Air Cylinder/Non-rotating Rod Series MBK
 ø32, ø40, ø50, ø63, ø80, ø100

How to Order

- Besides the above models, there are some other auto switches that are applicable. For detailed information, please refer to page 11.

JIS Symbol

Double acting

| Order
 Made | |
| :--- | :--- | | Made to Order |
| :--- |
| (Refer to page 38 for made to order |
| products of service MBK) |

Standard Stroke

Bore size (mm)	Standard stroke (mm)
32	$25,50,75,100,125,150,175,200$, $250,300,350,400,450,500$
40	$25,50,75,100,125,150,175,200$, $250,300,350,400,450,500$
$\mathbf{5 0}$	$25,50,75,100,125,150,175,200$, $250,300,350,400,450,500,600$
$\mathbf{6 3}$	$25,50,75,100,125,150,175,200$, $250,300,350,400,450,500,600$
$\mathbf{8 0}$	$25,50,75,100,125,150,175,200,250$, $300,350,400,450,500,600,700,800$
$\mathbf{1 0 0}$	$25,50,75,100,125,150,175,200,250$, $300,350,400,450,500,600,700,800$

[^0]Specifications

Bore size (mm)	32	40	50	63	80	100
Action	Double acting single rod					
Fluid	Air					
Proof pressure	1.5MPa					
Max. operating pressure	1.0MPa					
Min. operating pressure	0.05 MPa					
Ambient and fluid temperature	Without auto switch: -10 to $70^{\circ} \mathrm{C}$ (No freezing)					
	With auto switch: -10 to $60^{\circ} \mathrm{C}$ (No freezing)					
Lubrication	Not required (Non-lube)					
Operating piston speed	50 to $1000 \mathrm{~mm} / \mathrm{s}$					
Allowable stroke tolerance	up to 250: ${ }_{0}^{+1.0}, 251$ to 1000: $0_{0}^{+1.4}, 1001$ to 1500: ${ }_{0}^{+1.8}$					
Cushion ${ }^{(1)}$	Both ends (Air cushion)					
Thread tolerance	JIS class 2					
Port size (Rc, NPT, G)	$\mathrm{Rc}(\mathrm{PT}) 1 / 8 \mathrm{R}$	(PT) $1 / 4$	Rc(PT) $1 / 4$	$\mathrm{Rc}(\mathrm{PT}) 3 / 8$		Rc(PT) $1 / 2$
Mounting	Basic, Foot, Front flange, Rear flange, Single clevis, Double clevis, Center trunnion					
Non-rotating accuracy	$ø 32, \varnothing 40$		$\pm 0.5^{\circ}$			
	ø50, ø63		$\pm 0.5^{\circ}$			
	$\varnothing 80, \varnothing 10$		$\pm 0.3^{\circ}$			
Allowable rotating torque Nm max.	$ø 32$		0.25	$ø 80$		0.79
	$\varnothing 40$		0.45	$\varnothing 100$		0.93
	ø50, ø63		0.64	-		-

Note 1) Absorbable kinetic energy by cushion mechanism is identical to double acting single rod. When requesting a cylinder without air cushion, cylinder utilizes rubber bumpers which increases cylinders overall length.

Accessories

Mounting		Basic	Foot	Front flange	Rear flange	Single clevis	Double clevis	Center trunnion
Standard	Rod end nut	-	\bigcirc	\bigcirc	\bigcirc	-	-	-
	Clevis pin	-	-	-	-	-	-	-
Option	Single knuckle joint	\bigcirc						
	Double knuckle joint (with pin)	\bigcirc						
	Rod boot	\bigcirc	-	\bigcirc	-	\bigcirc	-	\bigcirc

Weight/Aluminum Tube

Bore size (mm)			32	40	50	63	80	100
Basic weight		Basic	0.50	0.66	1.21	1.51	2.58	3.73
		Foot	0.62	0.83	1.41	1.75	3.23	4.36
		Flange	0.79	1.03	1.64	2.30	4.03	7.04
		Single clevis	0.75	0.89	1.55	2.14	3.69	6.90
		Double clevis	0.76	0.93	1.64	2.30	3.98	7.42
		Trunnion	0.79	1.02	1.69	2.31	4.13	7.40
Additional weight per 50 stroke		All mounting bracket	0.11	0.15	0.26	0.27	0.40	0.52
Accessories		Single knuckle	0.15	0.23	0.26	0.26	0.60	0.83
		Double knuckle (with pin)	0.22	0.37	0.43	0.43	0.87	1.27
Square tube	Additional weight to the basic weight*		0.03	0.03	0.05	0.07	0.11	0.13
	Additional weight per 50 stroke		0.16	0.21	0.33	0.37	0.56	0.72

