compliant model is selected, a noise filter is provided but not attached.
The cable for the CE compliant models uses the dedicated shielding. Even if a noise filter is attached to a non CE marked products, the products cannot be changed to a CE compliant product.

Series E-MY2C

Dimensions:Remote Control Type (Remote controller part)

L-bracket/MYE-LB (Option)

DIN rail bracket/MYE-DB (Option)
Round head combination screw (accessory)

M4×10 1 pc.

e-Rodless Actuator

Series E-MY2H
High Precision Guide Type/Nominal Size: 16, 25

How to Order

Standard Stroke

Nominal size	Standard stroke (mm)	Made to Order Long stroke (-XB11)
Stroke range (mm)		
$\mathbf{1 6 , 2 5}$	$50,100,150,200,250,300,350,400,450,500,550,600$	601 to 1000

* Strokes are manufacturable in increments of 1 mm , up to 1000 strokes.

However, when a stroke out of the standard 51 to 599 is required, add "-XB10" at the end of the model no
When stroke exceeds 600 mm , add "-XB11" at the end of model no. Refer to "Made to Order" on page 26.

* When exceeding a 1000 strokes, refer to "Made to Order" on page 26.

Applicable Auto Switches/For detailed auto switch specifications, refer to page 21 through to 25.

$\stackrel{\otimes}{\underset{\sim}{2}}$	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch model Electrical entry direction		Lead wire length (m) *			Pre-wired connector	Applicable load	
					DC		AC			$\begin{gathered} 0.5 \\ \text { (Nil) } \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \\ \hline \end{gathered}$	$\begin{array}{r} 5 \\ (\mathrm{Z}) \\ \hline \end{array}$			
¢	-	Grommet	Yes	3 -wire (NPN equiv.)	-	5 V	-	A96V	A96	\bigcirc	\bigcirc	-	-	$\begin{array}{\|l\|l\|} \hline \text { IC } \\ \text { circuit } \end{array}$	-
\%				2-wire	24 V	12 V	100 V	A93V	A93	\bigcirc	\bigcirc	-	-	-	Relay PLC
$\begin{aligned} & \mathbf{0} \\ & \text { © } \\ & \hline \end{aligned}$			-			$5 \mathrm{~V}, 12 \mathrm{~V}$	100 V or less	A90V	A90	\bigcirc	\bigcirc	-	-	$\underset{\text { circuit }}{\text { IC }}$	
	-	Grommet	Yes	3-wire (NPN)	24 V	$\begin{array}{r} 5 \mathrm{~V} \\ 12 \mathrm{~V} \end{array}$	-	M9NV	M9N	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	Relay PLC
				3-wire (PNP)				M9PV	M9P	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
				2-wire		12 V		M9BV	M9B	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	
	Diagnostic indication $\binom{2$-color }{ display }			3-wire (NPN)		$\begin{array}{r} 5 \mathrm{~V} \\ 12 \mathrm{~V} \end{array}$		F9NWV	F9NW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	
				3-wire (PNP)				F9PWV	F9PW	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
				2-wire		12 V		F9BWV	F9BW	-	\bigcirc	\bigcirc	\bigcirc	-	

\footnotetext{

* Lead wire length symbols: $0.5 \mathrm{~m} \cdots \ldots \mathrm{Nil}$ (Example) M9N

* Solid state switches marked "○" are produced upon receipt of order.

Specifications

Made to Order
(For details, refer to page 26.)

Symbol	Specifications
- XB10	Intermediate stroke
-XB11	Long stroke
-X168	Helical insert thread specifications

Weight

Actuator Part Unit: kg

Nominal size	Basic weight	50 mm stroke per additional weight
$\mathbf{1 6}$	1.87	0.14
25	3.37	0.23

Remote Controller Part
Unit: kg

Controller body	Cable length		
	1 m	3 m	5 m
0.24	0.09	0.24	0.39

How to calculate/Example: E-MY2H25-300TANM
Actuator part
Basic weight. \qquad .3 .37 kg
Additional weight
$0.23 / 50 \mathrm{st}$
Actuator stroke
300 st
$3.37+0.23 \times 300 \div 50=4.75 \mathrm{~kg}$
Remote controller part
Controller body 0.24 kg
Cable length (3 m) 0.24 kg
$0.24+0.24=0.48 \mathrm{~kg}$

* For an integreated control type, add 0.24 kg (controller body) to the basic weight.

Replacement Parts

Drive Unit Replacement Part No.

Nominal size Model	E-MY2H
$\mathbf{1 6}$	E-MY2BH16- Stroke
$\mathbf{2 5}$	E-MY2BH25- Stroke

* Specify the motor position and output style in * parts.

For a remote control type, enter the symbol for cable
length.
Example) E-MY2BH16-300TAN

Option/Mounting Bracket

Description	Part no.
L-bracket	MYE-LB
DIN rail bracket	MYE-DB

Note) The maximum load weight shows the motor ability. Please consider it together with the guide load factor when selecting a model.

Electrical Specifications

Driving voltage	Power supply voltage	$24 \mathrm{VDC} \pm 10 \%$
	Current consumption	Rated current 2.5 A (Max. 5 A : 2 s or less) at 24 VDC
Current consumption	Power supply voltage	$24 \mathrm{VDC} \pm 10 \%$
	Current consumption	30 mA at 24 VDC and Output load capacity
Input signal capacity		6 mA or less at $24 \mathrm{VDC} / 1$ circuit (Photo coupler input)
Output signal capacity		30 VDC or less, 20 mA or less/1 circuit (Open drain output)
Emergency detection items		Emergency stop, Output deviation, Power supply deviation, Driving deviation, Temperature deviation Stroke deviation, Motor deviation, Controller deviation

General Specifications

Operating temperature range	Integrated controller type		5 to $40^{\circ} \mathrm{C}$
	Remote	Actuator part	5 to $50^{\circ} \mathrm{C}$
	type	Remote controller part	5 to $40^{\circ} \mathrm{C}$
Operating humidity range			35 to 85% RH (with no condensation)
Storage temperature range			-10 to $60^{\circ} \mathrm{C}$ (with no condensation and freezing)
Storage humidity range			35 to 85\%RH (no condensation)
Withstand voltage			Between all of external terminals and the case: 1000 VAC for 1 minute
Insulation resistance			Between all of external terminals and the case: $50 \mathrm{M} \Omega$ (500 VDC)
Noise resistance			1000 Vp-p Pulse width $1 \mu \mathrm{~s}$, Rise time 1 ns
CE marking	Integrated control type		Standard
	Remote control type		Available for suffix -Q only

Speed/Acceleration

Speed setting switch no.	Speed $[\mathrm{mm} / \mathrm{s}]$
$\mathbf{1}$	100
$\mathbf{2}$	200
$\mathbf{3}$	300
$\mathbf{4}$	400
$\mathbf{5}$	500
$\mathbf{6}$	600
$\mathbf{7}$	700
$\mathbf{8}$	800
$\mathbf{9}$	900
$\mathbf{1 0}$	1000

Note) The factory default setting for the switch is No. 1 ($100 \mathrm{~mm} / \mathrm{s}$).

Acceleration setting switch no.	Acceleration $\left[\mathrm{m} / \mathrm{s}^{2}\right]$
$\mathbf{1}$	0.49
$\mathbf{2}$	0.74
$\mathbf{3}$	0.98
$\mathbf{4}$	1.23
$\mathbf{5}$	1.47
$\mathbf{6}$	1.96
$\mathbf{7}$	2.45
$\mathbf{8}$	2.94
$\mathbf{9}$	3.92
$\mathbf{1 0}$	4.90

Note) The factory default setting for the switch is No. 1 ($0.49 \mathrm{~m} / \mathrm{s}^{2}$).

Dimensions:Integrated Control Type

E-MY2H Nominal size Stroke

Nominal size: 16

Nominal size: 25

Dimensions:Remote Control Type (Actuator part)

T-slot section for mounting details

Note) When the CE compliant model is selected, a noise filter is provided but not attached.
The cable for the CE compliant models uses the dedicated shielding. Even if a noise filter is attached to a non CE marked products, the products cannot be

Dimensions:Remote Control Type (Remote controller part)

L-bracket/MYE-LB (Option)

DIN rail bracket/MYE-DB (Option)
Round head combination screw (accessory)

Series E-MY2H

Note) The operating range is a guide including hysteresis, but is not guaranteed. There may be large variations (as much as $\pm 30 \%$) depending on the ambient environment.

Auto Switches/Proper Mounting Position at Stroke End Detection

D-A9,	A9		(mm)	D-M9, D-M9 $\square \mathbf{V}$ (mm)				D-F9 \square W, D-F9 \square WV (mm)			
Nominal size	A	B	Operating range	Nominal size	A	B	Operating range	Nominal size	A	B	Operating range
16	44	116	8.5	16	48	112	3	16	48	112	
25	54	156		25	58	152	4	25	58	152	8.5

Auto Switch Mounting

When mounting the auto switches, they should be inserted into the actuator's switch groove from the direction shown in the drawing on the right. Once in the mounting position, use a flat head watchmakers' screwdriver to tighten the included set screw.

Note) When tightening the set screw, use a watchmakers' screwdriver with a handle diameter of about 5 to 6 mm . The tightening torque should be 0.1 to $0.2 \mathrm{~N} \cdot \mathrm{~m}$.

e-Rodless Actuator Series E-M/Y2

Names and Functions of Individual Part

Integrated control type

Remote control type

Description	Contents/Functions
Slider	Moving part within the actuator
Motor	Motor activating the actuator
Power supply cable	Power supply cable for providing power to the actuator
I/O cable	I/O cable for transmitting a positioning completion signal and driving instructions
Controller part	The unit part to control and set the actuator, and indicate its status
FG terminal	The terminal to connect the FG cable
Encoder cable on actuator side	Encoder cable for connecting the actuator with the controller
Motor cable on actuator side	Motor cable for connecting the actuator with the controller
Encoder cable on controller side	Encoder cable for separating the controller
Motor cable on controller side	Motor cable for separating the controller

Controller detail

Switch

Description	Contents/Functions
1	Stroke learning switch
(2) to 44	Switch to move the actuator to intermediate position and set the intermediate position
(5)	Rotary switch to set moving speed to the motor side end
(6)	Rotary switch to set moving speed to the other end
7 7	Rotary switch to set moving acceleration to the motor side end
8	Rotary switch to set moving acceleration to the other end

Indicator Light and the Display for the Basic Functions

Symbol	Description	Power supply ON	Actuation instruction					When decelerated and completely stopped ${ }^{* 1}$	When the alarm is activated
			Motor side	End side	${ }^{\text {Intermediate }}$	$\begin{array}{\|c\|} \hline \text { Intermediate } \\ 2 \end{array}$	${\underset{3}{\text { Intermediate }}}_{\substack{* 1 \\ 3}}$		
(A)	MIDDLE Indicator light (Green)	-	-	-	\bigcirc	\bigcirc	\bigcirc	-	*2
(B)	MOTOR Indicator light (Green)	-	\bigcirc	-	-	\bigcirc	-	\bigcirc	
(C)	END Indicator light (Green)	-	-	\bigcirc	-	-	\bigcirc	\bigcirc	
(D)	PWR Indicator light (Green)	\bigcirc							
(E)	ALM Indicator light (Red)	-	-	-	-	-	-	-	\bigcirc

" O " indicates on status, and indicates off status
*1) Displays for the 5-point stoppable type only.
*2) When the alarm is activated, see page 20 for the ALM display.

3-point Stoppable Type

Power Supply Cable 2 wires AWG20 (20 lines $/ 0.16 \mathrm{~mm}^{2}$)

Symbol	Color	Signal name	Contents
DC1 (+)	Brown	Vcc	Power supply cables for driving the actuator
DC1 (-)	Blue	GND	

I/O Cable 9 wires AWG28 (7 wires $/ 0.127 \mathrm{~mm}^{2}$)

Symbol	Color	Signal name	Contents
DC2 (+)	Brown	Vcc	Power supply cables for
signal			

This product can be used without connecting I/O cables, however please use caution and install a power supply switch for the actuator. In case of an emergency, please turn it off.

I/O Cable Signals

Input signal

Command	Symbol	
	IN1	IN2
Motor side actuation instruction	\bigcirc	-
End side actuation instruction	-	\bigcirc
Intermediate actuation instruction	\bigcirc	\bigcirc

Output signal

Actuator status	Symbol		
	OUT1	OUT2	OUT3
Completion of motor side end positioning	\bigcirc	\bigcirc	-
Completion of end positioning	\bigcirc	-	\bigcirc
Completion of intermediate positioning	\bigcirc	\bigcirc	\bigcirc

" O " indicates on status, and - indicates off status.

5-point Stoppable Type

Power Supply Cable 2 wires AWG20 (20 lines $/ 0.16 \mathrm{~mm}^{2}$)

Symbol	Color	Signal name	Contents
DC1 (+)	Brown	Vcc	Power supply cables for driving the actuator
DC1 (-)	Blue	GND	

I/O Cable 11 wires AWG28 (7 wires $/ 0.127 \mathrm{~mm}^{2}$)

Symbol	Color	Signal name	Contents
DC2 (+)	Brown	Vcc	Power supply cables for signal
DC2 (-)	Blue	GND	Signal indicating the controller is operationable
OUT1	Pink	READY output	Signal indicating an alarm has been generated
OUT2	Orange	Positioning completion output 1	Signal indicating that
OUT3	Yellow	Positioning completion output 2	
pigitioning is completed			
OUT4	Red	Positioning completion output 3	

This product can be used without connecting I/O cables, however please use caution and install a power supply switch for the actuator. In case of an emergency, please turn it off.

I/O Cable Signals

Input signal

Command	Symbol		
	IN1	IN2	IN3
Motor side actuation instruction	\bigcirc	-	-
End side actuation instruction	-	\bigcirc	-
Intermediate actuation instruction 1	-	-	\bigcirc
隹Intermediate a actuation instruction2	\bigcirc	-	\bigcirc
Intermediate actuation instruction 3	-	\bigcirc	\bigcirc
Extermal input stop instruction	\bigcirc	\bigcirc	-

Output signal

Actuator status	Symbol			
	OUT1	OUT2	OUT3	OUT4
Completion of motor side end positioning	\bigcirc	\bigcirc	-	-
Completion of end positioning	\bigcirc	-	\bigcirc	-
Completion of intermediate 1 positioning	\bigcirc	-	-	\bigcirc
Completion of intermediate	\bigcirc	\bigcirc	-	\bigcirc
Completion of intermediate 3 positioning	\bigcirc	-	\bigcirc	\bigcirc
Completion of external input stop	\bigcirc	\bigcirc	\bigcirc	-

"O" indicates on status, and - indicates off status.

