Plate Cylinder

Series MU

Double Acting: Single Rod Type/Double Rod Single Acting: Spring Return/Spring Extend ฮ25, ø32, ø40, ø50, ø63
By adopting an elliptical piston design, a slim, square shaped body has been achieved, resulting in a space saving cylinder with unrestricted mounting directions.

Elliptical design for space savings

A significant reduction in thickness has been achieved through the adoption of the elliptical piston design, enabling the cylinder to be installed in a smaller space (In-house comparison).
Various brackets are available to accommodate a wide range of applications.

Universal mounting:
Possible to mount directly on all sides except the port side.

Possible to install auto switches

Non-rotating mechanism

Due to the nature of its construction, this cylinder contains a non-rotating function.

Variations

Plate Cylinder/Double Acting Single Rod Series MU
 ø25, ø32, ø40, ø50, ø63

How to Order

Mounting Bracket/Part No.

Size					
Mounting bracket	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$
Foot $^{(1)}$	MU-L02	MU-L03	MU-L04	MU-L05	MU-L06
Flange $^{\text {Single clevis }}$	MU-F02	MU-F03	MU-F04	MU-F05	MU-F06
Double clevis	(3)	MU-D02	MU-C03	MU-C04	MU-C05

Note 1) When ordering foot brackets, 2pcs. should be ordered for each cylinder.
Note 2) Parts attached with each mounting brackets are as follows
Foot, Flange, Single clevis/Body mounting bolt
Double clevis/A clevis pin, C shape snap rings for axis, body mounting bolts
Note 3) A clevis pin and snap rings are packed with the double clevis style.

Auto Switch Mounting Bracket/Part No.

Size	Model	Note
$\mathbf{2 5 , 3 2}, \mathbf{4 0}, \mathbf{5 0}, \mathbf{6 3}$	BMU1-025	• Auto switch mounting screw (M3 $\times 0.5 \times 6.5 c)$ • Switch mounting nut

Follow (included nut) is provided. Use them with accordance to environment. (Auto switch interface is available. Order it separately.) BBA2: For D-A7/A8/F7/J7
When D-F7BAL mounted on cylinder is required, the stainless steel screw mentioned above is used at shipping. When auto switch unit is shipped, BBA2 is attached.

\triangle Precautions

「Be sure to read before handling. Refer to p.0-39 to 0-46
I for Safety Instructions and common precautions.

Plate Cylinder／Double Acting Single Rod Series MU

Specifications

Action	Double acting single rod
Fluid	Air
Proof pressure	1.05 MPa
Max．operating pressure	0.7 MPa
Min．operating pressure	0.05 MPa
Ambient and fluid temperature	-10 to $60^{\circ} \mathrm{C}$
Lubrication	Not required（Non－lube）
Piston speed	50 to $500 \mathrm{~mm} / \mathrm{S}$
Stroke length tolerance	+1.4
Cushion	Rubber bumper
Thread tolerance	JIS Class 2
Equivalent tube bore (mm)	$\varnothing 25, \varnothing 32, \varnothing 40, \varnothing 50, \varnothing 63$
Mounting	Axial foot，Front flange，Rear flange， Single clevis，Double clevis
Rod end shape	Rod end male thread，Rod end female thread

Rod Non－rotating Accuracy

Model	MU25	MU32	MU40	MU50	MU63
Non－rotating accuracy	$\pm 1^{\circ}$	$\pm 0.8^{\circ}$	$\pm 0.5^{\circ}$	$\pm 0.5^{\circ}$	$\pm 0.5^{\circ}$

Standard Stroke

（mm）

Size	Standard stroke	Allowable max．stroke
$\mathbf{2 5 , 3 2 , 4 0}$	$5,10,15,20,25,30,35,40,45,50$	300
$\mathbf{5 0 , 6 3}$	$75,100,125,150,175,200,250,300$	

，
＊Contact SMC for any intermediate strokes that are not indicated above，as they will be produced upon receipt of order．
＊＊Strokes longer than 300 mm are not available
Minimum Stroke for Auto Switch Mounting （mm）

Number of auto switches	$\begin{aligned} & \text { D-F7■V } \\ & \text { D-J79C } \end{aligned}$	$\begin{aligned} & \text { D-A7■ } \\ & \text { D-A80 } \\ & \text { D-A73C } \\ & \text { D-A80C } \end{aligned}$	D－F7口WV	D－A7■H，A80H D－F7■W，J79W D－A79W D－F7口，J79 D－F7BA，F7NT D－F7口F
2	5	10	15	15
1	5	5	10	15

Theoretical Force
Unit：N

Size	Rod dia． （mm）	Operating direction	Piston area （ mm^{2} ）	Operating pressure（ MPa ）					
				0.2	0.3	0.4	0.5	0.6	0.7
25	12	OUT	491	98	147	196	246	295	344
		IN	378	76	113	151	189	227	265
32	14	OUT	804	161	241	322	402	482	563
		IN	650	130	195	260	325	390	455
40	16	OUT	1257	251	377	503	629	754	880
		IN	1056	211	317	422	528	634	739
50	20	OUT	1963	393	589	785	982	1178	1374
		IN	1649	330	495	660	824	989	1154
63	20	OUT	3117	623	935	1247	1559	1870	2182
		IN	2803	561	841	1121	1402	1682	1962

Note）Theoretical force $(\mathrm{N})=$ Pressure $(\mathrm{MPa}) \times$ Piston area $\left(\mathrm{mm}^{2}\right)$
Weight

Size		25	32	40	50	63
Basic weight	Basic	0.18	0.28	0.42	0.80	1.20
	Axial foot	0.25	0.42	0.63	1.14	1.83
	Flange／ Front／Rear side	0.28	0.42	0.65	1.26	2.03
	Single clevis	0.24	0.40	0.64	1.20	1.88
	Double clevis（with pin）	0.25	0.44	0.68	1.27	1.96
Additional weight per 50 mm stroke		0.12	0.16	0.22	0.34	0.47
Accessories	Single clevis （Pivot bracket for double clevis）	0.06	0.12	0.22	0.40	0.68
	Double clevis（with pin） （Pivot bracket for single clevis）	0.07	0.16	0.26	0.47	0.76
	Single knuckle joint	0.03	0.04	0.07	0.16	0.16
	Double knuckle joint（with pin）	0.05	0.09	0.14	0.29	0.29

Note）The weight of the single and double clevis bracket includes the weight of the 2 bolts for mounting the bracket．
Calculation：
Example：MUL32－100
－Basic weight： 0.42 （Foot style Ø32 equiv．）
－Added weight：0．16／50 stroke
－Stroke： 100 mm stroke
$0.42+100 / 50 \times 0.16=0.74 \mathrm{~kg}$

Construction

No．	Description	Material	Note
（1）	Rod cover	Aluminum alloy	Anodized
（2）	Head cover	Aluminum alloy	Anodized
（3）	Cylinder tube	Aluminum alloy	Hard anodized
（4）	Piston	Aluminum alloy	Chromated
（5）	Piston rod	Carbon steel	Hard chromated
（6）	Bushing	Oil impregnated sintered alloy	
（7）	Hex．socket head cap screw	Stainless steel	
（8）	Wearing	Resin	
（9）	Magnet	Magnet material	Only built－in magnet style
（1）	Rod end nut	Rolled steel	Only male thread rod end
（11）	Piston seal	NBR	
（12）	Rod seal	NBR	
（13）	Bumper	Urethane	

Replacement Parts：Seal Kits

Bore size（mm）	Kit No．	Contents
25	MUB25－PS	A set of above numbers （11），（12）and（13）．
32	MUB32－PS	
40	MUB40－PS	
50	MUB50－PS	
63	MUB63－PS	

＊Seal kits consist of items（11），（12）and（13），contained in one kit，and can be ordered using the order number for each cylinder bore size．

Series MU

Basic: MUB

Rod end male thread

MUB40, 50, 63

MUB25, 32

Rod end female thread

* Dimensions except mentioned above are same as male thread style. However, K and KA dimensions are same as male thread style.

Model	Stroke range (mm)	A	AL	B	B1	BS	BT	BX	BY	C	D	ET	EY	GX	GY	H	H1	K
MUB25	5 to 300	22	19.5	24	17	37	M5 X 0.8Depth7.5	9	7	54	12	M5 X 0.8Depth 11	26	10	5	36	6	5.5
MUB32	5 to 300	26	23.5	28	19	45	M6 X 1Depth12	6.5	8	68	14	M6 X 1Depth11	42	8.5	5.5	40	7	5.5
MUB40	5 to 300	30	27	32	22	44	M8 X 1.25Depth13	8	9	86	16	M8 X 1.25Depth11	54	9	7	45	8	6
MUB50	5 to 300	35	32	39	27	54	M10 X 1.5Depth14.5	10	9	104	20	M10 X 1.5Depth15	64	11.5	8	53	11	7
MUB63	5 to 300	35	32	50	27	53	M12 X 1.75Depth18	11	12	124	20	M12 X 1.75Depth15	72	11.5	10	56	11	7

Model	KA	MM	N	NC	ND	NE	NS	NX	NY	P	S	ZZ
MUB25	10	M10 X 1.25	14	7.5Depth4.5	M5 X 0.8	4.3	43	6	26	M5 X 0.8	55	91
MUB32	12	M12 X 1.25	15.5	9Depth5.5	M6 X 1	5.1	45	6.5	28	$\mathrm{Rc}(\mathrm{PT})^{1 / 8}$	58	98
MUB40	14	M14 X 1.5	16	10.5Depth6.5	M8 X 1.25	6.9	44	8	36	$\mathrm{Rc}(\mathrm{PT})^{1 / 8}$	60	105
MUB50	18	M18 X 1.5	21.5	13.5Depth8.5	M10 X 1.5	8.7	54	10	42	$\mathrm{Rc}(\mathrm{PT})^{1 / 4}$	74	127
MUB63	18	M18 X 1.5	21.5	17Depth10.5	M12 X 1.75	10.5	53	11	46	$\mathrm{Rc}(\mathrm{PT})^{1 / 4}$	75	131

Rod end female thread (mm)

Model	H	MM	ZZ
MUB25	14	M6 X 1Depth12	69
MUB32	14	M8 X 1.25Depth13	72
MUB40	15	M8 X 1.25Depth13	75
MUB50	18	M10 X 1.5Depth15	92
MUB63	21	M10 X 1.5Depth15	96

Axial foot

(mm)										
Model	LD	LH	LS	LT	LX	LY	LZ	X	Y	ZZ
MUL25	5.5	29	79	3.2	11	56	23	12	6	109
MUL32	6.6	37	90	4.5	12	71	27	16	8	122
MUL40	9	46	96	4.5	15	89	31	18	10	133
MUL50	11	57	116	5	18	109	37	21	11	159
MUL63	13.5	67	123	6	22	129	48	24	14	169

Axial foot
MUL25…......SMU25, \#2 (\#1+\#2+\#11)
MUL32…......SMU32, \#2 (\#1+\#2+\#11)
MUL40….....SMU40, \#2 (\#1+\#2+\#11)
MUL50….....SMU50, \#2 (\#1+\#2+\#11)
MUL63.........SMU63, \#2 (\#1+\#2+\#11)
Front flange
Rear flange

Front flange
MUF25.........SMU25, \#3 (\#1+\#3+\#11) MUF32.........SMU32, \#3 (\#1+\#3+\#11) MUF40…......SMU40, \#3 (\#1+\#3+\#11) MUF50…......SMU50, \#3 (\#1+\#3+\#11) MUF63..........SMU63, \#3 (\#1+\#3+\#11)
Single clevis Double clevis

Single clevis
MUC25…......SMU25, \#5 (\#1+\#5+\#11)
CAD MUC32..........SMU32, \#5 (\#1+\#5+\#11) MUC40…......SMU40, \#5 (\#1+\#5+\#11) MUC50…......SMU50, \#5 (\#1+\#5+\#11) MUC63..........SMU63, \#5 (\#1+\#5+\#11)

Single clevis

\square
Double clevis

Model	CDH10	CX	CZ	L	Q	RR	Z	ZZ	Rotation $\left(\theta^{\circ}\right)$
MUC25, MUD25	$8_{0}^{+0.058}$	9	18	17	125	8	108	116	100
MUC32, MUD32	$10_{0}^{+0.058}$	11	22	22	142	10	120	130	90
MUC40, MUD40	$10_{0}^{+0.058}$	13	26	27	159	10	132	142	80
MUC50, MUD50	$14_{0}^{+0.070}$	16	32	32	191	14	159	173	80
MUC63, MUD63	$14_{0}^{+0.070}$	16	32	38	207	16	169	185	80

A clevis pin and snap ring are packed with the double clevis style.

