Dedicated Controller Series LC1
 \section*{Dedicated Controller for Standard AC Servomotor}

Driver
 Matsushita Electric Industrial Co., Ltd. Mitsubishi Electric Corporation
 Yaskwa Electric Corporation (Used on actuators with non-standard motor)

Positioning unit (Not incl. To be provided by customer.)

Regenerative Absorption Unit
(Used for vertical application)

> To PLC, etc.
(Not incl. To be provided by customer.)

Dedicated Controller/LC1 Page 186

- Controller setup software - 194
- Dedicated teaching box $\quad 196$
- Options

199
Dedicated Regenerative Absorption Unit/LC7R
200
Non-standard Motor Compatible Drivers

\square	Dedicated Controller/LC1	Page 186
\cdot Controller setup software	194	
• Dedicated teaching box	196	
Options	199	
Dedicated Regenerative Absorption Unit/LC7R	200	205

Controller

Series LJ1／LG1：Standard Motor Compatible

How to Order
d Mounting bracket

$\mathbf{3}$	M3
$\mathbf{5}$	M5

Mounting＊
$\left.\begin{array}{|c|c|}\hline \text { B } & \text { Series LJ1（Incremental encoder）} \\ \hline \text { D } & \text { Series LG with coupling（Series LG1 } \square \mathrm{H} 21 \text { ）} \\ \text { Incremental encoder }\end{array}\right]$

Symbol	Motor capacity	Compatible actuator models	
1H	50W	LJ1H101 \square B	Ball screw High rigidity direct acting guide Without brake
2 H	100W	LJ1H202 $\square \square$ A LJ1H202■ดC	
3H	200W	LJ1H303 \square D ${ }^{\text {d }}$	
1 S	50W	LJ1S101■SC	Slide screw Slider guide
2 S	100W	LJ1S202■SC	
3 S	200W	LJ1S303■SC	
1M	50W	LJ1H101口SC	Slide screw High rigidity direct acting guide
2M	100W	LJ1H202■SC	
3M	200W	LJ1H303口SE	
1VH ${ }^{+1)}$	100W	LJ1H102 $\square \square \mathrm{H}-\square \square \square \mathrm{K}$	Ball screw High rigidity direct acting guide With brake
1VB＊1）	100W	LJ1H102口ロB－$\square \square \square \mathrm{K}$	
2VF＊1）	100W		
2VA＊1）	100W	LJ1H202■ดA－$\square \square \square \mathrm{K}$	
3VA＊1）	200W	LJ1H303 $\square \square \mathrm{A}-\square \square \square \mathrm{K}$	
2HA	100W	$\begin{aligned} & \text { LG1H } \square \square 2 \square \mathrm{PA} \\ & \text { LG1H } \square 2 \square \mathrm{NA} \end{aligned}$	Ball screw High rigidity direct acting guide Thread lead 10mm
2HC	100W	$\begin{aligned} & \text { LG1H } \square \square 2 \square \mathrm{PC} \\ & \text { LG1H } \square \square 2 \square \mathrm{NC} \end{aligned}$	Ball screw High rigidity direct acting guide Thread lead 20 mm
2MC	100W	LG1H $\square \square 2 \square$ SC	Slide screw High rigidity direct acting guide Thread lead 20 mm

＊1）Consult SMC if the supply voltage for LC1－1B $\square \mathrm{V} \square 1$ will be 110 VAC or more，or the supply voltage for LC1－1B $\square \mathrm{V} \square 2$ will be 220 VAC or more．

Power supply

$\mathbf{1}^{* 1)}$	$100 / 110 \operatorname{VAC}(50 / 60 \mathrm{~Hz})$
$\mathbf{2}^{* 1)}$	$200 / 220 \operatorname{VAC}(50 / 60 \mathrm{~Hz})$

＊This controller includes the accessories listed below．
LC1－1－$\square \square$（Either T－nuts or T－brackets for mounting）
LC1－1－1000（Controller connector）
LC1－1－2000（Controller connector）
（Refer to page 199．）
Note）The following options are necessary for operating and setting the controller．
$\left[\begin{array}{l}\left(\begin{array}{l}\text { LC1－1－S1 PC－98（MS－DOS）} \\ \text { LC1－1－W1（Windows 95 Japanese）} \\ \text { LC1－1－W2（Windows 95 English）}\end{array}\right) \\ \text { and } \\ \text { LC1－1－R } \square \square \text {（dedicated communication cable）}\end{array}\right]$
（Refer to pages 194，195，and 199．）
or
LC1－1－T1－$\square \square$（Teaching box）are required． For ordering information，refer to the option part numbers on page 196.
$\mathrm{N}:$ T－nut mounting

Performance/Specifications

General specifications

Item Model	LC1-1B $\square \square 1$	LC1-1B $\square \square 2$
Power supply	$\begin{gathered} 100 / 110 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz} \\ (100 \mathrm{VAC}, 50 / 60 \mathrm{~Hz} \text { for LC1-1B } \square \square 1) \end{gathered}$	$200 / 220 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}$ ($200 \mathrm{VAC} \pm 10 \%$ for LC1-1B3H2) (200VAC, $50 / 60 \mathrm{~Hz}$ for LC1-1B $\square \mathrm{V} \square 2$)
Leakage current	5 mA or less	
Dimensions	$80 \times 120 \times 244 \mathrm{~mm}$	
Weight	2.2 kg	

