High Power Cylinder Ø 20, Ø 25, Ø 32, Ø 40, Ø 50, Ø 63, Ø 80, Ø 100

High power cylinder:

Smooth cushioning for high speed operation (3000 low/medium speed operation with heavy loads

The capacity to absorb 10 to 20 times more energy than general purpose cylinders.

Relief valve adjusting screw

Relief valve body

The relief valve body rotates 360° , enabling relief adjustment from any direction. (Ø 20, Ø 25, Ø 32, Ø 40)

Mounting and Cushion Adjustment

Piping/mounting man-hours are the same as that of the general purpose cylinders.

Cushion adjustment (relief adjustment) man-hours are the same as the adjustment (cushion needle adjustment) for general purpose cylinders.

Cushion Capacity

mm/s) with light loads and

Cushion ring

The long cushion ring can absorb larger energy (in terms of speed and weight).

Cushion seal

Strong seals are used for improved high speed durability and cushioning performance.

Relief valve

The relief valve is used as a cushion valve and it provides better cushioning performance than a needle throttle of a general purpose cylinder.

SMC

1. Before cushioning

Supply/Exhaust port

Working Principle

Cushion seal

Air passes via the clearance Cushion ring between the cushion seal and the piston rod to the supply/exhaust port.

2

RHC Series Model Selection

Model Selection Example of High Power Cylinder

Selection Example 2. Vertical Drive

Maximum Energy Absorption

Bore size [mm]	20	25	32	40	50	63	80	100
Maximum energy absorption [J]	7	12	21	33	47	84	127	196

η: Cylinder load ratio

Vmax: Maximum speed (Refer to page 3.)

Apply η (cylinder load ratio) and Vmax (max. speed) and determine effective sectional area "Śo".

Refer to "System Selection" table, and the appropriate solenoid valve, speed control valve and bore size may be selected.

η: Cylinder load ratio

Vmax: Maximum speed (Refer to page 3.)

Sy	ste	m:	Selectio	n							
				Solenoi	d valve (): Effe	ective area [mm	12]		Speed c	ontroller	
		-	С	D	E	F	G	gs		Elbow	
		Ju ²	16.2 to 21.6	36 to 45	64.8 to 67	102.6 to 120	180 to 300	fittings	1-A	type	
	s/u	a u	_	VQ4000 (36.0)	_	_	_	ch f			_
Ē	Maximum speed [mm/s]	Composed effective area $[mm^2]$	VQ2000 (16.2)	VQ4000 (39.6)	_		_	Mith One-touch	1-B	Universal	Tubing I.D. [mm] Steel piping size
Bore size [mm]	ed	Ve Ve	SY7000 (21.6)		_		_	- e		type	n] . Ig s
size	spe	ecti	SX7000 (21.6)	—	_	—	_	04	1-C	In-line	i i i i i i
ere	E	eff					_	. Nit	1-0	type	elp
ы	Ē.	sed	VQZ3000 (16.2)					type		Metal elbow	Ste
	May	odu	VQZ3000 (21.6)					ţ	2-A	type	
		Do	VFR2000 (16.2)	VFR3000 (41.4)	VFR4000 (67.0)	VFR5000 (102.6)	VFR6000 (191)	2 Standard			
			VFS2000 (18.0)	VFS3000 (36.0)	VFS4000 (64.5)	VFS5000 (12.6)	VFS6000 (180)	anc	2-B	In-line	
					—	VP□50 (120)	VP□70 (300)			type	
								1-A	AS42	2□1F (24)	
								2-B		8⊡1F (24)	Ø 8, Ø 10
	500	9.5						1-C		001F (16)	1/4
								2-A		200 (26)	
								2-B		20 (102)	
50								1-A		2□1F (26)	
50	1000	19						2-B		8⊡1F (24)	Ø 12, Ø 16
								2-A		200 (26)	1/4, 3/8
								2-B		20 (102)	
	1500	28.5						2-B		20 (102)	3/8, Ø 16
	2000	38						2-B		20 (102)	3/8, Ø 16
	2500	47						2-B		20 (102)	3/8, Ø 16
	3000	56.5						2-B		20 (102)	1/2, Ø 16
								1-A		2□1F (24)	Ø 10,
								2-B		B⊡1F (24)	Ø 12,
	500	15						1-C		001F (16)	Ø 16
								2-A		200 (26)	1/4, 3/8
63	1000							2-B		20 (102)	
	1000	30						2-B		20 (102)	3/8, Ø 16
	1500	45						2-B		20 (102)	1/2, Ø 16
	2000 2500	60 75						2-B 2-B		20 (102)	1/2, Ø 16
								2-в 2-В		00 (258)	3/4, Ø 16
	3000	89.5						2-B 2-A		00 (123)	3/4, Ø 16
	500	24.5						2-A 2-B		200 (26)	Ø 16 3/8, 1/2
	1000	48.5						2-B		00 (123)	3/8, Ø 16
80	1500	72.5						2-B		00 (123)	
00	2000	96.5						2-B		. ,	1/2, Ø 16 3/4
	2000	96.5 120.5						2-B 2-B		00 (258) 00 (258)	3/4
	3000	120.5						2-B 2-B		00 (258)	3/4
	5000	38						2-B 2-B		20 (102)	3/4
	1000	75.5	<u> </u>					2-B		00 (258)	1/2, Ø 16
	1500	113						2-B		00 (258)	3/4
100	2000	110.5						2-B		00 (258)	3/4
	2500	138	<u> </u>		<u> </u>			2-B 2-B		00 (238)	3/4
	3000	88.5						2-B 2-B		00 (586)	3/4
	3000	00.0						2-0	A90	00 (123)	3/4

