Specialty Regulators

NVBA2200-03

Increases main line pressure up to two times. Saves energy and money. The booster regulator, when connected to air supply line, increases pressure up to two times.

Main air supply pressure may be set low.

Use booster regulator only on branches where higher pressure is needed.

Desired pressure increase easily adjusted.

Almost no temperature increase: additional cooling units not needed.

The booster regulator works without any electrical inputs.

Specifications

Max 1:2			
Air			
220 (1.5)			
150 (1.0)			
30~150 (0.2~1.0)			
35° ~ 120° F (2° ~ 50° C)			
Non-Lube			
Horizontal			
Relief style			

Model

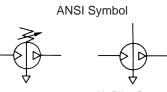
	Hand	lle Туре	Air Pilot O	perated Type	
	NVBA2100-T03	NVBA4100-T04	NVBA2200-T03	NVBA4200-T04	
Max. flow SCFM (NI/min.)*	28 (1000)	63 (1900)	28 (1000)	63 (1900)	
Port Size (IN, OUT) NPTF	3/8	1/2	3/8	1/2	
EXH. port size NPTF	3/8	1/2	3/8	1/2	
Pilot port size		_	1/8 NPTF		
Pilot pressure psig (MPa)		_	15 ~ 75 (0.1~0.5)		
Weight lbs. (kgf)	8.4 (3.8)	16.5 (7.5)	8.4 (3.8)	16.4 (7.5)	
	L			1	
	1/212.02	K504-MP1 0-N02M		K40A_MP1_0_N01	

Option	Pressure gauge	VBA2-G3	K50A-MP1.0-N02M (2 locations)	VBA2-G3	K40A-MP1.0-N01M (2 locations)		
	Silencer	NAN300-N03	NAN400-N04	NAN300-N03	NAN400-N04		

*Pressure: IN = OUT = 75 PSI (5kgf/cm²)

Related Equipment

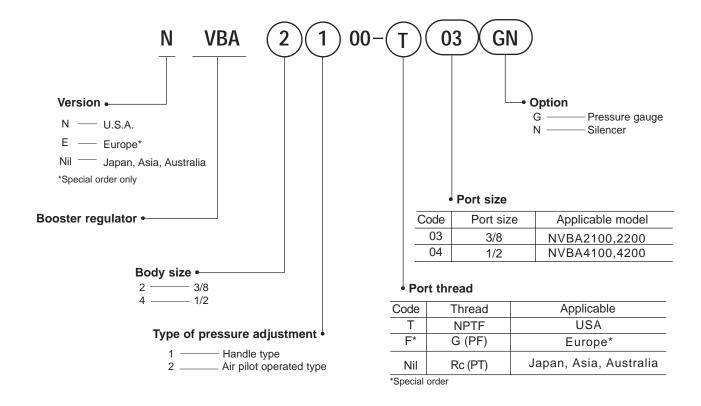
Туре	NVBA2100 • 2200	NVBA4100 • 4200
Mist Separator	NAM450-N04, N06	NAM5500-N06, N10
Exhaust Cleaner	NAMC510-N06	NAMC610-N10

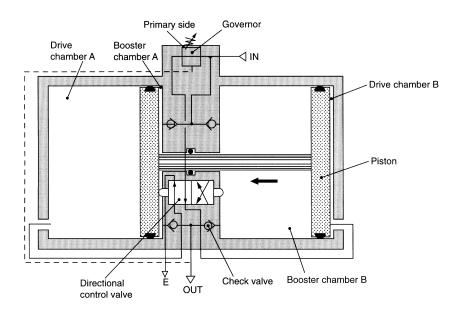

Repair Kit

Туре	NVBA2100	NVBA4100	NVBA2200	NVBA4200
Lower	KT-VBA2100-1-P	KT-VBA4100-P	KT-VBA2200-1	KT-VBA4200-1
Upper/Lower	KT-VBA2100-1	KT-VBA4100-1	_	_

