

High Precision Guide Type

ø10, ø16, ø20, ø25, ø32, ø40

End lock type capable of holding a position at the stroke end (Except bore size ø10)

 $MX\square$

MTS

MY□

CY□ MG□

CX□

D-

-X

20-

Before Operation

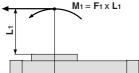
Maximum Allowable Moment/Maximum Load Weight

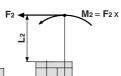
Model	Bore size	Maximum a	allowable mo	ment (N·m)	Maximum load weight (kg)			
Model	(mm)	M ₁	M ₂	Мз	m ₁	m ₂	m 3	
	10	0.8	1.1	0.8	6.1	6.1	6.1	
	16	3.7	4.9	3.7	10.8	10.8	10.8	
MY1H	20	11	16	11	17.6	17.6	17.6	
IVITIO	25	23	26	23	27.5	27.5	27.5	
	32	39	50	39	39.2	39.2	39.2	
	40	50	50	39	50	50	50	

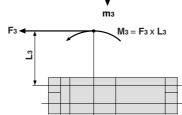
The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

Maximum Allowable Moment

Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.


Load weight (kg)





Moment (N·m)

<Calculation of guide load factor>

- 1. Maximum allowable load (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.
 - * To evaluate, use ν a (average speed) for (1) and (2), and ν (collision speed ν = 1.4 ν a) for (3). Calculate mmax for (1) from the maximum allowable load graph (m_1 , m_2 , m_3) and Mmax for (2) and (3) from the maximum allowable moment graph (M_1 , M_2 , M_3).

Note 1) Moment caused by the load, etc., with cylinder in resting condition.

Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper).

Note 3) Depending on the shape of the workpiece, multiple moments may occur. When this happens, the sum of the load factors $(\Sigma \alpha)$ is the total of all such moments.

2. Reference formula [Dynamic moment at impact]

Use the following formulae to calculate dynamic moment when taking stopper impact into consideration.

m: Load weight (kg)

F: Load (N)

FE: Load equivalent to impact (at impact with stopper) (N)

M: Static moment (N·m)

 υ = 1.4 υ a (mm/s) F_E = 1.4 υ a· $\delta^{\text{Note 4}}$

 $\therefore M_E = \frac{1}{3} \cdot F_E \cdot L_1 = 4.57 \upsilon a \delta m L_1 (N \cdot m)$

 $\upsilon \text{: Collision speed (mm/s)}$

L₁: Distance to the load's center of gravity (m)

ME: Dynamic moment (N·m)

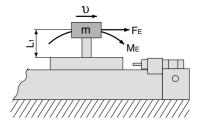
 δ : Damper coefficient

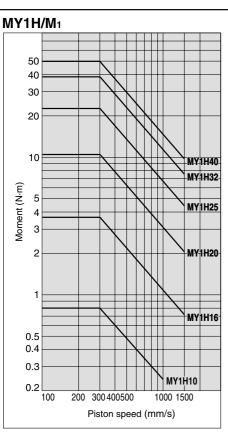
With rubber bumper = 4/100 (MY1B10, MY1H10)

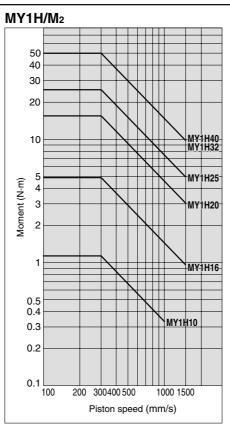
With air cushion = 1/100

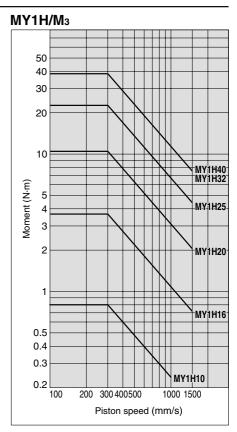
With shock absorber = 1/100

g: Gravitational acceleration (9.8 m/s²)


Note 4) $1.4 va\delta$ is a dimensionless coefficient for calculating impact force.


Note 5) Average load coefficient (=\frac{1}{3}): This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.


3. For detailed selection procedures, refer to pages 8-11-70 to 8-11-71.


Maximum Load Weight

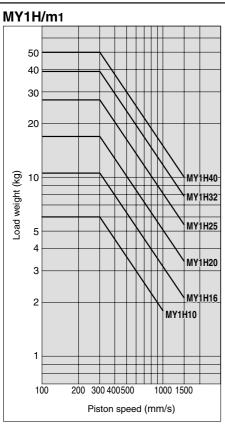
Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.

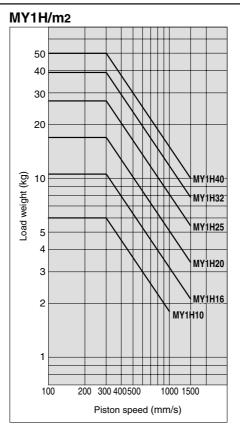
 $\mathsf{MX}\square$

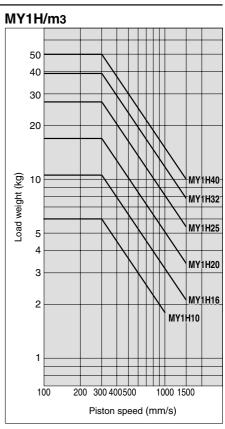
MTS

 $MY \square$

CY


MG□


CX□


D-

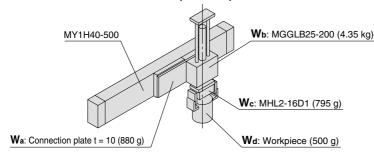
-X

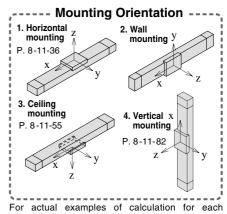
20-

Model Selection

Following are the steps for selecting the most suitable Series MY1H to your application.

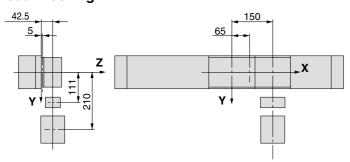
Calculation of Guide Load Factor


1. Operating Conditions


Operating cylinder MY1H40-500

Average operating speed vam 300 mm/s

Mounting orientation Wall mounting


Cushion Air cushion (δ = 1/100)

orientation, refer to the pages above.

2. Load Blocking

Weight and Center of Gravity for Each Workpiece

Workpiece no.	\\/aiabt	С	enter of gravi	ty
Wn Wn	Weight M n	X-axis Xn	Y-axis Yn	Z-axis Zn
Wa	0.88 kg	65 mm	5 mm	0 mm
Wb	4.35 kg	150 mm	42.5 mm	0 mm
Wc	0.795 kg	150 mm	42.5 mm	111 mm
Wd	0.5 kg	150 mm	42.5 mm	210 mm

n = a, b, c, d

3. Composite Center of Gravity Calculation

$$m_3 = \Sigma m_n$$

= 0.88 + 4.35 + 0.795 + 0.5 = **6.525 kg**

$$\begin{split} \boldsymbol{X} &= \frac{1}{m_3} \, \boldsymbol{x} \, \boldsymbol{\Sigma} \, (m_n \, \boldsymbol{x} \, x_n) \\ &= \frac{1}{6.525} \, \left(0.88 \, \boldsymbol{x} \, 65 + 4.35 \, \boldsymbol{x} \, 150 + 0.795 \, \boldsymbol{x} \, 150 + 0.5 \, \boldsymbol{x} \, 150 \right) = \boldsymbol{138.5} \, \boldsymbol{mm} \end{split}$$

$$Y = \frac{1}{m_3} x \Sigma (m_n x y_n)$$

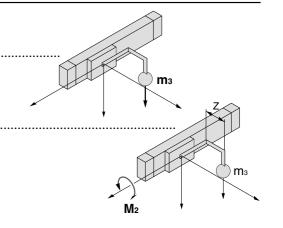
$$= \frac{1}{6.525} (0.88 \times 0 + 4.35 \times 0 + 0.795 \times 111 + 0.5 \times 210) = 29.6 \text{ mm}$$

$$Z = \frac{1}{m_3} \times \Sigma (m_n \times z_n)$$

$$= \frac{1}{6.525} (0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5) = 37.4 \text{ mm}$$

4. Calculation of Load Factor for Static Load

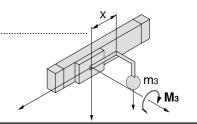
m₃: Weight


m₃max (from (1) of graph MY1H/m₃) = 50 (kg).....

