Series MY1HT

High Rigidity/High Precision Guide Type

Easy maintenance is stressed by a revolutionary construction which allows cylinder replacement without disturbing the guide units or workpiece.

Maximum Allowable Moment/Maximum Load Weight

Model	Bore size $(\mathbf{m m})$	Maximum allowable moment (N•m)		Maximum load weight (kg)			
		$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$	$\mathbf{m}_{\mathbf{1}}$	$\mathbf{m}_{\mathbf{2}}$	$\mathbf{m}_{\mathbf{3}}$
MY1HT	$\mathbf{5 0}$	140	180	140	200	140	200
	$\mathbf{6 3}$	240	300	240	320	220	320

The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

Load weight (kg)

Moment (N•m)

<Calculation of guide load factor>

1. Maximum allowable load (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.

* To evaluate, use va (average speed) for (1) and (2), and v (collision speed $v=1.4 \mathrm{va}$) for (3). Calculate mmax for (1) from the maximum allowable load graph (m_{1}, m_{2}, m_{3}) and Mmax for (2) and (3) from the maximum allowable moment graph (M_{1}, M_{2}, M_{3}).

Note 1) Moment caused by the load, etc., with cylinder in resting condition.
Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper).
Note 3) Depending on the shape of the workpiece, multiple moments may occur. When this happens, the sum of the load factors $(\Sigma \alpha)$ is the total of all such moments.
2. Reference formula [Dynamic moment at impact]

Use the following formulae to calculate dynamic moment when taking stopper impact into consideration.

m : Load weight (kg)	v: Collision speed (mm / s)
$\mathrm{F}: \operatorname{Load~(N)}$	L_{1} : Distance to the load's center of gravity (m)
F_{E} : Load equivalent to impact (at impact with stopper) (N)	Me: Dynamic moment ($\mathrm{N} \cdot \mathrm{m}$)
Va: Average speed (mm / s)	δ : Damper coefficient
M: Static moment ($\mathrm{N} \cdot \mathrm{m}$)	With rubber bumper $=4 / 100$
$v=1.4 v \mathrm{a}(\mathrm{mm} / \mathrm{s}) \mathrm{F}_{\mathrm{E}}=1.4 \mathrm{va} \cdot \delta \cdot \mathrm{m} \cdot \mathrm{m} \cdot \mathrm{g}$	(MY1B10, MY1H10)
$\therefore \mathrm{M}_{\mathrm{E}}=\frac{1}{3} \cdot \mathrm{~F}_{\mathrm{E} \cdot}^{\text {Not. } 5} \cdot \mathrm{~L}_{1}=4.57 \mathrm{va} \delta \mathrm{~mL}_{1}(\mathrm{~N} \cdot \mathrm{~m})$	With shock absorber = 1/100
3 - ${ }^{\text {a }}$	$\mathrm{g}:$ Gravitational acceleration ($9.8 \mathrm{~m} / \mathrm{s}^{2}$)

Maximum Load Weight

Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.

Note 4) $1.4 \mathrm{Va} \mathrm{\delta}$ is a dimensionless coefficient for calculating impact force.
Note 5) Average load coefficient $\left(=\frac{1}{3}\right)$: This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.
3. For detailed selection procedures, refer to pages 8-11-92 and 8-11-93.

MY1HT/M2

MY1HT/m2

MY1HT/m3

8-11-91

Series MY1HT

Model Selection

Following are the steps for selecting the most suitable Series MY1 to your application.