System Selection

Note) Refer to page 7 for the maximum absorbed energy since cushioning ability may in some cases exceed the allowable cushioning ability if the cylinder is used under high speeds and large loads.

High Power Cylinder RHC Series Ø 20, Ø 25, Ø 32, Ø 40, Ø 50, Ø 63, Ø 80, Ø 100

How to Order

to the table below.

Applicable Auto Switches/Refer to the website: www.smc.eu for further information on auto switches

			ght			Load vo	oltage	Aut	to switch mo	odel	Lea	ıd wir	e ler	ngth	[m]			
Гуре	Special function	Electrical	ndicator light	Wiring				Applica	able bore siz		0.5	4	3	-	None	Pre-wired	Applica	ble load
ype	Special function	entry	licat	(Output)		DC	AC				(M)			(N)	connector	Аррііса	Die Ioau	
			lno					Perpendicular	In-line	In-line	(—)	(111)	(Ľ)	(2)	(1)			
				3-wire (NPN)				M9NV	M9N	—				\bigcirc	—	0		
				S-WIE (INFIN)		5 V, 12 V			_	G59		-		\circ	—	0	IC	
		Grommet		3-wire (PNP)		5 V, 12 V		M9PV	M9P	—				\circ	—	0	circuit	
		Giommet		3-WIE (FINF)				—		G5P		-		\circ	—	0		
	-							M9BV	M9B	—				\circ	—	0		
_				2-wire		12 V			—	K59		-		\circ	—	0	-	
Solid state auto switch		Connector							H7C	—		-				—		
Ň		Terminal		3-wire (NPN)		5 V, 12 V			-	39	—	-	—	—		—	IC circuit	
ő		conduit		2-wire		12 V				39	—	-	—	—		—	—	Relay,
aul			Yes	3-wire (NPN)	24.11			M9NWV	M9NW	—				\circ	—	0		PLC
Ite			×		24 V	5 V, 12 V			_	G59W		-		0	—	0	IC Circuit	1 20
sta	Diagnostic indication			3-wire (PNP)	JP)			M9PWV	M9PW	—				\circ	—	0		
p	(2-colour indicator)	idicator) 3-wile (FN	5-wile (1141)					_	G5PW		-		\circ	—	0			
ŝ				2-wire] [12 V		M9BWV	M9BW	—				0	—	0	_	
		Grommet				12 V				K59W		-		\circ	—	0		
				3-wire (NPN)		5 V, 12 V	V 12 V	M9NAV*1	M9NA *1		0	0		0	—	0	IC	
	Water resistant			3-wire (PNP)			M9PAV*1	M9PA*1	—	0	0		\circ	—	0	circuit		
	(2-colour indicator)			2-wire		12 V		M9BAV*1	M9BA*1		0	0		\circ	—	0	_	
										G5BA*1		-		\circ	—	0		
	With diagnostic output (2-colour indicator)			4-wire (NPN)		5 V, 12 V			H7NF	G59F		-		\circ	—	0	IC circuit	
			Yes	3-wire (NPN equivalent)	-	5 V	_	A96V	A96	—	•	-	•	-	-	—	IC circuit	—
_		Grommet					100 V	A93V*2	A93						—	—	—	
ţ		aronnitot	No Yes No Yes No				100 V or less	A90V	A90	—		-		_	—	—	IC circuit	
Reed auto switch			Yes				100 V, 200 V			54		-			—	—		
ğ	—		Ž				200 V or less	—		64		-		—	—	—	—	Relay,
au		Connector	Yes	2-wire	24 V	12 V			C73C			-				_		PLC
eq			Ŝ	2-0016	24 V		24 V or less		C80C			-				—	IC circuit	1 20
Be		Terminal						_		33	—	-	-	-		—		
