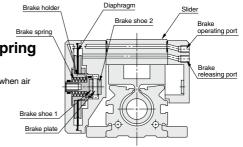

Stroke Reading Rodless Cylinder with Brake

Series ML2B

ø**25**, ø**32**, ø**40**

Stroke Reading Rodless Cylinder with Brake

Incorporating a brake mechanism and stroke sensor allows positioning with high repeatability. (Stopping accuracy \pm 0.5 mm)


Brake mechanism

Employs a combination spring and pneumatic lock type.

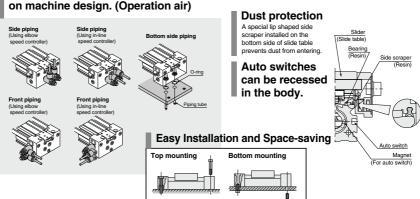
The cylinder position will be held by spring force when air pressure is absent.

The brake mechanism gives no direct load on the cylinder.

Spring force acts directly on the brake shoes to hold the brake disk; therefore, the table can be stopped without affecting the cylinder performance.

Maintenance and inspection

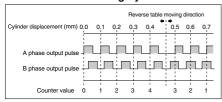
Brake unit is replaceable and has a manual override. Besides that, manual release is also possible manually.


Locking in both directions is possible.

Locking in either side of cylinder stroke is possible, too.

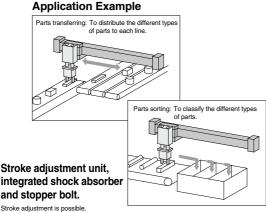
Rodless cylinder

A variety of piping port locations gives high-freedom on machine design (Operation air)


Ø25, Ø32, Ø40

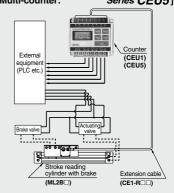
Measuring

Smallest measuring unit 0.1 mm/Pulse


Measured with the scale plate with a sensing head built into the body.

Relation between Displacement and Output Pulse on Stroke Reading Cylinder

Shock absorber is self adjusting for changing load demands.



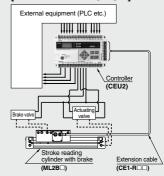
For measuring intermediate stops

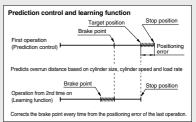
Stroke Reading Cylinder with Brake + Counter

Suitable for measurement on systems when table is stopped

[3 point preset counter: Series CEU1] [Multi-counter: Series CEU5

For precision positioning


(Stop accuracy ±0.5 mm)


Stroke Reading Cylinder with Brake + Controller

Positioning with high reproducibility has been achieved by prediction control and learning function. The stop position will be automatically redressed by re-try

function

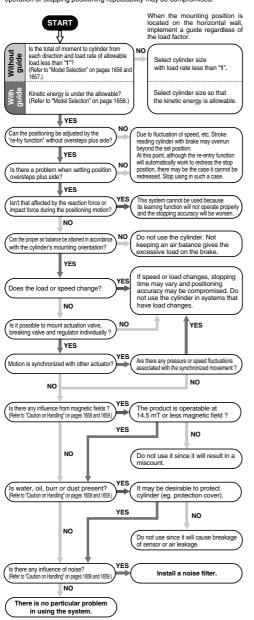
[Controller: Series CEU2]

D-□ -X□

CEP1

CE1

CE2

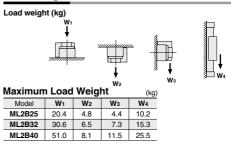


Series ML2B Prior to Use

* This series cannot be used in an environment where it is exposed to fluids (water, oil, coolant, etc.)

System Checking Flow Chart

Stroke reading cylinder with brake permits precise positioning at any designated point on its travel with combination of CEU2, directional control valve, brake valve. Check the operation flow chart below before starting the operation or stopping positioning repeatability may be compromised.

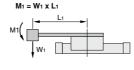


Model Selection

Maximum allowable load weight and allowable moment will vary depending on workpiece mounting methods, mounting orientation and piston speed. A determination of usability is performed based on the operating limit values in the graphs with respect to operating conditions, but the total $(\Sigma\alpha n)$ of the load factors (αn) for each weight and moment should not exceed 1. Besides, if it is used for positioning, maximum speed that can be achieved shall be 500 mm/s or less.

For details, refer to either "Instruction manual for positioning system with brake (rodless type)" or "Instruction manual for Stroke Reading Rodless Cylinder with Brake".

Load Weight

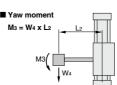

Moment

Allowable Moment (N-m								
Pitch moment	Roll moment	Yaw moment						
M ₁ /M ₁ e	M2	Мз/Мзе						
10	1.2	3.0						
20	2.4	6.0						
40	4.8	12						
	Pitch moment M1/M1e 10 20	Pitch moment Roll moment M1/M1e M2 10 1.2 20 2.4						

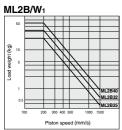
Static Moment

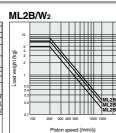
■ Pitch moment

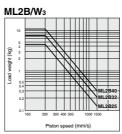
Moment generated by the workpiece mass even when the cylinder is stopped

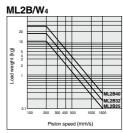


■ Roll moment

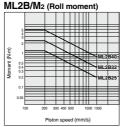


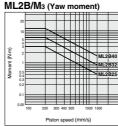



Maximum Load Weight/Allowable Moment (Not using external guide)


Load weight [kg] Static moment [M] Dynamic moment [Me] The sum of the load rate $\Sigma C \ln =$ Maximum load weight [Wmax] Allowable static moment [Mmax] Allowable dynamic moment [Memax]

Wmax, Mmax, Memax from below graphs.