Load factor $\Omega_1 = m_3/m_3max = 6.525/50 = 0.13$

M₂: Moment

 $M_2 = m_3 \times g \times Z = 6.525 \times 9.8 \times 37.4 \times 10^{-3} = 2.39 (N \cdot m)$


Load factor $OL_2 = M_2/M_2 max = 2.39/50 = 0.05$

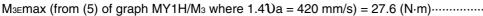
M₃: Moment

$$M_3 = m_3 \times g \times X = 6.525 \times 9.8 \times 138.5 \times 10^{-3} = 8.86 \text{ (N·m)}$$

Load factor $\Omega_3 = M_3/M_3 max = 8.86/38.7 = 0.23$

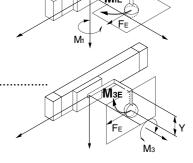
5. Calculation of Load Factor for Dynamic Moment -

Equivalent load FE at impact


M_{1E}: Moment

 M_1 Emax (from (4) of graph MY1H/M₁ where 1.4Va = 420 mm/s) = 35.9 (N·m).....

$$M_{1E} = \frac{1}{3} \times F_E \times Z = \frac{1}{3} \times 268.6 \times 37.4 \times 10^{-3} = 3.35 \text{ (N·m)}$$


Load factor $OL_4 = M_1 E/M_1 E max = 3.35/35.9 = 0.09$

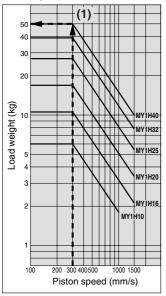
$$M_{3E} = \frac{1}{3} x F_E x Y = \frac{1}{3} x 268.6 x 29.6 x 10^{-3} = 2.65 (N \cdot m)$$

Load factor $\Omega_5 = M_{3E}/M_{3E} max = 2.65/27.6 = 0.10$

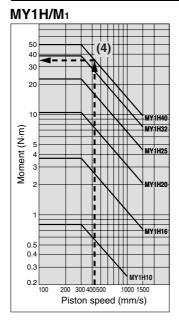
6. Sum and Examination of Guide Load Factors -

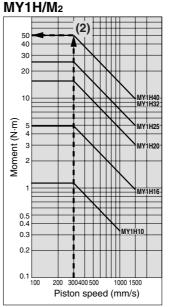
$$\sum_{CC} = CC_1 + CC_2 + CC_3 + CC_4 + CC_5 = 0.60 \le 1$$

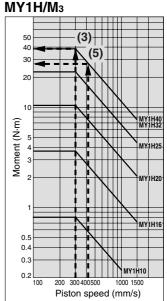
The above calculation is within the allowable value, and therefore the selected model can be used.


Select a shock absorber separately.

In an actual calculation, when the total sum of guide load factors Σ_{α} in the formula above is more than 1, consider either decreasing the speed, increasing the bore size, or changing the product series.


This calculation can be easily made using the "SMC Pneumatics CAD System".


Load Weight


MY1H/m₃

Allowable Moment

MX D

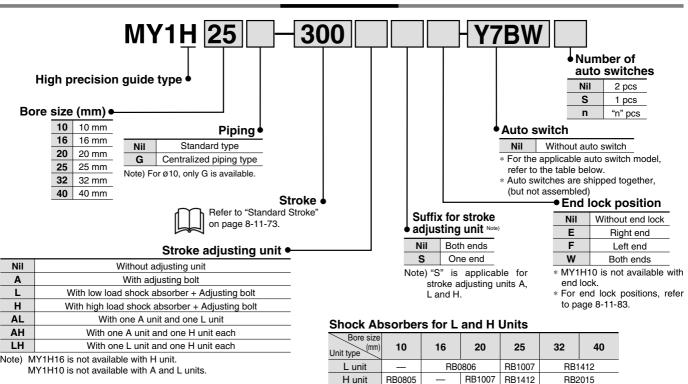
MY□

CY□ MG□

CX□

D-

-X


20-

Series MY1H

ø10, ø16, ø20, ø25, ø32, ø40

Applicable Auto Switch/Refer to page 8-30-1 for further information on auto switches. For ø10, ø16, ø20

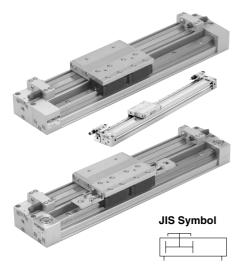
			ō	Wiring		_oad volta	ne	Auto switch model Lead wire length (m)*									
Type	Special function	Electrical entry	Indicator light	(Output)	DC		AC	Perpendicular	In-line	0.5 (Nil)	3 (L)	5 (Z)	Pre-wire connector	Applicable load			
Reed		Crammat	S	3-wire (NPN equivalent)	_	5 V	_	A96V	A96	•	•	_	_	IC circuit	_		
switch	_	Grommet	\ \ \	2-wire	24 V	12 V	100 V	A93V	A93	•	•	_	_	_	Relay, PLC		
				3-wire (NPN)		5) / 40) /		M9NV M9N	M9N	•	•	0	0	IC circuit			
	_			3-wire (PNP)		5 V, 12 V		M9PV	M9P	• •	•	0	0	IC CIrcuit			
Solid		Crammat	SS	2-wire				12 V	1 —	M9BV	M9B	•	•	0	0	_	Relay, PLC
state switch		Grommet	\ K	3-wire (NPN)	24 V	5 V 40 V		F9NWV	F9NW	•	•	0	0	10	1 20		
	Diagnostic indication			3-wire (PNP)	1	5 V, 12 V		F9PWV	F9PW	•	•	0	0	IC circuit			
	(2-color indication)			2-wire	1	12 V	F9BWV	F9BW	•	•	0	0	_				

For ø25, ø32, ø40

_		Electrical	ator	Wiring		Load voltag	ge	Auto switch	Auto switch model		Lead wire length (m)*				
Type	Special function	entry	Indicate light	(Output)	DC		AC	Perpendicular	In-line	0.5 (Nil)	3 (L)	5 (Z)	connector	Applicable load	
Reed		0	es	3-wire (NPN equivalent)	_	5 V	_	_	Z76	•	•	_	_	IC circuit	_
switch	_	Grommet	>	2-wire	24 V	12 V	100 V	_	Z73	•	•	•	_		Relay, PLC
	_			3-wire (NPN)		5 V 10 V	Y69A	Y59A	•	•	0	0	IC circuit		
				3-wire (PNP)		5 V, 12 V		Y7PV	ic circuit	D 1					
Solid		Grommet	es	2-wire		12 V	1 — 1	Y69B	Y59B	•	•	0	0		Relay, PLC
state		Grommet	>	3-wire (NPN)	24 V	5 V 40 V		Y7NWV	Y7NW	•	•	0	0	10 -::	
switch	Diagnostic indication			3-wire (PNP)		5 V, 12 V		Y7PWV	Y7PW	•	•	0	0	IC circuit	
	(2-color indication)			2-wire		12 V		Y7BWV	Y7BW	•	•	0	0	_	

^{*} Lead wire length symbols: 0.5 m....Nil (Example) A93

3 m·····L (Example) Y59BL


5 m·····Z (Example) F9NWZ

[•] For details about auto switches with pre-wire connector, refer to page 8-30-52.

^{*} Solid state switches marked with "O" are produced upon receipt of order.

[•] There are other applicable auto switches than listed above. For details, refer to page 8-11-101.

Specifications

Bore	size (mm)	10	16	20	25	32	40			
Fluid		Air								
Action				Double	acting					
Operating	pressure range	e 0.2 to 0.8 MPa {2.0 to 8.2 kgf/cm²} 0.1 to 0.8 MPa								
Proof pre	ssure			1.2 N	MРа					
Ambient an	d fluid temperature	ure 5 to 60°C								
Cushion		Rubber bumper		Air cus	shion					
Lubrication	on			Non-	lube					
Stroke ler	ngth tolerance	+1.8 0								
Piping port size	Front/Side port	M5	x 0.8		Rc	1/8	Rc 1/4			
	Bottom port		Ø	4	ø5	ø6	ø8			

MX□

MTS

MY□

CY□

MG□

CX□

D-

-X

20-

Data

Stroke Adjusting Unit Specifications

Bore size (mm)	10	1	6		20			25		32			40		
Unit symbol	Н	Α	L	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н
Configuration Shock absorber model	RB 0805 with adjusting bolt	With adjusting bolt	RB 0806 with adjusting bolt	With adjusting bolt	RB 0806 with adjusting bolt		With adjusting bolt		RB 1412 with adjusting bolt	With adjusting bolt		RB 2015 with adjusting bolt	With adjusting bolt	RB 1412 with adjusting bolt	RB 2015 with adjusting bolt
Fine stroke adjustment range (mm)	0 to -10	0 to	-5.6		0 to -6			0 to -11.	.5		0 to -12	2		0 to -16	3
Stroke adjustment range	When exceeding the stroke fine adjustment range: Utilize a made-to-order specifications "-X416" and "-X417".														

Shock Absorber Specifications

Mode	el	RB 0805	RB 0806	RB 1007	RB 1412	RB 2015					
Max. energy a	bsorption (J)	1.0	2.9	5.9	19.6	58.8					
Stroke absorp	otion (mm)	5	6	7	12	15					
Max. collision	speed (mm/s)	1000	1500	1500	1500	1500					
Max. operating free	quency (cycle/min)	80	80	70	45	25					
Spring	Extended	1.96	1.96	4.22	6.86	8.34					
force (N)	Retracted	3.83	4.22	6.86	15.98	20.50					
Operating temper	ature range (°C)			5 to 60							

Piston Speed

Вог	re size (mm)	10	16 to 40
Without strok	e adjusting unit	100 to 500 mm/s	100 to 1000 mm/s
Stroke adjusting unit	A unit	100 to 200 mm/s	100 to 1000 mm/s (1)
	L unit and H unit	100 to 1000 mm/s	100 to 1500 mm/s (2)

Note 1) Be aware that when the stroke adjusting range is increased by manipulating the adjusting bolt, the air cushion capacity decreases. Also, when exceeding the air cushion stroke ranges on page 8-11-77, the piston speed should be 100 to 200 mm per second.

Note 2) The piston speed is 100 to 1000 mm/s for centralized piping.

Note 2) The pistor speed is 100 to 1000 mins for certainzed piping.

Note 3) Use at a speed within the absorption capacity range. Refer to page 8-11-77.