NPN input/output circuit

PNP input/output circuit

PNP input/output circuit

Error Display and Problem Solving

When the error indicator is displayed, refer to the following instructions.
Light ON Blinks Light OFF

Item	Display	Contents	Solution
Emergency stop		Either the emergency stop input is opened, or the power supply for the signal is cutoff.	Confirm the power supply signal is energized and release the emergency stop input. (Refer to the circuit diagram on page 19.)
Abnormal external output		External output is short-circuited. * There is no external output signal.	In case of common power supply, turn off the power supply and check the wiring condition of load. Restart the power supply. (Refer to the circuit diagram on page 19.)
			In case of an independent power supply, turn off the power supply for the signals and check the wiring condition of load. Restart the power supply. (Refer to the circuit diagram on page 19.)
Power supply abnormality		The power supply voltage is excessive or lower than the limit for operation.	Check the power supply voltage and adjust it if necessary, then press the MIDDLE button.
Drive abnormality		Maximum output is continued for a prolonged period of time.	Check the work weight and confirm that no foreign materials are attached to the actuator. After confirming, press the MIDDLE button.
Temperature abnormality		Internal temperature of the controller is high.	Lower the surrounding temperature of the actuator in use, and then press the MIDDLE button.

Item	Display	Contents	Solution
			If any foreign materials are observed, remove them and then press the MIDDLE button.
Abnormal stroke	Check to see whether the stroke adjusting unit is loose. If re- quired, readjust the stroke and perform the stroke learning again.		
Note 1)			

Note 1) The product is in the same condition as when the stroke learning process is completed.
Return to the home position is not performed by the initial input

- If the error can not be corrected, turn off the power supply to stop operation, and contact your SMC sales representative.

Alarm reset

There are two types of alarm reset: alarm reset manually (a) and an alarm reset externally (b) by an external signal.

a: Alarm reset manually

In the event of an alarm, simply pushing (2) will revert from the alarm state.

b: Alarm reset externally

In the event of an alarm, simply inputting an external enlergency stop signal for 50 mis or longer will return to the state prior to the alarm. The emergency stop output will activate by releasing the input for the emergency stop.

The followings are the reinstated condition.

- The slider will be free until the corrmand for driving is applied
- After being reverted, the next input command for driving makes it start.

The initial motion after being reverted is $50 \mathrm{~mm} / \mathrm{s}$ of a traveling speed

Series E-MY2

Auto Switch Specifications

Auto Switch Common Specifications

Type	Reed switch	Solid state switch					
Leakage current	None	3-wire: $100 \mu \mathrm{~A}$ or less 2 -wire: 0.8 mA or less					
Operating time	1.2 ms	1 ms or less					
Impact resistance	$300 \mathrm{~m} / \mathrm{s}^{2}$	$1000 \mathrm{~m} / \mathrm{s}^{2}$					
Insulation resistance	$50 \mathrm{M} \Omega$ or more at 500 VDC Mega (between lead wire and case)						
Withstand voltage	1000 VAC for 1 minute (between lead wire and case)						
Ambient temperature	-10 to $60^{\circ} \mathrm{C}$						
Enclosure							

Lead Wire Length

Lead wire length indication

(Example)

$\mathbf{N i l}$	0.5 m	
\mathbf{L}	3	m
\mathbf{Z}	5	m

Note 1) Applicable auto switch with 5 m lead wire " Z " Reed switch: None
Solid state switch: Manutactured upon receipt of order as standard.
Note 2) Tu designate solid state switches with flexible specifications, add "-61" after the lead wire length.

* Oilproof flexible heavy-duty cable is used for D-M19 \square as standard There is no need to add the suffix -61 to the end of part number.

(Example) D-F9PWVL-61

- Flexible specification

Auto Switch Hysteresis

The hysteresis is the difference between the position of the auto switch as it turns "on" and as it turns "off" A part of operating range (one side) includes this hysteresis.

Contact Protection Boxes: CD-P11, CD-P12

<Applicable switch model>

D-A9/A9■V

The auto switches above do not have a built-in contact protection circuit. Therefore, please use a contact protection box with the switch for any of the following cases:
(1) Where the operation load is an inductive load.
(2) Where the wiring length to load is greater than 5 m .
(3) Where the load voltage is 100 VAC.

The contact life may be shortened. (Due to permanent energizing conditions.)

Specifications

Part No.	CD-P11		CD-P12
Load voltage	100 VAC	200 VAC	24 VDC
Maximum load current	25 mA	12.5 mA	50 mA

* Lead wire length - Switch conneciton side 0.5 m

$$
\text { Load connection side } 0.5 \mathrm{~m}
$$

Internal Circuit

CD-P11	
CD-P12	

Dimensions

Connection

To connect a switch unit to a contact protection box, connect the lead wire from the side of the contact protection box marked SWITCH to the lead wire coming out of the switch unit. Keep the switch as close as possible to the contact protection box, with a lead wire length of no more than meter.

Series E-MY2
 Auto Switch Connections and Examples

Basic Wiring

Solid state 3-wire, NPN

Solid state 3-wire, PNP

2-wire

(Power supplies for switch and load are separate.)

Examples of Connection to PLC (Programmable Logic Controller)

- Sink input specifications

3-wire, NPN

- Source input specifications 3-wire, PNP

2-wire

Connect according to the applicable PLC input specitications, since the connection method will vary depending on the PLC input specitications.

Examples of AND (Serial) and OR (Parallel) Connection

- 3-wire

AND connection for INPIN output
(using relays)

2-wire with 2-switch AND connection

Wheir twu sWitches ale cunnected in serles, a IGau may malfumution because the luad voltage villl deculine when in the ON state. I rie indicator IIghts villl IIght up if buth of the switches are in the UN state.

- 24 v 4 v i 2 pus.
$-10 \mathrm{v}$
example: Power supply is 24 vUC.
Intemal vultaye arop in switun is 4 v .

AND connection for NPN output (per formed with switches urily)

The indicator liyhts will lightit un wher buth switches ale tumed ON.

2-wire with 2-switch OR connection

Example: Lodad impedance is 3 ks.
Leakaye current tronl switun is 1 mA

Load voltage at UFr - Leakage current $\times 2$ pus.

$$
\begin{gathered}
\text { x Load inipedance } \\
-\quad \text { пıA } \times 2 \text { pis. } \times 3 \mathrm{kS}
\end{gathered}
$$

(Reed switctil)
Bevause there is mu curient ltakayt, the luad vultaye vill not increabe wherl turriea UFF. Huvever, deperiding on the number ot swituhes in the Olv state, the inalicator lights may sometimes dimı ur not light Cecause ot the dispersion and reduc-

$$
=6 \mathrm{~V}
$$ tion ot the current tlowing to the switches.

OR connection for NPN output

Reed Switch: Direct Mounting Style
 D-A90(V)/D-A93(V)/D-A96(V) (E

Grommet

 Electrical entry direction: In-line

\triangle Caution

 Operating PrecautionsFix the switch with the existing screw installed on the switch body. The switch may be damaged if a screw other than the one supplied, is used.

Auto Switch Internal Circuit

ivute) (1) In a case where the uperation load is an Inaluctive IGda.
(2) In a case where the vuliriy IGad is yreater thall b in.
(3) In a case where the IGad voltaye is 100 VAC.

Pledse use the auto swiltch with a cuntait piutecticir bux ariy ut the aluve mentiolied vases. (roi detalls abuut the cuntact protection cux reter to paye '21.)

Auto Switch Specifications

For details about certified products conforming to nternational standards, visit us at www.smcworld.com.

PLC: Programmable Logic Controller
D-A90/D-A90V (Without indicator light)

Auto switch part no.	D-A90/D-A90V		
Applicable load	IC circuit, Relay, PLC		
Load voltage	$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{or} \mathrm{less}$	$48 \mathrm{~V} \mathrm{AC/DC} \mathrm{or} \mathrm{less}$	$100 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$ or less
Maximum load current	50 mA	40 mA	20 mA
Contact protection circuit	None		

Internal resistance $\quad 1 \Omega$ or less (including lead wire length of 3 m)
D-A93/D-A93V/D-A96/D-A96V (With indicator light)

Auto switch part no.	D-A93/D-A93V		D-A96/D-A96V
Applicable load	Relay, PLC		IC circuit
Load voltage	24 VDC	100 VAC	4 to 8 VDC
Note 3) Load current range and max. load current	5 to 40 mA	5 to 20 mA	20 mA
Contact protection circuit	None		
Internal voltage drop	D-A93 - 2.4 V or less (to 20 mA) $/ 3 \mathrm{~V}$ or less (to 40 mA) D-A93V - 2.7 V or less		0.8 V or less
Indicator light	Red LED illuminates when ON		

- Lead wires

D-A.90(V)/D-A93(V) Oilprout heavy-duty viryl cable: ø2.7, $0.18 \mathrm{~mm}^{2} \times 2$ zores (Browr, Blue), 0.5 m D-A96(V) - Oilproof heavy-duty viryl cable ø2.7 $0 \quad 5 \mathrm{~mm}^{2} \times 3$ cores (Brown, Black, Blue), 0.5 m
Note 1) Refer to page 21 for reed switch common specifications.
Note 2) Refer to page 21 for lead wire lengths
Note 3) In less than 5 mA condition, the indicating light visibility becomes low, and it may be

condition, there will be iu problem.
Weight
Uritt: g

Model	D-A90	D-A90V	D-A93	D-A93V	D-A96	D-A96V
Lead wire length: 0.5 m	6	6	6	6	8	8
Lead wire length: 3 m	30	30	30	30	41	41

Dimensions
D-A90/D-A93/D-A96

 slutted set suiew
(24.5)

) alrierisions tor $\mathbf{\cup}$ Aẏ
D. A90V/D A93V/D A96V

Solid State Switch: Direct Mounting Style D-M9N(V)/D-M9P(V)/D-M9B(V) (ϵ

Grommet

- 2-wire load current is reduced (2.5 to 40 mA)
- Lead-free
- UL certified (style 2844) lead cable is used.

©Caution

Operating Precautions
Fix the switch with the existing surew installed on the switch body I hee switch niay be darilayed it a scirew other than the onie supplied, is used.

Auto Switchı lıiternal Circuit

Auto Switch Specifications
For details about certified products conforming to nternational standards, visit us at www.smcworld.com.

PLC: Programmable Logic Controller

D-M9 $\square / D-M 9 \square V$ (With indicator light)

Auto switch part no.	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when ON.					

- Lead wires

Oilproof heavy-duty vinyl cable: $\varnothing 2.7 \times 3.2$ ellipse
D-M9B(V) $\quad 0.15 \mathrm{~mm}^{2} \times 2$ cores
D-M9N(V), D-M9P(V) $\quad 0.15 \mathrm{~mm}^{2} \times 3$ cores
Note 1) Refer to page 21 for solid state switch common specifications
Note 2) Refer to page 21 for lead wire lengths.
Weight
Unit: g

Auto switch part no.		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length (m)	0.5	8	8	7
	3	41	41	38
	5	68	68	63

Dimensions
Unit: пини

D M9 \sqcup

D-M9 $-\mathbf{V}$

2-color Indication Type, Solid State Switch: Direct Mounting Style D-F9NW(V)/D-F9PW(V)/D-F9BW(V) (ϵ

Grommet

Auto Switch Specifications

For details about certified products conforming to nternational standards, visit us at www.smcworld.com.

D-F9 \square W/D-F9 \square WV (With indicator light)						
Auto switch part no.	D-F9NW	D-F9NWV	D-F9PW	D-F9PWV	D-F9BW	D-F9BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay IC, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 VDC)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less		80 mA or less		5 to 40 mA	
Internal voltage drop	1.5 V or less (0.8 V or less at 10 mA load current)		0.8 V or less		4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating position …....... Red LED illuminates. Optimum operating position Green LED illuminates.					

- Lead wires

Oilproof heavy-duty vinyl cable: ø2.7, $0.15 \mathrm{mni}^{2} \times 3$ cores (Brown, Black, Blue),
$0.18 \mathrm{mım}^{2} \times 2$ cores (Brown, Blue), 0.5 m
Note 1) Refer to page 21 for sülid state switch cumnıon speeificications.
Note 2) Refer to page 21 for leäd wire lengths.

Weight
Unil: y

Auto switch part no.		D-F9NW(V)	D-F9PW(V)	D-F9BW(V)
Lead wire length (m)	0.5	7	7	$/$
	3	34	34	
	5	56	56	52

Dimensions

D-F9 $-\mathbf{W}$

D-F9 $_W V$

Series E-MY2
 Made to Order

Please contact SMC for detailed dimensions, specifications, and lead times.

Made-to-Order Application List

		Intermediate stroke XB10	Long stroke XB11	Helical insert thread X168
E-MY2C	Cam follower guide type	Can be adjusted on a regular basis	Can be adjusted on a regular basis	\bullet
E-MY2H	High precision guide type (Single axis)	\bullet	\bullet	\bullet

1 Intermediate stroke

-XB10

Within the standard stroke range, the stroke length in the middle range can be adjusted by 1 mm increments.

- Stroke range: 51 to 599 mm

E-MY2H Refer to the standard model no. on page 12-XB10
Example) E-MY2H25-599TAN-M9B-XB10

2 Long stroke

-XB11

Available with long strokes exceeding the standard stroke range The stroke length can be adjusted by 1 mm increments.

Stroke range: 601 to 1000 mm
E-MY2H Refer to the standard model no. on page 12-XB11
Example) E MIY2Hž. צyyl AN IIYB XB 11

Others iviale-to uruer/Fur detall, pleaoe cuntáct sivil.

- Speed chanyes

Note 1) Itiere are slight vibraticris in a low speed operation of $40 \mathrm{~mm} / \mathrm{s}$ or less.
 mmis.