NVBA2100~4200 CAD

NVBA Series

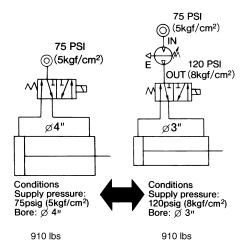

Booster Regulator


Handle Type

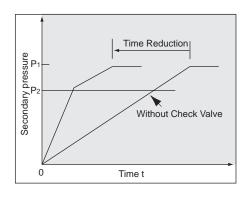
Air Pilot Operated

How To Order NVBA2100~4200

Operation

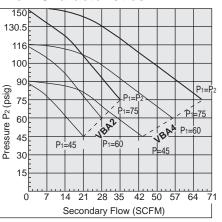


Primary air pressure is supplied from the IN port to the booster chambers A and B via the check valves and drive chamber B via the governor and directional control valve. The pressure in booster chamber A and drive chamber B forces the piston to move, pressurizing the air in booster chamber B, which, subsequently, exits from the OUT port via the check valve. When the piston reaches its stroke end, it switches the directional control valve to vent the pressure in drive chamber B and to supply air pressure to drive chamber A. The process will then repeat, ensuring a continuous supply of air with a pressure higher than that entering the IN port. Secondary pressure is fed back to the governor, allowing accurate control of output pressure.

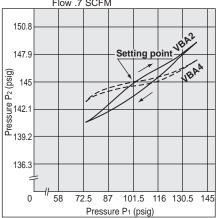

Booster Regulator NVBA2100~4200

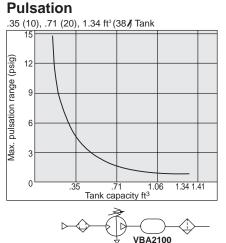

Applications

- Equipment that requires higher pressure than that of plant lines.
- Protects downstream equipment from pressure fluctuations.
- Increases the power of an actuator with out changing to a larger cylinder.


- Increases the effective hydraulic pressure of a Air Hydro Unit.
- A compact drive unit, i.e. small cylinder is required.

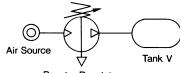
High pressure air is required without using electric power.


Flow Characteristics



Pressure Characteristics

Conditions: Supply pressure 100 psig Secondary pressure 145 psig


Flow .7 SCFM

VBA4100

Charge Characteristics

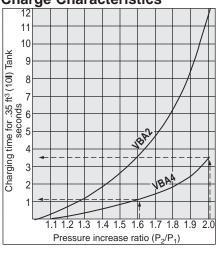
Booster Regulator

Example For NVBA4

The required time to increase tank pressure from 120 PSI to 150 PSI at 75 PSI supply pressure is calculated as follows.

$$\begin{array}{rcl} \frac{P_2}{P_1} &=& \frac{120}{75} &=& 1.6\\ \frac{P}{P_1} &=& \frac{150}{75} &=& 2.0\\ \end{array}$$

With the pressure increase ratio from 1.6 to 2.0, the time of 2.4 sec. (t) is


given for .35ft³ tank by the graph.

(3.5-1.1=2.4)

Then, the charging time (T) for a 10 ft³ tank,

$$\begin{array}{rcl}
 F &=& t \; x \; \underline{v} \\
 & .35 \\
 &=& 2.4 \; x \; \underline{10} \\
 & .35 \\
 &=& 69(\text{sec.})
 \end{array}$$

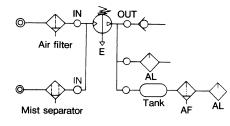
Charge Characteristics

Booster Regulator NVBA2100~4200

Precautions

Air Quality

Poor quality air will increase the sliding resistance of moving parts, resulting in failure of the booster regulator to meet its specified characteristics.


Install an air filter of 5μ m (NAF3000,4000) filtration rate or its equivalent at the primary pressure side.

Piping should be carefully flushed to remove dust and scale completely.

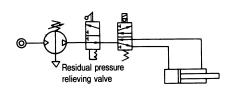
Connection Diagram

Lubricators should be connected to the secondary side of the booster regulator.

Install a mist separator (example: NAFM 3000, 4000) if the supply air contains oil mist and/or carbon.

Exhaust

Install either a silencer (NAN300-N03 or NAN400-N04) or an exhaust cleaner (NAMC610-N10) at the exhaust port of the booster regulator.

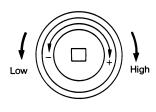

Installation

The booster regulator should be installed with its piston in a horizontal position.

Securely tighten the mounting bolts to prevent dislocation of the booster regulator. Where transmission of vibration should be avoided, use vibration-isolating rubber pads.

Residual Pressure

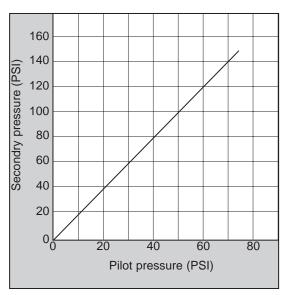
To enable exhaust of residual pressure in case of an emergency, install a 3 port valve at the OUT port of the booster regulator.