Actuator control

Item	LC1- 1B1H	LC1- $1 \mathrm{~B} 2 \mathrm{H}$	$\begin{aligned} & \text { LC1- } \\ & \text { 1B3H } \end{aligned}$	LC1- 1B1M	$\begin{aligned} & \text { LC1- } \\ & \text { 1B2M } \square \end{aligned}$	$\begin{aligned} & \text { LC1- } \\ & \text { 1B3M } \end{aligned}$	$\begin{aligned} & \text { LC1- } \\ & \text { 1B1V } \end{aligned}$	$\begin{aligned} & \text { LC1- } \\ & \text { 1B2V } \end{aligned}$	$\begin{aligned} & \mathrm{LC} 1- \\ & \text { 1B3V } \end{aligned}$	$\begin{aligned} & \text { LC1- } \\ & \text { 1B1S } \end{aligned}$	$\begin{aligned} & \text { LC1- } \\ & \text { 1B2S } \square \end{aligned}$	$\begin{aligned} & \text { LC1- } \\ & \text { 1B3S } \end{aligned}$	LC1- 1D2H	LC1- 1D2MC	LC1- 1F2H	LC1- 1F2MC
Compatible actuator model	LJ1H101 —PB LJ1H101 -NB	LJ1H202 \square PA LJ1H202 -NA	LJ1H303 -PD LJ1H303 -ND	LJ1H101 \square SC	$\begin{aligned} & \text { LJ1H202 } \\ & \square \text { SC } \end{aligned}$	$\begin{aligned} & \text { LJ1H303 } \\ & \square \text { SE } \end{aligned}$				$\begin{array}{\|l} \mid \text { LJ1S101 } \\ \square S C \end{array}$	$\begin{aligned} & \text { LJ1S202 } \\ & \square \mathrm{CC} \end{aligned}$	$\begin{array}{\|l} \left\lvert\, \begin{array}{l} \text { LJ1S303 } \\ \text { ■SC } \end{array}\right. \end{array}$	$\begin{aligned} & \text { LG1H212 } \\ & \square \mathrm{P} \square \\ & \text { LG1H212 } \\ & \square \mathrm{N} \square \end{aligned}$	$\begin{aligned} & \text { LG1H212 } \\ & \text { GSC } \end{aligned}$	$\begin{aligned} & \text { LG1H202 } \\ & \square \mathrm{P} \square \\ & \text { LG1H202 } \\ & \square \mathrm{N} \square \end{aligned}$	$\begin{aligned} & \text { LG1H202 } \\ & \text { GSC } \end{aligned}$
Compatible guide	High rigidity direct acting guide									Slider guide			High rigidity direct acting guide			
Motor capacity	50W	100W	200W	50W	100W	200W	100	W	200W	50W	100W	200W			OW	
Operating temperature range	5 to $50^{\circ} \mathrm{C}$		5 to $40^{\circ} \mathrm{C}$	5 to $50^{\circ} \mathrm{C}$		5 to $40^{\circ} \mathrm{C}$	5 to $50^{\circ} \mathrm{C}$		5 to $40^{\circ} \mathrm{C}$	5 to $50^{\circ} \mathrm{C}$		5 to $40^{\circ} \mathrm{C}$	5 to $50^{\circ} \mathrm{C}$			
Electric power	180VA	300 VA	640VA	180VA	300VA	640VA	300 VA		640VA	180VA	300 VA	640VA	300 VA			
Control system	AC software servo/PTP control															
Position detection system	Incremental encoder															
Home position return direction	Can be selected between the motor side and the side opposite the motor.															
Maximum positioning point setting	1008 points (when step designation is actuated)															
Movement command	Absolute and incremental used in combination															
Position designation range	0.00 mm to 4000.00 mm Note)															
Speed designation range	$1 \mathrm{~mm} / \mathrm{s}$ to $2500 \mathrm{~mm} / \mathrm{s}$ Note)															
Acceleration/deceleration designation range	Trapezoidal acceleration/deceleration $1 \mathrm{~mm} / \mathrm{s}^{2}$ to $9800 \mathrm{~mm} / \mathrm{s}^{2}$ Note)															

Note) There are cases in which the position, speed and acceleration designations are not realized, depending on the actuator that is connected and the operating conditions.
Programming

Item	Performance/Specifications
Means of programming	Dedicated controller setup software (LC1-1-S1, LC1-1-W1, LC1-1-W2) and dedicated teaching box (LC1-1-T1- $\square \square$)
Functions	Programming (JOG teaching, direct teaching*), Operation, Monitor, Test, Alarm reset
Number of programs	8 programs
Number of steps	1016 steps (127 steps $\times 8$ programs)

* Direct teaching is only available with LC1-1-W1 and LC1-1-W2.

Operating configuration

Item	Performance/Specifications
Operating methods	Operation by PLC, operating panel, etc., via control terminal; Operation by PC (controller setup software); Operation by teaching box
Summary of operations	Program batch execution (program designated operation), Step designated execution (position movement, point designated operation)
Test run functions	Program test, Step no. designated operation, JOG operation, Input/output operation
Monitor functions	Executed program indication, Input/output monitor

Peripheral device control

Item	Performance/Specifications
General purpose input	6 inputs, Photo-coupler insulation, 24VDC, 5mA
General purpose output	6 outputs, Open collector output, 35VDC max., 80mA/output (maximum load current)
Control commands	Output ON/OFF, Input condition wait, Condition jump, Time limit input wait

Safety items

Item	Performance/Specifications
Protection functions	Over current, Over load, Over speed, Encoder error, Abnormal driver temperature, Abnormal drive power supply,
Communication error, Battery error, Abnormal parameter, Limit out	

Dimensions
LC1-1B $\square \mathrm{H} \square$
LC1-1D2H $\square \square$
LC1-1F2H $\square \square$
LC1-1B \square S \square
LC1-1B $\square \mathrm{M} \square$

LC1-1F2MC \square

CN5 motor power line connector (Molex 6P)

With regenerative

absorption unit

LC1-1B $\square V \square \square$

Stroke

$\mathbf{5 0}$	50 mm
$\mathbf{7 5}$	75 mm
$\mathbf{1 0 0}$	100 mm
$\mathbf{1 2 5}$	125 mm
$\mathbf{1 5 0}$	150 mm
$\mathbf{1 7 5}$	175 mm
$\mathbf{2 0 0}$	200 mm

- Mounting bracket

$\mathbf{3}$	M3
$\mathbf{5}$	M5

Mounting*

* This controller includes the accessories listed below.

