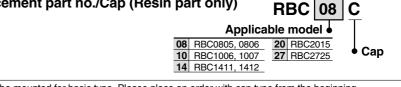
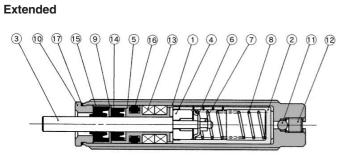
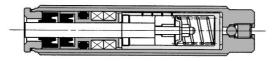

Shock Absorber Series RB


Specifications

Model	Basic type	RB0805	RB0806	RB1006	RB1007	RB1411	RB1412	RB2015	RB2725
Specifications	With cap	RBC0805	RBC0806	RBC1006	RBC1007	RBC1411	RBC1412	RBC2015	RBC2725
Max. energy abs	sorption (J)	0.98	2.94	3.92	5.88	14.7	19.6	58.8	147
Stroke absorption (mm) 5		5	6	6	7	11	12	15	25
Collision spe	ed (m/s)				0.05	to 5.0			·
Max. operating frequency * (cycle/min)		80	80	70	70	45	45	25	10
Max. allowable	thrust (N)	245	245	422	422	814	814	1961	2942
Ambient temperatur	re range (°C)			-	-10 to 80 (I	No freezing	1)		
Spring force	Extended	1.96	1.96	4.22	4.22	6.86	6.86	8.34	8.83
(N)	Retracted	3.83	4.22	6.18	6.86	15.30	15.98	20.50	20.01
	Basic type	15	15	23	23	65	65	150	350
Weight (g)	With cap	16	16	25	25	70	70	165	400

It denotes the values at the maximum energy absorption per one cycle.
 Max. operation cycle/min can increase in proportion to energy absorption.

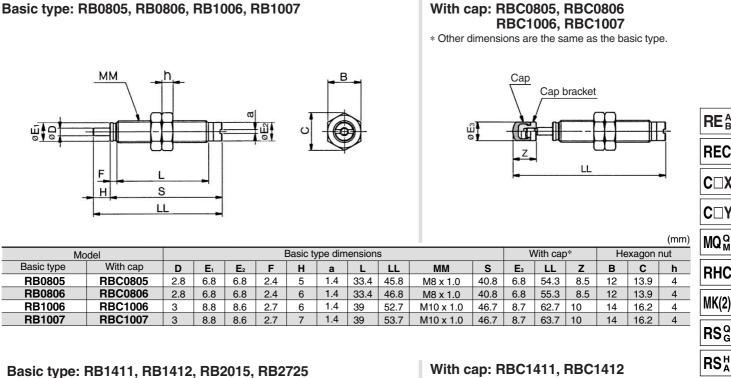




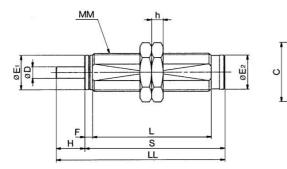
Cap cannot be mounted for basic type. Please place an order with cap type from the beginning.

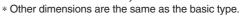
Construction

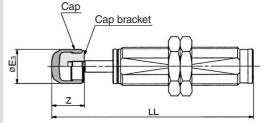
Compressed



Component Parts

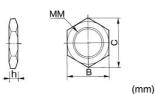

No.	Description	Material	Treatment
1	Outer tube	Rolled steel	Gray coated
2	Inner tube	Special steel	Heat treated
3	Piston rod	Special steel	Electroless nickel plated
4	Piston	Special steel	Heat treated
(5)	Bearing	Special bearing material	
6	Spring guide	Carbon steel	Zinc chromated
\bigcirc	Lock ring	Copper	
8	Return spring	Piano wire	Zinc chromated
9	Seal holder	Copper alloy	
10	Stopper	Carbon steel	Zinc chromated
11	Steel ball	Bearing steel	
(12)	Set screw	Special steel	
(13)	Accumulator	NBR	Foam rubber
(14)	Rod seal	NBR	
(15)	Scraper	NBR	
(16)	Gasket	NBR	
17	Gasket	NBR	Only RB(C)2015, 2725