Calculation of Guide Load Factor

1. Operating Conditions

For actual examples of calculation for each orientation refer to the pages above.
2. Load Blocking

Weight and Center of Gravity for Each Workpiece

Workpiece no. Wn	Weight mn	Center of gravity		
		$\begin{gathered} \text { X-axis } \\ \text { Xn } \end{gathered}$	$\begin{aligned} & \text { Y-axis } \\ & \text { Yn } \end{aligned}$	$\begin{gathered} \text { Z-axis } \\ \text { Zn } \end{gathered}$
Wa	0.88 kg	65 mm	0 mm	5 mm
W_{b}	4.35 kg	150 mm	0 mm	42.5 mm
Wc	0.795 kg	150 mm	111 mm	42.5 mm
$\mathrm{W}_{\text {d }}$	0.5 kg	150 mm	210 mm	42.5 mm
				$\mathrm{n}=\mathrm{a}, \mathrm{b}, \mathrm{c}$,

3. Composite Center of Gravity Calculation

```
\(\mathbf{m}_{4}=\Sigma \mathrm{mn}_{n}\)
\[
=0.88+4.35+0.795+0.5=6.525 \mathbf{k g}
\]
\[
\mathbf{X}=\frac{1}{m_{4}} \times \sum\left(m_{n} \times x_{n}\right)
\]
\[
=\frac{1}{6.525}(0.88 \times 65+4.35 \times 150+0.795 \times 150+0.5 \times 150)=138.5 \mathrm{~mm}
\]
\[
\mathbf{Y}=\frac{1}{m_{4}} \times \sum\left(m_{n} \times y_{n}\right)
\]
\[
=\frac{1}{6.525}(0.88 \times 0+4.35 \times 0+0.795 \times 111+0.5 \times 210)=29.6 \mathrm{~mm}
\]
\[
\mathbf{Z}=\frac{1}{\mathrm{~m}_{4}} \times \sum\left(\mathrm{m}_{\mathrm{n}} \times \mathrm{Zn}\right)
\]
\[
=\frac{1}{6.525}(0.88 \times 5+4.35 \times 42.5+0.795 \times 42.5+0.5 \times 42.5)=37.4 \mathrm{~mm}
\]
```


4. Calculation of Load Factor for Static Load

m_{4} : Weight
m_{4} is the mass which can be transferred by the thrust, and as a rule, is actually
about 0.3 to 0.7 of the thrust. (This differs depending on the operating speed.)
$\mathbf{M}_{\mathbf{1}}$: Moment
$\mathrm{M}_{1} \max ($ from (1) of graph MY1HT/M1) $=60(\mathrm{~N} \cdot \mathrm{~m})$
$\mathrm{M}_{1}=\mathrm{m}_{4} \times \mathrm{g} \mathrm{x} \mathrm{Z}=6.525 \times 9.8 \times 37.4 \times 10^{-3}=2.39(\mathrm{~N} \cdot \mathrm{~m})$
Load factor $\boldsymbol{\alpha}_{1}=\mathrm{M}_{2} / \mathrm{M}_{2} \max =2.39 / 60=\mathbf{0 . 0 4}$

M_{3} : Moment
M3max (from (2) of graph MY1HT/M3) $=60(\mathrm{~N} \cdot \mathrm{~m})$
$\mathrm{M}_{3}=\mathrm{m}_{4} \times \mathrm{g} \mathrm{x} \mathrm{Y}=6.525 \times 9.8 \times 29.6 \times 10^{-3}=1.89(\mathrm{~N} \cdot \mathrm{~m})$
Load factor $\alpha_{2}=M_{3} / M_{3} \max =1.89 / 60=0.03$

