Remote Type

High flow rate type added to Series PFA $(3000,6000,120001)$

Digital Flow Switch

Flow rate setting and detection are possible on digital display.

Bright and easy to read LED display/digital setting

A new LCD display is used for the high flow rate types (PFA703H/706H/712H) in order to reduce the power consumption without losing visibility.

Two types for different applications Integrated and remote type displays

Water resistant construction equivalent to IP65

Two independent flow rate settings are possible.
 Can be switched from real-time flow rate to accumulated flow.

Digital Flow Switch for Air

Series PFA

Digital Flow Switch for Water
Series PFW

For Air Series variations

Integrated display type	Remote type		Flow rate measurement range $\mathrm{e} / \mathrm{min}$	Output specifications			Port size (Rc, NPT, G)						
	Display unit	Sensor unit		Switch output	Analog output	Accumulated pulse output	1/8	1/4	3/8	1/2	1	11/2	2
PFA710	PFA30	PFA510	1 to 10										
750		550	5 to 50										
711	31	511	10 to 100										
721		521	20 to 200										
751		551	50 to 500										
703H	-	-	150 to 3000										
706H			300 to 6000										
712H			6000 to 12000										

For Water Series variations

Integrated display type	Remote type		Flow rate measurement range $/ / \mathrm{min}$	Output specification Switch output	Port size (Rc, NPT, G)		
	Display unit	Sensor unit			3/8	1/2	3/4
PFW704	PFW31	PFW504	0.5 to 4				
720	30	520	2 to 16				
740	32	540	5 to 40				

Maximum Flow Rate

3000, 6000, 12000 c/min types

 have been newly released!The addition of the high flow rate types supports energy saving measures.
Air flow rates can be controlled from the main line to each equipment line.

The accumulated pulse output function (100/pulse) enables remote detection of accumulated flow.

Analog output (1 to 5VDC, 4 to 20mA) and switch output can also be applied.

Detection principle of digital flow switch for air

A heated thermistor is installed in the passage, and the fluid absorbs heat from the thermistor as it flows past it. The thermistor's resistance value increases as heat is absorbed, and since the increase ratio has a uniform relationship to the fluid velocity, it is possible to detect the fluid velocity by measuring this resistance value. To further compensate the fluid and ambient temperatures, there is also a built-in temperature sensor, which allows stable measurement within the operating temperature range.

This flow switch uses " $\mathrm{C} / \mathrm{min}$ " as the flow rate indicator unit, and the mass flow is converted and notated under conditions of $0^{\circ} \mathrm{C}$ and 101.3 kPa . The conversion conditions can be switched to $20^{\circ} \mathrm{C}$ and 101.3 kPa for the high flow rate types.

Detection principle of digital flow switch for water

When a bar shaped object (vortex generator) is placed in the flow, reciprocal vortexes are generated on the downstream side. These vortexes are stable under certain conditions, and their frequency is proportional to the flow velocity, resulting in the following formula.
$f=k x v$
f: Frequency of vortexes, v: Flow velocity, k: Proportional constant (determined by the vortex generator's dimensions, shape, etc.) Therefore, the flow rate can be measured by detecting this frequency.

Application examples

For Air
 Digital Flow Switch Series PFA

How to order

Flow rate range e-

$\mathbf{1 0}$	1 to $101 / \mathrm{min}$
$\mathbf{5 0}$	5 to $50 \mathrm{l} / \mathrm{min}$
$\mathbf{1 1}$	10 to $100 \mathrm{l} / \mathrm{min}$
$\mathbf{2 1}$	20 to $2001 / \mathrm{min}$
$\mathbf{5 1}$	50 to $500 \mathrm{l} / \mathrm{min}$

Port size

Specifications

- Unit specification | Nil | With unit switching function |
| :---: | :---: |
| \mathbf{M} | Fixed SI unit Note) | Note) Fixed units:

Real-time flow rate: $1 / \mathrm{min}$ Accumulated flow: |

Output specification

Nil	Output specification	Applicable model
$\mathbf{2 7}$	NPN open collector 2 outputs	PFA710, 750 PFA711, 721, 751
$\mathbf{2 8}$	NPN open collector 1 output + Analog output (1 to 5V)	PFA711, 721, 751
$\mathbf{6 7}$	PNP open collector 2 outputs	PFA710, 750 PFA711, 721, 751
$\mathbf{6 8}$	PNP open collector 1 output + Analog output (1 to 5V)	PFA711, 721, 751

[^0]

Note 1) The flow rate measurement range can change depending on the setting.
Note 2) For the type with unit switching function [The type without the unit switching function will have a fixed SI unit $(\mathrm{l} / \mathrm{min}$ or I$)$.]
Note 3) The system accuracy when combined with sensor unit.
Note 4) The output functions operate only for the real-time flow rate display, and do not operate for the accumulated flow display.
Note 5) Window comparator mode - Since hysteresis is 3 digits, separate P1 and P2 by 7 digits or more. 1 digit is the minimum setting unit (refer to the table above).
Note 6) The flow rate unit is based on $0^{\circ} \mathrm{C}$ and 101.3 kPa .

For Air Digital Flow Switch

Remote Type Sensor Unit PFA5 $10-\square 01$
 Wiring specification

Flow rate range e-

$\mathbf{1 0}$	1 to $10 \mathrm{l} / \mathrm{min}$
$\mathbf{5 0}$	5 to $50 \mathrm{l} / \mathrm{min}$
$\mathbf{1 1}$	10 to $100 \mathrm{l} / \mathrm{min}$
$\mathbf{2 1}$	20 to $200 \mathrm{l} / \mathrm{min}$
$\mathbf{5 1}$	50 to $500 \mathrm{l} / \mathrm{min}$

Nil	3 m lead wire with connector
\mathbf{N}	Without

- Port size

Thread type d

$\mathbf{N i l}$	Rc
\mathbf{N}	NPT
\mathbf{F}	G

Symbol	Size	Flow rate (l/min)					Applicable model
	$1 / 8$	$\mathbf{\bullet}$	50	\bullet		100	
500			PFA510, 550				
$\mathbf{0 2}$	$1 / 4$	\bullet					
$\mathbf{0 3}$	$3 / 8$			\bullet	\bullet		PFA511,521
$\mathbf{0 4}$	$1 / 2$					\bullet	PFA551

