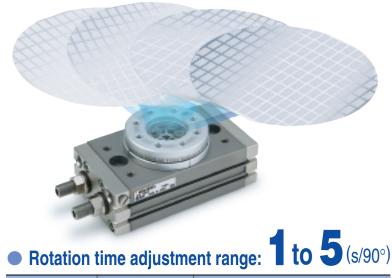
Low-Speed Rotary Actuator

Rotation time adjustment range (s/90°)


3

1 to 5 (0.7 to 5 for CRQ2X 10,15)

2

0.2 to 1 (0.2 to 0.7 for CRQ2 10,15)

Possible to transfer a workpiece at low-speed.

Size

10, 15, 20, 30, 40

10, 20, 30, 50

10, 20, 30, 50

CRQ2X 10, 15, 20, 30, 40

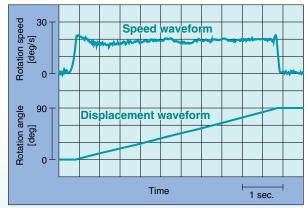
Model

MSQX

CRQ2

MSQ

Low-


speed

Stand-

ard

Realized a stable motion at 5s/90°.

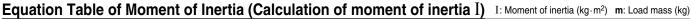
Smooth motion without stick-slip phenomemon

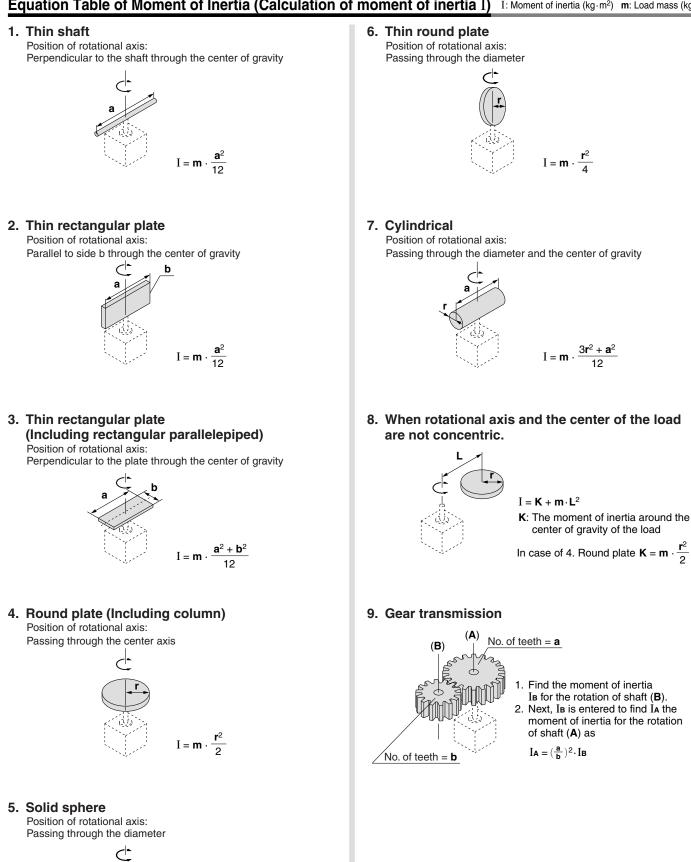
Measurement conditions / Fluid: Air

Mounting orientation: Horizonal without load Operating pressure: 0.5 MPa Pneumatic circuit: Meter-out circuit Ambient temperature: Room temperature

Series CRQ2X/MSQX

Series CRQ2X/MSQX Model Selection


* The selection procedure of the rotary for low-speed is the same as for an ordinary rotary. If the rotation time exceeds 2s per 90°, however, the necessary torque and the kinetic energy are calculated with rotation time of 2s per 90°.


Selection Procedure	Remarks	Selection Example
Operating conditions		
Operating conditions are as follows: • Provisionally selected model • Operating pressure: MPa • Mounting position • Load type Static load: N·m Resistance load: N·m Inertial load: N·m • Load dimension: m • Load mass: kg • Rotation time: s • Rotation angle: rad	 See P.3 for load type. The unit of the rotation angle is Radians. 180° = πrad 90° = π/2rad 	Load 2 r = 25, 0.2 kg
Calculation of moment of in	ertia	Provisionally selected model: MSQXB10A Operating pressure: 0.3 MPa Mounting position: Vertical, Type of load: Inertial Rotation time: 6s Rotation angle: π rad (180°)
Calculate the moment of inertia of the load. \Rightarrow P.2	 If the moment of inertia of the load is made up of multiple components, cal- culate the moment of inertia of each component and add them together. 	Load 1 moment of inertia: I_1 $I_1 = 0.4 \times \frac{0.15^2 + 0.05^2}{12} + 0.4 \times 0.05^2 = 0.001833$ Load 2 moment of inertia: I_2 $I_2 = 0.2 \times \frac{0.025^2}{2} + 0.2 \times 0.1^2 = 0.002063$ Total moment of inertia: I $I = I_1 + I_2 = 0.003896 [kg \cdot m^2]$
Calculation of necessary to	que	
Calculate necessary torque corre- sponding to the load type, and ensure it is within effective torque range. • Static load (Ts) Necessary torque T = Ts • Resistance load (Tf) Necessary torque T = Tf x (3 to 5) • Inertial load (Ta) Necessary torque T = Ta x 10 \Rightarrow P.3	 When calculating the inertial load, if the rotation time exceeds 2s per 90°, inertial load is calculated with rota- tion time of 2s per 90°. Even for resistance load, when the load is rotated, necessary torque cal- culated from inertial load shall be ad- ded. Necessary torque T = Tf x (3 to 5) + Ta x 10 	Inertial load: Ta Ta = I $\cdot \dot{\omega}$ $\dot{\omega} = \frac{2\theta}{t^2} [rad/s^2]$ Necessary torque: T T = Ta x 10 = 0.003896 x $\frac{2 x \pi}{4^2}$ x 10 = 0.015 [N·m] (t is calculated with 2s per 90°.) 0.109 N·m < Effective torque OK
Checking rotation time		
Confirm that it is within the adjustable range of rotation time. \Rightarrow P.4	• Converted to the time per 90° for com- parison. (For comparison, 6s/180° is converted to 3s/90°.)	1.0 ≤ t ≤ 5 t = 3s/90° OK
Calculation of kinetic energy		
Confirm that the load's kinetic energy is within the allowable value. Can be confirmed by the graph of the moment of inertia and the rotation time. \Rightarrow P.4	 If the rotation time exceeds 2s per 90°, kinetic energy is calculated with rotation time of 2s per 90°. If the allowable value is exceeded, an external cushioning mechanism such as an absorber needs to be installed. 	$E = \frac{1}{2} \cdot I \cdot \omega^2$ $\omega = \frac{2 \cdot \theta}{t}$ Kinetic energy $\frac{1}{2} \times 0.003896 \times \left(\frac{2 \times \pi}{4}\right)^2 = 0.0048 \text{ [J]}$ (t is calculated with 2s per 90°.) 0.0048 [J] < Allowable energy OK
Checking allowable load		
<u> </u>		
Check if the load applied to the prod- uct is within the allowable range. \Rightarrow P.5	 If the allowable value is exceeded, an external bearing needs to be installed. 	M = 0.4 x 9.8 x 0.05 + 0.2 x 9.8 x 0.1 = 0.392 [N⋅m] 0.392 [N⋅m] < Allowable moment load OK