5. Calculation of Load Factor for Dynamic Moment

MY■
Equivalent load F_{E} at impact
$\mathrm{F}_{\mathrm{E}}=1.4 \mathrm{Va} \times \delta \times \mathrm{m} \times \mathrm{g}=1.4 \times 700 \times \frac{1}{100} \times 6.525 \times 9.8=626.7(\mathrm{~N})$
MiE: Moment
$\mathrm{M}_{1 \mathrm{Emax}}($ from ε of graph MY1HT/M1 where $1.4 \mathrm{Va}=980 \mathrm{~mm} / \mathrm{s}$) $=42.9(\mathrm{~N} \cdot \mathrm{~m})$
$M_{1 E}=\frac{1}{3} \times F_{E} \times Z=\frac{1}{3} \times 626.7 \times 37.4 \times 10^{-3}=7.82(\mathrm{~N} \cdot \mathrm{~m})$
Load factor $\alpha_{3}=M_{1 E} / M_{1 E m a x}=7.82 / 42.9=0.18$
M3E: Moment
M3Emax (from (4) of graph MY1HT/M3 where $1.4 \mathrm{Va}=980 \mathrm{~mm} / \mathrm{s}$) $=42.9(\mathrm{~N} \cdot \mathrm{~m})$
$\mathrm{M}_{3 \mathrm{E}}=\frac{1}{3} \times \mathrm{F}_{\mathrm{E}} \times \mathrm{Y}=\frac{1}{3} \times 626.7 \times 29.6 \times 10^{-3}=6.19(\mathrm{~N} \cdot \mathrm{~m})$
Load factor $\alpha_{4}=$ МЗе $_{\text {з }}$ Мзеmax $=6.19 / 42.9=0.14$

6. Sum and Examination of Guide Load Factors

$\Sigma \alpha=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=0.39 \leq 1$
The above calculation is within the allowable value, and therefore the selected model can be used.
Select a shock absorber separately.
In an actual calculation, when the total sum of guide load factors $\Sigma \alpha$ in the formula above is more than 1 , consider either decreasing the speed, increasing the bore size, or changing the product series.
This calculation can be easily made using the "SMC Pneumatics CAD System".

Allowable Moment

Mechanically Jointed Rodless Cylinder High Rigidity/High Precision Guide Type Series MY1HT
 ø50, ø63

How to Order

Side Support Part No.

	50	63
Side support A	MY-S63A	
Side support B	MY-S63B	

Applicable Auto Switch/Refer to page 8-30-1 for further information on auto switches.

Type	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch model		Lead wire length (m)*			Pre-wire connector	Applicable load		
					DC		AC			$\begin{gathered} 0.5 \\ \text { (Nil) } \\ \hline \end{gathered}$	$\begin{gathered} \hline 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{array}{\|c} \hline 5 \\ (\mathrm{Z}) \end{array}$				
							Perpendicular	In-line								
융 둔	-	Grommet	$\stackrel{\text { ¢ }}{\text { ® }}$	3-wire (NPN equivalent)	-	5 V		-	-	Z76	\bigcirc	-	-	-	$\underset{\text { circuit }}{\text { IC }}$	-
				2-wire	24 V	12 V	100 V	-	Z73	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	Relay, PLC	
				3-wire (NPN)		12		Y69A	Y59A	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC		
\sum_{0}^{0}	-			3-wire (PNP)		12		Y7PV	Y7P	\bigcirc	\bigcirc	\bigcirc	\bigcirc	circuit		
$\stackrel{\rightharpoonup}{\infty}$		Grommet	$\stackrel{\text { ® }}{ }$	2-wire	24 V	12 V		Y69B	Y59B	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	Relay,	
$\frac{\stackrel{U}{\pi}}{6}$			$>$	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	Y7NWV	Y7NW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC	PLC	
음	Diagnostic indication (2-color indication)			3-wire (PNP)		$5 \mathrm{~V}, 12 \mathrm{~V}$		Y7PWV	Y7PW	\bigcirc	\bullet	\bigcirc	\bigcirc	circuit		
¢				2-wire		12 V		Y7BWV	Y7BW	\bigcirc	-	\bigcirc	\bigcirc	-		

[^0]* Solid state switches marked with "○" are produced upon receipt of order.
* Separate switch spacers (BMP1-032) are required for
- Since there are other applicable auto switches than listed, refer to page 8-11-101 for details. retrofitting of auto switches.
- For details about auto switches with pre-wire connector, refer to page 8-30-52.