LC1-1- $\square \square / E i t h e r ~ T-n u t s ~ o r ~ T-b r a c k e t s ~ f o r ~ m o u n t i n g ~$
LC1-1-1000/Controller connector
LC1-1-2000/Controller connector
(Refer to page 199.)
Note) The following options are necessary for operating and setting the controller.
$\left.\begin{array}{l}{\left[\begin{array}{l}\text { LC1-1-S1 PC-98 (MS-DOS) } \\ \text { LC1-1-W1 (Windows 95 Japanese) } \\ \text { LC1-1-W2 (Windows 95 English) }\end{array}\right)} \\ \text { and } \\ \text { LC1-1-R } \square \square \text { (dedicated communication cable) }\end{array}\right]$.

Series LC1

Performance/Specifications

General specifications

Model Item	LC1-1B1V $\square 1-\square \square-\square \square \square-X 180$ LC1-1B1V $\square 1-\square \square-\square \square \square-X 233$	LC1-1B1V $\square 2-\square \square-\square \square \square-X 180$ LC1-1B1V $\square 2-\square \square-\square \square \square-X 233$
Power supply	$100 \mathrm{~V} / 110 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}$	$200 \mathrm{~V} / 220 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}$
Leakage current	5 mA or less	
Dimensions	$80 \times 120 \times 244 \mathrm{~mm}$	
Weight	2.2 kg	

Actuator control

Model Item	LC1-1B1V $\square 1-\square \square-\square \square \square-\mathrm{X} 180$	LC1-1B1V $\square 1-\square \square-\square \square \square-X 233$	LC1-1B1V $\square 2-\square \square-\square \square \square-X 180$	LC1-1B1V $\square 2-\square \square-\square \square \square-X 233$
Compatible actuator	LXSAB $\square-\square \square \square S \square-\square \square \square-X 12$	LXPAB $\square-\square \square \square S \square-\square \square \square-X 12$	LXSAB \square - $\square \square \square$ S \square - $\square \square \square$-X13	LXPAB \square - $\square \square \square S \square-\square \square \square-X 13$
Compatible guide	High rigidity direct acting guide	Guide rod	High rigidity direct acting guide	Guide rod
Motor capacity	30 W			
Operating temperature range	5 to $5^{\circ} \mathrm{C}$			
Electric power	180VA			
Control system	AC software servo/PTP control			
Position detection system	Incremental encoder			
Home position return direction	Can be selected between the motor side and the side opposite the motor.			
Maximum positioning point setting	1008 points (when step designation is actuated)			
Movement command	Absolute and incremental used in combination			
Position designation range	0.00 mm to 4000.00 mm Note)			
Speed designation range	$1 \mathrm{~mm} / \mathrm{s}$ to $2500 \mathrm{~mm} / \mathrm{s}^{\text {Note) }}$			
Acceleration/deceleration designation range	Trapezoidal acceleration/deceleration $1 \mathrm{~mm} / \mathrm{s}^{2}$ to $9800 \mathrm{~mm} / \mathrm{s}^{2}$ Note)			

Note) There are cases in which the position, speed and acceleration designations are not realized, depending on the actuator that is connected and the operating conditions.

Dimensions

LC1-1B1V $\square \square \square-\square \square-\square \square \square-X 180$

LC1-1B1V $\square \square \square-\square \square-\square \square \square-X 233$

Controller Mounting

Mounting of the controller is performed by means of the two T-grooves provided on the bottom surface.
Mounting is possible from above or below using the special T-nuts or T-brackets. Refer to page 199 for further details.
Note) This controller comes with either the T-nuts or T-brackets as accessories.

Controller model	Mounting screw	Mounting bracket assembly
LC1-1 $\square \square \square-$ N3	M3 $\times 0.5$	LC1-1-N3
LC1-1 $\square \square \square$-N5	M5 $\times 0.8$	LC1-1-N5
LC1-1 $\square \square \square-$ L3	M3	LC1-1-L3
LC1-1 $\square \square \square-$ L5	M5	LC1-1-L5

Mounting with T-nuts

Mounting with T-brackets

Part Descriptions

Controller Command Setting List

Actuator control commands

Classification	Function	Instruction	Parameter value
Movement	Absolute movement command	MOVA	Address (speed)
	Incremental movement command	MOVI	\pm Movement (speed)
Setting	Acceleration setting command	ASET	Acceleration

I/O control commands

Classification	Function	Instruction	Parameter value
Output control	Output ON command	O-SET	General purpose output no.
	Output OFF command	O-RES	General purpose output no.
	Output reversal command	O-NOT	General purpose output no.
Input wait	AND input wait command	I-AND	General purpose input no., State
	OR input wait command	I-OR	General purpose inputno., State
Input wait with time out function	AND input time out jump command	T-AND	General purpose input no., State (P-no.) label
	OR input time out jump command	T-OR	General purpose input no., State (P-no.) label
	AND input time out subroutine call command	C-AND	General purpose input no., State (P-no.) label
	OR input time out subroutine call command	C-OR	General purpose input no., State (P-no.) label
Condition jump	AND input condition jump command	J-AND	General purpose input no., State (P-no.) label
	OR input condition jump command	J-OR	General purpose input no., State (P-no.) label

Program control commands

Classification	Function	Instruction	Parameter value
Jump	Unconditional jump command	JMP	(P-no.) label
Subroutine	Subroutine call command	CALL	(P-no.) label
	Subroutine end declaration	RET	
Loop	Loop start command	FOR	Loop frequency
	Loop end command	NEXT	
End	Program end declaration	END	
Timer	Timer command	TIM	Timer amount

ᄃ

Connection Examples

Control Input/Output Terminal: CN1

Terminal to perform actuator operation (connects PLC and operating panel)

CN1. Control input terminal list

Terminal	Pin no.	Description	Function
+24V	1,14	Common	The positive common of the input terminal.
SET-UP	2	Starting preparation	The terminal that performs setup operations (actuator starting preparation).
RUN	15	Starting	The terminal that performs program start.
Pro-no. bit1	17	Program designation	The terminal that designates the program to be executed. Can designate 8 types of programs with a total of 3 bits. (Set by the binary system.)
Pro-no. bit2	5		
Pro-no. bit3	18		
Stp-no. bit1	6	Step designation	The terminal that designates the step to be executed. Used when executing steps (position movement). (Set by the binary system.)
Stp-no. bit2	19		
Stp-no. bit3	7		
Stp-no. bit4	20		
Stp-no. bit5	8		
Stp-no. bit6	21		
Stp-no. bit7	9		
HOLD	3	Temporary stop	Temporarily stops the program run by means of the ON input.
STOP	16	Emergency stop (nonlogical input)	Performs an emergency stop when ON input stops.
ALARM RESET	4	Alarm release	Releases the alarm being generated by means of the ON input.

