

Insert it at the notch and slide it along the mounting groove.

Mounting bracket

reduces ingress of foreign matter, improving the life of the cylinder.

The mounting and performance are the same as before, but the weight is reduced.

• Weight is reduced by the die cast head cover and removal of guide cover.

Bore size [mm]	New MY1H	Reduction rate	Existing model
25	2.17 kg	6%	2.31 kg
32	4.37 kg	6%	4.65 kg
40	5.84 kg	8%	6.37 kg

Maintenance of dust seal band improved Space saving achieved by piping on the back • No need to select the dust seal band When a speed controller is mounted, from two types. the cylinder installation area can be reduced significantly. • The dust seal band can be removed New Existing model MY1H by loosening two holding screws (on Speed controller mounted on the back port one side). **Dust seal band Head plate** Front side Front side Dust seal band holding screw

Improvement of port variations

With addition of the back port, piping can be connected to suit the installation conditions.

Stroke Adjustment Unit

SMC

MY1H

End lock

MY1DW

Digital Catalogue

Digital catalogue www.smc.eu

Series MY1H Prior to Use

Maximum Allowable Moment/Maximum Load Weight

Model	Bore size	Maximum a	allowable mo	ment [N·m]	Maximum load weight [kg]			
WOUEI	[mm]	M1	M2	Мз	m 1	m ₂	m₃	
	25	23	26	23	27.5	27.5	27.5	
MY1H	32	39	50	39	39.2	39.2	39.2	
	40	50	50	39	50	50	50	

The above values are the maximum allowable values for moment and load weight. Refer to each graph regarding the maximum allowable moment and maximum load weight for a particular piston speed.

Load weight (kg)

Calculation of Guide Load Factor

1) Maximum load weight (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.

* To evaluate, use \Im (average speed) for (1) and (2), and \Im (collision speed \Im = 1.4 \Im a) for (3). Calculate m max for (1) from the maximum load weight graph (m1, m2, m3) and M max for (2) and (3) from the maximum allowable moment graph (M1, M2, M3).

Sum of guide $\sum_{\alpha} \alpha$ -	Load weight [m]	Static moment [M] Note 1)	Dynamic moment [ME] Note 2)
load factors 200-	Maximum load weight [m max]	Allowable static moment [M max]	$\int \overline{\text{Allowable dynamic moment [ME max]}} \geq 1$

Note 1) Moment caused by the load, etc., with cylinder in resting condition

Note 2) Moment caused by the load equivalent to impact at the stroke end (at the time of impact with stopper)

Note 3) Depending on the shape of a workpiece, multiple moments may occur. When this happens, the sum of the load factors ($\Sigma\alpha$) is the total of all such moments.

2) Reference formula [Dynamic moment at the time of impact]

Use the following formulae to calculate dynamic moment when taking stopper impact into consideration.

- m : Load weight [kg]
- F : Load [N]
- F_E : Load equivalent to impact (at the time of impact with stopper) [N]
- **Ua**: Average speed [mm/s]
- M : Static moment [N·m]

 $\mathcal{U} = 1.4 \mathcal{U} \mathbf{a} \text{ [mm/s]} \quad \mathbf{F} \mathbf{E} = 1.4 \mathcal{U} \mathbf{a} \cdot \mathbf{\delta} \cdot \mathbf{m} \cdot \mathbf{g}$ Note 5)
Note 5)

 $\therefore \mathbf{M}\mathbf{E} = \frac{1}{3} \cdot \mathbf{F}\mathbf{E} \cdot \mathbf{L}\mathbf{1} = 4.57 \cdot \mathbf{D}\mathbf{a} \cdot \mathbf{\delta}\mathbf{m}\mathbf{L}\mathbf{1} [\text{N} \cdot \text{m}]$

 υ : Collision speed [mm/s]

- \textbf{L}_1 : Distance to the load center of gravity [m]
- ME: Dynamic moment [N·m]
- δ : Bumper coefficient With air cushion = 1/100
- With shock absorber = 1/100
- **g** : Gravitational acceleration (9.8 m/s²)

Note 4) 1.4 \Im a δ is a dimensionless coefficient for calculating impact force. Note 5) Average load coefficient (= $\frac{1}{3}$): For averaging the maximum load moment at the time of impact with stopper according to service life calculations.

3) For detailed selection procedures, refer to Front matter 3 and 4.

Maximum Allowable Moment Select the moment from within the range of operating limits shown in the graphs. Note that the maximum load weight value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the load weight for the selected conditions.

Maximum Load Weight

be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.

MY1H/m₃

50 40 30 20 ğ **MY1H40** 10 Load weight MY 1H32 MY1H25 5 4 3 2 1 100 200 300 400 500 1000 1500 Piston speed mm/s

Series MY1H Model Selection

The following is the steps for selecting the most suitable MY1H series to your application.

Calculation of Guide Load Factor

1. Operating Conditions

Cylinder ······ MY1H40-500Z Average operating speed $\Im a \cdots 300$ mm/s Mounting orientation ······ Wall mounting Cushion ······ Air cushion ($\delta = 1/100$)

2. Load Blocking

Weight and Centre of Gravity for Each Workpiece										
Markninge	Waight	Centre of gravity								
Wn	m n	X-axis Xn	Y-axis Yn	Z-axis Zn						
Wa	0.88 kg	65 mm	0 mm	5 mm						
Wb	4.35 kg	150 mm	0 mm	42.5 mm						
Wc	0.795 kg	150 mm	111 mm	42.5 mm						
Wa 0.5 kg		150 mm 210 mm		42.5 mm						
				n = a, b, c, d						

3. Calculation of Composite Centre of Gravity -

$$\mathbf{M3} = \Sigma \mathbf{mn}$$

= 0.88 + 4.35 + 0.795 + 0.5 = **6.525 kg**
$$\mathbf{X} = \frac{1}{\mathbf{M3}} \times \Sigma (\mathbf{mn} \times \mathbf{xn})$$

= $\frac{1}{6.525} (0.88 \times 65 + 4.35 \times 150 + 0.795 \times 150 + 0.5 \times 150) = \mathbf{138.5 mm}$
$$\mathbf{Y} = \frac{1}{\mathbf{M3}} \times \Sigma (\mathbf{mn} \times \mathbf{yn})$$

= $\frac{1}{6.525} (0.88 \times 0 + 4.35 \times 0 + 0.795 \times 111 + 0.5 \times 210) = \mathbf{29.6 mm}$
$$\mathbf{Z} = \frac{1}{\mathbf{M3}} \times \Sigma (\mathbf{mn} \times \mathbf{zn})$$

= $\frac{1}{6.525} (0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5) = \mathbf{37.4 mm}$

4. Calculation of Load Factor for Static Load

SMC

6. Sum and Examination of Guide Load Factors

$\Sigma \alpha = \Omega_1 + \Omega_2 + \Omega_3 + \Omega_4 + \Omega_5 = 0.60 \le 1$

The above calculation is within the allowable value, and therefore the selected model can be used.