Specifications

JIS Symbol

Bore size (mm)	50	63
Fluid	Air	
Action	0.1 to 0.8 MPa	
Operating pressure range	1.2 MPa	
Proof pressure	5 to $60^{\circ} \mathrm{C}$	
Ambient and fluid temperature	100 to $1000 \mathrm{~mm} / \mathrm{s}$	
Piston speed	Shock absorbers on both ends (Standard)	
Cushion	Non-lube	
Lubrication	2700 or less ${ }^{+1.8} 0,2701$ to $5000^{+2.8}$	
Stroke length tolerance	Rc 3/8	
Port size	Side port	

2
Note) Use at a speed within the absorption capacity range. Refer to page 8-11-96

Stroke Adjusting Unit Specifications

Applicable bore size (mm)		50		63	
Unit symbol, contents		L	H	L	H
		RB2015 and adjusting bolt: 1 set each	RB2015 and adjusting bolt: 2 sets each	RB2725 and adjusting bolt: 1 set each	RB2725 and adjusting bolt: 2 sets each
Fine stroke adjustment range (mm)		0 to -20		0 to -25	
Stroke adjustment range		For adjustment method, refer to page 8-11-96.			
Shock absorber model		RB2015 x 1 pc.	RB2015 x 2 pcs.	RB2725 x 1 pc.	RB2725 x 2 pcs.
Maximum energy absorption (J)		58.8	$88.2{ }^{\text {Note) }}$	147	220.5 Note)
Stroke absorption (mm)		15	15	25	25
Maximum collision speed (mm / s)		1000		1000	
Maximum operating frequency (cycle/min)		25	25	10	10
Spring force (N)	Extended	8.34	16.68	8.83	17.66
	Retracted	20.50	41.00	20.01	40.02
Operating temperature range (${ }^{\circ} \mathrm{C}$)		5 to 60			

Note) Maximum energy absorption for 2 pcs. is calculated by multiplying the value for 1 pc. by 1.5 .

Theoretical Output

(N)								
Bore size (mm)	Piston area $\left(\mathrm{mm}^{2}\right)$	Operating pressure (MPa)				0.2	0.3	0.4
0.5	0.6	0.7	0.8					
$\mathbf{5 0}$	1962	392	588	784	981	1177	1373	1569
$\mathbf{6 3}$	3115	623	934	1246	1557	1869	2180	2492

Note) Theoretical output $(\mathrm{N})=$ Pressure $(\mathrm{MPa}) \times$ Piston area (mm^{2})

Made to Order Specifications (For details, refer to page 8-31-1.)

Symbol	Specifications
- XB10	Intermediate stroke (Using exclusive body)
- XB11	Long stroke
-XC18	NPT finish piping port
- XC67	NBR rubber lining in dust seal band
- X168	Helical insert thread specifications

Standard Stroke

Bore size (mm)	Standard stroke $(\mathrm{mm})^{\text {Note) }}$	Maximum manufacturable stroke (mm)
$\mathbf{5 0 , 6 3}$	$200,400,600,800,1000,1500,2000$	5000

Note) Strokes other than standard are produced after receipt of order.

Weight

		Bore size (mm)	Basic weight	Additional weight per each 25 mm of stroke	Side support weight (per set)	Stroke adjusting unit weight		
	Type A and B		LH unit weight	H unit weight				
50	30.62	0.87	0.17	0.62	0.93	1.24		
63	41.69	1.13	0.17	1.08	1.62	2.16		

Calculation: (Example) MY1HT50-400L

- Basic weight 30.62 kg
- Additional weight $. . .0 .87 / 25 \mathrm{st}$
- L unit weight 0.62 kg
- Cylinder stroke......... 400 st $30.62+0.87 \times 400 \div 25+0.62 \times 2 \cong 45.8$

Series MY1HT

Cushion Capacity

Cushion Selection

<Stroke adjusting unit with built-in shock absorber>
L unit
Use this unit when the cylinder stroke is outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line or below the L unit limit line.
H unit
Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.