CN1. Control output terminal list

Terminal	Pin no.	Description	Function
READY	23	System ready signal	Indicates ability to perform control terminal input and communication via the dedicated communication cable when ON.
SET-ON	10	Start readiness signal	Indicates that the SET-UP operation (start ready operation: return to home position after servo ON) is complete when ON. The state in which the program can be run.
BUSY	11	Operating signal	Indicates operation in progress when ON. ON when program is being executed and when returning to the home position.
$\overline{\text { ALARM }}$	24	Alarm output	When this signal is OFF, an alarm is being generated for the actuator/controller.
COM	12,25	Common	The output terminal common.

Control input/output terminal: CN1

General purpose input/output terminal: CN2

Timing for READY signal generation immediately after turning on power

Timing for home position return

Timing for program/step execution

Timing for alarm reset

Timing for temporary stop during operation

Timing for stop by ALARM-RESET during operation

Timing for emergency stop during operation

Response time with respect to controller input signals

The following factors exist for delay of response with respect to controller input signals.

1) Scanning delay of the controller input signal
2) Delay by the input signal analysis computation
3) Delay of command analysis processing

Factors (1) and (2) above apply to delay with respect to the SET-ON, ALARM-RESET and STOP signals.
Factors (1), (2) and (3) above apply to delay with respect to cancellation of the RUN and HOLD signals.

When signals are applied to the controller by means of a PLC, the PLC processing delay and the controller input signal scan delay should be considered, and the signal state should be maintained for 50 ms or longer.
It is recommended that the input signal state be initialized with the response signal to the input signal as a condition.

Windows/LC1-1-W2 (English)

Windows edition controller setup software includes all of the functions of PC-98 (MS-DOS) edition software, and the following functions have also been added.

- Direct teaching
- Program printing
- Batch editing and sending/receiving of all programs
- Batch management and multiple saving of parameters and programs

Operating environment

Computer	A model with a Pentium 75 MHz or faster CPU, and able to fully operate Windows 95.
OS	Windows 95
Memory	16 MB or more
Hard disk	5 MB or more of disk space required

- The dedicated communications cable (LC1-1-R $\square \square \square$) is required when using this software.
- This software cannot be used with Windows 3.1.

Screen example

- The contents of this software and the registered product specifications may change without prior notice.
- Duplicating, copying or reproducing of this software, in whole or in part, is prohibited without prior consent from SMC.
- SMC owns the copyright of this software.
- The intellectual property rights and other rights concerning this software are solely owned by SMC. This also applies to any future version upgrades and revised versions of this software.
- SMC does not assume any compensatory responsibility for any damage or loss of profit, etc., resulting from the use of this software.
- Windows and Microsoft are registered trade marks of Microsoft Corporation.
- MS-DOS is a registered trade mark of Microsoft Corporation.
- Pentium is a trade mark of Intel Corporation.
- PC-98 Series is a registered trade mark of NEC Corporation.

How to Order
LC1-1-T1-0 2

- Cable length
- Interactive input display
- Programming with the same language as PC software

Able to execute operations such as programming and parameter changes, which up until now have been performed from a PC.

* The special cable is packed with the teaching box. (2 to 5 m)

Performance/Specifications

General specifications

	LC1-1-T1-0
Power supply	Supplied from LC1
Dimensions (mm)	$170 \times 76 \times 20$
Weight (g)	158
Case type	Resin case
Display unit	$46 \times 55 \mathrm{~mm}$ LCD
Operating unit	Key switches, LED indicators
Cable length	$2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$

Basic performance

	Performance/Specifications
Compatible controller	LC1 (all models)
Operating temperature range	5 to $50^{\circ} \mathrm{C}$
Functions	Programming, Parameter change, Setup, Operation, JOG operation, Monitor, Alarm reset, JOG teaching
Monitor functions	Movement position, Movement speed
Protection functions	Over current, Over load, Over speed, Encoder error, Abnormal driver temperature, Abnormal drive power supply, Communication error, Battery error, Limit out, Abnormal driver parameter, RAM malfunction
Protection function indicator	Alarm code

Dimensions

Alarm Code List

Alarm code	Alarm	Reset	Description
10	Emergency stop	\bigcirc	An emergency stop condition exists or has occurred in the past due to the controller setup software or the CN1 control STOP terminal.
11	Limit switch ON	\bigcirc	Limit switch is turned ON.
12	Battery error	\bullet	The memory backup battery voltage is low. Contact SMC.
13	Communication error	\bigcirc	Communication with the controller is interrupted.
14	RAM malfunction	\bullet	The parameter is damaged.
15	Soft stroke limit	\bigcirc	The program is about to exceed the stroke length set by the parameter.
20	Over current	\bullet	Three times the rated current or more is flowing into the driver unit.
21	Over load	\bullet	The driver unit continuously received a current exceeding the rated current for a prescribed time or longer.
22	Over speed	\bullet	The controller exceeded the maximum operational speed.
24	Abnormal driver temperature	\bullet	A temperature increase of the driver unit activated the temperature sensor.
25	Encoder error	\bullet	An encoder or actuator cable malfunction has occurred.
26	Abnormal drive current	\bullet	The driver unit power supply is shut off due to a regeneration problem, etc.
28	Abnormal driver parameter	\bullet	A driver parameter abnormality in the controller system has occurred.
30	Unsuccessful home position return	\bigcirc	Trying to execute a program/step without completing the setup (home position return).
31	No designated speed	\bigcirc	No speed designation with MOVA or MOVI, and no prior speed designation found.
32	No jump destination	\bigcirc	No label found at the program designated jump destination.
33	Nesting exceeded	\bigcirc	Sub-routine nesting (calling a sub-routine from another sub-routine) exceeds 14 levels.
34	No return destination	\bigcirc	No return destination found for the RET command operation.
35	Executing FOR	\bigcirc	A forbidden command is found between FOR and NEXT.
36	No FOR	\bigcirc	NEXT command was executed without executing FOR command.
37	No operation program	\bigcirc	Trying to execute a program/step with no commands.
38	Invalid movement command	\bigcirc	Trying to execute a command other than MOVA, MOVI, or ASET with a step (position movement) designated operation.
39	Format error	\bigcirc	An error is found in the attached value of a command being programmed.