Calculate air consumption and necessary air quantity as required. \Rightarrow P.6

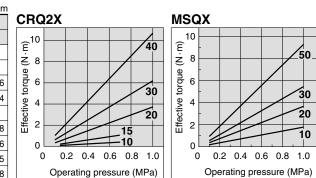
1

Model Selection

 $I = \mathbf{m} \cdot \frac{2\mathbf{r}^2}{5}$

Model Selection

Load Type


Calculation method of necessary torque depends on the load type. Refer the below table.

	Load type	
Static load: Ts	Resistance load: Tf	Inertial load: Ta
Only pressing force is necessary. (e.g. for clamping)	Weight or friction force is applied to rotating direction.	Rotate the load with inertia.
F	Gravity is applied.	Center of rotation and center of gravity of the load are concentric.
<pre>Ts = F ⋅ ℓ Ts: Static load (N ⋅ m) F : Clamping force (N) ℓ : Distance from the rotation center to the clamping position (m)</pre>	Gravity is applied in rotating direction. Tf = m ⋅ g ⋅ ℓ Friction force is applied in rotating direction. Tf = μ ⋅ m ⋅ g ⋅ ℓ Tf : Resistance load (N ⋅ m) m : Load mass (kg) g : Gravitational acceleration 9.8 (m/s²) ℓ : Distance from the rotation center to the point of application of the weight or friction force (m) μ : Friction coefficient	$\label{eq:tau} \begin{split} \textbf{Ta} &= I \cdot \boldsymbol{\omega} = I \cdot \frac{2\theta}{t^2} \\ \textbf{Ta} : \text{Inertial load } (N \cdot m) \\ I &: \text{Moment of inertia } (kg \cdot m^2) \\ \boldsymbol{\omega} : \text{Angular acceleration } (rad/s^2) \\ \theta &: \text{Rotation angle } (rad) \\ \textbf{t} &: \text{Rotation time } (s) \\ \textbf{For low speed rotary, if the rotation time exceeds } 2s \text{ per 90}^\circ, \text{ inertial load is calculated with rotation time of } 2s \text{ per 90}^\circ. \end{split}$
Necessary torque: T = Ts	Necessary torque: T = Tf x (3 to 5) ^{Note)}	Necessary torque: T = Ta x 10 ^{Note)}
load are not concentric. Ex. 2) Load moves by sliding on the floor	the rotation center and the center of gravity of the s the necessary torque. $\mathbf{T} = \mathbf{T}\mathbf{f} \mathbf{x} (3 \text{ to } 5) + \mathbf{T}\mathbf{a} \mathbf{x} 10$ ce is applied in rotating direction. rotation center and the center of gravity of the	Note) To adjust the speed, margin is necessary for Tf and Ta.

SMC

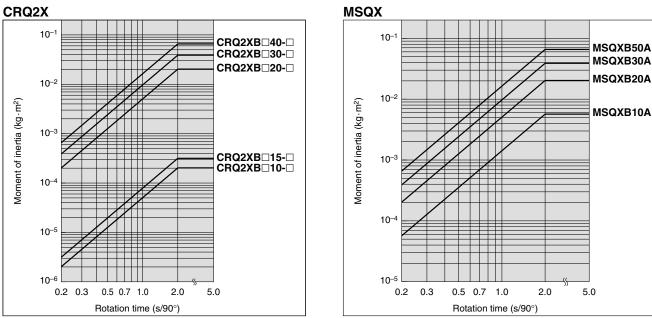
Effective Torque

Unit: N·m												
Model	0:	Operating pressure (MPa)										
woder	Size	0.1	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
	10		0.09	0.12	0.18	0.24	0.30	0.36	0.42			—
	15	_	0.22	0.30	0.45	0.60	0.75	0.90	1.04	-	-	—
CRQ2X	20	0.37	0.55	0.73	1.10	1.47	1.84	2.20	2.57	2.93	3.29	3.66
	30	0.62	0.94	1.25	1.87	2.49	3.11	3.74	4.37	4.99	5.60	6.24
	40	1.06	1.59	2.11	3.18	4.24	5.30	6.36	7.43	8.48	9.54	10.6
	10	0.18	_	0.36	0.53	0.71	0.89	1.07	1.25	1.42	1.60	1.78
MEON	20	0.37	_	0.73	1.10	1.47	1.84	2.20	2.57	2.93	3.29	3.66
MSQX	30	0.55	_	1.09	1.64	2.18	2.73	3.19	3.82	4.37	4.91	5.45
	50	0.93	_	1.85	2.78	3.71	4.64	5.57	6.50	7.43	8.35	9.28

Note 1) Values of operating torque in the above table are representative values, and not guaranteed. Make use of the values as a reference when ordering.

Note 2) Except for cases when an external stopper is used, the holding torque at the operation end is half of the table value.

Kinetic Energy/Rotating Time


In a rotational movement, the kinetic energy of a load may damage the internal parts, even if the required torque for a load is small. Consider the moment of inertia and rotation time before selecting a model. (For model selection, refer to the moment of inertia and rotation time graph as shown on the below table.)

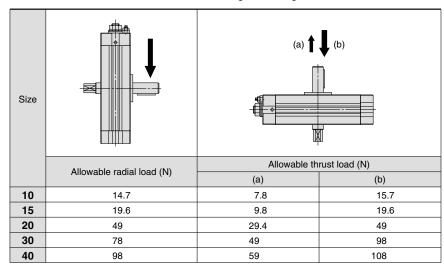
Allowable kinetic energy and rotation time adjustment range

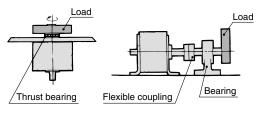
Set the rotation time, within stable operational guidelines, using the adjustment range specification table as detailed below. When operating at low-speeds which exceed the rotation time adjustment range, use caution as it may result in sticking or malfunction.