ML2B/M₁ (Pitch moment) Piston speed (mm/s)

Dynamic Moment

Moment generated by impact load at stroke end

■ Pitch moment

M1e = We x L3 x $\frac{1}{2}$

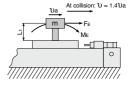
■ Yaw moment

■ Reference formula [Dynamic moment at impact]

Use the following formula to calculate dynamic moment when shock for stopper collision impact is taken into consideration.

: Load mass (kg) 1) : Collision speed (mm/s) : Load (N) : Distance to the center of load gravity (m)

: Load equivalent to impact


ME : Dynamic moment (N·m) (at impact with stopper) (N) : Gravitational acceleration (9.8 m/s2)

: Average speed (mm/s) : Static moment (N·m)

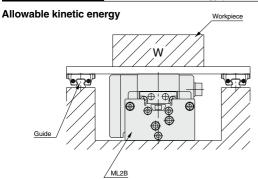
 $F_E = \frac{1.4}{100} \text{ Va} \cdot \text{g} \cdot \text{m}$ $\upsilon = 1.4\upsilon a \text{ (mm/s)}$

- · FE · L1 = 0.05\(\partial a \cdot m \) L1 (N·m)

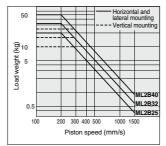
Note) Average load coefficient (This coefficient is meant to average the maximum load moment at the time of impact with stopper in the light of calculating the service life.)

D-□ -**X**□

CEP1


CE₁ CF₂ ML2B

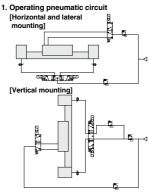
Series ML2B Prior to Use


Model Selection

Allowable Kinetic Energy (With external guide)

Type	ML2B25	ML2B32	ML2B40
Allowable kinetic energy (I)	0.43	0.68	1 21

- The piston speed will exceed the average speed immediately before locking. To determine the piston speed for the purpose of obtaining the kinetic energy of load, use 1.4 times the average speed as a guide.
- The relation between the speed and the load of the respective tube bores is indicated in the diagram on the right. Use the cylinder in the range below the line.
- Locking mechanism has to absorb not only kinetic energy of pay load but also thrust energy of cylinder when locking. Accordingly, to secure braking force there is a certain limit for pay load despite being within allowable kinetic energy. In the case of horizontal orientation, the solid line is the load limit. In the case of vertical orientation, the dotted line is the load limit.



Handling of Technical Material

- For further positioning system, refer to "Instruction manual for positioning system with brake (rodless type)".
- sype).
 For further cylinder information, refer to "Instruction manual for Stroke Reading Rodless Cylinder with Brake"

Caution on Handling

Pneumatic Circuit Design

/	SOL. 1	SOL. 2	SOL. 3		
Α	ON	OFF	ON		
В	OFF	ON	ON		
Stop OFF		OFF	OFF		

2. Solenoid valve for driving and braking

		Horizontal and lateral mounting	Vertical mounting		
Solenoid valve for driving		VFS25□0	VFS24□0R		
Solenoid	valve for braking	VFS21□0			
Regula	ator	AR4	R425		
Piping	ML2B25, 32	Bore size ø4 or more			
size	ML2B40	Bore size ø5 or more			

3. Piping

Piping length between cylinder ports and solenoid valve for driving should be less than 50 cm. When using system with brake, piping length between solenoid valve for braking and brake supply port should be less than 1 m. If longer, the brake function may be delayed when the cylinder position is held, for emergency stops or cylinder may eject at brake release.

4. Air balance

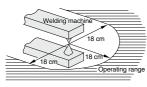
Air balance on both pneumatic circuits mentioned above is made by supplying air pressure, to both sides of the piston when at intermediate stop.

When mounting vertically the balance of load is kept by a regulator (1) decreases up-stream pressure. Use caution the piston rod may be lurched when the next motion gets started after the intermediate stops or commence the operation after the reverse motion gets done, unless the air balance is taken. It may result in degrading its accuracy.

5. Supply pressure

Set supply pressure 0.3 to 0.5 MPa to brake release port.

When supply pressure is below 0.3 MPa brake may not be released, when it is over 0.5 MPa brake life may be shortened. If line pressure is used directly as supply pressure, any fluctuation in pressure will appear in the form of changes in cylinder characteristics. Therefore, make sure to use a pressure regulator to convert line pressure into supply pressure for the solenoid valve for driving and the solenoid valve for braking. In order to actuate multiple cylinders at once, use a pressure regulator that can handle a large air flow volume and also consider installing an air tank.



Mounting

1. Position detecting sensor

Stroke reading rodless cylinder with brake is a magnetic type sensor. Strong magnetic fields around the sensor will cause a malfunction. External magnetic fields should be less than 14.5 mT or less

A magnetic field of 14.5 mT is equivalent to a position that has about 18 cm radius from a welded part using about 15,000 amperes of welding amperage. When using it in a stronger magnetic field, cover the sensor with magnetic and shield it.

Avoid applications where the cylinder is in direct contact with water and oil, etc.

