Rotary Gripper
 Series MRHQ
 Size: 10, 16, 20, 25

How to Order

Unit list

Gripper unit	Model	Unit part no.	Switch mounting unit	Model	Unit part no.
	MRHQ10D	P407090-3D	Switch holder B	MRHQ10 \square	P407090-1
	MRHQ10S	P407090-3S		MRHQ16 \square	P407060-1
	MRHQ10C	P407090-3C		MRHQ20 \square	
	MRHQ16D	P407060-3D		MRHQ25 \square	
	MRHQ16S	P407060-3S			
	MRHQ16C	P407060-3C			
	MRHQ20D	P407080-3D	0		
	MRHQ20S	P407080-3S			
	MRHQ20C	P407080-3C	witch holde		
	MRHQ25D	P408080-3D	10		
	MRHQ25S	P408080-3S	* Each un	cludes two of	h of the parts indicated left.
	MRHQ25C	P408080-3C			

Specifications

Model			MRHQ10	MRHQ16	MRHQ20	MRHQ25
Fluid			Air			
Operating pressure	Rotary unit		0.25 to 0.7 MPa		0.25 to 1.0 MPa	
	Gripper unit	Double acting	0.25 to 0.7 MPa	0.1 to 0.7 MPa		
		Single acting	0.35 to 0.7 MPa	0.25 to 0.7 MPa		
Rotation angle			$90^{\circ} \pm 10^{\circ}, 180^{\circ} \pm 10^{\circ}$			
Gripper action			Double acting, Single acting			
Finger opening/closing repeatability			$\pm 0.01 \mathrm{~mm}$			
Gripper maximum operating frequency			180 c.p.m			
Ambient and fluid temperature			5 to $60^{\circ} \mathrm{C}$			
Adjustable rotation time Note)			0.07 to $0.3 \mathrm{~s} / 90^{\circ}$ (at 0.5 MPa)			
Allowable kinetic energy			0.0046 J	0.014 J	0.034 J	0.074 J
Auto switch	Rotary unit		Solid state switch (2-wire, 3-wire)			
	Gripper unit		Solid state switch (2-wire, 3-wire)			

MHZ
MHF
MHL
MHR
MHK
MHS
MHC
MHT
MHY
MHW
MRHQ
Misc.
D.
20-

- The figure at the right indicates the position of the gripper when pressure is applied to port B .
- When pressure is applied to port A , the gripper rotates clockwise.

Series MRHQ
 Model Selection

Operating conditions

Enumerate the operating conditions according to the mounting position and workpiece configuration.

Vertical mounting Horizontal mounting

- Model used
- Operating pressure
- Mounting position
- Rotation time t(s)
- Overhang H (mm)
- Gripping point distance $\mathrm{L}(\mathrm{mm})$
- Distance between central axis and center of gravity h(mm)
- Load weight m1 (kg)
- Weight of 2 attachments $\mathrm{m} 2(\mathrm{~kg})$

Rotary gripper: MRHQ16D-90S Pressure: 0.4 MPa Mounting position: Horizontal Rotation time (\mathbf{t}): $0.2 \mathrm{~s} / 90^{\circ}$ Overhang (H): 10 mm Gripping point distance (L): 20 mm Distance between central axis and center of gravity (h): 10 mm
Load weight (m1): 0.07 kg
Weight of 2 attachments (m2): 0.05 kg

Rotation time

Confirm that it is within the adjustable rotation time range.
0.07 to $0.3 \mathrm{~s} / 90^{\circ}$
$0.2 \mathrm{~s} / 90^{\circ} \quad \mathrm{OK}$

Overhang
 and gripping point distance

Confirm that the overhang (H) and the gripping point distance (L) are within the operating pressure range limit.

Graph (1)
Gripping point range limit
Within the range limit OK

Load weight

Confirm that the load converted from the load weight is less than $1 / 20$ of the effective gripping force. (A greater margin must be allowed if large impacts will be applied when work pieces are transported.)

External force on finger
Make sure that the vertical load and each moment on finger are within allowable value.

Less than allowable value
(Refer to page 12-11-11 for the lateral load allowable value and each moment value
$20 \times 9.8 \times 0.07=13.72$
13.72 N < Effective gripping force OK

Rotational torque
(horizontal mounting only)

Convert the weight of the load and attachments (2 pcs.) into a load value and multiply by the overhang (H). Confirm that this value is less than $1 / 20$ of the effective torque.