Model	Size	Allowable kinetic energy (J)	Stable operational rotation time adjustment range (s/90°)
	10	0.00025	0.745 5
	15	0.00039	0.7 to 5
CRQ2X	20	0.025	
	30	0.048	
	40	0.081	
	10	0.007	1 to 5
MSQX	20	0.025	
MOGA	30	0.048	
	50	0.081	

Model Selection Select a model based on the moment of inertia and rotation time as shown graph below.

SMC


* If the rotation time exceeds 2s per 90°, kinetic energy is calculated with rotation time of 2s per 90°.


Model Selection

Allowable Load

CRQ2X

A load up to the allowable radial/thrust load can be applied provided that a dynamic load is not generated. However, applications which apply a load directly to the shaft should be avoided whenever possible. In order to further improve the operating conditions, a method such as that shown in the drawing on the right side is recommended so that a direct load is not applied to the shaft.

MSQX

Do not allow the load and moment applied to the table to exceed the allowable values shown in the below table. (Operation beyond the allowable values can cause adverse effects on service life, such as play in the table and loss of accuracy.)

Size		(a) (
	Allowable radial load	Allowable th	rust load (N)	Allowable moment	
	(N)	(a)	(b)	(N · m)	
10	78	74	78	2.4	
20	147	137	137	4.0	
30	196	197	363	5.3	
50	314	296	451	9.7	

Rotary Actuator Technical Data Air Consumption

[ℓ (ANR)]

[mm²]

Air consumption is the volume of air which is expended by the rotary actuator's reciprocal operation inside the actuator and in the piping between the actuator and the switching valve, etc. This is necessary for selection of a compressor and for calculation of its running cost.

* The air consumption (QCR) required for one reciprocation of the rotary actuator alone is shown in the below table, and can be used to simplify the calculation.

Formulas

$$Q_{CR} = 2V \times \left(\frac{P+0.1}{0.1}\right) \times 10^{-3}$$
$$Q_{CP} = 2 \times a \times \ell \times \left(\frac{P}{0.1}\right) \times 10^{-6}$$
$$Q_{C} = Q_{CR} + Q_{CP}$$

QCR = Air consumption of rotary actuator

$\mathbf{Q}_{CP} = Air consumption of tubing or piping$	[ℓ (ANR)]
V = Internal volume of rotary actuator	[cm ³]
P=Operating pressure	[MPa]
ℓ =Length of piping	[mm]

a = Internal cross section of piping

When selecting a compressor, it is necessary to choose one which has sufficient reserve for the total air consumption of pneumatic actuators downstream. This is affected by factors such as leakage in piping, consumption by drain valves and pilot valves, etc., and reduction of air volume due to drops in temperature.

Formulas

Qc2 = Qc x n x Number of actuators x Reserve factor

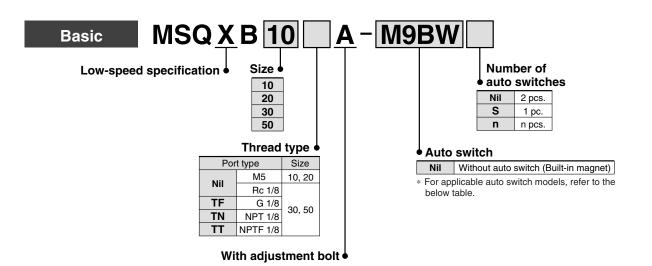
Qc₂ = Compressor discharge flow rate n = Actuator reciprocations per minute Reserve factor: 1.5 or greater

Internal Cross Section of Tubing and Steel Piping

Nominal size	O.D. (mm)	I.D. (mm)	Internal cross section a (mm ²)			
T⊡0425	4	2.5	4.9			
T□0604	6	4	12.6			
TU0805	8	5	19.6			
T□0806	8	6	28.3			
1/8B	—	6.5	33.2			
T□1075	10	7.5	44.2			
TU1208	12	8	50.3			
T□1209	12	9	63.6			
1/4B	—	9.2	66.5			
TS1612	16	12	113			
3/8B	—	12.7	127			
T□1613	16	13	133			
1/2B	—	16.1	204			
3/4B	_	21.6	366			
1B	—	27.6	598			

Air Consumption

Air consumption: QCR (ANR)


[ℓ/min (ANR)]

Model	Size	Rotation angle	Internal volume	Operating pressure (MPa)										
		(°)	V (cm ³)	0.1	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
	10	90	1.2	—	0.006	0.007	0.009	0.012	0.014	0.016	0.018	—	—	—
	10	180	2.2	—	0.011	0.013	0.018	0.022	0.026	0.031	0.035	—	_	—
	15	90	2.9	—	0.015	0.017	0.023	0.029	0.035	0.041	0.046	—	_	—
	15	180	5.5	—	0.028	0.033	0.044	0.055	0.066	0.077	0.088	—	—	—
CRQ2X	20	90	7.1	0.028	0.036	0.043	0.057	0.071	0.085	0.099	0.114	0.128	0.142	0.156
ChQZA	20	180	13.5	0.054	0.068	0.081	0.108	0.135	0.162	0.189	0.216	0.243	0.270	0.297
	30	90	12.1	0.048	0.060	0.073	0.097	0.121	0.145	0.169	0.193	0.218	0.242	0.266
		180	23.0	0.092	0.115	0.138	0.184	0.230	0.276	0.322	0.368	0.413	0.459	0.505
	40	90	20.6	0.082	0.103	0.123	0.164	0.206	0.247	0.288	0.329	0.370	0.411	0.452
	40	180	39.1	0.156	0.195	0.234	0.313	0.391	0.469	0.547	0.625	0.703	0.781	0.859
	10		6.6	0.026	0.033	0.040	0.053	0.066	0.079	0.092	0.106	0.119	0.132	0.145
MSQX	20	190	13.5	0.054	0.068	0.081	0.108	0.135	0.162	0.189	0.216	0.243	0.270	0.297
WISQA	30	190	20.1	0.080	0.101	0.121	0.161	0.201	0.241	0.281	0.322	0.362	0.402	0.442
	50		34.1	0.136	0.171	0.205	0.273	0.341	0.409	0.477	0.546	0.614	0.682	0.750

Qc = Air consumption required for one reciprocation of rotary actuator [/ (ANR)]

Low-Speed Rotary Table Rack & Pinion Type **Series MSQX** Size: 10, 20, 30, 50

How to Order

Applicable Auto Switches/Refer to pages 24 through to 27 for further information on auto switches.