2. Noise

When stroke reading hy-rodless cylinder with brake is used in an atmosphere with electrical noise from a motor, welding machine, miscount is created by this noise. To prevent this, the noise source and wiring should be seperated from power wire.

Maximum transmitted distance for stroke reading rodless cylinder with brake is 20 m. Be sure not to exceed this wire length.

3. Mounting

Flush piping thoroughly before connection in order to prevent dust or chips from entering

Take care not to score slide surface of the cylinder tube. This may damage the bearing and scraper, resulting in malfunctioning of the cylinder.

Take care not to apply a strong impact or excessive moment to the table when loading a workpiece as slide table is supported by bearing made of resin.

4. Piping

Piping connection to head covers can be selected according to application.

Bottom piping is effective for high density designed equipment and machines since piping does not come out from the mounting surface. (Below fig.: Refer to piping port variation)

Usina

- 1. When a stroke reading hy-rodless cylinder with brake is connected to load with an external support mechanism, accurate alignment is required even if the ML2B can be used with direct load within the allowable range. If stroke is longer, axis alignment deflection will be greater: therefore, install floating mechanism to absorb deflection. This actuator can be used without lubricaton. However, if it is lubricated, use turbine oil Class 1 (ISO VG32). (Do not use machine oil or spindle oil.)
- 2. Cover the cylinder when it is used in an environment where cutting dust, powder (paper powder, thread yarn, etc.) and cutting oil (gas oil, water, warm water, etc.) present.
- 3. We recommend that grease be regularly applied to bearing (slide part) and dust seal band as it may extend the service life.
- 4. Brake and scale plates should be protected from load and external force which may cause malfunction. Do not apply load and external force on brake and scale plate. Readjustment for brake and scale plates in normal operating condition is not necessary due to preadjustment prior to delivery. Therefore, do not change the setting on adjustment parts carelessly.

CE₁

CF2

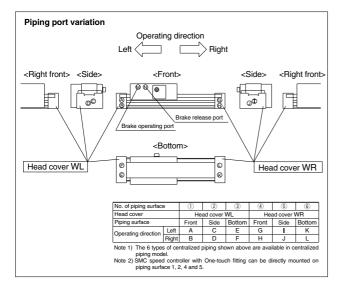
ML2B

Operating

1. Positioning at cylinder stroke end Stable stop accuraccy at end of stroke

positioning is not obtained due to large speed change from cushion influence. Therefore, positioning position must not be within cushion stroke. (Refer to cushion stroke table.)

2. System with counter


Counter respond speed is generally called "counting speed". If cylinder with brake is faster than "counting speed" in counter, the counter will make a reading error and miss-counting occurs.

Use CEU1, CEU2, or CEU5.

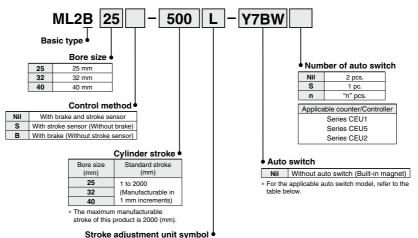
Cylinder speed < "Counting speed" in counter

(Cylinder speed 500 mm/s is equivalent to 5 kcps of "counting speed" in counter.)

3. Ejection from jumping at beginning of extend or retract stroke may cause temporarily high speeds exceeding the response speed "counting speed" in the counter or position detection sensor. This can be a cause of malfunction.

Handring

1. Do not generate negative pressure in the cylinder tube.


Take precautions under operating conditions in which negative pressure is generated inside the cylinder by external forces or inertial forces. Air leakage may occur due to separation of the seal belt.

D-□

Stroke Reading Rodless Cylinder with Brake Series ML2B

ø**25**, ø**32**, ø**40**

Applicable Auto Switches/Refer to pages 1893 to 2007 for further information on auto switches.

Refer to page 1662 for stroke adjustment unit.

			ligh			Load volt	age	Auto swite	ch model	Lead wire le	ngth	(m)*	Does and and						
Type	Special function	Electrical entry	ndicator	Wiring (Output)		DC	AC	Electrical en	try direction		3	5	Pre-wired connector	Applic	able load				
		entry	Indic	(Output)		DC	AC	Perpendicular	In-line	(Nil)	(L)	(Z)	CONTICCTO						
				3-wire (NPN)		5 V. 12 V		Y69A	Y59A	•		\circ	0	IC circuit					
Solid	_			3-wire (PNP)		3 V, 12 V		Y7PV	Y7P	•	•	0	0	IC CIICUII					
state		Grommet	Yes	2-wire		24 V	24 V	24 V	24 V	1 V 12 V	12 V	Y69B	Y59B	•	•	0	0	-	Relay, PLC
auto	Diagnostic indication	l .	163	3-wire (NPN)							Y7NWV	Y7NW	•	•	0	0	IC circuit	nelay, FLC	
switch	(2-color indication)			3-wire (PNP)			5 V, 12 V			Y7PWV	Y7PW	•	•	0	0	IC CITCUIT			
	(2-color indication)			2-wire		12 V		Y7BWV	Y7BW	•	•	0	0	_					
Reed auto – switch		Crommet Y	Grammat Yes	Grammat Y	Grommet	Yes	3-wire (NPN equivalent)	_	5 V	_	-	Z 76	•	•	_	-	IC circuit	-	
	_	Giomine		0.414	24 V	12 V	100 V	-	Z73	•	•	•	_	-	Relay, PLC				
			_	2-wire	24 V	12 V	100 V or less	_	Z80	•	•	_	-	IC circuit	nelay, FLC				

- * Lead wire length symbols: 0.5 m Nii (Example) Y7BW 3 m L (Example) Y7BWL 5 m Z (Example) Y7BWZ
- * Solid state auto switches marked with "O" are produced upon receipt of order.
- * For details about auto switches with pre-wired connector, refer to pages 1960 and 1961.
- * Normally closed (NC = b contact) solid state auto switches (D-Y7G/Y7H types) are also available. Refer to page 1913 for details.
- * Auto switches are shipped together (not assembled).

