Proposal for Air-saving System

— Contributes to CO₂ emissions reduction —

Air Blow

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nozzles for Blowing</td>
<td>Through the use of a smaller diameter nozzle, air consumption can be reduced by 62%</td>
<td></td>
</tr>
<tr>
<td>Pulse Valve</td>
<td>High peak pressure and low air consumption</td>
<td>35% reduction</td>
</tr>
<tr>
<td>Impact Blow Gun</td>
<td>Air consumption</td>
<td>85% reduction</td>
</tr>
</tbody>
</table>

Vacuum Equipment

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum Ejector</td>
<td>Due to the energy-saving function, air consumption can be reduced by 93%</td>
<td></td>
</tr>
</tbody>
</table>

Actuators

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Saving Speed Controller</td>
<td>By simply mounting on your current air cylinder, air consumption can be reduced by 25%</td>
<td></td>
</tr>
<tr>
<td>Air Cylinder</td>
<td>By selecting an optimal size air cylinder, air consumption can be reduced by 29%</td>
<td></td>
</tr>
<tr>
<td>Booster Regulator</td>
<td>Power consumption</td>
<td>40% reduction</td>
</tr>
</tbody>
</table>

SMC

P-E19-3
Successful cases of companies that implemented measures for energy saving

<table>
<thead>
<tr>
<th>Company A performance</th>
<th>Company B performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>Electricity</td>
</tr>
<tr>
<td>3000 kW</td>
<td>10000 kW</td>
</tr>
<tr>
<td>→ 1400 kW</td>
<td>→ 7000 kW</td>
</tr>
<tr>
<td>CO2</td>
<td>CO2</td>
</tr>
<tr>
<td>0.9 t reduction/year</td>
<td>1.7 t reduction/year</td>
</tr>
<tr>
<td>Cost</td>
<td>Cost</td>
</tr>
<tr>
<td>¥80 million reduction/year</td>
<td>¥150 million reduction/year</td>
</tr>
</tbody>
</table>

We will help you save energy.

- We will help you to improve and standardize your equipment and adopt new equipment.
- We also proactively promote activities through official organizations, such as holding seminars at the Energy Conservation Center.

Energy-saving Themes

- **Air Blow**
- **Air Purge**
- **Actuators**
- **Vacuum Equipment**
- **Lower Piping Line Pressure**
- **Low Power Consumption**
CONTENTS

Air Blow

- Nozzles for Blowing *KN Series* .. p. 3
- Intermittent Blow Circuit *IZE110-X238* p. 4
- Pulse Valve for Dust Collector *JSXFA Series* p. 5

Blowing by Air Gun

- Blow Gun *VMG Series* .. p. 6

Air Purge

- Digital Gap Checker *ISA3 Series* ... p. 7

Actuators

- Air Cylinder *JMB Series* ... p. 8
- Double Power Cylinder *MGZ Series* ... p. 9
- Compact Cylinder with Solenoid Valve *CVQ Series* p. 10
- Booster Regulator *VBA Series* ... p. 11
- Air Saving Speed Controller *AS-R/AS-Q Series* p. 12

Vacuum Equipment

- Vacuum Ejector *ZK2 Series* .. p. 13
- Multistage Ejector *ZL112A Series* .. p. 14

Lower Piping Line Pressure

- S Couplers *KK130 Series* ... p. 15

Low Power Consumption

- 3/4/5-Port Solenoid Valve ... p. 16
- Refrigerated Air Dryer *IDF FS Series* p. 17

Information

- Booster Regulator (Size: 10A) *VBA-X3145* p. 18
- Air Saving Impact Blow Gun *IBG1 Series* p. 18
Air consumption can be reduced through the use of a smaller diameter nozzle.

Blow circuit that facilitates effective pressure use

![Nozzle Image]

Energy-saving Model

Supply pressure: 0.3 MPa

Pressure right before: 0.29 MPa

1.5 mm nozzle

Impact pressure: 0.003 MPa

Collective piping: TU0805, 2 m Intermediate and end piping: TU0604, 0.5 m each

Distance: 100 mm

Air consumption per nozzle: **74 L/min (ANR)**

Blow time: 2 sec.

Annual operating cycles: 900000

4464 m³/year (ANR) (¥10584/year reduction)

62% reduction

Existing Model

Supply pressure: 0.3 MPa

Pressure right before: 0.05 MPa

4 mm copper tube

Impact pressure: 0.003 MPa

Collective piping: TU0805, 2 m Intermediate and end piping: TU0604, 0.5 m each

Distance: 100 mm

Air consumption per nozzle: **192 L/min (ANR)**

Blow time: 2 sec.