Standard Stroke

Bore size (mm)	Standard stroke * (mm)	Maximum manufacturable stroke (mm)
10, 16, 20	50, 100, 150, 200 250, 300, 350, 400	1000
25, 32, 40	450, 500, 550, 600	1500

-X416

-X417

* Strokes are manufacturable in 1 mm increments, up to the maximum stroke. However, add "-XB10" to the end of the part number for non-standard strokes from 51 to 599. Also when exceeding a 600 mm stroke, specify "-XB11" at the end of the model number. (Except ø10)

Lock Specifications

16	20	25	32	40			
One end (Selectable), Both ends							
110	170	270	450	700			
0 to -5.6	0 to -6	0 to -11.5	0 to -12	0 to -16			
1 mm or less							
Manual release Possible (Non-lock type)							
	110	One end 110 170 0 to -5.6 0 to -6	One end (Selectable), B 110 170 270 0 to -5.6 0 to -6 0 to -11.5 1 mm or less	One end (Selectable), Both ends 110			

Made to Order Specifications (For details, refer to page 8-31-1.)

Symbol Specifications -XB10 Intermediate stroke (Using exclusive body) -XB11 Long stroke -XC18 NPT finish piping port -XC56 With knock pin hole -XC67 NBR rubber lining in dust seal band -X168 Helical insert thread specifications

Holder mounting bracket I

Holder mounting bracket II

SMC

Theoretical Output

(N)

Bore size	Piston area	Operating pressure (MPa)						
(mm)	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8
10	78	15	23	31	39	46	54	62
16	200	40	60	80	100	120	140	160
20	314	62	94	125	157	188	219	251
25	490	98	147	196	245	294	343	392
32	804	161	241	322	402	483	563	643
40	1256	251	377	502	628	754	879	1005

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Weight (kg)

	Bore size (mm)	Basic	Additional weight	Side support weight (per set)	Stroke	e adjusting un (per unit)	it weight
		weight	per each 50mm of stroke	Type A and B	A unit weight	L unit weight	H unit weight
	10	0.26	0.08	0.003	_	_	0.02
	16	0.74	0.14	0.01	0.02	0.04	_
	20	1.35	0.25	0.02	0.03	0.05	0.07
	25	2.31	0.30	0.02	0.04	0.07	0.11
	32	4.65	0.46	0.04	0.08	0.14	0.23
	40	6.37	0.55	0.08	0.12 0.19		0.28

Option

Stroke Adjusting Unit Part No.

Bore (mm)	10	16	20
A unit	_	MYH-A16A	MYH-A20A
L unit	_	MYH-A16L	MYH-A20L
H unit	MYH-A10H	_	MYH-A20H

Bore (mm)	25	32	40
A unit	MYH-A25A	MYH-A32A	MYH-A40A
L unit	MYH-A25L	MYH-A32L	MYH-A40L
H unit	MYH-A25H	MYH-A32H	MYH-A40H

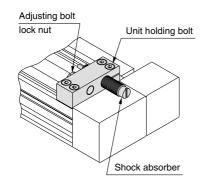
Side Support Part No.

Type Bore (mm)	10	16	20				
Side support A	MY-S10A	MY-S16A	MY-S20A				
Side support B	MY-S10B	MY-S16B	MY-S20B				

Bore (mm)	25	32	40				
Side support A	MY-S25A	MY-S32A	MY-S40A				
Side support B	MY-S25B	MY-S32B	MY-S40B				

For details about dimensions, etc., refer to page 8-11-84.

⚠ Precautions


I Be sure to read before handling.

For Safety Instructions and Actuator Precautions, refer to pages 8-34-3 to 8-34-6.

⚠ Caution

Use caution not to get your hands caught in the unit.

 When using a product with stroke adjusting unit, the space between the slide table (slider) and the stroke adjusting unit becomes narrow at the stroke end, causing a danger of hands getting caught. Install a protective cover to prevent direct contact with the human body.

<Fastening of unit>

The unit can be secured by evenly tightening the four unit holding bolts.

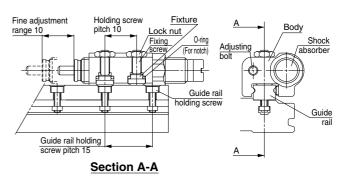
Do not operate with the stroke adjusting unit fixed in an intermediate position.

When the stroke adjusting unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In such cases, the use of the adjusting bolt mounting brackets, available per made-to-order specifications -X416 and -X417, is recommended. (Except Ø10)

For other lengths, please consult with SMC (Refer to "Tightening Torque for Stroke Adjusting Unit Holding Bolts".)

<Stroke adjustment with adjusting bolt>

Loosen the adjusting bolt lock nut, and adjust the stroke from the head cover side using a hexagon wrench. Re-tighten the lock nut.


<Stroke adjustment with shock absorber>

Loosen the two unit holding bolts on the shock absorber side, turn the shock absorber and adjust the stroke. Then, uniformly tighten the unit holding bolts to secure the shock absorber.

Take care not to over-tighten the holding bolts. (Except ø10, ø16, ø20) (Refer to "Tightening Torgue for Stroke Adjusting Unit Holding Bolts".)

To adjust the stroke adjusting unit of the MY1H10, follow the step shown below.

Adjusting Procedure

- 1. Loosen the two lock nuts, and then loosen the holding screws by turning them approximately two turns.
- Move the body to the notch just before the desired stroke. (The notches are found in alternating increments of 5 mm and 10 mm.)
- 3. Tighten the holding screw to 0.3 N·m. Make sure that the tightening does not cause excessive torque.
 - The fixture fits into the fastening hole in the guide rail to prevent slippage, which enables fastening with low torque.
- 4. Tighten the lock nut to 0.6 N·m.
- Make fine adjustments with the adjusting bolt and shock absorber.

MX□

MTS

MY■ CY□

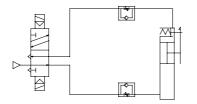
MG□

CX□

D-

-X

20-


A Precautions

With End Locks

Recommended Pneumatic Circuit

⚠ Caution

This is necessary for the correct locking and unlocking actions.

Operating Precautions

⚠ Caution

1. Do not use 3 position solenoid valves.

Avoid use in combination with 3 position solenoid valves (especially closed center metal seal types). If pressure is trapped in the port on the lock mechanism side, the cylinder cannot be locked.

Furthermore, even after being locked, the lock may be released after some time due to air leaking from the solenoid valve and entering the cylinder.

2. Back pressure is required when releasing the lock.

Before starting operation, be sure to control the system so that air is supplied to the side without the lock mechanism (in case of locks on both ends, the side where the slide table is not locked) as shown in the figure above. There is a possibility that the lock may not be released. (Refer to the section on releasing the lock.)

- **3.** Release the lock when mounting or adjusting the cylinder. If mounting or other work is performed when the cylinder is locked, the lock unit may be damaged.
- 4. Operate at 50% or less of the theoretical output. If the load exceeds 50% of the theoretical output, this may cause problems such as failure of the lock to release, or damage to the lock unit.
- 5. Do not operate multiple cylinders in synchronization. Avoid applications in which two or more end lock cylinders are synchronized to move one workpiece, as one of the cylinder locks may not be able to release when required.
- Use a speed controller with meter-out control. Lock cannot be released occasionally by meter-in control.
- 7. Be sure to operate completely to the cylinder stroke end on the side with the lock.

If the cylinder piston does not reach the end of the stroke, locking and unlocking may not be possible. (Refer to the section on adjusting the end lock mechanism.)

Operating Pressure

⚠ Caution

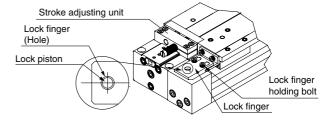
 Supply air pressure of 0.15 MPa or higher to the port on the side that has the lock mechanism, as it is necessary for disengaging the lock.

Exhaust Speed

⚠ Caution

1. Locking will occur automatically if the pressure applied to the port on the lock mechanism side falls to 0.05 MPa or less. In the cases where the piping on the lock mechanism side is long and thin, or the speed controller is separated at some distance from the cylinder port, the exhaust speed will be reduced. Take note that some time may be required for the lock to engage. In addition, clogging of a silencer mounted on the solenoid valve exhaust port can produce the same effect.

Relation to Cushion


⚠ Caution

 When the air cushion on the lock mechanism side is in a fully closed or nearly closed state, there is a possibility that the slide table will not reach the stroke end, in which case locking will not occur.

Adjusting the End Lock Mechanism

⚠ Caution

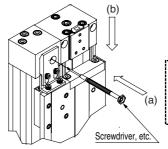
- The end lock mechanism is adjusted at the time of shipping. Therefore, adjustment for operation at the stroke end is unnecessary.
- 2. Adjust the end lock mechanism after the stroke adjusting unit has been adjusted. The adjusting bolt and shock absorber of the stroke adjusting unit must be adjusted and secured first. Locking and unlocking may not occur otherwise.
- 3. Perform fine adjustment of the end lock mechanism as follows. Loosen the lock finger holding bolts, and then adjust by aligning the center of the lock piston with the center of the lock finger hole. Secure the lock finger.

Releasing the Lock

\land Warning

1. Before releasing the lock, be sure to supply air to the side without the lock mechanism, so that there is no load applied to the lock mechanism when it is released. (Refer to the recommended pneumatic circuits.) If the lock is released when the port on the side without the lock is in an exhaust state, and with a load applied to the lock unit, the lock unit may be subjected to an excessive force and be damaged.

Furthermore, sudden movement of the slide table is very dangerous.