- Acceleration chanyes

		Heavy load	Standard	Medium load	Light load
Max. acceleration		2.45	4.90	9.80	19.60
Vlaxımuril Payload [kg]					
Nominal size	16	10	5	2.5	1.25
	25	20	10	5	2.5

Nule) For exarnile, the maximum acceleration for the nomirial size $2 b$ under the standard load spec. is $49 \mathrm{~m} / \mathrm{s}^{2}$. In the case of the heavy load spec., the max. acceleration will be $2.45 \mathrm{~m} / \mathrm{s}^{2}$, and the max. payluad will be 20 kg .

- 6-point stoppable type

stoppable at both enas (z-point) and at intermediate strokes (4-point)

- IVlax. manutacturable stroke

Stiuke enceeding lUUU imi is available.

Nominal size	E-MY2C	E-MY2H
$\mathbf{1 6}$	2000	1000
$\mathbf{2 5}$	2000	1500

Midaximumithrust is reauced deperidiriy on the stroke. Max. trirust = Max. payload x IMax. acceleration

limprovement ayaínst a moment
$<$ axis guide specitication (equivalent to MY2HIT)

Series E-MY2

Safety Instructions

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by labels of "Caution", "Warning" or "Danger". To ensure safety, be sure to observe ISO 10218 Note 1), JIS B $8433^{\text {Note 2) }}$ and other safety practices.
. Caution: Operator error could result in injury or equipment damage.
. Warning : Operator error could result in serious injury or loss of fife.
. Danger : In extreme conditions, there is a possibility of serious iniury or loss of fife.

Note 1) ISO 10218: Manipulating industrial robots-Safety
Note 2) JIS B 8433: General Rules for Robot Safety

\triangle Warning

1. The compatibility of the e-Rodless actuator is the responsibility of the person who designs the system or decides its specifications.
Since the products specified here are used in various operating conditions, their compatibility with a specific system must be based on either specifications, post analysis and/or tests to meet a specific requirement. The expected performance and safety assurance are the responsibility of the person who has determined the compatibility of the system. This person should continuously review the suitability of all specified items by referring to the latest information in the catalog and by taking into consideration the possibility of equipment failure when configuring the system.
2. Only trained personnel should operate pneumatically operated machinery and equipment. Compressed air can be dangerous if handled incorrectly. Assembly, handling or repair of an electric actuator should be performed by trained and experienced operators.
3. Do not service machinery/equipment or attempt to remove components until safety is confirmed.
4. Inspection and maintenance of machinery/equipment should only be performed once measures to prevent falling or runaway of the driven objects have been confirmed.
5. When equipment will be removed, confirm that all safety precautions have been followed. Turn off the power supply for this equipment.
6. Before machinery/equipment is restarted, confirm that safety measures are in effect.
7. Contact SMC if the product will be used in any of the following conditions:
8. Conditions and environments beyond the given specifications, or if product is used outdoors.
9. Installation on equipment in conjunction with atomic energy, medical equipment, food and beverages, or safety equipment.
10. An application which has the possibility of having a negative effect on people, property, or animals, requiring special safety analysis.
11. Review and confirm the product's documentation thoroughly before using the product, or contact our distributors, or SMC for confirmation for a problem free application.
12. Use the product after throughly reviewing and confirming the precautions in this catalog.
13. Some products in this catalog are for particular applications and sites only. Check and confirm with the distributor or SMC.

Series E-MY2
e-Rodless Actuators Precautions 1
Be sure to read this before handling.

Design and Selection

Warning

1. Conduct operation at regulated voltage.

The product may not function correctly or the controller section may be damaged if used with any other voltage than the specified regulated voltage. If the regulated voltage is low, the load may not operate due to internal voltage drop of the controller section. Check and confirm the operating voltage before using.
2. Do not use a load that is over the maximum load volume.
The controller section may be damaged.
3. Operate within the limit of the specification range.
If operated outside of the specification range, there is a possibility of fire, malfunction, and or actuator damage. Operate after confirming the required specifications.
4. To prevent any damage by product failure or malfunction, plan and construct a backup system beforehand, such as multiplexing the components and equipment, employing failure free planning, etc.
5. Provide enough space for maintenance.

When planning, consider the space required for product checkup and maintenance.
6. Provide a protective cover when there is a risk of human injury.
If a driven object and or moving parts of a cylinder pose a danger to human injury, design the structure to avoid contact with the human body.
7. Securely tighten all mounting parts and connecting parts of the actuator to prevent them from becoming loose.
In particular, when a cylinder operates at a high frequency, or is installed where there is excessive vibration, ensure that all parts remain secure.

Mounting

\triangle Caution

1. Do not drop, strike, or apply excessive shock to the actuator.
The actuator could be damaged, resulting in its failure and or malfunction.

2. Hold the body when handling.

The actuator could be damaged, resulting in its failure and or malfunction.
3. Keep tightening torque.

If tightened beyond the specified range, damage may occur. In addition, if tightened below the specified range, the actuator installation position may shift to some extent.
4. Do not install the actuator in a location used as a scaffold for work.

By stepping on the actuator, the actuator may receive excessive load weight which may damage it.

Mounting

\triangle Caution

5. Provide a flat surface for installing the actuator. The degree of surface flatness should be determined by the machine precision requirement, or its corresponding precision.
Keep surface flatness within $0.1 / 500 \mathrm{~mm}$.
6. Attaching and detaching the cylinder body

To remove the cylinder body, remove the four cylinder holding bolts and remove the cylinder from the guide unit. To install the cylinder, insert its slider into the slide table on the guide unit and equally tighten the four holding bolts. Tighten the holding bolts securely because if they become loose, problems may occur such as damage, malfunction, etc.

7. Workpiece mounting

When mounting a magnetic workpiece, keep a clearance of 5 mm or greater between the auto switch and the workpiece. Otherwise, the magnetic force within the cylinder may be lost, resulting in malfunction of the auto switch.

Wiring

4 Warning

1. Avoid repeatedly bending and/or stretching the cables.
Repeatly applying bending stress and stretching force to the cables may result in broken lead wires.
2. Avoid incorrect wiring.

Depending on the type of incorrect wiring, the controller section may be damaged.
3. Perform wiring when the power is off.

The controller section may be damaged and malfunction.

Series E-MY2
e-Rodless Actuators Precautions 2
Be sure to read this before handling.

Wiring

Warning

4. Do not wire with power lines or high voltage lines.
Conduct wiring for controller separately from power lines or high voltage lines to avoid interference from the noise or surge from the signal lines of the power lines or high voltage lines. This may result in malfunction.
5. Confirm that the wiring is properly insulated. Be certain that there is no faulty wiring insulation (contact with other circuits, improper insulation between terminals, etc.) because the e-Rodless may be damaged due to excessively applied voltage or current flow to the controller section.
6. Be sure to attach a noise filter when a remote control type, CE compliant product is used.
Using without a noise filter will be a non-CE compliant product.

Operating Environment

§ Warning

1. Do not use in a place where the product may come in contact with dust, particles, water, chemicals and oil.
It may cause damage and malfunction.
2. Do not use in a place where a magnetic field is present.
It may cause malfunction to the actuator.
3. Do not use the product in the presence of flammable, explosive or corrosive gas.
It may cause fire, explosion, and corrosion.
The actuator does not have an explosion proof construction.
4. Do not use in an environment subjected to temperature cycle.
If used in an environment where temperature cycling occurs, other than the usual temperature change, the internal controller may be adversely effected.
5. Do not use in a place that has excessive electrical surge generation, even though this product is compliant with CE marking.
When there are units (solenoid type lifter, high frequency induction furnace, motor, etc.) which generate a large amount of surge in an area around the e-Rodless cylinder, deterioration or damage may occur to the internal circuit elements of the controller. Avoid sources of surge generation and crossed lines.
6. Select a product type that has built-in surge absorbing elements for a load, such as relays or solenoid valves which are employed for driving voltage generating load directly.
7. Install the actuator in a place without vibration and impact.
Vibration and impact causes damage and malfunction to the product and work, as well as prevents the work from meeting the specified parameters.

Adjustment and Operation

. Warning

1. Do not short the loads.

Short on the load of the controller indicates an error, but it may cause over current and damage the controller.
2. Do not operate or conduct any settings with wet hands.
An electrical shock may result from wet hands.
3. When operating the controller, avoid making contact with the workpiece.
Contact with the workpiece may cause injury.

\triangle Caution

1. Do not push the setting buttons with sharp pointed items.
Sharp pointed items may cause setting button damage.
2. Do not touch the sides and lower parts of the motor and controller.
Conduct operation after confirming that the machine is cool since it gets hot while in operation.
3. After the stroke is adjusted, turn on the power supply and then perform stroke learning.
If stroke learning is not performed, the product may not operate according to the adjusted stroke and damage to any connected equipment may occur.
4. Do not randomly change the guide adjusting section setting.
Readjustment of the guide is not necessary for normal operation, since it is pre-adjusted. Accordingly, do not randomly change the guide adjusting section setting.

Maintenance

. Warning

1. Periodically perform maintenance of the product.
Confirm that the piping and bolts are securely tightened.
Unintentional malfunction of a system's components may occur as a result of an actuator malfunction.
2. Do not disassemble, modify (including change of printed circuit board) or repair.
Disassembly or modification may result in injury or failure.

\triangle Caution

1. Confirm the range of movement of a work piece (a slider) before connecting the driving power supply or turning on the switch.
The movement of the work may cause an accident. When the power supply is turned on, the work is returned to home position by input IN1 or IN2 signal. (Except in the case when stroke learning is not performed ever).

Series E-MY2
Auto Switches Precautions 1
Be sure to read this before handling.

Design and Selection

© Warning

1. Confirm the specifications.

Read the specifications carefully and use this product appropriately. The product may be damaged or malfunction if it is used outside of its specification range (e.g. load current, voltage, temperature or impact, etc.).
2. Take precautions when multiple actuators are used close together.
When two or more actuators are lined up in close proximity to each other, magnetic field interference may cause the switches to malfunction. Maintain a minimum cylinder separation of 40 mm .
3. Pay attention to the length of time that a switch is on at an intermediate stroke position.
When an auto switch is placed at an intermediate position of the stroke and a load connected to the auto switch is driven at the time the slide table passes, the auto switch will operate. However if the speed is too great, the operating time will be shortened and the load may not operate properly. The maximum detectable piston speed is:

$$
\mathrm{V}(\mathrm{~mm} / \mathrm{s})=\frac{\text { Auto switch operating range }(\mathrm{mm})}{\text { Load operating time }(\mathrm{ms})} \times 1000
$$

4. Keep wiring as short as possible.

<Reed switch>
As the length of the wiring to a load gets longer, the rush current at the time the switch is turned ON becomes greater, which may shorten the product's life. (The switch will stay ON all the time.)

1) Use a contact protection box when the wire length is 5 m or longer.
<Solid state switch>
2) Although the wire length should not affect switch function, use a wire that is 100 m or shorter.
5. Take precautions for the internal voltage drop of the switch.

<Reed switch>

1) Switches with an indicator light (Except D-A96, A96V)

- If auto switches are connected in series as shown below, take note that there will be a large voltage drop because of internal resistance from the light emitting diodes. (Refer to internal voltage drop in the auto switch specifications.) [The voltage drop will be " n " times larger when " n " auto switches are connected.]
Even though an auto switch operates normally, the load may not operate.

- Similarly, when operating below a specified voltage, it is possible that the load may be ineffective even though the auto switch function is normal. Therefore, the formula below should be satisfied after confirming the minimum operating voltage of the load.

Supply
voltage
:---
drop of switch
:---
voltage of load

2) If the internal resistance of a light emitting diode causes a problem, select a switch without an indicator light (Model A90, A90V).
<Solid state switch>
3) Generally, the internal voltage drop will be greater with a 2 wire solid state auto switch than with a reed switch. Take the same precautions as in item (1) as mentioned above. Also, note that a 12 VDC relay is not applicable.

6. Pay attention to leakage current.

 <Solid state switch>With a 2-wire solid state auto switch, current (leakage current) flows to the load to operate the internal circuit even when in the OFF state.

$$
\begin{aligned}
& \text { Current to operate load } \\
& \text { (Input OFF signal of controller) }
\end{aligned}>\begin{aligned}
& \text { Leakage } \\
& \text { current }
\end{aligned}
$$

If the condition given in the above formula is not met, internal circuit will not reset correctly (stays ON). Use a 3-wire switch if this specification cannot be satisfied.
Moreover, leakage current flow to the load will be " n " times larger when " n " auto switches are connected in parallel.
7. Do not use a load that generates surge voltage.
<Reed switch>
If driving a load such as a relay which generates a surge voltage, use a contact protection box.
<Solid state switch>
Although a zener diode for surge protection is connected at the output side of a solid state auto switch, damage may still occur if a surge is applied repeatedly. When directly driving a load which generates a surge, such as a relay or solenoid valve, use a switch with a built-in surge absorbing element.

8. Cautions for use in an interlock circuit

When an auto switch is used for an interlock signal requiring high reliability, devise a double interlock system to safeguard against malfunctions. The double interlock system should provide a mechanical protection function or use another switch (sensor) together with the auto switch. Also perform periodic inspection and confirm proper operation.

9. Provide enough space for maintenance.

When designing an application, be sure to allow sufficient clearance for maintenance and inspections.

Be sure to read this before handling.

Mounting and Adjustment

Warning

1. Do not drop or bump.

Do not drop, bump or apply excessive impacts ($300 \mathrm{~m} / \mathrm{s}^{2}$ or greater for reed switches and $1000 \mathrm{~m} / \mathrm{s}^{2}$ or greater for solid state switches) while handling.
Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction.
2. Do not carry an actuator by the auto switch lead wires.
Never carry a cylinder by its lead wires. This may not only cause broken lead wires, but it may cause internal elements of the switch to be damaged by the stress.
3. Mount switches using the proper tightening torque.
When a switch is tightened above the torque specification, the mounting screws, or switch may be damaged. On the other hand, tightening below the torque specification may allow the switch to slip out of position.
4. Mount a switch at the center of the operating range.
Adjust the mounting position of an auto switch so that the piston stops at the center of the operating range (the range in which a switch is ON). (The mounting positions shown in the catalog indicate the optimum position at the stroke end.) If mounted at the end of the operating range (around the borderline of ON and OFF), operation will be unstable.
<D-M9 \square >
When the D-M9 auto switch is used to replace old series auto switch, it may not activate depending on operating condition because of its shorter operating range.
Such as

- Application where the stop position of actuator may vary and exceed the operating range of the auto switch, for example, pushing, pressing, clamping operation, etc.
- Application where the auto switch is used for detecting an intermediate stop position of the actuator. (In this case the detecting time will be reduced.)
In these applications, set the auto switch to the center of the required detecting range.