Select a shock absorber separately.

In an actual calculation, when the total sum of guide load factors $\Sigma \alpha$ in the formula above is over 1, consider either decreasing the speed, increasing the bore size, or changing the product series.

This calculation can be easily made using the "Guide Cylinder Selection Software", download it from http://www.smc.eu. Load Weight Allowable Moment

Mechanically Jointed Rodless Cylinder Linear Guide Type Series MY1H ø25, ø32, ø40 RoHS

Applicable Auto Switches/Refer to auto switch guide for further information on auto switches

		El a studio a l	light		L	oad volta	ge	Auto swite	ch model	Lea	d wir	e ler	ngth	[m]	Describeral												
Туре	Special function	entry	cator	(Output)		C	AC	Perpendicular	In-lino	0.5	1	3	5	None	connector	Applical	ole load										
		onay	Indi	(= = = = = = = = = = = = = = = = = = =				reipendicular	III-IIIIC	(—)	(M)	(L)	(Z)	(N)													
Ę				3-wire (NPN)		EV 10 V		M9NV	M9N			\bullet	0	0	0	IC circuit											
,itc				3-wire (PNP)		5 V, 12 V		M9PV	M9P			\bullet	0	0	0												
s														2-wire	1	12 V	1	M9BV	M9B				0	0	0	_	
욕	Diagnostic indication (2-colour indication)			3-wire (NPN)				5 V 40 V	1	M9NWV M9NW				0	0	0		.									
ate at) Grommet Y	Yes	3-wire (PNP)	24 V	5 V, 12 V 12 V	_	M9PWV	M9PW				0	0	0	IC CIrcuit	Relay,										
				2-wire			1	M9BWV	M9BW				0	0	0	_	FLO										
st				3-wire (NPN)		5 V, 12 V 12 V		M9NAV **	M9NA**	0	0		0	_	0												
pilo	Water resistant			3-wire (PNP)			5 V, 12 V	5 V, 12 V		M9PAV **	M9PA **	0	0		0	_	0	IC CIrcuit									
ŭ	(2-colour indication)			2-wire				M9BAV **	M9BA**	0	0		0	—	0	—											
ed witch	(Gromme		Yes	3-wire (NPN equivalent)	_	5 V	_	A96V	A96	•	—	•	-	-	_	IC circuit	_									
Ree auto sv			- Grommet		Grommet N	Grommet	<u> </u>	24 V 12 V	40.14	100 V	A93V	A93		—			—	_		Relay,							
				No		2-wire	12 V		100 V or less	A90V	A90		—		—	—	—	IC circuit	PLĆ								

** Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.

Please consult with SMC regarding water resistant types with the above model numbers.

- * Lead wire length symbols: 0.5 m --(Example) M9NW
- (Example) M9NWM 1 m M
- * Solid state auto switches marked with "O" are produced upon receipt of order. * Mounting bracket (BMY3-016) is separately required to retrofit the above auto
- 3 m L
 - (Example) M9NWL

switches.

5 m Z (Example) M9NWZ

* There are other applicable auto switches other than listed above. For details, refer to page 15.

* For details about auto switches with pre-wired connector, refer to auto switch guide.

* Auto switches are shipped together, (but not assembled). (For details about auto switch mounting, refer to page 15.)

Mechanically Jointed Rodless Cylinder Linear Guide Type Series MY1H

Specifications

-							
Bor	re size [mm]	25	32	40			
Fluid		Air					
Action			Double acting				
Operating	pressure range	0.1 to 0.8 MPa					
Proof pres	pressure 1.2 MPa						
Ambient a	nd fluid temperature	nperature 5 to 60°C					
Cushion		Air cushion					
Lubricatio	on		Non-lube				
Stroke ler	ngth tolerance	+1.8					
Piping	Front/Side/Back port	Rc1/8 Rc1/4					
port size	Bottom port	Rc1/16	Rc1/16	Rc1/8			

Bore size [mm]	25	32	40			
Lock position	One end (Selectable), Both ends					
Holding force (Max.) [N]	270	450	700			
Fine stroke adjustment range [mm]	0 to -11.5 0 to -12 0 to -16					
Backlash	1 mm or less					
Manual release	Possible (Non-lock type)					

25 to 40

100 to 1000 mm/s Note 1)

100 to 1000 mm/s

Made to Order

Made to Order (For details, refer to pages 17 and 18.)

	(1 of details, refer to pages 17 and 10.)
Symbol	Specifications
-XB22	Shock absorber/soft type RJ series mounted
-XC56	With knock pin holes
-XC67*1	NBR rubber lining in dust seal band
-X168	Helical insert thread
-X810	Magnet for ø10 solid state auto switch specifications

*1 Only ø16 and ø20 are available for t

Stroke adjustment Unit Specifications

	adjustment unit	L unit and H unit	100 to 1500 mm/s Note 2)					
band	Note 1) Be aware that when the stroke adjustment range is increased with the adjustment bolt,							
	the air cush	nion capacity decreases. Also, w	hen exceeding the air cushion stroke ranges					
n specifications	on page 4,	the piston speed should be 1	00 to 200 mm/s.					
the -XC67	Note 2) The piston	speed is 100 to 1000 mm/s for a	centralised piping.					
IIIe -X007.	Nate 0) Line at a se	ومصمم مرماني مسمو مرام مرابل مراجاته والمانين امم م	Structure Defende neme 4					

Bore size [mm]

A unit

Without stroke adjustment unit

Note 3) Use at a speed within the absorption capacity range. Refer to page 4.