Specifications

Model	PFA510	PFA550	PFA511	PFA521	PFA551
Measured fluid	Dry air, N2				
Detection type	Heater type				
Flow rate measurement range	1 to 101/min	5 to $501 / \mathrm{min}$	10 to 1001/min	20 to 2001/min	50 to 500l/min
Operating pressure range	0 to 0.5 MPa				
Withstand pressure	1.0 MPa				
Pressure loss			3 kPa (at $100 \mathrm{l} / \mathrm{min}$)	10 kPa (at 200l/min)	30 kPa (at 500l/min)
Operating temperature range	0 to $50^{\circ} \mathrm{C}$ (with no condensation)				
Linearity Note 1)	$\pm 25 \%$ F.S. or less		$\pm 20 \%$ F.S. or less		
Repeatability	$\pm 1 \%$ F.S. or less Note 2)		$\pm 1 \%$ F.S. or less		
Temperature characteristics	$\pm 2 \%$ F.S. or less (15 to $35^{\circ} \mathrm{C}$) $\pm 3 \%$ F.S. or less (0 to $50^{\circ} \mathrm{C}$)				
Power supply voltage	12 to 24VDC (ripple $\pm 10 \%$ or less)				
Current consumption	100 mA or less				110 mA or less
Weight	200 g (without lead wire)		240 g (without lead wire)		
Enclosure	Equivalent to IP65				
Port size (Rc, NPT, G)	1/8, 1/4		3/8		1/2

Note 1) The system accuracy will be adjusted to $\pm 5 \%$ F.S. or less when combined with PFA3 $\square \square$.
Note 2) The system accuracy will be adjusted to $\pm 1 \%$ F.S. or less when combined with PFA30 \square.
Note 3) The flow rate unit is based on $0^{\circ} \mathrm{C}$ and 101.3 kPa .

Series PFA

Sensor Unit Construction

PFA710/750
PFA510/550

Parts list

No.	Description	Material
$\mathbf{1}$	Attachment	ADC
$\mathbf{2}$	Seal	NBR
$\mathbf{3}$	Mesh	Stainless steel
$\mathbf{4}$	Body	PBT
$\mathbf{5}$	Sensor	PBT

Parts list

No.	Description	Material
$\mathbf{1}$	Attachment	ADC
$\mathbf{2}$	Seal	NBR
$\mathbf{3}$	Spacer	PBT
$\mathbf{4}$	Mesh	Stainless steel
$\mathbf{5}$	Body	PBT
$\mathbf{6}$	Sensor	PBT

$\xrightarrow{\text { Flow direction }}$

Operating Unit Descriptions

RESET Buttons

Pressing the UP and DOWN buttons simultaneously activates the RESET function.
This clears the unit when an abnormality occurs and clears the accumulated flow display to "0".

Output (OUT1) Indicator/Green

Lights up when OUT1 is ON. It also blinks when an overcurrent error occurs on OUT1.

Output (OUT2) Indicator/Red

Lights up when OUT2 is ON.
It also blinks when an overcurrent error occurs on OUT2.

LED Display

Displays the real-time flow rate, accumulated flow, and setting value. The - mark blinks when the accumulated flow is being measured.

UP Button ($\boldsymbol{\Delta}$ Button)

Use when increasing a setting value.

SET Button (O Button)

Use when changing a setting value or any of the modes.

DOWN Button ($\overline{\text { Button) }}$
Use when decreasing a setting value.

Error Correction

Take the following corrective actions when errors occur.

LED display	Problem	Corrective action		
	A current of more than 80 mA is flowing to OUT1.	Check the load and wiring for OUT1.		
80 mA is flowing to OUT2.				Check the load and wiring
:---				
for OUT2.	\(\left	\begin{array}{l}The setting data has 		

changed due to some

influence.\end{array} \quad \begin{array}{l}Perform the RESET

operation, and set all

data again.\end{array}\right|\)| The flow rate is over the |
| :--- |
| flow rate measurement |
| range. (For air only) |\quad| Reduce the flow rate until it |
| :--- |
| is within the flow rate |
| measurement range, using |
| an adjustment valve, etc. |

Connectors

Since the connectors (female contacts) shown below can be used, please refer to the respective manufacturers.

Connector size	Number of pins	Manufacturer	Applicable series
M12		C. CORRENS \& CO., LTD.	VA-4D
		OMRON Corporation	XS2
		Yamatake-Honeywell Co., Ltd.	PA5-4I
		Hirose Electric Company	HR24
		DDK Ltd.	CM01-8DP4S

Note) C. CORRENS \& CO., LTD. is the general agent in Japan for Hirschmann.

For Air Digital Flow Switch

Flow Rate Setting

Initial setting
Note) Operation is the same for the integrated display type and the remote type (display unit).

1. Initial Setting Mode

Press the SET button for 1 second or more. Since the display will change from F_{-}; to $d_{.}$i or $d_{-} z^{\prime}$, release the SET button after it has changed.
2. Selection of the Display Mode

Performs setting of the display mode. Switches with the $\mathbf{\Delta}$ button.
d. : Real-time flow rate display
d.e. Accumulated flow display
4. Selection of OUT1 Output Mode

For -M (fixed SI unit)
3. Selection of Display Units

Press the SET button
(SET

Performs setting of display units. Note 1)
Switches with the $\mathbf{\Delta}$ button and $\boldsymbol{\nabla}$ button
U- \square
-Unit number
(Refer to Table 1.)
5. Selection of OUT2 Output Mode

SET
Setting is completed when the SET button is pressed.
erforms setting of the OUT2 output mode.
(Refer to Table 2 .)

Performs setting of the OUT1 output mode. Switches the OUT1 output mode with the Δ button.
Δ button.
: p : Non-inverted outpu
! \quad : Inverted output

2. 9 : Non-inverted output
z^{2}-n: Inverted output

Table 1 Note 1)
For air

Display	Real-time flow rate	Accumulated flow
$U_{-} \mathrm{I}$	$\mathrm{I} / \mathrm{min}$	I
$\mathrm{H}_{-2} \mathrm{~L}^{3}$	CFM $\times 10^{-2}$	$\mathrm{ft}^{3} \times 10^{-1}$

CFM $=\mathrm{ft} 3 / \mathrm{min}$
For water

Display	Real-time flow rate	Accumulated flow
U_{-}	I/min	I
$U_{-} Z$	GPM	gal (US)

GPM = gal (US)/min
Note 1) For the type with unit switching function
[The type without the unit switching function will have a
fixed SI unit ($/$ min or I).]

Series PFA

Flow Rate Setting
Flow rate setting mode (manual)

Press the SET button.
(Refer to Table 2 for the relationship of each value to the switch output.)

4. OUT1 Setting
 Value (2) Input

Display changes to input of OUT1 setting value (2).
The setting value and $P_{-} ?^{2}$ (or $n-e^{2}$) are
displayed alternately.
© Button: Increases the setting value

- Button: Decreases the setting value

2. Setting in the
 Manual Mode

The display shows F_{-}: Press the SET button.

3. OUT1 Setting
 Value (1) Input

Display changes to input of OUT1 setting value (1) The setting value and p_{-}; (or n_l) are displayed alternately.
Button: Increases the setting value
Button: Decreases the setting value

Setting is completed when the SET button is pressed.

Display changes to input of OUT2 setting value (2).
The setting value and 9.4 (or 0.4) are
displayed alternately.
© Button: Increases the setting value
V Button: Decreases the setting value

Flow rate setting mode (auto preset)

Press the SET button, and then release it when $F_{\text {_ }}$ t is displayed.