Caution

1. Fix the switch with the appropriate screw installed on the switch body. The switch may be damaged if other screws are used.

Wiring

Warning

1. Avoid repeatedly bending or stretching lead wires. Broken lead wires will result from repeatedly applying bending stress or stretching force to the lead wires.
2. Be sure to connect the load before power is applied.

<2-wire type>

If the power is turned ON when an auto switch is not connected to a load, the switch will be instantly damaged because of excess current.

Wiring

3. Confirm proper insulation of wiring.

Be certain that there is no faulty wiring insulation (such as contact with other circuits, ground fault, improper insulation between terminals, etc.). Damage may occur due to excess current flow into a switch.
4. Do not wire in conjunction with power lines or high voltage lines.
Wire separately from power lines or high voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits containing auto switches may malfunction due to noise from these lines.

5. Do not allow short circuit of loads.

<Reed switch>

If the power is turned ON with a load in a short circuited condition, the switch will be instantly damaged because of excess current flow into the switch.
<Solid state switch>
D-M9 \square and all models of PNP output type switches do not have built-in short circuit protection circuits. If loads are short circuited, the switches will be instantly damaged, as in the case of reed switches.
Take special care to avoid reverse wiring with the brown power supply line and the black output line on 3-wire type switches.

6. Avoid incorrect wiring.

<Reed switch>

A 24 VDC switch with indicator light has polarity. The brown lead wire is $(+)$, and the blue lead wire is $(-)$.

1) If connections are reversed, the switch will still operate, but the light emitting diode will not light up.
Also note that a current greater than the maximum specified one will damage a light emitting diode and make it inoperable. Applicable models: D-A93, A93V
<Solid state switch>
2) Even if connections are reversed on a 2-wire type switch, the switch will not be damaged because it is protected by a protection circuit, but it will remain in a normally ON state. But reverse wiring in a short circuit load condition should be avoided to protect the switch from being damaged.
3) Even if (+) and (-) power supply line connections are reversed on a 3-wire type switch, the switch will be protected by a protection circuit. However, if the (+) power supply line is connected to the blue wire and the $(-)$ power supply line is connected to the black wire, the switch will be damaged.
<D-M9 $\square>$
D-M9 \square does not have built-in short circuit protection circuit. Be aware that if the power supply connection is reversed (e.g. (+) power supply wire and (-) power supply wire connection is reversed), the switch will be damaged.

Lead wire color changes

Lead wire colors of SMC switches have been changed in order to meet NECA Standard 0402 for production beginning September, 1996 and thereafter. Please refer to the tables provided.
Special care should be taken regarding wire polarity during the time that the old colors still coexist with the new colors.
2-wire

	Old	New
Output (+)	Red	Brown
Output (-)	Black	Blue

3-wire

	Old	New
Power supply	Red	Brown
GND	Black	Blue
Output	White	Black

Wiring

Caution

1. When the cable sheath is stripped, confirm the stripping direction. The insulator may be split or damaged depending on the direction. (D-M9 \square only)

Recommended tool

Manufacturer	Model name	Model no.
VESSEL	Wire stripper	No 3000G
TOKYO IDEAL CO., LTD	Strip master	$45-089$

* Stripper for a round cable (ø2.0) can be used for a 2-wire type cable.

Operating Environment

© Warning

1. Never use in an atmosphere of explosive gases.

The construction of the auto switch is not intended to prevent explosion. Never use in an atmosphere with an explosive gas since this may cause a serious explosion.
2. Do not use in an area where a magnetic field is generated.
The auto switch will malfunction or the magnets inside of an actuator will become demagnetized if used in such an environment.
3. Do not use in an environment where the auto switch will be continually exposed to water.
The switch satisfies the IEC standard IP67 construction (JIS C 0920: watertight construction). Nevertheless, it should not be used in applications where it is continually exposed to water splash or spray. This may cause deterioration of the insulation or swelling of the potting resin inside switch causing a malfunction.
4. Do not use in an environment with oil or chemicals.
Consult with SMC if the auto switch will be used in an environment laden with coolant, cleaning solvent, various oils or chemicals. If the auto switch is used under these conditions for even a short time, it may be adversely effected by a deterioration of the insulation, a malfunction due to swelling of the potting resin, or hardening of the lead wires.
5. Do not use in an environment with temperature cycles.
Consult with SMC if the switch is used where there are temperature cycles other than normal temperature changes, as they may adversely affected the switch internally.

Operating Environment

6. Do not use in an environment where there is excessive impact shock.
<Reed switch>
When excessive impact ($300 \mathrm{~m} / \mathrm{s}^{2}$ or more) is applied to a reed switch during operation, the contact point may malfunction and generate a signal momentarily (1 ms or less) or cut off. Consult with SMC regarding the need to use a solid state switch in a specific environment.
7. Do not use in an area where surges are generated.
<Solid state switch>
When there are units (such as solenoid type lifters, high frequency induction furnaces, motors, etc.) that generate a large amount of surge in the area around an actuator with a solid state auto switch, their proximity or pressure may cause deterioration or damage to the internal circuit of the switch. Avoid sources of surge generation and crossed lines.
8. Avoid accumulation of iron debris or close contact with magnetic substances.
The auto switches in an actuator may malfunction when a large accumulated amount of machining chips, welding spatter and or magnetically attracted material is located near the auto switch. This failure may be the result of loss magnetic force inside of the actuator.

Maintenance

© Warning

1. Perform the following maintenance periodically in order to prevent possible danger due to unexpected auto switch malfunction.
1) Securely tighten switch mounting screws.

If screws become loose or the mounting position is dislocated, retighten them after readjusting the mounting position.
2) Confirm that there is no damage to the lead wires.

To prevent faulty insulation, replace switches or repair lead wires, etc., if damage is discovered.
3) Confirm that the green light on the 2-color display type switch lights up.
Confirm that the green LED is ON when stopped at the set position. If the red LED is ON, when stopped at the set position, the mounting position is not appropriate. Readjust the mounting position until the green LED lights up.

Other

© Warning

1. Consult with SMC concerning water resistance, elasticity of lead wires, usage at welding sites, etc.

SMC'S GLOBAL MANUFACTURING, DISTRIBUTION AND SERVICE NETWORK

EUROPE

AUSTRIA
SMC Pneumatik GmbH
beLgium
SMC Pneumatics N.V./S.A.
BULGARIA
SMC Industrial Automation Bulgaria EOOD

CROATIA

SMC Industrijska automatika d.o.o.

CZECH REPUBLIC

SMC Industrial Automation CZ s.r.o.
DENMARK
SMC Pneumatik A/S
ESTONIA
SMC Pneumatics Estonia OÜ
FINLAND
SMC Pneumatics Finland OY

FRANCE

SMC Pneumatique SA

GERMANY

SMC Pneumatik GmbH

HUNGARY

SMC Hungary Ipari Automatizálási Kft.
IRELAND
SMC Pneumatics (Ireland) Ltd.
ITALY
SMC Italia S.p.A.

LATVIA

SMC Pnuematics Latvia SIA
NETHERLANDS
SMC Pneumatics BV.
NORWAY
SMC Pneumatics Norway A/S

POLAND
SMC Industrial Automation Polska Sp.z.o.o.
ROMANIA
SMC Romania s.r.l.
RUSSIA
SMC Pneumatik LLC.
SLOVAKIA
SMC Priemyselná automatizáciá, s.r.o.

SLOVENIA

SMC INDUSTRIJSKA AVTOMATIKA d.o.o.
SPAIN/PORTUGAL
SMC España, S.A.
SWEDEN
SMC Pneumatics Sweden AB
SWITZERLAND
SMC Pneumatik AG.
UK
SMC Pneumatics (U.K.) Ltd.

ASIA

CHINA
SMC (China) Co., Ltd.
HONG KONG
SMC Pneumatics (Hong Kong) Ltd.
INDIA
SMC Pneumatics (India) Pvt. Ltd.
INDONESIA
PT. SMC Pneumatics Indonesia
MALAYSIA
SMC Pneumatics (S.E.A.) Sdn. Bhd.
PHILIPPINES
SHOKETSU-SMC Corporation
SINGAPORE
SMC Pneumatics (S.E.A.) Pte. Ltd.

SOUTH KOREA

SMC Pneumatics Korea Co., Ltd.
TAIWAN
SMC Pneumatics (Taiwan) Co., Ltd.
THAILAND
SMC Thailand Ltd.

NORTH AMERICA

CANADA
SMC Pneumatics (Canada) Ltd.
MEXICO
SMC Corporation (Mexico) S.A. de C.V.
USA
SMC Corporation of America

SOUTH AMERICA

ARGENTINA

SMC Argentina S.A.
BOLIVIA
SMC Pneumatics Bolivia S.R.L.
BRAZIL
SMC Pneumaticos Do Brazil Ltda.

CHILE

SMC Pneumatics (Chile) S.A.
venezuela
SMC Neumatica Venezuela S.A.

OCEANIA

AUSTRALIA
SMC Pneumatics (Australia) Pty. Ltd.
NEW ZEALAND
SMC Pneumatics (N.Z.) Ltd.

SMC Corporation

1-16-4 Shimbashi, Minato-ku, Tokyo 105-8659 JAPAN
Tel: 03-3502-2740 Fax: 03-3508-2480
URL http://www.smcworld.com
© 2005 SMC Corporation All Rights Reserved

Electric Cylinders

Directional Control Driver for Electric Cylinder

Directional control driver like a solenoid valve
Able to control the stroke with only ON/OFF signals.

- A current control protects the driver/motor from burning out.

Able to control with only 3 different types of input signals.

Series LC3F2

Series $L Z \square$ System Chart

Series LZB/LZC

Model Selection

Note) These graphs are made using actual data. Therefore these graphs are to be used as a reference and are not a guarantee of product's performance in any case. The graphs may change depending on the operating condition or environment.

Motion of Pressing Force

Model selection
 condition 1)

Used as a force-pressing.
50 N or greater pressing

Model selection result 1)
From Graph 1, LZB/C $\square 3$'s lead 2 is
applicable. (Pressing force: 80 N)

Graph 1 LZ \square 3: [Speed-Thrust] Relationship Graph

Transfer

Model selection

condition 2)
Used as a transfer. 60
N transfer thrust and
$40 \mathrm{~mm} / \mathrm{s}$ transfer
speed are required.

Model selection result 2)

From Graph 2, LZB/C $\square 5$'s lead 6 mm and lead 12 mm are applicable. But, speed at the end with 60 N load will be $100 \mathrm{~mm} / \mathrm{s}$ for lead 6 mm and $60 \mathrm{~mm} / \mathrm{s}$ for lead 12 mm . Select a suitable product in accordance with the customer's equipment.

Graph 2 LZ $\square 5$: [Speed-Thrust] Relationship Graph

Speed-Thrust Graph

$L Z \square 5$

Electric Cylinder

Series LZB

Standard Stroke

Cylinder size	Standard stroke (mm) ${ }^{*}$
3,5	$25,40,50,100,200$

* Other intermediate strokes can be manufactured upon receipt of order.
(Maximum manufacturable stroke: 200 mm)
Conditions for using a trunnion bracket are as follows:
- Maximum stroke: 150 mm
- Thread lead L (lead 2 mm) only

Applicable Auto Switches/For detailed auto switch specifications, refer to page 16 through to 18.

Type	Special function	Electrical entry	$\begin{aligned} & \hline \stackrel{\rightharpoonup}{0} \\ & \text { 흐흐응 } \\ & \hline \end{aligned}$	Wiring (Output)	Load voltage			Auto switch model	Lead wire length (m) *			Pre-wired connector	Applicable load	
					DC		AC		$\begin{gathered} 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{Z}) \end{gathered}$			
Solid	-	Grommet	Yes	3-wire (NPN)	24 V	5 V		M9N	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC	
state				3-wire (PNP)		12 V	-	M9P	\bigcirc	\bigcirc	\bigcirc	\bigcirc	circuit	Relay
switch				2-wire		12 V		M9B	-	\bigcirc	\bigcirc	\bigcirc	-	

* Lead wire length symbols: $0.5 \mathrm{~m} \cdots \cdots \cdots \cdots \mathrm{Nil}$ (Example) M9N

0.5 m	$\cdots \cdots \cdots \cdots \cdot$	Nil
3 m	(Example)	M9N
5 m	Z	M 9 NL
5	Z	M 9 NZ

* Solid state switches marked " \bigcirc " are produced upon receipt of order.

Specifications

Note 1) Equivalent to 0.4 MPa , theoretical output (lead 2)
Note 2) In the table speeds are shown without a load, as rated speed, and thrusts are shown as rated thrust based on the pressure force. Note 3) Speed will vary as they are affected by a load. Refer to page for model selection.

* Refer to page 13 for mounting bracket weight.

\triangle Specific Product Precautions

1 Do not apply any load to the rod end of the LZB series. When applying a load, use a guide to avoid the load from being applied to the rod end.

2 Auto switch mounting

There are 4 markings on the outside surface of the cylinder tube, indicating the auto switch installation range. Mount the auto switches within the range shown below.

Mount the auto switch within the installation range (shadow portion). Otherwise, the auto switch may not activate.

[^91]
Series $L Z B$

Dimensions Note) Grounding must be performed. For details, refer to the back of page 2.

L(D)ZBB3 \square

Rod end male thread: L

Axial foot style/L(D)ZBL3 \square

Rod flange style/L(D)ZBF3 \square

Dimensions

Rod trunnion style/L(D)ZBU3 \square

\triangle Caution for using a trunnion bracket

In the event of mounting a trunnion bracket, fix it to the position illustrated below before using

* Conditions for using a trunnion bracket are as follows:
- Maximum stroke: 150 mm
- Thread lead L (lead 2 mm) only

Series $L Z B$

Dimensions Note) Grounding must be performed. For details, refer to the back of page 2.