Dimensions

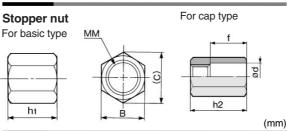


В

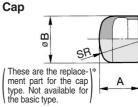
RBC2015, RBC2725



										-							(11111)
	Model					Basic ty	/pe dim	nension	s			۱ <u>۱</u>	Vith cap* Hexagon nut			nut	
Basic type	With cap	D	E1	E ₂	F	Н	к	L	LL	ММ	S	E₃	LL	Z	В	С	h
RB1411	RBC1411	5	12.2	12	3.5	11	12	58.8	78.3	M14 x 1.5	67.3	12	91.8	13.5	19	21.9	6
RB1412	RBC1412	5	12.2	12	3.5	12	12	58.8	79.3	M14 x 1.5	67.3	12	92.8	13.5	19	21.9	6
RB2015	RBC2015	6	18.2	18	4	15	18	62.2	88.2	M20 x 1.5	73.2	18	105.2	17	27	31.2	6
RB2725	RBC2725	8	25.2	25	5	25	25	86	124	M27 x 1.5	99	25	147	23	36	41.6	6


Hexagon Nut

(2 pcs. standard equipment)


Part no.	Dimensions								
Fait no.	ММ	h	h B C 4 12 13 4 14 16 6 19 21	С					
RB08J	M8 x 1.0	4	12	13.9					
RB10J	M10 x 1.0	4	14	16.2					
RB14J	M14 x 1.5	6	19	21.9					
RB20J	M20 x 1.5	6	27	31.2					
RB27J	M27 x 1.5	6	36	41.6					

Option

Par		Dimensions						
Basic type	With cap	В	С	h1	h2	MM	d	f
RB08S	RBC08S	12	13.9	6.5	23	M8 x 1.0	9	15
RB10S	RBC10S	14	16.2	8	23	M10 x 1.0	11	15
RB14S	RBC14S	19	21.9	11	31	M14 x 1.5	15	20
RB20S	RBC20S	27	31.2	16	40	M20 x 1.5	23	25
RB27S	RBC27S	36	41.6	22	51	M27 x 1.5	32	33

Replacement Parts

Material: Polyurethane (mm)

(
Part no.	Dimensions						
Fait no.	Α	B S 5 6.8 0 8.7 0 0 5 12 1 18 2	SR				
RBC08C	6.5	6.8	6				
RBC10C	9	8.7	7.5				
RBC14C	12.5	12	10				
RBC20C	16	18	20				
RBC27C	21	25	25				

RE^AB

REC

C

CUY

RHC

MK(2)

RSGQ

RS^H

RZQ

MIs

CEP1

CE1

CE2

ML2B

C_G^J5-S

CV

MVGQ

(mm)

Series RB/Shock Absorber Technical Data:

Selection Example

Model Selection

Model Selection Step

1. Type of impact

- Cylinder stroke at load (Horizontal)
- Cylinder stroke at load (Downward)
- Cylinder stroke at load (Upward)
- Conveyor stroke at load (Horizontal)
- Free horizontal impact
- Free dropping impact
- Rotating impact (With torque)

V

2. Enumeration of operating conditions

Symbol	Operating condition	Unit							
m	Impacting object weight	kg							
υ	Collision speed	m/sec							
h	Dropping height	m							
ω	Angle speed	rad/sec							
r	Distance between axis of cylinder and impact point	m							
d	Bore size	mm							
р	Cylinder operation pressure	MPa							
F	Thrust	Ν							
Т	Torque	N∙m							
n	Operation cycle	cycle/min							
t	Ambient temperature	°C							
μ	Friction coefficient	_							

- 3. Specifications and operational instructions Ensure that the collision speed, thrust, operation cycle, the ambient temperature and atmosphere fall within the specifications. *Be aware of the min. installation radius in the case of rotating impacts.
- 4. Calculation of kinetic energy E1 Using the equation suitable for the classification of impact.

