Piping Module
 Series KB

Suitable for centralized distribution of supply air
Easy distribution utilizing One-touch fittings
One-touch fitting installation without the use of tools.
Locking system makes the use of tools unnecessary and piping more efficient.

Air output direction possible through 360°
Universal construction allows for changes in air output direction after connections are completed.

Applicable Tubing

Tubing material	Nylon, Soft nylon, Polyurethane
Tubing O.D.	$\varnothing 4, \varnothing 6, \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 16$

Applicable Thread Size

Male thread	$\mathrm{R} 1 / 8, \mathrm{R} 1 / 4, \mathrm{R} 3 / 8, \mathrm{R} 1 / 2$
Female thread	$\mathrm{M} 5 \times 0.8, \mathrm{M} 6 \times 1, \mathrm{Rc} 1 / 8, \mathrm{Rc} 1 / 4, \mathrm{Rc} 3 / 8, \mathrm{Rc} 1 / 2$

Specifications

Fluid	
Maximum operating pressure	Air
Operating vacuum pressure	-100 MPa
Proof pressure	3.0 MPa
Ambient and fluid temperature	-5 to $60^{\circ} \mathrm{C}$ (No freezing)
Thread	Mounting section
	Nut section
Sealant (Male thread)	
Copper-free (Standard)	JIS 0209 Class 2 (Metric coarse thraed)

Principal Parts Material

Body	C3604BD, PBT, POM
Stud	POM
Lock ring	POM
Spring	Stainless steel 304WPB
Spring guide	POM
Stopper	POM
Thread	C3604BD
Guide	Stainless steel 304, POM
Collet, Release button	POM
Seal, O-ring	NBR
Chuck	Stainless steel 304

Elbow Module: KBV

Elbow Socket Module: KBV

Bulkhead Female Connector: KBE Female Connector Union: KBH

Model	$\begin{gathered} \hline \text { Applicable } \\ \text { tubing } \\ \text { O.D. } \end{gathered}$	\mathbf{T} Connection thread
KBE1-04	4	R 1/8
KBE1-06		R1/8
KBE2-06	6	R 1/4
KBE2-08	8	R3/8
KBE2-10	10	R 1/4
KBE3-08	8	R3/8
KBE3-10	10	R1/2
KBE3-12	12	R3/8
KBE4-12	12	R 1/2

Male Connector Socket: KBB

Model	T Connection thread
KBB1-M5	M5 $\times 0.8$
KBB2-M6	$\mathrm{M} 6 \times 1$
KBB3-R1	$\mathrm{Rc} 1 / 8$
KBB4-R2	$\mathrm{Rc} 1 / 4$

Female Connector Socket: KBS

Model	\boldsymbol{T} Conection thread
KBS1-R1	$\mathrm{Rc}^{1} / 8$
KBS2-R2	$\mathrm{Rc}^{1 / 4}$
KBS3-R3	$\mathrm{Rc}^{3} / 8$
KBS4-R4	$\mathrm{Rc}^{1} / 2$

Female Connector Elbow Union: KBL

Model	Connection thread
KBL1-R1S	$R 1 / 8$
KBL2-R1S	$\mathrm{R} 1 / 8$
KBL2-R2S	$\mathrm{R} 1 / 4$
KBL2-R3S	$\mathrm{R} 3 / 8$
KBL3-R2S	$\mathrm{R} 1 / 4$
KBL3-R3S	$\mathrm{R} 3 / 8$
KBL3-R4S	$\mathrm{R} 1 / 2$
KBL4-R3S	$\mathrm{R} 3 / 8$
KBL4	

3 Other Pipng Material: KBN, KBD, KBR (P. 15--3-116)

Nipple: KBN

Connector Module: KBD

Different Diameter Module: KBR

Combination Examples

Plug/Cap: KBP, KBC (P. 15-3-117)

Plug: KBP

Model	Bracket mounting thread $\mathrm{M} 6 \times 1 \times 8 \ell$	
KBP1	\longrightarrow	
KBP2	1	
KBP3	\|V	
KBP4	田囫	

Cap: KBC

5
Bracket: KBX (P. 15-3-117)
KB X 6
Appicabile thread size

Model

Bracket: KBX

Model
$\frac{\text { KBX6 }}{\text { KBX12 }}$
KBX14
KBX22

\triangle Precautions

FBe sure to read before handing.
Refer to pages $15-18-3$ to $15-18-4$ for Safety IInstructions and Common Precautions on the Iproducts mentioned in this catalog, and refer to Ipages 15-1-10 to 15-1-11 for Precautions on every \quad Lseries.

How to Install

\triangle Caution

1. Insert each piping module by matching the arrows on the lock ring and the body of the other module. Insert together. If it becomes difficult to match both modules, rotate modules to left and right while pushing together. When a match is not done, piping material will eject under pressure.

2. Confirm insertion by turning modules to right and left or pulling on them. But do not touch the lock ring in the process.

How to Remove

© Caution

1. Exhaust the pressure in pipe before removing. If lock is released under pressure, piping material will eject. Turn the lock ring 90° clockwise (in the direction of the arrow). This will cancel out the affects of the lock ring. You need not hold lock ring in place. Lock ring will hold automatically in this position.

