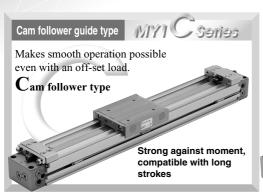
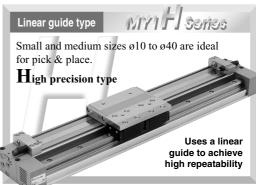

Mechanically Jointed Rodless Cylinder

Series MY1

Five types of guide allow a wide range of selections.


D-□


-X□


Mechanically Jointed Rodless Cylinder

MY1 Series

Stroke availability

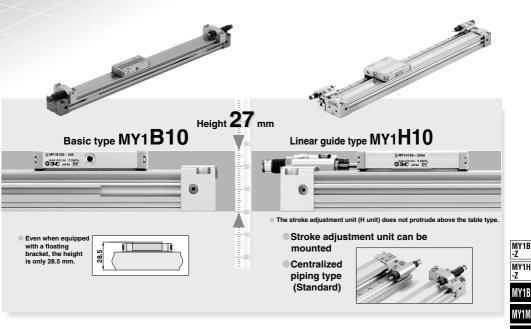
Strokes may be selected in increments of 1 mm.

Stroke adjustment unit

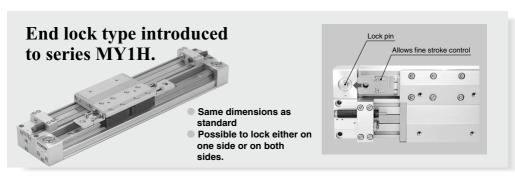
Strokes can be adjusted either at one side or both sides.

- · Adjustment bolt
- Low load shock absorber + Adjustment bolt (L unit)
- Heavy-loaded shock absorber
 + Adjustment bolt (H unit)

Centralized piping


Piping ports are concentrated at one side.


Side support


Side support prevents a cylinder tube from sagging in long stroke applications.

Interchangeability

The bodies and workpiece mountings are interchangeable between Series MY1M and MY1C.

SMC

D-□

-X□

Technical

MY1H

MY1B MY1M MY1C MY1H

MY1 HT

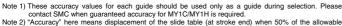
MY1

MY2C

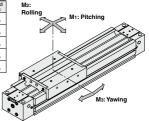
MY2 lH□

MY3A

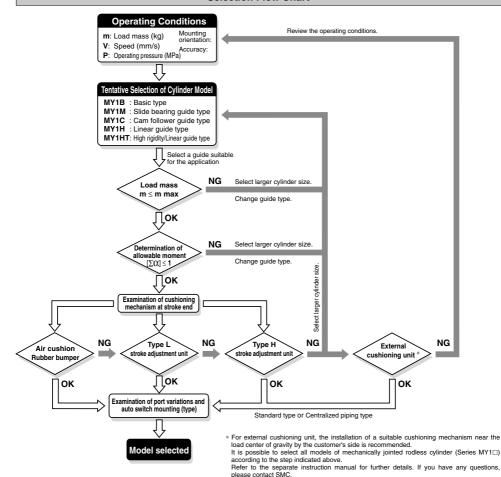
MY3B


MY3M

Series MY1 Model Selection 1

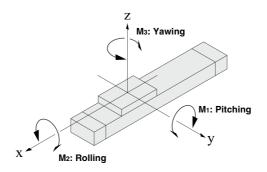

Following are the steps for selecting the most suitable Series MY1 to your application.

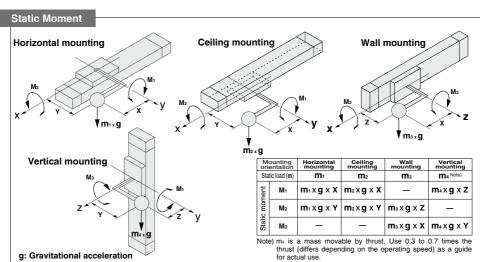
Standards for Tentative Model Selection

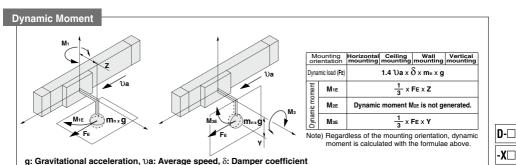

Cylinder model	Guide type	Standards for guide selection	Graphs for related allowable values
MY1B	Basic type	Guaranteed accuracy not required, generally combined with separate guide	Refer to P. 1220.
MY1M	Slide bearing guide type	Slide table accuracy approx. ±0.12 mm (2)	Refer to P. 1244.
MY1C	Cam follower guide type	Slide table accuracy approx. ±0.05 mm (2)	Refer to P. 1264.
MY1H	Linear guide type	Slide table accuracy of ±0.05 mm or less required (2)	Refer to P. 1284.
MY1HT	High rigidity/Linear guide type	Slide table accuracy of ±0.05 mm or less required (2)	Refer to P. 1308.

Note 2) "Accuracy" here means displacement of the slide table (at stroke end) when 50% of the allowab moment shown in the catalog is applied. (reference value).

Selection Flow Chart






Types of Moment Applied to Rodless Cylinders

Multiple moments may be generated depending on the mounting orientation, load, and position of the center of gravity.

ØSMC

1215

Technical

MY1B -Z MY1H -Z

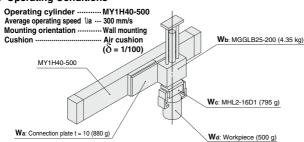
MY1B

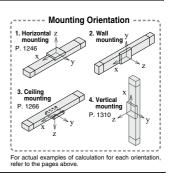
MY1M MY1C

MY1H

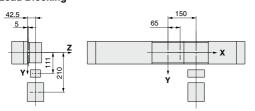
MY1 □W MY2C

MY2 H□ MY3A


MY3B MY3M


Series MY1 Model Selection 2

Following are the steps for selecting the most suitable Series MY1 to your application.


Calculation of Guide Load Factor

1. Operating Conditions

2. Load Blocking

Mass and Center of Gravity for Each Workpiece

Workpiece no.	Mass	Center of gravity							
Wn	m _n	X-axis Xn	Y-axis Yn	Z-axis Zn					
Wa	0.88 kg	65 mm	0 mm	5 mm					
Wb	4.35 kg	150 mm	0 mm	42.5 mm					
Wc	W c 0.795 kg		111 mm	42.5 mm					
Wd	0.5 kg	150 mm	210 mm	42.5 mm					

n = a, b, c, d

3. Composite Center of Gravity Calculation

$$\begin{aligned} \textbf{m}_3 &= \Sigma m_n \\ &= 0.88 + 4.35 + 0.795 + 0.5 = \textbf{6.525 kg} \end{aligned}$$

$$X = \frac{1}{m_3} \times \Sigma(m_n \times x_n)$$

$$= \frac{1}{6.525} (0.88 \times 65 + 4.35 \times 150 + 0.795 \times 150 + 0.5 \times 150) = 138.5 \text{ mm}$$

Y =
$$\frac{1}{m_3}$$
 x Σ (m_n x y_n)
= $\frac{1}{6.525}$ (0.88 x 0 + 4.35 x 0 + 0.795 x 111 + 0.5 x 210) = **29.6 mm**

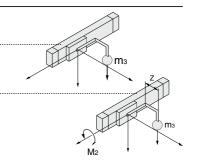
$$Z = \frac{1}{m_3} \times \sum (m_n \times z_n)$$

$$= \frac{1}{6.525} (0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5) = 37.4 \text{ mm}$$

4. Calculation of Load Factor for Static Load

m₃: Mass

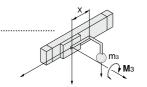
 $m_3 \max$ (from (1) of graph MY1H/ m_3) = 50 (kg)


Load factor $\alpha_1 = m_3/m_3 \max = 6.525/50 = 0.13$

M2: Moment

 M_2 max (from (2) of graph MY1H/ M_2) = 50 (N·m)

 $M_2 = m_3 \times g \times Z = 6.525 \times 9.8 \times 37.4 \times 10^{-3} = 2.39 \text{ (N·m)}$


Load factor $\alpha_2 = M_2/M_2 max = 2.39/50 = 0.05$

Ms: Moment

$$M_3 = m_3 \times g \times X = 6.525 \times 9.8 \times 138.5 \times 10^{-3} = 8.86 \text{ (N·m)}$$

Load factor $\alpha_3 = M_3/M_3 \text{ max} = 8.86/38.7 = 0.23$

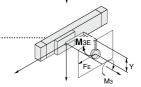
5. Calculation of Load Factor for Dynamic Moment -

Equivalent load FE at impact

FE = 1.4 Va x
$$\delta$$
 x m x g = 1.4 x 300 x $\frac{1}{100}$ x 6.525 x 9.8 = 268.6 (N)

M1E: Moment

M₁E =
$$\frac{1}{3}$$
 x **F**_E x **Z** = $\frac{1}{3}$ x 268.6 x 37.4 x 10° = 3.35 (N·m)


Load factor C4 = M1E/M1E max = 3.35/35.9 = 0.09

M3E max (from (5) of graph MY1H/M3 where 1.40a = 420 mm/s) = 27.6 (N·m).....

M3E =
$$\frac{1}{3}$$
 x \mathbf{F}_{E} x $\mathbf{Y} = \frac{1}{3}$ x 268.6 x 29.6 x 10⁻³ = 2.65 (N·m)

Load factor $CL_5 = M3E/M3E max = 2.65/27.6 = 0.10$

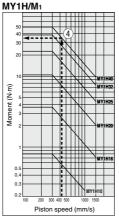
6. Sum and Examination of Guide Load Factors

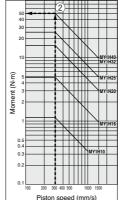
$$\sum_{CA} = CL_1 + CL_2 + CL_3 + CL_4 \times CL_5 = 0.60 \le 1$$

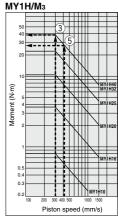
The above calculation is within the allowable value, and therefore the selected model can be used.

Select a shock absorber separately.

In an actual calculation, when the sum of guide load factors α in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series.


MY1H/M₂


This calculation can be easily made using the "SMC Pneumatics CAD System".


Load Mass

MY1H/m3 50 40 30 20 WY1H20 WY1H20 MY1H20 MY1H2

Allowable Moment

MY1B -Z MY1H -Z

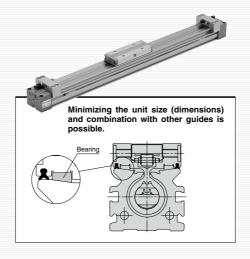
> MY1B MY1M

MY1C MY1H

MY1 HT MY1

MY2C

MY2 H□ MY3A MY3B


MY3M

D-🗆

-X Technical

Series MY1B Basic Type

Ø10, Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63, Ø80, Ø100

MY1B -Z MY1H

MY1B

MY1M MY1C

MY1H

MY1 HT

MY1 □W MY2C

MY2 H□ MY3A MY3B

MY3M

Series MY1B Prior to Use

Maximum Allowable Moment/Maximum Load Mass

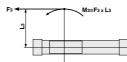
Model	Bore size	Maximum a	allowable moi	ment (N·m)	Maximum load mass (kg)			
Model	(mm)	M1	M2	Мз	m1	m ₂	m ₃	
	10	0.8	0.1	0.3	5.0	1.0	0.5	
	16	2.5	0.3	0.8	15	3.0	1.7	
	20	5.0	0.6	1.5	21	4.2	3.0	
	25	10	1.2	3.0	29	5.8	5.4	
MY1B	32	20	2.4	6.0	40	8.0	8.8	
WITID	40	40	4.8	12	53	10.6	14	
	50	78	9.3	23	70	14	20	
	63	160	19	48	83	16.6	29	
	80	315	37	95	120	24	42	
	100	615	73	184	150	30	60	

The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

Caution on Design

We recommend installing an external shock absorber when the cylinder is combined with another quide (connection with floating bracket, etc.) and the maximum allowable load is exceeded, or when the operating speed is 1000 to 1500 mm/s for bore sizes ø16, ø50, ø63, ø80 and ø100


Load mass (kg)



Moment (N·m)

<Calculation of guide load factor>

- 1. Maximum allowable load (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.
 - * To evaluate, use Va (average speed) for (1) and (2), and V (collision speed V = 1.4 Va) for (3). Calculate mmax for (1) from the maximum allowable load graph (m₁, m₂, m₃) and Mmax for (2) and (3) from the maximum allowable moment graph (M₁, M₂, M₃).

Sum of guide	Load mass [m	Static moment [M] (1)	Dynamic moment [M _E] (2)
load factors		mmax] + Allowable static moment [Mmax]	<u> </u>

Note 1) Moment caused by the load, etc., with cylinder in resting condition

Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper).

Note 3) Depending on the shape of the workpiece, multiple moments may occur. When this happens, the sum of the load factors ($\Sigma \alpha$) is the total of all such moments

2. Reference formula [Dynamic moment at impact]

Use the following formulae to calculate dynamic moment when taking stopper impact into consideration.

m: Load mass (kg)

Load (N)

FE: Load equivalent to impact (at impact with stopper) (N)

Va: Average speed (mm/s)

M: Static moment (N·m)

 $\nu = 1.4$ a (mm/s) $F_E = 1.4$ a $\delta \cdot \hat{\delta} \cdot \hat{m} \cdot \hat{g}$

 $\therefore \mathbf{M} = \frac{1}{3} \overset{\text{NOR}}{\text{Fe}} \cdot L_1 = 4.57 \text{Va} \delta \text{mL},$

υ: Collision speed (mm/s)

L₁: Distance to the load's center of gravity (m)

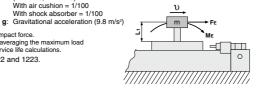
M_E: Dynamic moment (N·m)

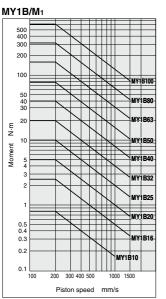
δ: Damper coefficient

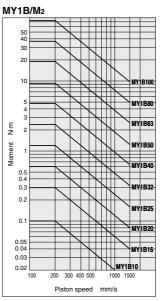
With rubber bumper = 4/100 (MY1B10, MY1H10)

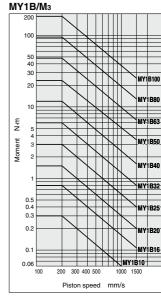
With air cushion = 1/100 With shock absorber = 1/100

Note 4) $1.4 va\delta$ is a dimensionless coefficient for calculating impact force. Note 5) Average load coefficient (= $\frac{1}{3}$): This coefficient is for averaging the maximum load


moment at the time of stopper impact according to service life calculations. 3. For detaild selection procedures, refer to pages 1222 and 1223.


Maximum Allowable Moment

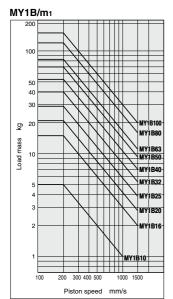

Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions

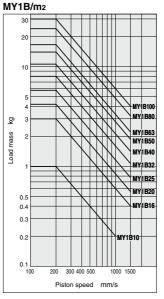

Maximum Load Mass

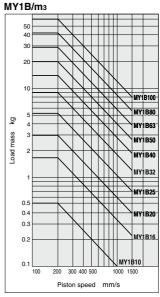
Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.

MY1B

MY1H


MY1B


MY1M


-Z

MY2C
MY2C
MY2
H□
MY3A

MY3B MY3M

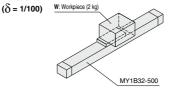
D
-X

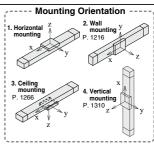
Technical data

Series MY1B Model Selection

Following are the steps for selecting the most suitable Series MY1B to your application.

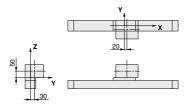
Calculation of Guide Load Factor


1. Operating Conditions


Cylinder MY1B32-500

Average operating speed $\Im a \cdots 300$ mm/s

Mounting orientation Horizontal mounting


Cushion Air cushion

For actual examples of calculation for each orientation, refer to the pages above.

2. Load Blocking

Mass and Center of Gravity for Workpiece

Workpiece		Center of gravity						
no.	Mass m	X -axis	Y-axis	Z -axis				
W	2 kg	20 mm	30 mm	50 mm				

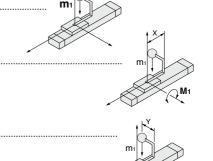
3. Calculation of Load Factor for Static Load

m₁: Mass

 $m_1 \max$ (from (1) of graph MY1B/ m_1) = 27 (kg)------

Load factor $\Omega_1 = m_1/m_1 \max = 2/27 = 0.07$

 M_1 max (from (2) of graph MY1B/ M_1) = 13 (N·m).....


 $M_1 = m_1 \times g \times X = 2 \times 9.8 \times 20 \times 10^{-3} = 0.39 \text{ (N·m)}$

Load factor $\Omega_2 = M_1/M_1 \max = 0.39/13 = 0.03$

 $M_3 = m_1 \times g \times Y = 2 \times 9.8 \times 30 \times 10^{-3} = 0.59 \text{ (N-m)}$

Load factor $Cl_3 = M_2/M_2 max = 0.59/1.6 = 0.37$

Model Selection Series MY1B

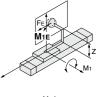
4. Calculation of Load Factor for Dynamic Moment

Equivalent load FE at impact

$$\mathbf{F}_{E} = 1.4 \,\mathrm{Va} \times \delta \times \mathbf{m} \times \mathbf{g} = 1.4 \times 300 \times \frac{1}{100} \times 2 \times 9.8 = 82.3 \,\mathrm{(N)}$$

M₁F: Moment

$$M_{1E} = \frac{1}{3}x \text{ Fe } x \text{ Z} = \frac{1}{3}x 82.3 \times 50 \times 10^{-3} = 1.37 \text{ (N·m)}$$


Load factor $\Omega_4 = M_{1E}/M_{1E} max = 1.37/9.5 = 0.14$

M_{3E} max (from (5) of graph MY1B/M₃ where $1.4 va = 420 \text{ mm/s}) = 2.9 \text{ (N·m)} \cdot \cdot \cdot \cdot \cdot$

$$\mathbf{M}_{3E} = \frac{1}{3} \times \mathbf{F}_{E} \times \mathbf{Y} = \frac{1}{3} \times 82.3 \times 30 \times 10^{-3} = 0.82 \text{ (N·m)}$$

Load factor $CL_5 = M_3 E/M_3 E max = 0.82/2.9 = 0.28$

MY1M

MY1C MY1H

MY1 HT

□W MY2C

MY2 H□ MY3A

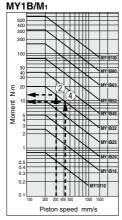
MY3M

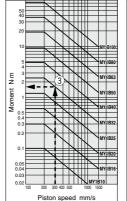
5. Sum and Examination of Guide Load Factors

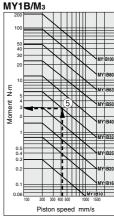
$$\sum \alpha = \Omega_1 + \Omega_2 + \Omega_3 + \Omega_4 + \Omega_5 = 0.89 \le 1$$

The above calculation is within the allowable value, and therefore the selected model can be used. Select a shock absorber separately.

In an actual calculation, when the total sum of guide load factors α in the formula above is more than 1, consider either decreasing the speed, increasing the bore size, or changing the product series. This calculation can be easily made using the "SMC Pneumatics CAD System".


MY1B/M₂


Load Mass



Piston speed mm/s

Allowable Moment

D-□ -X□

Technical data

Mechanically Jointed Rodless Cylinder Basic Type

Series MY1B

Ø10, Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63, Ø80, Ø100

Series MY1B basic type ø25, ø32, and ø40 sizes have been remodeled with a reduction in weight and improved piping flexibility. Refer to page1170 for details

How to Order

Basic type MY1B 20 M9BW 300 Basic type Made to Order Refer to page 1225 Bore size for details (mm) Port thread type Number of auto switches 10 10 mm Type Bore size 16 mm 16 2 pcs. ø10, ø16, ø20 M thread 20 20 mm 1 pc. Ro ø25. ø32. ø40. 25 25 mm n "n" pcs. TN NPT ø50, ø63, ø80, 32 32 mm ø100 G 40 40 mm Auto switch Piping 4 Nil Without auto switch (Built-in magnet) 63 63 mm Nil Standard type For ø10 cylinders without an auto switch, the cylinder 80 80 mm Centralized piping type G configuration is for the reed auto switch. Contact SMC when the solid state auto switch is 100 100 mm Note) For ø10, only G is available. retrofitted Cylinder stroke (mm) Applicable auto switches vary depending on the bore size. Select an applicable one referring to Bore size (mm) Standard stroke (mm)* manufacturable the table below. stroke (mm) 100, 200, 300, 400, 500, 600, 700 Stroke adjustment unit symbol 800, 900, 1000, 1200, 1400, 1600 20, 25, 32, 40

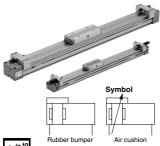
* The stroke can be manufactured up to the maximum stroke from 1 mm stroke in 1 mm increments. However, when the stroke is 49 mm or less, the air cushion capability lowers and multiple auto switches cannot be mounted. Pay special attention to this point Also when exceeding a 2000 mm stroke, specify "-XB11" at the end of the model number For details, refer to the "Made to Order Specifications"

1800 2000

50, 63, 80, 100

Applicable Auto Switches/Refer to pages 1559 to 1673 for further information on auto switches.

	Electrical 5 us (0)			Load voltage			Auto switch model			Lead wire length (m)			(m)	Pre-wired										
Туре	Special function	entry	Indicator Eght	Wiring (Output)	С	C	AC	Perpen ø10 to ø20	ø25 to ø100	In-line ø10 to ø20 ø25 to ø100	0.5 (Nil)	1 (M)	3 (L)	5 (Z)	connector	Applicable load								
				3-wire (NPN)				M9N [Y6		M9N** [Y59A]	•	• [—]	•	0	0									
	_			3-wire (PNP)		5 V, 12 V		M9F		M9P** [Y7P]	•	• [—]	•	0	0	IC circuit								
tch			Grommet Ye	Grommet Y		2-wire	12 V		M9BV** [Y69B]	M9B** [Y59B]	•	• [—]	•	0	0	_								
		Grommet			Grommet	Grommet					3-wire (NPN)		5.V. 40.V		M9N\	NV **	M9NW** [Y7NW]	•	•	•	0	0		
	Diagnostic indication (2-color indication)						Yes	3-wire (PNP)	24 V	5 V, 12 V	_	M9P\	NV**	M9PW**	•	• [—]	•	0	0	IC circuit	Relay, PLC			
d state									2-wire	12 V	M9B\ [Y7B		M9BW** [Y7BW]	•	● [—]	•	0	0	_					
Solid				3-wire (NPN)	3-wire (NPN)	5 V, 12 V	, 12 V	M9NA [-	\V*** -]	M9NA*** [—]	0	0	•	0	0	10								
	Water resistant (2-color indication)			3-wire (PNP)				M9PA	\V*** -]	M9PA***	0	0	•	0	0	IC circuit								
				2-wire		12 V		M9BA	\V *** −]	M9BA*** [Y7BA]	0	0	•	0	0	_								
Reed auto switch		Grommet	Yes	3-wire (NPN equivalent)	_	5 V	_	A96V	_	A96 Z76	•	_	•	_	_	IC circuit	_							
auto a		Grommet	No	2-wire	24 V	12 V	100 V 100 V or less	A93V A90V		A93 Z73 A90 Z80	:	H	:	•	-	IC circuit	Relay, PLC							


- *** Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
- Consult with SMC regarding water resistant types with the above model numbers. * Lead wire length symbols: 0.5 m Nil (Example) M9NW
 - 1 m ······ M (Example) M9NWM
 - 3 m L (Example) M9NWL 5 m Z (Example) M9NWZ
- * Solid state auto switches marked with "O" are produced upon receipt of order Separate switch spacers (BMG2-012) are required to retrofit auto switches (M9 type) on cylinders
- ø25 to ø40, ø63 to ø100

Refer to "Stroke adjustment unit" on page 1225.

- ** D-M9 = type cannot be mounted on ø50. Select auto switches in brackets. * There are other applicable auto switches than listed above. For details, refer to page 1321,
- * For details about auto switches with pre-wired connector, refer to pages 1626 and 1627. * Auto switches are shipped together (not assembled).

Mechanically Jointed Rodless Cylinder Basic Type Series MY1B

Made to Order: Individual Specifications (For details, refer to page 1322.)

Symbol	Specifications							
-X168	Specifications Helical insert thread specifications							

Made to Order Specifications (For details, refer to pages 1699 to 1818.)

Symbol Specifications								
-XB11	Long stroke type							
-XB22	Shock absorber soft type Series RJ type							
-XC67	NBR rubber lining in dust seal band							

Specifications

Bore s	size (mm)	10	16	20	25	32	40	50	63	80	100
Fluid						Air					
Action					Dou	ble act	ing				
Operating	pressure range	0.2 to 0.8 MPa				0.1	to 0.8 N	ИРа			
Proof pr	essure		1.2 MPa								
Ambient and	fluid temperature	5 to 60°C									
Cushior	1	Rubber bumper	Rubber bumper Air cushion								
Lubricat	tion				N	on-lube	Э				
Stroke len	gth tolerance	1000 or less 1001 to 300									
Piping	Front/Side port	M5 x	0.8		Rc	1/8	Rc 1/4	Rc	3/8	Rc	1/2
Port size	Bottom port		Ø	4	Ø	6	ø8	ø	10	ø.	18

Piston Speed

Bore s	ize (mm)	10	16 to 100		
Without stroke a	djustment unit	100 to 500 mm/s	100 to 1000 mm/s		
Stroke	A unit	100 to 200 mm/s	100 to 1000 mm/s (1)		
adjustment unit	L unit and H unit	100 to 1000 mm/s	100 to 1500 mm/s (2)		

Note1) Be aware that when the stroke adjustment range is increased by manipulating the adjustment bolt, the air cushion capacity decreases. Also, when exceeding the air cushion stroke ranges on page 1228, the piston speed should be 100 to 200 mm per second.

Note2) The piston speed is 100 to 1000 mm/s for centralized piping.

Note3) Use at a speed within the absorption capacity range. Refer to page 1227.

Stroke Adjustment Unit Specifications

Bore size	Bore size (mm)		0	16	20				25			32			40	
Unit symbol		Α	Н	Α	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н
Configuration Shock absorber model		With adjustment bolt	RB 0805 + with adjustment bolt	With adjustment bolt	With adjustment bolt	RB 0806 + with adjustment bolt	RB 1007 + with adjustment bolt	With adjustment bolt	RB 1007 + with adjustment bolt	RB 1412 + with adjustment bolt	With adjustment bolt	RB 1412 + with adjustment bolt	RB 2015 + with adjustment bolt	With adjustment bolt	RB 1412 + with adjustment bolt	RB 2015 + with adjustment bolt
Stroke adjust- ment range by	Without spacer	0 to -5		0 to -5.6		0 to -6	•	C	0 to -11.5		0 to -12		0 to -16			
intermediate	With short spacer	_	_	-5.6 to -11.2		−6 to −12		-1	-11.5 to -23		-12 to -24		-16 to -32			
fixing spacer (mm)	With long spacer	_	_	-11.2 to -16.8	-12 to -18		-23 to -34.5		-24 to -36			-32 to -48				

Right side stroke adjustment unit

+ Adjustment bolt

SL

ΑL

A6L

A7L

1

L6L

L 71

н

H7L

L: With low load shock absorber

With short With long

SL6

AL₆

A6L6

A7L6

LL6

L6

1716

HL₆

H6L6

H7L6

snacer

spacer

SL7

AL7

A6L7

A7L7

LL7

L6L7

1.7

HI 7

H6L7

H7L7

Without unit

A: With adjustment bolt

L: With low load shock absorber +

H: With high load shock absorber +

Adjustment

Adjustment

holt

bolt

With short spacer

With long spacer

With short spacer

With long spacer

With short spacer

With long spacer

Without unit

Nil

AS

A6S

A7S

1.5

L6S

L78

HS

H6S

A: With adjustment bolt

With short

SA6

AA6

A6

A7A6

LA6

L6A6

L7A6

НΔ6

H6A6

snacer

SA

Α

A6A

A7A

LA

L6A

L7A

HA

H₆A

H7A

With long

SA7

AA7

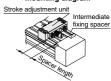
A6A7

A7

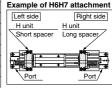
LA7

L6A7

L7A7


НΔ7

H6A7 H₆I


H7A6 | H7A7

spacer

Stroke adjustment unit mounting diagram

Example of H6H7 attachment

Shock Absorbers for L and H Units

Model	Stroke adjustment		Во	re size (m	ım)	
Woder	unit	10	20	25	32	40
Standard (Shock absorber/	L	_	RB0806	RB1007	RB1	412
RB series)	H RB0805 RB1007 RB1413		RB1412	RB2	2015	
Shock absorber/ soft type RJ series	L	_	RJ0806H	RJ1007H	RJ14	112H
mounted (-XB22)	Н	RJ0805	RJ1007H	RJ1412H	-	_

^{*} The shock absorber service life is different from that of the MY1B cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.

H7H6 Shock Absorber Specifications

H: With high load shock absorber

With short

SH6

AH6

A6H6

A7H6

1 H6

L6H6

L7H6

HH6

H6

snacer

With long

SH7

AH7

A6H7

A7H7

1 H7

L6H7

L7H7

HH7

H6H7

H7

spacer

+ Adjustment bolt

SH

AH

A6H

A7H

IΗ

L6H

L7H

н

H₆H

H7H

Model		RB 0805	RB 0806	RB 1007	RB 1412	RB 2015
Max. energy absorption (J)		1.0	2.9	5.9	19.6	58.8
Stroke absorption (mm)		5	6	7	12	15
Max. collision speed (mm/s)		1000	1500	1500	1500	1500
Max. operating freque	ency (cycle/min)	80	80	70	45	25
Coning force (N)	Extended	1.96	1.96	4.22	6.86	8.34
Spring force (N)	Retracted	3.83	4.22	6.86	15.98	20.50
Operating temperat	5 to 60					

The shock absorber service life is different from that of the MY1B cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.

D-□ -X□ Technical

1225

MY1B -Z MY1H

MY1B

MY1M MY1C MY1H

MY1 ΗТ MY1 $\square W$

MY2C MY2

 $H \square$ MY3A MY3B MY3M

Note) Intermediate fixing spacer is not available for ø10. Stroke Adjustment Unit Symbol

^{*} Stroke adjustment range is applicable for one side when mounted on a cylinder.

H7S Spacers are used to fix the stroke adjustment unit at an intermediate stroke position

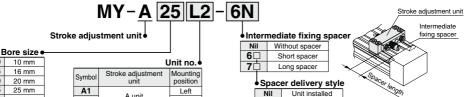
^{*} Mounted shock absorber soft type RJ series (-XB22) is made to order specifications For details, refer to page 1722.

Theoretical Output

								(11)
Bore size	Piston area		Operating pressure (MPa)					
(mm)	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8
10	78	15	23	31	39	46	54	62
16	200	40	60	80	100	120	140	160
20	314	62	94	125	157	188	219	251
25	490	98	147	196	245	294	343	392
32	804	161	241	322	402	483	563	643
40	1256	251	377	502	628	754	879	1005
50	1962	392	588	784	981	1177	1373	1569
63	3115	623	934	1246	1557	1869	2180	2492
80	5024	1004	1507	2009	2512	3014	3516	4019
100	7850	1570	2355	3140	3925	4710	5495	6280

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Weight


							(kg)
Bore size	Basic weight	Additional weight per each	Weight of moving	Side support bracket weight (per set)	Stroke adjustment ur weight (per unit)		
(mm)	Woigin	50 mm of stroke	parts	Type A and B	A unit weight	L unit weight	H unit weight
10	0.15	0.04	0.03	0.003	0.01	_	0.02
16	0.61	0.06	0.07	0.01	0.04	_	_
20	1.06	0.10	0.14	0.02	0.05	0.05	0.10
25	1.33	0.12	0.21	0.02	0.06	0.10	0.18
32	2.65	0.18	0.47	0.02	0.12	0.21	0.40
40	3.87	0.27	0.91	0.04	0.23	0.32	0.49
50	7.78	0.44	1.40	0.04	_	_	_
63	13.10	0.70	2.20	0.08	_		_
80	20.70	1.18	4.80	0.17	_	_	_
100	35.70	1.97	8.20	0.17	_	_	_

Calculation: (Example) MY1B25-300A · Basic weight ···· ·1.33 kg · Cylinder stroke ··300 stroke Additional weight --0.12/50 stroke $1.33 + 0.12 \times 300/50 + 0.06 \times 2 \cong 2.17 \text{ kg}$

· Weight of A unit ·····0.06 kg

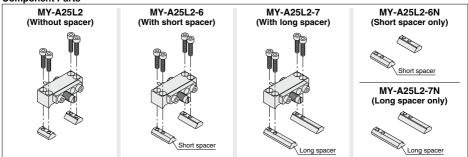
Option

Stroke Adjustment Unit Part No.