Plate Cylinder/Double Acting Double Rod Series MUW
 ø20, ø32, ø40, ø50, ø63

How to Order

Auto Switch Mounting Bracket/Part No.

Mounting Bracket/Part No.

Bracket	Size	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$
Foot $^{(1)}$	MU-L02	MU-L03	MU-L04	MU-L05	MU-L06
Flange	MU-F02	MU-F03	MU-F04	MU-F05	MU-F06

Note 1) When ordering foot brackets, 2pcs. should be ordered for each cylinder.
Note 2) Body mounting bolts are packed with the foot style and flange style.

Size	Model	Note
$\mathbf{2 5 , 3 2}, \mathbf{4 0}, \mathbf{5 0 , 6 3}$	BMU1-025	• Auto switch mounting screw (M3 $\times 0.5 \times 6.5 \ell)$

*Mounting screw set made of stainless steel
Following stainless steel mounting screw set (included nut) is provided. Use them with accordance to environment. (Auto switch interface is available. Order it separately.) BBA2:For D-A7/A8/F7/J7
When D-F7BAL mounted on cylinder is required,the stainless steel screw mentioned above is used when shipping. When auto switch unit is shipped, BBA2 is attached.

\triangle Precautions

Specifications

Action	Double acting double rod style
Fluid	Air
Proof pressure	1.05 MPa
Max．operating pressure	0.7 MPa
Min．operating pressure	0.05 MPa
Ambient and fluid temperature	-10 to $60^{\circ} \mathrm{C}$
Lubrication	Not required（Non－lube）
Piston speed	50 to $500 \mathrm{~mm} / \mathrm{S}$
Stroke length tolerance	${ }^{+1.4} 0$
Cushion	Rubber bumper
Thread tolerance	JIS Class 2
Equivalent tube bore（mm）	$\varnothing 25, \varnothing 32, \varnothing 40, \varnothing 50, \varnothing 63$
Mounting	Foot，Flange

Rod Non－rotating Accuracy

Model	MU25	MU32	MU40	MU50	MU63
Non－rotating accuracy	$\pm 1^{\circ}$	$\pm 0.8^{\circ}$	$\pm 0.5^{\circ}$	$\pm 0.5^{\circ}$	$\pm 0.5^{\circ}$

Standard Stroke
（mm）

Size	Standard stroke	Max．stroke（mm）
$\mathbf{2 5 , 3 2 , 4 0}$	$5,10,15,20,25,30,35,40,45,50$	300
$\mathbf{5 0 , 6 3}$	$75,100,125,150,175,200,250,300$	

＊Contact SMC for any intermediate strokes that are not indicated above，as they will be produced upon receipt of order．
＊＊Strokes longer than 300 mm are not available．
Minimum Stroke for Auto Switch Mounting（mm）

Number of auto switches	$\begin{aligned} & \text { D-F7口V } \\ & \text { D-J79C } \end{aligned}$	$\begin{aligned} & \text { D-A7■ } \\ & \text { D-A80 } \\ & \text { D-A73C } \\ & \text { D-A80C } \end{aligned}$	D－F7口WV	D－A7 $\square \mathrm{H}, \mathrm{A8OH}$ D－F7ロW，J79W D－A79W D－F7口，J79 D－F7BA，F7NT D－F7 \square F
2 pcs．	5	10	15	15
1 pc ．	5	5	10	15

Theoretical Force
Unit： N

Size	Rod dia． （mm）	Operating direction	Piston area （ mm^{2} ）	Operating pressure（ MPa ）					
				0.2	0.3	0.4	0.5	0.6	0.7
25	12	IN／OUT	378	76	113	151	189	227	265
32	14	IN／OUT	650	130	195	260	325	390	455
40	16	IN／OUT	1056	211	317	422	528	634	739
50	20	IN／OUT	1649	330	495	660	824	989	1154
63	20	IN／OUT	2803	561	84	1121	1402	1682	

Note）Theoretical force $(\mathrm{N})=$ Pressure $(\mathrm{MPa}) \times$ Piston area $\left(\mathrm{mm}^{2}\right)$

Weight						nit： kg
Size		25	32	40	50	63
Standard weight	Basic	0.19	0.32	0.48	0.91	1.38
	Foot	0.26	0.46	0.69	1.25	2.01
	Flange	0.29	0.46	0.71	1.37	2.21
Additional weight per 50mm stroke		0.16	0.23	0.31	0.48	0.59
Accessories	Single knuckle joint	0.03	0.04	0.07	0.16	0.16
	Double knuckle joint（with pin）	0.05	0.09	0.14	0.29	0.29
Calculation Depends on double acting single rod						
Example：MUWL32－100						
－Basic weight ．．．．．．．．．．．．．．．． 0.46 （Foot style ø32 equiv．）						
－Additional weight ．．．．．．．．． $0.23 / 50$ stroke						
－Stroke ．．．．．．．．．．．．．．．．．．．．．．．． 100 stroke						
$0.46+100 / 50 \times 0.23=0.92 \mathrm{~kg}$						

Construction

Component Parts

No．	Description	Material	Note
（1）	Rod cover	Aluminum alloy	Anodized
(2)	Cylinder tube	Aluminum alloy	Hard anodized
（3）	Piston	Aluminum alloy	Chromated
（4）	Piston rod A	Carbon steel	Hard chrome plated
（5）	Piston rod B	Carbon steel	Hard chrome plated
（6）	Bushing	Oil impregnated sintered alloy	
（7）	Hex．socket head cap screw	Stainless steel	
（8）	Wearing	Resin	
（9）	Magnet	Magnet material	Only built－in magnet style
（10）	Rod end nut	Rolled steel	Only male thread rod end
（11）	Rod seal	NBR	
（12）	Piston seal	NBR	
（13）	Bumper	NBR	

Replacement Parts：Seal Kits

Bore size（mm）	Kit No．	Contents
25	MUW25－PS	
32	MUW32－PS	
40	MUW40－PS	
50	MUW50－PS	
63	MUW63－PS	

[^0] kit number for each cylinder bore size

Series MUW

MUW40, 50, 63

MUW25, 32

Rod end female thread

* Dimensions except mentioned above are same as male thread style.
However, K and KA dimensions are same as male thread style.

Model	Stroke range (mm)	A	AL	B	B1	BS	BT	BX	BY	C	D	ET	EY	GX	GY	H	H_{1}	K
MUWB25	5 to 300	22	19.5	24	17	37	M5 X 0.8 Depth 7.5	9	7	54	12	M5 X 0.8 Depth 11	26	10	5	36	6	5.5
MUWB32	5 to 300	26	23.5	28	19	45	M6 X 1 Depth 12	6.5	8	68	14	M6 X 1 Depth 11	42	8.5	5.5	40	7	5.5
MUWB40	5 to 300	30	27	32	22	44	M8 X 1.25 Depth 13	8	9	86	16	M8 X 1.25 Depth 11	54	9	7	45	8	6
MUWB50	5 to 300	35	32	39	27	54	M10 X 1.5 Depth 14.5	10	9	104	20	M10 X 1.5 Depth 15	64	11.5	8	53	11	7
MUWB63	5 to 300	35	32	50	27	53	M12 1.75 Depth 18	11	12	124	20	M12 X 1.75 Depth 15	72	11.5	10	56	11	7

(mm)												
Model	KA	MM	N	NC	ND	NE	NS	NX	NY	P	S	ZZ
MUWB25	10	M10 X 1.25	14	7.5 Depth 4.5	M5 X 0.8	4.3	43	6	26	M5 X 0.8	55	127
MUWB32	12	M12 X 1.25	15.5	9 Depth 5.5	M6 X 1	5.1	45	6.5	28	$\mathrm{Rc}(\mathrm{PT})^{1 / 8}$	58	138
MUWB40	14	M14 X 1.5	16	10.5 Depth 6.5	M8 X 1.25	6.9	44	8	36	$\mathrm{Rc}(\mathrm{PT}) 1 / 8$	60	150
MUWB50	18	M18 X 1.5	21.5	13.5 Depth 8.5	M10 X 1.5	8.7	54	10	42	$\mathrm{Rc}(\mathrm{PT}) 1 / 4$	74	180
MUWB63	18	M18 X 1.5	21.5	17 Depth 10.5	M12 X 1.75	10.5	53	11	46	$\mathrm{Rc}(\mathrm{PT}) 1 / 4$	75	187

Rod end female thread (mm)			
Model	H	MM	ZZ
MUWB25	14	M6 X 1 Depth 12	83
MUWB32	14	M8 X 1.25 Depth 13	86
MUWB40	15	M8 X 1.25 Depth 13	90
MUWB50	18	M10 X 1.5 Depth 15	110
MUWB63	21	M10 X 1.5 Depth 15	117

* The position of piston across 4 flats are different from above drawing. Position of piston across 4 flats of double rod is not same.

Plate Cylinder/Double Acting Double Rod Series MUW

Foot

Model									LD
LH	LS	LT	LX	LY	LZ	X	Y		
MUWL25	5.5	29	79	3.2	11	56	23	12	6
MUWL32	6.6	37	90	4.5	12	71	27	16	8
MUWL40	9	46	96	4.5	15	89	31	18	10
MUWL50	11	57	116	5	18	109	37	21	11
MUWL63	13.5	67	123	6	22	129	48	24	14

Flange

Plate Cylinder/Single Acting Spring Return/Extend Series MU
 ø25, ø32, ø40, ø50, ø63

How to Order

Mounting Bracket/Part No.