CEP1

CE₁

CF₂

ML2B

1661

As for 3 point preset counter and multi counter, it will be common to CEP1 and CE1 series. For details, refer to 3 point preset counter/CEU1 on page 1618, and Multi counter/CEU5 on page 1615 respectively. Regarding controller, since it will be common to CE2 series, refer to Controller/CEU2 on page 1650 for details.

Cylinder Specifications

Bore size	e (mm)	25	32	40			
Fluid			Air				
Action	Cylinder		Double acting				
ACTION	Brake	9	Spring and pneumation	C			
Operating	Cylinder		0.1 to 0.8 MPa				
pressure range	Brake		0.3 to 0.5 MPa				
Proof pressure	Cylinder		1.2 MPa				
Fiooi piessuie	Brake	0.75 MPa					
Ambient and fluid	temperature	5 to 60°C (No freezing)					
Piston speed		100 to 1500 mm/s (During the positioning 100 to 500 mm/s)					
Cushion		Air cushion on both sides					
Lubrication		Non-lube					
Stroke tolerance	(mm)	0 to 1.8					
Dining next size	Front/Side ported	Rc	1/8	Rc 1/4			
Piping port size	Bottom ported	ø5	ø6	ø8			

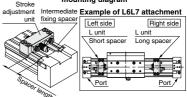
Sensor Specifications

Comes operation	
Maximum transmission distance	20 m (In the case of using our cable as well as our controller or counter.)
Position detection method	Incremental type
Magnetic field resistance	14.5 mT
Power supply	10.8 to 13.2 VDC (Ripple 1% or less)
Current consumption	40 mA
Resolution	0.1 mm/pulse
Accuracy	±0.2 mm Note) (at 20°C)
Output type	NPN open collector (35 VDC, 80 mA)
Output signal	A/B phase difference output
Insulation resistance	50 MΩ or more (500 VDC measured via megohmmeter) (between case and 12E)
Vibration resistance	33.3 Hz, 2 hours at X, Y and 4 hours at Z JIS D 1601 as standard
Impact resistance	30 G, 3 times at X, Y, Z
Enclosure	IP50 (IEC standard)
Extension cable	5 m, 10 m, 15 m, 20 m
(Option)	Cable: ø7; 6 core twisted pair shielded wire; oil, heat and frame resistant cable

Note)Digital error under Controller (CEU2), Counter (CEU1 or CEU5) is included. Besides, the whole accuracy after mounting on an equipment may be varied depending on the mounting condition and surroundings. As an equipment, calibration should be done by customer.

Stroke Adjustment Unit Specifications

Caroko Atajuetinoni emit eperinoatione								
Applicable bore siz	e (mm)	25	32	40				
Unit symbol		L	L	L				
Configuration Shock absorber model		RB1007 + with adjustment bolt	RB1412 + with adjustment bolt	RB1412 + with adjustment bolt				
Stroke adjustment range by	Without spacer	0 to -11.5	0 to -12	0 to −16				
intermediate fixing spacer	With short spacer	-11.5 to -23	-12 to -24	-16 to -32				
(mm)	With long spacer	-23 to -34.5	−24 to −36	−32 to −48				


- * Stroke adjustment range is applicable for one side when mounted on a cylinder.

 * The shock absorber service life is different from that of the ML2B cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.

Stroke Adjustment Unit Symbol

JUOKE	Aujustilieli	t Offic Symbol						
			Right side stroke adjustment unit					
			Without	L: With low load shock absorbe + Adjustment bolt				
			unit		With short spacer	With long spacer		
a t	Without unit		Nil	SL	SL6	SL7		
sid Fire sid	L: With low load shock absorber		LS	L	LL6	LL7		
at star	+ Adjustment	With short spacer	L6S	L6L	L6	L6L7		
ad L	bolt With long spacer		L7S	L7L	L7L6	L7		

Stroke adjustment unit mounting diagram

Shock Absorber Model

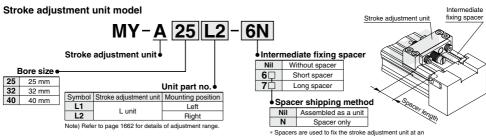
Model	ø 25	ø 32	ø 40	
iviouei	RB1007	RB1412	RB1412	

Shock Absorber Specifications

Applicable b	ore size (mm)	25	32	40
Shock absorber i	RB1007	RB1412	RB1412	
Maximum energy	5.9	19.6	19.6	
Stroke absorption	7	12	12	
Maximum collision	on speed (mm/s)	1500	1500	1500
Maximum operating	frequency (cycle/min)	70	45	45
Spring force (N)	Extended	4.22	6.86	6.86
Spring force (N)	Retracted	6.86	15.98	15.98
Operating tempe	5 to 60			