L(D)ZBB5 \square

Rod end male thread: L

Rod flange style/L(D)ZBF5 \square

J.S.T Mfg Co., L.td_-made, ring terminal insulated with nylon

Dimensions

Rod trunnion style/L(D)ZBU5 \square

\triangle Caution for using a trunnion bracket

In the event of mounting a trunnion bracket, fix it to the position illustrated below before using

[^92]
Electric Cylinder

 Series LZC

Standard Stroke

Cylinder size	Standard stroke (mm) *
3,5	$25,40,50,100,200$

* Utrier intemediate strukeo can be midnutactured upori recelpt of order.
(Mlaxımuri manutacturable stiuke: 260 mm)

Applícable Auto Switches,for detalled autu switun specilticationis, reter to paye 16 tnrough to 10 .

Specifications

Model		$\mathbf{L} \square \mathbf{Z C} \square \mathbf{3 L}$ L $\square \mathbf{Z C} \square \mathbf{3 M}$ L $\square \mathbf{Z C} \square \mathbf{3 H}$			L $\square \mathbf{Z C} \square 5 \mathrm{~L}$ L $\square \mathbf{Z C} \square 5 \mathrm{M}$ \|			$\mathbf{L} \square \mathbf{Z C} \square 5 \mathrm{H}$
Size		3 (Equivalent to ø16 cylinder) ${ }^{\text {Note 1) }}$			5 (Equivalent to ø25 cylinder) Note 1)			
Lead screw	Thread diameter	$\varnothing 8$			$\varnothing 12$			
	Lead (mm)	2	6	12	2		6	12
Rated speed with no load (mm/s)		33	100	200	33		100	200
Rated thrust (N)		80	43	24	196		117	72
Stroke (mm)		25, 40, 50, 100, 200						
Main body (kg)*		$0.72+(0.03 / 50$ stroke)			$1.72+(0.16 / 50$ stroke $)$			
Lateral load for rod end (at maximum stroke) (kg)		0.1			0.24			
Operating ambient temperature (${ }^{\circ} \mathrm{C}$)		5 to 40 (with no condensation)						
Tolerance of rod end thread		JIS class 2						
Allowable tolerance of stroke		+1						
Motor		DC motor						
Applicable directional control driver model		LC3F212-5A3口			LC3F212-5A5 \square			
Applicable auto switch model		D-M9N, M9P, M9B						

Note 1) Equivalent to 0.4 MPa , theoretical output (lead 2)
Note 2) In the table speeds are shown without a load, as rated speed, and thrusts are shown as rated thrust based on the pressure force. Note 3) Speed will vary as they are affected by a load. Refer to page 1 for model selection.

* Refer to page 13 for mounting bracket weight.

Allowable Lateral Load for Rod End

Series LZC

Dimensions Note) Grounding must be performed. For details, efere to the back of page 2.

Cover specification

Fully covered: F

Partially covered: H

Axial foot style: L

Dimensions Note) Grounding must be performed. For details, refer to the back of page ' 2.
L(D)ZCB5 \square

Cover specification

Fully covered: F

Partially covered: H

Axial foot style: L

Series LZB/LZC

LZB/C Vertical Application Specifications

Some of the LZ series can be used in vertical applications.
However, please check before usıng vertically.
Never apply a force exceeding the prescribed force.
When a force exceeding the transfer thrust is applied, the cylinder and directional control driver (LC3F2) may be damaged.

Model which can be used vertically

- L(D)ZB $\square 3 \mathrm{~L}-\square$ A3 $\square-\square \square$
-L(D)ZC $\square 3 L--\square A 3 \square \square-\square \square$
- L(D)ZB $\square 5 \mathrm{~L}-\square \mathrm{A} 5 \square-\square \square$
- L(D)ZC $\square 5 \mathrm{~L}-\square \mathbf{A} \square \square \square-\square \square$

Specifications

Model	L(D)ZB $\square 3 \mathrm{~L}$	L(D)ZC $\square 3 \mathrm{~L}$	L(D)ZB $\square 5 \mathrm{~L}$	L(D)ZC $\square 5 \mathrm{~L}$
Speed (mm/s)	P. 1 Refer to the graph on speed - thrust.			
Transfer thrust (Vertically) (N)	40		100	
Holding force**				
Standard stroke (mm)	25, 40, 50, 100, 200			
Operating ambient temperature (${ }^{\circ} \mathrm{C}$)	5 to 40 (with no condensation)			
Motor	DC motor			
Applicable direcitonal control driver model	LC3F212-5A3 \square		LC3F212-5A5■	
Applicable auto switch model	D-M9N, D-M9P, D-M9B			

* Holding force

Holding force means the force which sannot be dropped even if a load should be applied vertically when a cylinder is stopped.
Therefore, for example, holding is not possible when turning off the power supply once a cylinder has been activated.
Additionally, a load may be dropped due to external impacts or vibrations.

Accessory Bracket

Mounting nut

Rod end nut

Mounting Bracket/Part No.

Series	LZB3	LZB5
Rod side foot	LZB-LR3 $(64 \mathrm{~g})$	LZB-LR5 $(112 \mathrm{~g})$
Motor side foot	LZB-LM3 $(64 \mathrm{~g})$	LZB-LM5 $(126 \mathrm{~g})$
Flange	LZB-F3 $(40 \mathrm{~g})$	LZB-F5 $(120 \mathrm{~g})$
Rod side trunnion	CM-T020B $(40 \mathrm{~g})$	CM-T040B $(100 \mathrm{~g})$

Series	LZC3	LZC5
Rod side foot	LZC-LR3 $(21 \mathrm{~g})$	LZC-LR5 $(71 \mathrm{~g})$
	LZC-LM3 $(10 \mathrm{~g})$	LZC-LM5 $(27 \mathrm{~g})$

(): Weight for bracket
Note) Bolt needs to be supplied by customer.
(): Weight for bracket

Series LZB/LZC

Auto Switch Proper Mounting Position for Stroke End Detection and Mounting Height

Solid state auto switch

D-M9■

LDZB

Model	A	B	C
LDZB $\square \mathbf{3}$	20	19	24
LDZB $\square \mathbf{5}$	33	33	32

Operating Range of Auto Switch *

Model	A
LDZB $\square \mathbf{3}$	3
LDZB $\square \mathbf{5}$	5

* The operating range is a guide including hysteresis, but is not guaranteed. There may be substantial variation depending on the surrounding environment (assuming approximately $\pm 30 \%$
dispersion).

LDZC

Auto Switch Mounting Position
for Stroke End Detection

Model	A1	A2	B1	B2
LDZC $\square \mathbf{3}$	4.5	17.5	41.5	28
LDZC $\square \mathbf{5}$	7	57	20	44

Operating Range of
Auto Switch *

Model	A
LDZC $\square \mathbf{3}$	2
LDZC $\square 5$	2

* The operating range is a guide including hysteresis, but is not guaranteed. There may be substantial variation depending on the surrounding environment (assuming approximately $\pm 30 \%$ dispersion).

Mounting and Moving Auto Switches (Series LDZB Only)

Mounting the Auto Switch

1. Attach a switch bracket to the switch holder.
(Fit the switch bracket to the switch holder.)
2. Mount an auto switch mounting band to the cylinder tube.
3. Set the switch holder (1) between the reinforcing plates of the band mounted to the cylinder.
4. Insert a switch mounting screw in the hole of the reinforcing plate through the switch holder, and thread it into the other plate. Tighten the screw temporarily.
5. Remove the set screw attached to the auto switch.
6. Attach a switch spacer to the auto switch.
7. Insert the auto switch with the switch spacer from the back of the switch holder.
(Insert the auto switch with an angle of approximately 10 to 15°. See figure 1.)
8. To secure the auto switch, tighten the switch mounting screw with the specified torque ($0.8 \mathrm{~N} \cdot \mathrm{~m}$ to $1.0 \mathrm{~N} \cdot \mathrm{~m}$).

Adjusting the Switch Position

1. Unloosen the switch mounting screw 3 turns to adjust the switch set position.
2. Tighten the screw as described above (8.) after adjustment.

Removing the Auto Switch

1. Remove the switch mounting screw from the switch holder.
2. Move the switch back towards the position where it stops at the lead wire side.
3. Hold up the lead wire side of the switch at the angle of around 45°.
4. Maintain the angle, and pull back the switch obliquely at the same angle.

Figure 1. Switch insert angle

Auto Switch Mounting Bracket/Part No.

Applicable series	Mounting bracket	Mounting band
LDZB $\square 3$	$\begin{gathered} \text { BJ3-1 } \\ \left(\begin{array}{c} \text { Switch holder } \\ \text { Switch spacer } \\ \text { Switch bracket } \end{array}\right) \end{gathered}$	BM2-025
LDZB $\square 5$		L1ZB45-0318

Order one mounting bracket and one mounting band per one switch.

\triangle Specific Product Precautions

```
Be sure to read before handling. Refer to "SMC Best Pneumatics 2004" catalog Vol. 6/7/8/9/10/11/12,
for Safety Instructions and Auto Switches Precautions.
```


\triangle Caution

1. Mount the auto switches at the center of the operating range.
Check ON and OFF points before setting auto switches so that positions can be detected at the center of the operating range.
If mounted at the end of the operating range, the signal detection will be unstable.
2. Be aware of the environment temperature and thermal cycle.
Operate auto switches and auto switch cylinders within the operating temperature range.
The reliability of the auto switches may be adversely affected, especially, when they are exposed to thermal shock, severe temperature and humidity cycle etc.
3. Be aware of the suitability of oil, chemicals etc.

Resin and rubber materials are used for the auto switches and switch mounting brackets. Therefore, if there are chemicals such as oil or organic solvents in the environment, the resin and rubber materials may be adversely affected.
4. During maintenance, securely tighten the switch mounting screws periodically.
Use switch mounting brackets with the proper tightening torque. In addition, securely tighten the switch mounting screws periodically.
5. Be careful not to pull or strain the lead wires.

Be careful not to apply excess tensile force (over 10 N) to the auto switches. Also, adjust the position of the auto switches by sufficiently loosening the screws (3 turns or more).
6. Do not use the auto switches in environments with strong vibration and impact.
Do not use the auto switches in environments where excess vibration and impact force outside of the specifications are applied.
7. Be sure to use a switch spacer and a switch bracket. Confirm that a switch spacer is mounted to the end of the auto switch before fastening the auto switch. If the switch bracket is not mounted, the auto switch may move after installation.

Series LZB/LZC

Auto Switch Specifications

Auto Switch Common Specifications

Type	Solid state switch
Leakage current	3-wire: $100 \mu \mathrm{~A}$ or less \quad 2-wire: 0.8 mA or less
Operating time	1 ms or less
Impact resistance	$1000 \mathrm{~m} / \mathrm{s}^{2}$
Insulation resistance	$50 \mathrm{M} \Omega$ or more at 500 VDC Mega (between lead wire and case)
Withstand voltage	1000 VAC for 1 minute (between lead wire and case)
Ambient temperature	-10 to $60^{\circ} \mathrm{C}$
Enclosure	IEC529 standard IP67, JIS C 0920 waterproof construction

Lead Wire Length

Lead wire length indication

(Example)
D-M9PL〔Lead wire length

$\mathbf{N i l}$	0.5 m
\mathbf{L}	3 m
\mathbf{Z}	5 m

Note 1) Applicable auto switch with 5 m lead wire " Z " Solid state switch: Manufactured upon receipt of order as standard.

Auto Switch Hysteresis

The hysteresis is the difference between the position of the auto switch as it turns "on" and as it turns "off" A part of operating range (one side) includes this hysteresis.

Series LZB/LZC Auto Switch
 Connections and Examples

Basic Wiring

Solid state 3-wire, NPN

(Power supplies for switch and load are separate.)

Solid state 3-wire, PNP

2-wire
(Solid state)

Example of Connection to PLC (Programmable Logic Controller)

Example of AND (Serial) and OR (Parallel) Connection

- 3. wire

AND comection for NPN output (using relays)

$<$ wire with 2 switch AIVD commection

Vhener ive swituries ale wolliected in serles, a IGad may malturntlon bevause the luad vultage villi deulirle whtı If the ON state
Irie Irialcator lighits valll ilghit up it buth, ot the swituhes ale If, the UIV stale.

AND corrmection for NPN output (pertormed with switches only)

OR connection for NPN output

I he liduatui liylits will liylit un
when buth switinto are luined UIN.
2. wire with $<$ switen OH connection

I vad vultaye at Urr - Leakayt vurientin $\angle \mu v o$. x l vad ininedálive

- mAx 2 pus. x 3 ks
$-0 \mathrm{v}$
Example: L.vad irmpedanice is 3 ks .
L eakaye cursert from swituh is 1 mA .

Solid State Switch: Direct Mounting Style D-M9N/D-M9P/D-M9B

Grommet

- 2-wire load current is reduced (2.5 to 40 mA)
- Lead-free
- UL certified (style 2844) lead cable is used.

©Caution

Operating Precautions

Fix the switch with the existing screw installed on the switch body. The switch may be damaged if a screw other than the one supplied, is used.

Auto Switch Specifications

For details about certified products conforming to nternational standards, visit us at www.smoworld.com.

PLC: Programmable Logic Controller			
D-M9 \square (With indicator light)			
Auto switch part no.	D-M9N	D-M9P	D-M9B
Electrical entry direction	In-line		
Wiring type	3-wire		2-wire
Output type	NPN	PNP	-
Applicable load	IC circuit, Relay, PLC		24 VDC relay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)		-
Current consumption	10 mA or less		-
Load voltage	28 VDC or less	-	24 VDC (10 to 28 VDC)
Load current	40 mA or less		2.5 to 40 mA
Internal voltage drop	0.8 V or less		4 V or less
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC		0.8 mA or less
Indicator light	Red LED illuminates when ON.		

- Lead wires

Oilproof heavy duty vinyl cable: $\varnothing 2.7 \times 3.2$ ellipse, $0.15 \mathrm{~mm}^{2}$,
D-M9B $\quad 0.15 \mathrm{~mm}^{2} \times 2$ cores
D-M9N, D-M9P
$0.15 \mathrm{~mm}^{2} \times 3$ cores
Note 1) Refer to page 16 for solid state switch common specifications.
Note 2) Refer to page 16 for lead wire lengths.

Weight

Auto switch part no.		D-M9N	D-M9P	D-M9B
Lead wire length (m)	0.5	8	8	7
	3	41	41	38
	5	68	68	63

Dimensions

Unit: пи!

D My \sqcup

Directional Control Driver for Electric Cylinder

Series LC3F2

Able to contro the stroke with only ON/OFF signals
Directional control driver like a solenoid valve

LC3F212-5A3 \square

Able to set thrust arbitrarily.