Manual Release

1. When manually releasing the end lock, be sure to release the pressure.

If it is unlocked while the air pressure still remains, it will lead to damage a workpiece, etc. due to unexpected lurching.

Perform manual release of the end lock mechanism as follows. Push the lock piston down with a screwdriver, etc., and move the slide table.

Other handling precautions regarding mounting, piping, and environment are the same as the standard series.

Cushion Capacity

Cushion Selection

<Rubber bumper>

Rubber bumpers are a standard feature on MY1H10.

Since the stroke absorption of rubber bumpers is short, when adjusting the stroke with an A unit, install an external shock absorber.

The load and speed range which can be absorbed by a rubber bumper is inside the rubber bumper limit line of the graph.

<Air cushion>

Air cushions are a standard feature on mechanically jointed rodless cylinders.

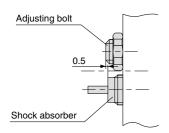
The air cushion mechanism is incorporated to prevent excessive impact of the piston at the stroke end during high speed operation. The purpose of air cushion, thus, is not to decelerate the piston near the stroke end.

The ranges of load and speed that air cushions can absorb are within the air cushion limit lines shown in the graphs.

<Stroke adjusting unit with shock absorber>
Use this unit when operating with a load or speed exceeding the air cushion limit line, or when cushioning is required outside of the effective air cushion stroke range due to stroke adjustment.

L unit

Use this unit when the cylinder stroke is outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line or below the L unit limit line.

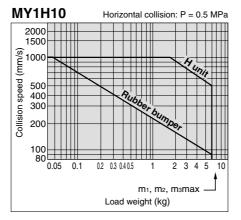

H unit

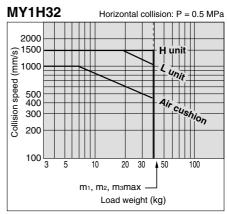
Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.

⚠ Caution

1. Refer to the figure below when using the adjusting bolt to perform stroke adjustment.

When the effective stroke of the shock absorber decreases as a result of stroke adjustment, the absorption capacity decreases dramatically. Secure the adjusting bolt at the position where it protrudes approximately 0.5 mm from the shock absorber.




2. Do not use a shock absorber together with air cushion.

Air Cushion Stroke

LIONE	(mm)
Cushion stroke	
12	
15	
15	
19	
24	
	Cushion stroke 12 15 15 19

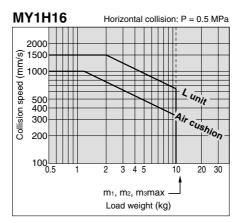
Absorption Capacity of Rubber Bumper, Air cushion and Stroke Adjusting Units

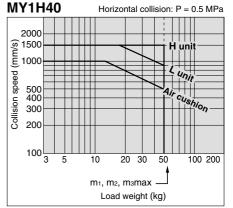
 $MX\square$

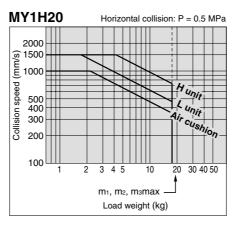
MTS

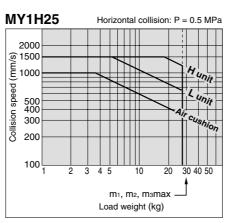
 $MY \square$

CY


 $MG\square$


CX□


D-


-X

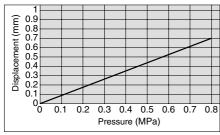
20-

Cushion Capacity

Tightening Torque for Stroke Adjusting Unit Holding Bolts $_{(N\cdot m)}$

Bore size (mm)	Tightening torque
10	Refer to page XXX for unit adjusting procedure.
16	0.6
20	1.5
25	1.5
32	3.0
40	5.0

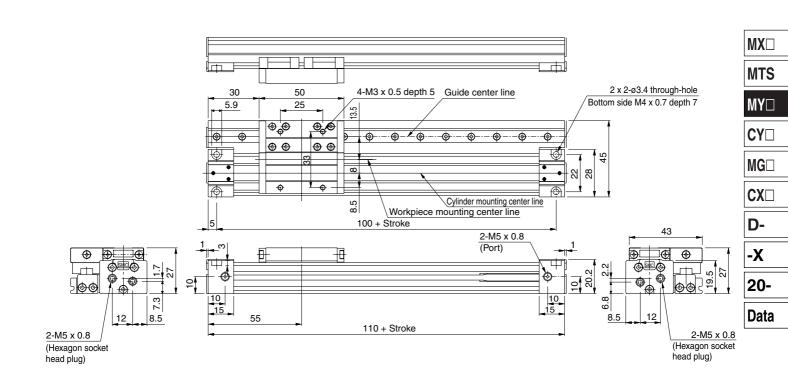
Calculation of Absorbed Energy for Stroke Adjusting Unit with Shock Absorber

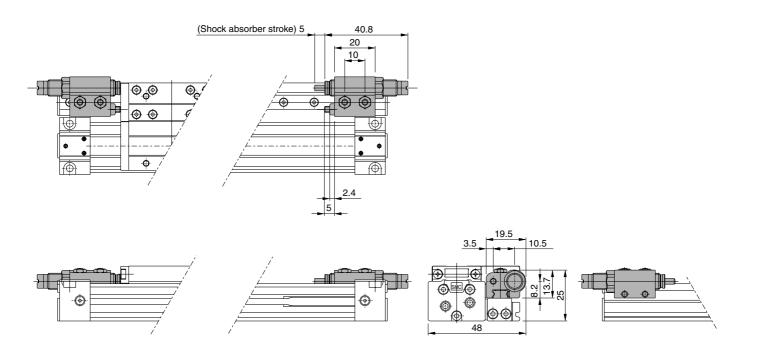

(N·m) Vertical Horizontal collision (Downward) (Upward) Type of impact Kinetic energy - m.****0² Εı Thrust energy $F \cdot s + m \cdot g \cdot s \mid F \cdot s - m \cdot g \cdot s$ F⋅s E₂ Absorbed energy E1 + E2 Ε

Symbol

- υ : Speed of impact object (m/s)
- F: Cylinder thrust (N)
- s: Shock absorber stroke (m)
- m: Weight of impact object (kg)
- g: Gravitational acceleration (9.8 m/s²)

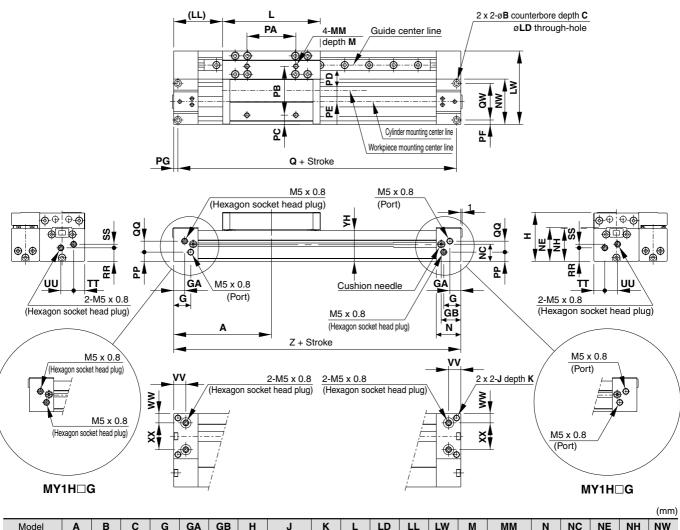
Note) The speed of the impact object is measured at the time of impact with the shock absorber.


Rubber Bumper (ø10 only) Positive Stroke from One End Due to Pressure

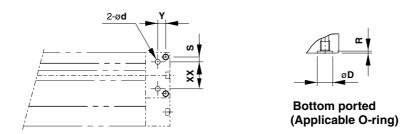

Centralized Piping Type ø10

Refer to page 8-11-9 regarding centralized piping port variations.

MY1H10G — Stroke


Shock absorber + Adjusting bolt MY1H10G — Stroke H

Standard Type/Centralized Piping Type ø16, ø20

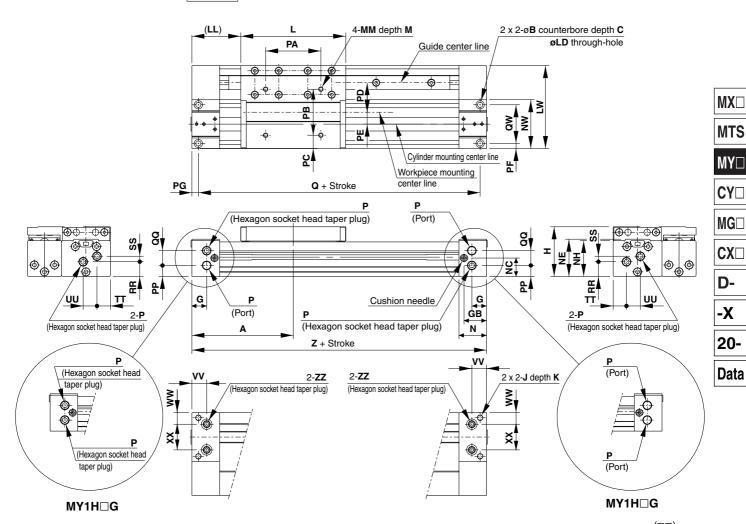

Refer to page 8-11-9 regarding centralized piping port variations.