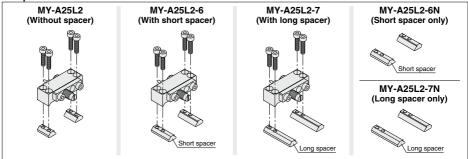
Stroke Reading Rodless Cylinder with Brake $Series \ ML2B$

Theoretical Output


								(N)	
Bore size	Piston area		Operating pressure (MPa)						
(mm)	(mm ²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8	
25	490	98	147	196	245	294	343	392	
32	804	161	241	322	402	483	563	643	
40	1256	251	377	502	628	754	879	1005	

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm2)

Weight


					(kg)
Bore size	Basic	Additional weight per each	Side support weight (per set)		Stroke adjustment unit
(mm)	weight	50 mm of stroke	Type A	Type B	weight (per unit)
25	2.89	0.142	0.015	0.016	0.10
32	4.75	0.199	0.015	0.016	0.21
40	6.87	0.290	0.040	0.041	0.32

Option

- Spacers are used to fix the stroke adjustment unit at a intermediate stroke position.
- * Spacers are shipped in 2 piece sets.

Component Parts

Side Support Part No.

Type Bore size (mm)	25	32	40
Side support A	MY-S25A		MY-S32A
Side support B	MY-S25B		MY-S32B

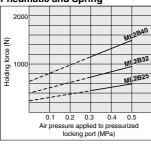
For details about dimensions, etc., refer to page 1670.

CEP1

CE₂

Brake Capacity

Holding Force of Spring Locking (Maximum static load)


Bore size (mm)	25	32	40
Holding force	245 N	400 N	628 N

Note) The holding force is the lock's ability to hold a static load that does not involve vibrations or impacts, when it is locked without a load.

Therefore, when normally using the cylinder near the upper limit of the holding force, be aware of the points described

- Select the cylinder bore size so that the load is less than 80% of the holding force.
- If the piston rod slips because the lock's holding force has been exceeded, the brake shoe could be damaged, resulting in a reduced holding force or shortened life.

Holding Force of Locking for Pneumatic and Spring

Stopping Accuracy

When the cylinder is stopped at intermediate strokes by PLC and erratic stopping positions appear. Check piston speed, load, piping conditions, control method, etc. Use values on the table below as reference.

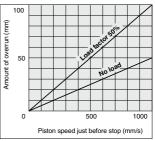
1. ML2B + CEU2

Piston speed	100 to 500 mm/s		
Stopping accuracy	±0.5 mm		

2. ML2B + PLC

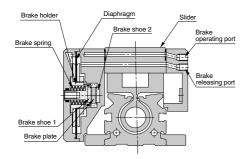
Piston speed (mm/s)	100	300	500	800	1000
Stopping accuracy (mn	1) ±0.5	±1.0	±2.0	±3.0	±4.0

Condition/Driving pressure: 0.5 MPa Brake releasing pressure: 0.3 MPa Load factor: 25% (Solenoid valve for brake releasing is connected to the cylinder directly, and the


(Solenoid valve for brake releasing is connected to the cylinder directly and the dispersion of control system is not included.)

Overrun (ML2B + PLC)

When cylinder is stopped at intermediate strokes, "idle running distance" is from the detection of stop signal to beginning of brake operation and "braking distance" is from beginning of brake operation to stop of slider.



The graph below shows the relation between piston speed and overrun. (The length of overrun is changed dependent on piston speed, load, piping condition and control method. Be sure to adjust the stop signal position, etc. by trial operation with the actual machine.)

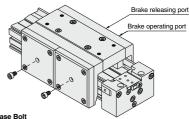
Condition/Driving pressure: 0.5 MPa Brake releasing pressure: 0.3 MPa Mounting orientayion: Horizontal

Working Principle of Brake Mechanism

Anatomy of brake operation

Spring force generated by the brake spring and the air pressure supplied to brake operating port work on brake shoe 1 fixed to the brake holder, bend brake plate fixed on head cover on both sides, and stop slider by putting brake plate between brake shoe 1 and brake shoe 2 fixed on the slider side.

Brake release


The air pressure supplied to the brake releasing port acts on a diaphragm, extending the brake spring, and canceling the brake.

[Brake releasing]

- Supply brake releasing pressure of 0.3 to 0.5 MPa to brake releasing port on slider side.
- Screw on appropriate hexagon socket head bolt into manual port on slide side.
- Exhaust brake releasing air.

[Brake operation]

- Supply brake releasing pressure of 0.3 to 0.5 MPa to brake releasing port on slider side.
- 2. Remove the bolt threaded into manual port.
- 3. Exhaust brake releasing air.

Manual Release Bolt

ML2B25	M5 x 0.8	L = 8
ML2B32	M6 x 1	L = 10
ML2B40	M8 x 1.25	L = 12

Note) Screw in after attaching a washer in the hexagon socket head cap bolt.

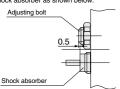
Cushion Capacity

Cushion Selection

<Air cushion>

Stroke reading hy-rodless cylinder with brake is equipped with a standard air cushion.

The air cushion mechanism is incorporated to prevent excessive impact of the piston at the stroke end during high speed operation. The purpose of air cushion, thus, is not to decelerate the piston near the stroke end.