Bore	Bore size [mm]				32				40			
Unit symbol		Α	L	Н	Α	L	Н	Α	L	н		
Configuration Shock absor	n ber model	With adjustment bolt	RB1007 + adjustment bolt	RB1412 + adjustment bolt	With adjustment bolt	RB1412 + with adjustment bolt	RB2015 + adjustment bolt	With adjustment bolt	RB1412 + adjustment bolt	RB2015 + adjustment bolt		
Stroke adjust-	Without spacer		0 to -11.5			0 to -12			0 to –16			
intermediate fixing spacer [mm]	With short spacer		–11.5 to –23			-12 to -24			-16 to -32			
	With long spacer		-23 to -34.5		–24 to –36			-32 to -48				

Piston Speed

Stroke

* Stroke adjustment range is applicable for one side when mounted on a cylinder.

Stroke Adjustment Unit Symbol

Right side stroke adjustment unit												
			Without	A: With adjustment bolt L: With low load shock absorber + adjustment bolt					H: With high load shock absorbe + adjustment bolt			
			unit		With short spacer	With long spacer		With short spacer	With long spacer		With short spacer	With long spacer
ţ	Wit	thout unit	—	SA	SA6	SA7	SL	SL6	SL7	SH	SH6	SH7
Ē	A: With a	djustment bolt	AS	Α	AA6	AA7	AL	AL6	AL7	AH	AH6	AH7
ner		With short spacer	A6S	A6A	A6	A6A7	A6L	A6L6	A6L7	A6H	A6H6	A6H7
listi		With long spacer	A7S	A7A	A7A6	A7	A7L	A7L6	A7L7	A7H	A7H6	A7H7
adi	L: With low lo	oad shock absorber +	LS	LA	LA6	LA7	L	LL6	LL7	LH	LH6	LH7
ke	adjustment	With short spacer	L6S	L6A	L6A6	L6A7	L6L	L6	L6L7	L6H	L6H6	L6H7
stro	DOIL	With long spacer	L7S	L7A	L7A6	L7A7	L7L	L7L6	L7	L7H	L7H6	L7H7
e	H: With high	load shock absorber +	HS	HA	HA6	HA7	HL	HL6	HL7	н	HH6	HH7
ft S	adjustment	With short spacer	H6S	H6A	H6A6	H6A7	H6L	H6L6	H6L7	H6H	H6	H6H7
ē	DOIL	With long spacer	H7S	H7A	H7A6	H7A7	H7L	H7L6	H7L7	H7H	H7H6	H7

* Intermediate fixing spacer is not available for end lock mounting side.

* Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.

Shock Absorber Model for L and H Units

Turne	Stroke	Bore size [mm]					
Туре	adjustment unit	25	32	40			
Standard	L	RB1007	RB1	1412			
(Shock absorber/RB series)	Н	H RB1412 RB2015					
Shock absorber/soft type	L	RJ1007H	RJ1412H				
RJ series mounted (-XB22)	Н	RJ1412H	_	—			

* The shock absorber service life is different from that of the MY1H cylinder depending on operating conditions. Refer to the Series RB/RJ Specific Product Precautions for the replacement period

* Shock absorber/soft type RJ series mounted (-XB22) is made to order. For details, refer to page 17.

Stroke adjustment unit mounting diagram

oke adjustment unit Intermediate

Place the protruding section on the stroke adjustment unit side

Shock Absorber Specifications

Мо	del	RB 1007	RB 2015				
Max. absorbe	ed energy [J]	5.9	19.6	58.8			
Stroke abso	rption [mm]	7	12	15			
Max. collision	speed [mm/s]	1500	1500	1500			
Max. operating free	uency [cycle/min]	70	45	25			
Spring	Extended	4.22	6.86	8.34			
force [N]	Retracted	6.86	15.98	20.50			
Operating temper	rature range [°C]	5 to 60					

*The shock absorber service life is different from that of the MY1H cylinder depending on operating conditions. Refer to the Series RB Specific Product Precautions for the replacement period.

Theoretical Output

								Unit: N				
Bore	Piston	Operating pressure [MPa]										
[mm]	[mm ²]	mm ²] 0.2 0.3 0.4		0.5	0.6	0.7	0.8					
25	490	98	147	196	245	294	343	392				
32	804	161	241	322	402	483	563	643				
40	1256	251	377	502	628	754	879	1005				

Note) Theoretical output [N] = Pressure [MPa] x Piston area [mm²]

Weight

						Unit: kg					
Bore	Basic	Additional weight	Side support bracket weight (per set)	Side support bracket Stroke adjustment unit weig weight (per set) (per unit)							
sıze [mm]	weight	50 mm 50 stroke	A/B type weight	A unit weight	L unit weight	H unit weight					
25	2.17	0.30	0.02	0.04	0.07	0.11					
32	4.37	0.46	0.04	0.08	0.14	0.23					
40	5.84	0.55	0.08	0.12	0.19	0.28					

Calculation: (Example) MY1H25-300AZ

Basic weight	2.17 kg
Cylinder stroke	300 mm stroke
Additional weight	0.30 kg/50 mm stroke
A unit weight	0.04 kg

2.17 + 0.30 x 300 ÷ 50 + 0.04 x 2 ≈ 4.05 kg

Options

* Nuts are equipped on the cylinder body.

Side Support/Part No.

Bore size [mm] Type	25	32	40
Side support A	MY-S25A	MY-S32A	MY-S40A
Side support B	MY-S25B	MY-S32B	MY-S40B

For details about dimensions, etc., refer to page 14. Side supports consist of a set of right and left support.

Cushion Capacity

Cushion Selection

<Air cushion>

Air cushions are a standard feature on mechanically jointed rodless cylinders.

The air cushion mechanism is incorporated to prevent excessive impact of the piston with high kinetic energy at the stroke end. The purpose of air cushion, thus, is not to decelerate the piston near the stroke end.

The ranges of load and speed that air cushions can absorb are within the air cushion limit lines shown in the graphs.

<Stroke adjustment unit with shock absorber>

Use this unit when operating with a load and speed exceeding the air cushion limit line, or when cushioning is required outside of the effective air cushion stroke range due to stroke adjustment.

L unit

Use this unit when cushioning is necessary outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line and below the L unit limit line.

H unit

Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.

A Caution

 Refer to the below figure when using the adjustment bolt to perform stroke adjustment. When the effective stroke of the shock absorber decreases as a result of stroke adjustment, the absorption capacity decreases dramatically. Secure the adjustment bolt at the position where it protrudes approximately 0.5 mm from the shock absorber.