2. Remove the modules by pulling apart. Do not touch the lock ring. After removal, the lock ring will return to normal position automatically beause of a return spring. When removed, it automatically rotates 90° in the opposite direction as its spring is built into the lock ring.

© Caution

1. When connecting piping material to each other, do not apply a bending force, etc. Piping material may be deformed or damaged.
If unit is longer than 5 stations, please use brackets or it may result in deformation of the piping material by bends, deflection, etc.
2. Each type of module materials is capable of being piped with all other materials.
3. When attaching female connector union and female connector elbow union, use the body's hexagon surface and tighten threads with a suitable wrench.
Use the root nearest the thread when tightening with a wrench. Hex. across flats may be deformed, if using an improper wrench for hex. across flats.

Piping Module-Insertion and Removal Structual Drawing

Piping module-Male side
 Piping module-Female side

1. Match arrows together and insert piping module male side into female side.

2. By inserting the lock ring, the lock portion touches female side guide portion and falls into the direction shown with the arrow.

3. By pushing tighter, lock portion goes over female side guide portion and snaps into window slot portion. Male side protruding portion snaps into female side groove portion. This performs the function of a detent.

Male module inserted fully into position.
4. To remove, rotate lock ring 90° to release lock portion from female side window slot, then the lock is released. Removal is complete.

1 Air Output Port

Elbow Module: KBV

Model	T Connection thread	\mathbf{H}(width across flats)(D1	D2	D3	L1	L2	L3	L4	A	Weight (g)
KBV1-M5	M 5×0.8	12	12.8								12.4
KBV1-M6	M6 x 1			13.6	16.8	25.0	33.0	10.4	13.0	19.5	11.6
KBV2-M5	M 5×0.8			17.6	21.0	26.0	36.0	10.1	15.5	22.5	14.8
KBV2-M6	M6x 1										14.0
KBV2-R1	Rc $1 / 8$	14	15.2			29.5					15.3
KBV3-R1				25.2	28.6	30.5	42.6	11.4	20.5	27.0	22.0
KBV3-R2	Rc $1 / 4$	19	18.5			32.0			19.5		27.0
KBV4-R2		22	20.9	27.0	30.4	36.5	41.4	12.2	18.0	25.0	40.6
KBV4-R3	Rc 3/8					43.0					44.7

Branch Elbow Module: KBZ

Series KB

2 Air Supply Port

Female Connector Union: KBH

Model	\mathbf{T} Connection thread		D	L	A*	Weight (g)
KBH1-R1S	R 1/8	14	13.6	27.0	20.0	13.4
KBH2-R1S		17	17.6	29.0	21.5	19.2
KBH2-R2S	R 1/4			32.0	22.5	23.3
KBH2-R3S	R3/8			27.5	17.5	22.5
KBH3-R2S	R 1/4	19	25.2	35.5	25.4	26.5
KBH3-R3S	R 31/8			31.0	20.5	23.2
KBH3-R4S	R 1/2	22			19.0	41.5
KBH4-R3S	R 3/8	24	27.0	35.5	24.5	44.5
KBH4-R4S	R 1/2			31.5	19.0	36.5

* Reference dimensions after R thread installation.

Female Connector Elbow Union: KBL

Model	T Connection thread	$\begin{array}{\|c\|} \hline \mathbf{H} \\ \text { (width } \\ \text { across flats) } \end{array}$	D	L1	L2	A1*	A2	Weight (g)
KBL1-R1S	R1/8	14	13.6	18	38.0	27.0	15.0	14.8
KBL2-R1S		17	17.6	19	43.5	30.5	15.5	23.2
KBL2-R2S	R 1/4				46.5	31.5		27.3
KBL2-R3S	R3/8				42.0	26.5		26.5
KBL3-R2S	R 1/4	19	25.2	22	56.0	37.5	18.0	32.6
KBL3-R3S	R 3/8				51.5	32.5		29.3
KBL3-R4S	R1/2	22				31.0		47.6
KBL4-R3S	R 3/8	24	27.0	24	61.5	41.5	19.5	57.6
KBL4-R4S	R1/2				57.5	36.0		48.8

* Reference dimensions after R thread installation.

Bulkhead Female Connector: KBE

2 Air Supply Port

Male Connector Socket: KBB

	Model	T Connection thread		D	L1	L2	A	Weight (g)
${ }^{2}$	KBB1-M5	M5 x 0.8	8	16.8	29.5	11.5	19.0	6.0
T	KBB2-M6	M6x 1	10	21.0	23.0	5.0	12.5	6.3
	KBB3-R1	Rc 1/8	14	28.6	27.5	6.5	16.0	11.4
\square	KBB4-R2	Rc 1/4	19	30.4	31.5	9.5	19.5	24.1

Female Connector Socket: KBS

Model	T Connection thread	(width across flats)	D	L1	L2	A	Weight (g)
KBS1-R1	$\mathrm{Rc} 1 / 8$	14	13.6	28.0	11.0	25.0	17.8
KBS2-R2	$\mathrm{Rc} 1 / 4$	17	17.6	33.5	14.0	30.0	28.5
KBS3-R3	$\mathrm{Rc} 3 / 8$	19	25.2	38.5	17.0	34.5	33.8
KBS4-R4	Rc $1 / 2$	24	27.0	39.0	20.0	35.0	57.1