		conduit	Yes				100 V, 200 V	_		34		-	-	-		—	_	
		DIN terminal	Ň				100 0, 200 0	—		44	—	—	—	-		—		
	Diagnostic indication (2-colour indicator)	Grommet				-	_	—	B5	9W		-		-	-	—		

*1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance. Consult with SMC regarding water resistant types with the above model numbers.

*2 1 m type lead wire is only applicable to D-A93 * Lead wire length symbols:

0.5 m	(Example) M9NW
1 m M	(Example) M9NWM
3 m L	(Example) M9NWL

(Example) M9NWZ 5 m Z

None ······ N (Example) H7CN

* Since there are other applicable auto switches than listed, refer to page 19 for details.

* For details about auto switches with pre-wired connector, refer to website: www.smc.eu

* D-A9□/M9□/M9□W auto switches are shipped together (not assembled). (Only auto switch mounting brackets are assembled before shipped.)

* Solid state auto switches marked with "O" are produced upon receipt of order. * D-A9_V/M9_V/M9_WV/D-M9_A(V) types cannot be mounted.

* Do not indicate suffix "N" for no lead wire on D-A3□/A44/G39/K39 models.

20 25 32 40 50 63 80 Bore size [mm] 100 Fluid Air **Proof pressure** 1.5 MPa Maximum operating pressure 1.0 MPa Minimum operating pressure 0.05 MPa Ambient and fluid temperature -10 to 60 °C (No freezing) **Piston speed** 50 to 3000 mm/s Cushion Air cushion Maximum energy absorption [J] 7 12 21 33 47 84 127 196 Effective cushioning stroke [mm] 80 80 80 80 80 80 80 80 Lubrication Not required (Non-lube) Up to 1000 st: $^{+1.4}_{0}$, 1001 to 1500 st: $^{+1.8}_{0}$ Stroke length tolerance Mounting Basic type, Axial foot type, Rod/Head side flange type

Stroke

			[mm]
Bore size [mm]	Minimum stroke (Recommended) (1)	Standard stroke (2)	Max. stroke
20	250	up to 700	1500
25	250	up to 700	1500
32	250	up to 1000	1500
40	250	up to 1000	1500
50	250	up to 1200	1500
63	250	up to 1200	1500
80	250	up to 1400	1500
100	250	up to 1500	1500

REF

Symbol

Made to Order	Made to Order						
Symbol	Specification						
-XC3	Special port location*						
-XC6	Made of stainless steel						
-XC93	Water resistance + Stable lubrication function**						
* Ø 20 to	Ø 20 to Ø 40 only						

** Ø 32, Ø 40 only

Note 1) Strokes shorter than the recommended minimum stroke (1 to 249 st) can be manufactured, but cushion capability may not be satisfied since the effective cushion stroke for this cylinder is long. Note 2) Stroke exceeding the standard stroke length is not subject to the guarantee.