2. Do not use a shock absorber together with air cushion.

Absorption Capacity of Air Cushion and Stroke Adjustment Units

Air Cushion S	troke Unit: mm
Bore size [mm]	Cushion stroke
25	15
32	19
40	24

Calculation of Absorbed Energy for Stroke Adjustment Unit with Shock Absorber $_{Unit:\ N\cdot m}$

Symbols

U: Speed of impact object [m/s]

F: Cylinder thrust [N]

s: Shock absorber stroke [m]

m: Weight of impact object [kg]

g: Gravitational acceleration (9.8 m/s²)

Note) The speed of the impact object is measured at the time of impact with the shock absorber.

Be sure to read the below before handling. Refer to back cover for Safety Instructions. For Actuator and Auto Switch Precautions, refer to "Handling Precautions for SMC Products" (M-E03-3) and Operation Manual. Please download it via our website http://www.smc.eu

Selection

ACaution

1. When using a cylinder with long strokes, implement an intermediate support.

When using a cylinder with long strokes, implement an intermediate support to prevent the tube from sagging and being deflected by vibration or an external load.

2. For intermediate stops, use a dual-side pressure control circuit.

Since the mechanically jointed rodless cylinders have a unique seal structure, slight external leakage may occur. Controlling intermediate stops with a 3 position valve cannot hold the stopping position of the slide table (slider). The speed at the restarting state also may not be controllable. Use the dual-side pressure control circuit with a PAB-connected 3 position valve for intermediate stops.

3. Constant speed.

Since the mechanically jointed rodless cylinders have a unique seal structure, a slight speed change may occur. For applications that require constant speed, select an applicable equipment for the level of demand.

4. Load factor of 0.5 or less

When the load factor is high against the cylinder output, it may adversely affect the cylinder (condensation, etc.) and cause malfunctions. Select a cylinder to make the load factor less than 0.5.

5. Cautions on less frequent operation

When the cylinder is used extremely infrequently, operation may be interrupted in order for anchoring and a change lubrication to be performed or service life may be reduced.

6. Consider uncalculated loads such as piping, cableveyor, etc., when selecting a load moment Calculation does not include the external acting force of piping, cableveyor, etc. Select load factors taking into account the external acting force of piping, cableveyor, etc.

7. Accuracy

The mechanical jointed rodless cylinder does not guarantee traveling parallelism. When accuracy in traveling parallelism and a middle position of stroke is required, please consult SMC.

Mounting

▲Caution

1. Do not apply strong impacts or excessive moment to the slide table (slider).

• The slide table (slider) is supported by precision bearings. Therefore, do not apply strong impacts or excessive moment, etc., when mounting workpieces.

2. When connecting to a load which has an external guide mechanism, use a discrepancy absorption mechanism.

• Although the product can be used with a direct load within the allowable range, please note that careful alignment is necessary when connecting to a load that has an external guide mechanism.

3. Do not mount cylinders as they are twisted.

When mounting, be sure for a cylinder tube not to be twisted. The flatness of the mounting surface is not appropriate, the cylinder tube is twisted, which may cause air leakage due to the detachment of a seal belt, damage a dust seal band, and cause malfunctions.

4. Do not mount a slide table on the fixed equipment surface.

It may cause damage or malfunctions since an excessive load is applied to the bearing.

5. Consult SMC when mounting in a cantilevered way.

Since the cylinder body deflects, it may cause malfunctions. Please consult SMC when using it this way.

Mounting in a cantilevered way

6. Fixed parts of the cylinder on both ends must have at least 5 mm of contact between where the bottom of the cylinder tube and the equipment surface.

Be sure to read the below before handling. Refer to back cover for Safety Instructions. For Actuator and Auto Switch Precautions, refer to "Handling Precautions for SMC Products" (M-E03-3) and Operation Manual. Please download it via our website http://www.smc.eu

Mounting

▲Caution

7. Do not generate negative pressure in the cylinder tube.

Take precautions under operating conditions in which negative pressure is generated inside the cylinder by external forces or inertial forces. Air leakage may occur due to separation of the seal belt. Do not generate negative pressure in the cylinder by forcibly moving it with an external force during the trial operation or dropping it with self-weight under the non-pressure state, etc. When the negative pressure is generated, slowly move the cylinder by hand and move the stroke back and forth. (When using with a stroke adjustment unit, please either remove the unit or adjust the stroke to the full stroke.) After doing so, if air leakage still occurs, please consult SMC.

8. Do not get your hands caught during cylinder operation.

For the cylinder with a stroke adjustment unit, the space between the slide table and stroke adjustment unit is very small, and your hands may get caught. When operating without a protective cover, be careful not to get your hands caught.

Operating Environment

A Warning

1. Do not use in an environment where the cylinder is exposed to coolant, cutting oil, water drops, adhesive foreign parti-cles, dust, etc. and avoid use with compressed air containing drainage and foreign particles.

• Foreign matter or liquids on the cylinder's interior or exterior can wash out the lubricating grease, which can lead to deterioration and damage of dust seal band and seal materials, causing a danger of malfunction.

When operating in locations with exposure to water and oil, or in dusty locations, provide protection such as a cover to prevent direct contact with the cylinder, or mount so that the dust seal band surface faces downward, and operate with clean compressed air.

2. Carry out cleaning and grease application suitable for the operating environment.

Carry out cleaning regularly when using in an operating environment in which the product is likely to get dirty.

After cleaning, be sure to apply grease to the top side of the cylinder tube and the rotating part of the dust seal band. Apply grease to these parts regularly even if not after cleaning. Please consult SMC for the cleaning of the slide table (slider) interior and grease application.

Service Life and Replacement Period of Shock Absorber

ACaution

- 1. Allowable operating cycle under the specifications set in this catalog is shown below.
 - 1.2 million times RB08
 - 2 million times RB10 to RB2725
- Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.

Be sure to read the below before handling. Refer to back cover for Safety Instructions. For Actuator and Auto Switch Precautions, refer to "Handling Precautions for SMC Products" (M-E03-3) and Operation Manual. Please download it via our website http://www.smc.eu

Operating Precautions

▲Caution

Use caution not to get your hands caught in the unit.

 When using a product with stroke adjustment unit, the space between the slide table (slider) and the stroke adjustment unit becomes narrow at the stroke end, causing a danger of hands getting caught. Install a protective cover to prevent direct contact with the human body.

Port Variation

Port variation (Standard piping)

Port variation (Centralised piping)

Port variation (End lock)

<Fastening of unit>

The unit can be secured by evenly tightening the four unit holding bolts.