In the case of cylinder stroke at load and free horizontal impact, substitute respective figures for Data A in order to calculate E1.

- 5. Calculation of thrust energy E₂ Select any shock absorber as a provisional model. In the case of thrust energy of cylinder E₁,
- substitute respective figures for Data B or Data C.
- 6. Calculation of corresponding weight of impacting object Me Absorbed energy E = E1 + E2Corresponding weight of impacting object $Me = \frac{2}{\upsilon^2} \cdot E$

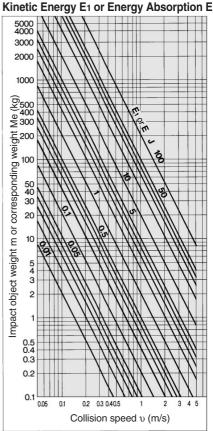
Substitute both absorbed energy E and collision speed υ for Data A in order to calculate the corresponding weight of the impacting object.

7. Selection of applicable model

Taking into consideration the corresponding weight of the impacting object Me, calculated using **Data D** and collision speed v, check provisional model compatibility with the condition of application. If this is satisfactory, then the said provisional model will be the applicable one.

Caution on Selection

In order for the shock absorbers to operate accurately for long hours, it is necessary to select a model that is well-suited to your operating conditions. If the impact energy is smaller than 5% of the maximum energy absorption, select a model that is one class smaller.


	Cylinder stroke at load (Horizontal)
1. Type of impact	
or impact	
Collision speed ⁽¹⁾	υ
Kinetic energy E1	$\frac{1}{2}$ ·m·v ²
Thrust energy E2	F₁·S
Absorbed energy E	E1 + E2
Corresponding ⁽²⁾ weight of impacting object <u>Me</u>	<u>-2</u> E
2.	m = 50 kg $\upsilon = 0.3 \text{ m/s}$
Operating conditions	d = 40 mm p = 0.5 MPa
conditions	n = 20 cycle/min t = 25°C
3.	• Confirmation of specifications
Specifications and operational	υ ··· 0.3 < 5 (max.) t ··· −10 (min.) < 25 < 80 (max.) F ··· F1 ···628 < 1961 (max.)
instructions	YES
4. Calculation	• Kinetic energy E1 Use Formula to calculate E1.
of kinetic	Substitute 50 for m and 0.3 for v . E1 \cong 2.3 J
energy E1	
5. Calculation	• Thrust energy E ₂ Provisionally select a model <u>RB2015</u> and make the use of
of thrust	Data B . According to $d = 40$, E2 is obtained.
energy E2	E₂ ≅ 9.4 J
6. Calculation of	 Corresponding weight of impacting object Me
corresponding	Use the formula "Absorbed energy $E = E_1 + E_2 = 2.3 + 9.4 = 11.7 J$ "
weight of impacting	to calculate Me. Substitute 11.7 J for E and 0.3 for υ.
object Me	Me ≅ 260 kg
	• Selection of applicable model According to Data D, the tentative-
7.	ly selected RB2015 satisfies Me = 260 kg < 400 kg at $v = 0.3$. Ulti-
Selection of	mately, it will result in an operat- ing frequency of n20 < 25, with-
applicable model	out causing a problem.
	YES
	Select RB2015

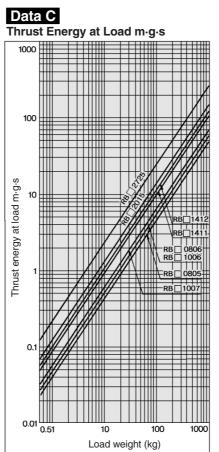
1. Type of Impact

Cylinder stroke at load (Downward)	
Fr Cylinder	
υ	
$\frac{1}{2}$ ·m·v ²	
F₁⋅S + m⋅g⋅S	
E1 + E2	
$\frac{2}{\upsilon^2} \cdot E$	
	at load (Downward) F_1 Cylinder Load $vv\frac{1}{2} \cdot \mathbf{m} \cdot v^2F_1 \cdot S + \mathbf{m} \cdot g \cdot SE_1 + E_2$

Note 1) Collision speed is momentary velocity at which object is impacting against shock absorber.