10 16 20 20 mm 25 32 32 mm 40 40 mm

Note) Stroke adjustment unit is not available for ø50, ø63, ø80 and ø100.

A unit A2 Right L1 Left L unit 12 Right H1 Left H unit Right


Note 1) Refer to page 1225 for details about

adjustment range.

Note 2) A and H unit only for ø10, A unit only

- Ν Spacer only * Spacers are used to fix the stroke adjustment unit at an intermediate stroke position. * Spacers are shipped for a set of two.
- Note) Intermediate fixing spacer is not available for ø10.

Component Parts

Side Support Part No.

Type Bore size (mm)	10	16	20	25	32	40	50	63	80	100
Side support A	MY-S10A	MY-S16A	MY-S20A	MY-S	S25A	MY-S	332A	MY-S50A	MY-S	63A
Side support B	MY-S10B	MY-S16B	MY-S20B	MY-S25B		MY-S25B MY-S32B		MY-S50B	MY-S	63B

For details about dimensions, etc., refer to page 1239. A set of side supports consists of a left support and a right support.

Cushion Capacity

Cushion Selection

<Rubber bumper>

Rubber bumpers are a standard feature on MY1B10.

Since the stroke absorption of rubber bumpers is short, when adjusting the stroke with an A unit, install an external shock absorber.

The load and speed range which can be absorbed by a rubber bumper is inside the rubber bumper limit line of the graph.

<Air cushion>

Air cushions are a standard feature on mechanically jointed rodless cylinders. (Except ø10.)

The air cushion mechanism is incorporated to prevent excessive impact of the piston at the stroke end during high speed operation. The purpose of air cushion, thus, is not to decelerate the piston near the stroke end.

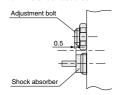
The ranges of load and speed that air cushions can absorb are within the air cushion limit lines shown in the graphs.

<Stroke adjustment unit with shock absorber>

Use this unit when operating with a load or speed exceeding the air cushion limit line, or when cushioning is required outside of the effective air cushion stroke range due to stroke adjustment.

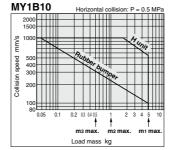
Lunit

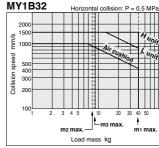
Use this unit when cushioning is necessary outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cyl-inder is operated in a load and speed range above the air cushion limit line and below the L unit limit line.

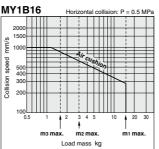

H unit

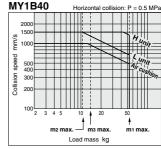
Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.

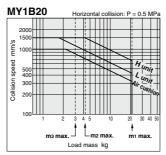
∕ Caution

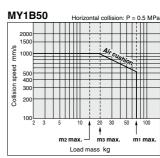

1. Refer to the figure below when using the adjustment bolt to perform stroke adjustment.

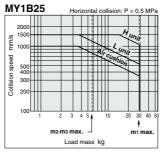

When the effective stroke of the shock absorber decreases as a result of stroke adjustment, the absorption capacity decreases dramatically. Secure the adjustment bolt at the position where it protrudes approximately 0.5 mm from the shock absorber.

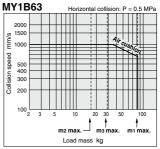



2. Do not use a shock absorber together with air cushion.


Absorption Capacity of Rubber Bumper, Air Cushion and Stroke Adjustment Units







D-□ -X□ Technical

MY1B

MY1H

MY1B

MY1M

MY1C

MY1H

MY1

MY1

 $\square W$

MY2C

MY2

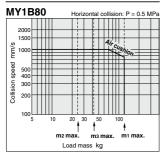
 $H\square$

MY3A

MY3B

MY3N

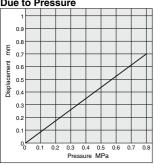
нт


-7

1227

Cushion Capacity

Rubber Bumper/Air Cushion Stroke Adjustment Unit Absorption Capacity



MY1B100 Horizontal collision: P = 0.5 MPa 2000 1000

Air Cushion Stroke

Bore size (mm)	Cushion stroke
16	12
20	15
25	15
32	19
40	24
50	30
63	37
80	40
100	40

Rubber Bumper (Ø10 only) Positive Stroke from One End Due to Pressure

Tightening Torque for Stroke Adjustment Unit Holding Bolts (N·m)

Bore size (mm)	Unit	Tightening torque	
10	A	0.4	
10	Н	0.4	
16	A	0.7	
	A		
20	L	1.8	
	Н		
	A		
25	L	3.5	
	Н		
	A		
32	L	5.8	
	Н		
	A		
40	L	13.8	
	Н		

Tightening Torque for Stroke Adjustment Unit Lock Plate Holding Bolts

		(14-111)
Bore size (mm)	Unit	Tightening torque
20	Н	1.2
25	L	1.2
25	Н	3.3
32	L	3.3
32	Н	10
40	L	3.3
40	Н	10

Calculation of Absorbed Energy for Stroke Adjustment Unit

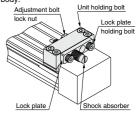
with Sil	OCK Absorber (N·m)					
	Horizontal collision	Vertical (Downward)	Vertical (Upward)			
Type of impact	₩ S	D S	s -b			
Kinetic energy E1		$\frac{1}{2}$ m· v^2				
Thrust energy E2	F⋅s	Fs + m·g·s	Fs – m·g·s			
Absorbed energy E	E1 + E2					

Cumbo

(mm)

- U: Speed of impact object (m/s)
- F: Cylinder thrust (N)
- s: Shock absorber stroke (m)
- m: Mass of impact object (kg)
- g: Gravitational acceleration (9.8 m/s2)

Note) The speed of the impact object is measured at the time of impact with the shock absorber.


⚠Precautions

Be sure to read before handling. Refer to front matters 54 and 55 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

⚠ Caution

Use caution not to get your hands caught in the unit.

 When using a product with stroke adjustment unit, the space between the slide table (slider) and the stroke adjustment unit becomes narrow at the stroke end, causing a danger of hands getting caught. Install a protective cover to prevent direct contact with the human body.

<Fastening of unit>

The unit can be secured by evenly tightening the four unit holding bolts.

⚠ Caution

Do not operate with the stroke adjustment unit fixed in an intermediate position.

When the stroke adjustment unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In such cases, as a stroke adjustment unit with the spacer for intermediate securing is available, it is recommended to use it.

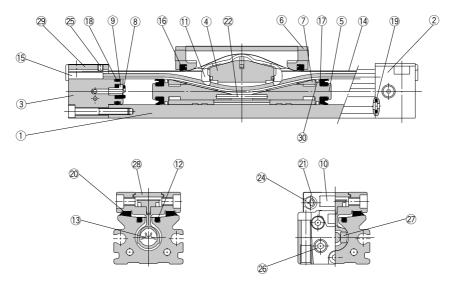
(Except ø10)

For other lengths, please consult with SMC (Refer to "Tightening Torque for Stroke Adjustment Unit Holding Bolts".)

<Stroke adjustment with adjustment bolt-Loosen the adjustment bolt lock nut, and adjust the stroke from the lock plate side using a hexagon wrench. Retighten the lock nut.

<Stroke adjustment with shock

Loosen the two lock plate holding bolts, turn the shock absorber and adjust the stroke. Then, uniformly tighten the lock plate holding bolts to secure the shock absorber.


Take care not to over-tighten the holding bolts. (Except ø10 and ø20 L unit.) (Refer to "Tightening Torque for Stroke Adjustment Unit Lock Plate Holding Bolts".)

Although the lock plate may slightly bend due to tightening of the lock plate holding bolt, this does not a affect the shock absorber and locking function.

Mechanically Jointed Rodless Cylinder Basic Type Series MY1B

Construction: ø10

Centralized piping type: MY1B10G

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover WR	Aluminum alloy	Painted
3	Head cover WL	Aluminum alloy	Painted
4	Piston yoke	Aluminum alloy	Hard anodized
5	Piston	Aluminum alloy	Chromated
6	End Cover	Special resin	
7	Wear ring	Special resin	
8	Bumper	Polyurethane rubber	
9	Holder	Stainless steel	
10	Stopper	Carbon steel	Nickel plated
11	Belt separator	Special resin	
12	Seal magnet	Rubber magnet	

No.	Description	Material	Note
15	Belt clamp	Special resin	
20	Bearing	Special resin	
21	Spacer	Chromium molybdenum steel	Nickel plated
22	Spring pin	Stainless steel	
23	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
24	Round binding head crew	Carbon steel	Nickel plated
25	Slotted set screw	Carbon steel	Black zinc chromated
26	Hexagon socket head plug	Carbon steel	Nickel plated
27	Magnet	_	
28	Top plate	Stainless steel	
29	Head plate	Stainless steel	
30	Felt	Felt	

Replacement Part: Seal Kit

No.	Description	Qty.	MY1B10			
13	Seal belt	1	MY10-16A-Stroke			
14	Dust seal band	1	MY10-16B-Stroke			
16	Scraper	2				
17	Piston seal	2	MY1B10-PS			
18	Tube gasket	2				
19	O-ring	4				

* Seal kit includes ®, ®, ® and ®.
Seal kit includes a grease pack (10 g).
When ® and ® are shipped independently, a grease pack is included. (10 g per 1000 strokes)
Order with the following part number when only the grease pack is needed.

grease pack is needed.

Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

D-□ -X□

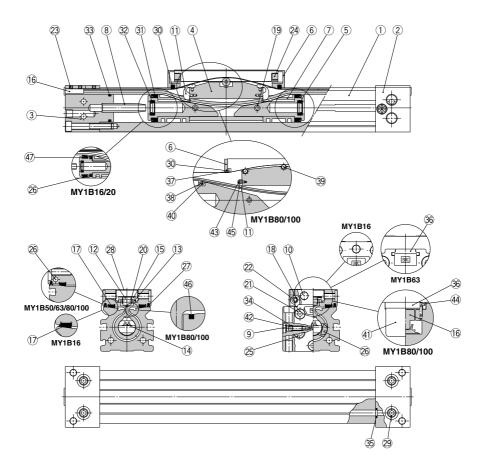
MY1B -Z

MY1H

MY1M
MY1C
MY1H
MY1H
MY1
MY1
MY1
MY1
MY1

MY2C

MY3A MY3B


Technical data

Series MY1B

Construction: Ø16 to Ø100

MY1B16 to 100

Mechanically Jointed Rodless Cylinder Basic Type Series MY1B

MY1B16 to 100

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
-	Head cover WR	Aluminum alloy	Painted
3	Head cover WL	Aluminum alloy	Painted
4	Piston yoke	Aluminum alloy	Anodized
5	Piston	Aluminum alloy	Chromated
	Tiston	Special resin	Omomated
6	End cover	Carbon steel	Nickel plated (ø80, ø100)
7	Wear ring	Special resin	
8	Cushion ring	Aluminum alloy	Anodized
9	Cushion needle	Rolled steel	Nickel plated
10	Stopper	Carbon steel	Nickel plated
11	Belt separator	Special resin	
12	Guide roller	Special resin	(ø16 to ø63)
13	Guide roller shaft	Stainless steel	(ø16 to ø63)
16	Dalt slaves	Special resin	
10	Belt clamp	Aluminum alloy	Chromated (ø80, ø100)
17	Bearing	Special resin	
18	Spacer	Stainless steel	(ø16 to ø63)
19	Spring pin	Carbon tool steel	
20	Type E retaining ring	Cold rolled special steel strip	(ø25 to ø63)
21	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
22	Hexagon socket button head screw	Chromium molybdenum steel	Nickel plated
23	Hexagon socket head set screw	Chromium molybdenum steel	Black zinc chromated/ Nickel plated
24	Double round parallel key	Carbon steel	(ø16 to ø40)
25	Hexagon socket head taper plug	Carbon steel	Nickel plated
_	,		

_			
No.	Description	Material	Note
26	Magnet	_	
28	Top cover	Stainless steel	
29	Hexagon socket head taper plug	Carbon steel	Nickel plated
36	Head plate	Aluminum alloy	Painted (ø63 to ø100)
37	Backup plate	Special resin	(ø80, ø100)
38	Guide roller B	Special resin	(ø80, ø100)
39	Guide roller A	Stainless steel	(ø80, ø100)
40	Guide roller shaft B	Stainless steel	(ø80, ø100)
41	Side cover	Aluminum alloy	Hard anodized (ø80, ø100)
42	Type CR retaining ring	Spring steel	
43	Hexagon socket button head screw	Chromium molybdenum steel	Nickel plated (ø80, ø100)
44	Hexagon socket button head screw	Chromium molybdenum steel	Nickel plated (ø80, ø100)
45	Spacer B	Stainless steel	(ø80, ø100)
46	Seal magnet	Rubber magnet	(ø80, ø100)
47	Lube retainer	Special resin	(ø16, ø20)

MV1D22

MY1B -Z MY1H

MY1B

MY1M

MY1C MY1H

MY1 нт

MY1 $\square W$

MY2C MY2 Η□

MY3A MY3B MY3M

Replacement Part: Seal Kit

INO.	Description	Qty.	WITIDIO	IVIT I DZU	WITID25	IVIT I DOZ	IVITID4U
14	Seal belt	1	MY16-16A-Stroke	MY20-16A-Stroke	MY25-16A-Stroke	MY32-16A-Stroke	MY40-16A-Stroke
15	Dust seal band	1	MY16-16B-Stroke	MY20-16B-Stroke	MY25-16B-Stroke	MY32-16B-Stroke	MY40-16B-Stroke
27	Side scraper	2	_	MYB20-15CA7164B	MYB25-15BA5900B	MYB32-15BA5901B	MYB40-15BA5902B
34	O-ring	2	KA00309	KA00309	KA00311	KA00320	KA00320
34	O-ring		(ø4 x ø1.8 x ø1.1)	(ø4 x ø1.8 x ø1.1)	(ø5.1 x ø3 x ø1.05)	(ø7.15 x ø3.75 x ø1.7)	(ø7.15 x ø3.75 x ø1.7)
30	Scrape	2					
31	Piston seal	2					
32	Cushion seal	2	MY1B16-PS	MY1B20-PS	MY1B25-PS	MY1B32-PS	MY1B40-PS
33	Tube gasket	2					
35	O-ring	4					

No.	Description	Qty.	MY1B50	MY1B63	MY1B80	MY1B100
14	Seal belt	1	MY50-16A-Stroke	MY63-16A-Stroke	MY80-16A-Stroke	MY100-16A-Stroke
15	Dust seal band	1	MY50-16B-Stroke	MY63-16B-Stroke	MY80-16B-Stroke	MY100-16B-Stroke
27	Side scraper	2	MYB50-15CA7165B	MYB63-15CA7166B	MYB80-15CK2470B	MY100-15CK2471B
34	O-ring	2	KA00402	KA00777	KA00050	KA00050
34	O-ring	2	(ø8.3 x ø4.5 x ø1.9)	_	-	_
30	Scrape	2				
31	Piston seal	2				
32	Cushion seal	2	MY1B50-PS	MY1B63-PS	MY1B80-PS	MY1B100-PS
33	Tube gasket	2				
35	O-ring	4				

^{*} Seal kit includes 30, 31, 32, 33 and 35. Order the seal kit based on each bore size.

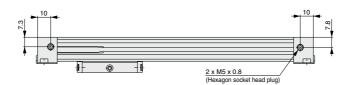
When (4) and (5) are shipped independently, a grease pack is included. (10 g per 1000 strokes)

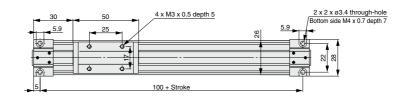
MV1R16

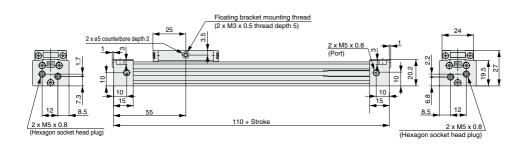
Order with the following part number when only the grease pack is needed. Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

Note) Two kinds of dust seal bands are available for the MY1B16 to 63. Since the part number varies depending on the treatment of the hexagon socket head set screw 23, please check a proper dust seal band carefully.

A: Black zinc chromated → MY□□-16B-stroke, B: Nickel plated → MY□□-16BW-stroke

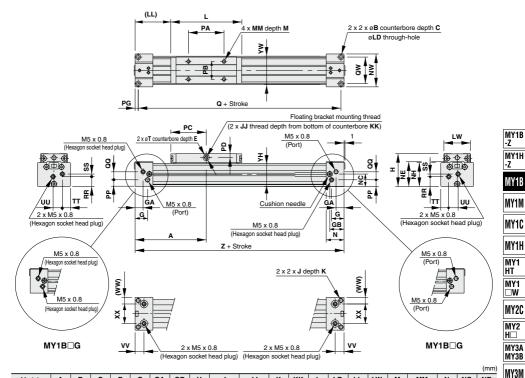



Technical



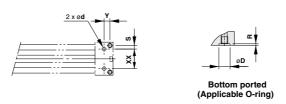
^{*} Seal kit includes a grease pack (10 g).

MY1B10G — Stroke



Mechanically Jointed Rodless Cylinder Basic Type Series MY1B

Standard Type/Centralized Piping Type Ø16, Ø20


Refer to page 1325 regarding centralized piping port variations.

MY1B16□/20□ - Stroke

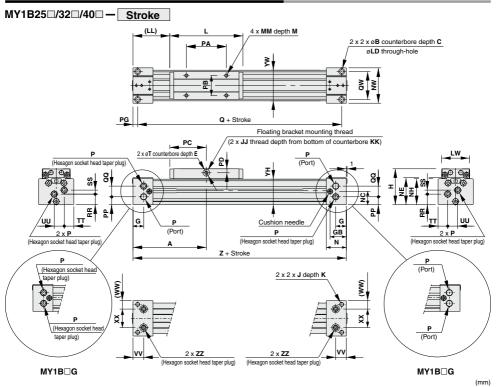
Model	Α	В	С	Е	G	GA	GB	Н	J	JJ	K	KK	L	LD	LL	LW	М	MM	N	NC	NE
MY1B16□	80	6	3.5	2	14	9	16	37	M5 x 0.8	M4 x 0.7	10	6.5	80	3.5	40	30	6	M4 x 0.7	20	14	27.8
MY1B20□	100	7.5	4.5	2	12.5	12.5	20.5	46	M6 x 1	M4 x 0.7	12	10	100	4.5	50	37	8	M5 x 0.8	25	17.5	34

																						(mm)
Model	NH	NW	PA	PB	PC	PD	PG	PP	Q	QQ	QW	RR	SS	Т	TT	UU	٧٧	ww	XX	YH	YW	z
MY1B16□	27	37	40	20	40	4.5	3.5	7.5	153	9	30	11	3	7	9	10.5	10	7.5	22	26	32	160
MY1B20□	33.5	45	50	25	50	5	4.5	11.5	191	11	36	14.5	5	8	10.5	12	12.5	10.5	24	32.5	40	200

Hole Size for Centralized Piping on the Bottom

Model	WX	Υ	S	d	D	R	Applicable O-ring
MY1B16□	22	6.5	4	4	8.4	1.1	C6
MY1B20□	24	8	6	4	8.4	1.1	L 6

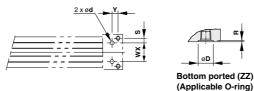
(Machine the mounting side to the dimensions below.)



D-□ -X□ Technical

MY1C

Series MY1B


Standard Type/Centralized Piping Type Ø25, Ø32, Ø40 Refer to page 1325 regarding centralized piping port variations.

Model	Α	В	С	Е	G	GB	Н	J	JJ	K	KK	L	LD	LL	LW	М	MM	N	NC	NE	NH	NW
MY1B25□	110	9	5.5	2	16	24.5	54	M6 x 1	M5 x 0.8	9.5	9	110	5.6	55	42	9	M5 x 0.8	30	20	40.5	39	53
MY1B32□	140	11	6.6	2	19	30	68	M8 x 1.25	M5 x 0.8	16	10	140	6.8	70	52	12	M6 x 1	37	25	50	49	64
MY1B40□	170	14	8.5	2	23	36.5	84	M10 x 1.5	M6 x 1	15	13	170	8.6	85	64	12	M6 x 1	45	30.5	63	61.5	75

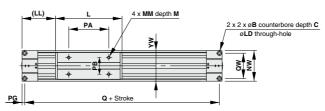
																						(mm)
Model	P	PA	PB	PC	PD	PP	PG	Q	QQ	QW	RR	SS	Т	TT	UU	٧٧	ww	XX	YH	YW	Z	ZZ
MY1B25□	Rc 1/8	60	30	55	6	12	7	206	16	42	16	6	10	14.5	15	16	12.5	28	38.5	46	220	Rc 1/16
MY1B32□	Rc 1/8	80	35	70	10	17	8	264	16	51	23	4	10	16	16	19	16	32	48	55	280	Rc 1/16
MY1B40□	Rc 1/4	100	40	85	12	18.5	9	322	24	59	27	10.5	14	20	22	23	19.5	36	60.5	67	340	Rc 1/8

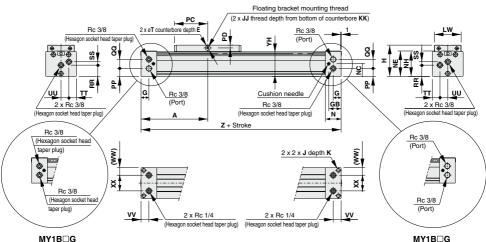
"P" indicates cylinder supply ports.

Hole Size for Centralized Piping on the Bottom

Model	WX	Y	S	d	D	R	Applicable O-ring
MY1B25□	28	9	7	6	11.4	1.1	C9
MY1B32□	32	11	9.5	6	11.4	1.1	L C9
MY1B40□	36	14	11.5	8	13.4	1.1	C11.2

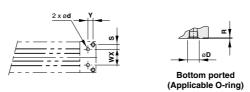
(Machine the mounting side to the dimensions below.)




Mechanically Jointed Rodless Cylinder Basic Type Series MY1B

Standard Type/Centralized Piping Type \emptyset 50, \emptyset 63

Refer to page 1325 regarding centralized piping port variations.


MY1B50□/63□ — Stroke

																				(mm)
Model	Α	В	С	Е	G	GB	Н	J	JJ	K	KK	L	LD	LL	LW	M	MM	N	NC	NE
MY1B50□	200	14	8.5	3	23.5	37	94	M12 x 1.75	M6 x 1	25	17	200	9	100	80	14	M8 x 1.25	47	38	76.5
MY1B63□	230	17	10.5	3	25	39	116	M14 x 2	M8 x 1.25	28	24	230	11	115	96	16	M8 x 1.25	50	51	100

																						(mm)
Model	NH	NW	PA	PB	PC	PD	PG	PP	Q	QQ	QW	RR	SS	Т	TT	UU	٧٧	ww	XX	YH	YW	Z
MY1B50□	75	92	120	50	100	8.5	8	24	384	27	76	34	10	15	22.5	23.5	23.5	22.5	47	74	92	400
MY1B63□	95	112	140	60	115	9.5	10	37.5	440	29.5	92	45.5	13.5	16	27	29	25	28	56	94	112	460

Hole Size for Centralized Piping on the Bottom

Model	WX	Υ	s	d	D	R	Applicable O-ring
MY1B50□	47	15.5	14.5	10	17.5	1.1	045
MY1B63□	56	15	18	10	17.5	1.1	C15

(Machine the mounting side to the dimensions below.)

D
-X

Technical data

MY1B -Z

MY1H -Z MY1B

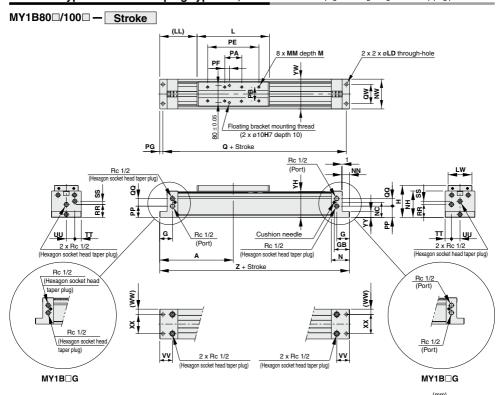
MY1M

MY1C

MY1H

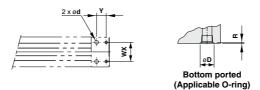
MY1 HT

MY1


 $\square W$

MY2C

MY2

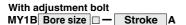

H□

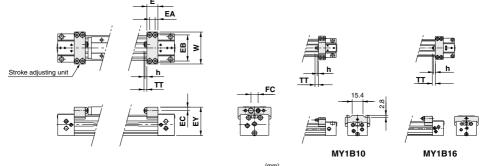
MY3A MY3B

																		(111111)
Model	Α	G	GB	Н	L	LD	LL	LW	М	MM	N	NC	NH	NN	NW	PA	PB	PE
MY1B 80□	345	60	71.5	150	340	14	175	112	20	M10 x 1.5	85	71	124	35	140	80	65	240
MY1B100□	400	70	79.5	190	400	18	200	140	25	M12 x 1.75	95	85	157	45	176	120	85	280

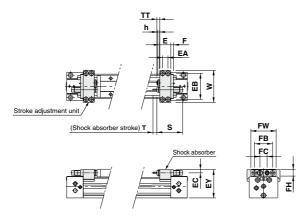
																	(mm)
Model	PF	PG	PP	Q	QQ	QW	RR	SS	TT	UU	٧٧	ww	XX	YH	YW	YY	Z
MY1B 80□	22	15	53	660	35	90	61	15	30	40	60	25	90	122	140	28	690
MY1B100□	42	20	69	760	38	120	75	20	40	48	70	28	120	155	176	35	800

Hole Size for Centralized Piping on the Bottom


Model	wx	Υ	d	D	R	Applicable O-ring
MY1B 80□	90	45	18	26	1.8	P22
MY1B100□	120	50	18	26	1.8	P22


(Machine the mounting side to the dimensions below.)

Mechanically Jointed Rodless Cylinder Basic Type Series MY1B


Stroke Adjustment Unit

									(111111)
Applicable bore size	Е	EA	EB	EC	EY	FC	h	TT	W
MY1B10	10	5	28	3.3	26.3	_	1.8	5 (Max. 10)	35
MY1B16	14.6	7	34.4	4.2	36.5	_	2.4	5.4 (Max. 11)	43
MY1B20	19	9	43	5.8	45.6	13	3.2	6 (Max. 12)	53
MY1B25	20	10	49	6.5	53.5	13	3.5	5 (Max. 16.5)	60
MY1B32	25	12	61	8.5	67	17	4.5	8 (Max. 20)	74
MY1B40	31	15	76	9.5	81.5	17	4.5	9 (Max. 25)	94

With low load shock absorber + Adjustment bolt MY1B Bore size ☐ — Stroke L

																(mm)
Applicable bore size	Е	EA	EB	EC	EY	F	FB	FC	FH	FW	h	S	Т	TT	W	Shock absorber model
MY1B20	19	9	43	5.8	45.6	4		13			3.2	40.8	6	6 (Max. 12)	53	RB0806
MY1B25	MY1B25 20 10 49 6.5 53.5						33	13	12	46	3.5	46.7	7	5 (Max. 16.5)	60	RB1007
MY1B32	25	12	61	8.5	67	6	43	17	16	56	4.5	67.3	12	8 (Max. 20)	74	RB1412
MY1B40	31	15	76	9.5	81.5	6	43	17	16	56	4.5	67.3	12	9 (Max. 25)	94	RB1412

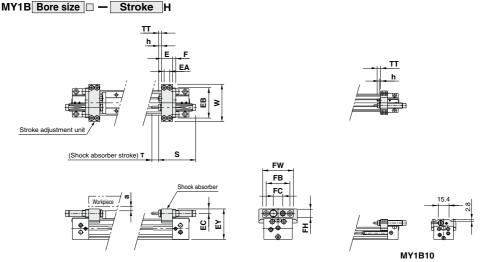
D-_

MY1H -Z

MY1M MY1C MY1H MY1 MY1 MY1

□W

MY2C MY2 HU MY3A MY3B

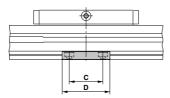

-X

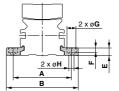
Series MY1B

Stroke Adjustment Unit

With high load shock absorber + Adjustment bolt

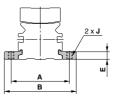
* Since the dimension EY of H unit is greater than the table top height (dimension H), when a workpiece is loaded that is larger than the full length (dimension L) of the slide table allow a clearance of size "a" or larger at the workpiece side.


(mm)

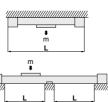

																	()
Applicable bore size	E	EA	EB	EC	EY	F	FB	FC	FH	FW	h	S	Т	TT	w	Shock absorber model	а
MY1B10	10	5	28	5.5	29.8	_	—	8	<u> </u>	_	1.8	40.8	5	5 (Max. 10)	35	RB0805	3.5
MY1B20	20	10	49	6.5	47.5	6	33	13	12	46	3.5	46.7	7	5 (Max. 11)	60	RB1007	2.5
MY1B25	20	10	57	8.5	57.5	6	43	17	16	56	4.5	67.3	12	5 (Max. 16.5)	70	RB1412	4.5
MY1B32	25	12	74	11.5	73	8	57	22	22	74	5.5	73.2	15	8 (Max. 20)	90	RB2015	6
MY1B40	31	15	82	12	87	8	57	22	22	74	5.5	73.2	15	9 (Max. 25)	100	RB2015	4

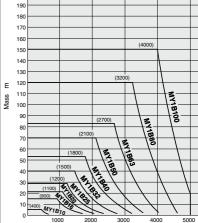
Mechanically Jointed Rodless Cylinder Basic Type Series MY1B


Side Support


Side support A MY-S□A

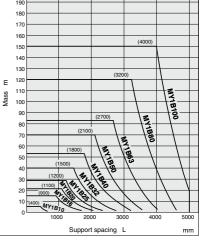
Side support B MY-S□B


										(11111)
Model	Applicable bore size	Α	В	С	D	Е	F	G	Н	J
MY-S10 A	MY1B 10	35	43.6	12	21	3	1.2	6.5	3.4	M4 x 0.7
MY-S16 A	MY1B 16	43	53.6	15	26	4.9	3	6.5	3.4	M4 x 0.7
MY-S20 A	MY1B 20	53	65.6		38	6.4	4	8	4.5	M5 x 0.8
MY-S25 A	MY1B 25	61	75	05	50	8	5	0.5		M6 x 1
	MY1B 32	70	84	35	50	8	٥	9.5	5.5	MID X I
MY-S32 A	MY1B 40	87	105	45		44.7			6.6	M0 4.05
IVI T-332 B	MY1B 50	113	131	45	64	11.7	6	11	0.0	M8 x 1.25
MY-S50 A	MY1B 63	136	158	55	80	14.8	8.5	14	9	M10 x 1.5
MY-S63 A	MY1B 80	170	200	70	100	40.0	40.5	17.5	11.5	M40 4 75
W 1-303 B	MY1B100	206	236	70	100	18.3	10.5	17.5	11.5	M12 x 1.75


^{*} A set of side supports consists of a left support and a right support.

kg 200

Guide for Side Support Application


For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load mass. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the graph on the right.

⚠ Caution

- 1. If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- 2. Support brackets are not for mounting; use them solely for providing support.

1239

D-□

-X□ Technical

MY1B MY1H MY1B

MY1M MY1C MY1H MY1 нт MY1 $\square W$ MY2C

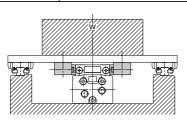
MY2

Η□ MY3A MY3B

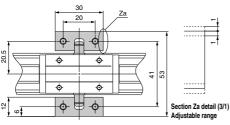
MY3M

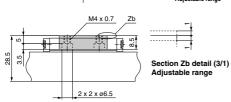
Series MY1B

Floating Bracket

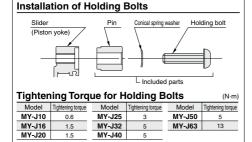

Facilitates connection to other guide systems.

Applicable bore size


ø10

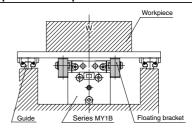

MY-J10

Application Example

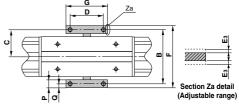


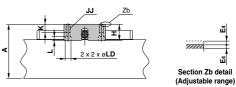
Mounting Example

Note) A set of brackets with floating mechanism consists of a left bracket and a right bracket.