0		_	or			Load volt	age	Auto swite	ch model	Lead	d wire le	ength (n	n)*											
Type	Special function	Electrical entry	Indicator light	Wiring (Output)		DC AC		Auto 3000	Auto Switch model		1	3	5	Applica	able load									
		,	Ē	(DC	AC	Perpendicular	In-line	(Nil)	(M)	(L)	(Z)											
				3-wire (NPN)		5 V,12 V		M9NV	M9N	•	—	•	0	IC										
				3-wire (PNP)		5 V, 12 V		M9PV	M9P	•	—	•	0	circuit										
tch					2-wire		12 V		M9BV	M9B	•	—	•	0	_									
switch	Diagnostic indication (2-color)		Grommet Yes	Grommet	Grommet Ye	Grommet Yes		3-wire (NPN)	ľ	5 V 10 V	5 V,12 V		M9NWV	M9NW	•	•	•	0	IC					
state							Grommet	Grommet	Grommet		Grommet	Yes	3-wire (PNP)	24 V	5 V, 12 V	, 12 V —	M9PWV	M9PW	•	•	•	0	circuit	Relay, PLC
d st															2-wire		12 V	1	M9BWV	M9BW	•	•	•	0
Solid	Water **										3-wire (NPN)		5 V 10 V	5 V,12 V	M9NAV	M9NA	0	0	•	0	IC			
	resistant			3-wire (PNP)	5 V, 12 V		M9PAV	M9PA	0	0	•	0	circuit											
	(2-color)						2-wire		12 V	1	M9BAV	M9BA	0	0	•	0	_							
Ļ			No	2-wire	24 V	12 V	100 V or less	A90V	A90	•	_	•	_		Relay, PLC									
Reed switch		Grommet	Grommet Yes	3-wire (NPN equiv.)	_	5 V	_	A96V	A96	•	_	•	_	IC circuit	_									
Re											2-wire	24 V	12 V	100 V	A93V	A93	•	—	•	—	_	Relay, PLC		

** Although it is possible to mount water resistant type auto switches, note that the rotary actuator itself is not of water resistant construction.

* Lead wire length symbols: 0.5 m ······ Nil (Example) M9NW 1 m ····· M M9NWM

5 m Z M9NWZ

• Auto switches marked with " \bigcirc " are manufactured upon a receipt of order.

• For details about auto switches with pre-wired connector, refer to "SMC Best Pneumatics 2004" Vol. 11 catalog.

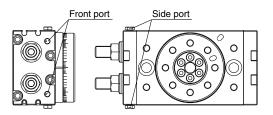
Auto switches are shipped together, (but not assembled).

Made to Order → Refer to "SMC Best Pneumatics 2004" Vol. 11 catalog.

• -50 Without indicator light

-61 Flexible lead wire

Pre-wired connector


Low-Speed Rotary Table Rack & Pinion Type Series MSQX

Specifications

Size	1	10	20	30	50			
Fluid		Air (Non-lube)						
Max. operating	pressure	1 MPa						
Min. operating	pressure		0.1	MPa				
Ambient and fluid	d temperature	0° to 60°C (No freezing)						
Cushion		Not attached						
Angle adjustme	ent range	0 to 190°						
Maximum rotat	ion angle	190°						
Port size	End port	M5 x 0.8 Rc 1/8, G 1/8, NPT 1/8, NPTF 1/						
FUITSIZE	Side port	M5 x 0.8						
Output (N·m)*		0.89	1.8	2.7	4.6			

* Output under the operating pressure at 0.5 MPa. Refer to page 4 for further information.

Allowable Kinetic Energy and Rotation Time Adjustment Range

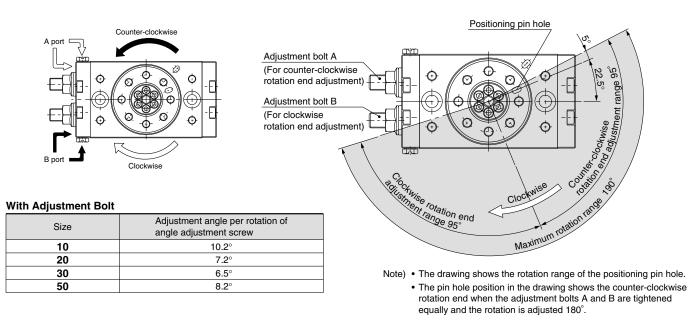
Size	Allowable kinetic energy (J)	Stable operational rotation time adjustment range (s/90°)
10	0.007	
20	0.025	1 to 5
30	0.048	1 10 5
50	0.081	

Note) If operated where the kinetic energy exceeds the allowable value, this may cause damage to the internal parts and result in product failure. Please pay special attention to the kinetic energy levels when designing, adjusting and during operation to avoid exceeding the allowable limit.

Weight

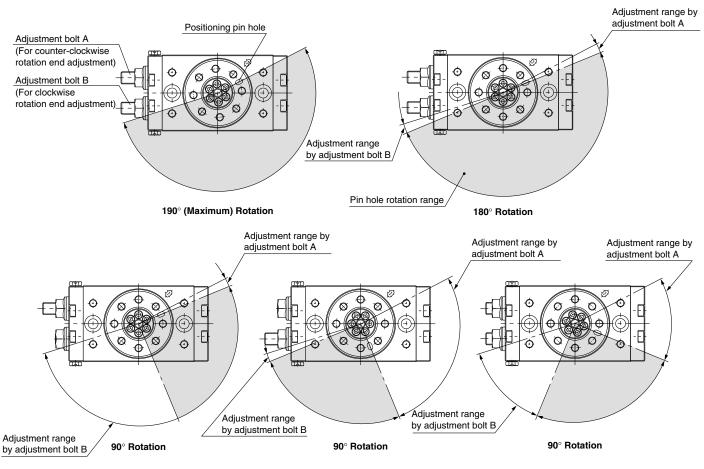
_					(g)
	Size	10	20	30	50
Γ	Basic	530	990	1290	2080
L		530	990	1290	2080

* Not including the weight of auto switch.


JIS Symbol

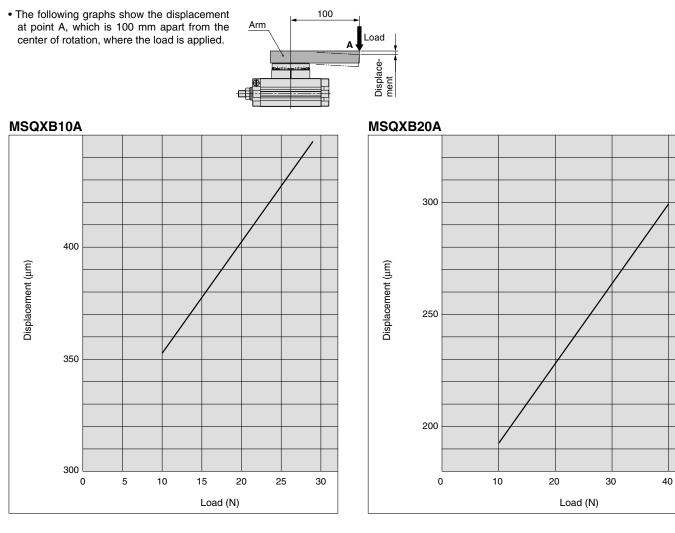
Series MSQX

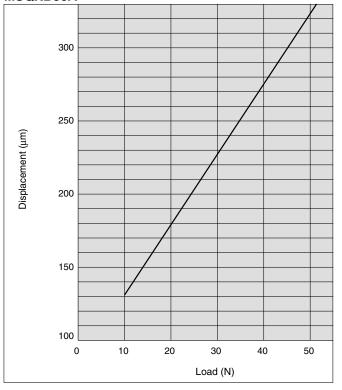
Rotation Direction and Rotation Angle


The rotary table turns in the clockwise direction when the A port is pressurized, and in the counter-clockwise direction when the B port is pressurized.
By adjusting the adjustment bolt, the rotation end can be set within the range shown in the drawing for the desired rotation angle.