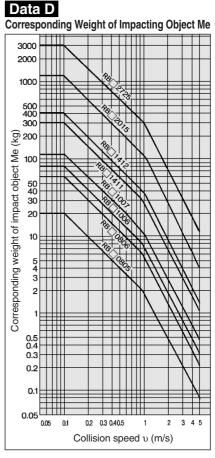
Data A

Cylinder stroke at load (Upward)	Conveyor stroke at load (Horizontal)	Free dropping impact	Rotating impact (Weight torque)
v ↓ Evad m Fi Cylinder			
υ	υ	$\sqrt{2 \text{ gh}}$	ω·R
$\frac{1}{2}$ ·m·v ²	$\frac{1}{2}$ ·m·v ²	m⋅g⋅h	$\frac{1}{2} \cdot I \cdot \omega^2$
F₁·S – m·g·S	m·g·µ·S	m⋅g⋅S	T· <u>S</u>
E1 + E2	E1 + E2	E1 + E2	E1 + E2
$\frac{2}{v^2} E$	$\frac{2}{v^2} E$	$\frac{2}{v^2} \cdot E$	$\frac{2}{v^2} \cdot E$


Note 2) An "Impact body equivalent weight" is the weight of an impact object without involving thrust, into which an object's total energy has been converted.), refer to the catalog of rotary actuator. Hence, $E = \frac{1}{2} \cdot Me \cdot U^2$

Note 3) For the formula of moment of inertia I (kg·m²), refer to the catalog of rotary actuator.

	Data B (Operating pressure 0.5 MPa) Thrust Energy of Cylinder F1-S (J)											
	lodel	RB	RB_0806 RB_1006	RB□	RB 1411	RB 1412	RB□ 2015	(J) RB 2725				
	Stroke absorption (mm) 5		6	7	11	12	15	25				
	6	0.071	0.085	0.099	0.156	0.170	0.212	0.353				
	10	0.196	0.236	0.274	0.432	0.471	0.589	0.982				
	15	0.442	0.530	0.619	0.972	1.06	1.33	2.21				
	20	0.785	0.942	1.10	1.73	1.88	2.36	3.93				
	25	1.23	1.47	1.72	2.70	2.95	3.68	6.14				
	30	1.77	2.12	2.47	3.89	4.24	5.30	8.84				
Ê	40	3.14	3.77	4.40	6.91	7.54	9.42	15.7				
size d (mm)	50	4.91	5.89	6.87	10.8	11.8	14.7	24.5				
e d	63	7.79	9.35	10.9	17.1	18.7	23.4	39.0				
siz	80	12.6	15.1	17.6	27.6	30.2	37.7	62.8				
Bore	100	19.6	23.6	27.5	43.2	47.1	58.9	98.2				
В	125	30.7	36.8	43.0	67.5	73.6	92.0	153				
	140	38.5	46.2	53.9	84.7	92.4	115	192				
	160	50.3	60.3	70.4	111	121	151	251				
	180	63.6	76.3	89.1	140	153	191	318				
	200	78.5	94.2	110	173	188	236	393				
	250	123	147	172	270	295	368	614				
	300	177	212	247	389	424	530	884				


■ Operating pressure other than 0.5 MPa: Multiply by the following coefficient.