Applicable bore size


ø16, ø20


MY-J16/MY-J20

Application Example

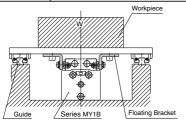
Mounting Example

										(mm
Model	Applicable bore size	Α	В	3	С	D	F		G	Н
MY-J16	MY1B16□	45 4		5	22.5	30	52		38	18
MY-J20	MY1B20□	55	52	2	26	35	59		50	21
Model	Applicable bore size	JJ		K	L	Р	Q	Ез	E4	LD
MY-J16	MY1B16□	M4 x 0.7		10	4	7	3.5	1	1	6
MY-J20	MY1B20□	M4 x 0).7	10	4	7	3.5	1	1	6

Note) A set of brackets with floating mechanism consists of a left bracket and a right

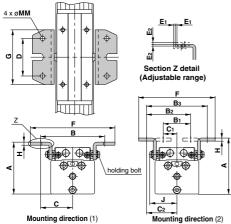
MY-J10 to 63 (1 set) Component Parts

Description	Qty.
Bracket	2
Pin	2
Conical spring washer	2
Holding bolt	2


Mechanically Jointed Rodless Cylinder Basic Type Series MY1B

Applicable bore size

ø**25**, ø**32**, ø**40**


MY-J25/MY-J32/MY-J40

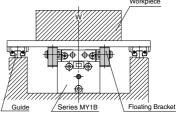
Application Example

Mounting Example

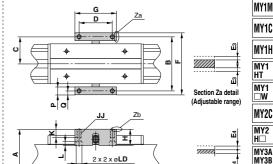
One set of brackets can be mounted in two directions for compact combinations.

								-		
	Applicable		С	ommo	n		Mou	nting o	direction	on (1)
Model	bore size	D	G	Н	J	MM	Α	В	С	F
MY-J25	MY1B25□	40	60	3.2	35	5.5	63	78	39	100
MY-J32	MY1B32□	55	80	4.5	40	6.5	76	94	47	124
MY-J40	MY1B40□	74	100	4.5	47	6.5	92	112	56	144
Model	Applicable		М	ountir	ng dire	ction	(2)		Adjustat	ole range
Model	bore size	Α	B ₁	B ₂	Вз	C ₁	C2	F	E1	E ₂
MY-J25	MY1B25□	65	28	53	78	14	39	96	1	1
MY-J32	MY1B32□	82	40	64	88	20	44	111	1	1

Note) A set of brackets with floating mechanism consists of a left bracket and a right


MY-J40 MY1B40□ 98 44 76 108 22 54 131

Applicable bore size


ø**50**, ø**63**

MY-J50/MY-J63 **Application Example**

Workpiece

Mounting Example

										(mm)
Model	Applicable bore size	Α		В	С	D	F		G	Н
MY-J50	MY1B50□	110	1	10	55	70	126	6	90	37
MY-J63	MY1B63□	131	13	30	65	80	149	9 1	00	37
Model	Applicable bore size	JJ		K	L	Р	Q	E 3	E4	LD
MY-J50	MY1B50□	M8 x 1.	25	20	7.5	16	8	2.5	2.5	11
MY-J63	MY1B63□	M10 x	1.5	20	9.5	19	9.5	2.5	2.5	14

Note) A set of brackets with floating mechanism consists of a left bracket and a right bracket

> D-□ -X□

MY1B -Z MY1H

MY1B

MY3M

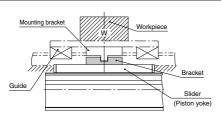
Technical

Section Zb detail

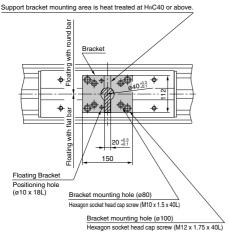
(Adjustable range)

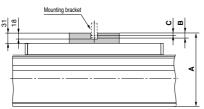
Series MY1B

Floating Bracket


Facilitates connection to other guide systems.

Applicable bore size


ø80, ø100


MY-J80/MY-J100

Application Example

Mounting Example

Hexagon Socket Head Cap Screw TighteningTorque (N·m) Model Tightening torque

					rightening re	nque (IN-III)
Model	Applicable bore size	Α	B (max.)	C (min.)	Model	Tightening torque
MY-J 80	MY1B 80□	181	15	9	MY-J 80	25
MY-J100	MY1B100□	221	15	9	MY-J100	44
Note) • Flat	t bar or round	bar mo	ounting ar	e possible	for the sup	port bracket

(slanted lines) mounted by the customer.

- "B" and "C" indicate the allowable mounting dimensions for the support bracket (flat bar or round bar).
- Consider support brackets with dimensions that allow the floating mechanism to function properly.

Floating Bracket Operating Precautions

⚠ Caution

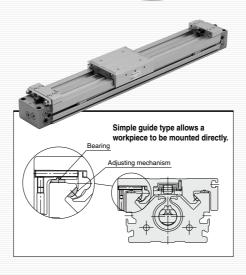
When connecting to a load which has an external guide mechanism, use a discrepancy absorption mechanism.

Mount the external guide mounting brackets and floating brackets in a place where the required degree of freedom for the floating Y and Z axes can be secured.

The thrust transmission area of the floating bracket must be fixed so that it does not partially contact with the body.

* Confirm the Coordinates and Moments in Model Selection on page 1215 for the details of floating Y and Z axes.

MY-J80, 100 (1 set) Component Parts


Description	Qty.		
Bracket	1		
Parallel pin	2		
Holding bolt	4		

Slide Bearing Guide Type

Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

MY1B -Z MY1H -Z

MY1B

MY11M MY1C

MY1H

MY1 HT MY1

□W MY2C

MY2 H□ MY3A MY3B

MY3M

Series MY1M Prior to Use

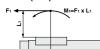
Maximum Allowable Moment/Maximum Load Mass

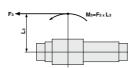
Model	Bore size	Maximum allowable moment (N·m)			Maximum load mass (kg)		
	(mm)	M1	M2	Мз	m1	m2	mз
MY1M	16	6.0	3.0	1.0	18	7	2.1
	20	10	5.2	1.7	26	10.4	3
	25	15	9.0	2.4	38	15	4.5
	32	30	15	5.0	57	23	6.6
	40	59	24	8.0	84	33	10
	50	115	38	15	120	48	14
	63	140	60	19	180	72	21

The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

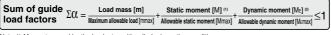
Maximum Allowable Moment

Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.


Load mass (kg)



Moment (N·m)



<Calculation of guide load factor>

- 1. Maximum allowable load (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.
 - * To evaluate, use ν a (average speed) for (1) and (2), and ν (collision speed $\nu = 1.4\nu$ a) for (3). Calculate mmax for (1) from the maximum allowable load graph (m1, m2, m3) and Mmax for (2) and (3) from the maximum allowable moment graph (M1, M2, M3).

Note 1) Moment caused by the load, etc., with cylinder in resting condition.

Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper).

Note 3) Depending on the shape of the workpiece, multiple moments may occur. When this happens, the sum of the load factors (α) is the total of all such moments.

2. Reference formula [Dynamic moment at impact]

Use the following formulae to calculate dynamic moment when taking stopper impact into consideration.

m: Load mass (kg)

F: Load (N)

FE: Load equivalent to impact (at impact with stopper) (N) **υa**: Average speed (mm/s)

M: Static moment (N-m)

 $v = 1.4va \text{ (mm/s) } Fe = 1.4va \cdot \delta \cdot \vec{m} \cdot \vec{g}$

∴ $M_E = \frac{1}{3} \cdot F_E \cdot L_1 = 4.57 va\delta mL_1 (N \cdot m)$

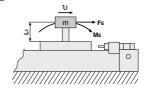
υ: Collision speed (mm/s)

L1: Distance to the load's center of gravity (m)

ME: Dynamic moment (N-m)

δ: Damper coefficient At collision: 1) = 1.41)a With rubber bumper = 4/100

(MY1B10, MY1H10) With air cushion = 1/100


With shock absorber = 1/100

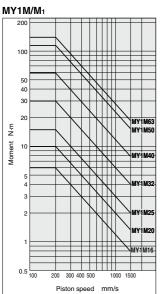
g: Gravitational acceleration (9.8 m/s2)

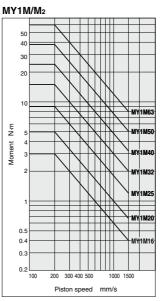
Note 4) 1.4 $va\delta$ is a dimensionless coefficient for calculating impact force.

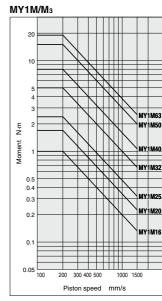
Note 5) Average load coefficient (= $\frac{1}{3}$): This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.

3. For detailed selection procedures, refer to pages 1246 and 1247.

Maximum Load Mass


conditions.


Select the load from within the range of limits shown in the graphs. Note


that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown

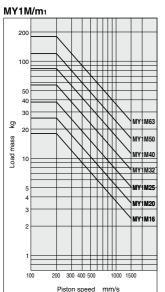
in the graphs. Therefore, also check

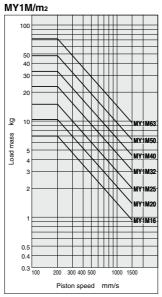
the allowable moment for the selected

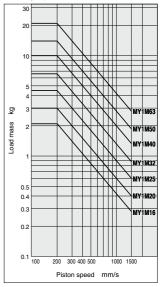
MY1M MY1C MY1H

MY1B -Z

MY1H


MY1B


MY1 HT MY1


MY2C MY2

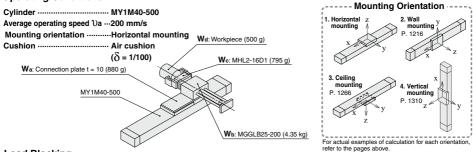
H□ MY3A MY3B

MY3M

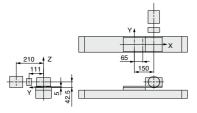
MY1M/m₃

D
-X

Technical data


Series MY1M

Model Selection

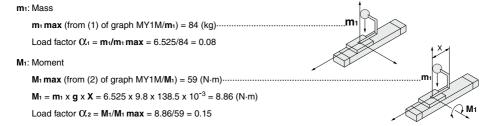

Following are the steps for selecting the most suitable Series MY1M to your application.

Calculation of Guide Load Factor

1. Operating Conditions

2. Load Blocking

Mass and Center of Gravity for Each Workpiece

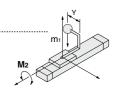

Workpiece no.	Mass m n	Center of gravity			
		X-axis Xn	Y-axis Yn	Z-axis Zn	
Wa	0.88 kg	65 mm	0 mm	5 mm	
Wb	4.35 kg	150 mm	0 mm	42.5 mm	
Wc	0.795 kg	150 mm	111 mm	42.5 mm	
Wd	0.5 kg	150 mm	210 mm	42.5 mm	
				n-a b a d	

n=a, b, c, d

3. Composite center of Gravity Calculation

$$\begin{split} & \mathbf{m}_1 = \Sigma m_n \\ &= 0.88 + 4.35 + 0.795 + 0.5 = \textbf{6.525 kg} \\ & \mathbf{X} = \frac{1}{\mathbf{m}_1} \times \Sigma \left(\mathbf{m}_n \times \mathbf{x}_n \right) \\ &= \frac{1}{6.525} \left(0.88 \times 65 + 4.35 \times 150 + 0.795 \times 150 + 0.5 \times 150 \right) = \textbf{138.5 mm} \\ & \mathbf{Y} = \frac{1}{\mathbf{m}_1} \times \Sigma \left(\mathbf{m}_n \times \mathbf{y}_n \right) \\ &= \frac{1}{6.525} \left(0.88 \times 0 + 4.35 \times 0 + 0.795 \times 111 + 0.5 \times 210 \right) = \textbf{29.6 mm} \\ & \mathbf{Z} = \frac{1}{\mathbf{m}_1} \times \Sigma \left(\mathbf{m}_n \times \mathbf{z}_n \right) \\ &= \frac{1}{6.525} \left(0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5 \right) = \textbf{37.4 mm} \end{split}$$

4. Calculation of load factor for static load


Model Selection Series MY1M

M2: Moment

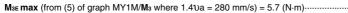
$$M_2$$
 max (from (3) of graph MY1M/ M_2) = 24 (N·m)······

$$M_3 = m_1 \times q \times Y = 6.525 \times 9.8 \times 29.6 \times 10^{-3} = 1.89 \text{ (N·m)}$$

Load factor
$$Ox_3 = M_2/M_2 \text{ max} = 1.89/24 = 0.08$$

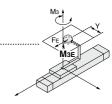
5. Calculation of Load Factor for Dynamic Moment -

Equivalent load FE at impact


$$\mathbf{F}_{E} = 1.4 \ \mathbf{va} \times \delta \times \mathbf{m} \times \mathbf{g} = 1.4 \times 200 \times \frac{1}{100} \times 6.525 \times 9.8 = 179.1 \text{ (N)}$$

M_{1E}: Moment

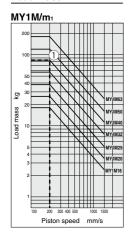
$$\mathbf{M}_{1E} = \frac{1}{3} \times \mathbf{F}_{E} \times \mathbf{Z} = \frac{1}{3} \times 179.1 \times 37.4 \times 10^{-3} = 2.23 \text{ (N·m)}$$

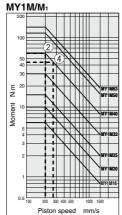

Load factor
$$\Omega_4 = M_{1E}/M_{1E} \text{ max} = 2.23/42.1 = 0.05$$

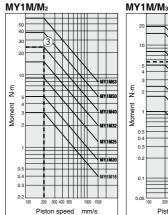
$$\mathbf{M}_{3E} = \frac{1}{3} \times \mathbf{F}_{E} \times \mathbf{Y} = \frac{1}{3} \times 179.1 \times 29.6 \times 10^{-3} = 1.77 \text{ (N·m)}$$

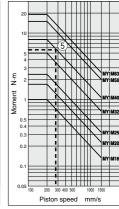
Load factor $Cl_5 = M_{3E}/M_{3E} max = 1.77/5.7 = 0.31$

6. Sum and Examination of Guide Load Factors


$$\Sigma_{CL} = CL_1 + CL_2 + CL_3 + CL_4 + CL_5 = 0.67 \le 1$$


The above calculation is within the allowable value, and therefore the selected model can be used. Select a shock absorber separately.


In an actual calculation, when the total sum of guide load factors α in the formula above is more than 1, consider either decreasing the speed, increasing the bore size, or changing the product series. This calculation can be easily made using the "SMC Pneumatics CAD System".


Load Mass

Allowable Moment

MY1B -Z MY1H -Z

MY1B MY1M

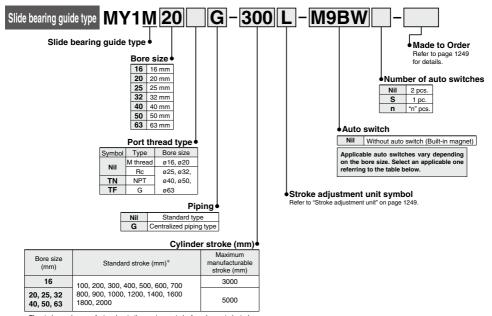
MY1C MY1H

MY1 HT MY1 □W

MY2C

MY3A MY3B

MY3M


D-U

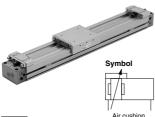
Mechanically Jointed Rodless Cylinder Slide Bearing Guide Type

Series MY1M

Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

How to Order

^{*} The stroke can be manufactured up to the maximum stroke from 1 mm stroke in 1 mm increments. However, when the stroke is 49 mm or less, the air cushion capability lowers and multiple auto switches cannot be mounted. Pay special attention to this point Also when exceeding a 2000 mm stroke, specify "-XB11" at the end of the model number. For details, refer to the "Made to Order Specifications"


Applicable Auto Switches/Refer to pages 1559 to 1673 for further information on auto switches.

		Floridasi	light	Wiring	L	oad volta	ge	,	Auto swit	ch model		Lead	wire I	length	n (m)	D		
Type	Special function	Electrical entry	icator light	(Output)	_	C	AC	Perpen	dicular	In-l	ine	0.5	1	3		Pre-wired connector	Applical	ole load
		Citaly	Indic	(Output)	L	,,,	AC	ø16, ø20	ø25 to ø63	ø16, ø20	ø25 to ø63	(Nil)	(M)	(L)	(Z)	CONTINUESTON		
<u> </u>				3-wire (NPN)		5 V. 12 V		M9	NV	MS	N	•	•	•	0	0	IC circuit	
switch				3-wire (PNP)		J V, 12 V		М9	PV	MS	P	•	•	•	0	0	IC GICUIT	
				2-wire		12 V		M9	BV	MS	В	•	•	•	0	0	_	
anto	Diameter indication			3-wire (NPN)		5 V, 12 V		M9N	IWV	M9I	١W	•	•	•	0	0	IC circuit	Delevi
	Diagnostic indication (2-color indication)	Grommet	Yes	3-wire (PNP)	24 V	J V, 12 V	_	M9F	٧W٧	M9I	PW	•	•	•	0	0	IC GICUIT	Relay, PLC
state	(2-color iridication)			2-wire		12 V		M9E	swv .	M9I	3W	•	•	•	0	0	_	1 LC
				3-wire (NPN)		5 V, 12 V		M9N	AV**	M9N	A**	0	0	•	0	0	IC circuit	
Solid	Water resistant (2-color indication)			3-wire (PNP)		5 V, 12 V		M9P	4V**	M9P	A**	0	0	•	0	0	IC CITCUIT	
	(2-color indication)			2-wire		12 V		M9B	AV**	M9B	A**	0	0	•	0	0	_	
_ 달			Yes	3-wire (NPN equivalent)	_	5 V	_	A96V	_	A96	Z76	•	_	•	_	_	IC circuit	_
Reed auto switch		Grommet	168	2-wire	24 V	12 V	100 V	A93V	_	A93	Z73	•	_	•	•	_	-	Relay,
art –			No	2-wire	24 V	12 V	100 V or less	A90V	_	A90	Z80	•	_	•	_	_	IC circuit	PLC

- Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
- Consult with SMC regarding water resistant types with the above model numbers. * Lead wire length symbols: 0.5 m Nil (Example) M9NW

 1 m M (Example) M9NWM
 - * Solid state auto switches marked with "O" are produced upon receipt of order.
 - 3 m L (Example) M9NWL 5 m Z (Example) M9NWZ
- * Separate switch spacers (BMG2-012) are required to retrofit auto switches (M9 type) on cylinders ø25 to ø63.
- * There are other applicable auto switches than listed above. For details, refer to page 1321. * For details about auto switches with pre-wired connector, refer to pages 1626 and 1627
- * Auto switches are shipped together (not assembled). (Refer to pages 1319 to 1321 for the details of auto switch mounting.)

Mechanically Jointed Rodless Cylinder Slide Bearing Guide Type Series MY1M

Made to Order: Individual Specifications (For details, refer to page 1322.)

Symbol	Specifications
-X168	Helical insert thread specifications

Made to Order Specifications (For details, refer to pages 1699 to 1818.)

Symbol	
-XB11	Long stroke
-XB22	Shock absorber soft type Series RJ type
-XC67	NBR rubber lining in dust seal band

Stroke Adjustment Unit Symbol

Specifications

Bore size (mm)	16	20	25	32	40	50	63			
Fluid		Air									
Action		Double acting									
Operating p	ressure range	0.15 to 0.8 MPa									
Proof pres	sure	1.2 MPa									
Ambient and fluid temperature			5 to 60°C								
Cushion		Air cushion									
Lubricatio	n	Non-lube									
Stroke length tolerance		1000 or less +1.8 1001 to 3000 +2.8		2700 or less ^{+1.8} ₀ , 2701 to			5000 ^{+2.8}				
Piping	Front/Side port	M5 x 0.8		Rc	1/8	Rc 1/4	Rc	3/8			
port size	Bottom port	ø4		Ø	6	ø8	Ø	10			

Piston Speed

В	ore size (mm)	16 to 63
Without stroke adjustment unit		100 to 1000 mm/s
Stroke	A unit	100 to 1000 mm/s ⁽¹⁾
adjustment unit	L unit and H unit	100 to 1500 mm/s ⁽²⁾

Note 1) Be aware that when the stroke adjustment range is increased by manipulating the adjustment bolt, the air cushion capacity decreases. Also, when exceeding the air cushion stroke ranges on page 1252, the piston speed should be 100 to 200 mm per second.

Note 2) The piston speed is 100 to 1000 mm/s for centralized piping.

Note 3) Use at a speed within the absorption capacity range. Refer to page 1252.

L6L7

L7

HL7

H6L7

H7L7

1.6H

L7H

H₆H

H7H

L6

L7L6

HL₆

Stroke Adjustment Unit Specifications

Bore siz	e (mm)	1	6		20			25			32			40			50			63	
Unit symbo	- (/	Α	L	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	н	Α	L	Н
Configuration	rber model	With adjustment bolt	RB 0806 + with adjustment bolt	With adjustment bolt	RB 0806 + with adjustment bolt	RB 1007 + with adjustment bolt	With adjustment bolt	RB 1007 + with adjustment bolt	RB 1412 + with adjustment bolt	With adjustment bolt	RB 1412 + with adjustment bolt	With	With adjustment bolt	RB 1412 + with adjustment bolt		With adjustment bolt	RB 2015 + with adjustment bolt	WILL	With adjustment bolt	RB 2015 + with adjustment bolt	RB 2725 + with adjustment bolt
Stroke adjust- ment range by intermediate	Without spacer With short spacer		-5.6 -11.2		to -6		_	to –11 1.5 to -		_) to -1:		_	to –16	_	_	to -20	_		to –25	
fixing spacer	With long spacer		0 –16.8		2 to -1			3 to –3		_	24 to ∹			32 to –			0 to –6	_		0 to -7	-

Right side stroke adjustment unit

Stroke adjustment unit mounting diagram

Stroke adjustment unit Intermediate fixing spacer Spacer length

H: With high load shock absorber L: With low load shock absorber A: With adjustment bolt + Adjustment bolt ment bolt + Adjustr Without unit With short With long With short With long With long With short spacer spacer spacer spacer spacer spacer Without unit Nil SΔ SA6 SA7 SI SL6 SI 7 SH SH6 SH7 A: With adjustment bolt AS AA6 AA7 ΑL AL₆ AL7 AΗ AH6 AH7 A: With adjustment bolt
With short spacer
With long spacer
L: With low load shock absorber + A6S **A6A** 46 **A6A7** ΔAI **A6L6** A6L7 A6H **A6H6** A6H7 A7S Δ7Δ **A7A6** Α7 A7L A7L6 A7L7 A7H **A7H6** A7H7 LA6 LS LA7 LL6 LL7 LH LH6 LH7

L6A7

L7A7

HA7

H6A7

L6L

L7L

H6L

I 6A6

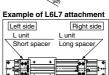
L7A6

HA6

With short spacer H6S H6A6 H6L6 bolt With long spacer H7S H7A H7A6 H7A7 H7L H7L6 Spacers are used to fix the stroke adjustment unit at an intermediate stroke position

I 6A

L7A


HA

H6A

L6S

L7S

HS

Shock Absorbers for L and H Units

Adjustment With short spacer

H: With high load shock absorber

With long spacer

bolt

Adjustment

ide

T	Stroke			Во	re size (m	nm)			
Type	adjustment unit	16	20	25	32	40	50	63	
Standard			0806	RB1007	RB1	412	RB2015		
(Shock absorber/ RB series)	Н	— RB1007		RB1412	RB2015		RB2	2725	
Shock absorber/	L	RJ08	B06H	RJ1007H	RJ14	112H	_		
soft type RJ series mounted (-XB22)	Н	_	RJ1007H	RJ1412H	_	_	_	_	

- * The shock absorber service life is different from that of the MY1M cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period
- * Mounted shock absorber soft type RJ series (-XB22) is made to order specifications. For details, refer to page 1722.

Shock Absorber Specifications

L6H7

L7H7

HH7

H6H7

H7

L6H6

L7H6

HH₆

Н6

H7H6

Mod	iel	RB 0806	RB 1007	RB 1412	RB 2015	RB 2725				
Max. energy al	bsorption (J)	2.9	5.9	19.6	58.8	147				
Stroke absor	6	7	12	15	25					
Max. collision s	speed (mm/s)	1500								
Max. operating frequency	uency (cycle/min)	80	70	45	25	10				
Spring	1.96	4.22	6.86	8.34	8.83					
force (N)	4.22	6.86	15.98	20.50	20.01					
Operating tempera	5 to 60									

Port

∌SMC

D-□ -X□

Technical

MY1B

MY1B

MY1N MY1C MY1H MY1 MY1 $\square W$

MY2C

Ιн⊓

MY3A

MY3B

MY3M

-Z MY1H

data

1249

^{*} Stroke adjustment range is applicable for one side when mounted on a cylinder.

The shock absorber service life is different from that of the MY1M cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.

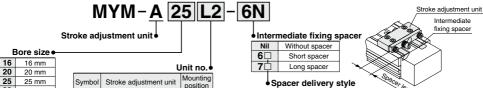
Theoretical Output

								(N)	
Bore size	Piston area		Operating pressure (MPa)						
(mm)	(mm ²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8	
16	200	40	60	80	100	120	140	160	
20	314	62	94	125	157	188	219	251	
25	490	98	147	196	245	294	343	392	
32	804	161	241	322	402	483	563	643	
40	1256	251	377	502	628	754	879	1005	
50	1962	392	588	784	981	1177	1373	1569	
63	3115	623	934	1246	1557	1869	2180	2492	

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Weight

							(kg
Bore	Basic	Additional weight per each	Weight of moving	Side support bracket weight (per set)		ljustment u (per unit)	
(mm)	weight	50 mm of stroke	parts	Type A and B	A unit weight	L unit weight	H unit weight
16	0.67	0.12	0.19	0.01	0.03	0.04	_
20	1.11	0.16	0.28	0.02	0.04	0.05	0.08
25	1.64	0.24	0.39	0.02	0.07	0.11	0.18
32	3.27	0.38	0.81	0.04	0.14	0.23	0.39
40	5.88	0.56	1.41	0.08	0.25	0.34	0.48
50	10.06	0.77	2.51	0.08	0.36	0.51	0.81
63	16.57	1.11	3.99	0.17	0.68	0.83	1.08


Calculation: (Example) MY1M25-300A

 Basic weight-----1.64 kg Cylinder stroke ----- 300 stroke Additional weight -----·· 0.24/50 stroke $1.64 + 0.24 \times 300/50 + 0.07 \times 2 \cong 3.22 \text{ kg}$

Weight of A unit----- 0.07 kg

Option

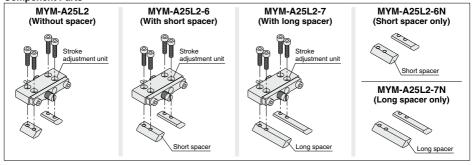
Stroke Adjustment Unit Part No.

position A1 Left A unit A2 Right L1 Left Lunit L2 Right H1 Left H unit H2 Right

Note 1) Refer to page 1249 for details about

adjustment range. Note 2) A and L unit only for ø16

* Spacers are used to fix the stroke adjustment unit at an


intermediate stroke position.

* Spacers are shipped for a set of two

Unit installed

Spacer only

Component Parts

Side Support Part No.

Bore size (mm)	16	20	25	32	40	50	63
Side support A	MY-S16A	MY-S20A	MY-S25A	MY-S32A	MY-S	640A	MY-S63A
Side support B	MY-S16B	MY-S20B	MY-S25B	MY-S32B	MY-S	S40B	MY-S63B

For details about dimensions, etc., refer to page 1261.

A set of side supports consists of a left support and a right support.

Series MY1M

Cushion Capacity

Cushion Selection

<Air cushion>

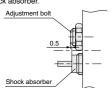
Air cushions are a standard feature on mechanically jointed rodless cylinders. The air cushion mechanism is incorporated to prevent excessive impact of the piston at the stroke end during high speed operation. The purpose of air cushion, thus, is not to decelerate the piston near the stroke end. The ranges of load and speed that air cushions can absorb are within the air cushion limit lines shown in the graphs.

<Stroke adjustment unit with shock absorber>

Use this unit when operating with a load or speed exceeding the air cushion limit line, or when cushioning is required outside of the effective air cushion stroke range due to stroke adjustment.

<L unit>

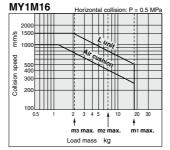
Use this unit when the cylinder stroke is outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line or below the L unit limit line.

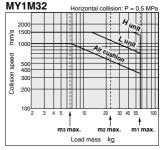

<H unit>

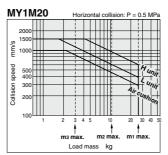
Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.

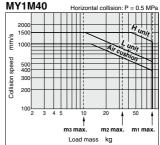
Refer to the figure below when using the adjustment bolt to perform stroke adjustment.

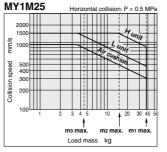
When the effective stroke of the shock absorber decreases as a result of stroke adjustment, the absorption capacity decreases dramatically. Secure the adjustment bolt at the position where it protrudes approximately 0.5 mm from the shock absorber.

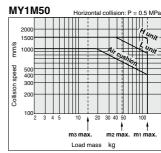

Do not use a shock absorber together with air cushion.

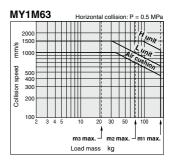

Air Cushion Stroke


Bore size (mm)	Cushion stroke
16	12
20	15
25	15
32	19
40	24
50	30
63	37


(mm)


Absorption Capacity of Air Cushion and Stroke Adjustment Units





Tightening Torque for Stroke Adjusting Unit Holding Bolts (N·m)

Bore size (mm)	Unit	Tightening torque
16	Α	0.7
	L	0.7
	Α	
20	L	1.8
	н	
	Α	
25	L	3.5
	Н	
	Α	
32	L	5.8
	Н	
	Α	
40	L	13.8
	Н	
	Α	
50	L	13.8
	Н	
	Α	
63	L	27.5
	Н	

Tightening Torque for Stroke Adjustment Unit Lock Plate Holding Bolts

Bore size (mm)	Unit	Tightening torque
25	L	1.2
25	Н	3.3
32	L	3.3
32	Н	10
40	L	3.3
""	Н	10

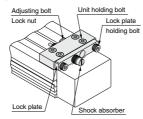
Calculation of Absorbed Energy for Stroke Adjusting Unit with Shock Absorber

Aujusting	Onit with She	DCK ADSOL	Jer (N·m)
	Horizontal collision	Vertical (Downward)	Vertical (Upward)
Type of impact	- v	0 H s	<u>s</u> = -2 -
Kinetic energy E ₁		$\frac{1}{2}m{\cdot}{\mathcal V}^2$	
Thrust energy E2	F·s	F·s + m·g·s	F·s – m·g·s
Absorbed energy E		E1 + E2	

Symbol

- 1): Speed of impact object (m/s) F: Cylinder thrust (N)
- s: Shock absorber stroke (m)
- m: Mass of impact object (kg)
- g: Gravitational acceleration (9.8 m/s2)

Note) The speed of the impact object is measured at the time of impact with the shock absorber.


∕ Precautions

Be sure to read before handling, Refer to front matter 57 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Use caution not to get your hands caught in the unit.

· When using a product with stroke adjustment unit, the space between the slide table (slider) and the stroke adjustment unit becomes narrow at the stroke end, causing a danger of hands getting caught. Install a protective cover to prevent direct contact with the human body.

<Fastening of unit>

The unit can be secured by evenly tightening the four unit holding bolts.

∕ Caution

Do not operate with the stroke adjustment unit fixed in an intermediate position.

When the stroke adjustment unit is fix in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In such cases, as a stroke adjustment unit with the spacer for intermediate securing is available, it is recommended to use it.

For other lengths, please consult with SMC (Refer to "Tightening Torque for Stroke Adjusting Unit Holding Bolts".)

<Stroke adjustment with adjustment bolt> Loosen the adjustment bolt lock nut, and adjust the stroke from the lock plate side using a hexagon wrench. Retighten the lock nut.

<Stroke adjustment with shock absorber>

Loosen the two lock plate holding bolts, turn the shock absorber and adjust the stroke. Then, uniformly tighten the lock plate holding bolts to secure the shock absorber.

Take care not to over-tighten the holding bolts. (Except ø16, ø20, ø50, ø63)

(Refer to "Tightening Torgue for Stroke Adjusting Unit Lock Plate Holding Bolts".)

Note) Although the lock plate may slightly bend due to tightening of the lock plate holding bolt, this does not a affect the shock absorber and locking function.