MY1HT63 Horizontal collision: $\mathrm{P}=0.5 \mathrm{MPa}$

Stopper Bolt Holding Screw Tightening Torque Stopper Bolt
Tightening Torque for Stroke Adjusting Unit Lock Plate Holding Bolts (N.m)

Bore size (mm)	Tightening torque
$\mathbf{5 0}$	0.6
$\mathbf{6 3}$	1.5

Calculation of Absorbed Energy for Stroke Adjusting Unit with
Built-in Shock Absorber (N.m)

Type of impact	Horizontal collision	$\begin{gathered} \text { Vertical } \\ \text { (Downward) } \end{gathered}$	Vertical (Upward)
Kinetic energy E_{1}	$\frac{1}{2} \mathrm{~m} \cdot \mathrm{v}^{2}$		
Thrust energy E2	F.S	F.s + m.g.s	F.s - m.g.s
Absorbed energy E	$E_{1}+\mathrm{E}_{2}$		

Symbol
v : Speed of impact object (m / s)
F : Cylinder thrust (N)
s : Shock absorber stroke (m)
m : Weight of impact object (kg)
$\mathrm{g}:$ Gravitational acceleration ($9.8 \mathrm{~m} / \mathrm{s}^{2}$)
Note) The speed of the impact object is measured at the time of impact with the shock absorber.

4. Precautions

I Be sure to read before handling. Refer to pages 8-34-3 to 8-34-6 for Safety Instructions and Actuator Precautions. I

Mounting

© Caution

1. Do not apply strong impact or excessive moment to the slide table (slider).
Since the slide table (slider) is supported by precision bearings, do not subject it to strong impact or excessive moment when mounting workpieces.
2. Perform careful alignment when connecting to a load which has an external guide mechanism.
Mechanically jointed rodless cylinders can be used with a direct load within the allowable range for each type of guide, but careful alignment is necessary for connection to a load which has an external guide mechanism. Since fluctuation of the center axis increases as the stroke becomes longer, use a method of connection which can absorb the variations (floating mechanism).
3. Do not put hands or fingers inside when the body is suspended.
Since the body is heavy, use eye bolts when suspending it. (The eye bolts are not included with the body.)

Handling

. Caution

1. Do not unnecessarily alter the guide adjustment setting.
The guide is preadjusted at the factory so that readjustment is not required under normal operating conditions. Do not inadvertently move the guide adjusting unit and change the setting.

Handling

© Caution

2. Air leakage will result from negative pressure.

Take precautions under operating conditions in which negative pressure is increased inside the cylinder by external forces or inertial forces. Air leakage may occur due to separation of the seal belt.

Mounting of Auto Switch

\triangle Caution

1. Insert the auto switch into the cylinder's switch mounting groove, then slide it sideways in the direction shown below and place it inside the switch spacer (with the spacer positioned over it).
2. Use a flat head watchmakers' screwdriver to fasten the switch, tightening with a torque of 0.05 to $0.1 \mathrm{~N} \cdot \mathrm{~m}$. As a rule, it should be turned about 90° past the point at which tightening can be

Stroke Adjustment Method

© Caution

1. As shown in Figure (1), to adjust the stopper bolt within the adjustment range A, insert a hexagon wrench from the top to loosen the hexagon socket head set screw by approximately one turn, and then adjust the stopper bolt with a flat head screwdriver.
2. When the adjustment described in 1 above is insufficient, the shock absorber can be adjusted. Remove the covers as shown in Figure (2) and make further adjustment by loosening the hexagon nut.
3. Various dimensions are indicated in Table (1). Never make an adjustment that exceeds the dimensions in the table, as it may cause an accident and/or damage.

Figure (2) Cover installation and removal Hexagon socket button head screw

Figure (3) Maximum stroke adjustment detail

Disassembly and Assembly Procedure

\triangle Caution

Disassembly step

1. Remove the hexagon socket head cap screws 1, and remove the upper plates.
2. Remove the top cover.
3. Remove the hexagon socket head cap screws 2, and remove the end covers and couplers.
4. Remove the hexagon socket head cap screws 3.
5. Remove the hexagon socket head cap screws 4, and remove the end supports.
6. Remove the cylinder.