The weight and speed ranges that the air cushion can absorb are shown within the limit lines on the

<Stroke adjusting unit with shock absorber>

Use this unit to decelerate the cylinder when weight and speed are beyond the air cushion limit lines or when the stroke adjustment causes limited or no cushion engagement.

1. The absorption capacity of each unit shown here is given for the mounted shock absorber when used at full stroke. When the effective stroke of the absorber decreases as a result of stroke adjustment, the absorption capacity becomes extremely small. Fix the adjusting bolt to around 0.5 mm projection from the shock absorber as shown below.

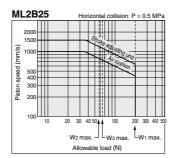
2. When the shock absorber is used within the air cushion stroke range, almost open the air cushion needle (about 1 turn from the fully closed position).

Air Cushion Stroke

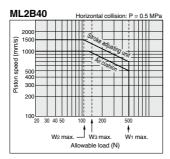
7111		
Bore size (mm)	Cushion stroke	
25	15	
32	19	
40	24	

Service Life and Replacement Period of Shock Absorber

Caution


1. Allowable operating cycle under the specifications set in this catalog is shown below.

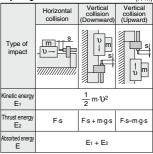
2 million cycles: RB1007, RB1412


Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above

Shock absorber model		
RB1007		
RB1412		
RB1412		

Absorption Capacity of the Air Cushion and Stroke Adjusting Unit

ML2B32 Horizontal collision: P = 0.5 MPa 2000 ш 1500 mm/s) speed 500 Piston : 300 100 30 40 50 200 300 400 500 Wз max W₁ max Allowable load (N)

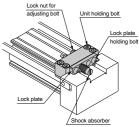

Tightening Torque for Stroke Adjusting Unit Holding Bolts

omericaning zone	(111-111)
Bore size (mm)	Tightening torque
25	3
32	5
40	10

Tightening Torque for Stroke Adjusting Unit Lock Plate Holding Bolts (N·m)

Tightening torque			
1.2			
3.3			
3.3			

Calculation of Absorbed Energy for Stroke Adjusting Unit with Shock Absorber (N·m)



Symbol

- U: Speed of impact object (m/s) m: Weight of impact object (kg) F : Cylinder thrust (N) g: Gravitational acceleration (9.8 m/s²)
- s : Shock absorber stroke (m)

Note) The speed of the impact object is measured at the time of impact with the shock absorber

Adjusting Procedure

<Movement and location of stroke adjustment>

The unit body can be moved after the four unit holding bolts are loosened and can be fixed at any position by uniformly tightening the four unit holding bolts. However, there is a possibility that the adjustment mechanism will be tilted due to high impact energy.

Since the holder mounting bracket for adjustment is available as an option for -X416, -X417, we recommend that you use it. If any other length is desired, please consult with SMC. (Refer to Tightening Torque for Stroke Adjusting Unit Holding Bolts".)

<Stroke adjustment of the adjusting bolt>

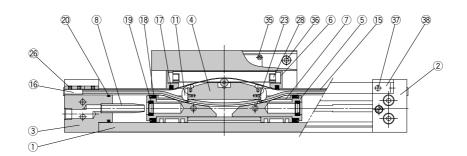
Loosen the lock nut of the adjusting bolt, adjust the stroke from the lock plate side using a wrench, then re-tighten it.

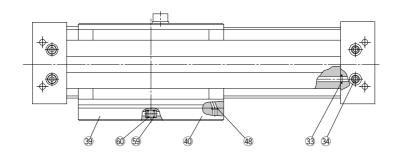
<Adjustment of shock absorber>

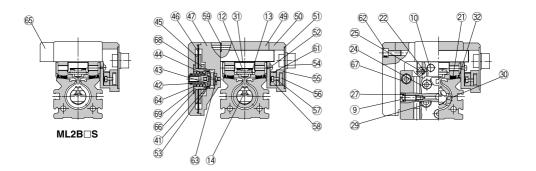
Loosen the two lock plate holding bolts, turn the shock absorber and adjust the stroke. Then, uniformly tighten the lock plate holding bolts and secure the shock absorber. Take care not to over-tighten the holding bolts.

(Refer to "Tightening Torque for Stroke Adjusting Unit Lock Plate Holding Bolts".)

Although the lock plate may slightly bend due to tightening of the lock plate holding bolt, this does not affect the shock absorber and locking function.