> MY1B MY1H MY1B

MY1N

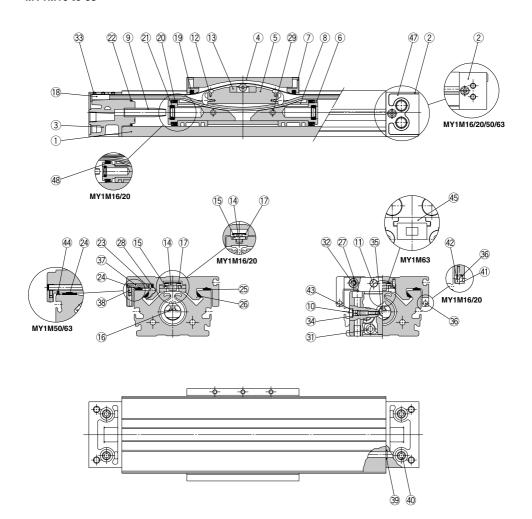
MY1C

MY1H MY1 ΗТ

MY1 $\square W$ MY2C

MY2 Ιн⊓ MY3A MY3B

MY3M


Technical

Series MY1M

Construction: Ø16 to Ø63

MY1M16 to 63

Mechanically Jointed Rodless Cylinder Slide Bearing Guide Type Series MY1M

MY1M16 to 63

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover WR	Aluminum alloy	Painted
3	Head cover WL	Aluminum alloy	Painted
4	Slide table	Aluminum alloy	Hard anodized
5	Piston yoke	Aluminum alloy	Chromated
6	Piston	Aluminum alloy	Chromated
7	End cover	Special resin	
8	Wear ring	Special resin	
9	Cushion ring	Aluminum alloy	Anodized
10	Cushion needle	Rolled steel	Nickel plated
11	Stopper	Carbon steel	Nickel plated
12	Belt separator	Special resin	
13	Coupler	Sintered iron material	
14	Guide roller	Special resin	
15	Guide roller shaft	Stainless steel	
18	Belt clamp	Special resin	
23	Adjusting arm	Aluminum alloy	Chromated
24	Bearing R	Special resin	
25	Bearing L	Special resin	
26	Bearing S	Special resin	

No.	Description	Material	Note
27	Spacer	Stainless steel	
28	Backup spring	Stainless steel	
29	Spring pin	Carbon tool steel	
31	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
32	Hexagon socket button head screw	Chromium molybdenum steel	Nickel plated
33	Hexagon socket head set screw	Chromium molybdenum steel	Black zinc chromated/Nickel plated
35	Hexagon socket head taper plug	Carbon steel	Nickel plated
36	Magnet	_	
37	Hexagon socket head set screw	Chromium molybdenum steel	Black zinc chromated
38	Hexagon socket head set screw	Chromium molybdenum steel	Black zinc chromated
40	Hexagon socket head taper plug	Carbon steel	Nickel plated
41	Magnet holder	Special resin	(ø16, ø20)
42	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
43	Type CR retaining ring	Spring steel	
45	Head plate	Aluminum alloy	Hard anodized (ø63)
47	Port cover	Special resin	(ø25 to ø40)
48	Lube retainer	Special resin	(ø16, ø20)

MY1B -Z MY1H

MY1B

MY1M MY1C

MY1H

MY1 HT MY1 ∣□W MY2C

MY2 Η□ MY3A

MY3B MY3M

Replacement Part: Seal Kit

No.	Description	Qty.	MY1M16	MY1M20	MY1M25	MY1M32	MY1M40	MYTM50	MY1M63
16	Seal belt	1	MY16-16A-Stroke	MY20-16A-Stroke	MY25-16A-Stroke	MY32-16A-Stroke	MY40-16A-Stroke	MY50-16A-Stroke	MY63-16A-Stroke
17	Dust seal band	1	MY16-16B-Stroke	MY20-16B-Stroke	MY25-16B-Stroke	MY32-16B-Stroke	MY40-16B-Stroke	MY50-16B-Stroke	MY63-16B-Stroke
34	O-ring	,	KA00309	KA00311	KA00311	KA00320	KA00402	KA00777	KA00777
34	O-rilly	-	(ø4 x ø1.8 x ø1.1)	(ø5.1 x ø3 x ø1.05)	(ø5.1 x ø3 x ø1.05)	(ø7.15 x ø3.75 x ø1.7)	(ø8.3 x ø4.5 x ø1.9)	_	_
44	Side scraper	2	_	_	_	_	_	MYM50-15CK0502B	MYM63-15CK0503B
19	Scraper	2							
20	Piston seal	2							
21	Cushion seal	2	MY1M16-PS	MY1M20-PS	MY1M25-PS	MY1M32-PS	MY1M40-PS	MY1M50-PS	MY1M63-PS
22	Tube gasket	2							
30	O-ring	4	1						

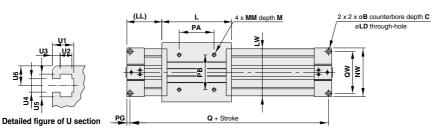
SMC

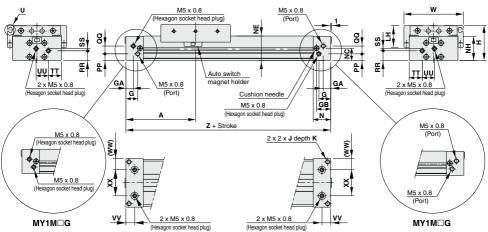
* Seal kit includes a grease pack (10 g).

When (6) and (7) are shipped independently, a grease pack is included. (10 g per 1000 strokes)

Order with the following part number when only the grease pack is needed.

Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

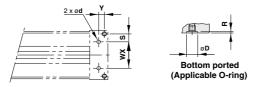

Note) Two kinds of dust seal bands are available. Verify the type to use, since the part number varies


depending on the treatment fthe hexagon socket head set screw ③.

A: Black zinc chromated→MY□□-16B-stroke, B: Nickel plated→MY□□-16BW-stroke

^{*} Seal kit includes (9, 20, 2), 22 and 39. Order the seal kit based on each bore size.

MY1M16□/20□- Stroke



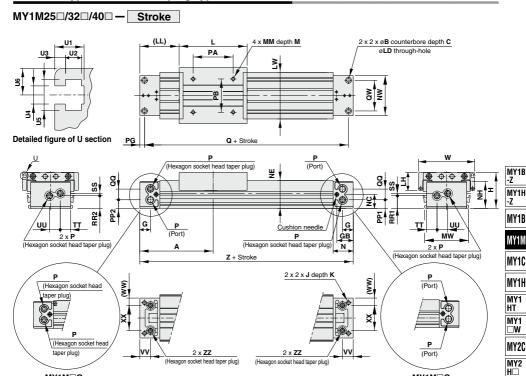
Model	Α	В	С	G	GA	GB	Н	J	K	L	LD	LH	LL	LW	M	MM	N	NC	NE	NH	NW	PA
MY1M16□	80	6	3.5	13.5	8.5	16.2	40	M5 x 0.8	10	80	3.6	22.5	40	54	6	M4 x 0.7	20	14	28	27.7	56	40
MY1M20□	100	7.5	4.5	12.5	12.5	20	46	M6 x 1	12	100	4.8	23	50	58	7.5	M5 x 0.8	25	17	34	33.7	60	50

															(mm)
Model	PB	PG	PP	Q	QQ	QW	RR	SS	TT	UU	VV	W	ww	XX	Z
MY1M16□	40	3.5	7.5	153	9	48	11	2.5	15	14	10	68	13	30	160
MY1M20□	40	4.5	11.5	191	10	45	14.5	5	18	12	12.5	72	14	32	200

Detailed [Dime	nsior	ıs of	U Se	ction	(mm)								
Model U1 U2 U3 U4 U5 U6														
MY1M16□	5.5	3	2	3.4	5.8	5								
MY1M20□	5.5	3	2	3.4	5.8	5.5								

(mm)

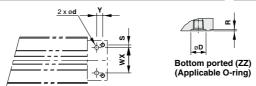
Hole Size for Centralized Piping on the Bottom


1	Model	wx	Y	S	d	D	R	Applicable O-ring
MY	/1M16□	30	6.5	9	4	8.4	1.1	
M	/1M20□	32	8	6.5	4	8.4	1.1	C6

(Machine the mounting side to the dimensions below.)

Mechanically Jointed Rodless Cylinder Slide Bearing Guide Type Series MY1M

Standard Type/Centralized Piping Type Ø25, Ø32, Ø40 Refer to page 1325 regarding centralized piping port variations.

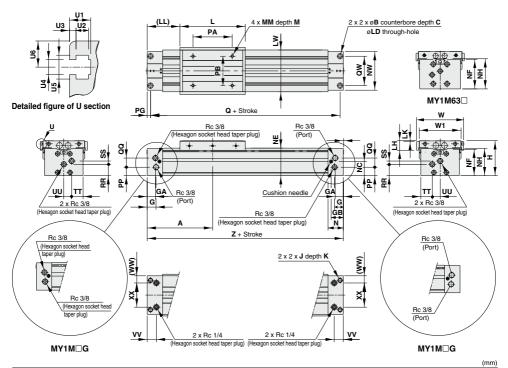

																							(mm)
Model	Α	В	С	G	GB	Н	J	K	L	LD	LH	LL	LW	M	MM	MW	N	NC	NE	NH	NW	P	PA
MY1M25□	110	9	5.5	17	24.5	54	M6 x 1	9.5	102	5.6	27	59	70	10	M5 x 0.8	66	30	21	41.8	40.5	60	Rc1/8	60
MY1M32□	140	11	6.5	19	30	68	M8 x 1.25	16	132	6.8	35	74	88	13	M6 x 1	80	37	26	52.3	50	74	Rc1/8	80
MY1M40□	170	14	8.5	23	36.5	84	M10 x 1.5	15	162	8.6	38	89	104	13	M6 x 1	96	45	32	65.3	63.5	94	Rc1/4	100
				•	•			•		•			•	•				•	#D# : 1				

MY1M□G

"P" indicates cylinder supply ports. **Detailed Dimensions**

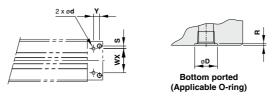
MY1M□G

	(mm) of U Section												(mm)												
Model	PB	PG	PP1	PP2	Q	QQ	QW	RR1	RR2	SS	TT	UU	٧٧	W	ww	XX	Z	ZZ	Model	U1	U2	U3	U4	U5	U6
MY1M25□	50	7	12.7	12.7	206	15.5	46	18.9	17.9	4.1	15.5	16	16	84	11	38	220	Rc 1/16	MY1M25□	5.5	3	2	3.4	5.8	5
MY1M32□	60	8	15.5	18.5	264	16	60	22	24	4	21	16	19	102	13	48	280	Rc 1/16	MY1M32□	5.5	3	2	3.4	5.8	7
MY1M40□	80	9	17.5	20	322	26	72	25.5	29	9	26	21	23	118	20	54	340	Rc 1/8	MY1M40□	6.5	3.8	2	4.5	7.3	8


Hole Size for Centralized Piping on the Bottom

Model	WX	Y	S	d	D	R	Applicable O-ring					
MY1M25□	38	9	4	6	11.4	1.1	C9					
MY1M32□	48	11	6	6	11.4	1.1	l Ca					
MY1M40□	54	14	9	8	13.4	1.1	C11.2					

(Machine the mounting side to the dimensions below.)

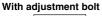

MY3A MY3B MY1M50□/60□ - Stroke

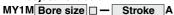
Model	Α	В	С	G	GA	GB	Н	J	K	L	LD	LH	LK	LL	LW	M	MM	N	NC	NE	NF	NH	NW	PA
MY1M50□ 2	200	17	10.5	27	25	37.5	107	M14 x 2	28	200	11	29	2	100	128	15	M8 x 1.25	47	43.5	84.5	81	83.5	118	120
MY1M63□ 2	230	19	12.5	29.5	27.5	39.5	130	M16 x 2	32	230	13.5	32.5	5.5	115	152	16	M10 x 1.5	50	56	104	103	105	142	140

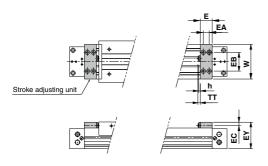
																(mm)
Model	PB	PG	PP	Q	QQ	QW	RR	SS	TT	UU	٧٧	W	W1	ww	XX	Z
MY1M50□	90	10	26	380	28	90	35	10	35	24	28	144	128	22	74	400
MY1M63□	110	12	42	436	30	110	49	13	43	28	30	168	152	25	92	460

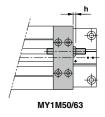
Detailed Dimensions of U Section (mm) U6 U1 U2 U3 U4 U5 MY1M50□ 6.5 3.8 2 4.5 7.3 8 MY1M63□ 8.5 5 2.5 5.5 8.4 8

Hole Size	for C	entra	lized	Pipir	ng on	the E	Bottom
Model	wx	Υ	S	d	D	R	Applicable


Model	WX	Y	S	d	D	R	Applicable O-ring
MY1M50□	74	18	8	10	17.5	1.1	C15
MY1M63□	92	18	9	10	17.5	1.1	CIS

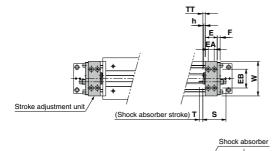

(Machine the mounting side to the dimensions below.)



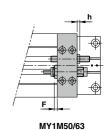

Mechanically Jointed Rodless Cylinder Slide Bearing Guide Type Series MY1M

Stroke Adjustment Unit

MY1B
MY1B
MY1B
MY1C
MY1H
MY1C
MY1H
MY1
MY1
MY1
MY1


□W

MY2C MY2 HU MY3A MY3B

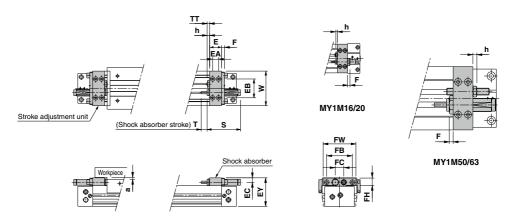

Applicable bore size	E	EA	EB	EC	EY	FC	h	TT	W
MY1M16	14.6	7	30	5.8	39.5	14	3.6	5.4 (Max. 11)	58
MY1M20	20	10	32	5.8	45.5	14	3.6	5 (Max. 11)	58
MY1M25	24	12	38	6.5	53.5	13	3.5	5 (Max. 16.5)	70
MY1M32	29	14	50	8.5	67	17	4.5	8 (Max. 20)	88
MY1M40	35	17	57	10	83	17	4.5	9 (Max. 25)	104
MY1M50	40	20	66	14	106	26	5.5	13 (Max. 33)	128
MY1M63	52	26	77	14	129	31	5.5	13 (Max. 38)	152

With low load shock absorber + Adjustment bolt MY1M Bore size - Stroke L

10	n	m	٨	

																, ,
Applicable size	E	EA	EB	EC	EY	F	FB	FC	FH	FW	h	S	Т	TT	w	Shock absorber model
MY1M16	14.6	7	30	5.8	39.5	4	_	14	_	_	3.6	40.8	6	5.4 (Max. 11)	58	RB0806
MY1M20	20	10	32	5.8	45.5	4	_	14	_	_	3.6	40.8	6	5 (Max. 11)	58	RB0806
MY1M25	24	12	38	6.5	53.5	6	54	13	13	66	3.5	46.7	7	5 (Max. 16.5)	70	RB1007
MY1M32	29	14	50	8.5	67	6	67	17	16	80	4.5	67.3	12	8 (Max. 20)	88	RB1412
MY1M40	35	17	57	10	83	6	78	17	17.5	91	4.5	67.3	12	9 (Max. 25)	104	RB1412
MY1M50	40	20	66	14	106	6	_	26	_		5.5	73.2	15	13 (Max. 33)	128	RB2015
MY1M63	52	26	77	14	129	6	_	31	_		5.5	73.2	15	13 (Max. 38)	152	RB2015

D
-X

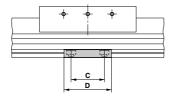

Technical

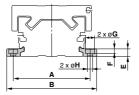
SMC

Series MY1M

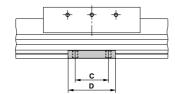
Stroke Adjustment Unit

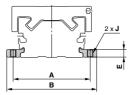
With high load shock absorber + Adjustment bolt MY1M Bore size - Stroke H


* Since dimension EY of the H type unit is greater than the table top height (dimension H), when mounting a workpiece that exceeds the overall length (dimension L) of the slide table, allow a clearance of dimension "a" or larger on the workpiece side.


table, allow a clourar	00 OI UII	1101101011	u 0	go. o	1110 1101	пріссо	oido.										
Applicable bore size	E	EA	EB	EC	EY	F	FB	FC	FH	FW	h	S	T	TT	W	Shock absorber model	а
MY1M20	20	10	32	7.7	50	5	_	14		—	3.5	46.7	7	5 (Max. 11)	58	RB1007	5
MY1M25	24	12	38	9	57.5	6	52	17	16	66	4.5	67.3	12	5 (Max. 16.5)	70	RB1412	4.5
MY1M32	29	14	50	11.5	73	8	67	22	22	82	5.5	73.2	15	8 (Max. 20)	88	RB2015	6
MY1M40	35	17	57	12	87	8	78	22	22	95	5.5	73.2	15	9 (Max. 25)	104	RB2015	4
MY1M50	40	20	66	18.5	115	8		30			11	99	25	13 (Max. 33)	128	RB2725	9
MY1M63	52	26	77	19	138.5	8	_	35	_	_	11	99	25	13 (Max. 38)	152	RB2725	9.5

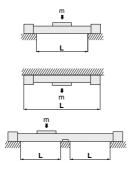
Mechanically Jointed Rodless Cylinder Slide Bearing Guide Type Series MY1M

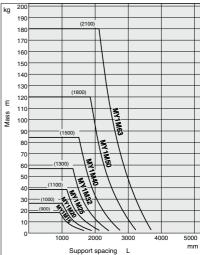

Side Support


Side support A MY-S□A

Side support B MY-S□B

Model	Applicable bore size	Α	В	С	D	E	F	G	Н	J
MY-S16	MY1M16	61	71.6	15	26	4.9	3	6.5	3.4	M4 x 0.7
MY-S20₽	MY1M20	67	79.6	25	38	6.4	4	8	4.5	M5 x 0.8
MY-S25	MY1M25	81	95	35	50	8	5	9.5	5.5	M6 x 1
MY-S32A	MY1M32	100	118	45	64	11.7	6	11	6.6	M8 x 1.25
MY-S40	MY1M40	120	142	55	80	14.8	8.5	14	9	M10 x 1.5
IVI 1-340B	MY1M50	142	164	55	00	14.0	0.5	14	9	WITU X 1.5
MY-S63A	MY1M63	172	202	70	100	18.3	10.5	17.5	11.5	M12 x 1.75


^{*} A set of side supports consists of a left support and a right support.


Guide for Side Support Application

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load mass. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the graph on the right.

⚠ Caution

- 1. If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- Support brackets are not for mounting; use them solely for providing support.

MY1B -Z MY1H -Z

MY1B MY1M

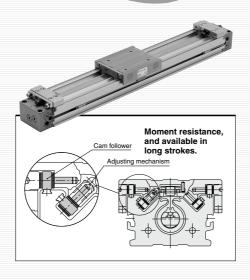
MY1C

MY1H MY1 HT MY1

> MY2C MY2

MY3A MY3B

MY3M


D
-X

Technical

1261

MY1B -Z MY1H -Z

MY1B MY1M

MY1C

MY1H MY1 HT

MY1 W

> MY2 H□ MY3A

MY3B MY3M

Series MY1C Prior to Use

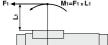
Maximum Allowable Moment/Maximum Load Mass

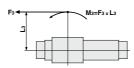
Model	Bore size	Maximum a	Illowable mo	ment (N·m)	Maximum load mass (kg)				
Model	(mm)	M ₁	M2	Мз	m1	m ₂	m3		
	16	6.0	3.0	2.0	18	7	2.1		
	20	10	5.0	3.0	25	10	3		
	25	15	8.5	5.0	35	14	4.2		
MY1C	32	30	14	10	49	21	6		
	40	60	23	20	68	30	8.2		
	50		35	35	93	42	11.5		
	63	150	50	50	130	60	16		

The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

Maximum Allowable Moment

Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.


Load mass (kg)



Moment (N·m)

<Calculation of guide load factor>

- 1. Maximum allowable load (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.
 - * To evaluate, use ν a (average speed) for (1) and (2), and ν (collision speed $\nu = 1.4\nu$ a) for (3). Calculate mmax for (1) from the maximum allowable load graph (m1, m2, m3) and Mmax for (2) and (3) from the maximum allowable moment graph (M1, M2, M3).

Sum of guide $\Sigma \alpha = 0$	Load mass [m]	Static moment [M] (1)	Dynamic moment [ME] (2) < 1
load factors 200 =	Maximum allowable load [m max]	Allowable static moment [Mmax]	Allowable dynamic moment [Memax]

Note 1) Moment caused by the load, etc., with cylinder in resting condition.

Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper). Note 3) Depending on the shape of the workpiece, multiple moments may occur. When this happens, the sum of the load factors ($\Sigma \alpha$) is the total of all such moments.

2. Reference formula [Dynamic moment at impact]

Use the following formulae to calculate dynamic moment when taking stopper impact into consideration.

υ: Collision speed (mm/s)

ME: Dynamic moment (N-m)

With rubber bumper = 4/100(MY1B10, MY1H10)

With shock absorber = 1/100 Gravitational acceleration (9.8 m/s²)

With air cushion = 1/100

δ: Damper coefficient

L1: Distance to the load's center of gravity (m)

At collision: $\upsilon = 1.4\upsilon a$

m: Load mass (kg)

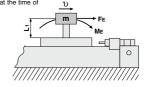
F: Load (N)

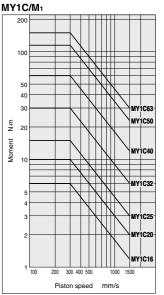
FE: Load equivalent to impact (at impact with stopper) (N)

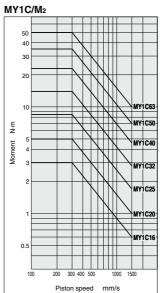
υa: Average speed (mm/s)

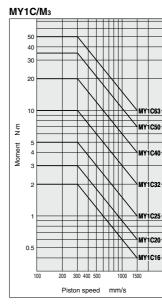
M: Static moment (N·m)

 $v = 1.4va \text{ (mm/s)} F_E = 1.4va \cdot \delta \cdot m \cdot q$

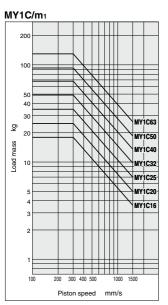

 $\therefore \mathbf{M}_{E} = \frac{1}{3} \cdot F_{E} \cdot L_{1} = 4.57 \cdot \lambda a \delta m L_{1} (N \cdot m)$

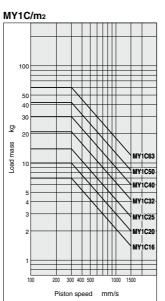

Note 4) 1.4 Vaδ is a dimensionless coefficient for calculating impact force. Note 5) Average load coefficient (= $\frac{1}{3}$): This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.

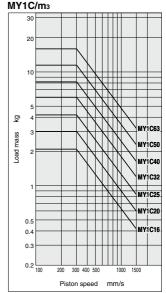

3. For detailed selection procedures, refer to pages 1266 and 1267.


Maximum Load Mass

Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.



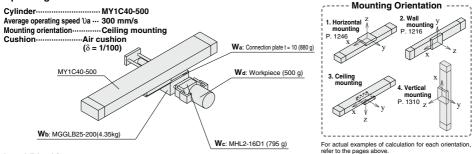

MY1B
-Z
MY1H
-Z
MY1B
MY1B
MY1C
MY1H
MY1C


MY2C

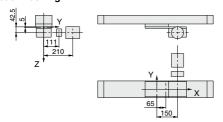
MY3A MY3B

MY3M

D
-X


Technical data

Series MY1C Model Selection


Following are the steps for selecting the most suitable Series MY1C to your application.

Calculation of Guide Load Factor

1. Operating Conditions

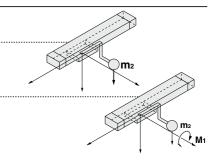
2. Load Blocking

Mass and Center of Gravity for Each Workpiece

Workpiece no.	Mass	Center of gravity							
Wn	m _n	X-axis X _n	Y-axis Yn	Z-axis Z n					
Wa	0.88 kg	65 mm	0 mm	5 mm					
Wb	4.35 kg	150 mm	0 mm	42.5 mm					
Wc	0.795 kg	150 mm	111 mm	42.5 mm					
Wd	0.5 kg	150 mm	210 mm	42.5 mm					

n=a, b, c, d

3. Composite Center of Gravity Calculation

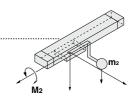

$$\begin{split} & \mathbf{m}_2 = \Sigma m_n \\ &= 0.88 + 4.35 + 0.795 + 0.5 = \textbf{6.525 kg} \\ & \mathbf{X} = \frac{1}{m_2} \times \Sigma \left(\mathbf{m}_n \times \mathbf{x}_n \right) \\ &= \frac{1}{6.525} \left(0.88 \times 65 + 4.35 \times 150 + 0.795 \times 150 + 0.5 \times 150 \right) = \textbf{138.5 mm} \\ & \mathbf{Y} = \frac{1}{m_2} \times \Sigma \left(\mathbf{m}_n \times \mathbf{y}_n \right) \\ &= \frac{1}{6.525} \left(0.88 \times 0 + 4.35 \times 0 + 0.795 \times 111 + 0.5 \times 210 \right) = \textbf{29.6 mm} \\ & \mathbf{Z} = \frac{1}{m_2} \times \Sigma \left(\mathbf{m}_n \times \mathbf{z}_n \right) \\ &= \frac{1}{6.525} \left(0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5 \right) = \textbf{37.4 mm} \end{split}$$

4. Calculation of Load Factor for Static Load

M₁ max (from (2) of graph MY1C/M₁) = 60 (N·m)······

 $M_1 = m_2 \times g \times X = 6.525 \times 9.8 \times 138.5 \times 10^{-3} = 8.86 (N \cdot m)$

Load factor $OL_2 = M_1/M_1 \text{ max} = 8.86/60 = 0.15$


Model Selection Series MY1C

M₂: Moment

 $M_2 \max$ (from (3) of graph MY1C/ M_2) = 23.0 (N·m).....

$$M_2 = m_2 \times q \times Y = 6.525 \times 9.8 \times 29.6 \times 10^{-3} = 1.89 \text{ (N·m)}$$

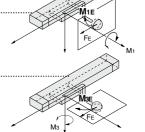
Load factor $Ol_3 = M_2/M_2 max = 1.89/23.0 = 0.08$

5. Calculation of Load Factor for Dynamic Moment -

Equivalent load FE at impact

$$\mathbf{F}_{E} = 1.4 \text{Va} \times \delta \times \mathbf{m} \times \mathbf{g} = 1.4 \times 300 \times \frac{1}{100} \times 6.525 \times 9.8 = 268.6 \text{ (N)}$$

M_{1E}: Moment


M_{1E} max (from (4) of graph MY1C/M₁ where $1.4\nu a = 420$ mm/s) = 42.9 (N·m)······

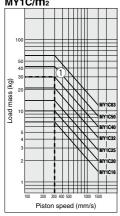
$$\mathbf{M}_{1E} = \frac{1}{3} \times \mathbf{F}_{E} \times \mathbf{Z} = \frac{1}{3} \times 268.6 \times 37.4 \times 10^{-3} = 3.35 \text{ (N·m)}$$

Load factor $OL_4 = M_1 E/M_1 E max = 3.35/42.9 = 0.08$

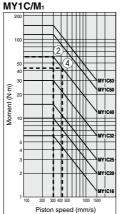
M_{3E}: Moment

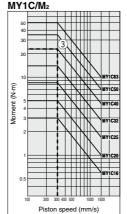
$$\mathbf{M}_{3E} = \frac{1}{3} \times \mathbf{F}_{E} \times \mathbf{Y} = \frac{1}{3} \times 268.6 \times 29.6 \times 10^{-3} = 2.65 \text{ (N·m)}$$

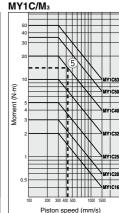
6. Sum and Examination of Guide Load Factors -


$$\sum_{\mathcal{C}_{i}} = \mathcal{C}_{i_{1}} + \mathcal{C}_{i_{2}} + \mathcal{C}_{i_{3}} + \mathcal{C}_{i_{4}} + \mathcal{C}_{i_{5}} = \textbf{0.72} \leq \textbf{1}$$

The above calculation is within the allowable value, and therefore the selected model can be used. Select a shock absorber separately.


In an actual calculation, when the total sum of guide load factors α in the formula above is more than 1, consider either decreasing the speed, increasing the bore size, or changing the product series. This calculation can be easily made using the "SMC Pneumatics CAD System".


Load Mass


MY1C/m₂

Allowable Moment

MY1B MY1M

MY1C MY1H

MY1 MY1 $\square W$

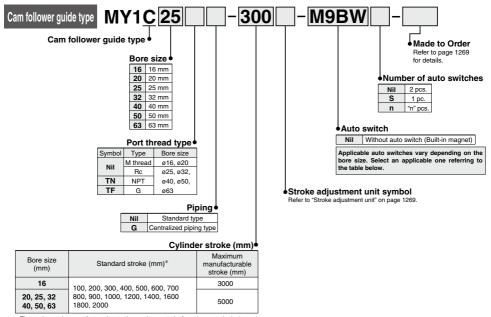
MY2C MY2

lH□ MY3A MY3B

MY3M

D-□

Technical



Mechanically Jointed Rodless Cylinder Cam Follower Guide Type

Series MY1C

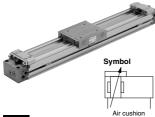
Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

How to Order

* The stroke can be manufactured up to the maximum stroke from 1 mm stroke in 1 mm increments. However, when the stroke is 49 mm or less, the air cushion capability lowers and multiple auto switches cannot be mounted. Pay special attention to this point Also when exceeding a 2000 mm stroke, specify "-XB11" at the end of the model number For details, refer to the "Made to Order Specifications

Applicable Auto Switches/Refer to pages 1559 to 1673 for further information on auto switches

		- Control	light	140	Load voltage Auto switch model			I	Lead	wire l	ength	n (m)										
Type	Special function	Electrical entry	ator	Wiring (Output)	_	C	AC	Perper	Perpendicular		Perpendicular In-line		ine	0.5	1	3		Pre-wired connector	Applical	ole load		
		Citily	Indic	(Output)		,,,	Α0		ø25 to ø63	ø16, ø20	ø25 to ø63	(Nil)	(M)	(L)	(Z)	CONTROCTOR						
£				3-wire (NPN)		5 V. 12 V		M9NV		Ms	9N	•	•	•	0	0	IC circuit					
switch				3-wire (PNP)		J V, 12 V	_	M9	PV	M	9P	•	•	•	0	0	IO CIICUII					
				2-wire		12 V		M9	BV	Ms	9B	•	•	•	0	0	_					
anto	Discount to Football	. Paragraphic			3-wire (NPN)		5 V, 12 V		M9N	1MA	M9	M9NW		•	•	0	0	IC circuit	D 1			
	Diagnostic indication (2-color indication)	Grommet	Yes	3-wire (PNP)	24 V	5 V, 12 V	''-'\	M9F	PWV	М9	PW	•	•	•	0	0	IC CIICUII	Relay, PLC				
state	(2-color indication)			2-wire		12 V	1	M9E	3WV	M9	BW	•	•	•	0	0		1 LO				
				3-wire (NPN)		5 V. 12 V		M9N	AV**	M9N	IA**	0	0	•	0	0	IC circuit					
Solid	Water resistant (2-color indication)			3-wire (PNP)		5 V, 12 V		M9P	AV**	M9F	PA**	0	0	•	0	0	IC CIICUII					
Ŏ	(2-color indication)			2-wire		12 V		M9B	AV**	M9E	8A**	0	0	•	0	0	_					
tc.			V	3-wire (NPN equivalent)	_	5 V	_	A96V	_	A96	Z76	•	 -	•	_	_	IC circuit	_				
Reed auto switch	—— Gron	Grommet	Grommet	Grommet Y	Grommet Ye	Grommet Yes	ommet Yes 2 wire	2-wire	041/ 401	12.1/	100 V	A93V	_	A93	Z73	•	_	•	•	_	_	Relay,
afte _				No	No	Z-WITE	24 V	24 V 12 V	12 V	100 V or less	A90V	_	A90	Z80	•	_	•	_	_	IC circuit	PLC	


- ** Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance
- Consult with SMC regarding water resistant types with the above model numbers.
- * Lead wire length symbols: 0.5 m Nil (Example) M9NW * Solid state auto switches marked with "O" are produced upon receipt of order 1 m ······ M (Example) M9NWM
 - 3 m L (Example) M9NWL 5 m Z (Example) M9NWZ
- * Separate switch spacers (BMG2-012) are required to retrofit auto switches (M9 type) on cylinders ø25 to ø63.
- * There are other applicable auto switches than listed above. For details, refer to page 1321.
- * For details about auto switches with pre-wired connector, refer to pages 1626 and 1627.