MY1H16L□/20L□ — Stroke

Model	Α	В	С	G	GA	GB	Н	J	K	L	LD	LL	LW	М	ММ	N	NC	NE	NH	NW
MY1H16□	80	6	3.5	14	9	16	40	M5 x 0.8	10	80	3.5	40	60	7	M4 x 0.7	20	14	27.8	27	37
MY1H20□	100	7.5	4.5	12.5	12.5	17.5	46	M6 x 1	12	100	4.5	50	78	8	M5 x 0.8	25	17.5	34	33.5	45

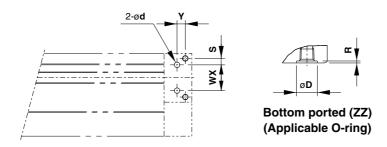
																				(111111)
Model	PA	PB	PC	PD	PE	PF	PG	PP	Q	QQ	QW	RR	SS	TT	UU	٧٧	ww	XX	YH	Z
MY1H16□	40	40	7.5	21	9	3.5	3.5	7.5	153	9	30	11	3	9	10.5	10	7.5	22	25	160
MY1H20□	50	40	14.5	27	12	4.5	4.5	11.5	191	11	36	14.5	5	10.5	12	12.5	10.5	24	31.5	200

Hole Size for Centralized Piping on the Bottom


Model	WX	Υ	S	d	D	R	Applicable O-ring
MY1H16□	22	6.5	4	4	8.4	1.1	C6
MY1H20□	24	8	6	4	8.4	1.1	00

(Machine the mounting side to the dimensions below.)

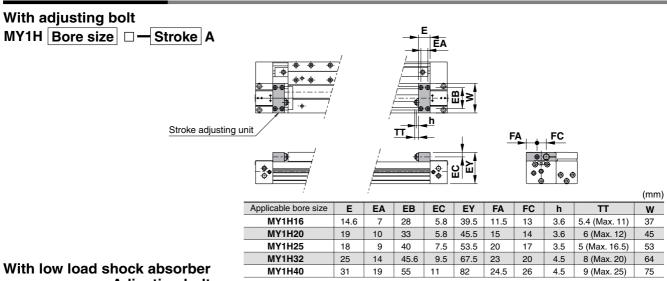
Standard Type/Centralized Piping Type Ø25, Ø32, Ø40 Refer to page 8-11-9 regarding centralized piping port variations.


MY1H25L□/32L□/40L□ — Stroke

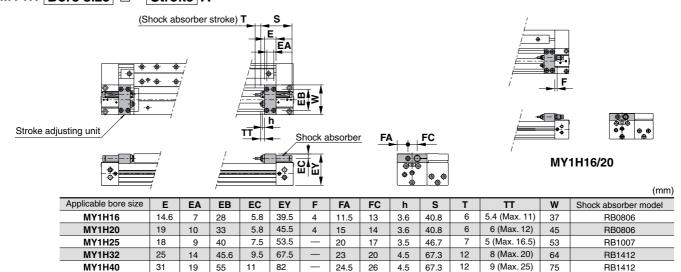
																				(111111)
Model	Α	В	С	G	GB	Н	J	K	L	LD	LL	LW	М	MM	N	NC	NE	NH	NW	Р
MY1H25□	110	9	5.5	16	24.5	54	M6 x 1	9.5	114	5.6	53	90	9	M5 x 0.8	30	20	40.5	39	53	Rc 1/8
MY1H32□	140	11	6.6	19	30	68	M8 x 1.25	16	140	6.8	70	110	13	M6 x 1	37	25	50	49	64	Rc 1/8
MY1H40□	170	14	8.5	23	36.5	84	M10 x 1.5	15	170	8.6	85	121	13	M6 x 1	45	30.5	63	61.5	75	Rc 1/4

"P" indicates cylinder supply ports.

																					(111111)
Model	PA	PB	PC	PD	PE	PF	PG	PP	Q	QQ	QW	RR	SS	TT	UU	VV	ww	XX	YH	Z	ZZ
MY1H25□	60	50	14.5	32	13	5.5	7	12	206	16	42	16	6	14.5	15	16	12.5	28	37.5	220	Rc 1/16
MY1H32□	80	60	15	42	13	6.5	8	17	264	11	51	16	4	16	16	19	16	32	47	280	Rc 1/16
MY1H40□	100	80	20.5	37.5	23	8	9	18.5	322	11	59	24	10.5	20	22	23	19.5	36	59.5	340	Rc 1/8



Hole Size for Centralized Piping on the Bottom

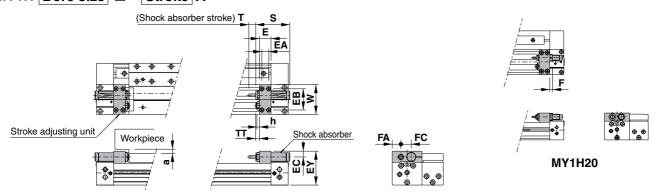

Model	WX	Y	S	d	D	R	Applicable O-ring
MY1H25□	28	9	7	6	11.4	1.1	C9
MY1H32□	32	32 11		6 11.4		1.1	09
MY1H40□	36	14	11.5	8	13.4	1.1	C11.2

Stroke Adjusting Unit

+ Adjusting bolt MY1H Bore size ☐—Stroke A

24.5

26


4.5

67.3

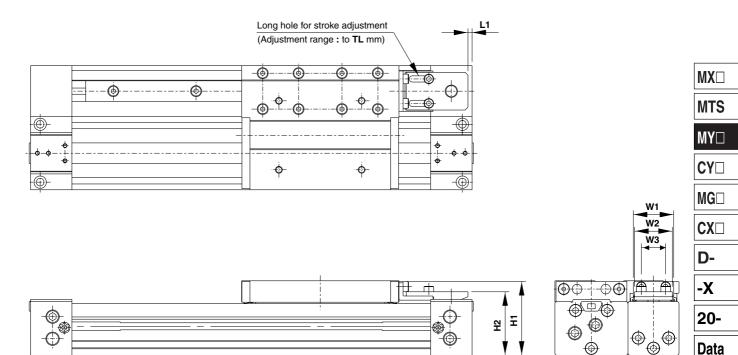
RB1412

MY1H40 With high load shock absorber + Adjusting bolt

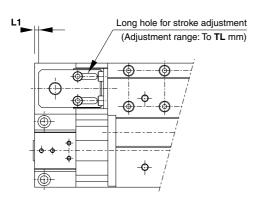
MY1H Bore size ☐ — Stroke A

* Since dimension EY of the H type unit is greater than the table top height (dimension H), when mounting a workpiece that exceeds the overall length (dimension L) of the slide table, allow a clearance of dimension "a" or larger on the workpiece side.

11

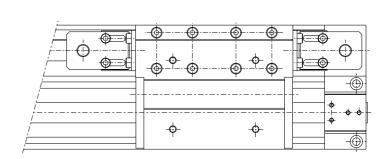

82

dimension "a'	dimension "a" or larger on the workpiece side.													(mm)	
Applicable bore size E EA EB EC EY F FA FC h S T TT W Shock absorber mod										Shock absorber model	а				
MY1H20	19	10	33	7.7	49.5	5	14.3	15.7	3.5	46.7	7	6 (Max. 12)	45	RB1007	4
MY1H25	18	9	40	9	57	_	18	17.5	4.5	67.3	12	5 (Max. 16.5)	53	RB1412	3.5
MY1H32	25	14	45.6	12.4	73	_	18.5	22.5	5.5	73.2	15	8 (Max. 20)	64	RB2015	5.5
MY1H40	31	19	55	12.4	86	_	26.5	22	5.5	73.2	15	9 (Max. 25)	75	RB2015	2.5

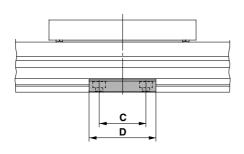

With End Lock ø16 to ø40

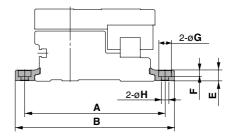
Dimensions for types other than end lock are identical to the standard type dimensions. For details about dimensions, etc., refer to page 8-11-80 to 81.

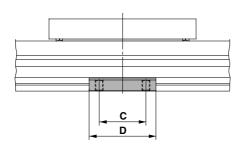
MY1H□-□E (Right end)

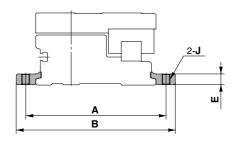


MY1H□-□F (Left end)

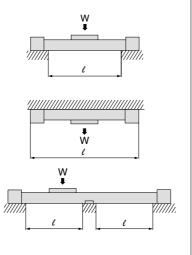

							(mm)
Model	H1	H2	L1	TL	W1	W2	W3
MY1H16□	39.2	33	0.5	5.6	18	16	10.4
MY1H20□	45.7	39.5	3	6	18	16	10.4
MY1H25□	53.5	46	3	11.5	29.3	27.3	17.7
MY1H32□	67	56	6.5	12	29.3	27.3	17.7
MY1H40□	83	68.5	10.5	16	38	35	24.4

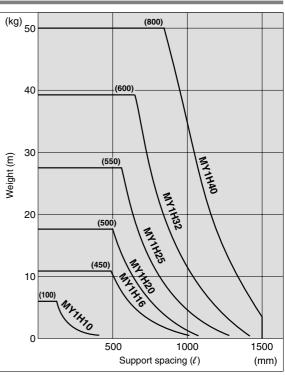

MY1H□-□W (Both ends)