Bracket

Plate Cylinder/Single Acting Spring Return/Extend Series MU

Specifications

Action	Single acting/Spring return, Spring extend
Fluid	Air
Proof pressure	1.05 MPa
Max. operating pressure	0.7 MPa
Min. operating pressure	0.18 MPa
Ambient and fluid temperature	-10 to $60^{\circ} \mathrm{C}$
Lubrication	Not required (Non-lube)
Piston speed	50 to $500 \mathrm{~mm} / \mathrm{S}$
Stroke length tolerance	${ }^{+1.4} 0$
Cushion	Rubber bumper
Thread tolerance	JIS Class 2
Equivalent tube I.D. (mm)	$\varnothing 25, \varnothing 32, \varnothing 40, \varnothing 50, \varnothing 63$
Mounting	Axial foot, Front flange, Rear flange, Single clevis, Double clevis

Rod Non-rotating Accuracy

Model	MU25	MU32	MU40	MU50	MU63
Non-rotating accuracy	$\pm 1^{\circ}$	$\pm 0.8^{\circ}$	$\pm 0.5^{\circ}$	$\pm 0.5^{\circ}$	$\pm 0.5^{\circ}$

Standard Stroke

Action	(mm)				
	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$
Spring return/extend	5,10		$5,10,15,20$		
* Contact SMC for strokes not					

* Contact SMC for strokes not indicated.

Minimum Stroke for Auto Switch Mounting

(mm)

Number of auto switches	D-F7 \square V D-J79C	D-A7 \square D-A80 D-A73C D-A80C	D-F7 \square WV	D-A7 $\square \mathbf{H}$, A80H D-F7 $\square \mathbf{W}$, J79W D-A79W D-F7 \square, J79 D-F7BA, F7NT D-F7 $\square F$
2 pcs.	5	10	15	15
1 pc.	5	5	10	15

Construction

Spring return

"B" section MU■25
Spring extend

Theoretical Force
Unit: N

들	Size	Rod diameter (mm)	Operaing direction	$\begin{gathered} \text { Piston } \\ \text { area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$	Operating pressure (MPa)						Spring force	
					0.2	0.3	0.4	0.5	0.6	0.7	$\begin{aligned} & \text { 덩 } \\ & \underset{\sim}{2} \end{aligned}$	㨟
	25	12	OUT	491	68	117	166	216	265	314	30	
$\stackrel{\rightharpoonup}{0}$	32	14	OUT	804	119	199	280	360	440	521	42	24
	40	16	OUT	1257	195	321	447	573	698	824	56	30
$\overline{0}$	50	20	OUT	1963	346	542	738	935	1131	1327	47	76
	63	20	OUT	3117	510	822	1134	1446	1757	2069	113	61
	25	12	IN	378	46	83	121	159	197	235	30	15
	32	14	IN	650	88	153	218	283	348	413	42	24
	40	16	IN	1056	155	261	366	472	578	683	56	30
를	50	20	IN	1649	283	448	613	777	942	1107	47	76
ω	63	20	IN	2803	448	728	1008	1289	1569	1849	113	61

Note) Theoretical force $(\mathrm{N})=$ Pressure $(\mathrm{MPa}) \times$ Piston area $\left(\mathrm{mm}^{2}\right)$
Weight

W					Unit: kg	
Size		25	32	40	50	63
Weight	5 stroke	0.22	0.27	0.57	1.06	1.55
	10 stroke	0.23	0.35	0.60	1.09	1.60
	15 stroke	-	-	0.62	1.12	1.64
	20 stroke	-	-	0.64	1.16	1.69
Mounting bracket	Axial foot	0.07	0.14	0.21	0.34	0.63
	Flange/Front side, Rear side	0.10	0.14	0.23	0.46	0.83
	Single clevis	0.06	0.12	0.22	0.40	0.68
	Double clevis (with pin)	0.07	0.16	0.26	0.47	0.76
Accessories	Single clevis (Pivot bracket for double clevis)	0.06	0.12	0.22	0.40	0.68
	Double clevis (Pivot bracket for single clevis)	0.07	0.16	0.26	0.47	0.76
	Single knuckle joint	0.03	0.04	0.07	0.16	0.16
	Double knucle joint (with pin)	0.05	0.09	0.14	0.29	0.29

Note) Weight of single clevis and double clevis as optional bracket includes 2pcs. brackets

Calculation
Example 1: MUB40-15S(T) • Additional weight (mounting bracket)…0.0.40

- Basic weight $\cdots \cdots0 .62 \mathrm{~kg} \quad 1.06+0.40=1.46 \mathrm{~kg}$

Component Parts

No.	Description	Material	Note
(1)	Rod cover	Aluminum alloy	Anodized
(2)	Head cover	Aluminum alloy	Anodized
(3)	Cylinder tube	Aluminum alloy	Hard anodized
(4)	Piston	Aluminum alloy	Chromated
(5)	Piston rod	Carbon steel	Hard chrome plated
(6)	Bushing	Oil impregnated sintered alloy	
(7)	Hex. socket head cap screw	Stainless steel	
(8)	Wearing	Resin	
(9)	Magnet	Magnet material	Only built-in magnet style
(10)	Return spring	Steel wire	Zinc chromated
(11)	Element	Bronze	
(12)	Snap ring	Spring steel	
(13)	Plug	Chromium molybdenum steel	
(14)	Rod end nut	Rolled steel	Attached for only male thread rod end
(15)	Rod seal	NBR	
(16)	Piston seal	NBR	
(17)	Bumper	Urethane	
(18)	Bumper B	Urethane	

Replacement Parts: Seal Kits

Bore size (mm)	Kit No.		Contents
	Spring return	Spring extend	
25	MU25S-PS	MU25T-PS	
32	MU32S-PS	MU32T-PS	
numbers (15), (16), (17)			
40	MU40S-PS	MU40T-PS	
50	MU50S-PS	MU50T-PS	and (18).
63	MU63S-PS	MU63T-PS	

[^1]
Spring return

MUB40, 50, 63

Spring extend

Note1) Plug with bleeding hole is used instead of element for MUB25.

Rod end female thread

Spring return
MUB25...............SMU25, \#8 MUB32...............SMU32, \#8 MUB40...............SMU40, \#8 MUB50................SMU50, \#8
MUB63................SMU63, \#8

[^2]

* Dimensions except mentioned above are same
as male thread style.
However, K and KA dimensions are same as male thread style.

Model	Standard stroke(mm)	A	AL	B	B1	BS	BT	BX	BY	C	D	ET	EY	GX	GY	H	H_{1}	K
MUB25	5,10	22	19.5	24	17	42	M5 X 0.8 Depth 7.5	9	7	54	12	M5 X 0.8 Depth 11	26	10	5	36	6	5.5
MUB32	5,10	26	23.5	28	19	50	M6 X 1 Depth 12	6.5	8	68	14	M6 X 1 Depth 11	42	8.5	5.5	40	7	5.5
MUB40	5, 10, 15, 20	30	27	32	22	54	M8 X 1.25 Depth 13	8	9	86	16	M8 X 1.25 Depth 11	54	9	7	45	8	6
MUB50	5, 10, 15, 20	35	32	39	27	64	M10X 1.5 Deph 14.5	10	9	104	20	M10 X 1.5 Depth 15	64	11.5	8	53	11	7
MUB63	5,10,15,20	35	32	50	27	63	M12 1.75 Depth 18	11	12	124	20	M12 21.75 Depth 15	72	11.5	10	56	11	7

Model	KA	MM	N	NC	ND	NE	NS	NX	NY	P	S	ZZ
MUB25	10	M10 X 1.25	14	7.5 Depth 4.5	M5 X 0.8	4.3	48	6	26	M5 X 0.8	60	96
MUB32	12	M12 $\times 1.25$	15.5	9 Depth 5.5	M6 X 1	5.1	50	6.5	28	$\mathrm{Rc}(\mathrm{PT})^{1 / 8}$	63	103
MUB40	14	M14 X 1.5	16	10.5 Depth 6.5	M8 X 1.25	6.9	54	8	36	Rc(PT) $1 / 8$	70	115
MUB50	18	M18 X 1.5	21.5	13.5 Depth 8.5	M10 X 1.5	8.7	64	10	42	$\mathrm{Rc}(\mathrm{PT})^{1 / 4}$	84	137
MUB63	18	M18 X 1.5	21.5	17 Depth 10.5	M12 $\times 1.75$	10.5	63	11	46	$\mathrm{Rc}(\mathrm{PT})^{1 / 4}$	85	141

Rod end female thread (mm)

Model	H	MM	ZZ
MUB25	14	M6 X 1 Depth 12	74
MUB32	14	M8 X 1.25 Depth 13	77
MUB40	15	M8 X 1.25 Depth 13	85
MUB50	18	M10 X 1.5 Depth 15	102
MUB63	21	M10 X 1.5 Depth 15	106

Plate Cylinder/Single Acting Spring Return/Extend Series MU

Dimensions

Axial foot

Front flange

Rear flange

Single clevis

Double clevis

Single clevis Double clevis

Series MDU
 Auto Switch Specifications

Refer to p.5.3-2 for auto switch specifications.

Applicable Auto Switch

Auto switch model	Electrical entry	Page	
	D-A7/A8	Grommet (Perpendicular)	$5.3-14$
	D-A7 $\square \mathbf{H} / \mathbf{A 8 0 H}$	Grommet (In-line)	$5.3-15$
	D-A73C/A80C	Connector	$5.3-16$
	D-A79W	Grommet (2 color, Perpendicular)	$5.3-26$
Solid state switch	D-F7 $\square \mathbf{V}$	Grommet (Perpendicular)	$5.3-35$
	D-F7/J7	Grommet (In-line)	$5.3-34$
	D-J79C	Connector	$5.3-36$
	D-F7 $\square \mathbf{W V}$	Grommet (2 color, Perpendicular)	$5.3-45$
	D-7 $\square \mathbf{W} / \mathbf{J 7 9 W}$	Grommet (2 color, In-line)	$5.3-44$
	D-F7BAL	Grommet (2 color, Water resistant, In-line)	$5.3-57$
	D-F79F	Grommet (2 color, With diagnostic output, In-line)	$5.3-53$
	D-F7LF	Grommet (2 color, Latch with diagnostic output, In-line)	$5.3-52$
	D-F7NTL	Grommet (With timer, In-line)	$5.3-60$

. Precautions

[^3]
With Auto Switch Series MDU

Auto Switch Mounting Position and Mounting Height

D-A79W, D-F7 $\square W V, D-F 7 \square V \quad 025,032$

๑40, ø50, ø63

Plate Cylinder Series MU

Accessory Dimensions

Single Knuckle Joint

Model	L	LA	LB	LC	LD	LU	LX	RR	Z	ZZ
MU $\square \mathbf{2 5}$	52.5	35.5	27	16	$8^{+0.058}$	11	$9_{-0.4}^{-0.2}$	8.5	107.5	116
MU $\square \mathbf{3 2}$	59	41	31	18	$10^{+0.058}$	14	$111_{-0.4}^{0.2}$	10	117	127
MU $\square \mathbf{4 0}$	67	47	36	20	$10^{+0.058}$	15	$13_{-0.4}^{-0.2}$	11	127	138
MU $\square \mathbf{5 0}$	81	62	46	28	$14_{0}^{+0.070}$	20	$16_{-0.4}^{-0.2}$	16	155	171
MU $\square \mathbf{6 3}$	84	62	46	28	$14_{0}^{+0.070}$	20	$16_{-0.4}^{-0.2}$	16	159	175

* Dimensions L, Z, and $Z Z$ are reference dimensions for installing a single knuckle joint, which may be used as a guide.