Mounting Bracket Part No.

Mounting	0.				Bore siz	ze [mm]				Description	
bracket	Qty.	20	25	32	40	50	63	80	100	Description	
Axial foot	Note) 2	RHC-L020	RHC-L025	RHC-L032	RHC-L040	RHC-L050	RHC-L063	RHC-L080	RHC-L100	Ø 20 to Ø 40 : Foot x 2, Mounting nut x 1 Ø 50 to Ø 100: Foot x 2, Bracket mounting bolt x 8, Spring washer x 8	
Flange	1	RHC-F020	RHC-F025	RHC-F032	RHC-F040	RHC-F050	RHC-F063	RHC-F080	RHC-F100	Ø 20 to Ø 40 : Flange x 1 Ø 50 to Ø 100: Flange x 1, Bracket mounting bolt x 4, Spring washer x 4	

Note) Order 2 foot brackets for a cylinder.

SMC

Theoretical Output

										т	IN	
												[N]
Bore size	Rod size	Operating	Piston area				Operat	ing pressure	e [MPa]			
[mm]	[mm]	direction	[mm ²]	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
20	10	OUT	314	63	94	126	157	188	220	251	283	314
20	10	IN	236	47	71	94	118	142	165	189	212	236
05	12	OUT	491	98	147	196	246	295	344	393	442	491
25	12	IN	378	76	113	151	189	227	265	302	340	378
	10	OUT	804	161	241	322	402	482	563	643	724	804
32	12	IN	691	138	207	276	346	415	484	553	622	691
40	16	OUT	1260	252	378	504	630	756	882	1010	1130	1260
40	10	IN	1060	212	318	424	530	636	742	848	954	1060
50	20	OUT	1960	392	588	784	980	1180	1370	1570	1760	1960
50	20	IN	1650	330	495	660	825	990	1160	1320	1490	1650
60	20	OUT	3120	624	936	1250	1560	1870	2180	2500	2810	3120
63	20	IN	2800	560	840	1120	1400	1680	1960	2240	2520	2800
80	25	OUT	5030	1010	1510	2010	2520	3020	3520	4020	4530	5030
80	20	IN	4540	908	1360	1820	2270	2720	3180	3630	4090	4540
100	30	OUT	7850	1570	2360	3140	3930	4710	5500	6280	7070	7850
100	30	IN	7150	1430	2150	2860	3580	4290	5010	5720	6440	7150

Note) Theoretical output [N] = Pressure [MPa] x Piston area [mm²]

Weight (In the case of 500 stroke)

									[kg]
	20	25	32	40	50	63	80	100	
	Basic type	1.20	1.62	2.04	3.20	4.90	6.08	8.93	13.60
Basic weight	Axial foot type	1.44	1.88	2.44	3.72	5.95	7.32	11.04	16.67
	Flange type	1.29	1.79	2.23	3.47	5.68	6.97	10.67	15.92
Additional wei	ght per each 50 mm of stroke	0.06	0.08	0.09	0.15	0.22	0.25	0.35	0.51

Calculation: (Example) RHCL32-600

• Basic mass (500 st) 2.44 (kg) (Foot type Ø 32)

Additional weight 0.09 (kg/50 st)

2.44 + 0.09 x (600 - 500)/50 = 2.62 kg

Series Applicable to Operating Environments that Do Not Accept Copper

Copper and Fluorine-free-----20-series

* For details, refer to the SMC website.