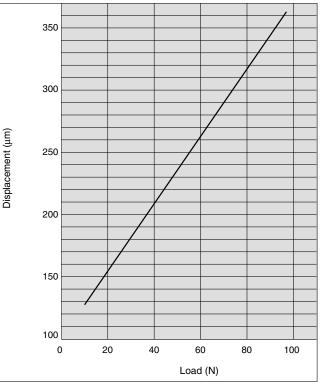
Rotation Angle Range Example

• Various rotation ranges are possible as shown in the drawings below using adjustment bolts A and B. (The drawings also show the rotation ranges of the positioning pin hole.)

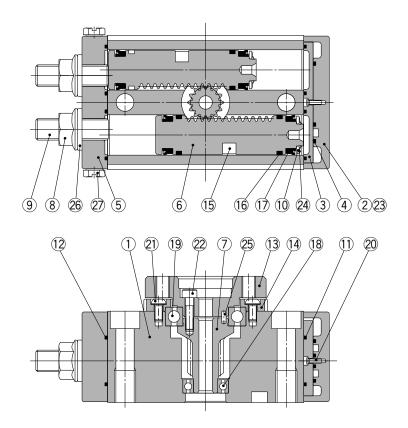

• The rotation angle can also be set on a type with inertial absorber.


SMC

Low-Speed Rotary Table Rack & Pinion Type Series MSQX


Table Displacement (Reference values)

MSQXB30A



MSQXB50A

Series MSQX

Construction

Component Parts

No.	Description	Material
1	Body	Aluminium alloy
2	Cover	Aluminium alloy
3	Plate	Resin
4	Seal	NBR
5	End cover	Aluminium alloy
6	Piston	Stainless steel
7	Pinion	Chrome molybdenum steel
8	Hexagon nut with flange	Steel wire
9	Adjustment bolt	Chrome molybdenum steel
10	Seal retainer	Aluminium alloy
11	Gasket	NBR
12	Gasket	NBR
13	Table	Aluminium alloy
14	Bearing retainer	Aluminium alloy


Component Parts

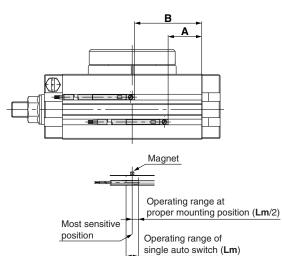
No.	Description		Material
15	Magnet		—
16	Wear ring	Resin	
17	Piston seal		NBR
18	Deep groove ball bearing	Bearing steel	
19	Deep groove ball bearing	Bearing steel	
20	Cross recessed screw No.	Steel wire	
01	Cross recessed screw	Size: 10	Stainless steel
21	Low head cap screw	Size: 20 to 50	Chrome molybdenum steel
22	Hexagon socket head cap	screw	Stainless steel
23	Hexagon socket head cap	screw	Stainless steel
24	CS-type retaining ring		Spring steel
25	Parallel pin	Size: 10 to 50	Carbon steel
26	Seal washer	NBR	
27	Plug	Brass	

Replacement Parts

Description		Par	t no.		Note
Description	10	20	30	50	Note
Seal kit	P523010-20	P523020-20	P523030-20	P523040-20	A set of above numbers (4), (1), (12), (16), (17) and (26)

Dimensions

																											(mm)
Size	AA	Α	AU	AV	AW	AX	AY	BA	BB	BC	BD	BE	CA	СВ	D	DD	DE	DF	DG	FA	FB	FC	FD	Н	J	JA	JB
10	55.4	50	8.6	20	15.5	12	4	9.5	34.5	27.8	60	27	4.5	28.5	45h9	46h9	20H9	5	15H9	8	4	3	4.5	13	6.8	11	6.5
20	70.8	65	10.6	27.5	16	14	5	12	46	30	76	34	6	30.5	60h9	61h9	28H9	9	17H9	10	6	2.5	6.5	17	8.6	14	8.5
30	75.4	70	10.6	29	18.5	14	5	12	50	32	84	37	6.5	33.5	65h9	67h9	32H9	9	22H9	10	4.5	3	6.5	17	8.6	14	8.5
50	85.4	80	14	38	22	19	6	15.5	63	37.5	100	50	10	37.5	75h9	77h9	35H9	10	26H9	12	5	3	7.5	20	10.5	18	10.5
																										(n	nm)


View

Size	JC	JD	JJ	JU	Р	Q	S	SD	SE	SF	SU	UU	WA	WB	WC	WD	WE	WF	XA	ΧВ	XC	YA	YB	YC
10	M 8 x 1.25	12	M5 x 0.8	M 8 x 1	M5 x 0.8	34	92	9	13	45	17.7	47	15	3H9	3.5	M5 x 0.8	8	32	27	3H9	3.5	19	3H9	3.5
20	M10 x 1.5	15	M6 x 1	M10 x 1	M5 x 0.8	37	117	10	12	60	25	54	20.5	4H9	4.5	M6 x 1	10	43	36	4H9	4.5	24	4H9	4.5
30	M10 x 1.5	15	M6 x 1	M10 x 1	Rc 1/8**	40	127	11.5	14	65	25	57	23	4H9	4.5	M6 x 1	10	48	39	4H9	4.5	28	4H9	4.5
50	M12 x 1.75	18	M8 x 1.25	M14 x 1.5	Rc 1/8**	46	152	14.5	15	75	31.4	66	26.5	5H9	5.5	M8 x 1.25	12	55	45	5H9	5.5	33	5H9	5.5

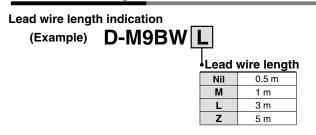
** In addition to Rc 1/8, G 1/8, NPT 1/8, NPTF 1/8 are also available.