 * Auto switches are shipped together (not assembled). (Refer to pages 1319 to 1321 for the details of auto switch mounting.)

1268

Mechanically Jointed Rodless Cylinder Cam Follower Guide Type Series MY1C

Made to Order: Individual Specifications (For details, refer to page 1322.)

Symbol	Specifications
-X168	Helical insert thread specifications

Made to Order Specifications (For details, refer to pages 1699 to 1818.)

Symbol	Specifications
-XB11	Long stroke
-XB22	Shock absorber soft type Series RJ type
-XC56	With knock pin hole
-XC67	NBR rubber lining in dust seal band

Specifications

Bore size (mm)	16	20	25	32	40	50	63			
Fluid		Air									
Action		Double acting									
Operating p	ressure range	0.1 to 0.8 MPa									
Proof pres	sure	1.2 MPa									
Ambient and fluid temperature 5 to 60°C											
Cushion				Air cu	shion						
Lubricatio	n	Non-lube									
Stroke leng	th tolerance	1000 or less *1.8 1001 to 3000 *2.8									
Piping	Front/Side port	M5 x 0.8		Rc	1/8	Rc 1/4	Rc	3/8			
port size	Bottom port	ø4		ø	6	ø8	Ø	10			

Piston Speed

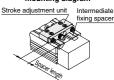
В	ore size (mm)	16 to 63					
Without stroke a	djustment unit	100 to 1000 mm/s					
Stroke	A unit	100 to 1000 mm/s ⁽¹⁾					
adjustment unit	L unit and H unit	100 to 1500 mm/s (2)					

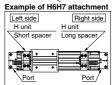
Note 1) Be aware that when the stroke adjustment range is increased by manipulating the adjustment bolt, the air cushion capacity decreases. Also, when exceeding the air cushion stroke ranges on page 1272, the piston speed should be 100 to 200 mm per second.

Note 2) The piston speed is 100 to 1000 mm/s for centralized piping.

Note 3) Use at a speed within the absorption capacity range. Refer to page 1272.

Stroke Adjustment Unit Specifications


01.01.07	-ajasan	·Ciic ·		Opce	,,,,,																
Bore size (ı	mm)	1	6		20			25			32			40			50			63	
Unit symb	ol	Α	L	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н
Configurat Shock abs model	sorber	With adjustment bolt	RB 0806 + with adjustment bolt	With adjustment bolt	RB 0806 + with adjustment bolt	RB 1007 + with adjustment bolt	With adjustment bolt	RB 1007 + with adjustment bolt	RB 1412 + with adjustment bolt	With adjustment bolt	RB 1412 + with adjustment bolt	+ with	With adjustment bolt	RB 1412 + with adjustment bolt	+ with	With adjustment bolt	RB 2015 + with adjustment bolt	RB 2725 + with adjustment bolt	With adjustment bolt	RB 2015 + with adjustment bolt	RB 2725 + with adjustment bolt
Stroke adjust-	Without spacer	0 to	-5.6	() to -6		0 1	to –11.	5	() to -1:	2	0	to -16	6	C) to -2	0	() to -25	5
intermediate \	With short spacer	-5.6 to	-11.2	-6	6 to −1	2	-11	-11.5 to -23		-1	12 to -	24	-1	6 to −3	32	-2	20 to -	40	-2	25 to –5	50
fixing spacer (mm)	With long spacer	-11.2 to	0 –16.8	-1	-12 to -18		-23 to -34.5		−24 to −36		−32 to −48		-40 to -60		−50 to −75		75				


∂SWC

Stroke Adjustment Unit Symbol

٦I	roke Adjustment Unit Symbol													
_			Right side stroke adjustment unit											
			Without	A: With adjustment bolt			L: With lov + Adjustm	v load shoc ent bolt	k absorber	H: With high load shock absorber + Adjustment bolt				
			unit		With short spacer	With long spacer		With short spacer	With long spacer		With short spacer	With long spacer		
ŧ	Wit	hout unit	Nil	SA	SA6	SA7	SL	SL6	SL7	SH	SH6	SH7		
adjustment unit	A: With adjustment bolt		AS	Α	AA6	AA7	AL	AL6	AL7	AH	AH6	AH7		
ē		With short spacer	A6S	A6A	A6	A6A7	A6L	A6L6	A6L7	A6H	A6H6	A6H7		
nst		With long spacer	A7S	A7A	A7A6	A7	A7L	A7L6	A7L7	A7H	A7H6	A7H7		
		oad shock absorber +	LS	LA	LA6	LA7	L	LL6	LL7	LH	LH6	LH7		
ջ	Adjustment	With short spacer	L6S	L6A	L6A6	L6A7	L6L	L6	L6L7	L6H	L6H6	L6H7		
side stı	bolt	With long spacer	L7S	L7A	L7A6	L7A7	L7L	L7L6	L7	L7H	L7H6	L7H7		
	H: With high	load shock absorber +	HS	HA	HA6	HA7	HL	HL6	HL7	Н	HH6	HH7		
	Adjustment bolt	With short spacer	H6S	H6A	H6A6	H6A7	H6L	H6L6	H6L7	Н6Н	H6	H6H7		
۳	DOIL	With long spacer	H7S	H7A	H7A6	H7A7	H7L	H7L6	H7L7	H7H	H7H6	H7		

Stroke adjustment unit mounting diagram

Shock Absorbers for L and H Units

T	Stroke adjustment	Bore size (mm)									
Type	unit	16	20	25	32	40	50	63			
Standard	L	RBC	0806	RB1007	RB1412		RB2015				
(Shock absorber/ RB series)	Н	— RB1007		RB1412	RB2015		RB2	725			
Shock absorber/ soft type RJ series mounted (-XB22)	L	RJ08	B06H	RJ1007H	RJ14	112H	_	_			
	Н	_	RJ1007H	RJ1412H	_	_	_	_			

- * The shock absorber service life is different from that of the MY1C cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.
- * Mounted shock absorber soft type RJ series (-XB22) is made to order specifications. For details, refer to page 1722.

Shock Absorber Specifications

SHOCK A	naoinei c	pheri	IICali	Ulio					
Мо	odel	RB 0806	RB 1007	RB 1412	RB 2015	RB 2725			
Max. energy	absorption (J)	2.9	5.9	19.6	58.8	147			
Stroke abso	6	7	12	15	25				
Max. collision	speed (mm/s)	1500							
Max. operating fre	quency (cycle/min)	80	70	45	25	10			
Spring	Extended	1.96	4.22	6.86	8.34	8.83			
force (N)	Retracted	4.22	6.86	15.98	20.50	20.01			
Operating temper			5 to 60						

^{*} The shock absorber service life is different from that of the MY1C cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.

MY1B -Z MY1H

MY1B

MY1M

MY1H MY1 MY1 $\square W$

MY2C

Ιн⊓

MY3A MY3B MY3M

1269

^{*} Stroke adjustment range is applicable for one side when mounted on a cylinder.

^{*} Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.

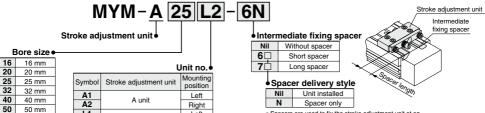
Theoretical Output

								(N)			
Bore	Piston	Operating pressure (MPa)									
size (mm)	area (mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8			
16	200	40	60	80	100	120	140	160			
20	314	62	94	125	157	188	219	251			
25	490	98	147	196	245	294	343	392			
32	804	161	241	322	402	483	563	643			
40	1256	251	377	502	628	754	879	1005			
50	1962	392	588	784	981	1177	1373	1569			
63	3115	623	934	1246	1557	1869	2180	2492			

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm2)

Weight

							(kg
Bore size	Basic	Additional weight	Weight	Side support bracket weight (per set)		ljustment u (per unit)	nit weight
(mm)	weight	per each 50 mm of stroke	of moving parts	Type A and B	A unit weight	L unit weight	H unit weight
16	0.67	0.12	0.22	0.01	0.03	0.04	_
20	1.06	0.15	0.31	0.02	0.04	0.05	0.08
25	1.58	0.24	0.41	0.02	0.07	0.11	0.18
32	3.14	0.37	0.86	0.04	0.14	0.23	0.39
40	5.60	0.52	1.49	0.08	0.25	0.34	0.48
50	10.14	0.76	2.59	0.08	0.36	0.51	0.81
63	16.67	1.10	4.26	0.17	0.68	0.83	1.08


Calculation: (Example) MY1C25-300A

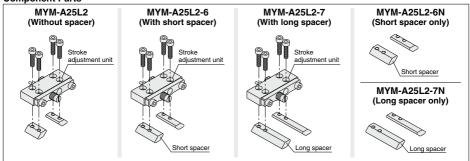
 Basic weight------ 1.58 kg Cylinder stroke ----- 300 stroke Additional weight -----.. 0.24/50 stroke $1.58 + 0.24 \times 300/50 + 0.07 \times 2 \cong 3.16 \text{ kg}$ Weight of A unit----- 0.07 kg

Option

63 63 mm

Stroke Adjustment Unit Part No.

L1 Left Lunit L2 Right H1 Left H unit H2 Right


Note 1) Refer to page 1269 for details about adjustment range.

Note 2) A and L unit only for ø16

* Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.

* Spacers are shipped for a set of two

Component Parts

Side Support Part No.

Bore size (mm)	16	20	25	32	40	50	63
Side support A	MY-S16A	MY-S20A	MY-S25A	MY-S32A	MY-S	640A	MY-S63A
Side support B	MY-S16B	MY-S20B	MY-S25B	MY-S32B	MY-S	S40B	MY-S63B

For details about dimensions, etc., refer to page 1281.

Series MY1C

Cushion Capacity

Cushion Selection

<Air cushion>

Air cushions are a standard feature on mechanically jointed rodless cylinders.

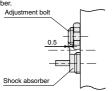
The air cushion mechanism is incorporated to prevent excessive impact of the piston at the stroke end during high speed operation. The purpose of air cushion, thus, is not to decelerate the piston near the stroke end.

The ranges of load and speed that air cushions can absorb are within the air cushion limit lines shown in the graphs.

Stroke adjustment unit with shock absorbers. Use this unit when operating with a load or speed exceeding the air cushion limit line, or when cushioning is necessary because the cylinder stroke is outside of the effective air cushion stroke range due to stroke adjustment.

L unit

Use this unit when the cylinder stroke is outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line or below the L unit limit line.

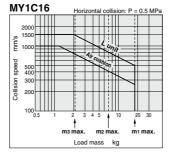

H unit

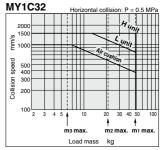
Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.

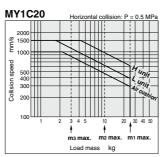
⚠ Caution

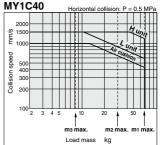
 Refer to the figure below when using the adjustment bolt to perform stroke adjustment.

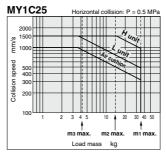
When the effective stroke of the shock absorber decreases as a result of stroke adjustment, the absorption capacity decreases dramatically. Secure the adjustment bolt at the position where it protrudes approximately 0.5 mm from the shock absorber.

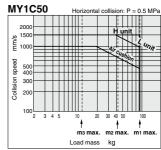

Do not use a shock absorber together with air cushion.

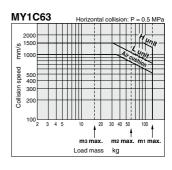

(mm)

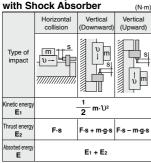

Air Cushion Stroke


Bore size (mm)	Cushion stroke
16	12
20	15
25	15
32	19
40	24
50	30
63	37


Absorption Capacity of Air Cushion and Stroke Adjustment Units






Tightening Torque for Stroke Adjustment Unit Holding Bolts (N-m)

•	-	(14-111)				
Bore size (mm)	Unit	Tightening torque				
16	Α	0.7				
16	L	0.7				
	Α					
20	L	1.8				
	Н					
	Α					
25	L	3.5				
	Н					
	Α					
32	L	5.8				
	Н					
	Α					
40	L	13.8				
	Н					
	Α					
50	L	13.8				
	Н					
	Α					
63	L	27.5				
	Н	1 -7.0				

Tightening Torque for Stroke Adjustment Unit Lock Plate Holding Bolts

OTHE ECON TRACE IT	olullig Bollo	(N·m)
Bore size (mm)	Unit	Tightening torque
25	L	1.2
25	Н	3.3
32	L	3.3
32	Н	10
40	L	3.3
40	Н	10

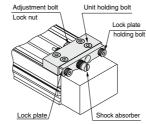
Calculation of Absorbed Energy for Stroke Adjustment Unit

Symbol υ: Speed of impact object (m/s)

F: Cylinder thrust (N)

- s: Shock absorber stroke (m)
- m: Mass of impact object (kg)
- g: Gravitational acceleration (9.8 m/s2)

Note) The speed of the impact object is measured at the time of impact with the shock absorber.


Precautions

Be sure to read before handling. Refer to front matter 57 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

∕!\ Caution

Use caution not to get your hands caught in the unit.

· When using a product with stroke adjustment unit, the space between the slide table (slider) and the stroke adjusting unit becomes narrow at the stroke end, causing a danger of hands getting caught. Install a protective cover to prevent direct contact with the human body.

<Fastening of unit>

The unit can be secured by evenly tightening the four unit holding bolts.

∕∆Caution

Do not operate with the stroke adjustment unit fixed in an intermediate position.

When the stroke adjusting unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In such cases, as a stroke adjustment unit with the spacer for intermediate securing is available, it is recommended to use it.

For other lengths, please consult with SMC (Refer to "Tightening Torque for Stroke Adjustment Unit Holding Bolts".)

<Stroke adjustment with adjusting bolt>

Loosen the adjusting bolt lock nut, and adjust the stroke from the lock plate side using a hexagon wrench. Retighten the lock nut.

<Stroke adjustment with shock absorber>

Loosen the two lock plate holding bolts, turn the shock absorber and adjust the stroke. Then, uniformly tighten the lock plate holding bolts to secure the shock absorber

Take care not to over-tighten the holding bolts. (Except ø16, ø20, ø50, ø63) (Refer to "Tightening Torque for Stroke Adjusting Unit Lock Plate Holding Bolts".)

Note) Although the lock plate may slightly bend due to tightening of the lock plate holding bolt, this does not a affect the shock absorber and locking function.

> MY1B MY1H MY1B

MY1M

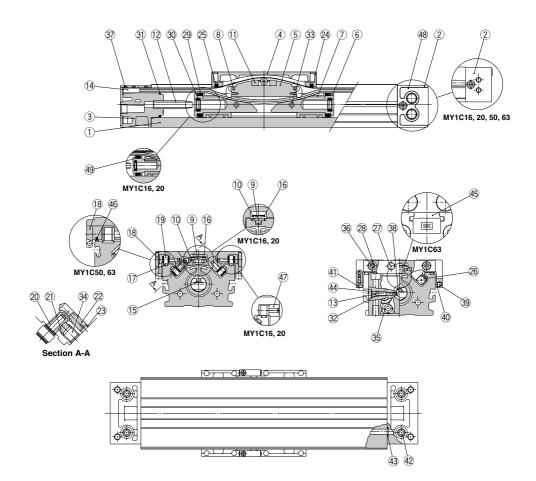
MY1C MY1H

MY1 ΗТ MY1 $\square W$

MY2C

MY2 н⊓ MY3A MY3B

MY3M



Series MY1C

Construction: Ø16 to Ø63

MY1C16 to 63

Mechanically Jointed Rodless Cylinder Cam Follower Guide Type Series MY1C

MY1C16 to 63

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover WR	Aluminum alloy	Painted
3	Head cover WL	Aluminum alloy	Painted
4	Slide table	Aluminum alloy	Electroless nickel plated
5	Piston yoke	Aluminum alloy	Chromated
6	Piston	Aluminum alloy	Chromated
7	Wear ring	Special resin	
8	Belt separator	Special resin	
9	Guide roller	Special resin	
10	Guide roller shaft	Stainless steel	
11	Coupler	Sintered iron material	
12	Cushion ring	Aluminum alloy	Anodized
13	Cushion needle	Rolled steel	Nickel plated
14	Belt clamp	Special resin	
17	Rail	Hard steel wire	
18	Cam follower cap	Special resin	(ø25 to ø40)
19	Cam follower	_	
20	Eccentric gear	Stainless steel	
21	Gear bracket	Stainless steel	
22	Adjustment gear	Stainless steel	
23	Retaining ring	Stainless steel	

No.	Description	Material	Note
24	End Cover	Special resin	
26	Backup plate	Special resin	
27	Stopper	Carbon steel	Nickel plated
28	Spacer	Stainless steel	
33	Spring pin	Carbon tool steel	
34	Hexagon socket head set screw	Chromium molybdenum steel	Black zinc chromated
35	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
36	Hexagon socket button head screw	Chromium molybdenum steel	Nickel plated
37	Hexagon socket head set screw	Chromium molybdenum steel	Black zinc chromated/Nickel plated
38	Hexagon socket head taper plug	Carbon steel	Nickel plated
39	Magnet		
40	Magnet holder	Special resin	
41	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
42	Hexagon socket head taper plug	Carbon steel	Nickel plated
44	Type CR retaining ring	Spring steel	
45	Head plate	Aluminum alloy	Hard anodized (ø63)
46	Side scraper	Special resin	(ø50 to ø63)
47	Bushing	Aluminum alloy	(ø16 to ø20)
48	Port cover	Special resin	(ø25 to ø40)
49	Lube retainer	Special resin	(ø16 to ø20)

MY1B -Z MY1H -Z

MY1B MY1M

MY1C

MY1H

MY1 HT MY1 □W

MY2C MY2

MY3A MY3B

MY3M

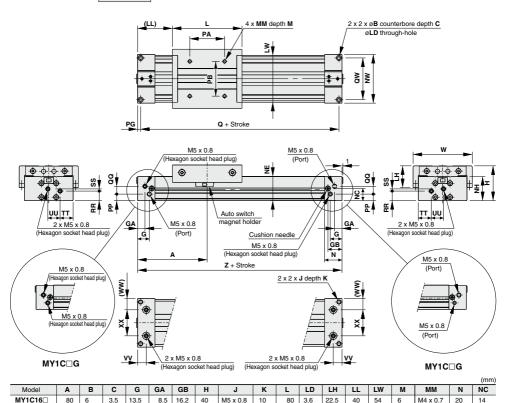
Replacement Part: Seal Kit

No.	Description	Qty.	MY1C16	MY1C20	MY1C25	MY1C32	MY1C40	MY1C50	MY1C63
15	Seal belt	1	MY16-16A-Stroke	MY20-16A-Stroke	MY25-16A-Stroke	MY32-16A-Stroke	MY40-16A-Stroke	MY50-16A-Stroke	MY63-16A-Stroke
16	Dust seal band	1	MY16-16B-Stroke	MY20-16B-Stroke	MY25-16B-Stroke	MY32-16B-Stroke	MY40-16B-Stroke	MY50-16B-Stroke	MY63-16B-Stroke
32	O-ring		KA00309	KA00311	KA00311	KA00320	KA00402	KA00777	KA00777
32	O-filig	2	(ø4 x ø1.8 x ø1.1)	(ø5.1 x ø3 x ø1.05)	(ø5.1 x ø3 x ø1.05)	(ø7.15 x ø3.75 x ø1.7)	(ø8.3 x ø4.5 x ø1.9)	_	-
46	Side scraper	2	_	_	_	_	_	MYM50-15CK0502B	MYM63-15CK0503B
25	Scraper	2							
29	Piston seal	2							
30	Cushion seal	2	MY1M16-PS	MY1M20-PS	MY1M25-PS	MY1M32-PS	MY1M40-PS	MY1M50-PS	MY1M63-PS
31	1 Tube gasket								
43	43 O-ring								

* Seal kit includes 25, 29, 30, 31 and 43. Order the seal kit based on each bore size.

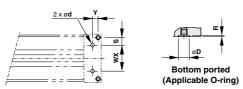
* Seal kit includes a grease pack (10 g).

When ⓑ and ⓑ are shipped independently, a grease pack is included. (10 g per 1000 strokes)


Order with the following part number when only the grease pack is needed.

Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

Note) Two kinds of dust seal bands are available. Verify the type to use, since the part number varies depending on the treatment of the hexagon socket head set screw ③.

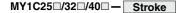

A: Black zinc chromated → MY□□-16B-stroke, B: Nickel plated → MY□□-16BW-stroke

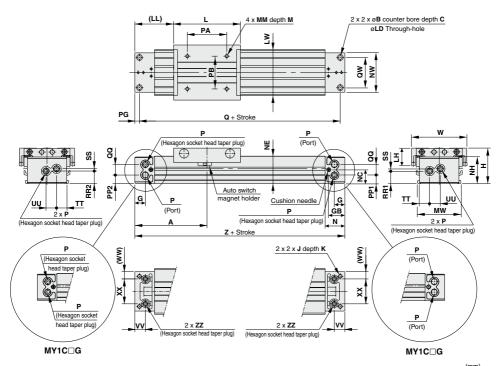
MY1C16□/20□ - Stroke

MY1C20□	100	7.5	4.5	12.5	12.5	20	46	M6 x 1	12	100	4.8	23	50	58	7.5	M5 x 0.8	25	17	
																		(mm)	

																			(111111)
Model	NE	NH	NW	PA	PB	PG	PP	Q	QQ	QW	RR	SS	TT	UU	٧V	W	ww	XX	Z
MY1C16□	28	27.7	56	40	40	3.5	7.5	153	9	48	11	2.5	15	14	10	68	13	30	160
MY1C20□	34	33.7	60	50	40	4.5	11.5	191	10	45	14.5	5	18	12	12.5	72	14	32	200

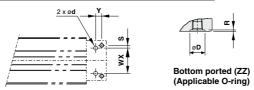
Hole Sizes for Centralized Piping on the Bottom


Model	WX	Y	S	d	D	R	Applicable O-ring
MY1C16□	30	6.5	9	4	8.4	1.1	C6
MY1C20□	32	8	6.5	4	8.4	1.1	


(Machine the mounting side to the dimensions below.)

Mechanically Jointed Rodless Cylinder Cam Follower Guide Type Series MY1C

Standard Type/Centralized Piping Type Ø25, Ø32, Ø40 Refer to page 1325 regarding centralized piping port variations.



																							(111111)
Model	Α	В	С	G	GB	Н	J	K	L	LD	LH	LL	LW	М	MM	MW	N	NC	NE	NH	NW	P	PA
MY1C25□	110	9	5.5	17	24.5	54	M6 x 1	9.5	102	5.6	27	59	70	10	M5 x 0.8	66	30	21	41.8	40.5	60	Rc 1/8	60
MY1C32□	140	11	6.5	19	30	68	M8 x 1.25	16	132	6.8	35	74	88	13	M6 x 1	80	37	26	52.3	50	74	Rc 1/8	80
MY1C40□	170	14	8.5	23	36.5	84	M10 x 1.5	15	162	8.6	38	89	104	13	M6 x 1	96	45	32	65.3	63.5	94	Rc 1/4	100
		•				•		•	•	•	•	•		•		•	•	""		·			

"P" indicates cylinder supply ports.

																		(mm)
Model	PB	PG	PP1	PP2	Q	QQ	QW	RR1	RR2	SS	TT	UU	٧٧	W	ww	XX	Z	ZZ
MY1C25□	50	7	12.7	12.7	206	15.5	46	18.9	17.9	4.1	15.5	16	16	84	11	38	220	Rc 1/16
MY1C32□	60	8	15.5	18.5	264	16	60	22	24	4	21	16	19	102	13	48	280	Rc 1/16
MY1C40□	80	9	17.5	20	322	26	72	25.5	29	9	26	21	23	118	20	54	340	Rc 1/8

Hole Size for Centralized Piping on the Bottom

Model	wx	Y	S	d	D	R	Applicable O-ring
MY1C25□	38	9	4	6	11.4	1.1	C9
MY1C32□	48	11	6	6	11.4	1.1	Ca
MY1C40□	54	14	9	8	13.4	1.1	C11.2

(Machine the mounting side to the dimensions below.)

D-□

MY1B -Z

MY1H -Z

MY1B

MY1M

MY1C

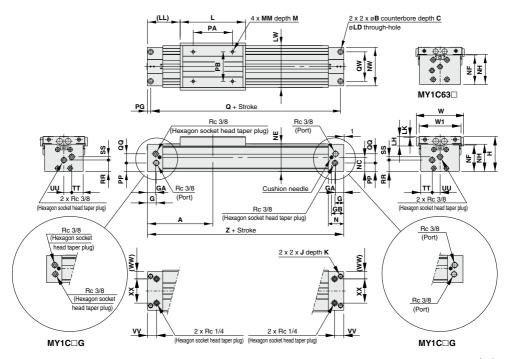
MY1H

MY1 HT

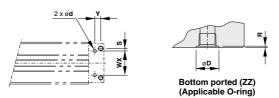
MY1 □W

MY2C

MY2 H□


MY3A MY3B MY3M

Standard Type/Centralized Piping Type Ø50, Ø63

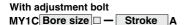

Refer to page 1325 regarding centralized piping port variations.

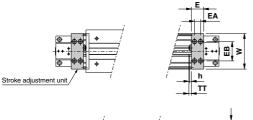
MY1C50□/63□ - Stroke

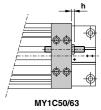
																				(mm)
Model	Α	В	С	G	GA	GB	Н	J	K	L	LD	LH	LK	LL	LW	М	MM	N	NC	NE
MY1C50□	200	17	10.5	27	25	37.5	107	M14 x 2	28	200	11	29	2	100	128	15	M8 x 1.25	47	43.5	84.5
MY1C63□	230	19	12.5	29.5	27.5	39.5	130	M16 x 2	32	230	13.5	32.5	5.5	115	152	16	M10 x 1.5	50	60	104

																				(mm)
Model	NF	NH	NW	PA	РВ	PG	PP	Q	QQ	QW	RR	SS	TT	UU	٧٧	W	W1	ww	XX	Z
MY1C50□	81	83.5	118	120	90	10	26	380	28	90	35	10	35	24	28	144	128	22	74	400
MY1C63□	103	105	142	140	110	12	42	436	30	110	49	13	43	28	30	168	152	25	92	460

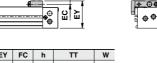
Hole Size for Centralized Piping on the Bottom

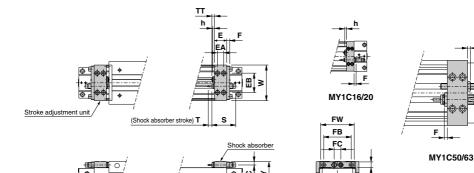

Model	WX	Y	S	d	D	R	Applicable O-ring
MY1C50□	74	18	8	10	17.5	1.1	C15
MY1C63□	92	18	9	10	17.5	1.1	


(Machine the mounting side to the dimensions above.)



Mechanically Jointed Rodless Cylinder Cam Follower Guide Type Series MY1C


Stroke Adjustment Unit



Applicable bore size	E	EA	FB	EC	EY	FC	n	11	VV
MY1C16	14.6	7	30	5.8	39.5	14	3.6	5.4 (Max. 11)	58
MY1C20	20	10	32	5.8	45.5	14	3.6	5 (Max. 11)	58
MY1C25	24	12	38	6.5	53.5	13	3.5	5 (Max. 16.5)	70
MY1C32	29	14	50	8.5	67	17	4.5	8 (Max. 20)	88
MY1C40	35	17	57	10	83	17	4.5	9 (Max. 25)	104
MY1C50	40	20	66	14	106	26	5.5	13 (Max. 33)	128
MY1C63	52	26	77	14	129	31	5.5	13 (Max. 38)	152

With low load shock absorber + Adjustment bolt MY1C Bore size □ - Stroke L

																(11111)
Applicable bore size	E	EA	EB	EC	EY	F	FB	FC	FH	FW	h	S	Т	TT	W	Shock absorber model
MY1C16	14.6	7	30	5.8	39.5	4		14	_		3.6	40.8	6	5.4 (Max. 11)	58	RB0806
MY1C20	20	10	32	5.8	45.5	4	—	14	 —	—	3.6	40.8	6	5 (Max. 11)	58	RB0806
MY1C25	24	12	38	6.5	53.5	6	54	13	13	66	3.5	46.7	7	5 (Max. 16.5)	70	RB1007
MY1C32	29	14	50	8.5	67	6	67	17	16	80	4.5	67.3	12	8 (Max. 20)	88	RB1412
MY1C40	35	17	57	10	83	6	78	17	17.5	91	4.5	67.3	12	9 (Max. 25)	104	RB1412
MY1C50	40	20	66	14	106	6	_	26	_	_	5.5	73.2	15	13 (Max. 33)	128	RB2015
MY1C63	52	26	77	14	129	6	_	31	_		5.5	73.2	15	13 (Max. 38)	152	RB2015

MY1B -Z MY1H MY1B

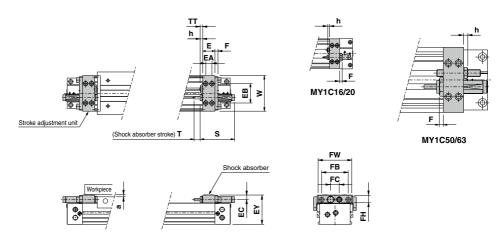
MY1M

MY1C MY1H

MY1 HT MY1 □W

MY2C MY2 H□

MY3A MY3B MY3M

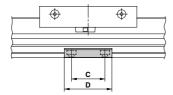

D-□ -X□ Technical

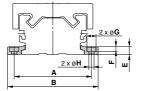
Series MY1C

Stroke Adjustment Unit

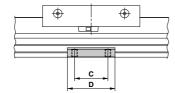
With high load shock absorber + Adjustment bolt

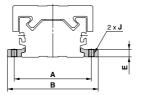
MY1C Bore size □ - Stroke H


* Since dimension EY of the H type unit is greater than the table top height (dimension H), when mounting a workpiece that exceeds the overall length (dimension L) of the slide table, allow a clearance of dimension "a" or larger on the workpiece side.


Applicable bore size	Е	EA	EB	EC	EY	F	FB	FC	FH	FW	h	S	Т	TT	W	Shock absorber model	а
MY1C20	20	10	32	7.7	50	5	_	14	_	_	3.5	46.7	7	5 (Max. 11)	58	RB1007	5
MY1C25	24	12	38	9	57.5	6	52	17	16	66	4.5	67.3	12	5 (Max. 16.5)	70	RB1412	4.5
MY1C32	29	14	50	11.5	73	8	67	22	22	82	5.5	73.2	15	8 (Max. 20)	88	RB2015	6
MY1C40	35	17	57	12	87	8	78	22	22	95	5.5	73.2	15	9 (Max. 25)	104	RB2015	4
MY1C50	40	20	66	18.5	115	8	_	30	_	_	11	99	25	13 (Max. 33)	128	RB2725	9
MY1C63	52	26	77	19	138.5	8	_	35	_	_	11	99	25	13 (Max. 38)	152	RB2725	9.5

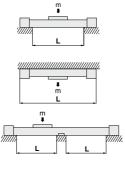
Mechanically Jointed Rodless Cylinder Cam Follower Guide Type Series MY1C

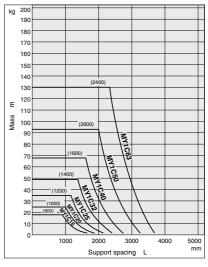

Side Support


Side support A MY-S□A

Side support B MY-S□B

										(mm)		
Model	Applicable bore size	Α	В	С	D	E	F	G	Н	J		
MY-S168	MY1C16	61	71.6	15	26	4.9	3	6.5	3.4	M4 x 0.7		
MY-S20 ^A	MY1C20	67	79.6	25	38	6.4	4	8	4.5	M5 x 0.8		
MY-S25 ⁸	MY1C25	81	95	35	50	8	5	9.5	5.5	M6 x 1		
MY-S32å	MY1C32	100	118	45	64	11.7	6	11	6.6	M8 x 1.25		
MY-S40A	MY1C40	120	142		-00	440			9	M10 1 5		
W 1-5408	MY1C50	142	164	55	80	14.8	8.5	14	9	M10 x 1.5		
MY-S63Å	MY1C63	172	202	70	100	18.3	10.5	17.5	11.5	M12 x 1.75		
A 4 - 6 - 1-	A t -f -id t t l-ft d d-l-t d											


* A set of side supports consists of a left support and a right support.


Guide for Side Support Application

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load weight. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the graph on the right.