Annual operating cycles: 900000

11520 m³/year (ANR) (¥17280/year)

Corresponding value: Air unit ¥1.5/m³ (ANR)
By using intermittent blow based on an intermittent control timer, air consumption can be reduced by 50%.

Intermittent Blow Circuit

[Output under timer control]

Intermittent control timer IZE110-X238

Solenoid valve

Switch

Trigger input

24 V

Energy-saving Circuit

The duty ratio can be freely adjusted. By setting the duty ratio to one that has the same blow effectiveness, air consumption can be reduced.

Example:

<table>
<thead>
<tr>
<th>Q [L/min (ANR)]</th>
<th>t [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>120</td>
<td>6</td>
</tr>
</tbody>
</table>

Effects of Energy Saving

50% reduction

Existing Circuit

The duty ratio is equivalent to 100%.

Pressure right before: 0.2 MPa
Blow time: 10 s
(Frequency: 12 times/h)

One blow operation:
ON for 1 s, OFF for 1 s;
Repeated a total of 5 times
Working hours: 10 h/day (250 days/year)
Nozzle diameter: 1 mm

318.2 m³/year (ANR)
(¥477/year)

(¥477/year reduction)

Intermittent Blow Circuit

Pressure right before: 0.2 MPa
Blow time: 10 s
(Frequency: 12 times/h)

One blow operation:
ON for 1 s, OFF for 1 s;
Repeated a total of 5 times
Working hours: 10 h/day (250 days/year)
Nozzle diameter: 1 mm

636.3 m³/year (ANR)
(¥954/year)

Corresponding value: Air unit ¥1.5/m³ (ANR)
High peak pressure and low air consumption

Energy-saving Model
- Optimized internal geometry
- Improved response

Injection quantity per cycle: 57 L/cycle (ANR)
Pressure: 0.9 MPa
Energizing time: 100 ms
Annual operating cycles: 240000

13680 m³/year (ANR)
(¥20520/year)
(¥11160/year reduction)

Existing Model
- Flow path construction with a large pressure loss
- Long response time

Injection quantity per cycle: 88 L/cycle (ANR)
Pressure: 0.9 MPa
Energizing time: 100 ms
Annual operating cycles: 240000

21120 m³/year (ANR)
(¥31680/year)
Example of Improvement

Review the blow work and change to the SMC blow gun, S coupler, and coil tube combination to create a larger effective area.

Energy-saving Model

<table>
<thead>
<tr>
<th>Energy-saving Model</th>
<th>Existing Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact pressure: 0.011 MPa (Distance: 100 mm)</td>
<td>Impact pressure: 0.011 MPa (Distance: 100 mm)</td>
</tr>
<tr>
<td>Blow time: 10 s (Frequency: 12 times/h)</td>
<td>Blow time: 10 s (Frequency: 12 times/h)</td>
</tr>
<tr>
<td>Working hours: 10 h/day (250 days/year)</td>
<td>Working hours: 10 h/day (250 days/year)</td>
</tr>
<tr>
<td>Total working hours: 8300 h</td>
<td>Total working hours: 8300 h</td>
</tr>
<tr>
<td>Compressor pressure: 0.5 MPa</td>
<td>Compressor pressure: 0.6 MPa</td>
</tr>
<tr>
<td>Air consumption: 257 L/min (ANR)</td>
<td>Air consumption: 287 L/min (ANR)</td>
</tr>
</tbody>
</table>
| Power consumption by compressor: **1.25 kW**
(¥155625/year) | Power consumption by compressor: **1.56 kW**
(¥194220/year) |

20% reduction
Digital Gap Checker ISA3 Series

Air consumption when a workpiece is seated is now 0 L/min due to the new detection principle.

Comparison of detection circuit

Due to the new detection principle, the need for air to be exhausted from the product has been eliminated. This makes the flow consumption 0 L/min when a workpiece is seated.

The result is a great reduction in air consumption compared with the existing model.

* Conditions: Unseated for 5 seconds and seated for 20 seconds (For the G type)

Energy-saving Model

- Air consumption
 - When placed: 0 L/min (ANR)
 - When not placed: 10 L/min (ANR)
- Air consumption per cycle:
 - 0.83 L/cycle (ANR)
- Annual operating cycles: 860000

Air consumption (When placed): 0 L/min (ANR)

717 m³/year (ANR)
(¥1076/year)

(¥1608/year reduction)

Existing Model

- Air consumption
 - When placed: 4 L/min (ANR)
 - When not placed: 10 L/min (ANR)
- Air consumption per cycle:
 - 208 L/cycle (ANR)
- Annual operating cycles: 860000

Air consumption (When placed): 4 L/min (ANR)

1789 m³/year (ANR)
(¥2684/year)

Corresponding value: Air unit ¥1.5/m³ (ANR)
Air consumption can be reduced by selecting an optimal size air cylinder.