Press the $\mathbf{\Delta}$ button to switch the display to $F .2$.

In this condition, preparations are performed on
equipment for the OUT1 setting, and flow is
4. OUT1 Auto Preset

When the SET button is pressed at this point, the flow rate values are read automatically, and the optimum setting value is input.
$8: 2$ and the input value are displayed alternately.

Preparations are performed on equipment for the OUT2 setting, and flow is started. $\binom{$ In case the OUT2 setting is not }{ required, press the $\boldsymbol{\Delta}$ button and the } required, press button simultaneously while in this
started.
In case the OUT1 setting is not
required, press the $\boldsymbol{\Delta}$ button and the
V button simultaneously while in this condition.
6. OUT2 Auto Preset

When the SET button is pressed at this point,
the flow rate values are read automatically,
and the optimum setting value is input.
$R 2 L$ and the input value are displayed
alternately.

| ON point \mathbf{A} |
| :--- | :--- |
| (C.C1) |
| OFF point |

For Air

Other functions

- Accumulated flow function

Start of Accumulation

Accumulation start Press the SET button while pressing the $\boldsymbol{\nabla}$ button. The - mark blinks and accumulation begins.

By pressing the $\mathbf{\Delta}$ button, the real-time flow rate can be confirmed during accumulation.

The value can be accumulated to 999999, but normally only the lower 3 digits are displayed. Press the $\boldsymbol{\nabla}$ button to confirm the upper 3 digits.

Stopping Accumulation

Press the SET button while pressing the $\boldsymbol{\nabla}$ button.
The display holds the value accumulated up to the present and stops. To start further accumulation from this point, press the SET button while pressing the ∇ button.
The display can be cleared by pressing the $\boldsymbol{\Delta}$ button and the V button simultaneously for 2 seconds or more.

- Key lock mode ---------- Prevents misoperation of buttons.

Start of Key Locking

Press the SET button continuously for 3 seconds or more.
The display changes from F_{-}; to
d. $:$, and when it shows uni
release the SET button.

Release of Key Locking

Press the SET button
continuously for 3 seconds or more.
Release the SET button when the display shows Lor

- Switching the flow rate range of the remote type (for air)

Flow Rate Range Switching

When the SET button is pressed continuously for 4 seconds or more, the display changes as shown in Table 3

Setting is completed when the SET button is pressed.

Table 3

Display	Flow rate range	Applicable model
10 L	1 to 10//min	For PFA30 \square
50 L	5 to 501/min	
1 L	10 to 100l/min	For PFA31 \square
2 L	20 to $2001 / \mathrm{min}$	
5 L	50 to $5001 / \mathrm{min}$	

Series PFA

Dimensions/Integrated Display Type for Air

PFA710/750

Internal circuit and wiring examples

PFA7 $\square \square-\square \square-67 \square(-M)$

PFA7 $\square 1-\square \square-28 \square(-M)$

PFA7 $\square 1-\square \square$-68 \square (-M)

Connector pin numbers

Pin no.	Pin description
$\mathbf{1}$	DC $(+)$
$\mathbf{2}$	OUT2/Analog output
$\mathbf{3}$	DC $(-)$
$\mathbf{4}$	OUT1

For Air

Dimensions/Remote Type Sensor Unit for Air

PFA510/550

PFA511/521/551

Wiring

* Use this sensor by connecting it with the SMC remote type display unit series PFA3 $\square \square$.
(1), (3), and (4) are connector pin numbers.

1 , 2, and 3 are the series PFA3 $\square \square$ terminal numbers.

Connector pin numbers

Pin no.	Pin description
$\mathbf{1}$	DC (+)
$\mathbf{2}$	NC
$\mathbf{3}$	DC (-)
$\mathbf{4}$	OUT

Series PFA

Dimensions/Remote Type Display Unit for Air

PFA3 $\square \square$-A

Panel mount type

Panel fitting dimensions

PFA3 $\square \square$-B
DIN rail type

Internal circuit and wiring examples

[1 to 8 are terminal numbers.

PFA312- $\square(-M)$

PFA313- $\square(-M)$

For Air

Digital Flow Switch/High Flow Rate Type Series PFA

How to order

Integrated
display type

Flow rate range

| 03 | 150 to $30001 / \mathrm{min}$ |
| :--- | :--- | 300 to $60001 / \mathrm{min}$ 600 to $120001 / \mathrm{min}$

PFA7 High flow rate type Port specification

Port size

Symbol	Port size	Flow rate (l/min)			Applicable model
		3000	6000	12000	
10	1	-			PFA703H
14	11/2		\bullet		PFA706H
20	2			-	PFA712H

Output specification
28 NPN open collector 1 output + Analog output (1 to 5V)
29 NPN open collector 1 output + Analog output (4 to 20 mA)
PNP open collector 1 output + Analog output (1 to 5V)
PNP open collector 1 output + Analog output (4 to 20 mA)
Switching of switch output and cumulative pulse output is possible with NPN or PNP open collector outputs.

Specifications

Model		PFA703H	PFA706H	PFA712H
Measured fluid		Dry air		
Detection type		Heater type		
Flow rate measurement range Note 5)		150 to $3000 \mathrm{l} / \mathrm{min}$	300 to 60001/min	600 to 12000l/min
Minimum setting unit Note 5)		$51 / \mathrm{min}$	101/min	
Display unit) Real-time flow rate	1/min, CFM		
	Accumulated flow	$\mathrm{I}, \mathrm{m}^{3}, \mathrm{~m}^{3} \times 10^{3}, \mathrm{ft}^{3}, \mathrm{ft}^{3} \times 10^{3}, \mathrm{ft}^{3} \times 10^{6}$		
Operating pressure range		0.1 to 1.5 MPa		
Withstand pressure		2.25 MPa		
Pressure loss		20 kPa (at maximum flow rate)		
Accumulated flow range		0 to 9,999,999,999		
Operating temperature range		0 to $50^{\circ} \mathrm{C}$ (with no condensation)		
Linearity Note 2)		$\pm 1.5 \%$ F.S. or less (0.7 MPa , at $20^{\circ} \mathrm{C}$)		
Repeatability		$\pm 1.0 \%$ F.S. or less (0.7 MPa , at $20^{\circ} \mathrm{C}$)		
Pressure characteristics		$\pm 1.5 \%$ F.S. or less (0.1 to 1.5 MPa , based on 0.7 MPa)		
Temperature characteristics		$\pm 2.0 \%$ F.S. or less (0 to $50^{\circ} \mathrm{C}$, based on $25^{\circ} \mathrm{C}$)		
Output specifications	Switch output ${ }^{\text {Note 3) }}$	NPN open collector Max. load current: 80mA, Max. applied voltage: 30 V , Internal voltage drop: 1 V or less (with load current of 80 mA)		
		PNP open collector Max. load current: 80 mA , Internal voltage drop: 1.5 V or less (with load current of 80 mA)		
	Accumulated ${ }^{\text {Note 3) }}$ pulse output	NPN or PNP open collector Flow rate per pulse: 1001/pulse, 10.0ft³/pulse ON time per pulse: $50 \mathrm{msec} /$ pulse		
	Analog output ${ }^{\text {Note 4) }}$	Output voltage: 1 to 5V, Load impedance: $100 \mathrm{k} \Omega$ or more		
		Output current: 4 to 20 mA , Load impedance: $250 \mathrm{k} \Omega$ or more		
Response time		1s or less		
Hysteresis		Hysteresis mode: Variable (can be set from 0), Window comparator mode: (can be set from 0 to 3\% F.S.)		
Power supply voltage		24 VDC (ripple $\pm 10 \%$ or less)		
Current consumption		150 mA or less		
Withstand voltage		1000VAC for 1 min . between external terminal block and case		
Insulation resistance		$50 \mathrm{M} \Omega(500 \mathrm{VDC})$ between external terminal block and case		
Noise resistance		$1000 \mathrm{Vp}-\mathrm{p}$, Pulse width $1 \mu \mathrm{~s}$, Rise time 1ns		
Vibration resistance		10 to 500 Hz at the smaller of amplitude 1.5 mm or acceleration $98 \mathrm{~m} / \mathrm{s}^{2}$ in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions, 2 hours each		
Impact resistance		$490 \mathrm{~m} / \mathrm{s}^{2}$ in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions, 3 times each		
Weight		1.1 kg (without lead wire)	1.3 kg (without lead wire)	2.0 kg (without lead wire)
Enclosure		Equivalent to IP65		
Port size (Rc, NPT, G)		1	11/2	2