Tightening Torque for Stroke

Adjustment Unit Hold	ding Bolts Unit: N·m
Bore size [mm]	Tightening torque
25	1.8
32	3.5
40	5.8

∆Caution

Do not operate with the stroke adjustment unit fixed in an intermediate position.

When the stroke adjustment unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In that case, use a short spacer or a long spacer. For other lengths, please consult with SMC. (Refer to "Tightening Torque for Stroke Adjustment Unit Holding Bolts.")

<Adjustment bolt stroke adjustment>

Loosen the adjustment bolt lock nut, and adjust the stroke from the lock cover side using a hexagon wrench. Then, retighten the lock nut.

<Shock absorber stroke adjustment>

Loosen the two unit holding bolts at the shock absorber side, turn the shock absorber and adjust the stroke. Then, uniformly retighten the unit holding bolts to secure the shock absorber.

Be sure to read the below before handling. Refer to back cover for Safety Instructions. For Actuator and Auto Switch Precautions, refer to "Handling Precautions for SMC Products" (M-E03-3) and Operation Manual. Please download it via our website http://www.smc.eu

With End Lock

Operating Precautions

\land Caution

1. Do not use 3-position solenoid valves.

Avoid use in combination with 3-position solenoid valves (especially closed centre metal seal types). If pressure is trapped in the port on the lock mechanism side, the cylinder cannot be locked.

Furthermore, even after being locked, the lock may be released after some time due to air leaking from the solenoid valve and entering the cylinder.

2. Back pressure is required when releasing the lock.

Before starting operation, be sure to control the system so that air is supplied to the side without the lock mechanism (in case of locks on both ends, the side where the slide table is not locked) as shown in the figure above. There is a possibility that the lock may not be released. (Refer to "Lock Release.")

- 3. Release the lock when mounting or adjusting the cylinder. If mounting or other work is performed when the cylinder is locked, the lock unit may be damaged.
- 4. Operate at 50% or less of the theoretical output. If the load exceeds 50% of the theoretical output, this may cause problems such as failure of the lock to release, or damage to the lock unit.
- 5. Do not operate multiple cylinders in synchronisation.

Avoid applications in which two or more end lock cylinders are synchronised to move one workpiece, as one of the cylinder locks may not be able to release when required.

6. Use a speed controller with meter-out control.

Lock cannot be released occasionally by meter-in control.

7. Be sure to operate completely to the cylinder stroke end on the side with the lock.

If the cylinder piston does not reach the end of the stroke, locking and unlocking may not be possible. (Refer to "End Lock Mechanism Adjustment.") Operating Pressure

\land Caution

1. Supply air pressure of 0.15 MPa or higher to the port on the side that has the lock mechanism, as it is necessary for disengaging the lock.

Exhaust Speed

🗥 Caution

1. Locking will occur automatically if the pressure applied to the port on the lock mechanism side falls to 0.05 MPa or less. In the cases where the piping on the lock mechanism side is long and thin, or the speed controller is separated at some distance from the cylinder port, the exhaust speed will be reduced. Take note that some time may be required for the lock to engage. In addition, clogging of a silencer mounted on the solenoid valve exhaust port can produce the same effect.

Relation to Cushion

\land Caution

1. When the air cushion on the lock mechanism side is in a fully closed or nearly closed state, there is a possibility that the slide table will not reach the stroke end, in which case locking will not occur

End Lock Mechanism Adjustment

Caution

- 1. The end lock mechanism is adjusted at the time of shipping. Therefore, adjustment for operation at the stroke end is unnecessarv.
- 2. Adjust the end lock mechanism after the stroke adjustment unit has been adjusted. The adjustment bolt and shock absorber of the stroke adjustment unit must be adjusted and secured first. Locking and unlocking may not occur otherwise.
- 3. Perform fine adjustment of the end lock mechanism as follows. Loosen the lock finger holding bolts, and then adjust by aligning the centre of the lock piston with the centre of the lock finger hole. Secure the lock finger.

Lock Release

\land Warning

1. Before releasing the lock, be sure to supply air to the side without the lock mechanism, so that there is no load applied to the lock mechanism when it is released. (Refer to "Recommended Pneumatic Circuit.") If the lock is released when the port on the side without the lock is in an exhaust state, and with a load applied to the lock unit, the lock unit may be subjected to an excessive force and be damaged.

Furthermore, sudden movement of the slide table is very dangerous.

Manual Release

🗥 Caution

1. When manually releasing the end lock, be sure to release the pressure.

If it is unlocked while the air pressure still remains, it will lead to damage a workpiece, etc. due to unexpected lurching.

- 2. Perform manual release of the end lock mechanism as follows.
 - Push the lock piston down with a screwdriver, etc., and move the slide table

Other handling precautions regarding mounting, piping and environment are the same as the standard series.

Construction

Standard type

Mechanically Jointed Rodless Cylinder Linear Guide Type Series MY1H

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminium alloy	Hard anodised
2	Head cover	Aluminium alloy	Painted
3	Cushion boss	Special resin	
4	Slide table	Aluminium alloy	Hard anodised
5	Piston yoke	Aluminium alloy	Chromated
6	Piston	Aluminium alloy	Chromated
7	Wear ring	Special resin	
8	Belt separator	Special resin	
9	Guide roller	Special resin	
10	Parallel pin	Stainless steel	
11	Coupler	Sintered iron material	
12	Head plate	Stainless steel	
13	Cushion needle	Rolled steel	Nickel plated
14	Belt clamp	Special resin	
17	Guide	—	
18	End cover	Special resin	
20	Steel ball	Carbon tool steel	
21	Bearing	Special resin	
22	Magnet	Rare earth magnet	
23	Square nut	Carbon steel	Chromated
24	Spring pin	Bearing steel	Black zinc chromated
26	Thin head screw	Chromium molybdenum steel	Chromated
27	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
28	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
29	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
33	Hexagon socket head taper plug	Carbon steel	Chromated (Centralised piping: 10 pcs.)
34	Hexagon socket head taper plug	Carbon steel	Chromated (Centralised piping: 4 pcs.)
38	Stopper	Carbon steel	
39	Spacer	Stainless steel	
40	Hexagon socket button head screw	Chromium molybdenum steel	Chromated
41	CR retaining ring	Spring steel	
42	Seal magnet	Rubber magnet	
43	Lube retainer	Special resin	