Assembly step

1. Insert the MY1BH cylinder.
2. Temporarily fasten the end supports with the hexagon socket head cap screws 4.
3. With two hexagon socket head cap screws 3 on the L or R side, pull the end support and the cylinder.
4. Tighten the hexagon socket head cap screws 3 on the other side to eliminate the looseness in the axial direction.
(At this point, a space is created between the end support and the end plate on one side, but this is not a problem.)
5. Re-tighten the hexagon socket head cap screws 4.
6. Fasten the end cover with the hexagon head cap screws 2, while making sure that the coupler is in the right direction.
7. Place the top cover on the body.
8. Insert the holding blocks into the top cover and fasten the upper plates with the hexagon socket head cap screws 1.

* Cylinder For Driving (Series MY1BH)

Since Series MY1BH is a cylinder for driving for Series MY1HT, its construction is different from Series MY1B.
Do not use Series MY1B as a cylinder for driving, since it will lead to damage.

Series MY1HT

MY1HT50■/63 \square-Stroke

Model	A	EY	H	HL	L	LL	N	NH	NW	PA	PB	PE	PG
MY1HT50 \square	207	97.5	145	23	210	102	30	143	254	90	200	-	15
MY1HT63 \square	237	104.5	170	26	240	117	35	168	274	100	220	50	17.5

Model	PL	QE	RR	S	SS	TT	UU	YH	YW	Z
MY1HT50 \square	180	384	57	6	10	103.5	23.5	136.4	252	414
MY1HT63 \square	200	439	71.5	10	13.5	108	29	162.6	273	474

Side Support
Side support A
MY-S63A

Side support B
MY-S63B

Dimensions			(mm)
Model	Applicable bore size	A	B
MY-S63 $_{\mathbf{B}}^{\text {A }}$	MY1HT50	284	314
	MY1HT63	304	334

Guide for Side Support Application

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load weight. In such a case, use a side support in the middle section. The spacing (e) of the support must be no more than the values shown in the graph on the right.

\triangle Caution

1. If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
2. Support brackets are not for mounting; use them solely for providing support.

Series MY1HT

Construction

Standard type

Note) With top cover removed

Component Parts

No.	Description	Material	Note
(1)	Guide frame	Aluminum alloy	Hard anodized
(2)	Slide table	Aluminum alloy	Hard anodized
(3)	Side cover	Aluminum alloy	Hard anodized
(4)	Top cover	Aluminum alloy	Hard anodized
(5)	Upper plate	Aluminum alloy	Hard anodized
(6)	End plate	Aluminum alloy	Hard anodized
(7)	Bottom plate	Aluminum alloy	Hard anodized
(8)	End cover	Aluminum alloy	Chromated
(9)	Coupler	Aluminum alloy	Chromated
(10)	Adjuster holder	Aluminum alloy	Hard anodized
(11)	Guide	-	
(12)	Shock absorber	-	
(13)	Stopper bolt	Carbon steel	Nickel plated
(14)	Absorber ring	Rolled steel	Nickel plated
(15)	End support	Aluminum alloy	Hard anodized
(16)	Top block	Aluminum alloy	Chromated
(17)	Side block	Aluminum alloy	Chromated
(18)	Slide plate	Special resin	
(19)	Rodless cylinder	-	MY1BH
(20)	Stopper	Carbon steel	Nickel plated

Series MY1 Auto Switch

D-M9N(V), D-M9P(V), D-M9B(V)

D-Y59 ${ }_{\mathrm{B}}^{\mathrm{A}}, \mathrm{D}-\mathrm{Y} 69_{\mathrm{B}}^{\mathrm{A}}, \mathrm{D}-\mathrm{Y} 7 \mathrm{P}(\mathrm{V})$

「Other than the applicable auto switches listed in "How to Order", the following auto switches can be mounted. For detailed specifications, refer to page 8-30-1.

