# 3-Position Rotary Table Series MSZ 

Size : 10, 20, 30, 50

## How to Order



Applicable Auto Switch/Refer to pages 7 to 11 for detailed auto switch specification.

| $\stackrel{\otimes}{\underset{\sim}{\wedge}}$ | Special function | Electrical entry |  | Wiring (Output) | Load voltage |  |  | Auto switch model |  | Lead wire length (m)* |  |  | Applicable load |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | DC |  | AC |  |  | $\begin{gathered} 0.5 \\ \text { (Nil) } \\ \hline \end{gathered}$ | $\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$ | $\begin{gathered} 5 \\ (Z) \end{gathered}$ |  |  |
|  |  |  |  |  |  |  | Perpendicular | In-line |  |  |  |  |  |
|  | - | Grommet | No | 2-wire | 24 V | $5 \mathrm{~V}, 12 \mathrm{~V}$ |  | 100 V or less | A90V | A90 | $\bigcirc$ | $\bigcirc$ | - | IC circuit | Relay, PLC |
|  |  |  | Yes | 3-wire (NPN equiv.) | - | 5 V | - | A96V | A96 | $\bigcirc$ | - | - | - |  |
|  |  |  |  | 2-wire | 24 V | 12 V | 100 V | A93V | A93 | - | - | - | - | Relay, PLC |
|  |  | Grommet | Yes | 3-wire (NPN) | 24 V | $5 \mathrm{~V}, 12 \mathrm{~V}$ | - | M9NV | M9N | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | IC circuit | Relay, PLC |
|  | - |  |  | 3-wire (NPN) |  |  |  | M9PV | M9P | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 2-wire |  | 12 V |  | M9BV | M9B | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - |  |
|  | Diagnostic indication (2-color display) |  |  | 3-wire (NPN) |  | $5 \mathrm{~V}, 12 \mathrm{~V}$ |  | F9NWV | F9NW | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | IC circuit |  |
|  |  |  |  | 3-wire (NPN) |  |  |  | F9PWV | F9PW | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 2-wire |  | 12 V |  | F9BWV | F9BW | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - |  |
|  | Improved water (2-color display) |  |  |  |  |  |  | - | F9BA** | - | $\bigcirc$ | $\bigcirc$ |  |  |

** Although it is possible to attach a water resistant auto switch, this is not a water- resistant-type rotary table.


* Auto switches marked with a "○" symbol are produced upon receipt of orders.

Specifications


| Size | $\mathbf{1 0}$ | $\mathbf{2 0}$ | $\mathbf{3 0}$ |
| :--- | :---: | :---: | :---: |
| Fluid | Air (non-lube) |  |  |
| Maximum operating pressure | 1 MPa |  |  |
| Minimum operating pressure | 0.2 MPa |  |  |
| Ambient and fluid temperature |  |  |  |
| Cushion | 0 to $60^{\circ} \mathrm{C}$ (with no freezing) |  |  |
| Rotation angle adjustment range | None |  |  |
| Center position adjustment range | 0 to $190^{\circ}$ |  |  |
| Port size | $\pm 10^{\circ}$ |  |  |

## Allowable Kinetic Energy and Rotation Time Adjustment Range

| Size | Allowable kinetic energy (mJ) | Rotation time adjustment range for stable operation $\left(\mathrm{s} / 90^{\circ}\right)$ |
| :---: | :---: | :---: |
| $\mathbf{1 0}$ | 7 |  |
| $\mathbf{2 0}$ | 25 |  |
| $\mathbf{3 0}$ | 48 |  |
| $\mathbf{5 0}$ | 81 |  |

If a kinetic energy exceeding the allowable value is applied to the product, it may come damaged and unusable. Care should be taken in designing, adjusting and operating the system so that the kinetic energy will not exceed the allowable values.

## Weight

|  |  |  |  |  |  | Unit: g |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size | $\mathbf{1 0}$ | $\mathbf{2 0}$ | $\mathbf{3 0}$ | $\mathbf{5 0}$ |  |  |
| Basic type | 730 | 1350 | 1730 | 2660 |  |  |
| High precision type | 760 | 1450 | 1850 | 2820 |  |  |

Note) Excluding the weight of auto switches.

## Piping and speed conrol

1) A single 3-position pressure center solenoid valve or two 3-port solenoid valves are used. (Refer to Figure 1 or Figure 2.)
2) A meter-out-type speed controller is used for ports $\mathbf{A}$ and $\mathbf{B}$ and a meter-in speed controller is used for ports $\mathbf{C}$ and $\mathbf{D}$.
(Figures 1 and 2 show the state at which pressure is applied to ports $\mathbf{B}$ and $\mathbf{D}$.)
Figure 1 3-position pressure center solenoid valve: 1 pc.
Figure 2 3-position solenoid valve: 2 pcs.