Replacement Parts: Seal Kit

		-							
No.	Description Mater		Qty.	MY1H25	MY1H32	MY1H40			
15	Seal belt	Special resin	1	MY25-16C-Stroke	MY32-16C-Stroke	MY40-16A-Stroke			
16	Dust seal band	Stainless steel	1	MY1B25-16B-Stroke	MY1B32-16B-Stroke	MY1B40-16B-Stroke			
25	Cushion boss gasket	NBR	2	MYB25-16GA5900	MYB25-16GA5900 MYB32-16GA5901				
36	O-ring	NBR	2	ø5.1 x ø3 x ø1.05	ø7.15 x ø3.75 x ø1.7	ø7.15 x ø3.75 x ø1.7			
37	Side scraper	Special resin 2		MYH25-15BK2902B	MYH32-15BK2903B	MYH40-15BK2904B			
19	Scraper	NBR	2						
30	Piston seal	NBR	2						
31	Cushion seal	NBR	2	MY1H25-PS	MY1H32-PS	MY1H40-PS			
32	2Tube gasketNBR5O-ringNBR		2						
35			2						

* Seal kit includes (9, 30, 3), 32 and 35. Order the seal kit based on each bore size. * Seal kit includes a grease pack (10 g). When (15 or (16 is shipped independently, a grease pack (20 g) is included.

Order with the following part number when only the grease pack is needed. Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

Construction

Component Parts

No.	Description	Material	Note
1	Locking body	Aluminium alloy	Painted
2	Lock finger	Carbon steel	After quenching, nickel plated
3	Lock finger bracket	Rolled steel	Nickel plated
4	Lock piston	Carbon tool steel	After quenching, electroless nickel plated
5	Rod cover	Aluminium alloy	Hard anodised
6	Return spring	Spring steel	Zinc chromated
7	Bypass pipe	Aluminium alloy	Hard anodised
10	Steel ball	High carbon chromium bearing steel	
11	Steel ball	High carbon chromium bearing steel	
13	Inverted internal retaining ring	Carbon tool steel	Nickel plated
15	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
16	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
17	Steel ball	High carbon chromium bearing steel	
18	Steel ball	High carbon chromium bearing steel	
19	Head cover WR	Aluminium alloy	Painted
20	Head cover WL	Aluminium alloy	Painted
21	Cushion ring	Aluminium alloy	
22	Hexagon socket head set screw	Chromium molybdenum steel	Chromated

Replacement Parts: Seal Kit

No.	. Description Ma		Qty.	MY1H25	MY1H32	MY1H40			
8	Rod seal	NBR	1	DYR8K	DYR8K	DYR8K			
9	Piston seal	NBR	1	DYP-20	DYP-20	DYP-20			
12	O-ring	NBR	1	C-18	C-18	C-18			
14	O-ring	NBR	2 C-5		C-5	C-5			

* Since the seal kit does not include a grease pack, order it separately. Grease pack part no.: GR-S-010 (10 g)

SMC

Mechanically Jointed Rodless Cylinder Linear Guide Type Series MY1H

Standard piping/Centralised piping

Model	A	в	С	G	GB	н		J	κ	L	LD	LL	LW	M	M	М	N	NC	NE	NF	NH	NW	F	,	PA	PB	PC
MY1H25	110	9	5.5	16	24.5	54	M6	x 1	9.5	114	5.6	53	90	9	M5 x	k 0.8	30	18	40.2	40.5	39	53	Rc	1/8	60	50	14.5
MY1H32	140	11	6.6	19	28.5	68	M8 x	1.25	16	140	6.8	70	110	13	M6	x 1	37	22	50.2	50	49	64	Rc	1/8	80	60	15
MY1H40	170	14	8.5	23	35	84	M10	x 1.5	15	170	8.6	85	121	13	M6	x 1	45	26.5	62.7	62	61.5	75	Rc	1/4	100	80	20.5
Model	PD	PE	PF	PG	PP	Q	QW	RR	TT	TTT	vv	WW	www	XXX	YH	Z	Z	Z	Centralise						ping		[mm]
MY1H25	32	13	5.5	7	12	206	42	15	14.5	20.5	23.3	11	15.5	15.5	37.5	220	Rc	1/16				Mod	el	QQ	SS	UU	XX
MY1H32	42	13	6.5	8	16	264	51	16	16	16	28.5	12	12	20	47	280	Rc	1/16				MY1	125	16	6	18	26.5
MY1H40	37.5	23	8	9	18.5	322	59	23.5	20	20	35	14	14	23.5	59.5	340	Rc	:1/8				MY1H	132	16	11	32	40
													MY1	140	24	12	35	47									

Hole Size for Centralised Piping on the Bottom (Machine the mounting side to the dimensions below.) Standard piping/Centralised piping [mm] Centralised piping [mm]

andard piping/centransed piping [mm]													
Model	WXX	Υ	d	D	R	Applicable O-ring							
MY1H25	15.5	16.2	6	11.4	1.1	00							
MY1H32	20	20.4	6	11.4	1.1	C9							
MY1H40	23.5	25.9	8	13.4	1.1	C11.2							

Centralised piping [mm]										
Model	WX	V								
MY1H25	26.5	10								
MY1H32	40	5.5								
MY1H40	47	6								

the mounting surface when viewed from the cylinder side. * Values inside the parentheses are those for **MY1HG**.

Stroke Adjustment Unit

With adjustment bolt

MY1H Bore size - Stroke AZ

Applicable cylinder	Е	EA	EB	EC	EY	FA	FC	h	TT	W
MY1H25	18	9	40	7.5	53.5	16	21	3.5	5 (Max.16.5)	53
MY1H32	25	14	45.6	9.5	67.5	23	20	4.5	8 (Max.20)	64
MY1H40	31	19	55	11	82	24.5	26	4.5	9 (Max.25)	75

With low load shock absorber + adjustment bolt MY1H Bore size - Stroke LZ

FA FC

														luuu
Applicable cylinder	Е	EA	EB	EC	EY	F	FA	FC	h	S	Т	TT	W	Shock absorber model
MY1H25	18	9	40	7.5	53.5	—	16	21	3.5	46.7	7	5 (Max.16.5)	53	RB1007
MY1H32	25	14	45.6	9.5	67.5	_	23	20	4.5	67.3	12	8 (Max.20)	64	RB1412
MY1H40	31	19	55	11	82	_	24.5	26	4.5	67.3	12	9 (Max.25)	75	RB1412

Stroke Adjustment Unit

With high load shock absorber + adjustment bolt MY1H Bore size - Stroke HZ

* Since the EY dimension of H unit is greater than the table top height (H dimension), when a workpiece exceeding the overall length (L dimension) of the slide table is mounted, allow a clearance of size "a" or larger at the workpiece side.