Series MY1

Proper Auto Switch Mounting Position (Detection at stroke end) D-A9 \square (V)
Note) The operating range is a guide including hysteresis, but is not guaranteed. (Assuming approximately 30% dispersion.) There may be varied substantially depending on the surrounding environment.

MY1B (Basic type)

Mounting position	$\varnothing 10$	$\varnothing 16$	$\varnothing 20$
A	20	27	35
B	90	133	165
Operating range $\left.\ell^{\text {Note }}\right)$	6	6.5	8.5

MY1M (Slide bearing guide type)

		(mm)
Mounting position	$\varnothing 16$	$\varnothing 20$
A	70	90
B	90	110
Operating range $\ell^{\text {Note })}$	11	7.5

MY1C (Cam follower guide type)

		(mm)
Mounting position	$\varnothing 16$	$\varnothing 20$
A	70	90
B	90	110
Operating range $\left.\ell^{\text {Note) }}\right)$	11	7.5

MY1H (High precision guide type)

Mounting position	$\varnothing 10$	$\varnothing 16$	$\varnothing 20$
A	20	27	35
B	90	133	165
Operating range ^ $^{\text {Note) }}$	11	6.5	8.5

Auto Switch Series MY1

Proper Auto Switch Mounting Position (Detection at stroke end) D-Z7 \square, D-Z80
Note) The operating range is a guide including hysteresis, but is not guaranteed. (Assuming approximately 30% dispersion). There may be varied substantially depending on the surrounding environment.

MY1B (Basic type)

MY1M (Slide bearing guide type)

MY1C (Cam follower guide type)

Mounting position	$\varnothing 25$	$\varnothing 32$	$\varnothing 40$	$\varnothing 50$	$\varnothing 63$
A	97.5	127.5	157.5	278.5	323.5
B	122.5	152.5	182.5	121.5	136.5
Operating range $\iota^{\text {Noies }}$	12	12	12	11.5	11.5

MY1H (High precision guide type)

MY1HT (High rigidity/High precision guide type)

		(mm)
Mounting position	$\varnothing 50$	$\varnothing 63$
A	290.5	335.5
B	123.5	138.5
Operating range $\iota^{\text {Note) }}$	11	11

Series MY1

Proper Auto Switch Mounting Position (Detection at stroke end) D-M9■, D-M9■V, D-F9■W, D-F9■WV
Note) The operating range is a guide including hysteresis, but is not guaranteed. (assuming approximately 30% dispersion.) There may be varied substantially depending on the surrounding environment.

MY1B (Basic type)

Mounting position	$\varnothing 10$	$\varnothing 16$	$\boxed{ } \quad$ (mm)
A	24	31	39
B	86	129	161
Operating range $\iota^{\text {Note) }}$	$3(2.5)$	$4(3)$	$5(3.5)$

Note) Figures in parentheses are the cases for D-M9 \square, D-M9 \square V switch types.

MY1M (Slide bearing guide type)

		(mm)
Mounting position	$\varnothing 16$	$\varnothing 20$
A	74	94
B	86	106
Operating range $\iota^{\text {Note) }}$	$8.5(6.5)$	$6.5(7)$

MY1C (Cam follower guide type)

		(mm)
Mounting position	$\varnothing 16$	$\varnothing 20$
\mathbf{A}	74	94
B	86	106
Operating range © $^{\text {Note) }}$	$8.5(6.5)$	$6.5(7)$

Note) Figures in parentheses are the cases for D-M9■, D-M9 \square V switch types.

MY1H (High precision guide type)

Mounting position	$\varnothing 10$	$\varnothing 16$	$\varnothing 20$
A	24	31	39
B	86	129	161
Operating range / Note) $^{\text {(}}$	$3(2)$	$4(3)$	$5(3.5)$

Note) Figures in parentheses are the cases for D-M9■, D-M9■V switch types.