[^1]
Series PFA

Construction

Parts list

No.	Description	Material	Note
$\mathbf{1}$	Attachment	Aluminum alloy	Anodized
2	Seal	H, NBR	-
3	Mesh	Stainless steel	-
4	Body	Aluminum alloy	Anodized
5	Sensor	PPS	-
6	Spacer	PBT	-

Operating Unit Descriptions

Error Correction

Take the following corrective actions when errors occur.

LED display	Problem	Corrective action
	A current of more than 80 mA is flowing to OUT1.	Check the load and wiring for OUT1.
	The setting data has changed due to some influence.	Perform the RESET operation, and set all data again.
	The flow rate is over the flow rate measurement range.	Reduce the flow rate until it is within the flow rate measurement range, using an adjustment valve, etc.

Connectors

Since the connectors (female contacts) shown below can be used, please refer to the respective manufacturers.

Connector size	Number of pins	Manufacturers	Applicable series
M12	4	C. CORRENS \& CO., LTD.	VA-4D
		OMRON Corporation	XS2
		Yamatake-Honeywell Co., Ltd.	PA5-4I
		Hirose Electric Company	HR24
		DDK Ltd.	CM01-8DP4S

Note) C. CORRENS \& CO., LTD. is the general agent in Japan for Hirschmann.

For Air Digital Flow Switch

Operation

Function configuration

In each of modes F, \boldsymbol{F} to $F, 7$, pressing
the DOWN (∇) button returns the display to the previous mode. Also, pressing the UP (\triangle) button changes the display to the next mode.

Series PFA

Operation

1. Initial Setting Mode

2. Display Selection Mode

3. Display Unit Selection Mode

Display	$\begin{aligned} & \text { Real-time } \\ & \text { flow rate } \end{aligned}$	Accumulated flow
H. 1	I/min	$\mathrm{l}, \mathrm{m}^{3}, \mathrm{~m}^{3} \times 10^{3}$
H. 2	CFM	$\mathrm{ft}^{3}, \mathrm{ft}^{3} \times 10^{3}, \mathrm{ft}^{3} \times 10^{6}$

Note 1) For the type with unit switching function
[The type without the unit switching function will have a fixed SI unit ($1 / \mathrm{min}$, or $\mathrm{I}, \mathrm{m}^{3}$ or $\mathrm{m}^{3} \times 10^{3}$)].

For Air Digital Flow Switch

4. Output Specification Selection Mode

5. Output Type Selection Mode

OUT1 output specifications

Real-time switch output (oi: 1. ii) Refer to "Flow Rate Setting Mode" for

Accumulated switch output (aid i_ i)
Refer to "Flow Rate Setting Mode" for the

Accumulated pulse output (oi: t_2)

Table 2 Flow rate value per pulse | Not 1) |
| :--- |

Display	Accumulated flow
\mathbf{U}.	$1001 /$ pulse
\mathbf{U}.	$10.0 \mathrm{tt}^{3} / \mathrm{pulse}$

Note 1) For the type with unit switching function [The type without the unit switching function will
have a fixed SI unit $\left(\mathrm{l} / \mathrm{min}\right.$, or $\mathrm{I}, \mathrm{m}^{3}$ or $\left.\mathrm{m}^{3} \times 10^{3}\right)$.]

Series PFA

Operation

6. Key Lock Mode

Prevents the misoperation of buttons.
Start of key locking

Release of key locking

7. Flow Rate Setting Mode

Performs the setting value input.
The input method depends on the OUT1 output specification.

Real-time switch output (oil (C - I)

Enter the setting value.
The setting value and $\boldsymbol{\rho}$. 1
(or n. 1) are displayed
alternately.
UP Button: Increases the setting value
DOWN Button: Decreases
the setting value

Enter the setting value. The setting value and P_{-}? (or $n_{-} \bar{\zeta}^{7}$) are displayed alternately. UP Button: Increases the setting value DOWN Button: Decreases the setting value

Accumulated switch output (aid i_ i)

 mode
Performs setting of the hysteresis value. The hysteresis value and HIS are displayed alternately.
UP Button: Increases the setting value DOWN Button: Decreases the setting value The hysteresis vecreasen the setug value The hysteresis value can be set between 0 to 3% of the rated flow rate value. However, if the difference between $\boldsymbol{P}_{-} \boldsymbol{f}\left(n_{-} \mathbf{I}\right)$ and $\boldsymbol{P}_{-} \vec{Z}\left(n_{-}-\overline{2}\right)$ is less than 6% of the rated flow rate value, the difference between $P_{-} ;\left(n_{-} 1\right)$ and $P_{-} \boldsymbol{Z}\left(n_{-}-\boldsymbol{Z}\right)$ will be half for the maximum hysteresis setting value.

P_ $: \geq \boldsymbol{P}_{-2}\left(n_{-}: \geq n_{-2}\right)$: Hysteresis mode Hysteresis value setting is not available.

For Air Digital Flow Switch

8. Flow Rate Conversion Mode

Flow rate display confirmation
Confirming the accumulated flow when real-time flow rate is selected.

Confirming the real-time flow rate when accumulated flow is selected.