Calculation example: MBKB32-100 (Basic, ø32, 100st)

- Basic weight 0.50 (Basic ø32)
- Additional weight $\cdots 0.11 / 50$ stroke
- Cylinder stroke 100 stroke
$0.50+0.11 \mathrm{X} 100 / 50=0.72 \mathrm{~kg}$

Material of Rod Boot

Symbol	Material	Max. ambient temp.
\mathbf{J}	Nylon tarpaulin	$70^{\circ} \mathrm{C}$
\mathbf{K}	Heat resistant tarpaulin	$110^{\circ} \mathrm{C}^{*}$

* Max. ambient temperature for rod boot itself.

Theoretical Force
OUT side is identical to double acting single rod. Refer to table below for IN side.

Bore size (mm)	Rod diameter $\left(\mathrm{mm}^{2}\right)$	Bore size (mm)	Rod diameter $\left(\mathrm{mm}^{2}\right)$
$\mathbf{3 2}$	675	$\mathbf{6 3}$	2804
$\mathbf{4 0}$	1082	$\mathbf{8 0}$	4568
$\mathbf{5 0}$	1651	$\mathbf{1 0 0}$	7223

Theoretical force $(\mathrm{N})=$
Pressure (MPa) X Piston area (mm^{2})

Auto Switch Mounting Bracket Part No.

Auto switch model	Bore size					
	32	40	50	63	80	100
$\begin{gathered} \text { D-A3 } \square / \text { A44 } \\ \text { D-G39/K39 } \end{gathered}$	BMB2-032	BMB2-040	BMB1-050	BMB1-063	BMB1-080	BMB1-100
$\begin{gathered} \text { D-A5 } \square / \text { A6 } \square \\ \text { D-A599W } \\ \text { D-F5 } \square / \mathrm{J} 5 \\ \text { D-F5 } \square \text { W/J59W } \\ \text { D-F5 } \square \mathrm{F} \\ \text { D-F5BAL } \\ \text { D-F5NTL } \end{gathered}$	BT-03	BT-03	BT-05	BT-05	BT-06	BT-06
D-P5DWL	BMB3T-040	BMB3T-040	BMB3T-050	BMB3T-050	BMB3T-080	BMB3T-080
$\begin{gathered} \hline \text { D-Z7 } \square / Z 80 \\ \text { D-Y59 } \square / Y 69 \square \\ \text { D-Y7P/Y7PV } \\ \text { D-Y7 } \square W \\ \text { D-Y7 } \square W V \\ \text { D-Y7BAL } \end{gathered}$	BMB4-032	BMB4-032	BMB4-050	BMB4-050	BA4-063	BA4-063

[A set of stainless steel mounting screws]
A set of following stainless steel mounting screws is attached. (A mounting bracket itself is not attached. Please order it separately.)

BBA1: D-A5/A6/F5/J5 types
*"D-F5BAL" switch is set on the cylinder with the screws above when shipped.
When a switch only is shipped, "BBA1" screws are attached.

Mounting Bracket Part No.

Bore size (mm)	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Foot Note 1)	MB-L03	MB-L04	MB-L05	MB-L06	MB-L08	MB-L10
Flange	MB-F03	MB-F04	MB-F05	MB-F06	MB-F08	MB-F10
Single clevis	MB-C03	MB-C04	MB-C05	MB-C06	MB-C08	MB-C10
Double clevis	MB-D03	MB-D04	MB-D05	MB-D06	MB-D08	MB-D10

Note 1) Two foot brackets required for one cylinder.
Note 2) Accessories for each mounting bracket are as follows.
Foot, Flange, Single clevis: Mounting bolts
Double clevis: Clevis pin, Cotter pin
\rightarrow Refer to page 8 for details.

Non-rotating Rod: Double Acting Single Rod Series MBK

Construction

Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminum die-cast	Metallic painted
2	Head cover	Aluminum die-cast	Metallic painted
3	Cylinder tube	Aluminum alloy	Hard anodized
4	Piston rod	Stainless steel	
5	Piston	Aluminum alloy	Chromated
6	Cushion ring A	Rolled steel	
7	Cushion ring B	Rolled steel	
8	Non-rotating guide bearing	Oil-impregnated sintered alloy	
9	Cushion valve	Steel wire	Nickel plated
10	Snap ring	Steel for spring	$\varnothing 40$ to $\varnothing 100$
11	Tie rod	Carbon steel	Uni-chromated
12	Tie rod nut	Carbon steel	Nickel plated

No.	Description	Material	Note
13	Piston nut	Rolled steel	
14	Washer	Steel wire	
15	Lock nut	Steel wire	
16	Rod end nut	Carbon steel	Nickel plated
17	Wear ring	Resin	
18^{*}	Cushion seal	Urethane	
19^{*}	Rod seal	NBR	
20^{*}	Piston seal	NBR	
21	Cushion valve seal	NBR	
22^{*}	Cylinder tube gasket	NBR	
23	Piston gasket	NBR	

Replacement Parts: Seal Kits

Bore size (mm)	Kit No.	Contents
32	MBK32-PS	Set of the
40	MBK40-PS	
50	MBK50-PS	

* The seal kit includes 2 cushion seals, 1 rod seal, 1 piston seal, and 2 tube gaskets.