Thrust can be adjusted by adjustment trimmer

Directional Control Driver for Electric Cylinder

Series LC3F2

How to Order

d Housing set (Connector set)

A	Housing for CN1, 2, 3 (connector) \& contact (connector pin) are included as an accessory.
B	Nothing included.

Nothing included.
 5 24 VDC

A5 \quad DC motor (cylinder size 5)

Option

- Cable for power supply terminal

CN1 Power Supply -erminal Tabie

Terminal	Function	Pin number	Optional cable color
FG	Frame ground	1	Yellow/Green
DC (+)	Driver power supply (+24 V)	2	Brown
DC (-)	Driver power supply (0 V)	3	Blue

CN2 Control Terminal Table

Terminal	Function		Pin number	Optional cable color
COM	Common terminal	1	White	
ON	Output ON command input	ON: Motor output	2	Red
	OFF: No motor output			
SET	Adjusted thrust command input	ON: Adjusted thrust	OFF: 100% thrust (Max. thrust)	3

- Cable for motor output terminal

CiN3 Niotor OJtpJt Terminal Table

Terminal	Function	Pin number	Optional cable color
OUTA	Motor output A (Blue)	1	Blue
OUTB	Motor output B (Red)	2	Red

- Housing set (Connector set)

LC3F2 1-C0

Housing for power supply terminal (Connector)	1 pc.	VHR-3N: J.S.T. Mfg Co., Ltd.)
Housing for control terminal (Connector)	1 pc	VHR-4N: J.S.T. Mfg Co., Ltd.)
Housing for motor output terminal (Connector)	1 pc	VHR-2N: J.S.T. Mfg Co., Ltd.)
Contact (Connector pin)	12 pcs.	BVH-21T-P1.1: J.S.T. Mfg Co., Ltd.)

\triangle Caution

- Do not apply repetitive bending or pulling stress to the cable.

Wiring with repetitive bending or pulling stre:ss to the cable will likely cause the cable to break.

- In the event of crimping the contact (connector pin) and wire use the specifiec tools as wel as the recomr ended cable Crimping tool: YC-160R (J.S.T Mfg Co , Ltd.)
Pulling tool: EJ-NV (J.S.T Mfg Co, Ltd.)
Recommended cable connection (common for individual cable) AIVG2. ($0.5 \mathrm{~mm}^{2}$) Insulated wire O.D. 1.7 to 3.0 mm with $\mathrm{s}^{\text {hield }}$ Heat resistance is more than $80^{\circ} \mathrm{C}$.
Maximum cable length (CN1 cable for power supply terminal 2 m CN2 cable for control terminal 2 m
CN3 cable for motor output terminal 5 m
- Shield is attached with an optional cable for the LC3F2 series.

When grounding a shield, remove the sheath and use a metal U-crip or P-crip.

Applicable Cylinder Table

Cylinder part no.	Applicable directional control driver
L $\square \mathbf{Z} \square$ 3 $\square \square \square \square$ A3 $\square \square$ - $\square \square \square \square$	LC3F212-5A3 \square
L $\square \mathbf{Z} \square \mathbf{5} \square$ - $\square \square \square$ A5 $\square \square$ - $\square \square \square \square$	LC3F212-5A5 \square

Dimensions

How to Mount

Mount the directional control driver vertically against the wall, using two mounting screw holes, so the front side (on which its adjustment trimmer and manual switch are located) is facing to an operator

Applicable mounting screw: M3 (2 pcs.) [to be supplied by customer]

Series LC3F2

Wiring Example

For System Chart, refer to Features 1

\triangle Caution

There is no emergency stop function or power supply switch in the directional control driver Please be sure to provide an emergency stop and power supply insulation (insulator) device as a total machine equipment, referencing the above wiring examples. Also, please be sure to turn off the power supply for the whole equipment prior to wiring the directional control driver.

How to wire

CN3 motor output terminal

$\}$ Heat sink side
CN1 Power Supply Terminal

Pin no.	Terminal	Function
1	FG	Frame ground
2	DC $(+)$	Driver power supply (+24 V)
3	DC $(-)$	Driver power supply (0 V)

Housing: VHR-3N (J.S.T Mfg Co., Ltd.)
Contact: BVH-21T-P1. (J.S.T. Mfg Co., Ltd.)
CN3 Motor Output Terminal

Pin no.	Terminal	Function
1	OUTA	Motor output A (Blue wire)
2	OUTB	Motor output B (Red wire)

Housing: VHR-2N (J.S.T Mfg Co., Ltd.)
Contact: BVH-21T-P1. (J.S.T. Mfg Co., Ltd.)

Housing: VHR-4N (J.S.T. Mfg Co., Ltd.)
Contact: BVH-21T-P1. 1 (J.S.T Mfg Co., Ltd.)
Note) For the travelling direction (retracted, extended side), refer to the dimensions in page 4, 6, 10 and 1.

Timing Chart

CN2 Control Terminal

Pin no.	Terminal		Function
1	COM	Common terminal	
2	ON	Output ON command input	ON: Motor output
			OFF: No motor output
3	SET	Adjusted thrust command input	ON: Adjusted thrust
			OFF: 100\% thrust (Max. thrust)
4	A-PHASE	Traveling direction command input	ON: A-PHASE (Retracted side) Note)
			OFF: B-PHASE (Extended side) Note)

Housing: VHR-4N (J.S.T. Mfg Co., Ltd.)
Contact: BVH-21T-P1.1 (J.S.T Mfg Co., Ltd.)
Note) For the travelling direction (retracted, extended side), refer to the dimensions in page 4, 6, 10 and 11.

[^93]
Electric Cylinders Safety Instructions

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by labels of "Caution", "Warning" or "Danger". To ensure safety, be sure to observe ISO 10218-1992 Note 1), JIS B 8433-1993 ${ }^{\text {Note 2) }}$ and other safety practices.
© Caution : operator eroro could result in inuy or equipment damage.
\triangle Warning : operator eror could result in serious iniury or loss of tile.
© Danger: In exteme conditions, here is apossibily of seitious iniury or oss of fife.

Note 1) ISO 10218-1992: Manipulating industrial robots-Safety
Note 2) JIS B 8433-1993: Manipulating industrial robots--Safety

© Warning

1. The compatibility of the electric cylinder with an application should be examined by the system planner, or by the person who determines the specifications.
Since the products specified here are used in various operating conditions, their compatibility with a specific system must be based on either specifications, post analysis and/or tests to meet a specific requirement. The expected performance and safety assurance is the responsibility of the person who has determined the compatibility between the cylinder and the system. This person should continuously review the suitability of all items specified, referring to the latest catalog information with consideration towards any possible equipment failure when configuring the system.
2. Only trained personnel should operate pneumatically operated machinery and equipment. Compressed air can be dangerous if handled incorrectly. Assembly, handling or repair of an electric cylinder should be performed by a trained and experienced operator.
3. Do not service machinery/equipment or attempt to remove components until safety is confirmed.
4. Inspection and maintenance of machinery/equipment should only be performed after confirmation of safe locked-out control positions.
5. When equipment will be removed, confirm the safety process as mentioned above, and shut off the power supply for this equipment.
6. Before machinery/equipment is restarted, confirm that safety measures are in effect.
7. Contact SMC if the product will be used in any of the following conditions:
8. Conditions and environments beyond the given specifications, or if product is used outdoors.
9. Installation on equipment in conjunction with atomic energy, medical equipment, food and beverages, or safety equipment.
10. An application which has the possibility of having negative effects on people, property, or animals, requiring special safety analysis.
11. Review and confirm the product's documentation thoroughly before using the product, or contact our distributors, or SMC for confirmation for a problem free application.
12. Use the product after thoroughly reviewing and confirming the precautions in this catalog.
13. Some products in this catalog are for particular applications and sites only. Check and confirm with the distributor or SMC.

Electric Cylinder Precautions 1

Be sure to read this before handling.

General

Caution on Handling

1 Caution

1. In order to ensure proper operation, be certain to read the instruction manual carefully. As a rule, handling or usage/operation other than those contained in the instruction manual are prohibited.
2. If the cylinder will be used in an environment where it will be exposed to chips, dust, cutting oil (water, liquids), etc., a cover or other protection should be provided.
3.Operate with cables secured. Avoid bending cables at sharp angles where they enter the cylinder, and also be sure that cables do not move easily.

Caution on Design

© Warning

1. In cases where dangerous conditions may result from power failure or malfunction of the product, install safety equipment to prevent damage to machinery and human injury. Consideration must also be given to drop prevention with regard to suspension equipment and lifting mechanisms.
2. Consider possible loss of power sources.

Take measures to protect against human injury and machine damage in the event that there is a loss of air pressure, electricity or hydraulic power.
3. Consider emergency stops.

Design so that human injury and/or damage to machinery and equipment will not be caused when machinery is stopped by a safety device under abnormal conditions such as a power outage or a manual emergency stop.
4. Consider the action when operation is restarted after an emergency stop or abnormal stop.
Design the machinery so that human injury or equipment damage will not occur upon restart of operation.

Selection

© Warning

1. Confirm the specifications.

The products in this catalog should not be used outside of the range of specifications, since this may cause damage malfunction, etc. (Refer to the specifications.)

Mounting

Caution

1. Make sure that cables are not caught by cylinder movement.
2. Do not use in locations where there is vibration or impact shock. Contact SMC before using in this kind of environment, as damage may result.
3. Give adequate consideration to the arrangement of wiring, etc., when mounting. If wiring is forced into inappropriate arrangement, this may lead to breaks in the wiring and result in malfunction.

Operating Environment

\triangle Caution

1. Avoid use in the following environments.
2. Locations with a lot of debris or dust, or where chips may enter.
3. Locations where the ambient temperature exceeds the operating temperature range specified in each model. (Refer to the specifications.)
4. Locations where the ambient humidity exceeds the operating humidity range specified in each model. (Refer to the specifications.)
5. Locations where corrosive or combustible gases are generated
6. Locations where strong magnetic or electric fields are generated.
7. Locations where direct vibration or impact shock, etc., will be applied to the cylinder unit.
8. Locations where a lot of dusts, water drops and oil drops are applied to a product.

Maintenance

© Warning

1. Perform a maintenance according to the procedures indicated in the instruction manual.
If handled improperly, malfunction and damage of machinery or equipment may occur.
2. Removal of equipment

When equipment is removed, first confirm that measures are in place to prevent dropping or runaway of driven objects, etc., and then proceed after shutting off the electric power. When starting up again, proceed with caution after confirming that conditions are safe.

Grounding

© Warning

1. Be sure to ground an electric cylinder.
2. Dedicated grounding should be used as much as possible. Grounding should be to a type 3 ground. (Ground resistance of 100Ω or less.)
3. Grounding should be as close as possible to the electric cylinder, and the ground wires should be as short as possible.

Be sure to read this before handling.

Cylinder

Caution on Design

\triangle Warning

1. There is a possibility of dangerous sudden action by cylinders if sliding parts of machinery are twisted due to external forces, etc.
In such cases, human injury may occur, e.g., by catching hands or feet in the machinery, or damage to the machinery itself may occur. Therefore, the machine should be adjusted for smooth operation and designed to avoid such dangers.
2. A protective cover is recommended to minimize the risk of human injury.
If a driven object and moving parts of a cylinder pose a danger of human injury, design the structure to avoid contact with the human body.
3. Securely tighten all stationary parts and connected parts of cylinders so that they will not become loose. Avoid use in locations where direct vibration or impact shock, etc., will be applied to the body of the cylinder.

Operation

\triangle Caution

1. Conduct the following inspection before cylinder/directional control driver is operated.
a) Confirm that the power supply line or each signal line for cylinder/directional control driver is not broken.
b) Confirm that the power supply line or each signal line for cylinder/directional control driver is not loosened.
c) Confirm that the cylinder/directional control driver is not mounted loosely.
d) Confirm that the cylinder/directional control driver is operated correctly. e) Confirm the function of the emergency stop.
2. Take measures such as installing a fence, etc., to prevent any person from entering the operational area of the cylinder/directional control driver and related equipment.
3. If a person should enter an area as mentioned above 2., take measures to ensure that the emergency stop is controlled by a sensor, etc.
4. In case the cylinder/directional control driver is stopped by abnormalities, take necessary measures to prevent danger from related equipment.
5. In case of abnormalities of related equipment, take necessary measures to prevent danger from a cylinder/directional control driver.
6. Take necessary measures to prevent broken or cut power lines or signal lines of the cylinder/directional control driver from pinching, shearing, curling, scratching and grazing.
7. In case there is abnormal heat, fume and flame, etc., in the cylinder/directional control driver, cut off the power supply immediately.
8. In the event of an installation, adjustment, inspection or maintenance of a cylinder/directional control driver, as well as related equipment, be sure to cut off the power supply for the cylinder/directional control driver and related equipment and take measures such as locking or safety-lock, etc., so that persons other than workers are not able to restart the operation again. Furthermore, display the information for doing those jobs at the places where anyone can see easily.

Operation

Caution

9. In case several persons are doing the job, determine the procedure, signs, measures against abnormality and restarting measures in advance. Then let the person who is not doing the job supervise that job.

Caution on Handling

\triangle Caution

1. The cylinder can be used with a load directly applied to it, as long as it is within the allowable range. However, it is necessary to design an appropriate connecting method and use careful alignment when a load with external support and guide mechanisms is connected. The longer the stroke is, the larger the variation in the axial center becomes. Therefore, devise a connection method to absorb the variation.
2. The product can be used without lubrication. In case the product is lubricated, special grease is required. Contact the distributor or SMC.

Mounting

\triangle Caution

1. Do not use until you verify that the equipment can operate properly.
2. The product should be mounted and operated after thoroughly reading the instruction manual and understanding its contents.
3. Do not dent, scratch or cause other damage to the body and table mounting surfaces.
This may cause a loss of parallelism in the mounting surfaces, looseness in the guide unit, an increase in operating resistance or other problems.
4. When attaching a workpiece, do not apply strong impact shock or a large moment.
If an outside force exceeding the allowable moment is applied, this may cause looseness in the guide unit, an increase in sliding resistance or other problems.
5. When connecting a load having an external support or guide mechanism, be sure to select a suitable connection method and perform careful alignment.
6. Fix the cylinder's fixing part and connecting part securely.
If the cylinder is used at a highly frequency or in a location with a large amount of vibration, fix it securely using adhesives to prevent it from loosening.