* Refer to the Series LC1 instruction manual for alarm details.
* Explanation of "Reset" symbols above:

O : Can be reset by the alarm reset.

- Turning OFF the controller power is required for resetting.

Key Arrangement and Functions

For the operation of each mode, refer to the product's instruction manual.

Key	Functions
UP	Moves upward for item selections. Also used to increase values for data entry. In combination with L/R keys, this key drives the actuator at high speed during a JOG operation.
DOWN	Moves downward for item selections. Also used to decrease values for data entry. Loves to the left for item selections. Also used to move a numerical valve place to the left for data entry. It drives the actuator to the end side during a JOG operation.
R	Moves to the right for item selections. Also used to move a numerical valve place to the right for data entry. It drives the actuator to the motor side during a JOG operation.
HOLD/BS	Returns to the previous mode during item selections. It becomes the temporary stop key during actuator operation.
MODE/ESC	Returns to the main mode during item selections. It exits all modes. STOP In combination with the ENT key, it launches JOG teaching and aids program editing.
ENT	Determines data during item selections. In combination with the STOP key, it launches JOG teaching and aids program editing.

Series LC1 Options

T-nuts and T-brackets for Mounting

Be sure to use when mounting the controller.
Note) The controller unit includes either T-nuts or T-brackets.

T-nuts
(Weight: 10.0 g)

T-brackets

Controller Connectors
These are connectors 'all halfpitch type' used for CN1 (control input/output) and CN2 (general purpose input/output).
Note) The controller unit includes a controller connector for use with CN1 and CN2.

CN1 (Control input/output)

Controller connector (CN1: Control input/output)
Model LC1-1-1000

Single side wired controller connector (CN1: Control input/output) Model LC1-1-1050

Cable is connected to LC1-1-1000.

CN2 (General purpose input/output)

Controller connector (CN2: General purpose input/output) Model LC1-1-2000

Single side wired controller connector (CN2: General purpose input/output) Model LC1-1-2050

Cable is connected to LC1-1-2000.

Dedicated Communication Cables

These are cables used to connect controllers and PCs.
Note) Be aware of the configuration of the connector on the PC when selecting a dedicated communication cable.

Dedicated communication cable (halfpitch) (For NEC PC-98 Series)
Model LC1-1-R $\square \mathbf{H}$

* PC-98 Series is a registered trade mark of NEC Corporation.

Dedicated communication cable (IBM PC/AT compatible computer)

Stepper Motor Driver/LC6DPage 306
Positioning Driver/LC6C 309

- LC6C dedicated teaching box 313
Options 315

$\underset{C}{C}$

Stepper Motor Driver

How to Order

- Can be mounted on a DIN rail
- Driver position controlled by pulse signal
- Can be controlled by a general positioning unit or controller

Electric Actuator

Applicable Actuators

Driver model	Applicable actuator		Motor type
LC6D-220AD	Guide rod type	LXPB2	
	High rigidity slide table type	LXSH2	
LC6D-507AD	Low profile slide table type	LXFH5	5 phase stepper motor
	High rigidity slide table type	LXSH5	
	LXPB5		

Specifications

Part no.	LC6D-220AD	LC6D-507AD
Power supply	24VDC $\pm 10 \%$, 3A	24VDC $\pm 10 \%$, 2.5A
Energization (Step angle ${ }^{\circ}$)	Full step (1.8°) Half step (0.9°)	Full step (0.72°) Half step $\left(0.36^{\circ}\right)$
Motor current	2.0A/phase	$0.75 \mathrm{~A} /$ phase
Input signal	Photo coupler input (Input impedance 330 ${ }^{\text {) }}$	
Maximum input frequency (See caution below.)	10 kHz for full step 20 kHz for half step	
Function	Auto current down, Power down input	
Connection method	Connector	
	5° to $40^{\circ} \mathrm{C}$	
Operating environment	35 to 85\% (with no condensation)	
Accessories	Connectors (receptacle, female terminal) Cable should be arranged by customer.	

CE marking

1. The combination of Series LC6D and Series LX has been certified for CE marking. When using Series LX with CE marking, use it in combination with Series LC6D with CE marking.
2. The combination of Series LC6D and Series LX has been certified for EMC conformity.
EMC changes depending on the customer's control panel configuration, and the relationship between other electrical equipment and wiring. Therefore, conformity cannot be certified for the customer's equipment in the actual operating environment. As a result, it is necessary for the customer to verify final EMC conformity for the machinery and equipment as a whole.

\triangle Caution

Maximum speeds of actuators vary depending on the type. Observe the maximum speed of the actuator in use.

Pulse Signals

LC6D positioning is controlled by the number of pulse signal inputs to the CW and CCW terminals, and speed is controlled by pulse frequencies.

- Calculation for speed and pulse frequencies

Pulse frequency [pps] = (Speed [mm/s]/Lead [mm]) x Divisions per rotation

- Calculation for moving distance and pulse numbers

Pulse numbers $=($ Moving distance $[\mathrm{mm}] /$ Lead $[\mathrm{mm}]) \times$ Divisions per rotation

- The divisions per rotation are as shown in the table below.

Driver	Energization type	Divisions per rotation
LC6D-220AD- \square	Full step	200
	Half step	400
LC6D-507AD- \square	Full step	500
	Half step	1000

Dimensions

DIN rail holding plate

- Connectors (included) [Manufacturer: Molex Japan, Co., Ltd.]

Description	Part no.	Quantity
Receptacle	$5557-14 \mathrm{R}$	1
Female terminal	5556 PBTL	14

- Wiring tools [Manufacturer: Molex Japan Co., Ltd.]

Wiring tools should be arranged by the customer.