* Model without air cushion is designed to include rubber bumpers. The overall length is longer than the cylinder with air cushion as follows
because the bumpers are attached to the both sides of the piston;
$\varnothing 32, \varnothing 40:+6 \mathrm{~mm}, \varnothing 50, \varnothing 63:+8 \mathrm{~mm}, \varnothing 80, \varnothing 100:+10 \mathrm{~mm}$

Without Mounting Bracket

Bore (mm)	Stroke range	Effective thread length	Width across llats	A	$\square \mathbf{B}$	$\square C$	E	F	G	H	MA	MB	J	MM	N	P	S*	V	W	ZZ ${ }^{*}$
32	up to 500	19.5	12.2	22	46	32.5	30	13	13	47	16	4	M6 X 1.0	M10 X 1.25	27	1/8	84	4	6.5	135
40	up to 500	27	14.2	30	52	38	35	13	14	51	16	4	M6 X 1.0	M14 X 1.5	27	1/4	84	4	9	139
50	up to 600	32	19	35	65	46.5	40	14	15.5	58	16	5	M8 X 1.25	M18 X 1.5	31.5	1/4	94	5	10.5	156
63	up to 600	32	19	35	75	56.5	45	14	16.5	58	16	5	M8 X 1.25	M18 X 1.5	31.5	3/8	94	9	12	156
80	up to 800	37	23	40	95	72	45	20	19	72	16	5	M10 X 1.5	M 22×1.5	38	3/8	114	11.5	14	190
100	up to 800	37	27	40	114	89	55	20	19	72	16	5	M10 X 1.5	M26 X 1.5	38	1/2	114	17	15	190

Dimensions with mounting support is same as the basic style (Double acting single rod). Also dimensions with boot is same as the basic style (Double acting single rod).

Series MB

Auto Switch Connections and Examples

Basic Wiring

- Solid state switch

(When power source for switch and load is not common.)

2 wire

- Reed switch 2 wire

Examples of Connection to PLC

Connection Examples for AND (Serial) and OR (Parallel)

-3-wire
AND connection for NPN output (using relays)

AND connection for NPN output (performed with switches only)

OR connection for NPN output

The indicatior lights will light up when both switches are turned ON.

2-wire with 2 switch AND connection

When two switches are connected in series, a load may malfunction because the load voltage will decline when in the ON state. The indicator lights will light up if both of the switches are in the ON state.

$$
\begin{aligned}
\text { Load voltage at } \mathrm{ON} & =\begin{array}{c}
\text { Power Supply } \\
\text { voltage }
\end{array} \begin{array}{c}
\text { Internal } \\
\text { voltage } \\
\text { drop }
\end{array} \\
& =2 \text { pcs. } \\
& =24 \mathrm{~V}-4 \mathrm{~V} \times 2 \text { pcs. } \\
& =16 \mathrm{~V}
\end{aligned}
$$

Example: Power supply is 24 V DC,
Internal voltage drop in switch is 4 V

Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications.

2-wire with 2 switch OR connection

$\begin{aligned} \text { Load voltage at OFF } & =\underset{\text { current }}{\text { Leakage }} \times 2 \mathrm{pcs} . \times \\ & =1 \mathrm{~mA} \times 2 \mathrm{pcs} \times 3 \mathrm{k} \Omega \\ & =6 \mathrm{~V}\end{aligned} \quad \begin{aligned} \text { Example: Load impedance is } 3 \mathrm{k} \Omega\end{aligned}$
Leakage current from switch is 1 mA

<Reed switch>

Because there is no current leakage, the load voltage will not increase when turned OFF. However, depending on the number of switches in the ON state, the indicator lights may sometimes dim or not light up, because of dispersion and reduction of the current flowing to the switches.

Reed switch

D-A53

D-A54

D-A56/Z76

D-A67/Z80

D-A33

D-A34/D-A44

D-Z73

D-A59W

Indicator light/Operation

Solid state switch

[^0]: Intermediate strokes are available.
 (No spacer is used)