CEP1

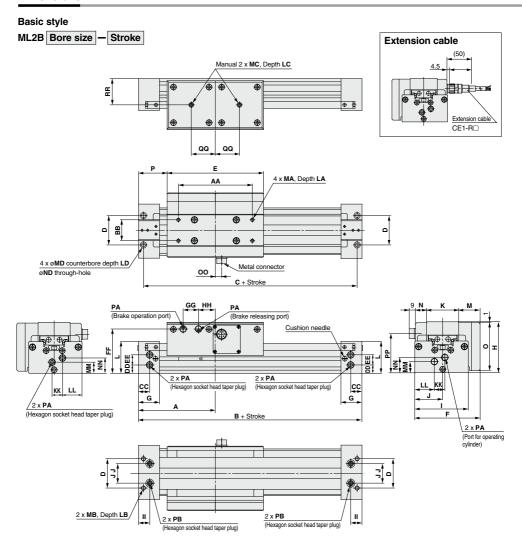

CE₁

CF2

Component Parts

	inponont i arto			
No.	Description	Material	Qty.	Note
1	Cylinder tube	Aluminum alloy	1	Hard anodized
2	Head cover WR	Aluminum alloy	1	Glossy, self-coloring
3	Head cover WL	Aluminum alloy	1	Glossy, self-coloring
4	Piston yoke	Aluminum alloy	1	Hard anodized
5	Piston	Aluminum alloy	2	Hard anodized
6	End cover	Special resin	2	
7	Wear ring	Special resin	2	
8	Cushion ring	Aluminum alloy	2	Anodized
9	Cushion needle	Rolled steel	2	Nickel plated
10	Stopper	Carbon steel	4	
11	Belt separator	Special resin	2	
12	Guide roller	Special resin	1	
13	Guide roller shaft	Stainless steel	1	
14	Seal belt	Special resin	1	
15	Dust seal band	Stainless steel	1	
16	Belt clamp	Special resin	2	
17	Scraper	NBR	2	
18	Piston seal	NBR	2	
19	Cushion seal	NBR	2	
20	Tube gasket	NBR	2	
21	Bearing	Special resin	2	
22	*		4	
23	Spacer	Stainless steel		Diagla sia a sharanata d
24	Spring pin	Carbon tool steel	2	Black zinc chromated
	Hexagon socket head cap screw	Chromium molybdenum steel	6	Chromated
25	Hexagon socket button head screw	Chromium molybdenum steel	4	Chromated
26	Hexagon socket head set screw	Chromium molybdenum steel	8	Chromated
27	O-ring	NBR	2	
28	Double round parallel key	Carbon steel	2	
29	Hexagon socket head taper plug	Steel wire	6	Nickel plated
30	Magnet		2	
31	Top cover	Stainless steel	1	
32	Side scraper	Special resin	2	
_33	O-ring	NBR	4	
34	Hexagon socket head taper plug	Steel wire	4	Chromated
35	Phillips truss head screw	Chromium molybdenum steel	4	Chromated
36	Hexagon socket head cap screw	Chromium molybdenum steel	3	Chromated
37	Parallel pin	Carbon steel	4	
38	Tension plate	Carbon steel	4	Nickel plated
39	Side cover L	Aluminum alloy	1	Hard anodized, Urban white
40	Side cover R	Aluminum alloy	1	Hard anodized, Urban white
41	O-ring	NBR	2	
42	O-ring	NBR	2	
43	Brake shoe	Special abrasion material	4	
44	Brake plate	Stainless steel	1	
45	Diaphragm shell	Stainless steel	4	
46	Diaphragm	NBR	2	
47	Brake body	Aluminum alloy	1	Hard anodized, Urban white
48	O-ring	NBR	1	
49	Slide table	Aluminum alloy	1	Hard anodized
50	Sensor body	Aluminum alloy	1	Hard anodized, Urban white
51	Connector gasket	NBR	1	
52	Round head Phillips screw	Chromium molybdenum steel	2	Chromated
53	Brake guide	Carbon steel	2	Gas soft treated
54	Connector cover AB	Carbon steel	1	Chromated
55	Sensor guide	Special abrasion material	1	
				•

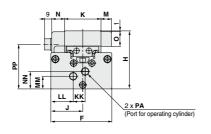
No.	Description	Material	Qty.	Note
56	Scale plate	Carbon steel	1	Nickel plated
57	Hexagon socket head cap screw	Chromium molybdenum steel	2	Chromated
58	Sensor unit	_	1	
59	O-ring	NBR	6	
60	Joint valve	Stainless steel	1	
61	Sensor holder	Carbon steel	1	
62	Hexagon socket head cap screw	Carbon steel	8	
63	Cross recessed countersunk head screw	Carbon steel	4	
64	Brake spring	_	2	
65	Side plate	Aluminum alloy	1	Hard anodized, Urban white
66	O-ring	NBR	2	
67	Hexagon socket head cap screw	Chromium molybdenum steel	8	Chromated
68	Diaphragm nut	Carbon steel	2	Zinc chromated
69	Brake holder	Carbon steel	2	Gas soft treated


CEP1

CE1

CE2

Dimensions


Model	Α	В	С	D	Е	F	G	Н	- 1	J	K	L	M	N	0	Р	AA	BB	CC	DD	EE	FF	GG	НН	II	JJ
ML2B25	110	220	206	42	138	93.5	30	73	76.5	40	46	45.5	30.9	16	69	41	106	30	16	11	14.5	63.5	22	24	16	28
ML2B32	140	280	264	51	168	107.5	37	88	91	46.5	58	54	32.4	15	84	56	133	35	19	15	16	77.5	27	32	19	32
ML2B40	170	340	322	59	204	130.5	45	106	110	55	68	64	41.4	19	102	68	164	40	23	16.5	22	95	35	37	23	36
Model	KK	LL	MM	NN	00	PP	QQ	RR	M	Α	LA	M	В	LB	M	С	LC	MD	LD	ND		PA			PB	
ML2B25	15	28	16	22	9	56	34.5	37.5	M5 x	8.0	11	M6	x 1	9.5	M5 >	_	9.5	9	5.5	5.6	F	Rc 1/8	3	B	Rc 1/1	6
ML2B25 ML2B32		_	16 21.5		9	56 62.5	34.5 42	37.5 45	M5 x M6		11 12	M6 M8 x	_			0.8	9.5	9	5.5 6.5	5.6 6.8		Rc 1/8			Rc 1/1 Rc 1/1	