Description	Part no.
Crimping tool	$57026-5000$ (for UL1007) $57027-5000 ~(f o r ~ U L 1015) ~$
Puller	$57031-6000$

Series LC6D

Connection Examples

- Electrical wires

- Wiring numbers

LC6D-507AD

For line driver output

For a signal power supply of 24 VDC , connect an external resistor $R(1.3 \mathrm{k} \Omega 1 / 2 \mathrm{~W})$ in order to hold the current to 15 mA or lower.

$\begin{array}{\|c\|} \hline \text { Signal } \\ \text { description } \end{array}$	Function	Pin no.
+24V	Driver power supply +24V	7
GND	Driver power supply GND	6
CW+	CW pulse input terminal (+)	3
CW-	CW pulse input terminal (-)	10
CCW+	CCW pulse input terminal (+)	2
CCW-	CCW pulse input terminal (-)	9
PD+	Power down input terminal (+)	1
PD-	Power down input terminal (-)	8
A	Motor drive output A	5
B	Motor drive output B	4
C	Motor drive output C	14
D	Motor drive output D	13
E	Motor drive output E	12
F	Motor drive output F (LC6D-2 $\square \square \square \square$ only)	11

Functions

- Function change-over switch

Use the function change-over switch to set each function. It is set as follows when shipped.

1. ON Energization type: Half step
2. OFF ... Auto current down function

	ON	OFF
1	Half step	Full step
2	Release	Set

- Input signal terminal

- CW pulse input terminal

By applying the pulse input, the actuator moves from the motor side to the end side.

- CCW pulse input terminal

By applying the pulse input, the actuator moves from the end side to the motor side.

- Power down input terminal

By applying the " H " level input, the motor current is shut off and the motor becomes de-energized.

- Functions

- Auto current down

This is a function that reduces the motor current to half when the motor stops. This will prevent the motor and driver from generating heat.
Although auto current down causes the holding torque to be reduced when the motor stops, the holding torque that supports the actuator transfer load is maintained.

- Power down

This function shuts off the motor current and de-energizes the motor. Use this function to release the electric actuator for maintenance, etc.

- Built-in position control function added to LC6D
- Up to 28 patterns of movement data can be set.
- Point movement can be easily achieved with a PLC, etc.
- Compatible with Series LX two phase stepper motor

How to Order

Applicable Actuators

Driver	Applicable actuator		Motor type
LC6C-220AD	Guide rod type	LXPB2	2 phase stepper motor
	High rigidity slide table type	LXSH2	

* Select a 3 wire NPN type when using an auto switch.

Specifications

Part no.	LC6C-220AD
Power supply	24VDC $\pm 10 \%$, Max. 3.0A
Number of position settings	28 patterns
Position setting method	Setting with dedicated teaching box (LC5-1-T1-02)
Position control method	Absolute and incremental moves Speed: 6 to 200mm/s (with lead screw lead of 12mm)
Input signal capacity	Photo coupler input $24 V D C$, Max. 6mA
Output signal capacity	Photo coupler output Max. 30VDC or less, Max. 20mA
Parameter setting	Position data setting, Speed/Acceleration setting, etc.
Indication LED	Power supply LED, Alarm LED
Operating temperature	5° to 40 ${ }^{\circ} \mathrm{C}$
Accessories	Power connector, Interface connector (Cables should be arranged by customer.)

Electric Actuator
(Should be arranged by customer.)

Absolute and incremental moves for each movement pattern.

Eight speed patterns based on the speed number and acceleration number can be set, and a speed pattern can be selected for each movement pattern.

Series LC6C

Dimensions
LC6C-220AD

Connection Example

Wiring to the teaching box

By connecting multiple drivers (maximum of 16), they can be set by one teaching box. (When the teaching box is in use, external input to the drivers become invalid.)

Connect to communication connector 1 .

Power connector wiring

Connector: Power connector (included) Manufacturer: Molex Japan, Co., Ltd.
Part no.: Receptacle 5557-18R Female terminal 5556PBTL

Switches

Home position switch: This switch indicates the home position. Connect this switch when returning to the origin point. This switch also acts as a sensor that detects overrun in the motor direction.
Limit switch: This sensor detects overrun in the end direction. Connect this switch as needed.

Power connector input/output signal details

Connector no.	Signal description	Detail
1	24 V	Connect to power supply (+24VDC)
2	0 V	Connect to power supply (OV)
3	FG	Connect to frame ground
4	Home position switch (+)	Connect to home position switch positive power supply line
5	Home position switch (OUT)	Connect to home position switch output line
6	Home position switch (-)	Connect to home position switch 0V power supply line
7	Limit switch (+)	Connect to limit switch positive power supply line
8	Limit switch (OUT)	Connect to limit switch output line
9	Limit switch (-)	Connect to limit switch 0V power supply line
10	N.C.	Do not connect.
11	N.C.	Do not connect.
12	N.C.	Do not connect.
13	b phase (Yellow)	Connect to actuator power line (Yellow)
14	B phase (Red)	Connect to actuator power line (Red)
15	a phase (Blue)	Connect to actuator power line (Blue)
16	A phase (Orange)	Connect to actuator power line (Orange)
17	COM (Black)	Connect to actuator power line (Black)
18	COM (White)	Connect to actuator power line (White)

\triangle Caution

Use a 3 wire NPN type for each switch.

Interface connector wiring

Connector: Interface connector (included) Manufacturer: OMRON Corporation Part no.: Connector XG4M-2030-T
$A \nabla$ mark is located on the connector number 1 side.

Interface connector input/output signal details

Connector no.	Signal description	Details
1	Input (+) COM	Input COM signal
2	Point input A	Point setting input (point A)
3	Point input B	Point setting input (point B)
4	Point input C	Point setting input (point C)
5	Point input D	Point setting input (point D)
6	Bank input 1	Bank setting input (binary, first bit)
7	Bank input 2	Bank setting input (binary, second bit)
8	Bank input 3	Bank setting input (binary, third bit)
9	Emergency stop input	Emergency stop input
10	Alarm reset input	When an alarm occurs, this signal turns off the alarm after the cause is resolved.
11	Output (-) COM	Output COM signal (GND)
12	Point output A	This signal indicates move completion for point input A.
13	Point output B	This signal indicates move completion for point input B.
14	Point output C	This signal indicates move completion for point input C.
15	Point output D	This signal indicates move completion for point input D.
16	READY output	This signal indicates that the controller is ready.
17	BUSY output	This signal indicates motor control in progress.
18	Home position return output	This signal indicates that home position returen is completed.
19	Alarm output	This signal indicates occurrence of alarm.
20	N.C.	Do not connect.