Press the DOWN button. Displays the real-time flow rate while
the DOWN button is pressed.
(Returns to the accumulated flow
display when the DOWN button is released.)
Changing the accumulated flow unit (Sets the accumulated flow display unit when accumulated flow is selected.)

* When the buttons are not operated for 5 seconds, the unit stops blinking automatically and exits from changing of the accumulated flow display unit. The accumulated flow display unit does not change in this case.

Series PFA

Operation

Clearing the accumulated value

Initializing the setting

In the initial setting mode _ . D, press the UP button and DOWN button for 2 seconds or more.

When the SET button is pressed, the setting returns to the factory setting.

Factory setting
Display setting: Real-time flow rate (d.i) Unit setting : $/ / \min \left(\mathbf{L}_{-}\right.$I $)$
Switch specification: Real-time switch output (aid in in
Output mode: Inverted output (olit in
Flow rate setting value: Real-time flow rate Full range median value Accumulated flow
Key lock mode: Unlocked (uni)
Flow rate conversion conditions: $20^{\circ}, 101.3 \mathrm{kPa}, 65 \% \mathrm{RH}$ (ANR) (R \cap,)
When the MODE button is pressed, the
setting changes to F _ \boldsymbol{D} instead of being
initialized.

For Air Digital Flow Switch Series PFA

Dimensions

PFA703H/706H/712H

Connector pin numbers

Pin no.	Pin description
$\mathbf{1}$	DC $(+)$
$\mathbf{2}$	Analog output
$\mathbf{3}$	DC $(-)$
$\mathbf{4}$	OUT1

Internal circuit and wiring examples

PFA7 $\square \square \mathrm{H}-\square \square-{ }_{-29}^{28}(-\mathrm{M})$

PFA7 $\square \square \mathrm{H}-\square \square-\frac{\mathbf{6 8}}{69}(-\mathrm{M})$

Accumulated pulse output wiring examples

PFA7 $\square \square \mathrm{H}-\square \square-{ }_{29}^{28}(-\mathrm{M})$

PFA7 $\square \square \mathrm{H}-\square \square-\frac{68}{69}(-\mathrm{M})$

Part no.	Minimum measured flow rate value $[1 / \mathrm{min}]$	Maximum measured flow rate value [l/min]
PFA703H- $\square-28$ PFA703H- $\square-68$	150	3000
PFA706H- -28 PFA706H- $\square-68$	300	6000
PFA712H- -28 PFA712H- $\square-68$	600	12000

4 to 20mADC

Part no.	Minimum measured flow rate value $[/ \mathrm{min}]$	Maximum measured flow rate value [l/min]
PFA703H- $\square-29$ PFA703H- $\square-69$	150	3000
PFA706H- -29 PFA706H- $\square-69$	300	6000
PFA712H- $\square-29$ PFA712H- $\square-69$	600	12000

For Water Digital Flow Switch Series PFW

How to order

Specifications

Model		PFW704	PFW720	PFW740
Measured fluid		Water		
Detection type		Karman vortex		
Flow rate measurement and setting range		0.5 to 4 (setting is 0.6 to 4) $\mathrm{l} / \mathrm{min}$	2 to16l/min	5 to $401 / \mathrm{min}$
Minimum setting unit		0.051/min	0.11/min	0.51/min
Note 1) Display units	Real-time flow rate	I/min, gal (US)/min		
	Accumulated flow	I, gal (US)		
Operating pressure range		0 to 1 MPa		
Withstand pressure		1.5 MPa		
Accumulated flow range		0 to 999999\|		
Operating temperature range		0 to $50^{\circ} \mathrm{C}$ (with no condensation)		
Linearity		$\pm 5 \%$ F.S. or less		
Repeatability		$\pm 3 \%$ F.S. or less		
Temperature characteristics		$\pm 5 \%$ F.S. or less (0 to $50^{\circ} \mathrm{C}$)		
Output Note 2) specifications	Switch output	NPN open collector $\begin{aligned} & \text { Maximum load current: } 80 \mathrm{~mA} \text {, Internal voltage drop: } 1 \mathrm{~V} \text { or less (with load current of } 80 \mathrm{~mA} \text {) } \\ & \text { Maximum applied voltage: } 30 \mathrm{~V}\end{aligned}$		
		PNP open collectorMaximum load current: 80 mA Internal voltage drop: 1.5 V or less (with load current of 80 mA)		
Indicator lights		Lights up when ON, OUT1: Green, OUT2: Red		
Response time		1s or less		
Hysteresis		Hysteresis mode: Variable (can be set from 0), Window comparator mode: Fixed (3 digits) Note 3)		
Power supply voltage		12 to 24 VDC (ripple $\pm 10 \%$ or less)		
Current consumption		70 mA or less		
Withstand voltage		1000VAC for 1 min. between external terminal block and case		
Insulation resistance		$50 \mathrm{M} \Omega$ (500VDC) between external terminal block and case		
Noise resistance		1000Vp-p, Pulse width $1 \mu \mathrm{~s}$, Rise time 1 ns		
Vibration resistance		10 to 500 Hz at the smaller of amplitude 1.5 mm or acceleration $98 \mathrm{~m} / \mathrm{s}^{2}$ in X, Y, Z directions, 2 hours each		
Impact resistance		$490 \mathrm{~m} / \mathrm{s}^{2}$ in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions, 3 times each		
Weight		460 g (without lead wire)	520 g (without lead wire)	700g (without lead wire)
Enclosure		Equivalent to IP65		
Port size (Rc, NPT, G)		3/8	3/8, 1/2	1/2, 3/4

Note 1) For the type with unit switching function [The type without the unit switching function will have a fixed SI unit ($/ / \mathrm{min}$ or I$)$.]
Note 2) The output functions operate only for the real-time flow rate display, and do not operate for the accumulated flow display.
Note 3) Window comparator mode - Since hysteresis is 3 digits, separate P1 and P2 by 7 digits or more. 1 digit is the minimum setting unit (refer to the table above).

For Air Digital Flow Switch

Specifications

Model		PFW310	PFW311	PFW300	PFW301	PFW320	PFW321
Flow rate measurement and setting range		0.5 to 4 (setting is 0.6 to 4) $1 / \mathrm{min}$		2 to 161/min		5 to 401/min	
Minimum setting unit		0.051/min		0.11/min		0.51/min	
Display units Note 1)	Real-time flow rate	$1 / \mathrm{min}$, gal (US)/min					
	Accumulated flow	I, gal (US)					
Accumulated flow range		0 to 999999\|					
Operating temperature range		0 to $50^{\circ} \mathrm{C}$ (with no condensation)					
Linearity Note 2)		$\pm 5 \%$ F.S. or less					
Repeatability Note 2)		$\pm 3 \%$ F.S. or less					
Temperature characteristics Note 2)		$\pm 5 \%$ F.S. or less (0 to $50^{\circ} \mathrm{C}$)					
Output Note 3) specifications	Switch output	NPN open collector $\begin{array}{ll}\text { Maxim } \\ \text { Maxim } \\ \text { Interna }\end{array}$		aximum load current: 80 mA aximum applied voltage: 30 V ernal voltage drop: 1 V or less (with load current of 80 mA)			
		PNP open collector $\begin{aligned} & \text { Maximum load current: } 80 \\ & \text { Internal voltage drop: } 1.5 \mathrm{~V}\end{aligned}$			ss (with load	t of 80 mA)	
Indicator lights		Lights up when ON, OUT1: Green, OUT2: Red					
Response time		1 s or less					
Hysteresis		Hysteresis mode: Variable (can be set from 0) Window comparator mode: Fixed (3 digits) Note 4)					
Power supply voltage		12 to 24 VDC (ripple $\pm 10 \%$ or less)					
Current consumption		50 mA or less					
Weight		45 g					
Enclosure		Equivalent to IP40					