* The table return position under the power-off state changes depending on the solenoid valve type. Please refer to back matter 6 for details.

3) Figure 3 shows the rotation range and Table 1 shows the active speed controller.

## Figure 3 Each operational contents



Table 1 Pressure port and active speed controller

| Operating | Pressure port |  | Speed countroller |
| :--- | :---: | :---: | :---: |
|  | A, C | B, D |  |
| Clockwise-1 | $\bullet$ | - | C port |
| Clockwise-2 | $\bullet$ | - | B port |
| Counterclockwise-1 | $\bullet$ | $\bullet$ | D port |
| Counterclockwise-2 | - | $\bullet$ | A port |

## Angle Adjustment

1) Stop positions are adjusted with the adjusting bolts shown in Figure 4.
(1) Adjusting bolts "a" and "b" are used for adjusting the rotation ends. Adjusting bolts "c" and "d" are used for adjusting the center position.
(2) Figure 5 shows angle ranges adjusted with each adjusting bolt.
2) Angle adjustment

Supply air when adjusting the angle
(a low pressure of approx. 0.2 MPa is recommended).
(1) First adjust both rotation end positions.

- Apply pressure to ports A and C to adjust adjusting bolt " b ".
- Apply pressure to ports B and D to adjust adjusting bolt "a".
- Lock the bolts with fixing nuts after adjustment.
(2) Next, apply pressure to ports $A$ to $D$ to adjust the center position.
- Loosen the fixing nuts for adjusting bolts "c" and " d ".
- Tighten adjusting bolts "c" and "d" almost completely (allowing manual table rotation).
- Follow the appropriate procedure (R or L) shown in Table 2.


## Figure 4 Adjusting bolt position



## Figure 5 Angle adjustment Range



Table 2 Center position adjustment

|  | R: Clockwise adjustment | L: Counterclockwise adjustment |
| :---: | :--- | :--- |
| 1 | Manually rotate the table counterclockwise until resistance is felt. | Manually rotate the table clockwise until resistance is felt. |
| 2 | Rotate the table clockwise when adjusting bolt " $d$ " is loosened. Set it to <br> the desired position. | Rotate the table counterclockwise when adjusting bolt "c" is loosened. <br> Set it to the desired position. |
| 3 | Loosen adjusting bolt "c" until resistance is felt. <br> (Make sure that there is no rotation backlash in the table.) | Loosen adjusting bolt "d" until resistance is felt. <br> (Make sure that there is no rotation backlash in the table.) |
| 4 | Tighten both adjusting bolts "c" and "d" to approx. 45". Note 1) | Tighten both adjusting bolts "c" and "d" to approx. 45". Note 1) |
| 5 | Lock adjusting bolts "c" and "d" with fixing nuts. Note 2) | Lock adjusting bolts "c" and "d" with fixing nuts. Note 2) |

Note 1) Since the position of the adjusting bolt shifts with changing the screw clearance, pre-tighten the fixing nuts.
Note 2) If the table has a rotation backlash after tightening the nut, readjust it.

Adjusting angle per rotation of angle adjusting screw

| size | Adjusting bolt a, b <br> (End position adjustment) | Adjusting bolt c, d <br> (Center position adjustment) |
| :---: | :---: | :---: |
| $\mathbf{1 0}$ | $10.2^{\circ}$ | $5.1^{\circ}$ |
| $\mathbf{2 0}$ | $9.0^{\circ}$ | $3.6^{\circ}$ |
| $\mathbf{3 0}$ | $8.2^{\circ}$ | $3.3^{\circ}$ |
| $\mathbf{5 0}$ | $8.2^{\circ}$ | $4.1^{\circ}$ |

## Series MSZ

## Kinetic Energy/Rotation Time

(3) Model selection Select models by applying the inertial moment and rotation time which have been found to the charts below.