Operating pressure (MPa)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Coefficient	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8

Symbol

Symbol	Specifications	Unit	
d	Bore size	mm	
E	Absorbed energy	J	
E1	Kinetic energy	J	REC
E2	Thrust energy	J	
F 1	Cylinder thrust	N	
g	Acceleration of gravity (9.8)	m/s²	
h	Dropping height	m	
I ⁽³⁾	Moment of inertia around the center of gravity	kg∙m²	C□Y
n	Operating frequency	cycle/min	MQM
р	Cylinder operation pressure	MPa	
R	Distance between axis of cylinder and impact point	m	RHC
S	Shock absorber stroke	m	
Т	Torque	N∙m	MK(2)
t	Ambient temperature	°C	
υ	Collision speed	m/s	RSGQ
m	Impact object weight	kg	ΠЭ _G
Ме	Corresponding weight of impact object	kg	RS ^H
ω	Angle speed	rad/s	
μ	Friction coefficient	—	RZQ
			L

MI_s

CEP1

CE1

CE2

ML2B

C_G^J5-S

CV

MVGQ

CC

RB

J

D-

-X

20-

Data

Precautions

-----_____ Be sure to read before handling. Refer to pages 10-24-3 to 10-24-6 for Safety Instructions and Actuator Precautions.

Selection

\land Danger

1. Energy absorption

Select a model so that the aggregated energy of impact object should not exceed the maximum absorption energy. Otherwise, it could cause changes in properties or result in damaging the shock absorber. 2. Corresponding weight of impacting object

Make a model selection, so that the corresponding weight of impacting object does not exceed the allowable range. Pulsation will occur in buffer and deceleration force, thus making it difficult to absorb shock smoothly.

3. Collision speed

Use it in the conditions that collision speed is within the specified range. It could cause the changes in buffer characteristics or lead to damage a shock absorber

/ Warning

1. Static load

Design the system, so that any other forces than the buffer capacity or impacts should not be applied to the piston rod which is stopped at the retracted state.

A Caution

1. Maximum operating frequency

Design the system in the conditions under which it is not used at the frequency exceeding the specified maximum operating frequency. (But, the maximum operating frequency will vary depending on the absorbed energy.)

- 2. Stroke
- The maximum absorption energy in the specifications cannot be exerted unless the full stroke is used for both Series RB and RBL.
- 3. Work surface of an impact object
- The contact surface of the impact object with which the piston rod comes into contact must be highly rigid.

In the case without a cap, a high surface compression load is applied to the contact surface of the impact body with which the piston rod comes into contact. Therefore, the contact surface must be highly rigid (hardness of HRC35 or more).

4. Be aware of the return force of the impact object.

If used in a conveyor drive, after the shock absorber has absorbed energy, it could be pushed back by the spring that is built-in. For the spring force in the specifications, refer to the column (page 10-18-2).

5. Selection of size

As the number of operation proceeds, the maximum absorption energy of shock absorbers will be decreased by the following reasons such as abrasion, or deterioration, etc. of the internal working fluid. Taking this into consideration, selecting a size which is 20 to 40% affordable against the amount of absorption energy is recommended.

6. Drag characteristics

In general, the values of drag (reactive force generated during operation) generated by the operating speed will vary in hydraulic shock absorber. And then, by adopting "Porous orifice construction", the RB series can adapt to such this fast/slow speed and can absorb shock smoothly in a wide range of speed.

But, the speed reduction (speed reduction G) would be larger around the stroke terminal, depending upon the operating conditions. Please note that it might be encountered that stroke time is long, motion is not smooth, etc. If this would be a problem, we recommend that stroke amount should be restricted by using our optional component like Stopper nut", etc.

Including this case, if the data on operational status (stroke time, reactive force, deceleration, etc.) are required, please consult with SMC.

Operating Environment

\Lambda Danger

1. Operation in an environment which requires explosion-proof

- When mounting in places where static electricity is accumulated, implement a distribution of electrical energy by grounding.
 Do not use the materials for buffer face which might cause to spark by
- collision.

🗥 Warning

1. Pressure

Do not use it in the vacuum state, which is substantially different from the atmospheric pressure (above sea level) and in the atmosphere under being pressurized.

2. Using inside a clean room

Do not use the shock absorber in a clean room, as it could contaminate the clean room

A Caution

1. Temperature range Do not use it, exceeding the specified allowable temperature range. Seal could be softened or hardened or worn out, or leading to leak a working fluid, deterioration, or impact characteristic changes.