Note 1) For the type with unit switching function [The type without the unit switching function will have a fixed SI unit (l/min or l).]
Note 2) The system accuracy when combined with PFW5 $\square \square$.
Note 3) The output functions operate only for the real-time flow rate display, and do not operate for the accumulated flow display.
Note 4) Window comparator mode - Since hysteresis is 3 digits, separate P1 and P2 by 7 digits or more. 1 digit is the minimum setting unit (refer to the table above).

Series PFW

How to order

Remote Type
 Sensor Unit

Thread type

$\mathbf{N i l}$	Rc
\mathbf{N}	NPT
\mathbf{F}	G

- Port size

Symbol	Size	Flow rate $(1 / \mathrm{min})$			Applicable model
		4	16	40	
03	$3 / 8$	\bullet	\bullet		PFW504,520
04	$1 / 2$			\bullet	PFW520, 540
06	$3 / 4$			\bullet	PFW540

Specifications

Model	PFW504	PFW520	PFW540
Measured fluid	Water		
Detection type	Karman vortex		
Flow rate measurement range	0.5 to $41 / \mathrm{min}$	2 to 161/min	5 to $401 / \mathrm{min}$
Operating pressure range	0 to 1 MPa		
Withstand pressure	1.5 MPa		
Operating temperature range	0 to $50^{\circ} \mathrm{C}$ (with no condensation)		
Power supply voltage	12 to 24VDC (ripple $\pm 10 \%$ or less)		
Current consumption	20 mA or less		
Weight	410 g (without lead wire)	470 g (without lead wire)	650 g (without lead wire)
Enclosure	Equivalent to IP65		
Port size (Rc, NPT, G)	3/8	3/8, 1/2	1/2, 3/4

For Water Digital Flow Switch
 Series PFW

Flow Characteristics (Pressure Loss)

PFW720, 520

PFW740, 540

Sensor Unit Construction

$\xrightarrow{\text { Flow direction }}$

Parts list

No.	Description	Material
$\mathbf{1}$	Attachment	Stainless steel
$\mathbf{2}$	Seal	NBR
$\mathbf{3}$	Body	PPS
$\mathbf{4}$	Sensor	PPS

Error correction, connectors, operating part descriptions, and flow rate
, setting are the same as series PFA for air. Refer to pages 1 through 7.

Series PFW

Dimensions/Integrated Display Type for Water

Dimensions/Remote Type Sensor Unit for Water

PFW504/520

$\xrightarrow{\text { Flow direction }}$

Model	Dimension L
PFW504	100
PFW520	106

PFW540

Wiring

* Use this sensor by connecting it with the SMC remote type display unit series PFW3 $\square \square$.
(1), (3), and (4) are connector pin numbers. 1 , 2, and 3 are the series PFW3 $\square \square$ terminal numbers.

Connector pin numbers

Pin no.	Pin description
$\mathbf{1}$	DC $(+)$
$\mathbf{2}$	N C
$\mathbf{3}$	DC $(-)$
$\mathbf{4}$	OUT

$\xrightarrow{\text { Flow direction }}$

Series PFA

Dimensions/Remote Type Display Unit for Water

PFW3 $\square \square$-A
Panel mount type

View A

Panel fitting dimensions

* The applicable panel thickness is 1 to 3.2 mm .

Internal circuits and wiring

PFW3 $\square 1-\square$ (-M)

PFW3 $\square \square$-B

DIN rail type

Series PFA／PFW

 Safety InstructionsThese safety instructions are intended to prevent a hazardous situation and／or equipment damage．These instructions indicate the level of potential hazard by a label of＂Caution＂，＂Warning＂or＂Danger＂．To ensure safety，be sure to observe these precautions．

© Warning

1．The compatibility of equipment is the responsibility of the person who designs the pneumatic system or decides its specifications．
Since the products specified here are used in various operating conditions，their compatibility for the specific pneumatic system must be based on specifications or after analysis and／or tests to meet your specific requirements．
2．Only trained personnel should operate machinery and equipment．
Equipment can be dangerous if an operator is unfamiliar with it．Assembly，handling or repair of systems should be performed by trained and experienced operators．
3．Do not service machinery／equipment or attempt to remove components until safety is confirmed．
1．Inspection and maintenance of machinery／equipment should only be performed after confirmation of safe locked－out control positions．
2．When equipment is to be removed，first confirm that safety measures have been implemented．
3．Before machinery／equipment is restarted，confirm that safety measures have been implemented and proceed with caution．
4．Contact SMC if the product is to be used in any of the following conditions：
1．Conditions and environments beyond the given specifications，or if product is used outdoors．
2．Installation on equipment in conjunction with atomic energy，railway，air navigation，vehicles，medical equipment，food and beverages，recreation equipment，emergency stop circuits，press applications，or safety equipment．
3．An application which has the possibility of having negative effects on people，property，or animals， requiring special safety analysis．

Series PFA/PFW Specific Product Precautions 1
Be sure to read before handling.
Refer to page 27 for safety instructions.

Design and Selection

© Warning

1. Use with the specified voltage.

Use with voltage outside of the specifications can cause malfunction or switch damage, as well as electrocution and fire hazard, etc.
2. Never use a load which exceeds the maximum load capacity.
This can cause damage to switches.
3. Do not use loads which generate surge voltage.
The switch's output section is provided with a surge protection feature in its circuit, but repeated application can cause damage. When directly driving surge generating loads, such as relays and solenoid valves, etc., use a type of switch which has a built-in surge absorbing element.
4. Since the fluids which can be used differ depending on the product, be certain to confirm the specifications.
Since switches do not have explosion proof construction, do not use flammable gases or fluids. This may cause fire or explosion.
5. Take note of the switch's internal voltage drop.
When operated below the prescribed voltage, the load may not operate, even if the switch operates normally. Confirm the load's operating voltage and see that the following formula is satisfied.