Be sure to read this before handling.

Directional Control Driver

Caution on Handling

Warning

1. Never touch the directional control driver inside. It will likely lead to an electrical shock or other trouble.
2. Use only the designated combination between motor and directional control driver.

\triangle Caution

1. Do not disassemble and modify. It may result in the trouble, malfunction, fire, etc.
2. Do not touch for a while when being energized or after cutting off the power source because it is high temperature.
3. If a fire or danger against the human being is expected by abnormal heat generation of the product, emitting fume and catching on fire, etc., cut off the power supply for the main body and the system immediately.

Power Supply

\triangle Caution

1. In cases where voltage fluctuations greatly exceed the required voltage, a constant voltage transformer, etc., should be used to allow operation within the required range.
2. Use a power supply that has low noise between lines and between power and ground. In cases where noise is high, an isolation transformer should be used.
3. The power supply line and the interface power supply line must be wired separately in different systems.
4. To prevent surges from lightning, connect a varistor for lightning. Ground the surge absorber for lightning separately from the grounding of the derectional control driver.

Grounding

\triangle Caution

1. Be sure to carry out grounding in order to ensure the noise tolerance of the directional control driver.
2. Dedicated grounding should be used as much as possible. Grounding should be to a type 3 ground. (Ground resistance of 100Ω or less.)
3. Grounding should be as close as possible to the directional control driver, and the ground wires should be as short as possible.
4. In the unlikely event that malfunction is caused by the ground, disconnected it from the ground.

Mounting

Caution

1. Mount the directional control driver on incombustible materials. Mounting on combustible materials directly or mounting closely to it may lead to a fire.
2. Consider the cooling period, so that the operating temperature of main body should be within the range of specifications. Also, allow enough distance from each side of the main body, construction and the parts.
Cooling should be considered, so the surface temperature of a heat sink should not be more than $50^{\circ} \mathrm{C}$ even though the temperature is within the operating range.

3. Avoid placing with large-sized solenoid contact apparatus or vibrating source such as no fuse insulator and then make a separate panel or mount in the distance.
4. Mounting should enable the connectors to be inserted or removed after installation.
5. If there are concave or convex or distorted parts on the mounting face of a directional control driver, an unreasonable force can be applied to the frame or case, which can cause trouble. Mount on the flat face.

Wiring

. Danger

1. Adjustment, installation, or wiring changes should be conducted after power supply to this product is turned off. Otherwise, there is a possibility of an electrical shock.

© Caution

1. Wiring should be performed correctly.

For each terminal, voltages other than stipulated in the operation manual should not be applied. Otherwise, the product may break.
2. Connect the housing securely.
3. Treat the noise securely.

If the noise is at the same wavelength as the signal lines, it will lead to malfunction. As a countermeasure, separate the high and low electrical lines and shorten the length of wiring, etc.
4. When using a cable made by oneself, confirm the electric wire is of a proper gauge as mentioned in the instruction manual and it is not affected by a noise before using.

Directional Control Driver Precautions 2
Be sure to read this before handling.

Wiring

Warning

1. Avoid repeatedly bending and/or stretching the cables.
Repeatedly applying bending stress and/or stretching force to the cables may result in broken lead wires.
2. Avoid incorrect wiring.

Depending on the type of incorrect wiring, the directional control driver may be damaged.
3. Perform wiring when the power is turned off.

The directional control driver may be damaged and malfunction.
4. Do not wire with power lines or high voltage lines.
Conduct wiring for a directional control driver separately from power lines or high voltage lines to avoid interference from the noise or surge of the power lines or high voltage lines. This may result in malfunction.
5. Confirm that the wiring is properly insulated.

Be certain that there is no faulty wiring insulation (contact with other circuits, improper insulation between terminals, etc.) because the directional control driver may be damaged due to excessively applied voltage or current flow to it.

Operating Environment

Warning

1. Do not use in an environment subjected to temperature cycle.
If used in an environment where temperature cycling occurs, other than the usual temperature change, the internal directional control driver may be adversely effected.
2. Do not use in a place that has excessive electrical surge generation.
When there are units (solenoid type lifter, high frequency induction furnace, motor, etc.) which generate a large amount of surge in an area around the directional control driver, deterioration or damage may occur to the internal circuit elements of the directional control driver. Avoid sources of surge generation and crossed lines.
3. Select a product type that has built-in surge absorbing elements for a load, such as relays and solenoid valves employed for driving voltage generating load directly.
4. Avoid use in the following environments.
5. Locations with a lot of debris or dust, or where chips may enter.
6. Locations where the ambient temperature exceeds the operating temperature range specified in each model. (Refer to the specifications.)
7. Locations where the ambient humidity exceeds the operating humidity range specified in each model. (Refer to the specifications.)
8. Locations where corrosive or combustible gases are generated.
9. Locations where strong magnetic or electric fields are generated.
10. Locations where direct vibration or impact shock, etc., will be applied to the cylinder unit.
11. Locations where a lot of dusts, water drops and oil drops are applied to a product.

Adjustment and Operation

. Warning

1. Do not short the loads.

Short on the load of the directional control driver indicates an error, but it may cause over current and damage the directional control driver.
2. Do not operate or conduct any settings with wet hands.
An electric shock may result from wet hands.
3. When operating the manual switch, avoid making contact with the workpiece.
Contact with the workpiece may cause injury.

\triangle Caution

1. Do not push the manual switch with sharp pointed items.
Sharp pointed items may cause manual switch damage.
2. Do not touch the heat sink parts of the directional control driver.
Conduct operation after confirming that the machine is cool since it gets hot while in operation.
3. When adjusting the trimmer, the following conditions should be observed.
4. Adjust it with a supply pressure of 4.9 N or less.
5. Adjust the adjustment parts with 68.5 mN or less.

Maintenance

© Warning

1. Periodically perform a maintenance of the product.
Confirm that the piping and bolts are securely tightened.
Unintentional malfunction of a system's components may occur as a result of a cylinder malfunction.
2. Do not disassemble, modify (including change of printed circuit board) or repair.
Disassembly or modification may result in injury or failure.

\triangle Caution

1. Confirm the range of movement of a workpiece (a slider) before connecting the driving power supply or turning on the switch.
The movement of the work may cause an accident.

Directional Control Driver Precautions 3
Be sure to read this before handling.

Caution on Design and Selection

. Warning

1. Conduct operation at regulated voltage.

The product may not function correctly or the directional control driver section may be damaged if used with any other voltage than the specified regulated voltage.
2. Operate within the limit of the specification range.
If operated outside of the specification range, there is a possibility of fire, malfunction, and or cylinder damage. Operate after confirming the required specifications.
3. To prevent any damage by product failure or malfunction, plan and construct a backup system beforehand, such as multiplexing the components and equipment, employing failure free planning, etc.
4. Secure the space for maintenance.

When planning, consider the space to be required for product checkup and maintenance.
5. Provide a protective cover when there is a risk of human injury.
If a driven object and or moving parts of a cylinder pose a danger to human injury, design the structure to avoid contact with the human body

Directional Control Driver Precautions 4
Be sure to read this before handling.

Caution on Design and Operation

1. If an electric cylinder with DC motor should be rotated by the larger external force than the generated thrust, the reverse inrush voltage generated may cause adverse effects on the electric cylinders directional control driver and result in malfunction or damage to the product.
Example)

- Do not push or pull a cylinder rod, applying a larger load than the generated thrust. (Please use caution if the generated thrust should be switched over between a high thrust and a low thrust.)

- Do not use this product by stopping it with a load or external force. (control operation)

- Command an uperation in the reverse direction only after a cylinder rod stopped completely.

- Do not operate a cylinder rod with an exterrial torce when the electric cylinder directional control driver is turried oft or output is in the oft state. (It a cylinder rod needs to be moved manually for the purpose of adjustment, etc, be sure to reniove the ciN3 motor output terminal betoreharia)

I C3F2

Be sure to read this before handling.

Design and Selection

. Warning

1 Confirm the specifications.

Read the specifications carefully and use this product appropriately. The product may be damaged or malfunction if it is used outside the range of specifications of current load, voltage, temperature or impact
2. Use caution when multiple actuators are used and close to each other
When two or more auto switch actuators are lined up in close proximity to each other, magnetic field interference may cause the switches to malfunction. Maintain a minimum cylinder separation of 40 mm
3. Pay attention to the length of time that a switch is ON at an intermediate stroke position.
When an auto switch is placed at an intermediate position of the stroke and a load is driven at the time the piston passes, the auto switch will operate, but if the speed is too great the operating time will be shortened and the load may not operate properly. The maximum detectable piston speed is:

$$
\mathrm{V}(\mathrm{~mm} / \mathrm{s})=\frac{\text { Auto switch operating range }(\mathrm{mm})}{\text { Time load applied }(\mathrm{ms})} \times 1000
$$

4. Keep wiring as short as possible.
<Sulid state switich>
Althivugh wire IErigth shivuld riut affect switch furictivi, use a wire 100 mu shurter.
5. Take nute of the internal vultaye drup of the switch.
<Solid state switch>
Gerrerally, the itremal voltaye drop will be yreater with a 2 wire sulid state auto switch than with a reed switch. Take the salle piecautions as in 1).
Alsu, nute that a 12 L VDC relay is rivt applicable.
6. Pay attention to leakage current
<Sulid state switu>
With a 2 -wire sulid state auto switch, current (Ieakage current) tlows to the Icad to uperate the intermal cilcult everi when in the OFF state.

Operating current of
load (UFF conditivi) > Ledkaye current
If thie criteriáa given in the abuve furmula are nut riet, it will riut reset currectly (stays ON). Use a 3 -wire switch it this specificatiun will rivt be satisfied.
Mloreuver, leakaye currerit tlow io the load will be "ir" timies laryer wher "I" autu switches are cuniriected in parallel.

7 Do not use a load that generates surge voltage.
<Sulĩd state switu>
Althivugh a <erier diude for surge protection is curmected at the output side of a solid state autu switch, darmaye may still vocur if the surge is applied repeatedly Wher a luad, such as a relay ur solericid, whilch yerrerates surye is directly diver, use a type of switch with a built in surge absurbiriy elernent.

8 Cautions for use in an interlock circuit

When an auto switch is used for an interlock signal requiring high reliability, devise a double interlock system to avoid trouble by providing a mechanical protection function, or by also using another switch (sensor) together with the auto switch. Also perform periodic maintenance and confirm proper operation.
9. Ensure sufficient clearance for maintenance activities.
When designing an application, be sure to allow sufficient clearance for maintenarice and inspections.

Auto Switch Precautions 2

Be sure to read this before handling.

Mounting \& Adjustment

\triangle Warning

1. Do not drop or bump.

Do not drop, bump or apply excessive impacts ($300 \mathrm{~m} / \mathrm{s}^{2}$ or more for reed switches and $1000 \mathrm{~m} / \mathrm{s}^{2}$ or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction.
2. Do not carry an actuator by the auto switch lead wires.
Never carry a cylinder (actuator) by its lead wires. This may not only cause broken lead wires, but it may cause internal elements of the switch to be damaged by the stress.
3. Mount switches using the proper fastening torque.
When a switch is tightened beyond the range of fastening torque, the mounting screws, mounting bracket or switch may be damaged. On the other hand, tightening below the range of fastening torque may allow the switch to slip out of position.
4. Mount a switch at the center of the operating range.
Adjust the mounting position of an auto switch so that the piston stops at the center of the operating range (the range in which a switch is ON).
(The mounting position shown in a catalog indicates the optimum position at stroke end.) If mounted at the end of the operating range (around the borderline of ON and OFF), operation will be unstable.
<D-M9 $\square>$
When the $\mathrm{D}-\mathrm{M} 9 \square(\mathrm{~V})$ auto switch is used to replace old series auto switch, it may not activate depending on operating condition because of its shorter operating range.
Such as

- Application where the stop position of actuator may vary and exceed the operating range of the auto switch, for example, pushing, pressing, clamping operation, etc.
- Application where the auto switch is used for detecting an intermediate stop position of the actuator. (In this case the detecting time will be reduced.)
In these applications, set the auto switch to the center of the required detecting range.

\triangle Caution

1. Fix the switch with appropriate screw installed on the switch body. If using other screws, switch may be damaged.

© Warning

1. Avoid repeatedly bending or stretching lead wires.

Broken lead wires will result from applying bending stress or stretching force to the lead wires.
2. Be sure to connect the load before power is applied.
<2-wire type>
If the power is turned ON when an auto switch is not connected to a load, the switch will be instantly damaged because of excess current.

3. Confirm proper insulation of wiring.

Be certain that there is no faulty wiring insulation (contact with other circuits, ground fault, improper insulation between terminals, etc.). Damage may occur due to excess current flow into a switch.
4. Do not wire with power lines or high voltage lines.
Wire separately from power lines or high voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits, including auto switches, may malfunction due to noise from these other lines.

5. Do not allow short circuit of loads.

<Solid state switch>
Model D-M9 \square and all models of PNP output type switches do not have built-in short circuit prevention circuits. If loads are short circuited, the switches will be instantly damaged, as in the case of reed switches.
Take special care to avoid reverse wiring with the power supply line (brown) and the output line (black) on 3-wire type switches.

6. Avoid incorrect wiring.

<Solid state switch>

1) If connections are reversed on a 2-wire type switch, the switch will not be damaged if protected by a protection circuit, but the switch will always stay in an ON state. However, it is still necessary to avoid reversed connections, since the switch could be damaged by a load short circuit in this condition.
2) If connections are reversed (power supply line + and power supply line -) on a 3-wire type switch, the switch will be protected by a protection circuit. However, if the power supply line (+) is connected to the blue wire and the power supply line $(-)$ is connected to the black wire, the switch will be damaged.

<D-M9 $\square>$

D-M9 \square does not have built-in short circuit protection circuit. Be aware that if the power supply connection is reversed (e.g.
$(+)$ power supply wire and (-) power supply wire connection is reversed), the switch will be damaged.

* Lead wire color changes

Lead wire colors of SMC auto switches have been changed in order to meet NECA Standard 0402 for production beginning September, 1996 and thereafter. Please refer to the tables provided.

2-wire

	Old	New
Output (+)	Red	Brown
Output (-)	Black	Blue

3-wire

	Old	New
Power supply (+)	Red	Brown
Power supply GND	Black	Blue
Output	White	Black

Auto Switch Precautions 3
Be sure to read this before handling.