Intermediary Bore Sizes

Air consumption can be reduced by up to 29%

<table>
<thead>
<tr>
<th>Bore size (mm)</th>
<th>ø40</th>
<th>ø45</th>
<th>ø50</th>
<th>ø56</th>
<th>ø63</th>
<th>ø67</th>
<th>ø80</th>
<th>ø85</th>
<th>ø100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air consumption L/min (ANR)</td>
<td>1.4</td>
<td>1.8</td>
<td>2.2</td>
<td>2.8</td>
<td>3.6</td>
<td>4.1</td>
<td>5.8</td>
<td>6.6</td>
<td>9.1</td>
</tr>
</tbody>
</table>

Conditions/Supply pressure: 0.5 MPa, Load factor: 50%, At 100 mm stroke

- **18% reduction**
- **22% reduction**
- **29% reduction**
- **27% reduction**

Example

Bore size for 85 kg workpieces

<table>
<thead>
<tr>
<th>Bore size (mm)</th>
<th>Theoretical output (N)</th>
<th>Output for load factor of 50% (kg)</th>
<th>Judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ø63</td>
<td>1559</td>
<td>79.5</td>
<td>Not acceptable (Insufficient)</td>
</tr>
<tr>
<td>ø80</td>
<td>2513</td>
<td>128.2</td>
<td>Acceptable (Excessive)</td>
</tr>
</tbody>
</table>

When intermediary bore size ø67 is used

| ø67 | 1763 | 89.9 | OK |

Existing size: ø80

Could be switched to intermediary bore size ø67

Energy-saving Model

- Bore size: ø67
- Stroke: 100 mm
- Pressure: 0.5 MPa
- Load factor: 50%

Per single reciprocation: 4.1 L/min (ANR)

When it is operated 1000000 times/year

4100 m³/year (ANR)

(¥6150/year reduction)

29% reduction

Existing Model

- Bore size: ø80
- Stroke: 100 mm
- Pressure: 0.5 MPa
- Load factor: 50%

Per single reciprocation: 5.8 L/min (ANR)

When it is operated 1000000 times/year

5800 m³/year (ANR)

(¥8700/year)

29% reduction

Corresponding value: Air unit ¥1.5/m³ (ANR)
Air consumption can be reduced by **14%** due to the reduced cylinder size.

It is possible to reduce air consumption in the retracting direction, compared with a standard cylinder with equivalent output in the extending direction, due to the doubled piston area in the extending direction.

Double extension output power!

SMC’s unique cylinder construction doubles the piston area in the extending direction. This is an ideal air cylinder for lifting and press applications.

Energy-saving Model

<table>
<thead>
<tr>
<th>Bore size: Ø63</th>
<th>Stroke: 200 mm</th>
<th>Pressure on the extension side: 0.5 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical output (Extension side): 2973 N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per single reciprocation: 9.9 L (ANR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>When it is operated 900000 times/year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8910 m³/year (ANR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(¥13370/year)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Existing Model

<table>
<thead>
<tr>
<th>Bore size: Ø80</th>
<th>Stroke: 200 mm</th>
<th>Pressure: 0.5 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical output (Extension side): 2520 N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per single reciprocation: 11.5 L (ANR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>When it is operated 900000 times/year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10350 m³/year (ANR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(¥15530/year)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Corresponding value: Air unit ¥1.5/m³ (ANR)
Valve and compact cylinder integrated for compactness

Energy Saving
Air consumption between the valve and cylinder can be reduced by approximately 37%.

Effects of Energy Saving

Energy-saving Model

CVQ
- Bore size: ø32
- Stroke: 50 mm
- No piping between the valve and the cylinder
- Supply pressure: 0.5 MPa

Per single reciprocation: 0.42 L (ANR)

When it is operated 900000 times/year

380 m³/year (ANR)
(¥570/year)
(¥340/year reduction)

Existing Model

CO2
- Bore size: ø32
- Stroke: 50 mm
- Piping bore: 4 mm
- Piping length: 2 m (Between the valve and the cylinder)
- Supply pressure: 0.5 MPa

Per single reciprocation: 0.67 L (ANR)

When it is operated 900000 times/year

606 m³/year (ANR)
(¥910/year)

Corresponding value: Air unit ¥1.5/m³ (ANR)
Air consumption can be reduced by 33% due to the optimization of the booster circuit.