Single Clevis (Pivot Bracket for Double Clevis)

Part No.	Size	CA	CB	CDH10	CE	CF	CH	CI	CJ
MU-C02	25	53	23	$8^{+0.058}$	3.5	4	11	17	7
MU-C03	32	67	27	$10^{+0.058}$	3.5	7	13	22	10
MU-C04	40	85	31	$10^{+0.058}$	3.5	10	13	27	10
MU-C05	50	103	37	$14^{+0.070}$	5.5	12	17	32	14
MU-C06	63	122	48	$14^{+0.070}$	6	14	19	38	16

Part No.	CL	CR	CT	CX	CZ
MU-C02	26	5.3	9.5	9	8
MU-C03	42	6.4	11	11	10
MU-C04	54	8.4	14	13	10
MU-C05	64	10.5	17	16	14
MU-C06	72	13	20	16	16

2.4-16

Double Knuckle Joint

Model	L	LA	LB	\square LC	LD	LU	LX	RR	Z	ZZ	$\begin{array}{c}\text { Appicabable } \\ \text { pin }\end{array}$
MU $\square \mathbf{2 5}$	52.5	35	27	18	$8^{+0.058}$	13	$9_{+0.4}^{+0.2}$	8	107.5	115.5	CDDU02
MU $\square \mathbf{3 2}$	59	41	31	22	$10^{+0.058}$	14	$11_{+0.4}^{+0.2}$	10	117	127	CD-MUO3
MU $\square \mathbf{4 0}$	67	46	36	26	$10_{0}^{+0.058}$	17	$13_{+0.4}^{+0.2}$	10	127	137	CD-MU04
MU $\square \mathbf{5 0}$	81	62	46	32	$14_{0}^{+0.070}$	23	$16_{+0.4}^{+0.2}$	16	155	171	CD-MU05
MU $\square \mathbf{6 3}$	84	62	46	32	$14_{0}^{+0.070}$	23	$16_{+0.4}^{+0.2}$	16	159	175	CD-MU05

* Dimensions L, Z, and ZZ are reference dimensions for installing a double knuckle joint, which may be used as a guide.

Double Clevis (Pivot Bracket for Single Clevis)

(mm)									
Part No.	Size	DA	DB	DDH10	DE	DF	DH	DI	DJ
MU-D02	25	53	23	$8^{+0.058}$	3.5	4	11	17	7
MU-D03	32	67	27	$10^{+0.058}$	3.5	7	13	22	10
MU-D04	40	85	31	$10_{0}^{+0.058}$	3.5	10	13	27	10
MU-D05	50	103	37	$14^{+0.070}$	5.5	12	17	32	14
MU-D06	63	122	48	$14_{0}^{+0.070}$	6	14	19	38	16

Part No.	DL	DR	DT	DX	DY	DZ	Applicable
pU-D02	26	5.3	9.5	18	9	8	CD-MU02
MU-D03	42	6.4	11	22	11	10	CD-MU03
MU-D04	54	8.4	14	26	13	10	CD-MU04
MU-D05	64	10.5	17	32	16	14	CD-MU05
MU-D06	72	13	20	32	16	16	CD-MU05

Clevis pin and snap ring are packed with the double clevis style.

Single Knuckle Joint

				(mm)	
Part No.	Size	A_{1}	E_{1}	L 1	MM
I-MU02	25	10.5	16	27	M10 X 1.25
I-MU03	32	12	18	31	M12 X 1.25
I-MU04	40	14	20	36	M14 X 1.5
I-MU05	50,63	18	28	46	M18 X 1.5

Part No.	NDH10	NL	NO	NX	R_{1}	U_{1}
I-MU02	$8^{+0.058}$	8.5	19.5	9	8.5	11
I-MU03	$10_{0}^{+0.058}$	10	24	11	10	14
I-MU04	$10^{+0.058}$	11	26	13	11	15
I-MU05	$14_{0}^{+0.070}$	16	36	16	16	20

Clevis Pin, Knuckle Pin

(mm)					
Part No.	Size	Dd9	L	d	ℓ
CD-MU02	25	8-0.0040	23	7.6	18.2
CD-MU03	32	$10^{-0.040}$	27	9.6	22.2
CD-MU04	40	$10^{-0.040}$	31	9.6	26.2
CD-MU05	50, 63	$14_{-0.093}^{-0.050}$	38	13.4	32.2

Part No.	m	t	Snap ring
CD-MU02	1.5	0.9	C shape for axis8
CD-MU03	1.25	1.15	C shape for axis10
CD-MU04	1.25	1.15	C shape for axis10
CD-MU05	1.75	1.15	C shape for axis14
*hese are installed with double clevis style and double knuckle joint style as standard.			

Double Knuckle Joint

Part No.	NL	NO	NX	NZ	R1	U_{1}	Applicable pin
Y-MU02	8	21	9	18	3	13	CD-MU02
Y-MU03	10	24	11	22	4	14	CD-MU03
Y-MU04	10	27	13	26	5	17	CD-MU04
Y-MU05	16	39	16	32	6	23	CD-MU05
* Knuckle pin and snap ring are clevis style.							

Rod End Nut

(mm)							
Part No.	Size	d	H	B	C	D	
NT-03	25	M10 $\times 1.25$	6	17	19.6	16.5	
NT-MU03	32	M12 $\times 1.25$	7	19	21.9	18	
NT-04	40	M14 $\times 1.5$	8	22	25.4	21	
NT-05	50,63	M18 $\times 1.5$	11	27	31.2	26	

* A nut is attached with rod end male thread as standard.
(Double rod style: 2 pcs.)

(1) To secure a workpiece to the end of the piston rod, make sure to retract the piston rod entirely. Place a wrench on the wrench flats at the end of the rod, and tighten it without applying torque to the piston rod in excess of the allowable installation torque.
(2) Operate in such a way that the load to the piston rod is always applied in the axial direction. Furthermore, avoid operations that could apply rotational torque to the piston rod. If rotational torque must be applied due to unavoidable circumstances, use the table below as a guide to make sure the allowable rotational torque is not exceeded.
Allowable Rotating Torque (Nm)

Size	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$
Allowable rotating torque	0.25	0.25	0.55	1.25	2.0
Work mounting allowable torque	1.7	1.9	2.0	4.9	7.3

(3) Operating the cylinder by connecting the piping directly to the cylinder can cause the piston speed to exceed the maximum operating speed of $500 \mathrm{~mm} / \mathrm{s}$. Therefore, to operate the cylinder, make sure to use an SMC speed controller and adjust the piston speed to $500 \mathrm{~mm} / \mathrm{s}$ or less.

Auto Switch Precaution

CU

Be sure to read before handling.
Refer to p.0-44 to 0-46 for auto , switch common precautions.

\WWarning

(1) If multiple cylinders are operated adjacent to each other, the magnets that are enclosed in the adjacent cylinders could affect the operation of the auto switches, causing the switches to malfunction. Therefore, make sure that the mounting pitch of the cylinders is at least that indicated in the table below.

Size	■25	ø32	ø40	ø50	ø63
L(d)	33(10)	32(5)	36(5)	38(0)	49(0)

If the cylinders must be operated with the mounting pitch less than indicated above, they must be
shielded with steel plates or magnetic shield plates (Part No.: MU-S025). Contact SMC for details.

Plate Cylinder with Lock Series MLU
 ø25, ø32, ø40, ø50

How to Order

Auto switch specifications

			弚			oad volta		Rail		Lead	wire le	ength	(m) *	Applicable load	
Type	Special function	Electrical entry		(output)	DC		AC	Perpendicular	In-line	0.5 (Nil)	$\begin{gathered} \hline 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$	None (N)		
	-	Grommet	Yes	3-wire (NPN equiv.)	-	5 V	-	-	A76H	-	\bigcirc	-	-	IC circuit	-
				2-wire		-	200V	A72	A72H	\bigcirc	\bigcirc	-	-	-	Relay, PLC
					24 V	12 V	100 V	A73	A73H	\bigcirc	\bigcirc	\bigcirc	-		
			No			5V, 12V	100 V or less	A80	A80H	\bigcirc	\bigcirc	-	-		
		Connector	Yes			-	-	A73C	-	-	\bigcirc	\bigcirc	\bigcirc		
			No			$5 \mathrm{~V}, 12 \mathrm{~V}$	24 V or less	A80C	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
	Diagnostic indication (2-color display)	Grommet	Yes			-	-	A79W	-	\bigcirc	\bigcirc	-	-		
			Yes	3-wire (NPN)	24V	5V, 12V	-	F7NV	F79	\bigcirc	\bigcirc	\bigcirc	-	IC circuit	Relay, PLC
		Grommet		3-wire (PNP)				F7PV	F7P	\bigcirc	\bigcirc	\bigcirc	-		
						12V		F7BV	J79	\bigcirc	\bigcirc	\bigcirc	-	-	
		Connector		2-wire				J79C	-	-	\bigcirc	\bigcirc	\bigcirc		
	Diagnostic indication (2-color display)	Grommet		3-wire (NPN)		5V, 12V		F7NWV	F79W	\bigcirc	\bigcirc	\bigcirc	-	IC circuit	
				3-wire (PNP)				-	F7PW	\bigcirc	\bigcirc	\bigcirc	-		
				2-wire		12V		F7BWV	J79W	-	\bigcirc	\bigcirc	-	-	
	Water resistant (2-color display)							-	F7BA	-	\bigcirc	\bigcirc	-		
	Water resistant (2-color display)							F7BAV	-	-	\bigcirc	\bigcirc	-		
	With timer			3-wire (NPN)		5V, 12V		-	F7NT	-	\bigcirc	\bigcirc	-	IC circuit	
	With diagnostic output (2-color display)			4-wire (NPN)		5V, 12 V		-	F79F	\bigcirc	\bigcirc	\bigcirc	-		
	Latch type with diagnostic output (2-color display)					-		-	F7LF	-	\bigcirc	\bigcirc	-	-	
	Magnetic field resistant (2-color display)			2-wire				-	P5DW	-	\bigcirc	\bigcirc	-		

[^4]
Cylinder Specifications

Size	25	32	40	50
Action	Double acting single rod			
Fluid	Air			
Proof pressure	1.05 MPa			
Maximum operating pressure	0.7 MPa			
Minimum operating pressure	0.2MPa Note)			
Ambient and fluid temperature	-10 to $60^{\circ} \mathrm{C}$ (with no freezing)			
Lubrication	Non-lube			
Cushion	Rubber bumper (standard)			
Rod end thread tolerance	JIS class 2			
Stroke length tolerance	${ }_{0}^{+1.4}$			
Piston speed	50 to $500 \mathrm{~mm} / \mathrm{s}$			
Cylinder port size	M5 x 0.8			Rc, NPT, 1/4

Note) The minimum operating pressure of the cylinder is 0.1 MPa when the cylinder and lock are connected to separate ports.