2. Deterioration by atmosphere

Do not use in an atmosphere such as salt damage, sulfurous acid gas which makes the metal corroded, or having solvent, etc. which makes seal deteriorated.

3. Deterioration by ozone

Do not use it under the direct sunlight on the beach, or by the mercury lamp, or the ozone generator, because the rubber material will be deteriorated by ozone.

4. Cutting oil, water, blown dust

Do not use the product under the condition, where the liquid such as cutting oil, water, blown dust, solvent, etc. is exposed either directly or in atomized form to the piston rod, or where blown dust could be adhered around the piston rod. This could cause malfunction.

Vibration

When vibrations are applied on impact objects, implement a secure guide on impact objects

Mounting

🗥 Warning

- 1. Before performing installation, removal, or stroke adjustment, make sure to cut the power supply to the equipment and verify that the equipment has stopped.
- 2. Installation of protective cover
- We recommend the protective cover should be installed in the case workers might be getting close during the operation.
- 3. The rigidity of the mounting frame must be taken into consideration If the mounting frame lacks strength, the shock absorber will vibrate after an impact, causing bearing wear and damage Load on mounting plate can be calculated as follows.

Load on mounting plate $N \equiv 2 \frac{E \text{ (Absorbed energy J)}}{2 \sqrt{2}}$

🗥 Warning

- 1. Tightening torque of mounting nut should be as follows.
- When threading on a mounting frame in order to mount a shock absorber directly, prepared hole dimensions are referred to the table below.

For tightening torque of a nut for shock absorber, kindly abide by the table below.

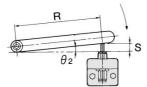
If the tightening torque that is applied to the nut exceeds the value given below, the shock absorber itself could become damaged.

Model	RB(C)0805 RB(C)0806	RB(C)1006 RB(C)1007	RB(C)1411 RB(C)1412	RB(C)2015	RB(C)2725
O.D. thread (mm)	M8 x 1.0	M10 x 1.0	M14 x 1.5	M20 x 1.5	M27 x 1.5
Thread prepared bore (mm)	ø7.1 ^{+ 0.1}	ø9.1 ^{+ 0.1}	ø12.7 ^{+ 0.1}	ø18.7 ^{+0.1}	ø25.7 +0.1 0
Tightening torque (N⋅m)	1.67	3.14	10.8	23.5	62.8

2. Deviation of impact

The installation must be designed so that the impact body is perpendicular to the shock absorber's axial center. An angle of deviation that exceeds 3° will place an excessive load on the bearings, leading to oil leaks within a short period of operation.

Allowable eccentric angle $\theta_1 < 3^\circ$


A Precautions

Be sure to read before handling. Refer to pages 10-24-3 to 10-24-6 for Safety Instructions and Actuator Precautions.

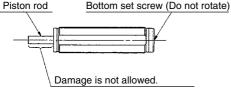
(mm)

Mounting

3. Rotating angle If rotating impacts are involved, the installation must be designed so that the direction in which the load is applied is perpendicular to the shock absorber's axial center. The allowable rotating angle until the stroke end must be $\theta_2 < 3^\circ$.

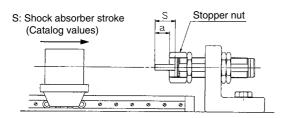
Allowable rotating eccentric angle $\theta_2 < 3^\circ$

Installation Conditions for Rotating Impact


Model	S (Stroke)	θ_2 (Allowable rotating angle)	R (Min. installation radius)			
RB□□0805	5		96			
RB□□0806	6		115			
RB□□1006	6		115			
RB□□1007	7	3°	134			
RB□□1411	11		210 229			
RB□□1412	12					
RB□□2015	15		287			
RB□□2725	25		478			

4. Do not scratch the sliding portion of the piston rod or the outside threads of the outer tube.

Failure to observe this precaution could scratch or gouge the sliding potion of the piston rod, or damage the seals, which could lead to oil leakage and malfunction. Furthermore, damage to outside threaded portion of the outer tube could prevent the shock absorber from being mounted onto the frame, or its internal components could deform, leading to a malfunction.