Series MSQX

Auto Switch Proper Mounting Position (at Rotation End Detection)

	Rotation		ļ	Reed switch			So	Solid state switch					
Size	angle	A	в	Operating angle (θ m)	Hysteresis angle	Α	В	Operating angle (θ m)	Hysteresis angle				
10	190°	17	36	90°	10°	21	40	60°	10°				
20	190°	23	50	80°	10°	27	54	50°	10°				
30	190°	27	56	65°	10°	31	60	50°	10°				
50	190°	33	68	50°	10°	37	72	40°	10°				

Operating angle θ m: Value of the operating range of single auto switch (Lm) as represented by rotation angle for shaft Hysteresis angle: Value of the auto switch hysteresis as represented by angle


Note) For actual setting, adjustment shall be made after checking the auto switch operating condition.

Series CRQ2X/MSQX Auto Switch Specifications

Auto Switch Common Specifications

Туре	Reed switch	Solid state switch					
Leakage current	None	3-wire: 100 µA or less 2-wire: 0.8 mA or less					
Operating time	1.2 ms	1 ms or less					
Impact resistance	300 m/s ² 1000 m/s ²						
Insulation resistance	50 M Ω or more at 500 VDC Meg	ga (between lead wire and case)					
Withstand voltage	1500 VAC for 1 minute (between lead wire and case)	1000 VAC for 1 minute (between lead wire and case)					
Ambient temperature	-10 to	9 60°C					
Enclosure	IEC60529 standard IP67, JIS C	C 0920 waterproof construction					
Standard	Conforming to CE Standards						

Lead Wire Length

Note 1) Applicable auto switch with 5 m lead wire "Z"

Solid state switch: Manufactured upon receipt of order as standard. Note 2) To designate solid state switches with flexible specifications, add "-61" after the lead wire length. Flexible cable is used for D-M9□(V), D-M9□W(V), D-M9□A(V) as standard. There is no need to place the suffix -61 to the end of part number.

Note 3) 1 m (M): D-M9□W, D-M9□A(V).

Note 4) Lead wire length tolerance

Lead wire length	Tolerance
0.5 m	±15 mm
1 m	±30 mm
3 m	±90 mm
5 m	±150 mm

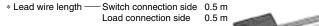
Contact Protection Box: CD-P11, CD-P12

<Applicable switch model>

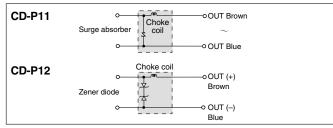
D-A9□(V) type

The above auto switch type does not have a built-in contact protection circuit. ① Where the operation load is an inductive load.

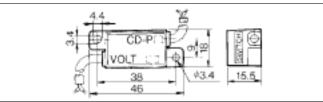
- 2 Where the wiring length to load is greater than 5 m.
- ③ Where the load voltage is 100 VAC. Therefore, use a contact protection box with the switch for any of the above cases:


The contact life may be shortened (due to permanent energizing conditions). Since the solid state auto switch is a semiconductor switch which has no contacts, no contact protection box is needed.

4 Where the load voltage is 110 VAC.

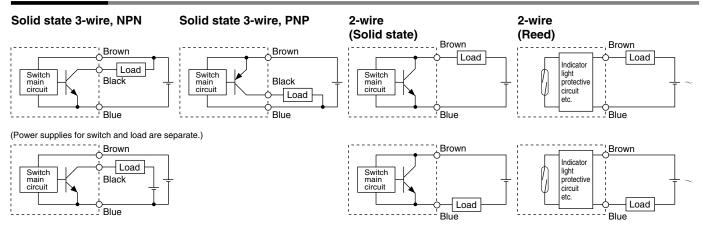

When the load voltage is increased by more than 10% to the rating of applicable auto switches above, use a contact protection box (CD-P11) to reduce the upper limit of the load current by 10% so that it can be set within the range of the load current range.

Specifications


Part no.	CD-	P11	CD-P12
Load voltage	100 VAC	200 VAC	24 VDC
Max. load current	25 mA	12.5 mA	50 mA

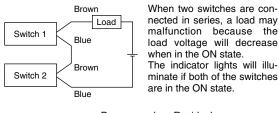
Internal Circuit

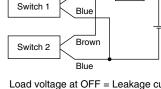
Dimensions


Connection

To connect a switch unit to a contact protection box, connect the lead wire from the side of the contact protection box marked SWITCH to the lead wire coming out of the switch unit. Keep the switch as close as possible to the contact protection box, with a lead wire length of no more than 1 meter.

Auto Switch Connections and Examples


Basic Wiring


Example of Connection to PLC (Programmable Logic Controller)

 Sink input specification Source input specification Connect according to the applicable PLC input specifications, since the 3-wire, NPN 3-wire, PNP connection method will vary depending Black Black Input Input -**Ā**W -WVon the PLC input specifications. Brown Brown (太 Switch Switch Blue Blue СОМ COM PLC internal circuit PLC internal circuit 2-wire 2-wire Brown Blue Input .-----Input 📑 (太) Switch Switch Brown Blue СОМ СОМ PLC internal circuit PLC internal circuit

Example of AND (Serial) and OR (Parallel) Connection 3-wire AND connection for NPN output AND connection for NPN output **OR connection for NPN output** (performed with switches only) (using relays) Brown Brown Brown Black Relay Load Black Load Black Switch 1 Switch 1 Switch 1 Load -Relay contact Blue Blue Brown Brown Brown Black Relay Black Black Switch 2 Switch 2 Switch 2 Blue Blue The indicator lights will illuminate when both switches are turned ON. 2-wire with 2-switch AND connection 2-wire with 2-switch OR connection (Solid state)

Load voltage at $ON = \frac{Power supply}{voltage} - \frac{Residual}{voltage} \times 2 \text{ pcs.}$ voltage voltage = 24 V - 4 V x 2 pcs. = 16 V Example: Power supply is 24 VDC. Internal voltage drop in switch is 4 V.

SMC

Brown

When two switches are connected in parallel, a malfunction may occur because the load voltage will increase when in the OFF state.

Load voltage at OFF = Leakage current x 2 pcs. x Load impedance = 1 mA x 2 pcs. x 3 kΩ = 6 V Example: Load impedance is 3 kΩ. Leakage current from switch is 1 mA.

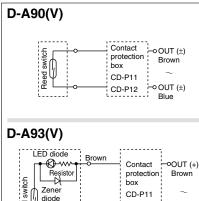
Load

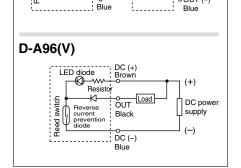
(Reed)

Because there is no current leakage, the load voltage will not increase when turned OFF. However, depending on the number of switches in the ON state, the indicator lights may sometimes dim or not light because of the dispersion and reduction of the current flowing to the switches.