Lock Specifications

Size	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	50
Locking action	Spring locking (exhaust locking)			
Unlocking pressure	0.2 MPa or more			
Locking pressure	0.05 MPa or less			
Locking direction	One direction (extension locking, retraction locking, each type)			
Maximum operating pressure	0.7 MPa			
Unlocking port connection size	M5 x 0.8	RPT, $1 / 8$		
Holding force N (maximum static load)	245	403	629	982

Non-rotating Rod Accuracy

Size	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	50
Non-rotating rod accuracy	$\pm 1^{\circ}$	$\pm 0.8^{\circ}$	$\pm 0.5^{\circ}$	$\pm 0.5^{\circ}$

Standard Strokes

Size	Standard stroke (mm)	Max. manufacturable stroke
$\mathbf{2 5 , 3 2}, \mathbf{4 0}, \mathbf{5 0}$	$5,10,15,20,25,30,35,40,45,50$	300

*Strokes other than the above are produced upon receipt of order.
Weights
Unit: kg

	Size	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$
Basic weight	Standard	0.34	0.58	0.87	1.52
	Axial foot type	0.41	0.72	1.08	1.86
	Flange type/Front, rear	0.44	0.72	1.10	1.98
	Single clevis	0.40	0.70	1.09	1.92
Additional weight per 50mm of stroke	0.41	0.74	1.13	1.99	
Attached metal weight	Single clevis (Double clevis bracket)	Double clevis (Single clevis bracket)	0.06	0.16	0.22
	Single knuckle joint	0.07	0.22	0.40	
	Double knuckle joint (with pin)	0.05	0.16	0.26	0.47

Note) The weights of the attached metal single clevis and double clevis include the weight of two pieces of mounting bolts.
Calculation method-Example: MDLUL32-100

- Basic weight................... 0.72 (axial foot type-size32)
- Additional weight $\cdot \cdots \cdots \cdots \cdots \cdot 0.16 / 50$ stroke
- Stroke $\cdot \ldots \ldots \ldots \ldots \ldots \ldots \ldots \cdot 100$ stroke
$0.72+100 / 50 \times 0.16=1.04 \mathrm{~kg}$

Mounting Bracket Part No.

Bracket	Size	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Foot Note 1)	MU-L02	MU-L03	MU-L04	MU-L05
Flange	MU-F02	MU-F03	MU-F04	MU-F05
Single clevis	MU-C02	MU-C03	MU-C04	MU-C05
Double clevis Note 3)	MU-D02	MU-D03	MU-D04	MU-D05

Note 1) When ordering foot brackets, order 2 pieces for each cylinder.
Note 2) The parts included with each bracket are shown below.
Foot, Flange, Single clevis/Body mounting bolt
Double clevis/Pins for clevis, C set ring for axis, Body mounting
Note 3) Clevis pin and snap ring are included with the double clevis type.

Auto Switch Mounting Bracket Part No.

Size	Bracket no.	Note	Applicable switch	
			Reed switch	Solid state switch
$\left\|\begin{array}{l} 25,32, \\ 40,50 \end{array}\right\|$	BMU1-025	Auto switch mounting screw $(\mathrm{M} 3 \times 0.5 \times 6.5 \mathrm{l})$ Auto switch mounting nut	$\begin{gathered} \text { D-A7 } \square, \mathrm{D}-\mathrm{A80} \\ \text { D-A7 } \square \text { H, D-A80H } \\ \text { D-A73C, D-A80C } \\ \text { D-A79W } \end{gathered}$	$\begin{gathered} \text { D-F7 } \square, \text { D-J79 } \\ \text { D-F7 } \square \text { V, D-J79C } \\ \text { D-F7 } \square \text { W, D-J79W } \\ \text { D-F7 } \square \text { WV, D-F7 } \square \text { F } \\ \text { D-F7NTL } \\ \text { D-F7BAL, F7BAVL } \end{gathered}$
40, 50	BMU2-040	Auto switch mounting bracket Round head Philips screw $\text { (M3 x } 0.5 \times 14 \mathrm{I})$ Hexagon socket head cap bolt $(\mathrm{M} 3 \times 0.5 \times 5 \mathrm{I})$ Flat washer, Auto switch mounting nut	-	D-P5DWL

*Stainless steel mounting screw kit
Use the following stainless steel mounting screw kit (includes nut) depending on the operating environment.
BBA2: D-A7/A8/F7/J7
The above stainless steel screw kit is used for auto switch D-F7BAL and D-F7BAVL when it is shipped mounted on a cylinder.
Also, BBA2 is included when a auto switch alone is shipped.

Construction

Parts list

No.	Description	Material	Note
1	Lock body	Aluminium alloy	Hard anodized
2	Cover	Aluminium alloy	Hard anodized
3	Head cover	Aluminium alloy	Hard anodized
4	Cylinder tube	Aluminium alloy	Hard anodized
5	Lock ring	Carbon steel	Heat treatment
6	Brake spring	Steel wire	Zinc chromated
7	Piston rod	Carbon steel	Hard chromium electro plating
8	Pivot	Carbon steel	Heat treatment, zinc chromated
9	Pivot key	Carbon steel	Heat treatment, zinc chromated
10	Dust proof cover	Stainless steel	
11	Piston	Aluminium alloy	Chromate
12	Release piston	Special steel	Heat treatment
13	Bushing	Sinteringoil impregnated alloy	M(D)LUB25, 32
		Lead-bronze casting	M(D)LUB40, 50
14	Hexagon socket head cap bolt A	Stainless steel	

No.	Description	Material	Note
15	Hexagon socket head cap bolt B	Stainless steel	
16	Hexagon socket head cap bolt C	Stainless steel	
17	Hexagon socket head cap bolt D	Chrome molybdenum steel	Nickel plated
18	Hexagon socket head cap bolt E	Chrome molybdenum steel	Nickel plated
19	Spring pin	Carbon steel	JIS B2808
20	Parallel pin	Stainless steel	JIS B1354
21	Rod end nut	Rolling steel	Only for use with nickel plated rod end male thread
22	Wear ring	Resin	
23	Magnet	Magnet	Only for use with built-in magnet type
24	Rod seal	NBR	Use one piece with M(D)LUB25
	Use 2 pieces with M(D)LUB32~50		
25	Piston seal	NBR	
26	Release piston seal	NBR	Only for use with M(D)LUB25
27	Scraper	NBR	
28	Bumper	Urethane rubber	

Series MLU

Dimensions

Standard type

M(D)LUB40, 50

Retraction locking

M(D)LUB25,32

(Extension locking)

Model	Stroke range	A	AL	B	B1	BA	BB	BP	BS	BT	BY	C	D	ET	EY	GA	GA1	GB	GC	GC1	GW	GY	H	H_{1}
MLUB25	5 to 300	22	19.5	24	17	8	9	M5 x 0.8	73	M5 $\times 0.8$ depth 7.5	7	54	12	M5 $\times 0.8$ depth 11	26	45	45	10	15.5	32.5	2.5	5	36	6
MLUB32	5 to 300	26	23.5	28	19	6.5	6.5	Rc, NPT, 1/8	87	M6 x 1 depth 12	8	68	14	M6x 1 depth 11	42	50.5	51.5	8.5	17.5	37	0	5.5	40	7
MLUB40	5 to 300	30	27	32	22	9	8	Rc, NPT, 1/8	87	M8 $\times 1.25$ depth 13	9	86	16	M 8×1.25 depth 11	54	53	53	9	18.5	38.5	0	7	45	8
MLUB50	5 to 300	35	32	39	27	12	10	Rc, NPT, 1/8	102.5	M10 1.5 depth 14.5	9	104	20	M10 1.5 depth 15	64	62	62	11.5	23	43	6	8	53	11

Model	H_{2}	K	KA	MM	MM1	NA	NB	NC	ND	NE	NF	NG	NH	NH_{1}	NI	NJ	NS	NY	P	S	ZZ	ZZ1
MLUB25	14	5.5	10	M10 $\times 1.25$	M6 $\times 1$ depth 12	49	14	7.5 depth 4.5	M5 x 0.8	4.3	8	6	30	19	3.5	6	76	26	M5 x 0.8	90	126	104
MLUB32	14	5.5	12	M12 $\times 1.25$	M8 $\times 1.25$ depth 13	57.5	15.5	9 depth 5.5	M6 x 1	5.1	6.5	6.5	35.5	22	3.5	6	87	28	Rc, NPT, 1/8	100	140	114
MLUB40	15	6	14	M14 $\times 1.5$	M8 $\times 1.25$ depth 13	60	16	10.5 depth 6.5	M8 x 1.25	6.9	9	8	37.5	22.5	3.5	9	87	36	Rc, NPT, 1/8	104	149	119
MLUB50	18	7	18	M18 $\times 1.5$	M10 1.5 depth 15	72	21.5	13.5 depth 8.5	M10 $\times 1.5$	8.7	12	10	44	28	3.5	9	102.5	42	Rc, NPT, 1/4	124.5	177.5	142.5

Axial foot type

Model									LD	LH
LS	LT	LX	LY	LZ	X	Y	ZZ			
MLUL25	5.5	29	114	3.2	11	56	23	12	6	144
MLUL32	6.6	37	132	4.5	12	71	27	16	8	164
MLUL40	9	46	140	4.5	15	89	31	18	10	177
MLUL50	11	57	166.5	5	18	109	37	21	11	209.5

Front flange type

Rear flange

Model	FD	FT	FV	FX	FY	FZ	ZZ
MLUF25, MLUG25	5.5	8	76	14	66	24	134
MLUF32, MLUG32	7	8	94	16	82	28	148
MLUF40, MLUG40	9	9	118	18	102	32	158
MLUF50, MLUG50	11	12	144	22	126	39	189.5

Single clevis
Double clevis

Model	CDH10	CX	CZ	L	Q	RR	Z	ZZ	Rotation angle
MLUC25, MLUD25	$8^{+0.058}$	9	18	17	160	8	143	151	100
MLUC32, MLUD32	$10^{+0.058}$	11	22	22	184	10	162	172	90
MLUC40, MLUD40	$10^{+0.058}$	13	26	27	203	10	176	186	80
MLUC50, MLUD50	$14^{+0.070}$	16	32	32	241.5	14	209.5223 .5	80	

Series MLU

Accessories

Single knuckle joint

Double knuckle joint

Model	L	LA	LB	LC	LD	LU	LX	RR	Z	ZZ	Applicable
MLU $\square 25$	52.5	35	27	18	$8^{+0.058}$	13	${ }_{1+0.2}^{+0.4}$	8	142.5	150.5	CD-MU02
MLU $\square 32$	59	41	31	22	$10^{+0.058}$	14	$11_{+0.2}^{+0.4}$	10	159	169	CD-MU03
MLU $\square 40$	67	46	36	26	$10^{+0.058}$	17	$13_{+0.2}^{+0.4}$	10	171	181	CD-MU04
MLU $\square 50$	81	62	46	32	$14^{+0.070}$	23	$16_{+0.2}^{+0.4}$	16	205.5	221.5	CD-MU05

The L, Z and $Z Z$ dimensions are reference dimensions when mounting a double knuckle joint. Please use them as guidelines.