Power supply _ voltage
Switch's internal voltage drop
:---
voltage

[When used for air]

6. Be certain to observe specifications for the measured flow rate and operating pressure.
Operation at a flow rate exceeding the prescribed range can cause damage.
In addition, the switch will be damaged if operated above the maximum operating pressure.
[When used for water]
7. Be certain to observe specifications for the measured flow rate and operating pressure.
Operation at a flow rate exceeding the prescribed range can cause damage.
In addition, the switch will be damaged if operated above the maximum operating pressure. In particular, avoid application of pressure above the specifications caused by water hammer.
<Pressure Reduction Measure Examples>
a) Use a water hammer relief valve, etc., to slow the valve's closing speed.
b) Absorb impact pressure by using an accumulator, or elastic piping material such as rubber hose.
c) Make the length of piping as short as possible.
8. Design so that the flow of liquid always fills the detection passage.
Especially in the case of vertical mounting, set up so that flow moves from the bottom to the top.
9. Operate at a flow rate within the flow rate measurement range.
If operated outside of the flow rate measurement range, the Karman vortex will not be generated and normal measurement will become impossible.

Design and Selection

©Caution

1. The switch's data will not be cleared even if the power is turned off.
Since the input data is held in an EEPROM, it will not be cleared even if the power is turned off. (Rewriting is possible up to 10^{5} times, and the data holding time is 20 years.)

Mounting

\measuredangle Warning

1. Mount switches using the proper tightening torque.
The switch may be damaged if it is tightened above the tightening torque range. Also, if it is tightened below the tightening torque range, the connecting thread section may become loose.

Nominal size of threads	Proper tightening torque N•m
Rc $1 / 8$	7 to 9
Rc $1 / 4$	12 to 14
Rc $3 / 8$	22 to 24
Rc $1 / 2$	28 to 30
Rc $3 / 4$	28 to 30
Rc 1	36 to 38
Rc $1 / 2$	48 to 50
Rc 2	48 to 50

2. When connecting piping to the switch, do this by applying a wrench to the metal part which is integrated with the piping section.
Never apply a wrench to the portion which is made of resin, as this can cause damage to the switch.
3. Pay attention to the fluid flow direction.

Install and connect piping so that fluid flows in the direction of the arrow indicated on the body.
4. Before connecting piping to the switch, remove dirt, etc., from inside the piping by blowing it out with air.
5. Do not drop or bump.

Do not drop, bump or apply excessive impacts ($490 \mathrm{~m} / \mathrm{s}^{2}$) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction.
6. Hold the product by the body when handling. Since the tensile strength of the power cord is 49 N , pulling it with a force greater than this can cause damage. Hold by the body when handling.
7. Use after confirming that equipment is operating properly.
After a new installation, system repair or renovation, connect the fluid and power, etc., and then perform appropriate function and leak tests to confirm that mounting has been done correctly.
8. Avoid mounting so that the bracket is on top. The switch can be mounted vertically, horizontally or in any other orientation, but avoid mounting with the bracket on top.
[When used for air]
9. Never mount a switch in a place that will be used as a scaffold during piping work.
Damage may occur if subjected to an excessive load.

Series PFA/PFW Specific Product Precautions 2
Be sure to read before handling.
Refer to page 27 for safety instructions.

Mounting

© Warning

10. Provide a length of straight pipe before and after a switch that is at least 8 times the pipe diameter.
In cases where there is an abrupt reduction in the size of piping or restriction due to a valve, etc., on the upstream side, the pressure distribution in the piping changes, and accurate measurement becomes impossible. Therefore, measures such as these should be implemented on the downstream side of the switch.
[When used for water]
11. Never mount a switch in a place that will be used as a scaffold during piping work.
Damage may occur if subjected to an excessive load. Especially when the switch supports piping, do not apply a load of $15 \mathrm{~N} \cdot \mathrm{~m}$ or more to the metal part of the switch.
12. Provide a length of straight pipe before and after a switch that is at least 8 times the pipe diameter.
In cases where there is an abrupt reduction in the size of piping or restriction due to a valve, etc., on the upstream side, the flow velocity distribution in the piping is disturbed, and accurate measurement becomes impossible. Therefore, measures such as these should be implemented on the downstream side of the switch.
Furthermore, when used with the downstream side open, use caution as there is a danger that cavitation will easily occur.

Wiring

© Warning

1. Confirm wire colors and terminal numbers when wiring is performed.
Since incorrect wiring can lead to damage or failure of the switch as well as malfunction, perform wiring after confirming wiring colors and terminal numbers with the instruction manual.
2. Avoid repeatedly bending or stretching lead wires.
Broken lead wires will result from repeatedly applying bending stress or stretching force to the lead wires.
3. Confirm proper insulation of wiring.

Be certain that there is no faulty wiring insulation (contact with other circuits, ground fault, improper insulation between terminals, etc.). Damage may occur due to excess current flow into a switch.
4. Do not wire with power lines or high voltage lines.
Wire separately from power lines or high voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits containing switches may malfunction due to noise from these other lines.
5. Do not allow short circuiting of loads.

If a load is short circuited, an overcurrent error will be displayed by the switch. However, wiring should be performed carefully, as protection cannot be afforded against all miswiring errors (power supply polarity, etc.).

Operating Environment

© Warning

1. Never use in an atmosphere of explosive gases.
The construction of switches is not intended to prevent explosion. Never use in an atmosphere with an explosive gas since this may cause a serious explosion.
2. Mount switches in locations without vibration ($98 \mathrm{~m} / \mathrm{s}^{2}$ or less) or impact ($490 \mathrm{~m} / \mathrm{s}^{2}$ or less).
3. The flow switches are not lightning surge proof.
Although flow switches have the CE marking, they are not lightning surge proof. Protective measures against lightning surges should be made on the equipment.
4. Avoid use in locations where water or oil, etc., is splashed or sprayed.
Switches are dust proof and splash proof, but avoid use in locations where a large amount of water or oil is splashed or sprayed. Especially, the remote type display unit is an open type, and use in locations with water or oil splashes must be avoided.

[When used for air]

5. Observe the fluid and ambient temperature ranges.
The fluid and ambient temperatures are 0 to $50^{\circ} \mathrm{C}$. Since moisture in the fluid can freeze when used at $5^{\circ} \mathrm{C}$ or below, causing damage and malfunction of switches, consider measures to prevent freezing. The installation of an air dryer is recommended to remove drainage and moisture from circuits.
Furthermore, even though the ambient temperature range remains within specifications, do not operate in locations where there are abrupt temperature changes.

[When used for water]

6. Observe the fluid and ambient temperature ranges.

The fluid and ambient temperatures are 0 to $50^{\circ} \mathrm{C}$. Since the fluid can freeze when used at $5^{\circ} \mathrm{C}$ or below, causing damage and malfunction of switches, consider measures to prevent freezing.
Furthermore, even though the ambient temperature range remains within specifications, do not operate in locations where there are abrupt temperature changes.

Maintenance

© Warning

1. Perform inspections regularly to confirm normal operation.
It may otherwise not be possible to assure safety due to unexpected malfunction or misoperation, etc.
2. Use caution when using in an interlock circuit.
When used in an interlock circuit, provide multiple interlock circuits as a precaution against failure, and also perform regular inspections to confirm normal operation.
3. Do not disassemble or modify the unit.