Side Support


Side support A MY-S□A

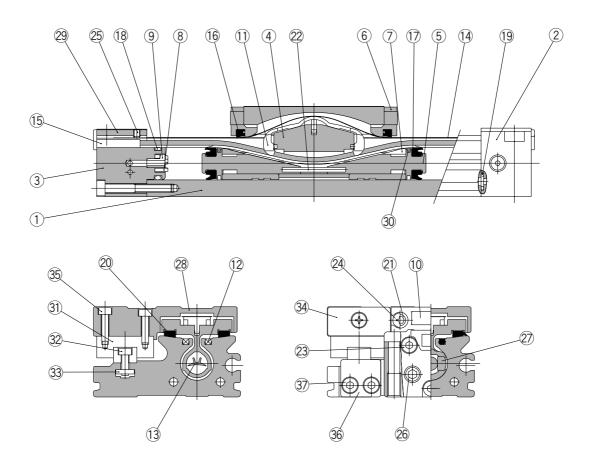
Side support B MY-S□B


										(mm)
Model	Applicable bore size	Α	В	С	D	Е	F	G	Н	J
MY-S10 ^A	MY1H10	53	61.6	12	21	3.6	1.8	6.5	3.4	M4 x 0.7
MY-S16 ^A	MY1H16	71	81.6	15	26	4.9	3	6.5	3.4	M4 x 0.7
MY-S20 ^A	MY1H20	91	103.6	25	38	6.4	4	8	4.5	M5 x 0.8
MY-S25 ^A _B	MY1H25	105	119	35	50	8	5	9.5	5.5	M6 x 1
MY-S32 ^A	MY1H32	130	148	45	64	11.7	6	11	6.6	M8 x 1.25
MY-S40 ^A	MY1H40	145	167	55	80	14.8	8.5	14	9	M10 x 1.5


Guide for Side Support Application

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load weight. In such a case, use a side support in the middle section. The spacing (ℓ) of the support must be no more than the values shown in the graph on the right.

⚠ Caution


- 1. If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- **2.** Support brackets are not for mounting; use them solely for providing support.

Construction: ø10

Centralized piping type

Component Parts

Description	Material	Note									
Cylinder tube	Aluminum alloy	Hard anodized									
Head cover WR	Aluminum alloy	Painted									
Head cover WL	Aluminum alloy	Painted									
Piston yoke	Aluminum alloy	Hard anodized									
Piston	Aluminum alloy	Chromated									
End cover	Special resin										
Wear ring	Special resin										
Bumper	Polyurethane rubber										
Holder	Stainless steel										
Stopper	Carbon steel	Nickel plated									
Belt separator	Special resin										
Seal magnet	Rubber magnet										
Belt clamp	Special resin										
Bearing	Special resin										
Spacer	Chromium molybdenum steel	Nickel plated									
	Description Cylinder tube Head cover WR Head cover WL Piston yoke Piston End cover Wear ring Bumper Holder Stopper Belt separator Seal magnet Belt clamp Bearing	Description Material Cylinder tube Aluminum alloy Head cover WR Aluminum alloy Head cover WL Aluminum alloy Piston yoke Aluminum alloy Piston Aluminum alloy End cover Special resin Wear ring Special resin Bumper Polyurethane rubber Holder Stainless steel Stopper Carbon steel Belt separator Special resin Seal magnet Rubber magnet Belt clamp Special resin Special resin									

No.	Description	Material	Note
22	Spring pin	Stainless steel	
23	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
24)	Round head Phillips screw	Carbon steel	Nickel plated
25	Hexagon socket head set screw	Carbon steel	Black zinc chromated
26	Hexagon socket head plug	Carbon steel	Nickel plated
27)	Magnet	Rare earth magnet	
28	Slide table	Aluminum alloy	Hard anodized
29	Head plate	Stainless steel	
30	Felt	Felt	
31)	Linear guide	_	
32	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
33	Square nut	Carbon steel	Nickel plated
34)	Stopper plate	Carbon steel	Nickel plated
35	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
36	Guide stopper	Carbon steel	Nickel plated
37)	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated

Seal List

No.	Description	Material	Qty.	MY1H10
13	Seal belt	Special resin	1	MY10-16A-Stroke
14)	Dust seal band	Stainless steel	1	MY10-16B-Stroke
16	Scraper	NBR	2	MYB10-15AR0597
17	Piston seal	NBR	2	GMY10
18	Tube gasket	NBR	2	P7
19	O-ring	NBR	4	ø5.33 x ø3.05 x ø1.14

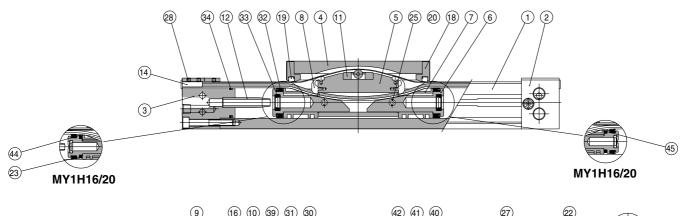
 $\mathsf{MX}\square$

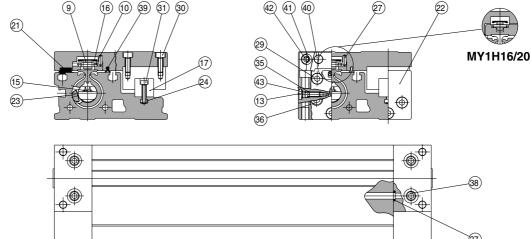
MTS

 $MY\square$

CY□

MG□


CX□


D-

-X

20-

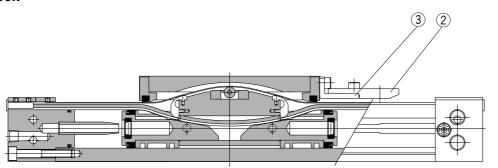
Construction: ø16 to ø40

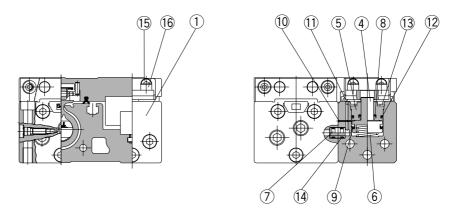
Component Parts

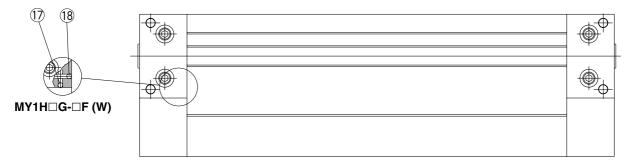
No.	Description	Material	Note
	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover WR	Aluminum alloy	Painted
3	Head cover WL	Aluminum alloy	Painted
4	Slide table	Aluminum alloy	Hard anodized
(5)	Piston yoke	Aluminum alloy	Chromated
6	Piston	Aluminum alloy	Chromated
7	Wear ring	Special resin	
8	Belt separator	Special resin	
9	Guide roller	Special resin	
10	Guide roller shaft	Stainless steel	
11)	Coupler	Sintered iron material	
12	Cushion ring	Brass	
13	Cushion needle	Rolled steel	Nickel plated
14)	Belt clamp	Special resin	
17	Guide		
18	End cover	Special resin	
21)	Bearing	Special resin	
22	Guide cover	Aluminum alloy	Coated

No.	Description	Material	Note
23	Magnet	Rare earth magnet	
24)	Square nut	Carbon steel	Nickel plated
25	Spring pin	Carbon tool steel	Black zinc chromated
27)	Parallel pin	Stainless steel	(ø16, ø20)
28	Hexagon socket head set screw	Chromium molybdenum steel	Black zinc chromated/Nickel plated
29	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
30	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
31)	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
36	Hexagon socket head taper plug	Carbon steel	Nickel plated
38	Hexagon socket head taper plug	Carbon steel	Nickel plated
40	Stopper	Carbon steel	Nickel plated
41)	Spacer	Stainless steel	
42	Hexagon socket button head screw	Chromium molybdenum steel	Nickel plated
43	Type CR retaining ring	Spring steel	
44	Felt A	Felt	(ø16, ø20)
45	Felt B	Felt	(ø16, ø20)
			•

Seal List


-								
No.	Description	Material	Qty.	MY1M16	MY1M20	MY1M25	MY1M32	MY1M40
15	Seal belt	Special resin	1	MY16-16A-Stroke	MY20-16A-Stroke	MY25-16A-Stroke	MY32-16A-Stroke	MY40-16A-Stroke
16	Dust seal band Stainless 1 N		MY16-16B-Stroke	MY16-16B-Stroke MY20-16B-Stroke M		MY25-16B-Stroke MY32-16B-Stroke		
19	Scraper	NBR	2	MYM16-15AK2900A	MYM16-15AK2900A	MYM25-15AK2902	MYM25-15AK2902	MYM25-15AK2902
32	Piston seal	NBR	2	GMY16	GMY20	GMY25	GMY32	GMY40
33	Cushion seal	NBR	2	MYB16-15-A7163	MYB20-15-A7164	RCS-8	RCS-10	RCS-12
34)	Tube gasket	NBR	2	P12	P16	TMY-25	TMY-32	TMY-40
35	O-ring	NBR	2	ø4 x ø1.8 x ø1.1	ø5.1 x ø3 x ø1.05	ø5.1 x ø3 x ø1.05	ø7.15 x ø3.75 x ø1.7	ø7.15 x ø3.75 x ø1.7
37	O-ring	NBR	4	ø6.2 x ø3 x ø1.6	ø7 x ø4 x ø1.5	P-5	P-6	C-9
39	Side scraper	Special resin	1	MYH16-15BK2900B	MYH20-15BK2901B	MYH25-15BK2902B	MYH32-15BK2903B	MYH40-15BK2904B