Double clevis (Single clevis bracket)

Part no.	Size	DA	DB	DDH10	DE	DF	DH	DI	DJ
MU-D02	25	53	23	$8^{+0.058}$	3.5	4	11	17	7
MU-D03	32	67	27	$10^{+0.058}$	3.5	7	13	22	10
MU-D04	40	85	31	$10^{+0.058}$	3.5	10	13	27	10
MU-D05	50	103	37	$14^{+0.070}$	5.5	12	17	32	14

Part no.	DL	DR	DT	DX	DY	DZ	Applicable pin no.
MU-D02	26	5.3	9.5	18	9	8	CD-MU02
MU-D03	42	6.4	11	22	11	10	CD-MU03
MU-D04	54	8.4	14	26	13	10	CD-MU04
MU-D05	64	10.5	17	32	16	14	CD-MU05

Single knuckle joint

Part no.	Size	A_{1}	E_{1}	L_{1}	MM	
I-MU02	25	10.5	16	27	M10 x 1.25	
I-MU03	32	12	18	31	$\mathrm{M} 12 \times 1.25$	
I-MU04	40	14	20	36	M14 $\times 1.5$	
I-MU05	50	18	28	46	M18 $\times 1.5$	
Part no.	ND ${ }_{\text {H10 }}$	NL	NO	NX	R1	U_{1}
I-MU02	$8^{+0.058}$	8.5	19.5	9	8.5	11
I-MU03	$10^{+0.058}$	10	24	11	10	14
I-MU04	$10^{+0.058}$	11	26	13	11	15
I-MU05	$14^{+0.070}$	16	36	16	16	20

Clevis pin and knuckle pin

Part no.	Size		Dd9	L	d	1
CD-MU02	25		$8_{-0.076}^{-0.040}$	23	7.6	18.2
CD-MU03	32		$10_{-0.076}^{0.040}$	27	9.6	22.2
CD-MU04	40		10-0.076	31	9.6	26.2
CD-MU05	50		$14_{-0.093}^{0.005}$	38	13.4	32.2
Part no.	m	t	Snap ring			
CD-MU02	1.5	0.9	C8 type			
CD-MU03	1.25	1.15	C10 type			
CD-MU04	1.25	1.15	C10 type			
CD-MU05	1.75	1.15	C14 type			

*Included with the double clevis and double knuckle joint as standard.

Double knuckle joint

Part no.	Size		A_{1}	E_{1}	L_{1}	M		ND ${ }_{\text {H10 }}$
Y-MU02	25		10.5	14	27	M10 \times	1.25	$8^{+0.058}$
Y-MU03	32		12	18	31	M12 \times	1.25	$10^{+0.058}$
Y-MU04	40		14	20	36	M14	1.5	$10^{+0.058}$
Y-MU05	50		18	28	46	M18	1.5	$14^{+0.070}$
Part no.	NL ${ }^{\text {NO }}$			NZ	R1	U_{1}	Applicable pin no.	
Y-MU02	8	21	9	18	3	13		MU02
Y-MU03	10	24	11	22	4	14		MU03
Y-MU04	10	27	13	26	5	17		MU04
Y-MU05	16	39	16	32	6	23		-MU05

*Knuckle pin and snap ring are included.

Rod end nut

Part no.	Size	d	H	B	C	D
NT-03	25	$\mathrm{M} 10 \times 1.25$	6	17	19.6	16.5
NT-MU03	32	$\mathrm{M} 12 \times 1.25$	7	19	21.9	18
NT-04	40	$\mathrm{M} 14 \times 1.5$	8	22	25.4	21
NT-05	50	$\mathrm{M} 18 \times 1.5$	11	27	31.2	26

*One piece is included with the rod end male thread as standard.

Series MLU

Auto Switches/Proper Mounting Positions and Height for Stroke End Detection

D-A73C
D-A80C
$\varnothing 40, \varnothing 50$
$\varnothing 25, \varnothing 32$

D-A79W D-F7 \square WV $\varnothing 25, \varnothing 32$

D-F7 \square V
D-F7BAVL

$\varnothing 40, \varnothing 50$

Proper auto switch mounting position

	$\begin{aligned} & \text { D-A7■ } \\ & \text { D-A80 } \end{aligned}$	$\begin{aligned} & \text { D-A7■H } \\ & \text { D-A80H } \\ & \text { D-F7 } \\ & \text { D-F7口V } \\ & \text { D-J79 } \\ & \text { D-F7 } \square W \\ & \text { D-F7 } \square W \mathrm{WV} \\ & \text { D-J79W } \\ & \text { D-F7BAL } \\ & \text { D-F7BAVL } \\ & \text { D-F79F } \end{aligned}$	D-A73C D-A80C D-J79C	D-A79W	D-F7LF	D-F7NTL	D-P5DWL
Size	A	A	A	A	A	A	A
25	4.5	5	5	2	9	10	-
32	4.5	5	5	2	9	10	-
40	5	5.5	0	2.5	9.5	10.5	0.5
50	6.5	7	1	4	11	12	2

Auto switch mounting height

$\begin{aligned} & \text { D-A7 } \\ & \text { D-A80 } \end{aligned}$	$\begin{aligned} & \text { D-A7口H } \\ & \text { D-80H } \\ & \text { D-F7■ } \\ & \text { D-J79 } \\ & \text { D-F7 } \square W \\ & \text { D-79W } \\ & \text { D-F7NTL } \\ & \text { D-F7■F } \\ & \text { D-F7BAL } \end{aligned}$	$\left\lvert\, \begin{array}{l\|} \text { D-A73C } \\ \text { D-A80C } \end{array}\right.$	$\begin{aligned} & \text { D-F7 } \square V \\ & \text { D-F7 } \\ & \text { D-F7BAV } \end{aligned}$	D-J79C	D-A79W	D-P5DWL
Hs						
32	33	39	35.5	37.5	34.5	-
39	40	46	42.5	44.5	41.5	-
47	48	54	50.5	52.5	49.5	56.5
56	57	63	59.5	61.5	58.5	66

Operating range

Auto switch model	Bore size			
	25	32	40	50
D-A7 \square, A80 D-A7 \square H, A80H D-A73C, A80C	13	13	13	13
D-A79W	13	13	14	14
D-F7 \square, J79 D-F7 $\square \mathrm{V}, \mathrm{J79C}$ D-F7 $\square \mathrm{W}$, F7 $\square \mathrm{WV}$ D-J79W, F7NTL D-F7BAL, F7BAVL D-F79F	6.5	7	6.5	6.5
D-F7LF	7	7.5	7	7
D-P5DWL	-	-	5	5

*Hysteresis specifications are given as a guide, it is not a guaranteed range.
(Tolerance $\pm 30 \%$)
Hysteresis may fluctuate due to the operating environment.

Auto Switch Mounting

Except for D-P5DWL

Tightening torque of auto switch mounting screws should be 0.5 to $0.7 \mathrm{~N} \cdot \mathrm{~m}$.

D-P5DWL

*Only size 40 and 50 can be mounted.

Series MLU Auto Switch Connections and Examples

Basic Wiring

Examples of Connection to PLC

Sink input specifications
3-wire, NPN

2-wire

Source input specifications
3-wire, PNP

2-wire

Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications.

Connection Examples for AND (Series) and OR (Parallel)

3-wire
AND connection for NPN output (using relays)

2-wire with 2 switch AND connection

When two switches are connected in series, a load may malfunction because the load voltage will decline when in the ON state. The indicator lights will light up if both of the switches are in the ON state.

AND connection for NPN output
OR connection for NPN output (performed with switches only)

The indicator lights will light up when both switches are turned ON.

2-wire with 2 switch OR connection

(Solid state) When two switches are connected in parallel, malfunction may occur because the load voltage will increase when in the OFF state.

$$
\begin{aligned}
\text { Load voltage at OFF } & =\begin{array}{c}
\text { Leakage } \times 2 \mathrm{pcs} . \times \begin{array}{c}
\text { Load } \\
\text { current }
\end{array} \\
\\
\end{array}=1 \mathrm{~mA} \times 2 \mathrm{pcs} \times 3 \mathrm{k} \Omega
\end{aligned}
$$

$=6 \mathrm{~V}$
Example: Load impedance is $3 \mathrm{k} \Omega$
Leakage current from switch is 1 mA

Series MLU

Safety Instructions

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by a label of "Caution", "Warning" or "Danger". To ensure safety, be sure to observe ISO 4414 Note 1), JIS B 8370 Note 2) and other safety practices.

[^5]Note 2) JIS B 8370: General Rules for Pneumatic Equipment

© Warning

1. The compatibility of pneumatic equipment is the responsibility of the person who designs the pneumatic system or decides its specifications.
Since the products specified here are used in various operating conditions, their compatibility for the specific pneumatic system must be based on specifications or after analysis and/or tests to meet your specific requirements.
2. Only trained personnel should operate pneumatically operated machinery and equipment.
Compressed air can be dangerous if an operator is unfamiliar with it. Assembly, handling or repair of pneumatic systems should be performed by trained and experienced operators.
3. Do not service machinery/equipment or attempt to remove components until safety is confirmed.
4. Inspection and maintenance of machinery/equipment should only be performed after confirmation of safe locked-out control positions.
5. When equipment is to be removed, confirm the safety process as mentioned above. Cut the supply pressure for this equipment and exhaust all residual compressed air in the system.
6. Before machinery/equipment is restarted, take measures to prevent shooting-out of cylinder piston rod, etc. (Bleed air into the system gradually to create back pressure.)
7. Contact SMC if the product is to be used in any of the following conditions:
8. Conditions and environments beyond the given specifications, or if product is used outdoors.
9. Installation on equipment in conjunction with atomic energy, railway, air navigation, vehicles, medical equipment, food and beverages, recreation equipment, emergency stop circuits, press applications, or safety equipment.
10. An application which has the possibility of having negative effects on people, property, or animals, requiring special safety analysis.

Be sure to read before handling.

. Warning

1. There is a danger of sudden action by air cylinders if sliding parts of machinery are twisted, etc., and changes in forces occur.
In such cases, human injury may occur; e.g., by catching hands or feet in the machinery, or damage to the machinery itself may occur. Therefore, the machine should be designed to avoid such dangers.
2. Attach a protective cover to minimize the risk of human injury.
If a driven object and moving parts of a cylinder pose a danger of human injury, design the structure to avoid contact with the human body.
3. Securely tighten all stationary parts and connected parts so that they will not become loose.
Especially when a cylinder operates with high frequency or is installed where there is a lot of vibration, ensure that all parts remain secure.
4. A deceleration circuit or shock absorber, etc., may be required.
When a driven object is operated at high speed or the load is heavy, a cylinder's cushion will not be sufficient to absorb the impact. Install a deceleration circuit to reduce the speed before cushioning, or install an external shock absorber to relieve the impact. In this case, the rigidity of the machinery should also be examined.
5. Consider a possible drop in circuit pressure due to a power outage, etc.
When a cylinder is used in a clamping mechanism, there is a danger of work pieces dropping if there is a decrease in clamping force due to a drop in circuit pressure caused by a power outage, etc. Therefore, safety equipment should be installed to prevent damage to machinery and/or human injury. Suspension mechanisms and lifting devices also require consideration for drop prevention.
6. Consider a possible loss of power source.

Measures should be taken to protect against human injury and equipment damage in the event that there is a loss of power to equipment controlled by air pressure, electricity or hydraulics, etc.
7. Design circuitry to prevent sudden lurching of driven objects.
When a cylinder is driven by an exhaust center type directional control valve or when starting up after residual pressure is exhausted from the circuit, etc., the piston and its driven object will lurch at high speed if pressure is applied to one side of the cylinder because of the absence of air pressure inside the cylinder. Therefore, equipment should be selected and circuits designed to prevent sudden lurching because, there is a danger of human injury and/or damage to equipment when this occurs.
8. Consider emergency stops.

Design so that human injury and/or damage to machinery and equipment will not be caused when machinery is stopped by a safety device under abnormal conditions, a power outage or a manual emergency stop.
9. Consider the action when operation is restarted after an emergency stop or abnormal stop.
Design the machinery so that human injury or equipment damage will not occur upon restart of operation. When the cylinder has to be reset at the starting position, install safe manual control equipment.

Selection

\triangle Warning

1. Confirm the specifications.

The products advertised in this catalog are designed according to use in industrial compressed air systems. If the products are used in conditions where pressure, temperature, etc., are out of specification, damage and/or malfunction may be caused. Do not use in these conditions. (Refer to specifications.)
Consult SMC if you use a fluid other than compressed air.