Reed Switch: Direct Mounting Style D-A90(V)/D-A93(V)/D-A96(V) (\in

Grommet


Caution


Reed

Precautions

Fix the switch with the existing screw installed on the switch body. The switch may be damaged if a screw other than the one supplied is used.

Auto Switch Internal Circuit

CD-P12

-0UT (-)

Blue

Note) ① In a case where the operation load is an inductive load.

- (2) In a case where the wiring load is greater than 5 m.
- ③ In a case where the load voltage is 100 VAC.

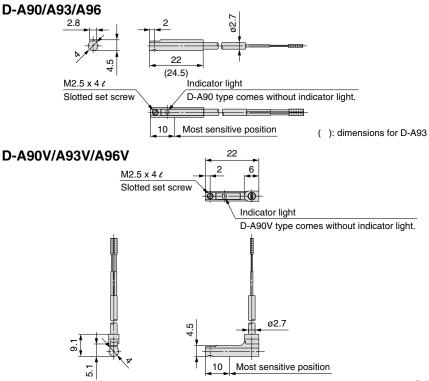
Use the auto switch with a contact protection box in any of the above mentioned cases. (For details about the contact protection box, refer to page 22.)

Auto Switch Specifications

				PLC: Progra	ammable Lo	gic Controller				
D-A90/D-A90V	(Without in	ndicator lig	ght)							
Auto switch part no.	D-A90	D-A90V	D-A90	D-A90V	D-A90	D-A90V				
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular				
Applicable load		IC circuit, Relay, PLC								
Load voltage	24 VAC/E	24 VAC/DC or less 48 VAC/DC or less 100 VAC/DC or less								
Maximum load current	50	mA	40	mA	20	mA				
Contact protection circuit		None								
Internal resistance		1 Ω or less (including lead wire length of 3 m)								
Standard		С	onforming to	CE Standard	ls					
D-A93/D-A93V/I	D-A93/D-A93V/D-A96/D-A96V (With indicator light)									
Auto switch part no.	D-A93	D-A93V	D-A93	D-A93V	D-A96	D-A96V				
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular				
Applicable load		Relay	, PLC		IC circuit					
Load voltage	24 \	VDC	100	VAC	4 to 8	3 VDC				
Load current range and max. load current	5 to 4	l0 mA	5 to 2	20 mA	20	mA				
Contact protection circuit			No	one						
Internal voltage	D-A93 — 2.4 V or less (to 20 mA)/3 V or less (to 40 mA)									
drop	D-A93V — 2.	0.0 V	01 1855							
Indicator light		Red L	ED illuminate	es when turne	d ON.					
Standard	Conforming to CE Standards									

Lead wires

D-A90(V)/D-A93(V) — Oilproof heavy-duty vinyl cable: ø2.7, 0.18 mm² x 2 cores (Brown, Blue), 0.5 m D-A96(V) — Oilproof heavy-duty vinyl cable: ø2.7, 0.15 mm² x 3 cores (Brown, Black, Blue), 0.5 m Note 1) Refer to page 22 for reed switch common specifications.


Note 2) Refer to page 22 for lead wire lengths.

Note 3) If load current is less than 5 mA, the visibility of the indicator light is decreased. If less than 2.5 mA, the light may become invisible. From the point of view of contact output, however, it is not a problem as long as the load current is more than 1 mA.

Weight

Auto switch part no. D-A90(V) D-A93(V) D-A96(V) Lead wire length 0.5 6 6 8 (m) З 30 30 41

Dimensions

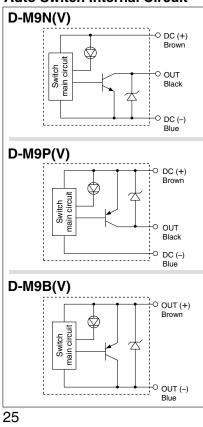
Unit: g

Unit: mm

Solid State Switch: Direct Mounting Style D-M9N(V)/D-M9P(V)/D-M9B(V) (\in

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- UL certified (style 2844) lead cable is used.
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard spec.
- Brightness of indicator light is 2 times greater than the conventional model (SMC comparison).



Precautions

Fix the switch with the existing screw installed on the switch body. The switch may be damaged if a screw other than the one supplied is used.

Auto Switch Internal Circuit

Auto Switch Specifications

		PLC: Programmable Logic Controlle							
D-M9□/D-M9□V	(With inc	licator ligh	it)						
Auto switch part no.	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV			
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular			
Wiring type		3-w	vire		2-v	vire			
Output type	N	PN	NP	-	-				
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC				
Power supply voltage	5	5, 12, 24 VDC	; (4.5 to 28 V	')	_				
Current consumption		10 mA	or less		_				
Load voltage	28 VD0	C or less	-	_	24 VDC (10 to 28 VDC)				
Load current		40 mA	or less		2.5 to	40 mA			
Internal voltage drop		0.8 V (4 V o	r less				
Leakage current		100 µA or les		0.8 mA	or less				
Indicator light	Red LED illuminates when turned ON.								
Standard		Conforming to CE Standards							

• Lead wires — Oilproof heavy-duty vinyl cable: ø2.7 x 3.2 ellipse

D-M9B(V) 0.15 mm² x 2 cores

D-M9N(V), D-M9P(V) 0.15 mm² x 3 cores

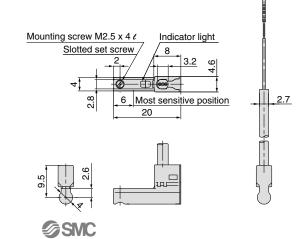
Note 1) Refer to page 22 for solid state switch common specifications.

Note 2) Refer to page 22 for lead wire lengths.

Weight

Unit: g

Unit: mm


Auto switch part n	0.	D-M9N(V)	D-M9P(V)	D-M9B(V)
	0.5	8	8	7
Lead wire length (m)	3	41	41	38
(11)	5	68	68	63

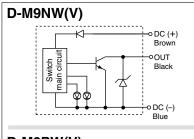
Dimensions

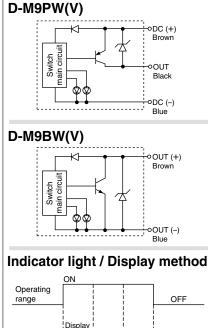
D-M9□

Mounting screw M2.5 x 4 *t* Slotted set screw Indicator light 22

D-M9□V

22


2-Color Indication Solid State Switch: Direct Mounting Style D-M9NW(V)/D-M9PW(V)/D-M9BW(V) (€


Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- UL certified (style 2844) lead cable is used.
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard spec.
- The optimum operating position can be determined by the color of the light. (Red → Green ← Red)
- Brightness of indicator light is 2 times greater than the conventional model (SMC comparison).