Graph (3)

$20 \times 9.8 \times(\mathrm{m} 1+\mathrm{m} 2) \times \mathrm{H} / 1000$
< Effective torque (N•m)

Downward vertical load by load and attachment:
$f=(0.07+2 \times 0.05) \times 9.8=1.67(\mathrm{~N})$ < Vertical allowable value OK

Find the moment of inertia, "Ir" for the load + attachments (2 pcs.)

$$
\begin{gathered}
I_{R}=K \times\left(a^{2}+b^{2}+12 h^{2}\right) \times(m 1+m 2) /\left(12 \times 10^{6}\right) \\
(K=2: \text { Safety factor })
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{IR} & =2 \times\left(20^{2}+30^{2}+12 \times 10^{2}\right) \times(0.07+0.05) /\left(12 \times 10^{6}\right) \\
& =0.00005 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

Kinetic energy

Confirm that the kinetic energy of the load + attachments (2 pcs.) is no more than the allowable value.

Refer to "Moment of Inertia Calculation and Allowable Kinetic Energy" on page 12-11-12.
$1 / 2 \times \operatorname{IRx} \omega^{2}<$ Allowable energy (J)
$\omega=2 \theta / \mathrm{t}(\omega$: Angular speed at the end)
θ : Rotation angle (rad)
t: Rotation time (s)
$1 / 2 \times 0.00005 \times(2 \times(3.14 / 2) / 0.2)^{2}=0.0062$
0.0062 J < Allowable energy OK

External gripping

Internal gripping

L: Gripping point distance H : Overhang

- Operate so that the workpiece gripping point distance " L " and the amount of overhang " H " stay within the range shown for each operating pressure given in the graphs to the right.
- If operated with the workpiece gripping point outside of the range limit, an excessive eccentric load will be applied to the fingers and guide section, causing play in the fingers and adversely affecting the gripper's life.

Gripping Point Range Limit
Graph (1)

External Gripping

MRHQ10

MRHQ16

MRHQ20

MRHQ25

Internal Gripping

MRHQ16

MRHQ20

MRHQ25

MHZ
MHF
MHL

\section*{| MHR |
| :--- |
| MHK |
| MHS |
| MHC |
| MHT |
| MHY |
| MHW |
| MRHQ |
 Misc.}

D.

20-

Series MRHQ

Effective Gripping Force

Expressing the effective gripping force
The effective gripping force shown in the graphs to the right is expressed as F, which is the impellent force of one finger, when both fingers and attachments are in full contact with the workpiece as shown in the figure below.

External gripping

Internal gripping

L: Gripping point distance

Model Selection Guidelines by Workpiece Weight

- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 10 to 20 times the workpiece weight, or more.
- A greater margin of safety is required when high acceleration or impact occurs during workpiece transfer.

Effective Gripping Force
Graph (2)

External Gripping/Double Acting
MRHQ10D

MRHQ16D

MRHQ20D

MRHQ25D

Internal Gripping/Double Acting

MRHQ10D

MRHQ16D

MRHQ20D

MRHQ25D

External Gripping Force/Single Acting

MRHQ10S

MRHQ16S

MRHQ20S

MRHQ25S

Internal Gripping Force/Single Acting
MRHQ10C

MRHQ16C

MRHQ20C

MRHQ25C

MHZ
MHF
MHL
MHR
MHK
MHS
MHC
MHT
MHY
MHW
MRHQ
Misc.
D-
20-

Series MRHQ

Rotational Torque and Gripping Point

Rotational Torque

How to Mount Attachment on Fingers

When mounting attachments on fingers, support the fingers with a tool such as a spanner to prevent them from twisting. Refer to the table on the right for the tightening torques of finger mounting bolts.

Model	Bolt	Max. tightening torque $\mathrm{N} \cdot \mathrm{m}$
MRHQ10	$\mathrm{M} 2.5 \times 0.45$	0.31
MRHQ16	$\mathrm{M} 3 \times 0.5$	0.59
MRHQ20	$\mathrm{M} 4 \times 0.7$	1.4
MRHQ25	$\mathrm{M} 5 \times 0.8$	2.8

Model	Allowable vertical load $\mathbf{F v}(\mathbf{N})$	Pitch moment $\mathbf{M p}(\mathbf{N} \cdot \mathbf{m})$	Yaw moment $\mathbf{M y}(\mathbf{N} \cdot \mathbf{m})$	Roll moment $\mathbf{M r}(\mathbf{N} \cdot \mathbf{m})$
	58	0.26	0.26	0.53
MRHQ10 \square	98	0.68	0.68	1.36
MRHQ16 \square	147	1.32	1.32	2.65
MRHQ20 \square	255	1.94	1.94	3.88
MRHQ25 \square				

Note) Values of load and moment in the above table are static values.