\triangle Caution

If input is not provided as prescribed for the operation, this may cause malfunction or failure.

Home Position Return

Operation

(1) Moves to the motor side at home position return speed
(2) Decelerates and stops at the home position sensor ON position
(3) Moves to the end side at low speed
(4) Moves and stops at 16 pulse position from the home position sensor OFF position

2 Operating procedures

1. Confirm that both READY output and alarm output are ON.
2. Turn OFF bank inputs 1 to 3 . [Specify bank 0.]
3. When point input A is turned $O N$, the actuator begins to return to the home position.
4. BUSY output is turned ON during home position return
5. BUSY output is turned OFF when the actuator reaches the home position, and home position return output turns ON.
6. Turn OFF point input A.

Note) The actuator stops if point input A is turned OFF when BUSY output is ON (home position return movement in progress).

3 Home position return speed

Speed is set by parameter number 0D.

\section*{| 1. | 015 |
| :--- | :--- |}

Acceleration no. Speed no.

4 Home position return signal

This signal output turns ON when the home position return movement completes. It turns OFF when an alarm occurs or when JOG movement takes place.

5 Time chart

Point Movement

With this driver, a maximum of 28 point positions can be set by combining banks and points. With the combination of bank and point inputs, the actuator can move to the position indicated by each point.

1 Setting detail

To set point settings, use the parameter setting and teaching functions of the dedicated teaching box.

2 Operating procedures

1. Confirm that both READY output and alarm output are ON.
2. Set bank with bank inputs 1 to 3 . [Bank 1 to 7.]
3. When points are specified with point inputs A to D, the actuator starts to move.
4. BUSY output is ON while the actuator is moving.
5. BUSY output turns OFF when the move completes and point outputs A to D turn ON. These correspond to point inputs A to D that are ON.
6. When point inputs A to D are turned OFF, point outputs A to D turn OFF.

Note) The actuator stops moving if point inputs A to D are turned OFF or two or more of point inputs A to D are turned ON while BUSY output is ON (during movement).

3 Time chart (when specifying point B)

Series LC6C
 Dedicated Teaching Box/LC5-1-T1-02

Performance/Specifications

General specifications

Part no.	LC5-1-T1-02
Power supply	Supplied by LC6C-220AD
Dimensions	$130 \mathrm{~mm} \times 50 \mathrm{~mm} \times 21 \mathrm{~mm}$
Weight	110 g
Body type	Resin body
Indication unit	7 LED numerical indicators, 9 LED indicator lights
Operation unit	Key switches
Cable length	2 m

Basic performance

	Performance/Specifications
Applicable controller	LC6C-220AD
Operating temperature range	5° to $40^{\circ} \mathrm{C}$
Communication method	Conforming to RS485
Functions	Parameter change, JOG operation, alarm reset, teaching, test
Protective function indication	Alarm code

Dimensions

Part Descriptions

Key Arrangement and Functions

Mark	Key description	Function
\wedge	UP	Increases a numerical value.
\vee	DOWN	Reduces a numerical value.
$<$	L	Moves a numerical value place to the left. Rotates the motor counter clockwise during JOG operation.
$>$	R	Moves a numerical value place to the right. Rotates the motor clockwise during JOG operation.
STOP	STOP	Becomes the emergency stop key when the actuator is moving.
ESC/ MODE	ESC/ MODE	Selects a mode. Completes each mode and returns to the mode level.
RET	RET	Determines the mode and records data.

\triangle Caution

STOP key only stops the driver that is in communication.

Alarm Details

Alarm no.	Alarm description	Presumed cause and solution
1	Emergency stop input	Emergency stop input is turned OFF (open).
2	Temperature abnormality	The temperature inside the driver is high. Check the installation environment and operation frequency.
3	Power supply abnormality	Operating beyond the range of the specified power supply. Adjust the power supply.
4	Limit switch abnormality	Home position switch and limit switch are operating. Malfunction such as loss of synchronism may have occurred. Check the equipment.

Operating Method

As shown above, 6 modes are available. (I/O mode and MON mode do not function with this driver.) When the communication mode is started by the teaching box, a menu can be selected with [ESC/MODE]. Select the mode indication LED for the mode to be implemented (all mode indication LEDs turn Off in the ID mode) and press [RET] to start each mode.
Refer to the instruction manual for the operation of each mode.

Series LC6D/LC6C
 Options

© Caution

- Do not repeatedly apply bending stress or tension to the cables.

Wiring that subjects cables to repeated bending stress and tension causes line breakage.

- Make connections based on each driver's connection example.

LC6D Connector Cable

Wiring

Pin no.	Cable description	$\begin{array}{c\|} \hline \text { Signal } \\ \text { description } \end{array}$	Color
1	Interface cable	PD+	Yellow
2		CCW+	Red
3		CW+	Black
4	Motor cable	Motor B	White
5		Motor A	Black
6	Power cable	GND	Black
7		+24V	White

Pin no.	Cable description	Signal description	Color
8	Interface cable	PD-	Brown
9		CCW-	Green
10		CW-	White
11	Motor cable	Motor F	Brown
12		Motor E	Yellow
13		Motor D	Green
14		Motor C	Red

LC6C Interface Connector Cable

View c

LC6C Power Connector Cable

Wiring

Pin no.	Cable description	Signal description	Color
1	Power cable	+24V	White
2		OV	Black
3		FG	Red
4	Switch cable	Home position switch (+)	White
5		Home position switch (OUT)	Black
6		Home position switch (-)	Brown
7		Limit switch (+)	Yellow
8		Limit switch (OUT)	Green
9		Limit switch (-)	Red
13	Motor cable	Motor wire (Yellow)	Red
14		Motor wire (Red)	Green
15		Motor wire (Blue)	Yellow
16		Motor wire (Orange)	Brown
17		Motor wire (Black)	Black
18		Motor wire (White)	White

LC6C Driver Connection Cable

Directional Control Driver for Electric Cylinder

Series LC3F2

Able to contro the stroke with only ON/OFF signals
Directional control driver like a solenoid valve

LC3F212-5A3 \square

Able to set thrust arbitrarily.