\triangle Caution

1. Operate within the limits of the maximum usable stroke.
The piston rod will be damaged if operated beyond the maximum stroke. Refer to the air cylinder model selection procedures for the maximum usable stroke.
2. Operate the piston within a range such that collision damage will not occur at the stroke end.
Operate within a range such that damage will not occur when the piston having inertial force stops by striking the cover at the stroke end. Refer to the cylinder model selection procedure for the range within which damage will not occur.
3. Use a speed controller to adjust the cylinder drive speed, gradually increasing from a low speed to the desired speed setting.

Mounting

\triangle Caution

1. Be certain to align the rod axis with the load and direction of movement when connecting.
When not properly aligned, twisting may occur in the rod and tube, and damage may be caused due to wear on the inner tube surface, bushings, rod surface and seals, etc.
2. When an external guide is used, connect the rod end and the load in such a way that there is no interference at any point within the stroke.
3. Do not scratch or gouge the sliding parts of the cylinder tube or piston rod, etc., by striking or grasping them with other objects.
Cylinder bores are manufactured to precise tolerances, so that even a slight deformation may cause malfunction. Also, scratches or gouges, etc., in the piston rod may lead to damaged seals and cause air leakage.
4. Prevent the seizure of rotating parts.

Prevent the seizure of rotating parts (pins, etc.) by applying grease.
5. Do not use until you can verify that equipment can operate properly.
Following mounting, maintenance or conversions, verify correct mounting by suitable function and leakage tests after compressed air and power are connected
6. Instruction manual

The product should be mounted and operated after thoroughly reading the manual and understanding its contents.
Keep the instruction manual where it can be referred to as needed.

Piping

. Caution

1. Preparation before piping

Before piping is connected, it should be thoroughly blown out with air (flushing) or washed to remove chips, cutting oil and other debris from inside the pipe.
2. Wrapping of pipe tape

When screwing together pipes and fittings, etc., be certain that chips from the pipe threads and sealing material do not get inside the piping.
Also, when pipe tape is used, leave 1.5 to 2 thread ridges exposed at the end of the threads.

Lubrication

© Caution

1. Lubrication of non-lube type cylinder
 The cylinder is lubricated at the factory and can be used without any further lubrication.

Air Supply

. Warning

1. Use clean air.

Do not use compressed air that includes chemicals, synthetic oils containing organic solvents, salt or corrosive gases, etc., as it can cause damage or malfunction.

. Caution

1. Install air filters.

Install air filters at the upstream side of valves. The filtration degree should be $5 \mu \mathrm{~m}$ or finer.
2. Install an after-cooler, air dryer or water separator, etc.
Air that includes excessive drainage may cause malfunction of valves and other pneumatic equipment. To prevent this, install an after-cooler, air dryer or water separator, etc.
3. Use the product within the specified range of fluid and ambient temperature.
Take measures to prevent freezing, since moisture in circuits can be frozen below $5^{\circ} \mathrm{C}$, and this may cause damage to seals and lead to malfunction.
Refer to SMC's "Best Pneumatics vol. 4" for further details on compressed air quality.

Operating Environment

. Warning

1. Do not use in environments where there is a danger of corrosion.
2. In dusty locations or where water, oil, etc., splash on the equipment, take suitable measures to protect rod.
3. When using auto switches, do not operate in an environment with strong magnetic fields.

Maintenance

\triangle Warning

1. Perform maintenance according to the procedure indicated in the instruction manual.
If handled improperly, malfunction and damage of machinery or equipment may occur.
2. Removal of equipment, and supply/exhaust of compressed air.
When equipment is removed, first check measures to prevent dropping of driven objects and run-away of equipment, etc. Then cut off the supply pressure and electric power, and exhaust all compressed air from the system.
When machinery is restarted, proceed with caution after confirming measures to prevent cylinder lurching.

\triangle Caution

1. Drain flushing

Remove drainage from air filters regularly.
(Refer to specifications.)

Series MLU
Auto Switch Precautions 1
Be sure to read before handling.

Design and Selection

. Warning

1. Confirm the specifications.

Read the specifications carefully and use this product appropriately. The product may be damaged or malfunction if it is used outside the range of specifications for load current, voltage, temperature or impact.
2. Take precautions when multiple cylinders are used close together.
When multiple auto switch cylinders are used in close proximity, magnetic field interference may cause the switches to malfunction. Maintain a minimum cylinder separation of 40 mm .
3. Pay attention to the length of time that a switch is ON at an intermediate stroke position.
When an auto switch is placed at an intermediate position of the stroke and a load is driven at the time the piston passes, the auto switch will operate, but if the speed is too great the operating time will be shortened and the load may not operate properly. The maximum detectable piston speed is:

$$
\mathrm{V}(\mathrm{~mm} / \mathrm{s})=\frac{\text { Auto switch operating range }(\mathrm{mm})}{\text { Load operating time }(\mathrm{ms})} \times 1000
$$

In case of high piston speed, the operating time of the load can be extended by using an auto switch (D-F7NT) with built-in OFF delay timer (approx. 200ms).
4. Keep wiring as short as possible.
<Reed switches>
As the length of the wiring to a load gets longer, the rush current at switching ON becomes greater, and this may shorten the product's life. (The switch will stay ON all the time.)
Use a contact protection box when the wire length is 5 m or longer.

<Solid state switches>

Although wire length should not affect switch function, use a wire 100 m or shorter.
5. Pay attention to the internal voltage drop of the switch.
<Reed switches>

1) Switches with an indicator light (except D-A76H)

- If auto switches are connected in series as shown below, take note that there will be a large voltage drop because of internal resistance in the light emitting diodes. (Refer to internal voltage drop in the auto switch specifications.)
[The voltage drop will be " n " times larger when " n " auto switches are connected.]
Even though an auto switch operates normally, the load may not operate.

- In the same way, when operating below a specified voltage, although an auto switch may operate normally, the load may not operate. Therefore, the formula below should be satisfied after confirming the minimum operating voltage of the load.

2) If the internal resistance of a light emitting diode causes a problem, select a switch without an indicator light (model D-A80/A80H).
<Solid state switches>
3) Generally, the internal voltage drop will be greater with a 2 -wire solid state auto switch than with a reed switch. Take the same precautions as in 1).
Also, note that a 12VDC relay is not applicable.
6. Pay attention to leakage current.
<Solid state switches>
With a 2-wire solid state auto switch, current (leakage current) flows to the load to operate the internal circuit even when in the OFF state.

Operating current of load (OFF condition) > Leakage current
If the criteria given in the above formula are not met, it will not reset correctly (stays ON). Use a 3-wire switch if this specification will not be satisfied.
Moreover, leakage current flow to the load will be " n " times larger when " n " auto switches are connected in parallel.
7. Do not use a load that generates surge voltage.
<Reed switches>
If driving a load such as a relay that generates a surge voltage, use a contact protection box.
<Solid state switches>
Although a zener diode for surge protection is connected at the output side of a solid state auto switch, damage may still occur if the surge is applied repeatedly. When a load such as a relay or solenoid which generates surge is directly driven, use a type of switch with a built-in surge absorbing element.
8. Cautions for use in an interlock circuit

When an auto switch is used for an interlock signal requiring high reliability, devise a double interlock system to avoid trouble by providing a mechanical protection function, or by also using another switch (sensor) together with the auto switch.
Also perform periodic maintenance and confirm proper operation.
9. Ensure sufficient clearance for maintenance activities.
When designing an application, be sure to allow sufficient clearance for maintenance and inspections.

Series MLU
Auto Switch Precautions 2
Be sure to read before handling.

Mounting and Adjustment

. Warning

1. Do not drop or bump.

Do not drop, bump or apply excessive impacts (300m/s² or more for reed switches and $1000 \mathrm{~m} / \mathrm{s}^{2}$ or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction.
2. Do not carry a cylinder by the auto switch lead wires.
Never carry a cylinder by its lead wires. This may not only cause broken lead wires, but it may cause internal elements of the switch to be damaged by the stress.
3. Mount switches using the proper tightening torque.
If a switch is tightened beyond the range of tightening torque, the mounting screws, mounting brackets or switch may be damaged. On the other hand, tightening below the range of tightening torque may allow the switch to slip out of position. (Refer to page 10 for switch mounting instructions and tightening torque.)
4. Mount a switch at the center of the operating range.
Adjust the mounting position of an auto switch so that the piston stops at the center of the operating range (the range in which a switch is ON). (The mounting position shown in the catalog indicates the optimum position at stroke end.) If mounted at the end of the operating range (around the borderline of ON and OFF), operation may be unstable.

Wiring

\triangle Warning

1. Avoid repeatedly bending or stretching lead wires.
Broken lead wires can result from wiring patterns which repeatedly apply bending stress or stretching force to the lead wires.
2. Be sure to connect the load before power is applied.
<2-wire type>
If the power is turned ON when an auto switch is not connected to a load, the switch will be instantly damaged because of excess current.
3. Confirm proper insulation of wiring.

Be certain that there is no faulty wiring insulation (contact with other circuits, ground fault, improper insulation between terminals, etc.). Damage may occur due to excess current flow into a switch.
4. Do not wire with power lines or high voltage lines.
Wire separately from power lines or high voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits containing auto switches may malfunction due to noise from these other lines.

Wiring

© Warning

5. Do not allow short circuit of loads.

<Reed switches>
If the power is turned ON with a load in a short circuited condition, the switch will be instantly damaged because of excess current flow into the switch.
<Solid state switches>
All models of PNP output type switches do not have built-in short circuit protection circuits.
Note that if a load is short circuited, the switch will be instantly damaged as in the case of reed switches.
Take special care to avoid reverse wiring of the brown [red] power supply line and the black [white] output line on 3-wire type switches.

6. Avoid incorrect wiring.

<Reed switches>
A 24VDC switch with indicator light has polarity. The brown [red] lead wire is (+), and the blue [black] lead wire is (-).

1) If connections are reversed, a switch will operate, however, the light emitting diode will not light up.
Also note that a current greater than that specified will damage a light emitting diode and it will no longer operate.
Applicable models: D-A73/A73H/A73C
2) Note however, that in the case of 2-color display auto switches (DA79W), the switch will be in a normally ON condition if the wiring is reversed.
<Solid state switches>
3) If connections are reversed on a 2-wire type switch, the switch will not be damaged if protected by a protection circuit, but the switch will be in a normally ON state. However, it is still necessary to avoid reversed connections, since the switch could be damaged by a load short circuit in this condition.
*2) If connections are reversed (power supply line + and power supply line -) on a 3-wire type switch, the switch will be protected by a protection circuit. However, if the power supply line $(+)$ is connected to the blue [black] wire and the power supply line (-) is connected to the black [white] wire, the switch will be damaged.

* Lead wire color changes

Lead wire colors of SMC switches have been changed in order to meet NECA Standard 0402 for production beginning September, 1996 and thereafter. Please refer to the tables provided.
Special care should be taken regarding wire polarity during the time that the old colors still coexist with the new colors.