⚠ Caution

- 1. If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- Support brackets are not for mounting; use them solely for providing support.

D-□

Technical

1281

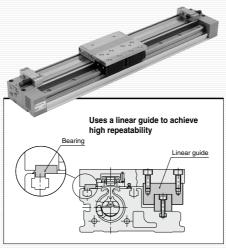
MY1B -Z MY1H -Z

MY1B MY1M

MY1C

MY1H MY1 HT MY1

□W MY2C


MY2

MY3A MY3B MY3M

Linear Guide Type

Ø10, Ø16, Ø20, Ø25, Ø32, Ø40

End lock type capable of holding a position at the stroke end (Except bore size Ø10)

MY1B -Z MY1H -Z

MY1B MY1M

MY1C

MY1H MY1 HT

MY1 W

MY2 H□ MY3A MY3B

MY3M

D-□

Technical data

Series MY1H Prior to Use

Maximum Allowable Moment/Maximum Load Mass

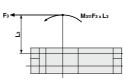
Model	Bore size	Maximum a	allowable mo	ment (N·m)	Maximum load mass (kg)					
iviodei	(mm)	M1	M2	Мз	m1	m ₂	mз			
	10	0.8	1.1	0.8	6.1	6.1	6.1			
	16	3.7	4.9	3.7	10.8	10.8	10.8			
MY1H	20	11	16	11	17.6	17.6	17.6			
IVIYIH	25	23	26	23	27.5	27.5	27.5			
	32	39	50	39	39.2	39.2	39.2			
	40	50	50	39	50	50	50			

The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

Maximum Allowable Moment

Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.

Load mass (kg)



Moment (N·m)

<Calculation of guide load factor>

- Maximum allowable load (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.
 - * To evaluate, use υa (average speed) for (1) and (2), and υ (collision speed $\upsilon = 1.4\upsilon a$) for (3). Calculate mmax for (1) from the maximum allowable load graph (m_1 , m_2 , m_3) and Mmax for (2) and (3) from the maximum allowable moment graph (M_1 , M_2 , M_3).

Note 1) Moment caused by the load, etc., with cylinder in resting condition

Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper).

Note 3) Depending on the shape of the workpiece, multiple moments may occur. When this happens, the sum of the load factors $(\Sigma \alpha)$ is the total of all such moments.

2. Reference formula [Dynamic moment at impact]

Use the following formulae to calculate dynamic moment when taking stopper impact into consideration.

m: Load mass (kg)

F: Load (N)

FE: Load equivalent to impact (at impact with stopper) (N)

Va: Average speed (mm/s)

M: Static moment (N·m)

$$\begin{split} \upsilon &= 1.4 \upsilon a \text{ (mm/s) } F_E = 1.4 \upsilon a \cdot \delta^{\text{Note 4}} \cdot \Theta \cdot \text{m} \cdot \text{g} \\ & \therefore M_E = \frac{1}{3} \cdot F_E \cdot L_1 = 4.57 \upsilon a \delta m L_1 \text{ (N·m)} \end{split}$$

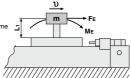
υ: Collision speed (mm/s)

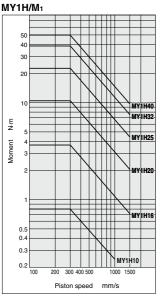
L1: Distance to the load's center of gravity (m)

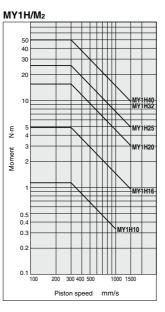
ME: Dynamic moment (N-m)

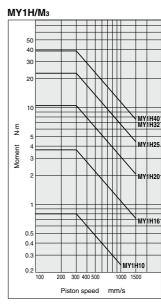
δ: Damper coefficient
With rubber bumper = 4/100
(MY1B10, MY1H10)

With air cushion = 1/100 With shock absorber = 1/100


g: Gravitational acceleration (9.8 m/s2)


Note 4) $1.4 \mathrm{Va}\delta$ is a dimensionless coefficient for calculating impact force. Note 5) Average load coefficient (=3): This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.


3. For detailed selection procedures, refer to pages 1286 and 1287.

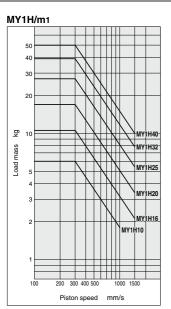

Maximum Load Mass Select the load from within the range

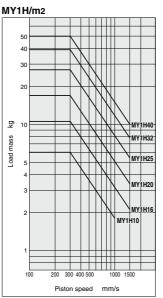
Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.

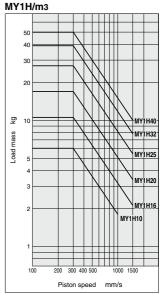
MY1M MY1C MY1H MY1 HT

MY1B -Z

MY1H


MY1B


MY1 □W MY2C


MY2C MY2

MY3A MY3B

MY3M

D
-X

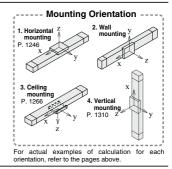
Technical data

Series MY1H **Model Selection**

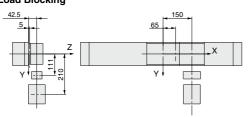
Following are the steps for selecting the most suitable Series MY1H to your application.

Calculation of Guide Load Factor

Wc: MHL2-16D1 (795 g)


Wd: Workpiece (500 g)

1. Operating Conditions -


Operating cylinder MY1H40-500 Average operating speed Va ... 300 mm/s

Wa: Connection plate t = 10 (880 g

Mounting orientation Wall mounting Cushion Air cushion (δ = 1/100) Wb: MGGLB25-200 (4.35 kg) MY1H40-500

2. Load Blocking

Mass and Center of Gravity for Each Workpiece

Westerland		С	enter of gravi	ty
Workpiece no. Wn	Mass m n	X-axis Xn	Y-axis Yn	Z-axis Z n
Wa	0.88 kg	65 mm	0 mm	5 mm
Wb	4.35 kg	150 mm	0 mm	42.5 mm
Wc	0.795 kg	150 mm	111 mm	42.5 mm
₩d	0.5 kg	150 mm	210 mm	42.5 mm

n=a, b, c, d

3. Composite Center of Gravity Calculation

$$m_3 = \Sigma m_n$$

= 0.88 + 4.35 + 0.795 + 0.5 = **6.525 kg**

$$\mathbf{X} = \frac{1}{\mathbf{m}_3} \times \Sigma \left(\mathbf{m}_n \times \mathbf{x}_n \right)$$

=
$$\frac{1}{6.525}$$
 (0.88 x 65 + 4.35 x 150 + 0.795 x 150 + 0.5 x 150) = **138.5 mm**

$$Y = \frac{1}{m_2} \times \Sigma (m_n \times y_n)$$

$$= \frac{1}{6.525} (0.88 \times 0 + 4.35 \times 0 + 0.795 \times 111 + 0.5 \times 210) = 29.6 \text{ mm}$$

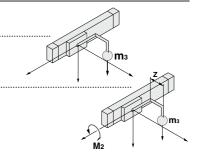
$$Z = \frac{1}{m_3} \times \Sigma (m_n \times z_n)$$

$$= \frac{1}{6.525} (0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5) =$$
37.4 mm

4. Calculation of Load Factor for Static Load

m₃: Mass

 $m_3 \max$ (from (1) of graph MY1H/ m_3) = 50 (kg).....

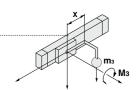

Load factor $\Omega_1 = m_3/m_3 max = 6.525/50 = 0.13$

M₂: Moment

 $m_2 \max$ (from (2) of graph MY1H/ M_2) = 50 (N·m)······

 $M_2 = m_3 \times q \times Z = 6.525 \times 9.8 \times 37.4 \times 10^{-3} = 2.39 \text{ (N·m)}$

Load factor $Cl_2 = M_2/M_2 max = 2.39/50 = 0.05$



M₃: Moment

M₃ max (from (3) of graph MY1H/M₃) = 38.7 (N·m)....

 $M_3 = m_3 \times g \times X = 6.525 \times 9.8 \times 138.5 \times 10^{-3} = 8.86 \text{ (N·m)}$

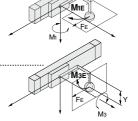
Load factor $O(3) = M_3/M_3 \text{ max} = 8.86/38.7 = 0.23$

5. Calculation of Load Factor for Dynamic Moment -

Equivalent load FE at impact

$$F_E = 1.4 \text{Va} \times \delta \times m \times g = 1.4 \times 300 \times \frac{1}{100} \times 6.525 \times 9.8 = 268.6 \text{ (N)}$$

M1E: Moment


$$\mathbf{M}_{1E} = \frac{1}{3} \times \mathbf{F}_{E} \times \mathbf{Z} = \frac{1}{3} \times 268.6 \times 37.4 \times 10^{-3} = 3.35 \text{ (N·m)}$$

Load factor $\Omega_4 = M_{1E}/M_{1E} \text{ max} = 3.35/35.9 = 0.09$

M_{3E}: Moment

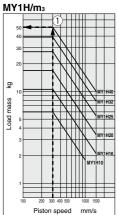
$$\textbf{M}_{\text{3E}} = \frac{1}{3} \ x \ \textbf{F}_{\text{E}} \ x \ \textbf{Y} = \frac{1}{3} \ x \ 268.6 \ x \ 29.6 \ x \ 10^{-3} = 2.65 \ (\text{N} \cdot \text{m})$$

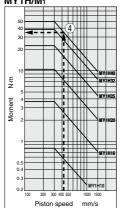
Load factor $OL_5 = M_3 E/M_3 E max = 2.65/27.6 = 0.10$

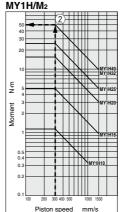
6. Sum and Examination of Guide Load Factors

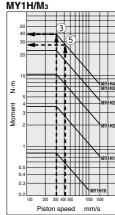
$$\Sigma_{C1} = CL_1 + CL_2 + CL_3 + CL_4 + CL_5 = 0.60 \le 1$$

The above calculation is within the allowable value, and therefore the selected model can be used.


Select a shock absorber separately.


In an actual calculation, when the total sum of guide load factors $\Sigma \alpha$ in the formula above is more than 1, consider either decreasing the speed, increasing the bore size, or changing the product series.


This calculation can be easily made using the "SMC Pneumatics CAD System".


Load Mass

Allowable Moment MY1H/M₁

MY1B

MY1M

MY1C MY1H

MY1

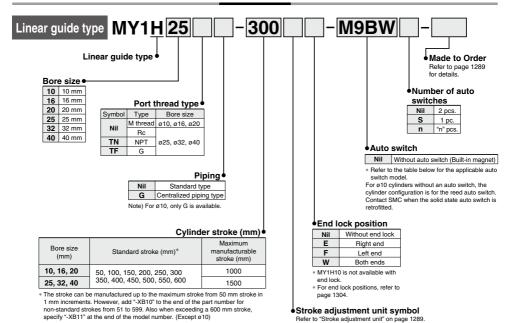
MY2C MY2

MY3A MY3B MY3M

D-□

Mechanically Jointed Rodless Cylinder Linear Guide Type

Series MY1H


Ø10, Ø16, Ø20, Ø25, Ø32, Ø40

Series MY1H linear quide type ø25, ø32. and ø40 sizes have been remodeled with improved piping flexibility.

Refer to page 1187 for details.

Intermediate fixing spacer is not available for end lock mounting side.

How to Order

Applicable Auto Switches/Refer to pages 1559 to 1673 for further information on au

744	nicable Auto Sv	/Itorics/i	ICIC	1 to payes 133	9 10 1073	ioi iui iiie	i iiiioiiiiai	on on auto sv	VIICIICS.										
		Et al. Carl	ight	140	L	oad volta	ge	Auto swite	ch model	Lea	d wir	e ler	igth i	(m)					
Туре	Special function	Electrical entry	Indicator light	Wiring (Output)	DC		AC	Perpendicular	In-line	0.5 (Nil)	1 (M)	3 (L)	5 (Z)	None (N)	Pre-wired connector	Applical	ble load		
_				3-wire (NPN)		5 V. 12 V		M9NV	M9N	•	•	•	0	0	0	IC circuit			
switch				3-wire (PNP)		5 V, 12 V		M9PV	M9P	•	•	•	0	0	0	IC circuit			
S				2-wire		12 V		M9BV	M9B	•	•	•	0	0	0	_			
anto	Di con in in in in in in			3-wire (NPN)		24 V 5 V, 12 V	5 V 40 V	5 V 40 V		M9NWV	M9NW	•	•	•	0	0	0	IC circuit	D.1.
	Diagnostic indication (2-color indication) Gro	Grommet	Yes	Yes 3-wire (PNP) 24 V 2-wire	24 V		_	M9PWV	M9PW	•	•	•	0	0	0	IC CITCUIT	Relay, PLC		
state					12 V		M9BWV	M9BW	•	•	•	0	0	0	_	FLC			
				3-wire (NPN)		5 V. 12 V		M9NAV**	M9NA**	0	0	•	0	_	0	IC circuit			
Solid	Water resistant (2-color indication)			3-wire (PNP)		5 V, 12 V		M9PAV**	M9PA**	0	0	•	0	_	0	IC CITCUIT			
Š	(2-color indication)			2-wire		12 V		M9BAV**	M9BA**	0	0	•	0	_	0	_			
Reed o switch		Crommot	Yes	3-wire (NPN equivalent)	_	5 V	_	A96V	A96	•	_	•	-	-	_	IC circuit	_		
Be s	— G	Grommet	mmet	No 2-wire 24 V	12.1/	100 V	A93V	A93	•	_	•	•	_	_	_	Relay,			
auto			No		24 V 12 V	100 V or less	A90V	A90	•	_	•	-	_	_	IC circuit	PLC			

- ** Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
- Consult with SMC regarding water resistant types with the above model numbers.
- * Lead wire length symbols: 0.5 m Nil (Example) M9NW 1 m ······· M (Example) M9NWM
- * Solid state auto switches marked with "O" are produced upon receipt of order.
- * Separate switch spacers (BMG2-012) are required to retrofit auto switches (M9 type) on cylinders
- 3 m L (Example) M9NWL 5 m Z (Example) M9NWZ
- * There are other applicable auto switches than listed above. For details, refer to page 1321. * For details about auto switches with pre-wired connector, refer to pages 1626 and 1627.
- * Auto switches are shipped together (not assembled). (Refer to pages 1319 to 1321 for the details of auto switch mounting.)

Mechanically Jointed Rodless Cylinder Linear Guide Type Series MY1H

Specifications

Bore s	size (mm)	10	16	20	25	32	40		
Fluid		Air							
Action		Double acting							
Operating	pressure range	0.2 to 0.8 MPa {2.0 to 8.2 kgf/cm ² }		0.1	to 0.8 N	ИРа			
Proof pro	essure	1.2 MPa							
Ambient and	fluid temperature	5 to 60°C							
Cushion		Rubber bumper Air cushion							
Lubricat	ion	Non-lube							
Stroke len	gth tolerance	+1.8 0							
Piping	Front/Side port	M5 x 0.8			Rc	1/8	Rc 1/4		
port size	Bottom port		Ø	4	Ø	6	ø8		

Made to Order: Individual Specifications (For details, refer to page 1322.)

Symbol	Specifications
-X168	Helical insert thread specifications

Made to Order Specifications (For details, refer to pages 1699 to 1818.)

Symbol	Specifications
-XB10	Intermediate stroke (Using exclusive body)
-XB11	Long stroke
-XB22	Shock absorber soft type Series RJ type
-XC56	With knock pin hole
-XC67	NBR rubber lining in dust seal band

Symbol With end lock Rubber bumper Air cushion Lock Specifications

Bore size (mm)	16	20	25	32	40			
Lock position	One end (Selectable), Both ends							
Holding force (Max.) (N)	110	170	270	450	700			
Fine stroke adjustment range (mm)	0 to -5.6	0 to -6	0 to -11.5	0 to -12	0 to -16			
Backlash		1	mm or les	s				
Manual release Possible (Non-lock type)								

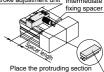
Piston Speed

В	ore size (mm)	10	16 to 40
Without stroke a	djustment unit	100 to 500 mm/s	100 to 1000 mm/s
Stroke	A unit	100 to 200 mm/s	100 to 1000 mm/s ⁽¹⁾
adjustment unit	L unit and H unit	100 to 1000 mm/s	100 to 1500 mm/s (2)

Note 1) Be aware that when the stroke adjustment range is increased by manipulating the adjustment bolt, the air cushion capacity decreases. Also, when exceeding the air cushion stroke ranges on page 1291, the piston speed should be 100 to 200 mm per second.

Note 2) The piston speed is 100 to 1000 mm/s for centralized piping.

Note 3) Use at a speed within the absorption capacity range. Refer to page 1291.


Stroke Adjustment Unit Specifications

Bore si	ze (mm)	10	16	i		20			25		32			40		
Unit symbol		Н	Α	L	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н
Configuration Shock absor	ber model	RB 0805 + with adjustment bolt	With adjustment bolt	RB 0806 + with adjustment bolt	With adjustment bolt	RB 0806 + with adjustment bolt	RB 1007 + with adjustment bolt	With adjustment bolt	RB 1007 + with adjustment bolt	RB 1412 + with adjustment bolt	With adjustment bolt	RB 1412 + with adjustment bolt	with	With adjustment bolt	RB 1412 + with adjustment bolt	RB 2015 with adjustment bolt
Stroke adjust-	Without spacer	0 to -10	0 to	-5.6		0 to -6		(to -11.	5		0 to -12			0 to -16	
ment range by intermediate	With short spacer	— *1	-5.6 to	-11.2	-	-6 to -12	2	-11.5 to -23		23	-12 to -24		4	-16 to -32		2
fixing spacer (mm)	With long spacer	— *1	-11.2 t	o –16.8	-	−12 to −18		-23 to -34.5		−24 to −36		-32 to -48		8		

- *1) For ø10, stroke adjustment is available. Refer to page 1293 for details
- *2) Stroke adjustment range is applicable for one side when mounted on a cylinder.

Stroke adjustment unit mounting diagram

Stroke adjustment unit_ Intermediate

Place the protruding section on the stroke adjusting unit side Example of L6L7 attachment

L unit

Long space

Right side

Port

Stroke Adjustment Unit Symbol

`						Right si	de stroke	adjustm	ent unit			
			Without	A: With adjustment bolt			L: With low load shock absorber + Adjustment bolt			H: With high load shock absorber + Adjustment bolt		
			unit		With short spacer	With long spacer		With short spacer	With long spacer		With short spacer	With long spacer
Ħ	Without unit		Nil	SA	SA6	SA7	SL	SL6	SL7	SH	SH6	SH7
ustment unit	A: With adjustment bol		AS	Α	AA6	AA7	AL	AL6	AL7	AH	AH6	AH7
Je I		With short spacer	A6S	A6A	A6	A6A7	A6L	A6L6	A6L7	A6H	A6H6	A6H7
ust		With long spacer	A7S	A7A	A7A6	A7	A7L	A7L6	A7L7	A7H	A7H6	A7H7
adi		oad shock absorber +	LS	LA	LA6	LA7	L	LL6	LL7	LH	LH6	LH7
stroke	Adjustment	With short spacer	L6S	L6A	L6A6	L6A7	L6L	L6	L6L7	L6H	L6H6	L6H7
str	With long spa		L7S	L7A	L7A6	L7A7	L7L	L7L6	L7	L7H	L7H6	L7H7
e	H: With high	load shock absorber +	HS	HA	HA6	HA7	HL	HL6	HL7	Н	HH6	HH7
fts	Adjustment	With short spacer	H6S	H6A	H6A6	H6A7	H6L	H6L6	H6L7	Н6Н	H6	H6H7
٩	bolt	With long spacer	H7S	H7A	H7A6	H7A7	H7L	H7L6	H7L7	H7H	H7H6	H7

* Intermediate fixing spacer is not available for end lock mounting side.

Shock Absorbers for L and H Units

Type	Stroke adjustment		Bore size (mm)								
туре	unit	10	16	20	25	32	40				
Standard	L	— RB0806		806	RB1007	RB1	412				
(Shock absorber/RB series)	Н	RB0805	— RB1007		RB1412	RB2015					
Shock absorber/soft type	L	_	RJ08	306H	RJ1007H	RJ14	112H				
RJ series mounted (-XB22)	Н	RJ0805	_	RJ1007H	RJ1412H	_	_				

- * The shock absorber service life is different from that of the MY1H cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.
- * Mounted shock absorber soft type RJ series (-XB22) is made to order specifications. For details refer to page 1722.

Shock Absorber Specifications

OHOUK A	0001001	pcoi	uii	0113		
Мо	odel	RB 0805	RB 0806	RB 1007	RB 1412	RB 2015
Max. energy	absorption (J)	1.0	2.9	5.9	19.6	58.8
Stroke abso	orption (mm)	5	6	7	12	15
Max. collision	speed (mm/s)	1000	1500	1500	1500	1500
Max. operating fre	quency (cycle/min)	80	80	70	45	25
Spring	Extended	1.96	1.96	4.22	6.86	8.34
force (N)	3.83	4.22	6.86	15.98	20.50	
Operating temperature	erature range (°C)			5 to 60		

Left side

Port

Short space

L unit

* The shock absorber service life is different from that of the MY1H cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.

D-□ -X□ Technical

data

MY1B -Z MY1H

MY1B

MY1M

MY1C MY1H MY1 MY1 $\square W$ MY2C

MY2

Ιн⊓

MY3A MY3B MY3M

1289

^{*} Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.

Theoretical Output

								(N)				
Bore size	Piston area		Operating pressure (MPa)									
(mm)	(mm ²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8				
10	78	15	23	31	39	46	54	62				
16	200	40	60	80	100	120	140	160				
20	314	62	94	125	157	188	219	251				
25	490	98	147	196	245	294	343	392				
32	804	161	241	322	402	483	563	643				
40	1256	251	377	502	628	754	879	1005				

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Weight

							(kg
Bore size	Basic	Additional weight per each	Weight of moving	Side support bracket weight (per set)		ljustment u (per unit)	
(mm)	weight	50 mm of stroke	parts	Type A and B	A unit weight	L unit weight	H unit weight
10	0.26	0.08	0.05	0.003	_	_	0.02
16	0.74 0.14 0.19	0.19	0.01	0.02	0.04	_	
20	1.35	0.25	0.40	0.02	0.03	0.05	0.07
25	2.31	0.30	0.73	0.02	0.04	0.07	0.11
32	4.65	0.46	1.30	0.04	0.08	0.14	0.23
40	6.37	0.55	1.89	0.08	0.12	0.19	0.28

Calculation: (Example) MY1H25-300A

Stroke adjustment unit
Intermediate
fixing spacer

Place the protruding

section on the stroke

adjustment unit side.

Weight of A unit----- 0.06 kg

Option

Stroke Adjustment Unit Part No.

MYH-A 25 L2-6N

Stroke adjustment unit

Bore size ◆ 10 10 mm 16 16 mm

10	10 111111
16	16 mm
20	20 mm
25	25 mm
32	32 mm
40	40 mm

Unit no

	•	,,,,,,
Symbol	Stroke adjustment unit	Mounting position
A1	A unit	Left
A2	A unit	Right
L1	L unit	Left
L2	L unit	Right
H1	H unit	Left
H2	ri uliit	Right

Note 1) Refer to page 1289 for details about

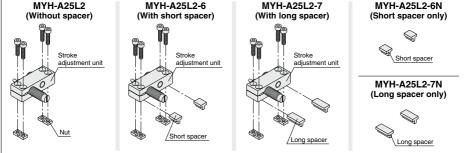
adjustment range.

Note 2) H unit only for ø10, A and L unit only for

ø16

Intermediate fixing spacer

Nil	Without spacer			
6□	Short spacer			
7 🗀	Long spacer			


Spacer delivery style
Nil Unit installed
N Spacer only

- Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.
- Spacers are shipped for a set of two.
 Intermediate fixing spacer is not available for a10.

* When ordering the intermediate fixing spacer for the stroke adjustment unit, the intermediate fixing spacer is shipped together.

Spacer length

Component Parts

* Nuts are equipped on the cylinder body.

Side Support Part No.

Bore size (mm)	10	16	20	25	32	40
Side support A	MY-S10A	MY-S16A	MY-S20A	MY-S25A	MY-S32A	MY-S40A
Side support B	MY-S10B	MY-S16B	MY-S20B	MY-S25B	MY-S32B	MY-S40B

For details about dimensions, etc., refer to page 1305.

A set of side supports consists of a left support and a right support.

Cushion Capacity

Cushion Selection

<Rubber bumper>

Rubber bumpers are a standard feature on MY1H10.

Since the stroke absorption of rubber bumpers is short, when adjusting the stroke with an A unit, install an external shock absorber.

The load and speed range which can be absorbed by a rubber bumper is inside the rubber bumper limit line of the graph.

<Air cushion>

Air cushions are a standard feature on mechanically jointed rodless cylinders.

The air cushion mechanism is

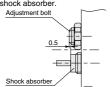
incorporated to prevent excessive impact of the piston at the stroke end during high speed operation. The purpose of air cushion, thus, is not to decelerate the piston near the stroke end.

The ranges of load and speed that air cushions can absorb are within the air cushion limit lines shown in the graphs.

Stroke adjustment unit with shock absorber> Use this unit when operating with a load or speed exceeding the air cushion limit line, or when cushioning is required outside of the effective air cushion stroke range due to stroke adjustment.

L unit

Use this unit when the cylinder stroke is outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line or below the L unit limit line.

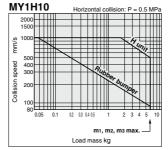

H unit

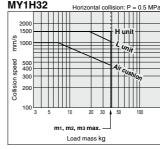
Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.

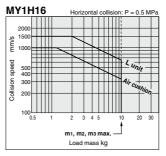
⚠ Caution

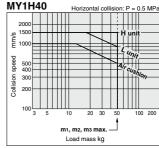
 Refer to the figure below when using the adjustment bolt to perform stroke adjustment.

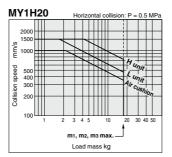
When the effective stroke of the shock absorber decreases as a result of stroke adjustment, the absorption capacity decreases dramatically. Secure the adjusting bolt at the position where it protrudes approximately 0.5 mm from the shock absorber.

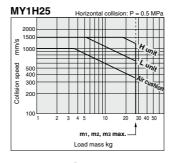



Do not use a shock absorber together with air cushion.


Air Cushion Stroke


Cushion stroke
12
15
15
19
24


Absorption Capacity of Rubber Bumper, Air cushion and Stroke Adjustment Units



D
-X

Technical

MY1B

MY1H

MY1B

MY1M

MY1C

MY1H

MY1

MY1

 $\square W$

MY2C

MY2

Ιн⊓

MY3A

MY3B

MY3M

нт

ØSMC

1291

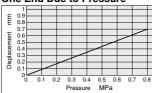
Series MY1H

Cushion Capacity

Tightening Torque for Stroke Adjustment Unit Holding Bolts (N·m)

Bore size (mm)	Tightening torque
10	Refer to the adjustment procedures on page 1293.
16	0.7
20	1.8
25	1.8
32	3.5
40	5.8

Calculation of Absorbed Energy for Stroke Adjustment Unit

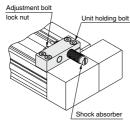

with Sh	with Shock Absorber (N·m)				
	Horizontal collision	Vertical (Downward)	Vertical (Upward)		
Type of impact	m s	ν	<u>a</u>		
Kinetic energy E1		$\frac{1}{2}m{\cdot}\mathcal{V}^{_2}$			
Thrust energy E2	F⋅s	F·s + m·g·s	F·s – m·g·s		
Absorbed energy E		E1 + E2			

Symbol

- υ: Speed of impact object (m/s)
- F: Cylinder thrust (N)
- s: Shock absorber stroke (m)
- m: Weight of impact object (kg) g: Gravitational acceleration (9.8 m/s2)
- Note) The speed of the impact object is measured at the time of impact with the

shock absorber.

Rubber Bumper (Ø10 only) Positive Stroke from One End Due to Pressure


Series MY1H **Specific Product Precautions 1**

Be sure to read before handling. Refer to front matter 57 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Use caution not to get your hands caught in the unit.

. When using a product with stroke adjustment unit, the space between the slide table (slider) and the stroke adjustment unit becomes narrow at the stroke end, causing a danger of hands getting caught. Install a protective cover to prevent direct contact with the human body.

<Fastening of unit>

The unit can be secured by evenly tightening the four unit holding bolts.

∕ Caution

Do not operate with the stroke adjustment unit fixed in an intermediate position.

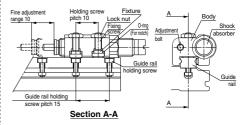
When the stroke adjustment unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In such cases, as a stroke adjustment unit with the spacer for intermediate securing is available, it is recommended to use it.

(Except ø10)

For other lengths, please consult with SMC (Refer to "Tightening Torque for Stroke Adjustment Unit Holding Bolts".)

<Stroke adjustment with adjustment bolt>

Loosen the adjustment bolt lock nut, and adjust the stroke from the head cover side using a hexagon wrench. Re-tighten the lock nut.


<Stroke adjustment with shock absorber>

Loosen the two unit holding bolts on the shock absorber side, turn the shock absorber and adjust the stroke. Then, uniformly tighten the unit holding bolts to secure the shock absorber.

Take care not to over-tighten the holding bolts. (Except ø10, ø16, ø20) (Refer to "Tightening Torgue for Stroke Adjustment Unit Holding Bolts".)

∕ Caution

To adjust the stroke adjustment unit of the MY1H10, follow the step shown below.

Adjusting Procedure

- 1. Loosen the two lock nuts, and then loosen the holding screws by turning them approximately two turns.
- 2. Move the body to the notch just before the desired stroke. (The notches are found in alternating increments of 5 mm and 10
- 3. Tighten the holding screw to 0.3 N·m. Make sure that the tightening does not cause excessive torque. The fixture fits into the fastening hole in the guide rail to prevent slippage, which enables fastening with low torque.
- 4. Tighten the lock nut to 0.6 N·m.
- 5. Make fine adjustments with the adjustment bolt and shock absorber

MY1B MY1H MY1B

MY1M

MY1C MY1H

MY1 ΗТ MY1

 $\square W$ MY2C

MY2 Ιн⊓ MY3A

MY3B MY3M

Technical

Series MY1H Specific Product Precautions 2

Be sure to read before handling.


Refer to front matter 57 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

With End Locks

Recommended Pneumatic Circuit

⚠ Caution

This is necessary for the correct locking and unlocking actions.

Operating Precautions

⚠ Caution

1. Do not use 3 position solenoid valves.

Avoid use in combination with 3 position solenoid valves (especially closed center metal seal types). If pressure is trapped in the port on the lock mechanism side, the cylinder cannot be locked.

Furthermore, even after being locked, the lock may be released after some time due to air leaking from the solenoid valve and entering the cylinder.

2. Back pressure is required when releasing the lock.

Before starting operation, be sure to control the system so that air is supplied to the side without the lock mechanism (in case of locks on both ends, the side where the slide table is not locked) as shown in the figure above. There is a possibility that the lock may not be released. (Refer to the section on releasing the lock.)

- Release the lock when mounting or adjusting the cylinder. If mounting or other work is performed when the cylinder is locked, the lock unit may be damaged.
- 4. Operate at 50% or less of the theoretical output.

If the load exceeds 50% of the theoretical output, this may cause problems such as failure of the lock to release, or damage to the lock unit.

5. Do not operate multiple cylinders in synchronization.

Avoid applications in which two or more end lock cylinders are synchronized to move one workpiece, as one of the cylinder locks may not be able to release when required.

- Use a speed controller with meter-out control. Lock cannot be released occasionally by meter-in control.
- Be sure to operate completely to the cylinder stroke end on the side with the lock.

If the cylinder piston does not reach the end of the stroke, locking and unlocking may not be possible. (Refer to the section on adjusting the end lock mechanism.)

Operating Pressure

⚠ Caution

 Supply air pressure of 0.15 MPa or higher to the port on the side that has the lock mechanism, as it is necessary for disengaging the lock.

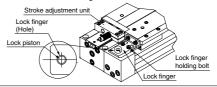
Exhaust Speed

⚠ Caution

1. Locking will occur automatically if the pressure applied to the port on the lock mechanism side falls to 0.05 MPa or less. In the cases where the piping on the lock mechanism side is long and thin, or the speed controller is separated at some distance from the cylinder port, the exhaust speed will be reduced. Take note that some time may be required for the lock to engage. In addition, clogging of a silencer mounted on the solenoid

valve exhaust port can produce the same effect.

Relation to Cushion



 When the air cushion on the lock mechanism side is in a fully closed or nearly closed state, there is a possibility that the slide table will not reach the stroke end, in which case locking will not occur.