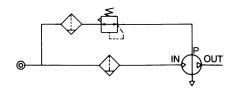
Pressure Setting

Handle Type

Pull up the adjustment handle and turn it as indicated by the arrow to adjust the pressure. Push the handle to lock it in place.


If the secondary pressure setting is reduced, pressure is relieved through the governor.

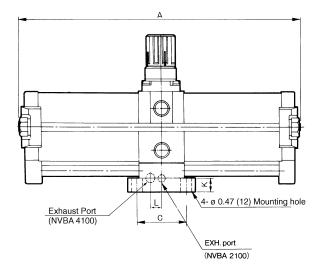
Air Pilot Operated Type

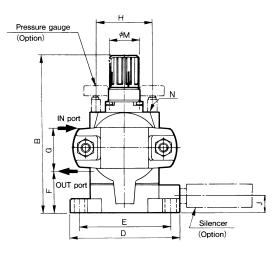

Secondary pressure is twice the pilot pressure.

A shift of pilot pressure from 30 PSI (0.2 MPa) to 60 PSI (0.4 MPa) results in a change of secondary pressure from 60 PSI (0.4 MPa) to 120 PSI (.83 MPa).

For on-site control, connect a small air regulator to the pilot port (P) of the booster regulator.

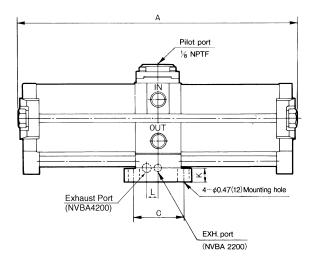
SMC regulators, model NAR2000 or NAW2000 are recommended for regulation of the pilot pressure.

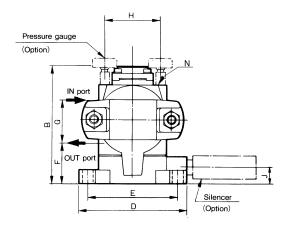



Specialty Regulators

NVBA Series

Dimensions NVBA2100~4200


Handle Type

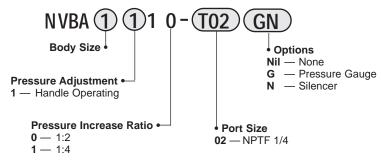


											Mill	imeters	in Pare	ntheses
Model	Port Size NPTF	А	В	С	D	E	F	G	Н	J	к	L	øM	N
NVBA2100-T03	3/8	11.81 (300)	6.69 (170)	2.09 (53)	4.65 (118)	3.86 (98)	1.81 (46)	1.69 (43)	2.38 (60.5)	0.71 (18)	0.59 (15)	_	1.22 (31)	1/16 NPTF
NVBA4100-T04	1/2	15.91 (404)	8.17 (207.5)	3.78 (96)	5.91 (150)	5.12 (130)	2.47 (62.8)	2.44 (62)	3.54 (90)	0.67 (17)	0.59 (15)	0.79 (20)	1.57 (40)	1/8 NPTF

Air Pilot Operated Type

											Millime	ters in Pa	rentheses
Model	Port Size NPTF	А	В	С	D	E	F	G	Н	J	к	L	N
NVBA2200-T03	3/8	11.81 (300)	4.98 (126.5)	2.09 (53)	4.65 (118)	3.86 (98)	1.81 (46)	1.69 (43)	2.38 (60.5)	0.71 (18)	0.59 (15)	_	1/16 NPTF
NVBA4200-T04	1/2	15.91 (404)	6.57 (167)	3.78 (96)	5.91 (150)	5.12 (130)	2.47 (62.8)	2.44 (62)	3.54 (90)	0.67 (17)	0.59 (15)	.79 (20)	1/8 NPTF

Booster Regulator NVBA1100

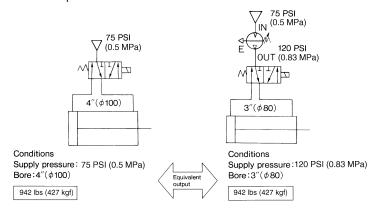


Booster Valve	NVBA1110	NVBA1111				
Pressure increase ratio	Max. 1:2	Max. 1:4				
Fluid	l l	Air				
Proof pressure psig (MPa)	435	(3.0)				
Input supply pressure psig (MPa)	15 ~ 150	(0.1 ~ 1.0)				
Set pressure range psig (MPa)	30 ~ 290	(0.2 ~ 2.0)				
Ambient and fluid temperature	35 ~ 120° F	⁻ (2 ~ 50° C)				
Lubrication	Non	-Lube				
Installation	Horiz	zontal				
Pressure adjustable mechanism	Relie	f style				
* Max. Flow	14.2SCFM (400N / min)	17.8SCFM (500N / min)				
IN, OUT, EXH Port Size	1/4	1/4 NPTF				
Weight lbs (kgf)	1.87 (0.85)	1.87 (0.85) 2.16 (0.98)				