Auto Switch Internal Circuit

Green

Red

Optimum operating position

Red

Auto Switch Specifications

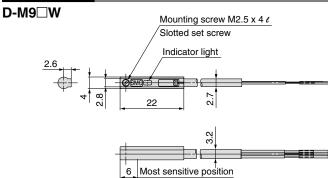
PLC: Programmable Logic Controller

D-M9□W/D-M9□WV (With indicator light)							
Auto switch part no.	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV	
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular	
Wiring type	3-wire			2-wire			
Output type	NPN PNP		_				
Applicable load	IC circuit, Relay, PLC			24 VDC relay, PLC			
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)			_			
Current consumption	10 mA or less			—			
Load voltage	28 VDC or less —		24 VDC (10 to 28 VDC)				
Load current	40 mA or less			2.5 to 40 mA			
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)			4 V or less			
Leakage current	100 μA or less at 24 VDC			0.8 mA or less			
Indicator light	Operating position Red LED illuminates. Optimum operating position Green LED illuminates.						
Standard	Conforming to CE Standards						

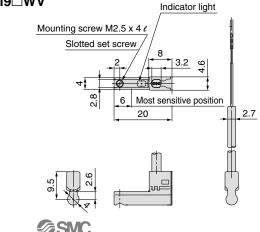
Lead wires — Oilproof heavy-duty vinyl cable: ø2.7 x 3.2 ellipse
D-M9BW(V) 0.15 mm² x 2 cores

D-M9NW(V), D-M9PW(V) 0.15 mm² x 3 cores

Note 1) Refer to page 22 for solid state switch common specifications. Note 2) Refer to page 22 for lead wire lengths.


Weight

Unit: g

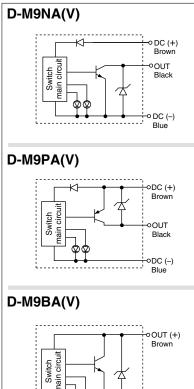

Unit: mm

Auto switch part no.		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)	
Lead wire length (m)	0.5	8	8	7	
	1	14	14	13	
	3	41	41	38	
	5	68	68	63	

Dimensions

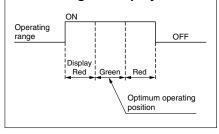
D-M9⊡WV

22


Water Resistant 2-Color Indication Solid State Switch: Direct Mounting Style D-M9NA(V)/D-M9PA(V)/D-M9BA(V) ((

Grommet

- Water (coolant) resistant type
- 2-wire load current is reduced (2.5 to 40 mA).
- UL certified (style 2844) lead cable is used.
- The optimum operating position can be determined by the color of the light. (Red Green Red)



Auto Switch Internal Circuit

Indicator light / Display method

OUT (-) Blue

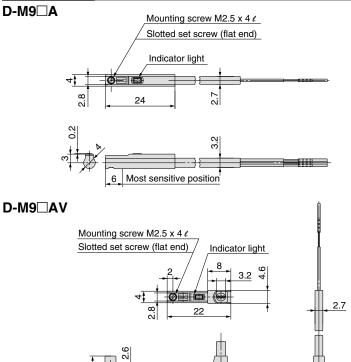
Auto Switch Specifications

PLC: Programmable Logic Controller

D-M9 A/D-M9 AV (With indicator light)							
Auto switch part no.	D-M9NA	D-M9NAV	D-M9PA	D-M9PAV	D-M9BA	D-M9BAV	
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular	
Wiring type	3-wire			2-wire			
Output type	NPN PNP		_				
Applicable load	IC circuit, Relay, PLC			24 VDC relay, PLC			
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)			_			
Current consumption	10 mA or less			—			
Load voltage	28 VD0	28 VDC or less —		24 VDC (10 to 28 VDC)			
Load current	40 mA or less			2.5 to 40 mA			
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)			4 V or less			
Leakage current	100 μA or less at 24 VDC			0.8 mA or less			
Indicator light	Operating position Red LED illuminates. Optimum operating position Green LED illuminates.						
Standard	Conforming to CE Standards						

Lead wires — Oilproof heavy-duty vinyl cable: ø2.7 x 3.2 ellipse
 D-M9BA(V) 0.15 mm² x 2 cores

D-M9BA(V) 0.15 mm² x 2 cores D-M9NA(V), D-M9PA(V) 0.15 mm² x 3 cores


Note 1) Refer to page 22 for solid state switch common specifications.

Note 2) Refer to page 22 for lead wire lengths.

Weight

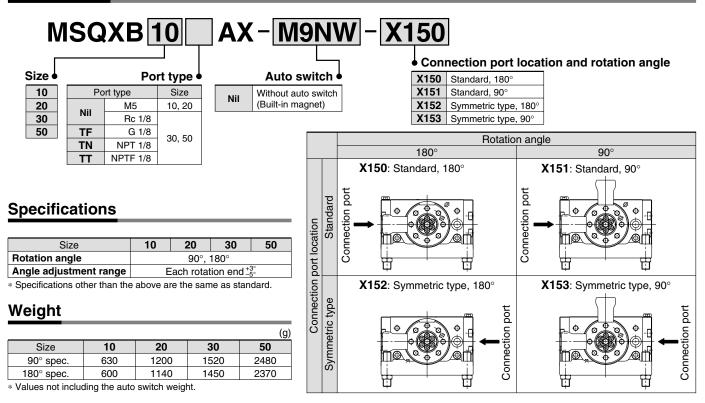
D-M9NA(V) D-M9PA(V) D-M9BA(V) Auto switch part no. 0.5 8 8 14 1 14 13 Lead wire length (m) З 41 41 38 5 68 68 63

Dimensions

6 Most sensitive position

Unit: mm

Unit: g



With External Stopper

Symbol X150/X151/X152/X153

Prevent holding torque from being halved at the rotation end.

How to Order

Dimensions

Size

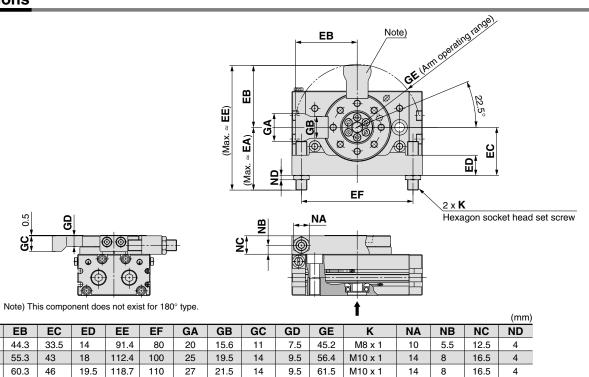
10

20

30

50

EA


47.1

57.1

58.4

74.4

71.4

* Dimensions other than the above are the same as standard.

22

145.8

56

11.5

72.9

M14 x 1.5

19

8.5

19.5

6

18

32

130

28