Series PFA/PFW Specific Product Precautions 3
Be sure to read before handling.
Refer to page 27 for safety instructions.

Measured Fluids
 © Warning

1. Check regulators and flow adjustment valves before allowing the flow of fluid.
If a pressure or flow rate above the rating is applied to a switch, the sensor unit may be damaged.
[When used for air]
2. Measured fluids for the switch are nitrogen and air. However, only dry air can be measured with the high flow rate type.
Note that accuracy cannot be guaranteed for other fluids.
3. Never use flammable fluids.

The flow velocity sensor is heated to approximately $150^{\circ} \mathrm{C}$.
4. In cases where there is a danger of drainage or foreign matter being mixed in the fluid, install a filter or mist separator on the upstream side.
Otherwise, the rectifying device built into the switch will become clogged and accurate measurement will not be possible.
[When used for water]
5. The measured fluid for the switch is water.

Note that accuracy cannot be guaranteed for other fluids.
6. Never use flammable fluids.
7. In cases where there is a possibility of foreign matter being mixed in the fluid, install a filter on the upstream side.
If foreign matter adheres to the switch's vortex generator or vortex detector, accurate measurement will become impossible.

Other

§Warning

1. Since switch output remains OFF while a message is displayed after power is turned ON, start measurement after a value is displayed.
2. Perform settings after stopping control systems.
When the switch's initial setting and flow rate setting are performed, output maintains the condition prior to the settings. In the case of 100,200 , and $5001 / \mathrm{m}$ type switches for air, output turns OFF when the switch's initial setting and flow rate setting are performed.
3. Do not apply excessive rotational force to the display unit.
The integrated type display unit is able to rotate 360°. Rotation is controlled by a stopper, however, take note that the stopper may be damaged if the display is turned with excessive force.
[When used for air]
4. Be certain to turn on the power when the flow rate is at zero.
Allow an interval of 10 minutes after turning on the power, as there may be some changes in the display.
5. Flow rate units

The switch performs measurement at mass flow rates at which it will not be effected by temperature and pressure. The units used are $\mathrm{l} / \mathrm{min}$, where this display substitutes the volumetric flow rate at $0^{\circ} \mathrm{C}$ and 101 kPa for the mass flow rate. In case of the high flow rate type for air, the display can be switched to show the volumetric flow rate at $20^{\circ} \mathrm{C}, 101.3 \mathrm{kPa}$, and $65 \% \mathrm{RH}$ (ANR).

SMC'S GLOBAL MANUFACTURING, DISTRIBUTION AND SERVICE NETWORK

EUROPE

AUSTRIA
SMC Pneumatik GmbH
CZECH
SMC Czech s.r.o.
DENMARK
SMC Pneumatik A/S
FINLAND
SMC Pneumatiikka OY
FRANCE
SMC Pneumatique SA

GERMANY

SMC Pneumatik GmbH
HUNGARY
SMC Hungary Kft.
IRELAND
SMC Pneumatics (Ireland) Ltd.
ITALY
SMC Italia S.p.A.

NETHERLANDS

SMC Pnuematics BV.
NORWAY
SMC Pneumatics Norway A/S
POLAND
SMC Industrial Automation Polska Sp.z.o.o.

ROMANIA

SMC Romania s.r.I.
RUSSIA
SMC Pneumatik LLC.
SLOVAKIA
SMC Slovakia s.r.o.

EUROPE

SLOVENIA

SMC Slovenia d.o.o

SPAIN/PORTUGAL

SMC España, S.A.

SWEDEN

SMC Pneumatics Sweden AB
SWITZERLAND
SMC Pneumatik AG.
UK
SMC Pneumatics (U.K.) Ltd.

ASIA

CHINA
SMC (China) Co., Ltd
HONG KONG
SMC Pneumatics (Hong Kong) Ltd

INDIA

SMC Pneumatics (India) Pvt. Ltd

MALAYSIA

SMC Pneumatics (S.E.A.) Sdn. Bhd.
PHILIPPINES
SMC Pneumatics (Philippines), Inc
SINGAPORE
SMC Pneumatics (S.E.A.) Pte. Ltd.
SOUTH KOREA
SMC Pneumatics Korea Co., Ltd.

TAIWAN

SMC Pneumatics (Taiwan) Co., Ltd.
THAILAND
SMC Thailand Ltd

NORTH AMERICA

CANADA

SMC Pneumatics (Canada) Ltd.
MEXICO
SMC Corporation (Mexico) S.A. de C.V.
USA
SMC Pneumatics, Inc.

SOUTH AMERICA

ARGENTINA
SMC Argentina S.A.

BOLIVIA

SMC Pneumatics Bolivia S.R.L.
BRAZIL
SMC Pneumaticos Do Brazil Ltda.
CHILE
SMC Pneumatics (Chile) S.A.
VENEZUELA
SMC Neumatica Venezuela S.A.
OCEANIA
AUSTRALIA
SMC Pneumatics (Australia) Pty. Ltd.
NEW ZEALAND
SMC Pneumatics (N.Z.) Ltd.

SMC CORPORATION

1-16-4 Shimbashi, Minato-ku, Tokyo 105-0004, JAPAN
Tel: 03-3502-2740 Fax: 03-3508-2480
URL http://www.smcworld.com
© 2000 SMC CORPORATION All Rights Reserved
1st printing November, 2000 D-SMC.L.A. P-80 (JT)

[^0]: Note 1) For the type with unit switching function [The type without the unit switching function will have a fixed SI unit ($/ / \mathrm{min}$ or l).]
 Note 2) The output functions operate only for the real-time flow rate display, and do not operate for the accumulated flow display.
 Note 3) Window comparator mode - Since hysteresis is 3 digits, separate P 1 and P 2 by 7 digits or more. 1 digit is the minimum setting unit (refer to the table above).
 Note 4) The flow rate unit is based on $0^{\circ} \mathrm{C}$ and 101.3 kPa .

[^1]: Note 1) For the type with unit switching function [The type without the unit switching function will have a fixed SI unit ($1 / \mathrm{min}$, or $\mathrm{I}, \mathrm{m}^{3}$ or $\mathrm{m}^{3} \times 10^{3}$).]
 Note 2) The high flow rate type is with CE marking. However, the linearity with applied noise is $\pm 5 \%$ F.S. or less.
 Note 3) Switch output and accumulated pulse output selections are made by button operation.
 Note 4) The analog output operates only for real-time flow rate, and does not operate for accumulated flow.
 Note 5) Flow rate display can be switched between the basic condition of $0^{\circ} \mathrm{C}, 101.3 \mathrm{kPa}$ and the standard condition (ANR) of $20^{\circ} \mathrm{C}, 101.3 \mathrm{kPa}, 65 \% \mathrm{RH}$.