Auto Switch Series MY1

Proper Auto Switch Mounting Position (Detection at stroke end) D-Y59■, D-Y69■, D-Y7P, D-Y7PV
Note) The operating range is a guide including hysteresis, but is not guaranteed. (Assuming approximately 30% dispersion.) There may be varied substantially depending on the surrounding environment.

MY1B (Basic type)

Mounting position	ø25	ø32	$\varnothing 40$	$\varnothing 50$	ø63	ø80	$\varnothing 100$
A	131.5	180	216	272.5	317.5	484.5	569.5
B	88.5	100	124	127.5	142.5	205.5	230.5
Operating range $/^{\text {Note) }}$	6	9	10	3.5	3.5	3.5	3.5

MY1M (Slide bearing guide type)

Mounting position	$\varnothing 25$	$\varnothing 32$	$\varnothing 40$	$\varnothing 50$	$\varnothing 63$
A	97.5	127.5	157.5	278.5	323.5
B	122.5	152.5	182.5	121.5	136.5
Operating range $\ell^{\text {Note) }}$	5	5	5	5.5	5.5

MY1H (High precision guide type)

Mounting position	$\varnothing 25$	$\varnothing 32$	$\varnothing 40$
A	131.5	180	216
B	88.5	100	124
Operating range $~^{\text {Nooe) }}$	6	9	10

MY1HT (High rigidity/High precision guide type)

	(mm)	
Mounting position	$\varnothing 50$	$\varnothing 63$
A	290.5	335.5
B	123.5	138.5
Operating range $\left.\ell^{\text {Note) }}\right)$	5	5

Series MY1

Proper Auto Switch Mounting Position (Detection at stroke end) D-Y7 \square W, D-Y7 \square WV
Note) The operating range is a guide including hysteresis, but is not guaranteed. (Assuming approximately 30% dispersion.) There may be varied substantially depending on the surrounding environment.

MY1B (Basic type)

Mounting position	ø25	ø32	ø40	$\varnothing 50$	ø63	$\varnothing 80$	$\varnothing 100$
A	131.5	180	216	272.5	317.5	484.5	569.5
B	88.5	100	124	127.5	142.5	205.5	230.5
Operating range $\sim^{\text {Note) }}$	6	9	10	3.5	3.5	3.5	3.5

MY1M (Slide bearing guide type)

	(mm)				
Mounting position	$\varnothing 25$	$\varnothing 32$	$\varnothing 40$	$\varnothing 50$	$\varnothing 63$
A	139.5	184.5	229.5	278.5	323.5
B	80.5	95.5	110.5	121.5	136.5
Operating range $\left.\ell^{\text {Note }}\right)$	5	5	5	5.5	5.5

MY1C (Cam follower guide type)

Mounting position	ø25	ø32	ø40	ø50	ø63
A	97.5	127.5	157.5	278.5	323.5
B	122.5	152.5	182.5	121.5	136.5
Operating range $\sim^{\text {Note) }}$	5	5	5	5.5	5.5

MY1H (High precision guide type)

Mounting position	$\varnothing 25$	$\varnothing 32$	$\varnothing 40$
A	131.5	180	216
B	88.5	100	124
Operating range $\ell^{\text {Nooe) }}$	6	9	10

MY1HT (High rigidity/High precision guide type)

	(mm)	
Mounting position	$\varnothing 50$	$\varnothing 63$
A	290.5	335.5
B	123.5	138.5
Operating range $\ell^{\text {Note }}$	5	5

[^0]: * Lead wire length symbols: $0.5 \mathrm{~m} \cdots \cdots$. Nil (Example) Y59A
 $3 \mathrm{~m} \cdots \cdots \cdots . . . \mathrm{L}$ (Example) Y59AL
 $5 \mathrm{~m} \cdot \ldots \mathrm{Z}$ (Example) Y59AZ