Note) Two types of dust seal bands are available. Verify the type to use, since the part number varies depending on the treatment of the hexagon socket head set screw ²⁸. (A) Black zinc chromated → MY□□-16B-Stroke (B) Nickel plated → MY□□-16BW-Stroke



Construction: ø16, ø40

With End Lock

Component Parts

No.	Description	Material	Note
1	Locking body	Aluminum alloy	Painted
2	Lock finger	Carbon steel	After quenching, nickel plated
3	Lock finger bracket	Rolled steel	Nickel plated
4	Lock piston	Carbon tool steel	After quenching, electroless nickel plated
(5)	Rod cover	Aluminum alloy	Hard anodized
6	Return spring	Spring steel	Zinc chromated
7	Bypass pipe	Aluminum alloy	Hard anodized
10	Steel ball	High carbon chrome bearing steel	
11)	Steel ball	High carbon chrome bearing steel	
13	Round type R snap ring	Carbon tool steel	Nickel plated
15	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
16	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
17	Steel ball	High carbon chrome bearing steel	
18	Steel ball	High carbon chrome bearing steel	

Seal List

No.	Description	Material	Qty.	MY1H16	MY1H20	MY1H25	MY1H32	MY1H40
8	Rod seal	NBR	1	DYR-4	DYR-4	DYR8K	DYR8K	DYR8K
9	Piston seal	NBR	1	DYP-12	DYP-12	DYP-20	DYP-20	DYP-20
12	O-ring	NBR	1	C-9	C-9	C-18	C-18	C-18
14)	O-ring	NBR	2	ø5.5 x ø3.5 x ø1.0	ø5.5 x ø3.5 x ø1.0	C-5	C-5	C-5

MTS

 $\mathsf{MX}\square$

MY□

CY

MG□

CX□

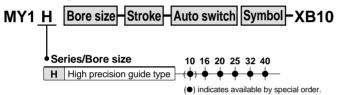
D-

-X

20-

Series MY1 Order Made Specifications

Contact SMC for detailed dimensions, specifications and lead times.

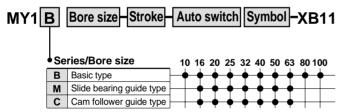

Order made application list

		Intermediate stroke XB10	Long stroke XB11	Helical insert threads X168	Dust seal band NBR XC67	Holder mounting bracket X416, X417	Copper-free 20-
MY1B	Basic type	Standard	•	•	•	•	•
MY1M	Slide bearing guide type	Standard	•	•	•	•	•
MY1C	Cam follower guide type	Standard	•	•	•	•	•
MY1H	High precision guide type	•	•	•	•	•	•
MY1HT	High rigidity/High precision guide type				•		•

Intermediate Stroke

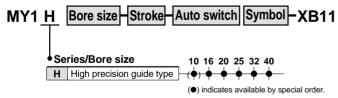
Intermediate strokes are available within the standard stroke range. The stroke can be set in 1mm increments. Series other than MY1H are available with intermediate strokes as standard.

■ Stroke range: 51 to 599mm


Example) MY1H40G-599L-Z73-XB10

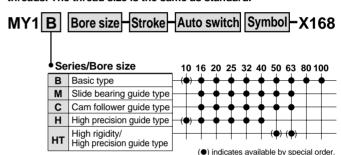
Long Stroke

-XB11


Available with long strokes exceeding the standard strokes. The stroke can be set in 1mm increments.

■ Stroke range: 2001 to 5000mm (Ø10, Ø16 are 2001 to 3000mm.)

Example) MY1B40G-4999L-Z73-XB11

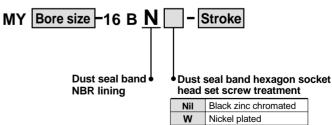

■ Stroke range: 601 to 1500mm (Ø16, Ø20 are 601 to 1000mm.)

Example) MY1H40G-999L-Z73-XB11

Helical Insert Thread Specification -X168

The mounting threads of the slider are changed to helical insert threads. The thread size is the same as standard.

Example) MY1B40G-300L-Z73-X168


4 Dust Seal Band NBR Lining Specification

The standard vinyl chloride lining specification is changed to NBR lining. Improved oil resistance and peeling resistance. Note) Consult SMC for specific oil resistance.

Bore size | Stroke | Auto switch | Symbol - XC67 Series/Bore size 10 16 20 25 32 40 50 63 80 100 B Basic type M Slide bearing guide type Cam follower guide type C High precision guide type High rigidity/ High precision guide type Contact SMC for △. Furthermore, ø10, ø80 and ø100 are available only in stainless steel

Example) MY1B40G-300L-Z73-XC67

For ordering dust seal band (NBR lining) only

Refer to "Dust seal band" in the construction figures of each series for details.

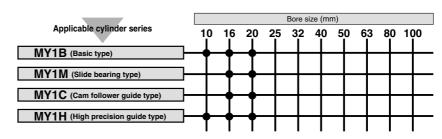
plate and the NBR lining specification is not

Example) MY25-16BNW-300

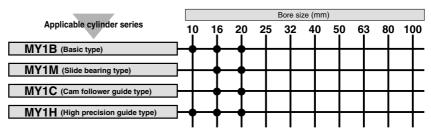
Series MY1 Auto Switch

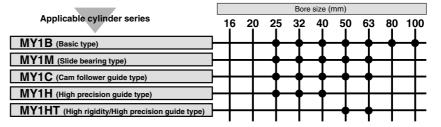
D-A90(V), D-A93(V), D-A96(V)

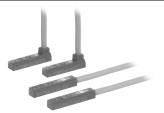
				В	ore size	e (mm)				
Applicable cylinder series	10 I	16 I	20 I	25 I	32 I	40 I	50 I	63 I	80 I	100 I
MY1B (Basic type)	+	+	+	+	+	+	+	+	+	+
MY1M (Slide bearing type)	+	+	+	+	+	+	+	+	+	+
MY1C (Cam follower guide type)	+	+	+	+	+	+	+	+	+	+
MY1H (High precision guide type)	+	+	+	+	+	-	-	+	+	+


D-Z73. D-Z76. D-Z80


					Bore	size (ı	mm)			
Applicable cylinder series	16	6	20 I	25 I	32 I	40 I	50 I	63 I	80	100
MY1B (Basic type)	\dashv		╁	+	-	+	+	+	+	-
MY1M (Slide bearing type)			╄	+	-	+	-	+	+	+
MY1C (Cam follower guide type)			╂	+	+	+	+	+	+	+
MY1H (High precision guide type)	-		╀	+	-	+	+	+	+	+
MY1HT (High rigidity/High precision guide type)	\dashv		+	+	+	+	+	+	+	+


D-M9N(V), D-M9P(V), D-M9B(V)


D-F9NW(V), D-F9PW(V), D-F9BW(V)



D-Y59^A_B, D-Y69^A_B, D-Y7P(V)

D-Y7NW(V), D-Y7PW(V), D-Y7BW(V)

					Bore	size (mm)			
Applicable cylinder series	16 I	6	20 I	25 I	32 	40 I	50 I	63 I	80 I	100 I
MY1B (Basic type)	\dashv		╁	+	-	+	-	+	+	┿
MY1M (Slide bearing type)	\vdash		╁	+	+	+	-	-	+	+
MY1C (Cam follower guide type)	\vdash		╁	+	+	+	┿	+	+	+
MY1H (High precision guide type)	\vdash		╁	+	+	+	+	+	+	+
MY1HT (High rigidity/High precision guide type)	\vdash		+	+	+	+	┿	-	+	+

Other than the applicable auto switches listed in "How to Order", the following auto switches can be mounted. For detailed specifications, refer to page 8-30-1.

Туре	Model	Electrical entry (Fetching direction)	Features
D 1 3.1	D-A90 Grommet (In-line)		Mills and in all a standingle
Reed switch D-780 Grommet (In-lin		Grommet (In-line)	Without indicator light

- Normally closed (NC = b contact), solid state switch (D-F9G/F9H/Y7G/Y7H type) are also available. For details, refer to page 8-30-31- to 8-30-32.
- D-A90 cannot be mounted on Series MY1HT.

 $MX\square$

MTS

 $MY \square$

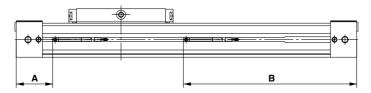
CY

MG□

 $CX\square$

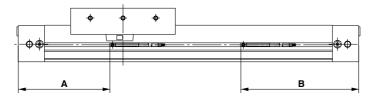
D-

-X

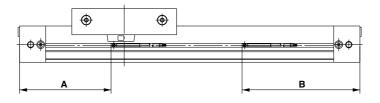

20-

Series MY1

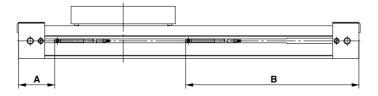
Proper Auto Switch Mounting Position (Detection at stroke end) D-A9□(V)


Note) The operating range is a guide including hysteresis, but is not guaranteed. (Assuming approximately 30% dispersion.) There may be varied substantially depending on the surrounding environment.