Boost an insufficiently powered portion with a booster regulator

- Optimized booster circuit: Now with a space-saving booster circuit

Example of a one-side booster circuit
(Boosting pressure on the operating stroke only)

Example of a two-side booster circuit

Energy-saving Circuit

<table>
<thead>
<tr>
<th>When it is operated 900000 times/year</th>
<th>33% reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per single reciprocation: 8.7 L (ANR)</td>
<td>Energy-saving Model</td>
</tr>
<tr>
<td>7830 m³/year (ANR) (¥11750/year) (¥5800/year reduction)</td>
<td>Existing Circuit</td>
</tr>
</tbody>
</table>

Corresponding value: Air unit ¥1.5/m³ (ANR)

Existing Circuit

| Bore size: ø50 |
| Pressure: 0.4 MPa |
| Boosting pressure: 0.8 MPa |
| Per single reciprocation: 13 L (ANR) |
| 11700 m³/year (ANR) (¥17550/year) |

When it is operated 900000 times/year
Reduce air consumption just by mounting to your current air cylinder!

Mounting and operation are the same as a regular speed controller.

By reducing the pressure on the return stroke to 0.2 MPa, air consumption can be reduced.

When it is not necessary to apply force at the end of the working stroke, by using a lifter, pusher, etc.

Energy-saving Model

- **Bore size:** ø50
- **Stroke:** 200 mm
- **Pressure on the extension side:** 0.5 MPa
- **Pressure on the retraction side:** 0.2 MPa

<table>
<thead>
<tr>
<th>Per single reciprocation:</th>
<th>3.3 L/min (ANR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>When it is operated 900,000 times/year</td>
<td>3011 m³/year (ANR)</td>
</tr>
<tr>
<td>(¥1330/year reduction)</td>
<td>(¥4520/year)</td>
</tr>
</tbody>
</table>

Existing Model

- **Bore size:** ø50
- **Stroke:** 200 mm
- **Pressure:** 0.5 MPa

<table>
<thead>
<tr>
<th>Per single reciprocation:</th>
<th>4.3 L/min (ANR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>When it is operated 900,000 times/year</td>
<td>3902 m³/year (ANR)</td>
</tr>
<tr>
<td>(¥5850/year)</td>
<td>(¥1330/year reduction)</td>
</tr>
</tbody>
</table>

Corresponding value: Air unit ¥1.5/m³ (ANR)
Energy-saving Ejector

The digital pressure switch for vacuum with energy-saving function cuts supply air when the pressure reaches the desired vacuum.

Energy-saving Model

- Air consumption: 58 L/min (ANR)
- Vacuum suction flow rate: 61 L/min (ANR)
- Vacuum generation time: 0.6 s/cycle
 (Vacuum is continuously generated and air is consumed for 6 s (1 cycle))
- Annual operating cycles: 1100000
 (450 cycles/h, 10 h/day, 250 days/year)

Air consumption (When placed): 58 L/min (ANR)

638 m³/year (ANR)
(¥957/year)
(¥13070/year reduction)

93% reduction

Effects of Energy Saving

Existing Model

- Air consumption: 85 L/min (ANR)
- Vacuum suction flow rate: 44 L/min (ANR)
- Vacuum generation time: 6 s/cycle
 (Vacuum is continuously generated and air is consumed for 6 s (1 cycle))
- Annual operating cycles: 1100000
 (450 cycles/h, 10 h/day, 250 days/year)

Air consumption (When placed): 85 L/min (ANR)

9350 m³/year (ANR)
(¥14025/year)

Corresponding value: Air unit ¥1.5/m³ (ANR)
Multistage Ejector ZL112A Series

Air consumption can be reduced by 10% due to the optimization of the diffuser flow path.

3-stage diffuser construction

Suction flow rate increased by 250% (Versus ø1.3, 1-stage model)

Energy-saving Model
- Standard supply pressure: 0.33 MPa (Without valve)
- Maximum vacuum pressure: –84 kPa
- Maximum suction flow rate: 100 L/min (ANR)
- Air consumption: 57 L/min (ANR)

When work is carried out for 2500 hours per year, and 30 minutes per hour

4275 m³/year (ANR)
(¥6413/year)

(¥675/year reduction)

Existing Model
- Standard supply pressure: 0.4 MPa
- Maximum vacuum pressure: –84 kPa
- Maximum suction flow rate: 100 L/min (ANR)
- Air consumption: 63 L/min (ANR)

When work is carried out for 2500 hours per year, and 30 minutes per hour

4725 m³/year (ANR)
(¥7088/year)

Corresponding value: Air unit ¥1.5/m³ (ANR)
The built-in valve is of a special shape, resulting in reduced pressure loss.