Adjusting the End Lock Mechanism

⚠ Caution

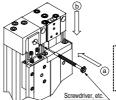
- The end lock mechanism is adjusted at the time of shipping.
 Therefore, adjustment for operation at the stroke end is unnecessary.
- Adjust the end lock mechanism after the stroke adjustment unit has been adjusted. The adjustment bolt and shock absorber of the stroke adjustment unit must be adjusted and secured first. Locking and unlocking may not occur otherwise.
- 3. Perform fine adjustment of the end lock mechanism as follows. Loosen the lock finger holding bolts, and then adjust by aligning the center of the lock piston with the center of the lock finger hole. Secure the lock finger.

Releasing the Lock

\land Warning

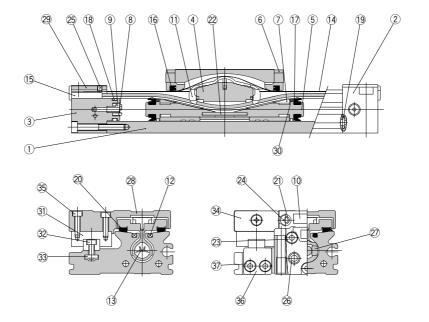
1. Before releasing the lock, be sure to supply air to the side without the lock mechanism, so that there is no load applied to the lock mechanism when it is released. (Refer to the recommended pneumatic circuits.) If the lock is released when the port on the side without the lock is in an exhaust state, and with a load applied to the lock unit, the lock unit may be subjected to an excessive force and be damaged.

Furthermore, sudden movement of the slide table is very dangerous.


Manual Release

When manually releasing the end lock, be sure to release the pressure.

If it is unlocked while the air pressure still remains, it will lead to damage a workpiece, etc. due to unexpected lurching.


Perform manual release of the end lock mechanism as follows. Push the lock piston down with a screwdriver, etc., and move the slide table.

Other handling precautions regarding mounting, piping, and environment are the same as the standard series.

Construction: ø10

Centralized piping type

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover WR	Aluminum alloy	Painted
3	Head cover WL	Aluminum alloy	Painted
4	Piston yoke	Aluminum alloy	Hard anodized
5	Piston	Aluminum alloy	Chromated
6	End cover	Special resin	
7	Wear ring	Special resin	
8	Bumper	Polyurethane rubber	
9	Holder	Stainless steel	
10	Stopper	Carbon steel	Nickel plated
11	Belt separator	Special resin	
12	Seal magnet	Rubber magnet	
15	Belt clamp	Special resin	
20	Bearing	Special resin	
21	Spacer	Chromium molybdenum steel	Nickel plated

Ran	lacom	ant Pa	rt. Sc	al Kit

No.	Description	Qty.	MY1H10	
13	Seal belt	1	MY10-16A-Stroke	
14	Dust seal band	1	MY10-16B-Stroke	
16	Scraper	2		
17	Piston seal	2	MY1B10-PS	
18	Tube gasket	2		
19	O-ring	4		

* Seal kit includes (6, (7), (8) and (9). Seal kit includes a grease pack (10 g).

When (3) and (4) are shipped independently, a grease

pack is included.

Order with the following part number when only the

grease pack is needed.

Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

No.	Description	Material	Note
22	Spring pin	Stainless steel	
23	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
24	Round head Phillips screw	Carbon steel	Nickel plated
25	Hexagon socket head set screw	Carbon steel	Black zinc chromated
26	Hexagon socket head plug	Carbon steel	Nickel plated
27	Magnet	_	
28	Slide table	Aluminum alloy	Hard anodized
29	Head plate	Stainless steel	
30	Felt	Felt	
31	Linear guide	_	
32	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
33	Square nut	Carbon steel	Nickel plated
34	Stopper plate	Carbon steel	Nickel plated
35	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
36	Guide stonner	Carbon steel	Nickel plated

Hexagon socket head cap screw | Chromium molybdenum steel

D-□

MY1B -Z

MY1H MY1B

MY1M

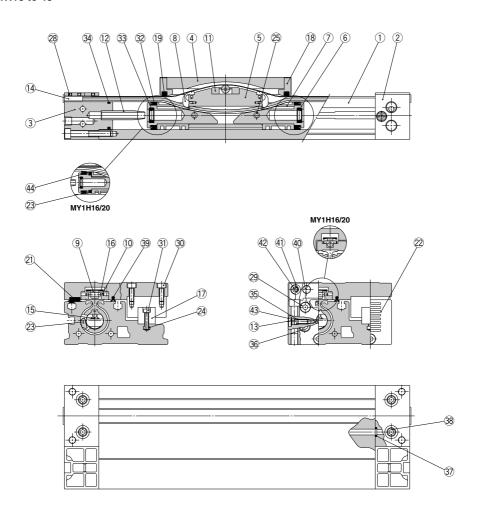
MY1C

MY1H MY1 HT

MY1 □W MY2C MY2 H□

MY3A MY3B MY3M

-X□ Technical


SMC

Nickel plated

Series MY1H

Construction: Ø16 to Ø40

MY1H16 to 40

Mechanically Jointed Rodless Cylinder Linear Guide Type Series MY1H

MY1H16 to 40

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover WR	Aluminum alloy	Painted
3	Head cover WL	Aluminum alloy	Painted
4	Slide table	Aluminum alloy	Hard anodized
5	Piston yoke	Aluminum alloy	Chromated
6	Piston	Aluminum alloy	Chromated
7	Wear ring	Special resin	
8	Belt separator	Special resin	
9	Guide roller	Special resin	
10	Guide roller shaft	Stainless steel	
11	Coupler	Sintered iron material	
12	Cushion ring	Aluminum alloy	Anodized
13	Cushion needle	Rolled steel	Nickel plated
14	Belt clamp	Special resin	
17	Guide	_	
18	End cover	Special resin	
21	Bearing	Special resin	
22	Guide cover	Special resin	

No.	Description	Material	Note
23	Magnet	_	
24	Square nut	Carbon steel	Nickel plated
25	Spring pin	Carbon tool steel	
28	Hexagon socket head set screw	Chromium molybdenum steel	Black zinc chromated/Nickel plated
29	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
30	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
31	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
36	Hexagon socket head taper plug	Carbon steel	Nickel plated
38	Hexagon socket head taper plug	Carbon steel	Nickel plated
40	Stopper	Carbon steel	Nickel plated
41	Spacer	Stainless steel	
42	Hexagon socket button head screw	Chromium molybdenum steel	Nickel plated
43	Type CR retaining ring	Spring steel	
44	Lube retainer	Special resin	(ø16, ø20)

MY1B -Z MY1H

MY1B

MY1M

MY1C

MY1H

MY1 HT MY1 ∣□W MY2C

MY2 Η□ MY3A

MY3B MY3M

Replacement Part: Seal Kit

No.	Description	Qty.	MY1H16	MY1H20	MY1H25	MY1H32	MY1H40
15	Seal belt	1	MY16-16A-Stroke	MY20-16A-Stroke	MY25-16A-Stroke	MY32-16A-Stroke	MY40-16A-Stroke
16	Dust seal band	1	MY16-16B-Stroke	MY20-16B-Stroke	MY25-16B-Stroke	MY32-16B-Stroke	MY40-16B-Stroke
35	O ring	_	KA00309	KA00309	KA00311	KA00320	KA00320
35		-	(ø4 x ø1.8 x ø1.1)	(ø4 x ø1.8 x ø1.1)	(ø5.1 x ø3 x ø1.05)	(ø7.15 x ø3.75 x ø1.7)	(ø7.15 x ø3.75 x ø1.7)
39	Side scraper	1	MYH16-15BK2900B	MYH20-15BK2901B	MYH25-15BK2902B	MYH32-15BK2903B	MYH40-15BK2904B
19	Scraper	2					
32	Piston seal	2	į				
33	Cushion seal	2	MY1H16-PS	MY1H20-PS	MY1H25-PS	MY1H32-PS	MY1H40-PS
34	Tube gasket	2					
27	O ring	4	1				

^{*} Seal kit includes (9, 22, 33, 34 and 37). Order the seal kit based on each bore size.

Order with the following part number when only the grease pack is needed.

Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

Note) Two kinds of dust seal bands are available. Verify the type to use, since the part number varies

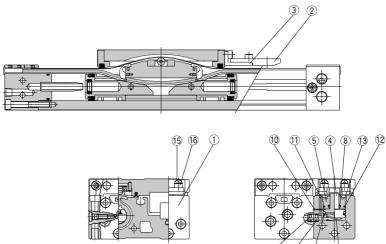
depending on the treatment of the hexagon socket head set screw 28.

A: Black zinc chromated → MY□□-16B-stroke, B: Nickel plated → MY□□-16BW-stroke

D-□ -X□

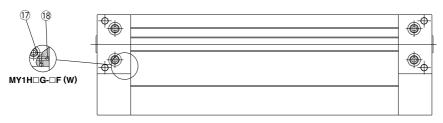
Technical

1297


^{*} Seal kit includes a grease pack (10 g).

When (§ and (§) are shipped independently, a grease pack (20 g) is included.

Series MY1H


Construction: Ø16 to Ø40

With End Lock

9

(6)

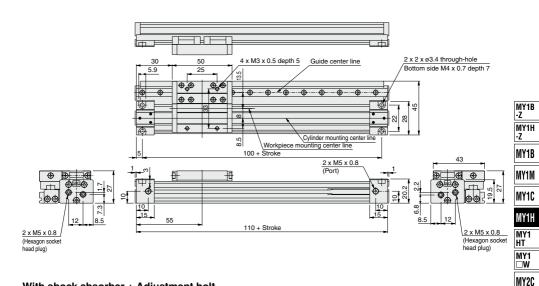
Component Parts

•		
Description	Material	Note
Locking body	Aluminum alloy	Painted
Lock finger	Carbon steel	After quenching, nickel plated
Lock finger bracket	Rolled steel	Nickel plated
Lock piston	Carbon tool steel	After quenching, electroless nickel plated
Rod cover	Aluminum alloy	Hard anodized
Return spring	Spring steel	Zinc chromated
Bypass pipe	Aluminum alloy	Chromated
Steel ball	High carbon chrome bearing steel	
Steel ball	High carbon chrome bearing steel	
Round type R retaining ring	Carbon tool steel	Nickel plated
O-ring	NBR	
Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
Steel ball	High carbon chrome bearing steel	
Steel ball	High carbon chrome bearing steel	
	Locking body Lock finger Lock finger bracket Lock piston Rod cover Return spring Bypass pipe Steel ball Steel ball Round type R retaining ring O-ring Hexagon socket head cap screw Hexagon socket head cap screw Steel ball	Locking body Aluminum alloy Lock finger Carbon steel Lock finger bracket Rolled steel Lock piston Carbon tool steel Rod cover Aluminum alloy Return spring Spring steel Bypass pipe Aluminum alloy Steel ball High carbon chrome bearing steel Steel ball High carbon chrome bearing steel Round type R retaining ring Carbon tool steel O-ring NBR Hexagon socket head cap screw Chromitum molybdenum steel Hexagon socket head cap screw Chromitum molybdenum steel Steel ball High carbon chrome bearing steel

Replacement Part: Seal Kit

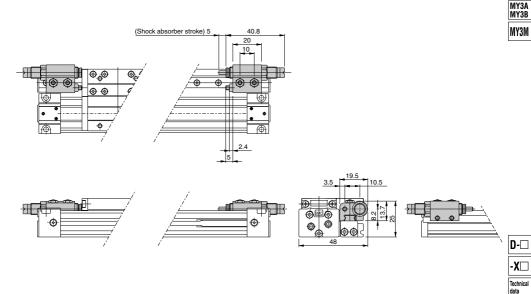
No.	Description	Material	Qty.	MY1H16	MY1H20	MY1H25	MY1H32	MY1H40
8	Rod seal	NBR	1	KB00257	KB00257	KB00267	KB00267	KB00267
9	Piston seal	NBR	1	KB00202	KB00202	KB00217	KB00217	KB00217
12	O-ring	NBR	1	KA00057	KA00057	KA00037	KA00037	KA00037

^{**} Since the seal kit does not include a grease pack, order it separately.


Grease pack part no.: GR-S-010 (10 g)

Mechanically Jointed Rodless Cylinder Linear Guide Type Series MY1H

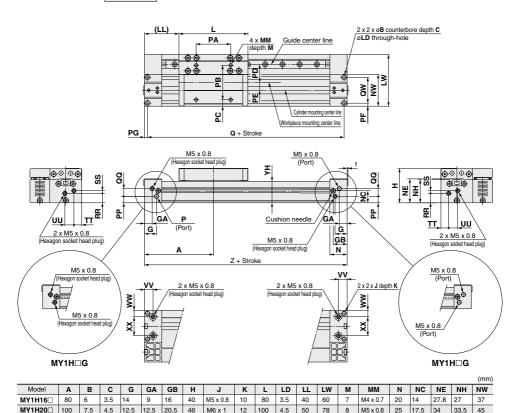
Centralized Piping Type ø10


Refer to page 1325 regarding centralized piping port variations.

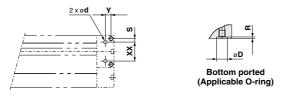
MY1H10G - Stroke

With shock absorber + Adjustment bolt

MY1H10G — Stroke H



1299


MY2

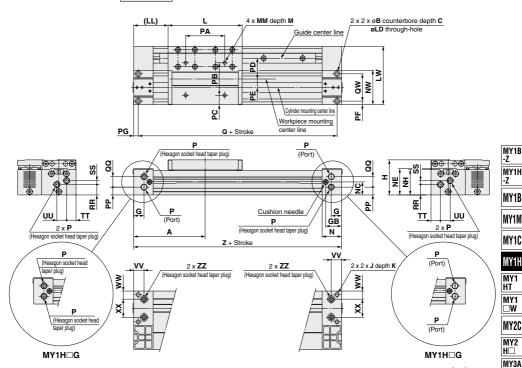
H□

MY1H16□/20□ - Stroke

																				(mm)
Model	PA	PB	PC	PD	PE	PF	PG	PP	Q	QQ	QW	RR	SS	TT	UU	VV	ww	XX	YH	Z
MY1H16□	40	40	7.5	21	9	3.5	3.5	7.5	153	9	30	11	3	9	10.5	10	7.5	22	25	160
MY1H20□	50	40	14.5	27	12	4.5	4.5	11.5	191	11	36	14.5	5	10.5	12	12.5	10.5	24	31.5	200

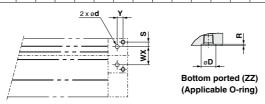
Hole Size for Centralized Piping on the Bottom

Model	WX	Υ	S	d	D	R	Applicable O-ring
MY1H16□	22	6.5	4	4	8.4	1.1	C6
MY1H20□	24	8	6	4	8.4	1.1	


(Machine the mounting side to the dimensions below.)

Mechanically Jointed Rodless Cylinder Linear Guide Type Series MY1H

Standard Type/Centralized Piping Type Ø25, Ø32, Ø40 Refer to page 1325 regarding centralized piping port variations.



																				(mm)
Model	Α	В	С	G	GB	Н	J	K	L	LD	LL	LW	М	MM	N	NC	NE	NH	NW	P
MY1H25□	110	9	5.5	16	24.5	54	M6 x 1	9.5	114	5.4	53	90	9	M5 x 0.8	30	20	40.5	39	53	Rc 1/8
MY1H32□	140	11	6.6	19	30	68	M8 x 1.25	16	140	6.8	70	110	13	M6 x 1	37	25	50	49	64	Rc 1/8
MY1H40□	170	14	8.5	23	36.5	84	M10 x 1.5	15	170	8.6	85	121	13	M6 x 1	45	30.5	63	61.5	75	Rc 1/4

"P" indicates cylinder supply ports.

																					(mm)
Model	PA	PB	PC	PD	PE	PF	PG	PP	Q	QQ	QW	RR	SS	TT	UU	٧٧	ww	XX	YH	Z	ZZ
MY1H25□	60	50	14.5	32	13	5.5	7	12	206	16	42	16	6	14.5	15	16	12.5	28	37.5	220	Rc 1/16
MY1H32□	80	60	15	42	13	6.5	8	17	264	16	51	23	4	16	16	19	16	32	47	280	Rc 1/16
MY1H40□	100	80	20.5	37.5	23	8	9	18.5	322	24	59	27	10.5	20	22	23	19.5	36	59.5	340	Bc 1/8

Hole Size for Centralized Piping on the Bottom

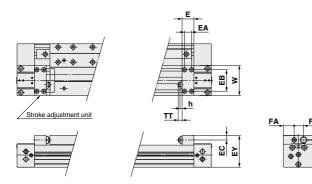
Model	wx	Υ	S	d	D	R	Applicable O-ring
MY1H25□	28	9	7	6	11.4	1.1	C9
MY1H32□	32	11	9.5	6	11.4	1.1	C9
MY1H40□	36	14	11.5	8	13.4	1.1	C11.2

(Machine the mounting side to the dimensions below.)

D
-X

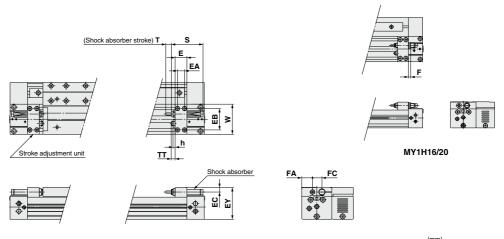
Technical data

MY3B


MY3M

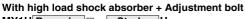
Series MY1H

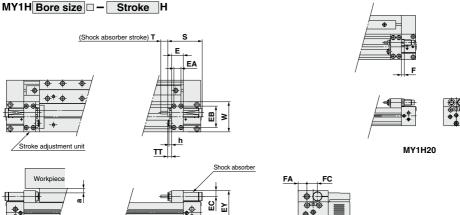
Stroke Adjustment Unit


With adjustment bolt

MY1H Bore size □ - Stroke A

Applicable bore size	Е	EA	EB	EC	EY	FA	FC	h	TT	W
MY1H16	14.6	7	28	5.8	39.5	11.5	13	3.6	5.4 (Max. 11)	37
MY1H20	19	10	33	5.8	45.5	15	14	3.6	6 (Max. 12)	45
MY1H25	18	9	40	7.5	53.5	16	21	3.5	5 (Max. 16.5)	53
MY1H32	25	14	45.6	9.5	67.5	23	20	4.5	8 (Max. 20)	64
MY1H40	31	19	55	11	82	24.5	26	4.5	9(Max. 25)	75


With low load shock absorber + Adjustment bolt MY1H Bore size - Stroke L



														(mm)
Applicable bore size	Е	EA	EB	EC	EY	F	FA	FC	h	S	Т	TT	w	Shock absorber model
MY1H16	14.6	7	28	5.8	39.5	4	11.5	13	3.6	40.8	6	5.4 (Max. 11)	37	RB0806
MY1H20	19	10	33	5.8	45.5	4	15	14	3.6	40.8	6	6 (Max. 12)	45	RB0806
MY1H25	18	9	40	7.5	53.5	_	16	21	3.5	46.7	7	5 (Max. 16.5)	53	RB1007
MY1H32	25	14	45.6	9.5	67.5		23	20	4.5	67.3	12	8 (Max. 20)	64	RB1412
MY1H40	31	19	55	11	82		24.5	26	4.5	67.3	12	9 (Max. 25)	75	RB1412

Mechanically Jointed Rodless Cylinder Linear Guide Type Series MY1H

Stroke Adjustment Unit

* Since dimension EY of the H type unit is greater than the table top height (dimension H), when mounting a workpiece that exceeds the overall length (dimension L) of the slide table, allow a clearance of dimension "a" or larger on the workpiece side.

															(111111)
Applicable bore size	Е	EA	EB	EC	EY	F	FA	FC	h	S	Т	TT	w	Shock absorber model	а
MY1H20	19	10	33	7.7	49.5	5	14.3	15.7	3.5	46.7	7	6 (Max. 12)	45	RB1007	4
MY1H25	18	9	40	9	57	—	18	17.5	4.5	67.3	12	5 (Max. 16.5)	53	RB1412	3.5
MY1H32	25	14	45.6	12.4	73	_	18.5	22.5	5.5	73.2	15	8 (Max. 20)	64	RB2015	5.5
MY1H40	31	19	55	12.4	86		26.5	22	5.5	73.2	15	9 (Max. 25)	75	BB2015	2.5

MY1B -Z MY1H -Z

MY1M

MY1C MY1H

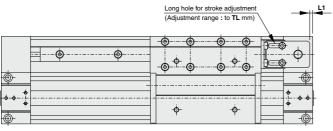
MY1 HT MY1 □W

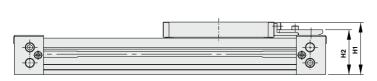
MY2C MY2 H□

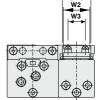
MY3A MY3B

D-□ -X□

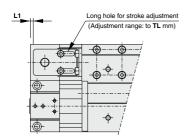
Technical data

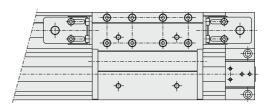



Series MY1H


With End Lock Ø16 to Ø40

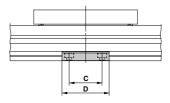
Dimensions for types other than end lock are identical to the standard type dimensions. For details about dimensions, etc., refer to pages 1300 and 1301.

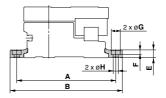

MY1H□-□E (Right end)



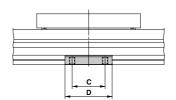
MY1H□-□F (Left end)

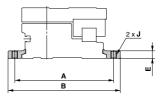
MY1H□-□W (Both ends)




							(mm)
Model	H1	H2	L1	TL	W1	W2	W3
MY1H16□	39.2	33	0.5	5.6	18	16	10.4
MY1H20□	45.7	39.5	3	6	18	16	10.4
MY1H25□	53.5	46	3	11.5	29.3	27.3	17.7
MY1H32□	67	56	6.5	12	29.3	27.3	17.7
MY1H40□	83	68.5	10.5	16	38	35	24.4

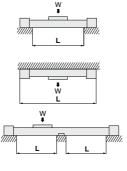
Mechanically Jointed Rodless Cylinder Linear Guide Type Series MY1H

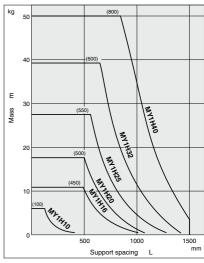

Side Support


Side support A MY-S□A

Side support B MY-S□B

										(mm)
Model	Applicable bore size	Α	В	С	D	Е	F	G	Н	J
MY-S10 ^A	MY1H10	53	61.6	12	21	3	1.2	6.5	3.4	M4 x 0.7
MY-S16A	MY1H16	71	81.6	15	26	4.9	3	6.5	3.4	M4 x 0.7
MY-S20 ⁸	MY1H20	91	103.6	25	38	6.4	4	8	4.5	M5 x 0.8
MY-S25 ^A	MY1H25	105	119	35	50	8	5	9.5	5.5	M6 x 1
MY-S32A	MY1H32	130	148	45	64	11.7	6	11	6.6	M8 x 1.25
MY-S40 ⁸	MY1H40	145	167	55	80	14.8	8.5	14	9	M10 x 1.5


* A set of side supports consists of a left support and a right support.


Guide for Side Support Application

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load mass. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the graph on the right.

∧ Caution

- 1. If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- 2. Support brackets are not for mounting; use them solely for providing support.

MY1B MY1M

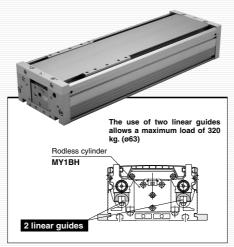
MY1B -Z MY1H

MY1C

MY1H
MY1
HT
MY1
COMMON COMMON

MY2C MY2

H□ MY3A MY3B


MY3M

D-□

-X

Series MY1 FT High Rigidity/Linear Guide Type ø50, ø63

Easy maintenance is stressed by a revolutionary construction which allows cylinder replacement without disturbing the guide units or workpiece.

MY1B -Z MY1H -Z

MY1B MY1M

MY1C

MY1H

HII MY1 □W

MY2C MY2

MY3A MY3B

MY3M

Series MY1HT Prior to Use

Maximum Allowable Moment/Maximum Load Mass

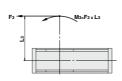
	Bore size	Maximum a	illowable mo	ment (N·m)	Maxim	um load ma	ss (kg)
	(mm)	M1	M2	Мз	m1	m2	тз
MY1HT	50	140	180	140	200	140	200
IVITITI	63	240	300	240	320	220	320

The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

Maximum Allowable Moment

Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.

Load mass (kg)



Moment (N·m)

<Calculation of guide load factor>

- 1. Maximum allowable load (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.
 - * To evaluate, use value (average speed) for (1) and (2), and value (collision speed value = 1.4value) for (3), Calculate mmax for (1) from the maximum allowable load graph (m1, m2, m3) and Mmax for (2) and (3) from the maximum allowable moment graph (M₁, M₂, M₃).

Sum of guide $\Sigma\alpha$	Load mass [m]	Static moment [M] (1)	Dynamic moment [M _E] ⁽²⁾ ✓ 1
load factors	Maximum allowable load [m max]	Allowable static moment [Mmax]	Allowable dynamic moment [Memax]

Note 1) Moment caused by the load, etc., with cylinder in resting condition.

Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper). Note 3) Depending on the shape of the workpiece, multiple moments may occur. When this happens, the sum of the load factors ($\Sigma \alpha$) is the total of all such moments.

2. Reference formula [Dynamic moment at impact]

Use the following formulae to calculate dynamic moment when taking stopper impact into consideration

m: Load mass (kg)

F: Load (N)

FE: Load equivalent to impact (at impact with stopper) (N)

1)a: Average speed (mm/s)

M: Static moment (N-m)

$$\upsilon$$
 = 1.4 υ a (mm/s) F_E = 1.4 υ a· δ ·m·g

$$\therefore \mathbf{M}_{E} = \frac{1}{3} \cdot \mathbf{F}_{E} \cdot \mathbf{L}_{1} = 4.57 \text{ } \mathbf{V} \mathbf{a} \delta \mathbf{m} \mathbf{L}_{1}$$

υ: Collision speed (mm/s)

L1: Distance to the load's center of gravity (m)

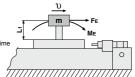
ME: Dynamic moment (N-m)

δ: Damper coefficient

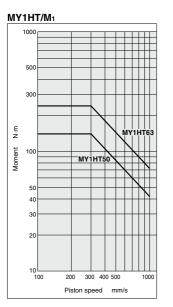
With rubber bumper = 4/100 (MY1B10, MY1H10)

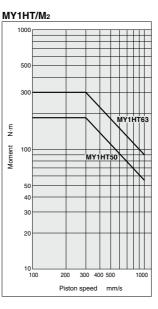
With air cushion = 1/100

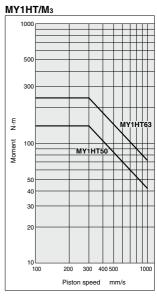
With shock absorber = 1/100


g: Gravitational acceleration (9.8 m/s2)

Note 4) 1.4 vab is a dimensionless coefficient for calculating impact force. Note 5) Average load coefficient $(=\frac{1}{3})$: This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.


3. For detailed selection procedures, refer to pages 1310 and 1311.


Maximum Load Mass


Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.

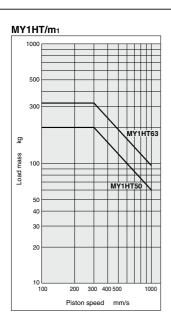
Prior to Use Series MY1HT

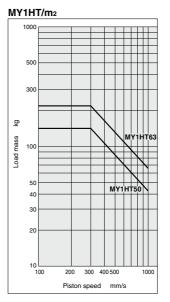
Η□

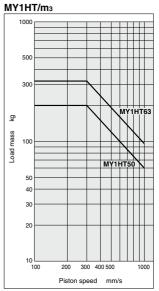
MY3A MY3B

MY3M

MY1B -Z

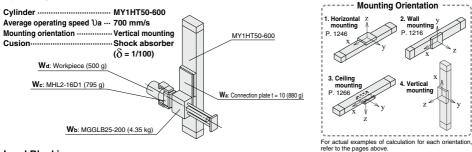

MY1H -Z


MY1B

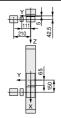

MY1M

MY1C

MY1H


-X - Technical data

Series MY1HT Model Selection


Following are the steps for selecting the most suitable Series MY1HT to your application.

Calculation of Guide Load Factor

1. Operating Conditions

2. Load Blocking

Mass and Center of Gravity for Each Workpiece

Lao.	or Each Workpiece										
Workpiece no.	Mass	Center of gravity									
Wn	m _n	X-axis Xn	Y-axis Yn	Z-axis Zn							
Wa	0.88 kg	65 mm	0 mm	5 mm							
Wb	W ь 4.35 kg		0 mm	42.5 mm							
Wc 0.795		150 mm	111 mm	42.5 mm							
Wd	0.5 kg	150 mm	210 mm	42.5 mm							

n=a, b, c, d

3. Composite Center of Gravity Calculation

$$\begin{array}{ll} \textbf{m}_4 &= \sum_{} \textbf{m}_{\textbf{n}} \\ &= 0.88 + 4.35 + 0.795 + 0.5 = \textbf{6.525 kg} \end{array}$$

$$X = \frac{1}{m_4} x \sum (m_n \times x_n)$$

$$= \frac{1}{6.525} (0.88 \times 65 + 4.35 \times 150 + 0.795 \times 150 + 0.5 \times 150) = 138.5 \text{ mm}$$

$$Y = \frac{1}{m_4} x \sum (m_n \times y_n)$$

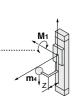
$$= \frac{1}{6.525} (0.88 \times 0 + 4.35 \times 0 + 0.795 \times 111 + 0.5 \times 210) = 29.6 \text{ mm}$$

$$Z = \frac{1}{m_4} \times \sum (m_n \times z_n)$$

$$= \frac{1}{6.525} (0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5) = 37.4 \text{ mm}$$

4. Calculation of Load Factor for Static Load

m4: Mass


 m_4 is the mass which can be transferred by the thrust, and as a rule, is actually about 0.3 to 0.7 of the thrust. (This differs depending on the operating speed.)

 M_1 max (from (1) of graph MY1HT/M₁) = 60 (N·m)

$$M_1 = m_4 \times g \times Z = 6.525 \times 9.8 \times 37.4 \times 10^{-3} = 2.39 \text{ (N·m)}$$

Load factor $\Omega_1 = M_2/M_2 \text{ max} = 2.39/60 = 0.04$

Model Selection Series MY1HT

M₃: Moment

$$M_3 = m_4 \times g \times Y = 6.525 \times 9.8 \times 29.6 \times 10^{-3} = 1.89 (N \cdot m)$$

Load factor $OL_2 = M_3/M_3$ max = 1.89/60 = 0.03

5. Calculation of Load Factor for Dynamic Moment

Equivalent load FE at impact

$$\mathbf{F}_{E} = 1.4 \text{Va} \times \delta \times \mathbf{m} \times \mathbf{g} = 1.4 \times 700 \times \frac{1}{100} \times 6.525 \times 9.8 = 626.7 \text{ (N)}$$

M_{1E}: Moment

$$M_{1E}$$
 max (from (3) of graph MY1HT/ M_1 where 1.4 Ω a = 980 mm/s) = 42.9 (N·m)

$$\mathbf{M}_{1E} = \frac{1}{3} \times \mathbf{F}_{E} \times \mathbf{Z} = \frac{1}{3} \times 626.7 \times 37.4 \times 10^{-3} = 7.82 \text{ (N·m)}$$

Load factor $Ol3 = M_{1E}/M_{1E} max = 7.82/42.9 = 0.18$

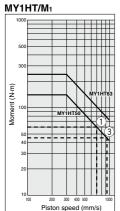
M3E: Moment

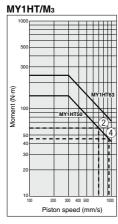
$$\mathbf{M}_{3E} = \frac{1}{3} \times \mathbf{F}_{E} \times \mathbf{Y} = \frac{1}{3} \times 626.7 \times 29.6 \times 10^{-3} = 6.19 \text{ (N·m)}$$

Load factor $OC_4 = M_{3E}/M_{3E} max = 6.19/42.9 = 0.14$

6. Sum and Examination of Guide Load Factors

$$\sum \alpha = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 0.39 \le 1$$


 $\label{thm:continuous} The above calculation is within the allowable value, and therefore the selected model can be used. \\$


Select a shock absorber separately.

In an actual calculation, when the total sum of guide load factors $\Sigma \alpha$ in the formula above is more than 1, consider either decreasing the speed, increasing the bore size, or changing the product series.

This calculation can be easily made using the "SMC Pneumatics CAD System".