5. Never turn the screw on the bottom of the body.

This is not an adjusting screw. Turning it could result in oil leakage.

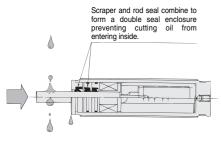
6. Adjust the stopping time through the use of the stopper nut, as follows:

Control the stopping time of the impact object by turning the stopper nut in or out (thus changing length "a"). After establishing the stopper nut position, use a hexagon nut to secure the stopper nut in place.

Maintenance

Caution

 Check the mounting nut is not loosen. The shock absorber could become damaged if it is used in a loose state.

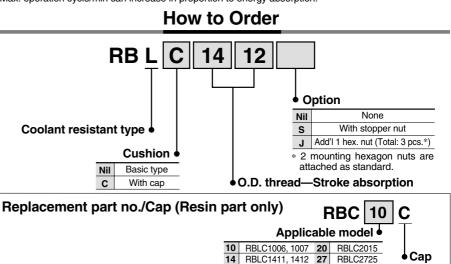

- 2. Pay attention to any abnormal impact sounds or vibrations. If the impact sounds or vibrations have become abnormally high, the shock absorber may have reached the end of its service life. If this is the case, replace the shock absorber. If use is continued in this state, it could lead to equipment damage.
- 3. Confirm that abnormality, oil leakage, etc. in the outward surface. When a large amount of oil is leaking, replace the product, because it is believed to be happening something wrong with it. If it keeps on using, it may cause to break the equipment which is mounted by this product.

4. Inspect the cap for any cracks or wear.

If the shock absorber comes with a cap, the cap could wear first. To prevent damage to the impact object, replace the cap often.

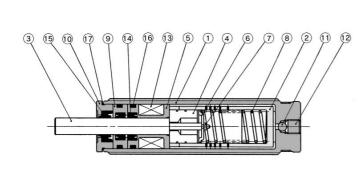
Shock Absorber: Coolant Resistant Type Series RBL

Can be operated in an environments exposed to non-water soluble cutting oil. (Mainly JIS Class 1 equivalent)


Specifications

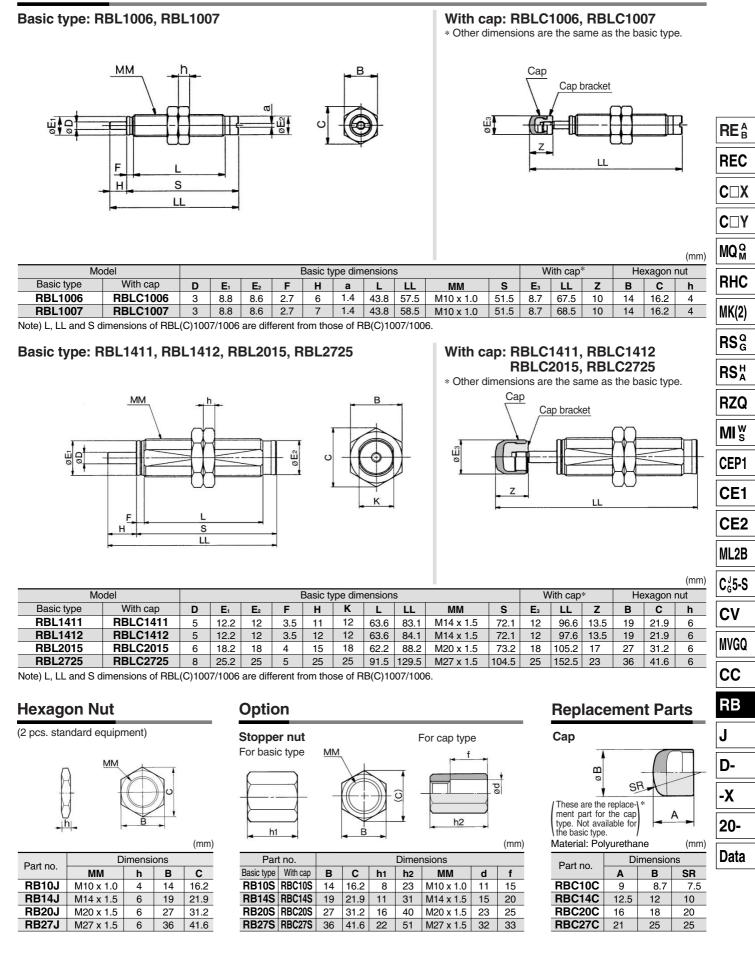
Mode	Basic type	RBL1006	RBL1007	RBL1411	RBL1412	RBL2015	RBL2725		
Specifications	With cap	RBLC1006	RBLC1007	RBLC1411	RBLC1412	RBLC2015	RBLC2725		
Max. energy absorption (J)		3.92	5.88	14.7	19.6	58.8	147		
Stroke absorpt	tion (mm)	6	7	11	12	15	25		
Collision speed	d (m/s)	0.05 to 5							
Max. operating frequency* (cycle/min)		70	70	45	45	25	10		
Max. allowable	lax. allowable thrust (N) 422 422 814 814 1				1961	2942			
Allowable temperat	ure range (°C)	-10 to 80							
Effective atmosphere		Non-water soluble cutting oil							
Spring force	Extended	4.22	4.22	8.73	8.73	11.57	22.16		
(N)	Retracted	6.18	6.86	14.12	14.61	17.65	38.05		
Weight (g)	Basic type	26	26	70	70	150	365		
	With cap	28	28	75	75	165	410		