Energy-saving Model

Operating pressure at the outlet: 0.5 MPa
Compressor efficiency: 0.7
Annual operating time: 2500 hours
Flow rate: 1.2 m³/min (ANR)
Inlet pressure: 0.54 MPa

Power consumption by compressor:

¥262000/year
(¥11000/year reduction)

Effects of Energy Saving

Existing Model

Operating pressure at the outlet: 0.5 MPa
Compressor efficiency: 0.7
Annual operating time: 2500 hours
Flow rate: 1.2 m³/min (ANR)
Inlet pressure: 0.58 MPa

Power consumption by compressor:

¥273000/year

Corresponding value: Electricity unit ¥15/kWh
3/4/5-Port Solenoid Valve

The power-saving circuit can reduce the consumption of electric power when the device is energized.

- Reduces power consumption when energized
- Power consumption can be reduced by approx. 1/4 by reducing the wattage required to hold the valve in an energized state. (Effective energizing time is over 62 ms*1 at 24 VDC.) Refer to the electrical power waveform as shown below.

Electrical power waveform with power-saving circuit

<table>
<thead>
<tr>
<th>Type</th>
<th>Model</th>
<th>Power consumption W*2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td>With power-saving circuit</td>
</tr>
<tr>
<td>4/5-port</td>
<td>SJ2000</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>SJ3000</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>New SY3000/5000/7000</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>SY3000/5000/7000/9000</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>SYJ3000/5000/7000</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>VF1000/3000/5000</td>
<td>1.55</td>
</tr>
<tr>
<td>3-port</td>
<td>SYJ300/500/700</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>VP300/500/700</td>
<td>1.55</td>
</tr>
<tr>
<td></td>
<td>V100</td>
<td>0.4</td>
</tr>
</tbody>
</table>

*2 With DC light

- SY/SYJ series

Energy-saving Model

SY: 0.1 W
(With power-saving circuit)

292 Wh/year
(¥4.3/year)

Power consumption per valve:
(¥13.2/year reduction)

75% reduction

Existing Model

SY: 0.4 W

1168 Wh/year (ANR)
(¥17.5/year)

Corresponding value: Electricity unit ¥15/kWh
Refrigerated Air Dryer *IDF*_{FS} Series

Double energy-saving function series

Power consumption

76% reduction

The addition of a second re-heater + digital scroll results in high energy savings.

Energy-saving design

Up to a 76% (1 kW)¹ reduction

*1 Operating conditions: The IDF125FS in energy-saving operation mode

- Ambient temperature 32°C
- Inlet air temperature 40°C
- Inlet air pressure 0.7 MPa
- Air flow rate = Rated flow x 0.4
- Power supply frequency 60 Hz
- Power supply voltage 200 V
- Set dew point = 30°C

Example 1 year (Spring to Winter) Power consumption

Compared with the standard model (constant compressor operation), the Double energy-saving function series can reduce power consumption by 43%!

*1 The IDF125FS was used for this example.

[Trail calculation conditions] Days of operation per year = 240 days (60 days each in spring, summer, autumn, and winter), Operating hours per day = 12 hours For details about the dryer operating conditions for each season, refer to the Web Catalog (IDF_{FS} series.).
Booster Regulator (Size: 10A) VBA-X3145

- 3 piston construction
- The drive chamber on one side can be operated by the exhaust return circuit.

Operation noise: 65 dB (A)\(^1\)

- 15 dB (A) reduction compared with the existing model (VBA series)
 - Exhaust noise: Reduced noise due to exhaust of reused low-pressure air
 - Metal noise: Reduced noise due to the adoption of a construction in which the internal switching part doesn't come into contact with any metal parts

Air Saving Impact Blow Gun IBG1 Series

Increased impact force due to higher peak pressure
Direct reduction in air consumption and labor time

High peak pressure

- 3 times or more\(^1\)

Air consumption

- 85% reduction\(^2\)

Existing blow gun

- Air consumption: 17 L

New blow gun

- Air consumption: 2.5 L

- Labor time: 90% reduction

\(^1\) According to blow requirements
\(^2\) Pressure: 0.5 MPa (Based on SMC's specific testing conditions)

* Please contact your local sales representative for more details.
Proposal for Air-saving System

— Contributes to CO₂ emissions reduction —