Thrust can be adjusted by adjustment trimmer

Directional Control Driver for Electric Cylinder

Series LC3F2

How to Order

d Housing set (Connector set)

A	Housing for CN1, 2, 3 (connector) \& contact (connector pin) are included as an accessory.
B	Nothing included.

Nothing included.
 5 24 VDC

A5 \quad DC motor (cylinder size 5)

Option

- Cable for power supply terminal

CN1 Power Supply -erminal Tabie

Terminal	Function	Pin number	Optional cable color
FG	Frame ground	1	Yellow/Green
DC (+)	Driver power supply (+24 V)	2	Brown
DC (-)	Driver power supply (0 V)	3	Blue

CN2 Control Terminal Table

Terminal	Function		Pin number	Optional cable color
COM	Common terminal	1	White	
ON	Output ON command input	ON: Motor output	2	Red
	OFF: No motor output			
SET	Adjusted thrust command input	ON: Adjusted thrust	OFF: 100% thrust (Max. thrust)	3

- Cable for motor output terminal

CiN3 Niotor OJtpJt Terminal Table

Terminal	Function	Pin number	Optional cable color
OUTA	Motor output A (Blue)	1	Blue
OUTB	Motor output B (Red)	2	Red

- Housing set (Connector set)

LC3F2 1-C0

Housing for power supply terminal (Connector)	1 pc.	VHR-3N: J.S.T. Mfg Co., Ltd.)
Housing for control terminal (Connector)	1 pc	VHR-4N: J.S.T. Mfg Co., Ltd.)
Housing for motor output terminal (Connector)	1 pc	VHR-2N: J.S.T. Mfg Co., Ltd.)
Contact (Connector pin)	12 pcs.	BVH-21T-P1.1: J.S.T. Mfg Co., Ltd.)

\triangle Caution

- Do not apply repetitive bending or pulling stress to the cable.

Wiring with repetitive bending or pulling stre:ss to the cable will likely cause the cable to break.

- In the event of crimping the contact (connector pin) and wire use the specifiec tools as wel as the recomr ended cable Crimping tool: YC-160R (J.S.T Mfg Co , Ltd.)
Pulling tool: EJ-NV (J.S.T Mfg Co, Ltd.)
Recommended cable connection (common for individual cable) AIVG2. ($0.5 \mathrm{~mm}^{2}$) Insulated wire O.D. 1.7 to 3.0 mm with $\mathrm{s}^{\text {hield }}$ Heat resistance is more than $80^{\circ} \mathrm{C}$.
Maximum cable length (CN1 cable for power supply terminal 2 m CN2 cable for control terminal 2 m
CN3 cable for motor output terminal 5 m
- Shield is attached with an optional cable for the LC3F2 series.

When grounding a shield, remove the sheath and use a metal U-crip or P-crip.

Applicable Cylinder Table

Cylinder part no.	Applicable directional control driver
L $\square \mathbf{Z} \square$ 3 $\square \square \square \square$ A3 $\square \square$ - $\square \square \square \square$	LC3F212-5A3 \square
L $\square \mathbf{Z} \square \mathbf{5} \square$ - $\square \square \square$ A5 $\square \square$ - $\square \square \square \square$	LC3F212-5A5 \square

Dimensions

How to Mount

Mount the directional control driver vertically against the wall, using two mounting screw holes, so the front side (on which its adjustment trimmer and manual switch are located) is facing to an operator

Applicable mounting screw: M3 (2 pcs.) [to be supplied by customer]

Series LC3F2

Wiring Example

For System Chart, refer to Features 1

\triangle Caution

There is no emergency stop function or power supply switch in the directional control driver Please be sure to provide an emergency stop and power supply insulation (insulator) device as a total machine equipment, referencing the above wiring examples. Also, please be sure to turn off the power supply for the whole equipment prior to wiring the directional control driver.

How to wire

CN3 motor output terminal

$\}$ Heat sink side
CN1 Power Supply Terminal

Pin no.	Terminal	Function
1	FG	Frame ground
2	DC $(+)$	Driver power supply (+24 V)
3	DC $(-)$	Driver power supply (0 V)

Housing: VHR-3N (J.S.T Mfg Co., Ltd.)
Contact: BVH-21T-P1. (J.S.T. Mfg Co., Ltd.)
CN3 Motor Output Terminal

Pin no.	Terminal	Function
1	OUTA	Motor output A (Blue wire)
2	OUTB	Motor output B (Red wire)

Housing: VHR-2N (J.S.T Mfg Co., Ltd.)
Contact: BVH-21T-P1. (J.S.T. Mfg Co., Ltd.)

Housing: VHR-4N (J.S.T. Mfg Co., Ltd.)
Contact: BVH-21T-P1. 1 (J.S.T Mfg Co., Ltd.)
Note) For the travelling direction (retracted, extended side), refer to the dimensions in page 4, 6, 10 and 1.

Timing Chart

CN2 Control Terminal

Pin no.	Terminal		Function
1	COM	Common terminal	
2	ON	Output ON command input	ON: Motor output
			OFF: No motor output
3	SET	Adjusted thrust command input	ON: Adjusted thrust
			OFF: 100\% thrust (Max. thrust)
4	A-PHASE	Traveling direction command input	ON: A-PHASE (Retracted side) Note)
			OFF: B-PHASE (Extended side) Note)

Housing: VHR-4N (J.S.T. Mfg Co., Ltd.)
Contact: BVH-21T-P1.1 (J.S.T Mfg Co., Ltd.)
Note) For the travelling direction (retracted, extended side), refer to the dimensions in page 4, 6, 10 and 11.

[^0]
[^0]: Note) For the travelling direction (retracted, extended side), refer to the dimensions in page 4, 6, 10 and 11