It denotes the values at the maximum energy absorption per one cycle. Max. operation cycle/min can increase in proportion to energy absorption.


Basic type

Cap cannot be mounted for basic type. Please place an order with cap type from the beginning.

Construction



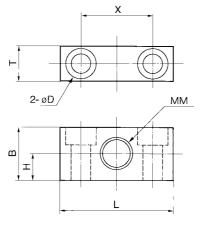
Component Parts

No.	Description	Material	Treatment		
110.	Outer tube	Rolled steel	Gray coated		
(2)	Inner tube	Special steel	Heat treated		
3	Piston rod	Special steel	Electroless nickel plated		
4	Piston	Special steel	Heat treated		
5	Bearing	Special bearing material			
6	Spring guide	Carbon steel	Zinc chromated		
\overline{O}	Lock ring	Copper			
8	Return spring	Piano wire	Zinc chromated		
9	Seal holder	Copper alloy			
10	Stopper	Carbon steel	Zinc chromated		
11	Steel ball	Bearing steel			
12	Set screw	Special steel			
(13)	Accumulator	NBR	Foam rubber		
14	Rod seal	NBR			
(15)	Scraper	NBR			
16	Gasket	NBR			
17	Gasket	NBR	Only RBL(C)2015, 2725		

Dimensions

Made t Order

Series RB, RBL Made to Order Specifications:


Foot Bracket for Shock Absorber

Available for the foot mounting bracket of Series RB.

	Part No.	
	Part no.	Applicable absorber
	RB08-X331	RB□0805, 0806
	RB10-X331	RB□1006, 1007
	RB14-X331	RB□1411, 1412
-	RB20-X331	RB□2015
	RB27-X331	RB□2725

* Order the foot bracket separately.

Dimensions

Part no.	В	D	Н	L	ММ	Т	X	Mounting bolt
RB08-X331	15	4.5 drill, 8 counterbore depth 4.4	7.5	32	M8 x 1.0	10	20	M4
RB10-X331	19	19 5.5 drill, 9.5 counterbore depth 5.4		40	M10 x 1.0	12	25	M5
RB14-X331	25	9 drill, 14 counterbore depth 8.6	12.5	54	M14 x 1.5	16	34	M8
RB20-X331	38	11 drill, 17.5 counterbore depth 10.8	19	70	M20 x 1.5	22	44	M10
RB27-X331	50	13.5 drill, 20 counterbore depth 13	25	80	M27 x 1.5	34	52	M12