2-wire		
	Old	New
Output (+)	Red	Brown
Output (-)	Black	Blue

Solid state

with diagnostic output

	Old	New
Power supply	Red	Brown
GND	Black	Blue
Output	White	Black
Diagnostic output	Yellow	Orange

3-wire		
	Old	New
Power supply	Red	Brown
GND	Black	Blue
Output	White	Black

Solid state with latch
type diagnostic output

	Old	New
Power supply	Red	Brown
GND	Black	Blue
Output	White	Black
Latch type diagnostic output	Yellow	Orange

Operating Environment

\triangle Warning

1. Never use in an atmosphere of explosive gases.
The construction of auto switches is not intended to prevent explosion. Never use in an atmosphere with an explosive gas since this may cause a serious explosion.
2. Do not use in an area where a magnetic field is generated.
Auto switches can malfunction or magnets inside cylinders can become demagnetized. (Consult SMC regarding the availability of a magnetic field resistant auto switch.)
3. Do not use in an environment where the auto switch will be continually exposed to water.
Although switches satisfy IEC standard IP67 construction (JIS C 0920: watertight construction), avoid using switches in applications where continually exposed to water splash or spray. Poor insulation or swelling of the potting resin inside switches may cause malfunction.
4. Do not use in an environment with oil or chemicals.
Consult SMC if auto switches will be used in an environment with coolant, cleaning solvent, various oils or chemicals. If auto switches are used under these conditions for even a short time, they may be adversely affected by improper insulation, malfunction due to swelling of the potting resin, or hardening of the lead wires.
5. Do not use in an environment with temperature cycles.
Consult SMC if switches are used where there are temperature cycles other than normal air temperature changes, as there may be adverse effects inside the switches.
6. Do not use in an environment where there is excessive impact shock.
<Reed switches>
When excessive impact $\left(300 \mathrm{~m} / \mathrm{s}^{2}\right.$ or more) is applied to a reed switch during operation, the contact point will malfunction and generate or cut off a signal momentarily (1 ms or less). Consult SMC regarding the need to use a solid state switch depending upon the environment.
7. Do not use in an area where surges are generated.
<Solid state switches>
When there are units (solenoid type lifter, high frequency induction furnace, motor, etc.) which generate a large amount of surge in the area around cylinders with solid state auto switches, this may cause deterioration or damage to the switches. Avoid sources of surge generation and crossed lines.
8. Avoid accumulation of iron waste or close contact with magnetic substances.
When a large amount of iron waste such as machining chips or spatter is accumulated, or a magnetic substance (something attracted by a magnet) is brought into close proximity with an auto switch cylinder, it may cause auto switches to malfunction due to a loss of the magnetic force inside the cylinder

Maintenance

§. Warning

1. Perform the following maintenance periodically in order to prevent possible danger due to unexpected auto switch malfunction.
1) Securely tighten switch mounting screws.

If screws become loose or the mounting position is dislocated, retighten them after readjusting the mounting position.
2) Confirm that there is no damage to lead wires.

To prevent faulty insulation, replace switches or repair lead wires, etc., if damage is discovered.
3) Confirm the lighting of the green light on the 2-color display type switch.
Confirm that the green LED is on when stopped at the established position. If the red LED is on, the mounting position is not appropriate. Readjust the mounting position until the green LED lights up.

Other

\triangle Warning

1. Consult SMC concerning water resistance, elasticity of lead wires, and usage at welding sites, etc.

Refer to pages 12 through 17 for safety instructions, actuator precautions and auto switch precautions.

Selection

© Warning

1. Do not use for intermediate cylinder stops.

This cylinder is designed for locking against inadvertent movement from a stationary condition. Do not perform intermediate stops while the cylinder is operating, as this will shorten its service life.
2. Select the correct locking direction, as this cylinder does not generate holding force opposite to the locking direction.
The extension locking direction does not generate holding force in the cylinder's retracting direction, and the retraction locking direction does not generate holding force in the cylinder's extending direction (free).
3. Even when locked, there may be stroke movement of about 1 mm in the locking direction due to external forces such as the weight of the work piece.
Even when locked, if air pressure drops, stroke movement of about 1 mm may be generated in the locking direction of the lock mechanism due to external forces such as the work piece weight.
4. When locked, do not apply impact loads, strong vibration or rotational force, etc.
This will lead to lock mechanism damage and reduced service life, etc.
5. Operate so that load weight, maximum speed and eccentric distance are within the limiting ranges in the graphs below.
Operation beyond the limiting range will lead to cylinder damage and reduced service life, etc.

Allowable kinetic energy

Retraction locking direction
Selection

Allowable load weight
Horizontal (without switch and with switch)

Pneumatic Circuits

\triangle Warning

1. Do not use 3 position valves.

The lock may be released due to inflow of the unlocking pressure.
2. Install speed controllers for meter-out control.
Malfunction may occur if meter-in control is used.
3. Be careful of reverse exhaust pressure flow from a common exhaust type valve manifold.
Since the lock may be released due to reverse exhaust pressure flow, use an individual exhaust type manifold or single type valve.
4. Branch off the compressed air piping for the lock unit between the cylinder and the speed controller.
Use of an external branch may cause a reduction in service life.
5. Perform piping so that the side going from the piping junction to the lock unit is short. If it is long, this may cause unlocking malfunction and reduce the lock's service life, etc.

F: Extension locking direction

B: Retraction locking direction

Refer to pages 12 through 17 for safety instructions, actuator precautions and auto switch precautions.
Mounting

Caution

1. Be sure to connect the load to the rod end with the cylinder in an unlocked condition. If this is done when in a locked condition, it may cause damage to the lock mechanism.
2. When fixing a work piece at the end of the piston rod, first retract the piston rod to the back end. Use the spanner hook at the end of the rod to keep the torque below the allowable tightening torque.
3. Always apply the piston rod load in the axial direction. Avoid operation where rotational torque is applied. If it is the only possible way, be sure to use it within the allowable range shown in the table below.
Allowable rotational torque

Size	$\mathbf{2 5} \cdot \mathrm{m})$			
Allowable rotational torque	0.25	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$
Allowable torque for work piece mounting	1.7	1.9	0.55	1.25

4. The piston speed may exceed the maximum operating speed of $500 \mathrm{~mm} / \mathrm{s}$ if the piping is directly connected to the cylinder. Please use speed controllers by SMC to adjust the piston speed so that it will not exceed $500 \mathrm{~mm} / \mathrm{s}$.

Preparing for Operation

© Warning

1. When starting operation from the locked position, be sure to restore air pressure to the B line in the pneumatic circuit.
It is very dangerous to apply pressure to the A line with the B line in an unpressurized state, because the cylinder will move suddenly when unlocked.
2. Shipped in the unlocked condition maintained by the unlocking bolt. Be sure to remove the unlocking bolt following the procedures below before operation.
The locking mechanism will not be effective without the removal of the unlocking bolt.

1) Confirm that there is no air pressure inside the cylinder, and remove dust cover 1 .
2) Supply air pressure of 0.2 MPa or more to unlocking port 2 shown in the drawing on the left.
3) Use a hexagon wrench (ø25, ø32: Width across flats $2.5, \varnothing 40, \varnothing 50$: Width across flats 3) to remove unlocking bolt 3 .

Manual Unlocking

\triangle Warning

1. Do not perform unlocking when an external force such as a load or spring force is being applied.
This is very dangerous because the cylinder will move suddenly. Take the following steps.
1) The lock after restoring the air pressure in the B line of the pneumatic circuit to operating pressure, and then reduce the pressure gradually.
2) In case air pressure cannot be used, release the lock after preventing cylinder movement with a lifting device such as a jack.
2. After confirming safety, operate the manual release following the steps shown below.
Carefully confirm that no one is inside the load movement range, etc., and that there is no danger even if the load moves suddenly.

Manual unlocking

Lock ring
Extension locking direction

1) Remove the dust cover.
2) Screw a manual unlocking bolt (a conventional bolt of $\varnothing 25, \varnothing 32$: M3 $\times 0.5 \times 25$ I or more, $\varnothing 40, \varnothing 50$: M4 $\times 0.7 \times 35$ l or more) into the lock ring threads as shown above, and lightly push the bolt in the direction of the arrow (head side) to unlock.

Lock ring
Retraction locking direction

1) Remove the dust cover.
2) Screw a manual unlocking bolt (a conventional bolt of $\varnothing 25, \varnothing 32$: M3 $\times 0.5 \times 251$ or more, $\varnothing 40$, $\varnothing 50$: M4 x 0.7×35 I or more) into the lock ring threads as shown above, and lightly push the bolt in the direction of the arrow (rod side) to unlock.

Maintenance

\triangle Caution

1.In order to maintain good performance, operate with clean unlubricated air.
If lubricated air, compressor oil or drainage, etc., enter the cylinder, there is a danger of sharply reducing the locking performance.
2. Do not apply grease to the piston rod.

There is a danger of sharply reducing the locking performance.

3. Never disassemble the lock unit.

It contains a heavy duty spring which is dangerous. There is also a danger of reducing the locking performance.

Series MLU
 Specific Product Precautions 3
 Be sure to read before handling.

Refer to pages 12 through 17 for safety instructions, actuator precautions and auto switch precautions.

Holding the Unlocked Condition

Warning

1. Sizes MLU can hold the unlocked condition.

<Holding the unlocked condition>

1) Remove the dust cover.
2) Supply air pressure of 0.2 MPa or more to the unlocking port, and set the lock ring to the perpendicular position.
3) Screw the unlocking bolt which is included (hexagon socket head screw ø25, ø32: M3 x 121, ø40, ø50: M4 x 16I) into the lock ring to hold the unlocked condition.

2. To use the locking mechanism again, be sure

 to remove the unlocking bolt.The locking mechanism will not function with the unlocking bolt screwed-in. Remove the unlocking bolt according to the procedures described in the section "Preparing for Operation".

Auto Switch Handling Precautions

Warning

1. If two or more cylinders are used in close proximity, the auto switches may malfunction affected by the magnets built in the nearby cylinder.
Please keep the cylinder mounting pitch larger than the values in the table below.

Minimum cylinder mounting pitch

				(mm)
Size	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$
L (d)	$33(10)$	$32(5)$	$36(5)$	$38(0)$

When the mounting pitch is equal to or smaller than the value shown above, it has to be shielded by an iron plate or a magnetic shielding plate (Part No. MU-S025) purchased separately. Please contact SMC for more information.

[^0]: ＊Seal kits consist of items（11），（12）and（13）contained in one kit，and can be ordered using the

[^1]: Seal kits consist of items (15), (16), (17) and (18) contained in one kit, and can be ordered using
 the kits number for each cylinder bore size

[^2]: Spring extend
 MUB25................SMU25, \#9
 MUB32................SMU32, \#9
 MUB40...............SMU40, \#9
 MUB50................SMU50, \#9
 MUB63................SMU63, \#9

[^3]: Be sure to read before handling. Refer to p.0-44 to 0-46 for auto switch common precautions.

[^4]: *Lead wire length symbols $0.5 \mathrm{~m} \cdots \cdots$ Nil (Example) A73C

 *Solid state switches marked with a "○" symbol are produced upon receipt of order.
 *D-P5DWL type can only be mounted on the types for tubing of $ø 40$ and $ø 50$.
 Only D-P5DWL is mounted when shipped.

[^5]: -

 I
 ! CaUtion: Operator error could result in injury or equipment damage.
 t. Warning: Operator error could result in serious injury or loss of life.
 ! Danger : In extreme conditions, there is a possible result of serious injury or loss of life.

 Note 1) ISO 4414: Pneumatic fluid power - Recommendations for the application of equipment to transmission and control systems.