Calculation for allowable external force (with moment load)	Calculation example
$\begin{gathered} \text { Allowable load } \mathrm{F}(\mathrm{~N})=\frac{\mathrm{M} \text { (Maximum allowable moment) }(\mathrm{N} \cdot \mathrm{~m})}{\mathrm{L} \times 10^{-3 *}} \\ * \text { Unit conversion factor } \end{gathered}$	When static load $f=10 \mathrm{~N}$, which produces pitch moment to the point $L=30 \mathrm{~mm}$ from MRHQ16D guide, is applied. Operable condition requires that F be bigger than f. Example: $\begin{aligned} \text { Allowable load } F & =\frac{0.68}{30 \times 10^{-3}} \\ & =22.7(\mathrm{~N})>10 \end{aligned}$ Since load $F>f$, it is operable.

Series MRHQ

Moment of Inertia and Allowable Kinetic Energy

Moment of Inertia Calculation and Allowable Kinetic Energy

Calculate the moment of inertia as shown below, and confirm that the operating conditions are within the allowable kinetic energy shown in the graph "Moment of inertia and rotation time" on the right.

When load dimensions > attachment dimentions

When load dimensions < attachment dimentions

Description

$\mathbf{0} \cdots \cdots \cdots$.	Center of rotation
$\mathbf{G} \cdots \cdots \cdots \cdots$	
Center of gravity of attachment and load	\square
	\square

Moment of inertia $\mathrm{I}: \mathbf{k g} \cdot \mathrm{m}^{\mathbf{2}}$

$$
I=\frac{\left(a^{2}+b^{2}+12 h^{2}\right)(m 1+m 2)}{12 \times 10^{6}}
$$

Practical moment of inertia IR: $\mathbf{k g} \cdot \mathbf{m}^{\mathbf{2}}$

$$
I R=K \times I
$$

* Use IR for this product.
m1: Mass of two attachments (kg)
m2: Mass of load (kg)
h: Distance between O and G (mm)
\mathbf{a}, \mathbf{b} : Dimensions of load or attachment (mm)
K = 2 (Coefficient)

Graph (Moment of inertia and rotation time)

How to Use the Graph

[Example 1]

- Moment of Inertia: $1 \times 10^{-5} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
- Rotation time: $0.2 \mathrm{~s} / 90^{\circ}$
- To select model MRHQ10

$$
\downarrow
$$

It can be used because the point of intersection P_{1} on the graph is within the limiting range.

[Example 2]

- Moment of Inertia: $5 \times 10^{-5} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
- Rotation time: $0.1 \mathrm{~s} / 90^{\circ}$
- To select model MRHQ16

It cannot be used because the point of intersection $\mathbf{P} 2$ on the graph is outside the range limit. (Review is necessary.)

To confirm by calculation, use formula (1) on the right and check that the kinetic energy of load E is within the allowable values below.
Allowable Kinetic Energy

Model	Allowable value J
MRHQ10 \square	0.0046
MRHQ16 \square	0.014
MRHQ20 \square	0.034
MRHQ25 \square	0.074

$$
\begin{align*}
& \text { Kinetic energy of load E: J } \\
& \begin{array}{l}
E=\mathbf{1 / 2} \mathbf{x} \operatorname{lR} \mathbf{x} \omega^{2} \ldots \ldots . . \\
\\
\omega=2 \theta / \mathbf{1}) \\
\text { (} \omega \text { : Angular speed at the end) } \\
\text { }: \text { : Rotating angle (rad) } \\
\text { t: Rotation time (s) }
\end{array} . \tag{1}
\end{align*}
$$