MY1B (Basic type)


			(11111)
Mounting position	ø10	ø16	ø20
Α	20	27	35
В	90	133	165
Operating range $\ell^{\mathrm{Note})}$	6	6.5	8.5

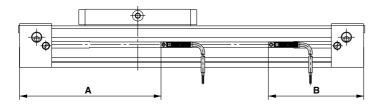
MY1M (Slide bearing guide type)


		(mm)
Mounting position	ø16	ø20
Α	70	90
В	90	110
Operating range $\ell^{\mathrm{Note})}$	11	7.5

MY1C (Cam follower guide type)

		(mm)
Mounting position	ø16	ø20
A	70	90
В	90	110
Operating range ℓ Note)	11	7.5

MY1H (High precision guide type)


			(mm)
Mounting position	ø10	ø16	ø20
A	20	27	35
В	90	133	165
Operating range $\ell^{\text{Note})}$	11	6.5	8.5

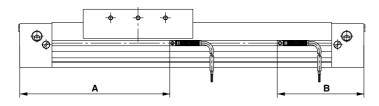
Proper Auto Switch Mounting Position (Detection at stroke end) D-Z7□, D-Z80

Note) The operating range is a guide including hysteresis, but is not guaranteed. (Assuming approximately 30% dispersion). There may be varied substantially depending on the surrounding environment.

MY1B (Basic type)

							(mm)
Mounting position	ø25	ø32	ø40	ø50	ø63	ø80	ø100
Α	131.5	180	216	272.5	317.5	484.5	569.5
В	88.5	100	124	127.5	142.5	205.5	230.5
Operating range $\ell^{\text{Note)}}$	8.5	11.5	11.5	11.5	11.5	11.5	11.5

(mm)


(mm)

MX□

MTS

MY□

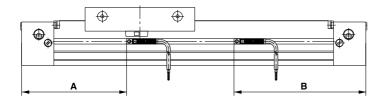
MY1M (Slide bearing guide type)

Mounting position	ø25	ø32	ø40	ø50	ø63
Α	139.5	184.5	229.5	278.5	323.5
В	80.5	95.5	110.5	121.5	136.5
Operating range ℓ Note)	12	12	12	11.5	11.5

CY□

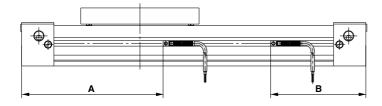
MG□

CX


D-

-X

20-


Data

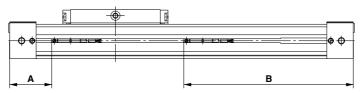
MY1C (Cam follower guide type)

					()
Mounting position	ø25	ø32	ø40	ø50	ø63
Α	97.5	127.5	157.5	278.5	323.5
В	122.5	152.5	182.5	121.5	136.5
Operating range $\ell^{\text{Note})}$	12	12	12	11.5	11.5

MY1H (High precision guide type)

			(mm)
Mounting position	ø25	ø32	ø40
Α	131.5	180	216
В	88.5	100	124
Operating range ℓ Note)	8.5	11.5	11.5

MY1HT (High rigidity/High precision guide type)

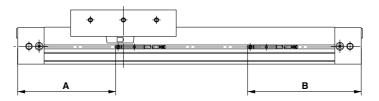

		(mm)
Mounting position	ø50	ø63
Α	290.5	335.5
В	123.5	138.5
Operating range $\ell^{\mathrm{Note})}$	11	11

Series MY1

Proper Auto Switch Mounting Position (Detection at stroke end) D-M9□, D-M9□V, D-F9□W, D-F9□WV

Note) The operating range is a guide including hysteresis, but is not guaranteed. (assuming approximately 30% dispersion.) There may be varied substantially depending on the surrounding environment.

MY1B (Basic type)



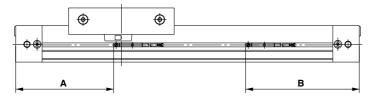
			(11111)
Mounting position	ø10	ø16	ø20
A	24	31	39
В	86	129	161
Operating range $\ell^{\text{Note})}$	3 (2.5)	4 (3)	5 (3.5)

(mm)

Note) Figures in parentheses are the cases for D-M9□, D-M9□V switch types.

MY1M (Slide bearing guide type)

 Mounting position
 Ø16
 Ø20


 A
 74
 94

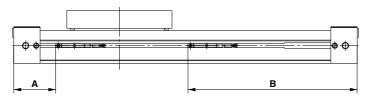
 B
 86
 106

 Operating range (Note)
 8.5 (6.5)
 6.5 (7)

Note) Figures in parentheses are the cases for D-M9□, D-M9□V switch types.

MY1C (Cam follower guide type)

 Mounting position
 Ø16
 Ø20


 A
 74
 94

 B
 86
 106

 Operating range ℓ Notes
 8.5 (6.5)
 6.5 (7)

Note) Figures in parentheses are the cases for D-M9□, D-M9□V switch types.

MY1H (High precision guide type)

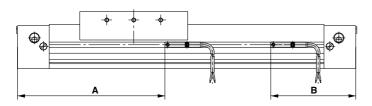
			(mm)
Mounting position	ø10	ø16	ø20
Α	24	31	39
В	86	129	161
Operating range ℓ Note)	3 (2)	4 (3)	5 (3.5)

Note) Figures in parentheses are the cases for D-M9 \Box , D-M9 \Box V switch types.

Proper Auto Switch Mounting Position (Detection at stroke end) D-Y59□, D-Y69□, D-Y7P, D-Y7PV

Note) The operating range is a guide including hysteresis, but is not guaranteed. (Assuming approximately 30% dispersion.) There may be varied substantially depending on the surrounding environment.

MY1B (Basic type)


							(111111)
Mounting position	ø25	ø32	ø40	ø50	ø63	ø80	ø100
Α	131.5	180	216	272.5	317.5	484.5	569.5
В	88.5	100	124	127.5	142.5	205.5	230.5
Operating range $\ell^{\text{Note})}$	6	9	10	3.5	3.5	3.5	3.5

.5 **MX**

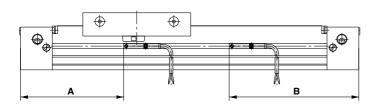
MTS

MY□

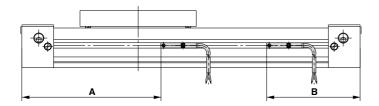
MY1M (Slide bearing guide type)

					(111111)
Mounting position	ø25	ø32	ø40	ø50	ø63
Α	139.5	184.5	229.5	278.5	323.5
В	80.5	95.5	110.5	121.5	136.5
Operating range $\ell^{\mathrm{Note})}$	5	5	5	5.5	5.5

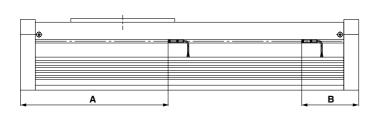
CY□



20-


Data

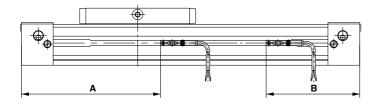
MY1C (Cam follower guide type)


					(mm)
Mounting position	ø25	ø32	ø40	ø50	ø63
Α	97.5	127.5	157.5	278.5	323.5
В	122.5	152.5	182.5	121.5	136.5
Operating range (Note)	5	5	5	5.5	5.5

MY1H (High precision guide type)

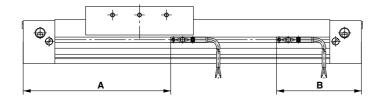
			(mm)
Mounting position	ø25	ø32	ø40
Α	131.5	180	216
В	88.5	100	124
Operating range & Note)	6	9	10

MY1HT (High rigidity/High precision guide type)

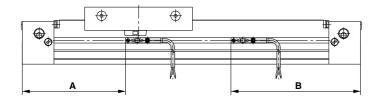

		(mm)
Mounting position	ø50	ø63
Α	290.5	335.5
В	123.5	138.5
Operating range ℓ Note)	5	5

Series MY1

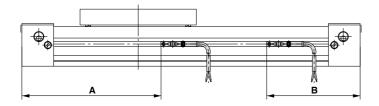
Proper Auto Switch Mounting Position (Detection at stroke end) D-Y7 W, D-Y7 WV


Note) The operating range is a guide including hysteresis, but is not guaranteed. (Assuming approximately 30% dispersion.) There may be varied substantially depending on the surrounding environment.

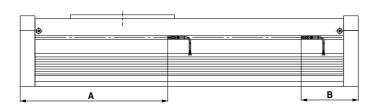
MY1B (Basic type)


							(mm)
Mounting position	ø25	ø32	ø40	ø50	ø63	ø80	ø100
Α	131.5	180	216	272.5	317.5	484.5	569.5
В	88.5	100	124	127.5	142.5	205.5	230.5
Operating range $\ell^{\text{Note)}}$	6	9	10	3.5	3.5	3.5	3.5

MY1M (Slide bearing guide type)


					(mm)
Mounting position	ø25	ø32	ø40	ø50	ø63
Α	139.5	184.5	229.5	278.5	323.5
В	80.5	95.5	110.5	121.5	136.5
Operating range $\ell^{\text{Note})}$	5	5	5	5.5	5.5

MY1C (Cam follower guide type)


					(mm)
Mounting position	ø25	ø32	ø40	ø50	ø63
Α	97.5	127.5	157.5	278.5	323.5
В	122.5	152.5	182.5	121.5	136.5
Operating range ℓ Note)	5	5	5	5.5	5.5

MY1H (High precision guide type)

			(111111)
Mounting position	ø25	ø32	ø40
Α	131.5	180	216
В	88.5	100	124
Operating range $\ell^{\mathrm{Note})}$	6	9	10

MY1HT (High rigidity/High precision guide type)

		(111111)
Mounting position	ø50	ø63
Α	290.5	335.5
В	123.5	138.5
Operating range $\ell^{\text{Note})}$	5	5