Allowable Moment

MY1C MY1H

MY1H

MY1B

MY1M

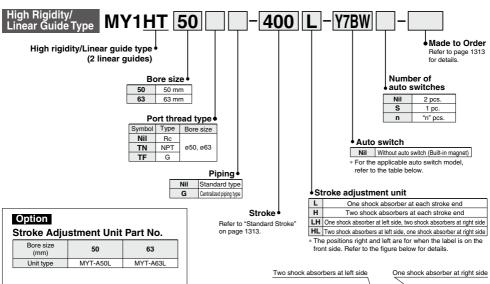
MY1

MY2C MY2

> MY3A MY3B

D-🗆

Techni data



Mechanically Jointed Rodless Cylinder High Rigidity/Linear Guide Type

Series MY1HT

ø50, ø63

How to Order

Side Support Part No.

50	63
MY-S	S63A
MY-S	S63B
	MY-S

A set of side supports consists of a left support and a right support.

Two shock absorbers at left side One shock absorber at right side Note) With top cover removed

Label position

Applicable Auto Switches/Refer to pages 1559 to 1673 for further information on auto switches

		Electrical	ō	140	L	oad volta	ge	Auto swite	ch model	Lead wire I	ength	(m)	Pre-wired		
Туре	Special function	entry	Indicator light	Wiring (Output)	С	C	AC	Perpendicular	In-line	0.5 (Nil)	3 (L)	5 (Z)	connector	Applical	ole load
등				3-wire (NPN)		5 V, 12 V	Y69A	Y59A	•	•	Ó	0			
switch	_			3-wire (PNP)				Y7PV Y7	Y7P	•	•	0	0	IC circuit	
anto 8				2-wire]	Y69B	Y59B	•	•	0	0	_	
a a	Gromme	Diagnostic indication Grommet	Yes	3-wire (NPN)	24 V	5 V, 12 V	-	Y7NWV	Y7NW	•	•	0	0	IC circuit	Relay, PLC
state	Diagnostic indication (2-color indication)			3-wire (PNP)	ĺ	J V, 12 V	<u>'</u>	Y7PWV	Y7PW	•	•	0	0	io dilcuit	
i i	(2 color indication)			2-wire	12 V	v	Y7BWV	Y7BW	•	•	0	0			
So	Water resistant (2-color indication)			2-wire		12 V		_	Y7BA**	_	•	0	0		
Reed auto switch		Grommet	Yes	3-wire (NPN equivalent)	_	5 V	_	_	Z76	•	•	-	_	IC circuit	-
D S	Rec auto s	Grommet		2-wire	24 V	041/	100 V	_	Z73	•	•	•	_	_	Relay,
an			No	2-wile	24 V	12 V	100 V or less	_	Z80	•	•	-	_	IC circuit	PLC"

- ** Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
- Consult with SMC regarding water resistant types with the above model numbers. * Lead wire length symbols: $0.5 \text{ m} \cdot \cdot \cdot \cdot \cdot$ NiI (Example) Y7BW
 - 3 m ····· L (Example) Y7BWL
 - 5 m ···· Z Example) Y7BWZ

- * Solid state auto switches marked with "O" are produced upon receipt of
- order.

 * Separate switch spacers (BMP1-032) are required for retrofitting of auto switches.
- * There are other applicable auto switches than listed above. For details, refer to page 1321. * For details about auto switches with pre-wired connector, refer to pages 1626 and 1627.
- * Auto switches are shipped together (not assembled). (For details about auto switch mounting, etc., refer to pages 1319 to 1321.)

Mechanically Jointed Rodless Cylinder High Rigidity/Linear Guide Type Series MY1HT

Specifications

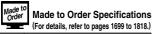
Bore size (mm)		50	63			
Fluid		Air				
Action		Double	acting			
Operating pres	sure range	0.1 to 0	.8 MPa			
Proof pressure	1	1.2 MPa				
Ambient and flui	d temperature	5 to 60°C				
Piston speed		100 to 1000 mm/s				
Cushion		Shock absorbers on both ends (Standard)				
Lubrication		Non-lube				
Stroke length t	olerance	2700 or less ^{+1.8} , 2701 to 5000 ^{+2.8}				
Port size	Side port	Rc 3/8				

Note) Use at a speed within the absorption capacity range. Refer to page 1314.

Stroke Adjustment Unit Specifications

Applicable bore size (mm)	5	0	63			
	L	Н	L	Н		
Unit symbol, contents	RB2015 and adjustment bolt: 1 set each	RB2015 and adjustment bolt: 2 sets each	RB2725 and adjustment bolt: 1 set each	RB2725 and adjustment bolt: 2 sets each		
Fine stroke adjustment range (mm)	0 to	0 to	-25			
Stroke adjustment range	For adjustment method, refer to page 1315.					

^{*} Stroke adjustment range is applicable for one side when mounted on a cylinder.


Shock absorber model		RB2015 x 1 pc.	RB2015 x 2 pcs.	RB2725 x 1 pc.	RB2725 x 2 pcs.	
Maximum energy absorption (J)		58.8	88.2 Note)	147	220.5 Note)	
Stroke absorption (mm)		15	15	25	25	
Maximum collision speed (mm/s)		10	00	1000		
Maximum operating frequency (cycle/min)		25	25 10		10	
Extended		8.34	16.68	8.83	17.66	
Spring force (N)	Retracted	20.50	41.00	20.01	40.02	
Operating temper	erature range (°C)		5 to	60		

Note) Maximum energy absorption for 2 pcs. is calculated by multiplying the value for 1 pc. by 1.5.

Theoretical Output

								(N)
Bore size	Piston area	(Opera	ating	pres	sure	(MPa	ι)
(mm)	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8
50	1962	392	588	784	981	1177	1373	1569
63	3115	623	934	1246	1557	1869	2180	2492

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm2)

Symbol	Specifications
—XC67	NBR rubber lining in dust seal band

Standard Stroke

Bore size (mm)	Standard stroke (mm) Note)	Maximum manufacturable stroke (mm)
50.63	200, 400, 600, 800, 1000, 1500, 2000	5000

Note) Cylinders other than the standard stroke type are manufactured upon request for special order.

Weight

								(Kg
Bore	Bore size	Basic	Additional weight per	Weight of moving	Side support weight (per set)	Stroke a	djustment un	it weight
(m	nm)	weight	each 25 mm of stroke	parts	Type A and B	L unit weight	LH unit weight	H unit weight
5	50	30.62	0.87	5.80	0.17	0.62	0.93	1.24
6	63	41.69	1.13	8.10	0.17	1.08	1.62	2.16

Calculation: (Example) MY1HT50-400L

- Basic weight -----30.62 kg
- Additional weight 0.87/25 st
- L unit weight0.62 kg
- Cylinder stroke----- 400 st

30.62 + 0.87 x 400 ÷ 25 + 0.62 x 2 ≅ 45.8

MY1B MY1H

MY1B MY1M MY1C MY1H

MY1 MY2C MY2 lH□ MY3A MY3B MY3M

Technical

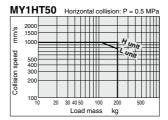
^{*}The shock absorber service life is different from that of the MY1HT cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.

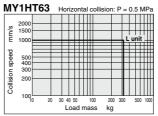
Series MY1HT

Cushion Capacity

Cushion Selection

<Stroke adjustment unit with built-in shock absorber>

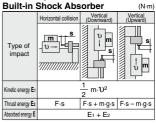

L unit


Use this unit when the cylinder stroke is outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line or below the L unit limit line.

H unit

Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.

Stroke Adjustment Unit Absorption Capacity



Stopper Bolt Holding Screw Tightening Torque Stopper Bolt

Tightening Torque for Stroke Adjustment
Unit Lock Plate Holding Bolts (N·m)

Bore size (mm)	Tightening torque
50	0.6
63	1.5

Calculation of Absorbed Energy for Stroke Adjustment Unit with

Symbol

- v: Speed of impact object (m/s)
- F: Cylinder thrust (N)
- s: Shock absorber stroke (m)
- m: Mass of impact object (kg)
- g: Gravitational acceleration (9.8 m/s²)

Note) The speed of the impact object is measured at the time of impact with the shock absorber.

↑ Precautions

Be sure to read before handling. Refer to front matter 57 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Mounting

⚠ Caution

 Do not put hands or fingers inside when the body is suspended.

Since the body is heavy, use eye bolts when suspending it. (The eye bolts are not included with the body.)

Stroke Adjustment Method

- 1. As shown in Figure (1), to adjust the stopper bolt within the adjustment range A, insert a hexagon wrench from the top to loosen the hexagon socket head set screw by approximately one turn, and then adjust the stopper bolt with a flat head screwdriver.
- 2. When the adjustment described in 1 above is insufficient, the shock absorber can be adjusted. Remove the covers as shown in Figure (2) and make further adjustment by loosening the hexagon nut.

3. Various dimensions are indicated in Table (1). Never make an adjustment that exceeds the dimensions in the table, as it may cause an accident and/or damage.

(mm

63

6 to 31

14 to 74

102

85

50

6 to 26

14 to 54

87

60

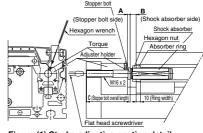


Figure (1) Stroke adjusting section detail Hexagon socket head cap s BMax. Side cover Hexagon socket head cap screw Figure (2) Cover installation and removal

Disassembly and Assembly Procedure

Figure (3) Maximum stroke adjustment detail

Table (1)

Bore size (mm)

A to A Max.

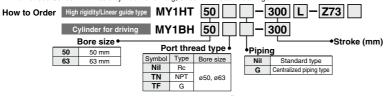
B to B Max

С

Max. adjustment range

Disassembly step

- 1. Remove the hexagon socket head cap screws 1, and remove the upper plates.
- 2. Remove the top cover.
- 3. Remove the hexagon socket head cap screws 2, and remove the end covers and couplers.
- 4. Remove the hexagon socket head cap screws 3.
- 5. Remove the hexagon socket head cap screws 4, and remove the end supports.
- 6. Remove the cylinder.


Hexagon socket head cap screw 1 (Tightening torque 25 N·m) Holding block Upper plate Hexagon socket head cap screw 4 (ø50: Tightening torque 5 N-m Couple e63: Tightening torque 11 N-m End cove Hexagon socket head cap screw 2 (Tightening torque 25 N·n for driving End suppor Hexagon socket head cap screw 3 End plate (Tightening torque 3 N-m)

Assembly step

- 1. Insert the MY1BH cylinder.
- 2. Temporarily fasten the end supports with the hexagon socket head cap screws 4.
- 3. With two hexagon socket head cap screws 3 on the L or R side, pull the end support and the cylinder.
- 4. Tighten the hexagon socket head cap screws 3 on the other side to eliminate the looseness in the axial direction. (At this point, a space is created between the end support and the end plate on one side, but this is not a problem.)
- 5. Re-tighten the hexagon socket head cap screws 4.
- 6. Fasten the end cover with the hexagon head cap screws 2, while making sure that the coupler is in the right direction.
- 7. Place the top cover on the body.
- 8. Insert the holding blocks into the top cover and fasten the upper plates with the hexagon socket head cap screws 1.

Cylinder For Driving (Series MY1BH)

Since Series MY1BH is a cylinder for driving for Series MY1HT, its construction is different from Series MY1B. Do not use Series MY1B as a cylinder for driving, since it will lead to damage.

D-□ -X□ Technical

MY1B

MY1H

MY1B

MY1M

MY1C

MY1H

MY1

 $\square W$

MY2C

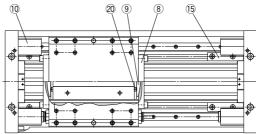
MY2

MY3A

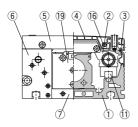
MY3B

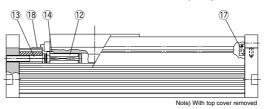
MY3M

Ιн⊓


ØSMC

1315

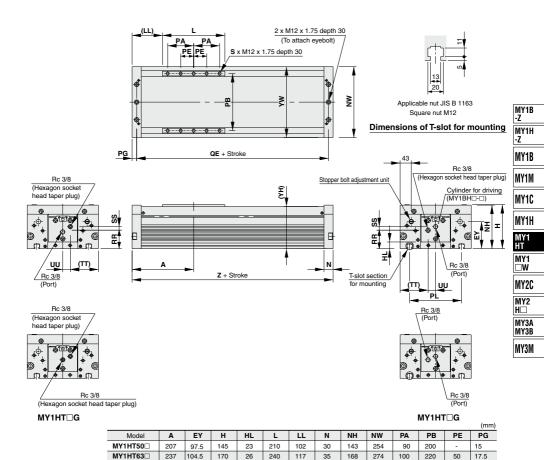

Series MY1HT


Construction

Standard type

Note) With top cover removed

Component Parts


No.	Description	Material	Note	
1	Guide frame	Aluminum alloy	Hard anodized	
2	Slide table	Aluminum alloy	Hard anodized	
3	Side cover	Aluminum alloy	Hard anodized	
4	Top cover	Aluminum alloy	Hard anodized	
5	Upper plate	Aluminum alloy	Hard anodized	
6	End plate	Aluminum alloy	Hard anodized	
7	Bottom plate	Aluminum alloy	Hard anodized	
8	End cover	Aluminum alloy	Chromated	
9	Coupler	Aluminum alloy	Chromated	
10	Adjuster holder	Aluminum alloy	Hard anodized	
11	Guide	_		
12	Shock absorber	_		
13	Stopper bolt	Carbon steel	Nickel plated	
14	Absorber ring	Rolled steel	Nickel plated	
15	End support	Aluminum alloy	Hard anodized	
16	Top block	Aluminum alloy	Chromated	
17	Side block	Aluminum alloy	Chromated	
18	Slide plate	Special resin		
19	Rodless cylinder	_	MY1BH	
20	Stopper	Carbon steel	Nickel plated	

Mechanically Jointed Rodless Cylinder High Rigidity/Linear Guide Type Series MY1HT

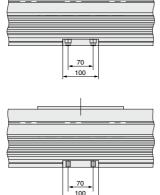
Standard Type/Centralized Piping Type Ø50, Ø63

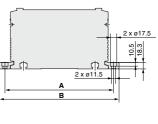
Refer to page 1325 regarding centralized piping port variations.

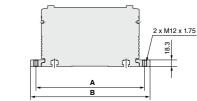
MY1HT50□/63□ - Stroke

(mm)										
Model	PL	QE	RR	S	SS	TT	UU	YH	YW	Z
MY1HT50□	180	384	57	6	10	103.5	23.5	136.4	253	414
MY1HT63□	200	439	71.5	10	13.5	108	29	162.6	273	474

-X - Technical data


SMC

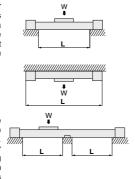

Series MY1HT

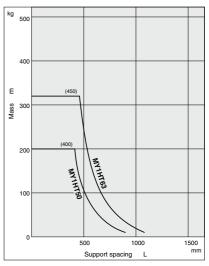

Side Support

Side support A MY-S63A

Side support B MY-S63B

Dimensions (mm						
Model	Applicable bore size	Α	В			
MY-S63A	MY1HT50	284	314			
	MY1HT63	304	334			

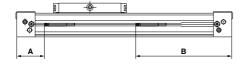

^{*} A set of side supports consists of a left support and a right support.


Guide for Side Support Application

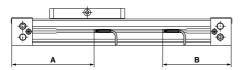
For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load mass. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the graph on the right.

⚠ Caution

- 1. If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- 2. Support brackets are not for mounting; use them solely for providing support.



Series MY1


Auto Switch Mounting 1

Proper Auto Switch Mounting Position (Detection at stroke end)

MY1B (Basic type) ø10, ø16, ø20

ø25 to ø100

Proper Auto Switch Mounting Position

Auto switch model				D-A9□ D-A9□V		D-Y59□/Y7P D-Y69□/Y7PV D-Y7□W D-Y7□WV D-Y7BA D-Z7□/Z80	
Bore size \	Α	В	Α	В	Α	В	
10	24	86	20	90	_	_	
16	31.5	128.5	27.5	132.5	_	_	
20	39	161	35	165	_	_	
25	136.5	83.5	_	_	131.5	88.5	
32	185	95	_	_	180	100	
40	221	119	_	_	216	124	
50	_	_	_	_	272.5	127.5	
63	322.5	137.5	_	_	317.5	142.5	
80	489.5	200.5	_	_	484.5	205.5	
100	574.5	225.5	_	_	569.5	230.5	

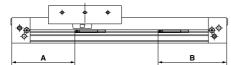
Note 1) D-M9□□□type cannot be mounted on ø50.

Note 2) Adjust the auto switch after confirming the operating condition in the actual setting

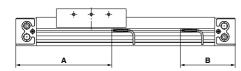
MY1B -Z

MY1B

MY1M MY1C


MY1H

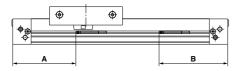
MY1 MY2C


MY2 MY3A MY3B

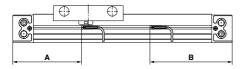
MY3M

MY1M (Slide bearing guide type) ø16, ø20

ø25 to ø63



Proper Auto Switch Mounting Position


Auto switch model	D-M9 D-M9 V D-M9 W D-M9 W D-M9 D-M9 A D-M9 A V			D-A9□ D-A9□V		D-Y59□/Y7P D-Y69□Y7PV D-Y7□W D-Y7□WV D-Z7□/Z80	
Bore size \	Α	В	Α	В	Α	В	
16	74	86	70	90	_	_	
20	94	106	90	110	_	_	
25	143.5	75.5	_	_	139.5	80.5	
32	189.5	90.5	_	_	184.5	95.5	
40	234.5	105.5	_	_	229.5	110.5	
50	283.5	116.5	_	_	278.5	121.5	
63	328.5	131.5	_	_	323.5	136.5	

Note) Adjust the auto switch after confirming the operating condition in the actual setting.

MY1C (Cam follower guide type) ø16. ø20

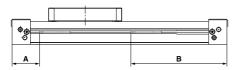
ø25 to ø63

Proper Auto Switch Mounting Position (mm)						
Auto switch model	D-M9 U D-M9 U D-M9 UW D-M9 UWV D-M9 A D-M9 AV		D-A9□ D-A9□V		D-Y59□/Y7P D-Y69□/Y7PV D-Y7□W D-Y7□WV D-Z7□/Z80	
Bore size \	Α	В	Α	В	Α	В
16	74	86	70	90	_	_
20	94	106	90	110	_	_
25	102	118	_	_	97	123
32	132	148	_	_	127	153
40	162.5	175.5	_	_	157.5	182.5
50	283.5	116.5	_	_	278.5	121.5
63	328.5	131.5	_	_	323.5	136.5

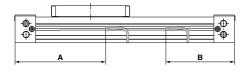
Note) Adjust the auto switch after confirming the operating condition in the actual setting.

D-□ -X□

Technical



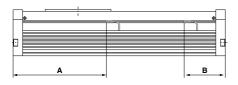
Series MY1


Auto Switch Mounting 2

Proper Auto Switch Mounting Position (Detection at stroke end)

MY1H (Linear guide type) \emptyset 10, \emptyset 16, \emptyset 20

ø25 to ø40


Proper Auto Switch Mounting Position

(mr

Auto switch model			D-A9□ D-A9□V		D-Y59□/Y7P D-Y69□/Y7PV D-Y7□W D-Y7□WV D-Z7□/Z80	
Bore size \	Α	В	Α	В	Α	В
10	24	86	20	90	_	_
16	31.5	128.5	27.5	132.5	_	_
20	39	161	35	165	_	-
25	136.5	83.5	132.5	87.5	131.5	88.5
32	185	94	181	99	180	100
40	231	119	217	123	216	124

Note) Adjust the auto switch after confirming the operating condition in the actual setting.

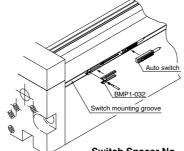
MY1HT (High rigidity/Linear guide type) ø50, ø63

Proper Auto Switch

Mounting Position (mm)							
Auto switch model	D-Y59□/Y7P D-Y69□/Y7P\ D-Y7□W D-Y7□WV D-Y7BA D-Z7□/Z80						
Bore size \	Α	В					
50	290.5	123.5					
63	335.5	138.5					

Note) Adjust the auto switch after confirming the operating condition in the actual setting.

How to Mount the Auto Switch (For MY1HT)


When attaching an auto switch, first take a switch spacer between your fingers and press it into a switch mounting groove. When doing this, confirm that it is set in the correct mounting orientation, or reattach if necessary.

Next, insert an auto switch into the groove and slide it until it is positioned under the switch spacer.

After establishing the mounting position, use a watchmakers flat head screwdriver to tighten the auto switch mounting screw which is included.

Note) When tightening an auto switch mounting screw, use a watchmaker's screwdriver with a grip diameter of 5 to 6 mm. Also, tighten with a torque of about 0.05 to 0.1 N-m As a guide, it should be turned about 90° past the point at which tightening can be

past the point at which tighte felt.

Switch Spacer No.

Cylinder series	Applicable bore size (mm)				
Cylinder series	50	63			
MY1HT	BMP1-032				

Auto Switch Mounting Series MY1

MY1H (Linear guide type)

Operating Range

Note) Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately ±30% dispersion.) There may be the case it will vary substantially depending on an ambient environment.

MY1B (Basic type)

(_ (_ 0.0.0 1)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									(111111)
A to a National fall	Bore size									
Auto switch model	10	16	20	25	32	40	50	63	80	100
D-A9□/A9□V	6	6.5	8.5	_	_		_	_	_	_
D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	3.5	4	5.5	5.5	7	8.5	-	12	12	11.5
D-Z7□/Z80	_	_	_	8.5	11.5	11.5	11.5	11.5	11.5	11.5
D-Y59□/Y69□ D-Y7P/Y7PV D-Y7□W/Y7□WV	_	_	_	6	9	10	3.5	3.5	3.5	3.5

D-M9□□□type cannot be mounted on ø50.

D-Y7 W/Y7 WV

	Auto switch model		Bore size						
	Auto switch model	10	16	20	25	32	40		
	D-A9□/A9□V	11	6.5	8.5	7.5	10	10		
	D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	3	4.5	5	5.5	6	6.5		
	D-Z7□/Z80	_	_	_	8.5	11.5	11.5		
	D-Y59□/Y69□□ D-Y7P/Y7PV	_	_	_	6	9	10		

MY1HT

(High rigidity/Linear quide type) (mm)

(mgm rigidity/Emical galac type) (mm)					
A 1	Bore size				
Auto switch model	50	63			
D-Z7□/Z80	11	11			
D-Y59□/Y69□ D-Y7P/Y7PV D-Y7□W/Y7□WV D-Y7BA	5	5			

MY1M (Slide bearing guide type)							
	Bore size						
Auto switch model	16	20	25	32	40	50	63
D-A9□/A9□V	11	7.5	_	_	_	_	_
D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	7.5	7.5	8.5	8.5	9.5	7	6
D-Z7□/Z80	_	_	12	12	12	11.5	11.5
D-Y59□/Y69□			5	5	5	5.5	5.5

MY1C (Cam follower	er auide type)
--------------------	----------------

in 10 (cam follower guide type)							
A 1 2	Bore size						
Auto switch model	16	20	25	32	40	50	63
D-A9□/A9□V	11	7.5	_	_	_	_	_
D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	7.5	7.5	7	8	8.5	7	6
D-Z7□/Z80	_	_	12	12	12	11.5	11.5
D-Y59□/Y69□ D-Y7P/Y7PV D-Y7□W/Y7□WV	_	_	5	5	5	5.5	5.5

Switch Mounting Bracket: Part No.

Auto switch model	Bore size (mm)			
Auto switch model	ø10, ø16, ø20	ø25 to ø63		
D-A9□/A9□V D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	_	BMG2-012		

Note1) MY1B/MY1C/MY1M, D-A9□□type cannot be mounted on ø25 to ø100 of Series MY1. D-M9□□□ type cannot be mounted on ø50 of Series MY1B.

ø25 to ø63: M9□(V)/M9□W(V)/M9□A(V)

Besides the models listed in How to Order, the following auto switches are applicable. Refer to pages 1559 to 1673 for the detailed specifications.

riolor to pagoo rooo	io roro for the detailed t	poomoationo.		
Auto switch type	Part no.	Electrical entry (Fetching direction)	Features	Applicable bore size
Solid state	D-Y69A, Y69B, Y7PV	Grommet (Perpendicular)		
	D-Y7NWV, Y7PWV, Y7BWV	Grommet (Perpendicular)	Diagnostic indication (2-color indication)	ø25 to ø100
	D-Y59A, Y59B, Y7P	Grommet (In-line)		025 10 0 100
	D-Y7NW, Y7PW, Y7BW	Grommet (in-line)	Diagnostic indication (2-color indication)	

For solid state auto switches, auto switches with a pre-wired connector are also available. Refer to pages 1626 and 1627 for details.
 Normally closed (NC = b contact) solid state auto switches (D-F9G/F9H/Y7G/Y7H types) are also available. Refer to pages 1577 and 1579 for details.

1321

MY1B MY1M

MY1B -Z MY1H

(mm)

MY1C

MY1H

HT MY1 □W

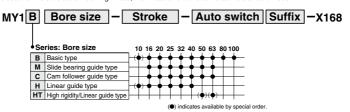
MY2C MY2 H□

MY3A MY3B

D-□

Technical

Series MY1 Made to Order: Individual Specifications


Please contact SMC for detailed dimensions, specifications, and lead times.

1 Helical Insert Thread Specifications

Symbol -X168

Helical insert thread is used for the slide table mounting thread, the thread size is the same as the standard model.

Example) MY1B40G-300L-Z73-X168

Series MY1 Specific Product Precautions 1

Be sure to read before handling. Refer to front matter 57 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Selection

1. When using a cylinder with long strokes, implement an intermediate support.

When using a cylinder with long strokes, implement an intermediate support to prevent the tube from sagging and being deflected by vibration or an external load.

Refer to the Guide for Side Support Application on pages 1239, 1261, 1281, 1305 and 1318.

For intermediate stops, use a dual-side pressure control circuit.

Since the mechanically jointed rodless cylinders have a unique seal structure, slight external leakage may occur. Controlling intermediate stops with a 3 position valve cannot hold the stopping position of the slide table (slider). The speed at the restarting state also may not be controllable. Use the dual-side pressure control circuit with a PAB-connected 3 position valve for intermediate stops.

3. Constant speed.

Since the mechanically jointed rodless cylinders have a unique seal structure, a slight speed change may occur. For applications that require constant speed, select an applicable equipment for the level of demand.

4. Load factor of 0.5 or less

When the load factor is high against the cylinder output, it may adversely affect the cylinder (condensation, etc.) and cause malfunctions. Select a cylinder to make the load factor less than 0.5. (Mainly when using an external guide)

5. Cautions on less frequent operation

When the cylinder is used extremely infrequently, operation may be interrupted in order for anchoring and a change lubrication to be performed or service life may be reduced.

6. Consider uncalculated loads such as piping, cableveyor, etc., when selecting a load moment Calculation does not include the external acting force of piping, cableveyor, etc. Select load factors taking into account the external acting force of piping, cableveyor, etc.

7. Accuracy

The mechanical jointed rodless cylinder does not guarantee traveling parallelism. When accuracy in traveling parallelism and a middle position of stroke is required, please consult SMC.

Mounting

∧ Caution

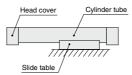
- Do not apply strong impacts or excessive moment to the slide table (slider).
 - The slide table (slider) is supported by precision bearings (MY1C, MY1H) or resin bearings. Therefore, do not apply strong impacts or excessive moment, etc., when mounting workpieces.

Mounting

∧ Caution

- When connecting to a load which has an external guide mechanism, use a discrepancy absorption mechanism.
 - Mechanically jointed rodless cylinders can be used with a direct load within the allowable range for each type of guide. Please note that careful alignment is necessary when connecting to a load having an external guide mechanism. Mount the external guide mounting brackets and floating brackets in a place where the required degree of freedom for the floating Y and Z axes can be secured.

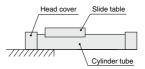
The thrust transmission area of the floating bracket must be fixed so that it does not partially contact the body.


* Refer to the Coordinates and Moment in Model Selection on page 1215 for the details of floating Y and Z axes.

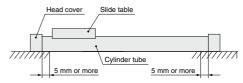
Do not mount cylinders as they are twisted.

When mounting, be sure for a cylinder tube not to be twisted. The flatness of the mounting surface is not appropriate, the cylinder tube is twisted, which may cause air leakage due to the detachment of a seal belt, damage a dust seal band, and cause malfunctions.

Do not mount a slide table on the fixed equipment surface.


It may cause damage or malfunctions since an excessive load is applied to the bearing.

Mounting with a slide table (slider)


5. Consult SMC when mounting in a cantilevered way.

Since the cylinder body deflects, it may cause malfunctions. Please consult SMC when using it this way.

Mounting in a cantilevered way

Fixed parts of the cylinder on both ends must have at least 5 mm of contact between where the bottom of the cylinder tube and the equipment surface.

MY1H

MY1B

MY1M

MY1C

MY1H

MY1

 $\square W$

MY2C

MY2

lH□

MY3A

MY3B

MY3M

Series MY1 Specific Product Precautions 2

Be sure to read before handling.

Refer to front matter 57 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Mounting

Do not generate negative pressure in the cylinder tube.

Take precautions under operating conditions in which negative pressure is generated inside the cylinder by external forces or inertial forces. Air leakage may occur due to separation of the seal belt. Do not generate negative pressure in the cylinder by forcibly moving it with an external force during the trial operation or dropping it with self-weight under the non-pressure state, etc. When the negative pressure is generated, slowly move the cylinder by hand and move the stroke back and forth. After doing so, if air leakage still occurs, please consult SMC.

Handling

∧ Caution

- 1. Do not unnecessarily alter the guide adjustment setting.
 - The adjustment of the guide is preset and does not require readjustment under normal operating conditions. Therefore, do not unnecessarily alter the guide adjustment setting. However, series other than the MY1H Series can be readjusted and their bearings can be replaced.

To perform these operations, refer to the bearing replacement procedure given in the instruction manual.

Do not get your hands caught during cylinder operation.

For the cylinder with a stroke adjustment unit, the space between the slide table and stroke adjustment unit is very small, and your hands may get caught. When operating without a protective cover, be careful not to get your hands

Avoid operation that causes negative pressure inside the cylinder.

Take precautions under operating conditions in which negative pressure is increased inside the cylinder by external forces or inertial forces. Air leakage may occur due to separation of the seal belt.

Operating Environment

Marning

- Do not use in an environment where the cylinder is exposed to coolant, cutting oil, water drops, adhesive foreign parti-cles, dust, etc. and avoid use with compressed air containing drainage and foreign particles.
 - Foreign matter or liquids on the cylinder's interior or exterior can wash out the lubricating grease, which can lead to deterioration and damage of dust seal band and seal materials. causing a danger of malfunction.

When operating in locations with exposure to water and oil, or in dusty locations, provide protection such as a cover to prevent direct contact with the cylinder, or mount so that the dust seal band surface faces downward, and operate with clean compressed air.

2. Carry out cleaning and grease application suitable for the operating environment.

Carry out cleaning regularly when using in an operating environment in which the product is likely to get dirty.

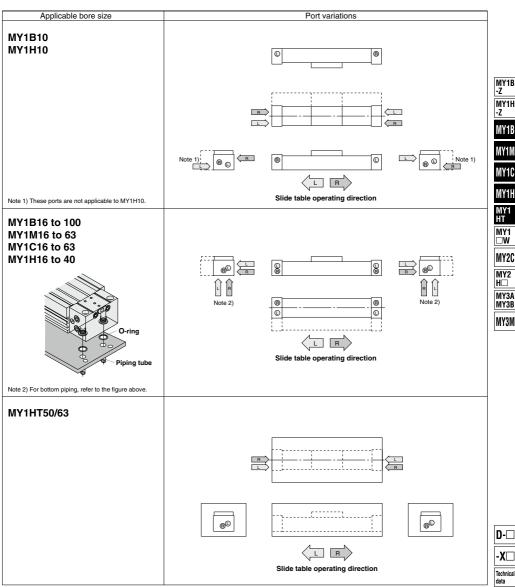
After cleaning, be sure to apply grease to the top side of the cylinder tube and the rotating part of the dust seal band. Apply grease to these parts regularly even if not after cleaning. Please consult SMC for the cleaning of the slide table (slider) interior and grease application.

Service Life and Replacement Period of Shock Absorber

∧ Caution

- Allowable operating cycle under the specifications set in this catalog is shown below.
 - 1.2 million times RB08□□
 - 2 million times RB10□□ to RB2725

Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.


Series MY1 Specific Product Precautions 3

Be sure to read before handling. Refer to front matter 57 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

⚠ Caution

Centralized Piping Port Variations

• Head cover piping connection can be freely selected to best suit different piping conditions.