Dimensions

MRHQ10

Series MRHQ

Dimensions
MRHQ16

\qquad

Series MRHQ

Dimensions

MHZ
MHF
MHL
MHR
MHK
MHS
MHC
MHT
MHY
MHW
MRHQ

Misc.
D-
20-

Component Parts

No.	Description	Material	Note
(1)	Gripper unit	-	
(2)	Rotary unit	-	Two types for 90° and 180°
(3)	Body C	Aluminum alloy	Gray-White
(4)	Stopper lever	Carbon steel	Two types for 90° and 180°
(5)	Stopper guide	Stainless steel	
(6)	Retainer	Carbon steel	
(7)	Switch guide	Resin	
(8)	Switch holder A	Resin	
(9)	Switch case	Resin	
(10)	Switch holder B	Resin	
(11)	Bearing	High carbon bearing steel	
(12)	O-ring	NBR	
(13)	Adjustment bolt	Carbon steel	
(14)	Nut	Carbon steel	
(15)	Hexagon socket head cap screw	Carbon steel	
(16)	Parallel pin	Stainless steel	
(17)	Hexagon socket head cap screw	Stainless steel	
(18)	Hexagon socket head cap screw	Stainless steel	

Auto Switch Specifications

Applicable Series

Series	Application	Auto switch model		Electrical entry
MRHQ10	Gripper opening/ closing verification	Solid state	D-M9BV	Grommet/2-wire
MRHQ16			D-M9NV, M9PV	Grommet/3-wire
MRHQ20	Rotation verification	Solid state	D-M9B	Grommet/2-wire
MRHQ25			D-M9N, M9P	Grommet/3-wire

Auto Switch Hysteresis

Auto switches have hysteresis similar to micro switches. Use the table below as a guide when adjusting auto switch positions, etc.

Model	Hysteresis (mm)
MRHQ10	0.5
MRHQ16	0.5
MRHQ20	1.0
MRHQ25	1.0

Mounting of Auto Switch

Mounting Switches to Verify Rotation

1. First, remove the slotted set screw installed in a standard switch.

2. Insert the switch into the switch case, and install switch holder B into the first groove (MRHQ20/25) or the second groove (MRHQ10/16) and secure the switch.

3. Install the switch case, with a switch attached securely in the hole, in the direction indicated in Figure (1).

Figure (1)

Mounting Switches to Verify Opening/Closing of Gripper

1. Position switch holder A in the groove of the switch guide in the direction indicated in Figure (2).
2. Insert an auto switch into the switch guide and align the set screw with the hole of switch holder A.

Figure (2)
3. Secure the switch at an appropriate position with a flat head watchmakers screwdriver as indicated in Figure (3).

Tightening torque: 0.05 to $0.1 \mathrm{~N} \cdot \mathrm{~m}$

Figure (3)

Series MRHQ

Auto Switch Installation Example and Mounting Position

Various auto switch applications will be available with combinations of using different numbers of auto switches and varieties of detecting positions.

1) Detection when Gripping Exterior of Workpiece

Step 4) Slide the auto switch further in the direction of the arrow until the indicator light goes out.

Step 5) Move the auto switch in the opposite direction and fasten it at a position 0.3 to 0.5 mm beyond the position where the indicator light illuminates.

Step 3) Slide the auto switch in the direction of the arrow until the light illuminates position where the indicator light illuminates.

Series MRHQ
Auto Switch Installation Example and Mounting Position
Various auto switch applications will be available with combinations of using different numbers of auto switches and varieties of detecting positions.

2) Detection when Gripping Interior of Workpiece

Dete	ction example	1. Confirmation of fingers in reset position	2. Confirmation of workpiece held	3. Confirmation of workpiece released
Position to be detected		Position of fingers fully closed	Position when gripping workpiece	Position of fingers fully opened
Operation of auto switch		Switch turned ON when fingers return. (Light ON)	Switch turned ON when gripping a workpiece. (Light ON)	When a workpiece is held (Normal operation): Switch to turn OFF (Light not illuminating) When a workpiece is not held (Abnormal operation): Switch to turn ON (Light illuminating)
	One auto switch	\bullet		
			-	
				\bigcirc
	Two auto switches	\bigcirc		
			\bigcirc	
How to determine auto switch installation position		Step 1) Fully close the fingers.	Step 1) Position fingers for gripping a workpiece.	Step 1) Fully open the fingers.
At no pressure or low pressure, connect the switch to a power		Step 2) Refer to "Mounting Switches to Verify Opening/Closing of Gripper" on page 12-11-19 and position auto switch in switch mounting groove.		

Note 1) It is recommended that gripping of a workpiece be performed close to the center of the finger stroke.
Note 2) When holding a workpiece close at the end of open/close stroke of fingers, detecting performance of the combinations listed in the above table may be limited, depending on the hysteresis of an auto switch, etc.