Applicable cylinder	Е	EA	EB	EC	EY	F	FA	FC	h	S	Т	TT	w	Shock absorber model	а
MY1H25	18	9	40	9	57	_	18	17.5	4.5	67.3	12	5 (Max.16.5)	53	RB1412	3.5
MY1H32	25	14	45.6	12.4	73	—	18.5	22.5	5.5	73.2	15	8 (Max.20)	64	RB2015	5.5
MY1H40	31	19	55	12.4	86	_	26.5	22	5.5	73.2	15	9 (Max.25)	75	RB2015	2.5

With End Lock

Dimensions for types other than end lock are identical to the standard type dimensions. For details about dimensions, etc., refer to page 10.

MY1H□−□WZ (Both ends)

Model	Α	В	С	G	GB	н		J	Κ	L	LD	LL	LW	M	MN	/	Ν	NC	NE	NH	NW		2	PA	PB	PC	PD
MY1H25	110	9	5.5	16	24.5	54	M6	x 1	9.5	114	5.6	53	90	9	M5 x	0.8	30	20	40.5	39	53	Rc	1/8	60	50	14.5	32
MY1H32	140	11	6.6	19	28.5	68	M8 x	1.25	16	140	6.8	70	110	13	M6 x	x 1	37	25	50	49	64	Rc	1/8	80	60	15	42
MY1H40	170	14	8.5	23	35	84	M10	x 1.5	15	170	8.6	85	121	13	M6 x	x 1	45	30.5	63	61.5	75	Rc	1/4	100	80	20.5	37.5
Model	PE	PF	PG	PP	Q	QW	RR	SS	TT	UU	vv	ww	XX	YH	Z	Z	Z	En	d lock i	nechar	lism (Si	tandard	l piping	/Centra	lised p	iping)	[mm
MY1H25	13	5.5	7	12	206	42	16	6	14.5	15	16	12.5	28	37.5	220	Rc1	/16		Мос	lel	H1	H2	L1	TL	W1	W2	W3
MY1H32	13	6.5	8	17	264	51	23	4	16	16	19	16	32	47	280	Rc1	/16		MY1H	125	53.5	46	3	11.5	29.3	27.3	17.7
MY1H40		0	0	0.5	200	50	07	10 5	20	22	23	10.5	36	59 5	340	Bc	1/8		MV11	133	67	56	65	12	20.3	27.3	177
101111140	23	8	9	8.5	322	- 59	21	10.5	20	22	20	13.5	50	53.5	040	110	1/0			132	107	50	0.5	12	20.0	21.0	1
<u> </u>	23	8	9	8.5	322	159	-r <u>-</u>	10.5 	20	22	20	13.5	00	55.5	540	110	1/0		MY1	140	83	68.5	10.5	16	38	35	24.4

GSMC

* This figure shows the recommended machining dimensions of the mounting surface when viewed from the cylinder side.

Hole Size for Centralised Piping on the Bottom (Machine the mounting side to the dimensions below.)

Standard piping/Centralised piping

Model	WX	Y	S	d	D	R	Applicable O-ring						
MY1H25	28	9	7	6	11.4	1.1	~						
MY1H32	32	11	9.5	6	11.4	1.1	69						
MY1H40	36	14	11.5	8	13.4	1.1	C11.2						

Mechanically Jointed Rodless Cylinder Linear Guide Type Series MY1H

Side Support

[r	γ	۱ſ	γ	۱

										[mm]
Part no.	Applicable cylinder	Α	В	С	D	E	F	G	Н	J
MY-S25 ^A	MY1H25	105	119	35	50	8	5	9.5	5.5	M6 x 1
MY-S32 ^A	MY1H32	130	148	45	64	11.7	6	11	6.6	M8 x 1.25
MY-S40 ^A	MY1H40	145	167	55	80	14.8	8.5	14	9	M10 x 1.5
* Side supports consist of a set of right and left supports.										

Guide to Side Support Application

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the below graph.

ACaution

- 1. If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting it. Also, for long stroke operation involving vibration and impact, use of a side support is recommended.
- 2. Support brackets are not for mounting; use them solely for providing support.

Series MY1H Auto Switch Mounting

Auto Switch Proper Mounting Position

Auto Switch Proper Mounting Position [mm]

Auto switch model	D-M9□ D-M9□V D-M9□W	D-A9□
Bore size	D-M9⊟AL D-M9⊟AL D-M9⊟AVL A	D-A9⊡V A
25	85	81
32	116.5	112.5
40	137.5	133.5

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.

Operating Range

		Įmm
	Bore size	
25	32	40
5.0	5.5	5.5
7.0	10.0	9.0
	25 5.0 7.0	Bore size 25 32 5.0 5.5 7.0 10.0

Note) Values which include hysteresis are for guideline purposes only, they are not a guarantee (assuming approximately ±30% dispersion) and may change substantially depending on the ambient environment.

Auto Switch Mounting Bracket/Part No.

	Other than the applicable auto switches listed in "How to Order", the following auto switches are mountable.	יי
ļ	 Normally closed (NC = b contact) solid state auto switches (D-F9G/F9H) are also available. For details, consult with SMC. With pre-wired connector is also available for solid state auto switches. For details, consult with SMC. 	

Series MY1H Auto Switches Connection and Example

Basic Wiring

Example of Connection with PLC (Programmable Logic Controller)

• Sink input specifications 3-wire, NPN

 Source input specifications 3-wire, PNP

Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications.

Example of AND (Series) and OR (Parallel) Connection

• 2-wire 2-wire with 2-switch AND connection

Load voltage at ON = Power supply voltage – Residual voltage x 2 pcs. = 24 V – 4 V x 2 pcs. = 16 V

Example: Power supply voltage 24 VDC Auto switch internal voltage drop 4 V

AND connection for NPN output (Performed with auto switches only)

The indicator lights will light up when both of the auto switches are in the ON state.

2-wire with 2-switch OR connection

Load voltage at OFF = Leakage current x 2 pcs. x Load impedance = 1 mA x 2 pcs. x 3 k Ω = 6 V

Example: Load impedance 3 kΩ Auto switch leakage current 1 mA

OR connection for NPN output

(Reed)

Because there is no leakage current, the load voltage will not increase in the OFF state. However, depending on number of the auto switches in the ON state. the indicator lights may sometimes grow dim or not light up, due to the dispersion and reduction of the current flowing to the auto switches

Series MY1H Made to Order

Please contact SMC for detailed dimensions, specifications and lead times.