Wiring

Caution

5. When the cable sheath is stripped, confirm the stripping direction. The insulator may be split or damaged depending on the direction. (DM9 \square only)

Recommended Tool

Model name	Model no.
Wire stripper	D-M9N-SWY

* Stripper for a round cable (ø2.0) can be used for a 2-wire type cable.

Operating Environment

\triangle Warning

1. Never use in an atmosphere of explosive gases.
The construction of auto switches is not intended to prevent explosion. Never use in an atmosphere with an explosive gas since this may cause a serious explosion.
2. Do not use in an area where a magnetic field is generated.
Auto switches will malfunction or magnets inside actuators will become demagnetized.
3. Do not use in an environment where the auto switch will be continually exposed to water.
Although switches, satisfy IEC standard IP67 construction (JIS C 0920: waterproof construction), do not use switches in applications where continually exposed to water splash or spray. Poor insulation or swelling of the potting resin inside switches may cause malfunction.
4. Do not use in an environment with oil or chemicals.
Consult with SMC if auto switches will be used in an environment with coolant, cleaning solvent, various oils or chemicals. If auto switches are used under these conditions for even a short time, they may be adversely affected by improper insulation, malfunction due to swelling of the potting resin, or hardening of the lead wires.
5. Do not use in an environment with temperature cycles.
Consult with SMC if switches are used where there are temperature cycles other than normal temperature changes, as they may be adversely affected internally.
6. Do not use in an environment where there is excessive impact shock.

Operating Environment

Warning

7. Do not use in an area where surges are generated.
<Solid state switch>
When there are units (solenoid type lifter, high frequency induction furnace, motor, etc.) which generate a large amount of surge in the area around actuators with solid state auto switches, this may cause deterioration or damage to the switches. Avoid sources of surge generation and crossed lines.
8. Avoid accumulation of iron debris or close contact with magnetic substances.
When a large amount of ferrous debris such as machining chips or spatter is accumulated, or a magnetic substance (something attracted by a magnet) is brought into close proximity with an auto switch actuator, it may cause the auto switch (actuator) to malfunction due to a loss of the magnetic force inside the actuator.

Maintenance

\triangle Warning

1. Perform the following maintenance periodically in order to prevent possible danger due to unexpected auto switch malfunction.
1) Securely tighten switch mounting screws.

If screws become loose or the mounting position is dislocated, retighten them after readjusting the mounting position.
2) Confirm that there is no damage to lead wires.

To prevent faulty insulation, replace switches or repair lead wires, etc., if damage is discovered.

Other

\triangle Warning

1. Consult with SMC concerning water resistance, elasticity of lead wires, usage at welding sites, etc.

SMC＇S GLOB．AL MAMUFACTURING，DISTRIBUTION AND SERVICE NETWORK

ELROPE

AUSTRIA
sivil \lrcorner neuriatik imbri
BEL GIUIVI
sivic Ineumatics V．k．S．A．
BUL GARIA
sivic nuustriá tutuirlation sulyaria $=$ UUD
－HOUA．It
sivic nuusirıjska xulomadıka ı．J．J．
CZECH REPUBL C
sivic nuusitial tutoirlaticir jL j．．．J．
UENIVIAKK
SVIC Ineumatik $\operatorname{d/S}$
ESTUNIA
sivic－neurriatics＝stcilla JU
FINL IND
SNiC Ineumatics－inıand JY
FR．ANCE
sivic 〕neumailque jit
Githivian Y
sivic‘ Jneumatik inıbri
HUNGAR ${ }^{\mu}$
sivil－urnyary pari thiorriatizalasi＜tt．
IREL AND
SNIC دneumatićs Irelanu）．a．
「TALY
sivic talia j．p．．t．
L t＂rla
siviC Inuerriatics－tivía s̊la
L．JTHU．ANIA
sivic nneumiatics－tnuaniáa，，to
NE：HERL INUS
siViC 」neumaices ぶ。

NUK＇NA Y

SNIC Prleumatics Noiway A／S
POLAND
siVIU Inuustriá tutoriation rolska Sp．z u．u．
KUIVIANIA
sivic Rumaniá s．i．
RUSSIA
sivic •rneurratik L．．．
si JVAKI．A
SMIC Priemyserna dutomatizacia，s．r．o．
sL JVENIA
SIVIU INDL SI IJIJSKA ．AV IUIVA IIKA d．．J．J．
SHAIN／PUR•UGAL
sMiC España，ذ．」．
SWEDEN
sivic $r n$ eurriatics siweden ab
sWVI $/ 2$ ERL IND
sivic $\stackrel{\text { neuindık tú．}}{ }$
UK
sivic rneuindilcs（（．K ）ica．
ASIA
CHINA
sivil（Urına）jo．．．a．
hUNG rUNG
SiviC Pneumatics（hong Kong）Lid．
INDIA
sivic •rieuifldilcs india）Pvt．l tu．
INDUNESI．A
～incic Ineumadics Inuonesia
M．AL A＂SIA
sivil rneurnaticis（৬．＝4）bun．Bha．
Prill Prints
SHOKETSL－SMC jorpuraiton

SINGAPUKE
siMU Pneumatıcs（S．E A ）Pte．l ta SOUTH KOREA
sIMU Prieuriatics Kured ju．，．tu
I AIVNAN
SMC Preumatics（Taiwan）Cu．，Lid． THAII AND
sivic inallarial id．

NORTH AMIERICA

CANAD．A
SMU Pneumatics（Candada）L td．
MEXICO
Sivic voipuration（Ivlealcu）S．4．de C．v． USA
SMU＇Corpuration oi Amerıca

SOUTH ANIERIC゙A

AKGENIINA

SMC Argentina S．A．
BOLIVIA
sivic rneurnatics Bulivia S．R．L
BK．ACII
SMC＇Pneumaticus Du Brazill Ldd．
CHII E
sivic Fileuriaticis（Unile）৬． 4.
VENELUEI A
SMC Neumatica Venezuela S．A．

OCEANIA

AUSIKALIA
SIMU Pneumatics（Australla）トry．l ta．
NEW ZEAI AND

SMC Corporation

1 j－＋shirrıbabhi，villiato－xu，I oxyo J5－3659 JHPAiN

．KL רttp．／／＇www．smćworld．jum

[^0]: * Values will vary slightly depending on the operating conditions.

[^1]: * Consult SMC if outside of the above conditions.

[^2]: * Values will vary slightly depending on the operating conditions.

[^3]: * Values will vary slightly depending on the operating conditions.

[^4]: * Values will vary slightly depending on the operating conditions.

[^5]: * Values will vary slightly depending on the operating conditions.

[^6]: * Values will vary slightly depending on the operating conditions.

[^7]: Intermediate strokes
 For manufacture of strokes other than the standard strokes on the left, add "-X2" at the end of the part number.
 Applicable strokes: 250, 350, 450,
 Example) LJ1H3031NA-250K-F2-X2

[^8]: * For motor mounting dimensions, refer to the dimensions for series $\mathrm{LJ} 1 \mathrm{~S}_{\mathrm{S}} 10$ on page 143 as a reference for mounting and design.
 * Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

[^9]: * For motor mounting dimensions, refer to the dimensions for series $L J 1{ }_{S} 20$ on page 143 as a reference for mounting and design.
 * Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

[^10]: * For motor mounting dimensions, refer to the dimensions for series $\mathrm{LJ} 1_{\mathrm{S}} \mathrm{H}_{30}$ on page 143 as a reference for mounting and design.
 * Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

[^11]: * For motor mounting dimensions, refer to the dimensions for series $L J 1_{S} \mathrm{H}_{2} 20$ on page 143 as a reference for mounting and design.
 * Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

[^12]: * For motor mounting dimensions, refer to the dimensions for series $\mathrm{LJ} 1 \mathrm{H}_{2} 20$ on page 143 as a reference for mounting and design.
 * Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

[^13]: * Values will vary slightly depending on the operating conditions.

[^14]: * Values will vary slightly depending on the operating conditions.

[^15]: * For motor mounting dimensions, refer to the dimensions for series LJ1 $\mathrm{S}_{\mathrm{S}}^{\mathrm{H}} 20$ on page 143 as a reference for mounting and design.
 * Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

[^16]: * Refer to pages starting with 205 for driver dimensions. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

[^17]: * Refer to pages starting with 205 for driver dimensions. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

[^18]: * Refer to pages starting with 205 for driver dimensions. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

[^19]: * Refer to pages starting with 205 for driver dimensions. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

[^20]: Refer to pages starting with 205 for driver dimensions. Furthermore, for detailed specifications, etc., contact each motor manufacturer.

 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

[^21]: * Values will vary slightly depending on the operating conditions.

[^22]: * Consult SMC if outside of the above conditions.

[^23]: * Values will vary slightly depending on the operating conditions.

[^24]: * Consult SMC if outside of the above conditions.

[^25]: * Values will vary slightly depending on the operating conditions.

[^26]: * Consult SMC if outside of the above conditions.

[^27]: * Values will vary slightly depending on the operating conditions.

[^28]: * Values will vary slightly depending on the operating conditions.

[^29]: * For motor mounting dimensions, refer to the dimensions on page 182 as a reference for mounting and design.
 * Refer to pages starting with 205 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification, when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 178 for part numbers.

[^30]: * 1 When the Matsushita Electric Industrial Co., Ltd. motor driver is selected, in addition to the cable, a power connector (MOLEX 5569-10R) and an interface connector (Sumitomo/3-M Limited 10126-3000VE) are also required.
 * 2 A cable is not provided for the Mitsubishi Electric Corporation motor, and therefore the customer should arrange a 4 core, $0.75 \mathrm{~mm}^{2}$ electric cable.
 * 3 When the Yaskawa Electric Corporation motor driver is selected, a digital operator and PC are required for selecting the various parameters.

[^31]: Refer to page 303 for acceleration time.

[^32]: Refer to page 302 for acceleration time.

[^33]: Refer to page 303 for acceleration time.

[^34]: Refer to page 303 for acceleration time.

[^35]: Refer to page 302 for acceleration time.

[^36]: Refer to page 302 for acceleration time.
 Refer to page 302 for acceleration time.

[^37]: Refer to page 303 for acceleration time.

[^38]: Refer to page 303 for acceleration time

[^39]: Refer to page 302 for acceleration time.

[^40]: Refer to page 302 for acceleration time.

[^41]: Refer to page 303 for acceleration time.

[^42]: Refer to page 303 for acceleration time.

[^43]: * The dimension inside [] shows the location at which the home position switch operates.

[^44]: Refer to page 302 for acceleration time.

[^45]: Refer to page 302 for acceleration time.

[^46]: Refer to page 303 for acceleration time.

[^47]: Refer to page 303 for acceleration time.

[^48]: Refer to page 302 for acceleration time.

[^49]: Refer to page 302 for acceleration time.

[^50]: Refer to page 303 for acceleration time.

[^51]: Refer to page 303 for acceleration time.

[^52]: Refer to page 302 for acceleration time.

[^53]: Refer to page 303 for acceleration time.

[^54]: Refer to page 303 for acceleration time.

[^55]: Refer to page 302 for acceleration time.

[^56]: Note) Refer to pages starting with 205 for driver dimensions. Contact motor manufacturers for each motor's detailed specifications, etc.
 A driver is included, however, the cable that connects the motor and driver is optional. Refer to page 100 for part numbers.

[^57]: Note) Refer to pages starting with 205 for driver dimensions. Contact motor manufacturers for each motor's detailed specifications, etc.

[^58]: All specifications in this catalog are subject to change without notice.
 Printed in Japan
 1st printing July, 2001 D-SMC.L.A. P-80 (YG)
 This catalog is printed on recycled paper with concern for the global environment.

[^59]: m : Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
 Refer to page 71 for deflection data.

[^60]: $\mathrm{m}:$ Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
 Refer to page 71 for deflection data.

[^61]: $\mathrm{m}:$ Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
 Refer to page 71 for deflection data.

[^62]: m : Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
 Refer to page 71 for deflection data.

[^63]: $\mathrm{m}:$ Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
 Refer to page 71 for deflection data.

[^64]: $\mathrm{m}:$ Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
 Refer to page 71 for deflection data.

[^65]: * Values will vary slightly depending on the operating conditions.

[^66]: $\mathrm{m}:$ Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
 Refer to page 71 for deflection data.

[^67]: $\mathrm{m}:$ Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
 Refer to page 71 for deflection data.

[^68]: m : Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
 Refer to page 71 for deflection data.

[^69]: m : Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)

[^70]: $\mathrm{m}:$ Transfer load (kg) $\quad \mathrm{Me}$: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)

[^71]: m : Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)

[^72]: $\mathrm{m}:$ Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)

[^73]: m : Transfer load (kg)
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
 Me : Allowable dynamic moment
 L : Overhang to work piece
 center of gravity (mm)

[^74]: * Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^75]: * Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^76]: * Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^77]: * Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^78]: * Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^79]: * Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^80]: Refer to page 71 for deflection data.

[^81]: * Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^82]: * Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^83]: * Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^84]: * Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^85]: m : Transfer load (kg)

[^86]: Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.

 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^87]: Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.

 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^88]: -

 I
 I
 I

 Warning: Operator error could result in serious injury or loss of life.
 \ Danger: In extreme conditions, there is a possible result of serious injury or loss of life.
 I
 © Caution: operator error could result in iniury orequipment damage.

 Note 1) ISO 10218: Manipulating industrial robots - Safety
 Note 2) JIS 8433: General Rules for Robot Safety

[^89]: * Lead wire length symbols: $0.5 \mathrm{~m} \cdots \ldots \ldots . . .$. Nil (Example) M9N
 $\begin{array}{lll}0.5 \mathrm{~m} & \cdots \cdots \cdots \cdots \cdot \mathrm{Nil} \\ 3 \mathrm{~m} & \cdots ~ & \mathrm{~L} \\ 5 \mathrm{~m} & \text { (Example) M9N } \\ \text { M9NL }\end{array}$ M9NZ

[^90]: Note) For the 3-point stoppable type, the I/O cable is a 9 core type and for the 5-point stoppable type, a 11 core type is used.

[^91]: * Refer to page 15 for information on mounting an auto switch.

[^92]: * Coriditions for using a trunnion bracket are as follows:
 - Maximum stroke: 150 mm
 - Thread lead L (lead 2 mırı) only

[^93]: Note) For the travelling direction (retracted, extended side), refer to the dimensions in page 4, 6, 10 and 11