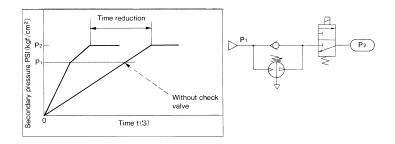
Related Equipment

Mist Separator	NAM2	NAM250-N02				
Exhaust Cleaner	NAMC	NAMC310-N03				
Repair Kit						
Lower	KT-VBA1110-P	KT-VBA1111-P				
Upper/Lower	KT-VBA1110-1	KT-VBA1111				
Options						
Gauge	G27-	G27-20-R1				
Silencer	NAN2	NAN200-N02				

How to Order



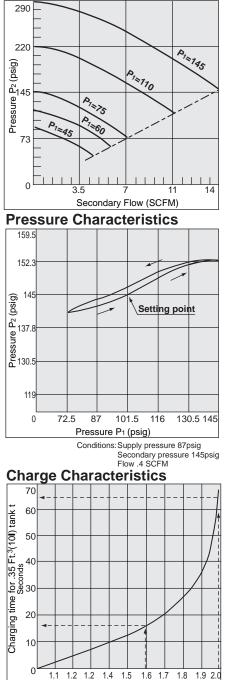
170 **SMC**


Booster Regulator NVBA1100

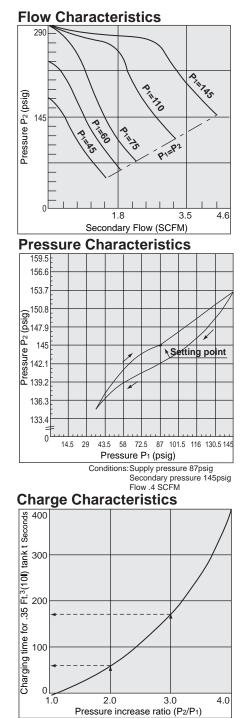
Applications

- Equipment requiring higher pressure than that of plant lines.
- Protects downstream equipment from pressure fluctuations.
- Increases the power of an actuator.

Increases the effective hydraulic pressure of a Air Hydro Unit.A compact drive unit, i.e. small cylinder is required.



High pressure air is required without using electric power.


NVBA1110

Flow Characteristics

Pressure increase ratio (P2/P1)

NVBA1111

Example for NVBA1110

The required time to increase tank pressure from 120 psi to 150 psi at 75 psi supply pressure is calculated as follows:

$$\frac{P_2}{P_1} = \frac{120}{75} = 1.6$$
$$\frac{P_2}{P_1} = \frac{150}{75} = 2.0$$

With the pressure increase ratio from 1.6 to 2.0, the time of 49 seconds (t) is given for .35 ft³ tank by the graph (65-16=49). Then, the charging time (T) for a .5 ft³ tank,

$$T = t X \frac{V}{.35}$$
$$= 49 X .5 \frac{.5}{.35}$$

= 70 seconds

Example for NVBA1111

The required time to increase tank pressure from 150 psi to 225 psi at 75 psi supply pressure is calculated as follows:

$$\frac{P_2}{P_1} = \frac{150}{75} = 2.0$$

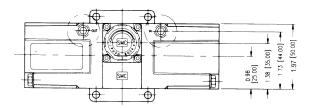
$$\frac{P_2}{P_1} = \frac{225}{75} = 3.0$$

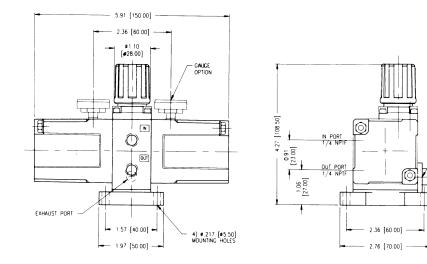
With the pressure increase ratio from 2.0 to 3.0, the time of 110 seconds (t) is given for .35 ft^3 tank by the graph (170-60=110). Then, the charging time (T) for a .5 ft^3 tank,

$$\Gamma = t X \frac{V}{.35}$$

=110 X .5
.35

= 157 seconds


Specialty Regulators


NVBA Series

EXHAUST PORT 1/4 NPTF

Silencer (OPTION) Dimensions NVBA1100

Dimensions Inch (mm)