Symbol

-XB22

Shock absorber/ soft type RJ series

Stroke adjustment unit model

Refer to "How to Order" on page 3.

mounted

Made-to-Order List

Series	Туре	Shock absorber/ soft type mounted	With knock pin holes	Helical insert thread
		-XB22	-XC56	-X168
MY1H	Basic type	•	•	•

F Shock Absorber/Soft Type RJ Series Mounted

The shock absorber/soft type RJ series is mounted onto the standard cylinder, making a soft stop at the stroke end possible.

Absorption Capacity of Stroke Adjustment Units

[mm]

XE

55

70

80

Symbol

-XC56

Cylinder with knock positioning pin hole

Example) MY1H40G-200LZ-M9BW-XC56

Specifications: Same as standard type

Dimensions Dimensions other than below are the same as standard type.

Mounting surface of a workpiece for the slide table

Mounting	surface	of c	vlinder	tube
	0411400	•. •	<i>y</i>	

Bore size [mm]	XF	XG	хн	XJ
25	45	5	6	8
32	60	6	7	9

6

ΧВ

50

60

80

хс

14.5

20.5

7

15

XD

110

140

180

9

	Symbol
3 Helical Insert Thread	-X168

Bore size

[mm]

25

32

40

40

XA

57

70

85

60.5

Helical insert thread is used for the slide table mounting thread, the thread size is the same as the standard model.

These safety instructions are intended to prevent hazardous situations and/or equipment ▲ Safety Instructions damage. These instructions indicate the level of potential hazard with the labels of **"Caution**," **"Warning**" or **"Danger**." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC) ¹⁾, and other safety regulations. 1) ISO 4414: Pneumatic fluid power – General rules and safety Danger indicates a hazard with a high level of risk requirements for systems and their components. **∧** Danger: which, if not avoided, will result in death or serious ISO 4413: Hydraulic fluid power - General rules and safety injury requirements for systems and their components. IEC 60204-1: Safety of machinery - Electrical equipment of machines. Warning indicates a hazard with a medium level of risk (Part 1: General requirements) **∧** Warning: which, if not avoided, could result in death or serious ISO 10218-1: Robots and robotic devices - Safety requirements for iniurv industrial robots - Part 1: Robots. Caution indicates a hazard with a low level of risk etc

∧ Warning

which, if not avoided, could result in minor or moderate

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications. Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should

∧ Caution:

injury.

latest catalogue information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.2. Only personnel with appropriate training should operate machinery

also continuously review all specifications of the product referring to its

and equipment. The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.

- 3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
 - 1. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
 - 2. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
 - 3. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.

4. Our products cannot be used beyond their specifications. Our products are not developed, designed, and manufactured to be used under the following conditions or environments. Use under such conditions or environments is not covered.

- 1. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
- 2. Use for nuclear power, railways, aviation, space equipment, ships, vehicles, military application, equipment affecting human life, body, and property, fuel equipment, entertainment equipment, emergency shut-off circuits, press clutches, brake circuits, safety equipment, etc., and use for applications that do not conform to standard specifications such as catalogues and operation manuals.
- 3. Use for interlock circuits, except for use with double interlock such as installing a mechanical protection function in case of failure. Please periodically inspect the product to confirm that the product is operating properly.

∧ Caution

We develop, design, and manufacture our products to be used for automatic control equipment, and provide them for peaceful use in manufacturing industries. Use in non-manufacturing industries is not covered.

Products we manufacture and sell cannot be used for the purpose of transactions or certification specified in the Measurement Act.

The new Measurement Act prohibits use of any unit other than SI units in Japan.

Limited warranty and Disclaimer/Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".Read and accept them before using the product.

Limited warranty and Disclaimer

- The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first. ²) Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
- 2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided. This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
- 3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalogue for the particular products.
- 2) Vacuum pads are excluded from this 1 year warranty. A vacuum pad is a consumable part, so it is warranted for a year after it is delivered. Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

- 1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
- The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

SMC Corporation (Europe)

Austria Belgium +32 (0)33551464 Bulgaria +359 (0)2807670 Croatia Czech Republic +420 541424611 Denmark +45 70252900 Estonia +372 651 0370 Finland +358 207513513 France Germany +49 (0)61034020 Greece +30 210 2717265 +36 23513000 Hungary Ireland +39 03990691 Italy Latvia +371 67817700

+43 (0)2262622800 www.smc.at www.smc.be www.smc.bg +385 (0)13707288 www.smc.hr www.smc.cz www.smcdk.com www.smcee.ee www.smc.fi +33 (0)164761000 www.smc-france.fr www.smc.de www.smchellas.gr www.smc.hu +353 (0)14039000 www.smcautomation.ie www.smcitalia.it www.smc.lv

office@smc.at info@smc.be office@smc.bg office@smc.hr office@smc.cz smc@smcdk.com info@smcee.ee smcfi@smc.fi supportclient@smc-france.fr info@smc.de sales@smchellas.gr office@smc.hu sales@smcautomation.ie mailbox@smcitalia.it info@smc.lv

Lithuania +370 5 2308118 Netherlands +31 (0)205318888 Norway +47 67129020 +48 222119600 Poland Portugal +351 214724500 Romania +40 213205111 Russia +7 (812)3036600 Slovakia +421 (0)413213212 www.smc.sk Slovenia +386 (0)73885412 Spain +34 945184100 Sweden +46 (0)86031240 Switzerland +41 (0)523963131 Turkey UК +44 (0)845 121 5122 www.smc.uk

www.smclt.lt www.smc.nl www.smc-norge.no www.smc.pl www.smc.eu www.smcromania.ro www.smc.eu www.smc.si www.smc.eu www.smc.nu www.smc.ch +90 212 489 0 440 www.smcturkey.com.tr

info@smclt.lt info@smc.nl post@smc-norge.no sales@smc.pl apoioclientept@smc.smces.es smcromania@smcromania.ro sales@smcru.com office@smc.sk office@smc.si post@smc.smces.es smc@smc.nu info@smc.ch info@smcturkey.com.tr sales@smc.uk

South Africa +27 10 900 1233 www.smcza.co.za zasales@smcza.co.za