With stroke sensor:

ML2B Bore size S - Stroke

With brake:

ML2B Bore size B- Stroke

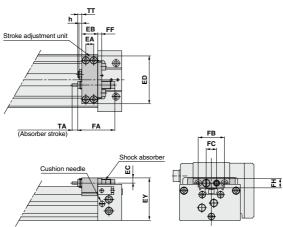
	N K	М.	-1
NN WW	• • •		0 I
	LL KK	-	2 x PA (Port for operating cylinder)

Applicable cylinder	F	Н	J	K	M	N	0
ML2B25	76.5	73	40	46	13	16	18.5
ML2B32	91	88	46.5	58	15	15	19.5
ML2B40	110	106	55	68	19	19	21.5
Applicable cylinder	KK	LL	MM	NN	P	Α	PP
ML2B25	15	28	16	22	Rc	1/8	56
ML2B32	16	30.5	21.5	26	Rc	1/8	62.5
ML2B40	17.5	37.5	24.5	37.5	Rc	1/4	77

Applicable cylinder	F	Н	ı	J	K	M	N
ML2B25	93.5	73	76.5	40	46	30.5	16
ML2B32	107.5	88	91	46.5	58	32	15
ML2B40	130.5	106	110	55	68	41.5	19
Applicable cylinder	0	KK	LL	MM	NN	P	Α
ML2B25	69	15	28	16	22	Rc	1/8
ML2B32	84	16	30.5	21.5	26	Rc	1/8
ML2B40	102	17.5	37.5	24.5	37.5	Bc.	1/4

CEP1

CE1

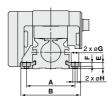

CE2

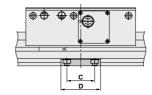
ML2B

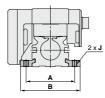
Stroke Adjustment Unit

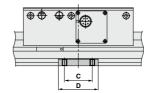
With shock absorber:

ML2B Bore size - Stroke L


Applicable cylinder	h	EA	EB	EC	ED	EY	FA	FB	FC	FF	FH	TA	TT
ML2B25	3.5	10	20	6.5	60	53.5	46.7	33	13	6	12	7	Max. 16.5
ML2B32	4.5	12	25	8.5	74	67	67.3	43	17	6	16	12	Max. 20
ML2B40	4.5	15	31	9.5	94	81.5	67.3	43	17	6	16	12	Max. 25

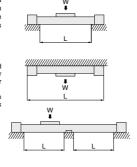

D-□

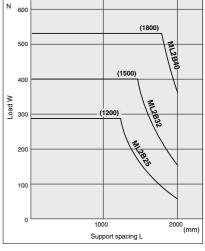

Dimensions


Side support A MY-S□A

Side support B MY-S□B

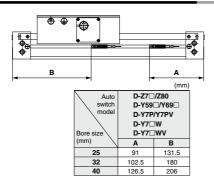
Part no.	Applicable cylinder	Α	В	С	D	E	F	G	Н	J
MY-S25A	ML2B25	61	75	35	50	۰	5	9.5	5.5	M6 x 1
WIT-323B	ML2B32	70	84	35	50	0	5	9.5	5.5	IVIOXI
MY-S32A	ML2B40	87	105	45	64	11.7	6	11	6.6	M8 x 1.25


Guide for Side Support Application


For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the graph on the right.

⚠ Caution

If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting.


If there is vibration, impact, etc. at long stroke, we recommend adoption of side support even if it is within the allowable value shown in the graph.

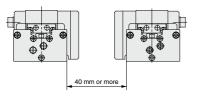
Series ML2B Auto Switch Mounting

Auto Switch Proper Mounting Position (Detection at Stroke End)

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.

Operating Range

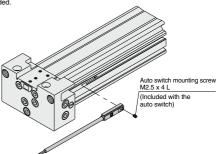
			(mm)						
Auto switch model	Bore size (mm)								
Auto switch model	25	32	40						
D-Z7□/Z80	8.5	11.5	11.5						
D-Y59□/Y69□									
D-Y7P/Y7PV	6	9	10						
D-Y7□W/Y7□WV									


 \ast Since this is a guideline including hysteresis, not meant to be guaranteed. (assuming approximately $\pm 30\%$ dispersion.)

There may be the case it will vary substantially depending on an ambient environment.

\triangle

Caution on Handling Auto Switch


- Always connect the auto switch to the power supply after the load has been connected.
- Use caution not to apply excessive impact forces by dropping and bumping when handling.
- When more than 2 cylinders with auto switches are juxtaposed, leave the distance of 40 mm or more between the cylinder tubes as shown in the below.

- Avoid wiring patterns in which bending stress and pulling force are repeatedly applied to the lead wires.
- Please consult with SMC when using in locations where water or coolant liquid, etc is splashing constantly.
- Avoid the use in locations where the large amount of magnetism is occurring.

Auto Switch Mounting

When mounting and securing auto switches, they should be inserted into the cylinder's auto switch mounting rail from the direction shown in the drawing below. After setting in the mounting position, use a flat head watchmaker's screwdriver to tighten the auto switch mounting screw that is included.

Note) When tightening an auto switch mounting screw, use a watchmaker's screwdriver with a handle of approximately 5 to 6 mm in diameter.

Also, tighten with a torque of about 0.05 to 0.1 N·m. As a guide, turn about 90° past the point at which tightening can first be felt.

D-□

CEP1

CE₁

CF₂