## Rotation Accuracy: Displacement Values at $180^{\circ}$ (Reference values)



Dimensions

## Basic type/MSZB $\square A$



High precision type/MSZA $\square \mathbf{A}$

|  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | ---: | ---: | :--- | :--- | :--- |
| Size | DH | DI | DJ | DK | DL | FE | HA | UV |
| $\mathbf{1 0}$ | 45 h 8 | 46 h 8 | 20 H 8 | 5 | 15 H 8 | 10 | 18.5 | 52.5 |
| $\mathbf{2 0}$ | 60 h 8 | 61 h 8 | 28 H 8 | 9 | 17 H 8 | 15.5 | 26 | 63 |
| $\mathbf{3 0}$ | 65 h 8 | 67 h 8 | 32 H 8 | 9 | 22 H 8 | 16.5 | 27 | 67 |
| $\mathbf{5 0}$ | 75 h 8 | 77 h 8 | 35 H 8 | 10 | 26 H 8 | 17.5 | 30 | 76 |

The position table shows the counterlockwise end when adjusted the rotation angle to $180^{\circ}$.


| Size | AA | A | AV | AW | AX | AY | AZ | BA | BB | BC | CA | CB | CC | D | DD | DE | DF | DG | FA | FB | FC | FD | H | J | JA | JB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 24.7 | 50 | 14 | 17 | 8 | 7 | 1 | 9.5 | 60 | 27 | 7 | 7 | 38 | 45h9 | 46h9 | 20H9 | 5 | 15H9 | 8 | 4 | 3 | 4.5 | 13 | 6.8 | 11 | 6.5 |
| 20 | 32.4 | 65 | 17 | 18.5 | 10 | 8 | 1.2 | 12 | 76 | 34 | 8.1 | 10 | 50.4 | 60h9 | 61h9 | 28H9 | 9 | 17H9 | 10 | 6 | 2.5 | 6.5 | 17 | 8.6 | 14 | 8.5 |
| 30 | 34.7 | 70 | 17 | 18.5 | 10 | 8 | 1.2 | 12 | 84 | 37 | 10.5 | 10.5 | 53.5 | 65h9 | 67h9 | 32H9 | 9 | $22 \mathrm{H9}$ | 10 | 4.5 | 3 | 6.5 | 17 | 8.6 | 14 | 8.5 |
| 50 | 39.7 | 80 | 19 | 21 | 12 | 10 | 1.6 | 15.5 | 100 | 50 | 12.4 | 12.5 | 60.6 | 75h9 | 77h9 | 35H9 | 10 | 26H9 | 12 | 5 | 3 | 7.5 | 20 | 10.5 | 18 | 10.5 |


| Size | JC | JD | JJ | JU | JV | Q | S | SD | SU | UU | WA | WB | WC | WD | WE | WF | XA | XB | XC | YA | YB | YC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 0}$ | $\mathrm{M} 8 \times 1.25$ | 12 | $\mathrm{M} 5 \times 0.8$ | $\mathrm{M} 4 \times 0.5$ | $\mathrm{M} 10 \times 1$ | 34 | 132.5 | 50 | 27.3 | 47 | 15 | 3 H 9 | 3.5 | $\mathrm{M} 5 \times 0.8$ | 8 | 32 | 27 | 3 H 9 | 3.5 | 19 | 3 H 9 | 3.5 |
| $\mathbf{2 0}$ | $\mathrm{M} 10 \times 1.5$ | 15 | $\mathrm{M} 6 \times 1$ | $\mathrm{M} 5 \times 0.5$ | $\mathrm{M} 12 \times 1.25$ | 37 | 168.5 | 63.5 | 39 | 54 | 20.5 | 4 H 9 | 4.5 | $\mathrm{M} 6 \times 1$ | 10 | 43 | 36 | 4 H 9 | 4.5 | 24 | 4 H 9 | 4.5 |
| $\mathbf{3 0}$ | $\mathrm{M} 10 \times 1.5$ | 15 | $\mathrm{M} 6 \times 1$ | $\mathrm{M} 5 \times 0.5$ | $\mathrm{M} 12 \times 1.25$ | 40 | 184 | 69 | 36.4 | 57 | 23 | 4 H 9 | 4.5 | $\mathrm{M} 6 \times 1$ | 10 | 48 | 39 | 4 H 9 | 4.5 | 28 | 4 H 9 | 4.5 |
| $\mathbf{5 0}$ | $\mathrm{M} 12 \times 1.75$ | 18 | $\mathrm{M} 8 \times 1.25$ | $\mathrm{M} 6 \times 0.75$ | $\mathrm{M} 14 \times 1.5$ | 46 | 214.5 | 78 | 42.4 | 66 | 26.5 | 5 H 9 | 5.5 | $\mathrm{M} 8 \times 1.25$ | 12 | 55 | 45 | 5 H 9 | 5.5 | 33 | 5 H 9 | 5.5 |