Construction: Ø 20 to Ø 40

Component Parts

No.	Description	Material	Qty.	Note
1	Rod cover	Aluminium alloy	1	Clear anodised
2	Head cover	Aluminium alloy	1	Clear anodised
3	Cylinder tube	Aluminium alloy		Hard anodised
4	Piston	Aluminium alloy	1	Chromated
5	Cushion ring A	Carbon steel	1	Hard chrome plated
6	Cushion ring B	Carbon steel	1	Hard chrome plated
7	Piston rod	Carbon steel*	1	Hard chrome plated
8	Cushion spacer	Steel	2	Chromated
9	Bumper	Urethane	2	
10	Magnet	—	1	
11	Bushing	Bearing alloy	1	
12	Relief valve assembly (Rod side)	—	1	
13	Relief valve assembly (Head side)	—	1	
14	Relief valve body holder	Aluminium alloy	2	Clear anodised
15	Hexagon socket head cap screw	Carbon steel	1	Ø 20: M5 x 0.8 x 6 Ø 25, Ø 32: M6 x 1 x 6 Ø 40: M8 x 1.25 x 8
16	Hexagon socket head set screw	Carbon steel	2	Ø 20, Ø 25: M5 x 0.8 x 6 Ø 32, Ø 40: M6 x 1 x 8
17	Plate	—	1	
18	Cushion seal	Special resin	2	
19	Piston seal	NBR	1	
20	Wear ring	Resin	1	
21	Piston gasket	NBR	1	
22	Cylinder tube gasket	NBR	2	
23	Rod seal	NBR	1	
24	O-ring	NBR	4	
25	O-ring	NBR	2	

* Stainless steel for Ø 20 and Ø 25

Replacement Parts/Seal Kit

Bore size [mm]	Kit no.	Contents
20	RHC20-PS	
25	RHC25-PS	Set of nos. left
32	RHC32-PS	18, 19, 20, 22, 23, 24, 25
40	RHC40-PS	0,0

* Seal kit includes a grease pack (10 g). Order with the following part number when

only the grease pack is needed.

Grease pack part no.: GR-S-010 (10 g)

A Caution

When disassembling cylinders with bore sizes of \emptyset 20 through \emptyset 40, grip the double flat part of either the rod cover or the head cover with a vise and loosen the other side with a wrench or an adjustable angle wrench, and then remove the cover. When re-tightening, tighten approximately 2 degrees more than the original position.

Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminium alloy	Clear anodised
2	Head cover	Aluminium alloy	Clear anodised
3	Cylinder tube	Aluminium alloy	Hard anodised
4	Piston rod	Carbon steel	Hard chromate plated
5	Piston	Aluminium alloy	Hard anodised
6	Bumper	Urethan	
7	Magnet	—	
8	Bushing	Bearing alloy	
9	Relief valve assembly L	—	
10	Relief valve assembly R	—	
11	Plate	—	
12	Cushion seal	Urethan	
13	Piston seal	NBR	
14	Wear ring	Resin	
15	Cylinder tube gasket	NBR	
16	Rod seal	NBR	

Caution

Cylinders with \emptyset 50 or larger bore sizes are tightened with a large tightening torque and cannot be disassembled. Contact SMC when disassembly is required.

Enlarged view of "A"

Dimensions: Basic Type

Ø 20 to Ø 40

													[mm]
Bore size [mm]	Α	AL	В	С	D	Е	F	FL	GA	GB	Н	H1	H2
20	18	15.5	32	40.5	10	14.5	16	11.5	53.5	47.5	44	5	8
25	22	19.5	36	45.5	12	18	16	11.5	56.5	49.5	48	6	8
32	22	19.5	44	51.5	12	18	19	14.5	55	51.5	51	6	9
40	24	21	53	61.5	16	20.5	21	16.5	56	51.5	54.5	8	11

Bore size [mm]	JC	JD	К	KA	ММ	Ν	NE	NA	NF	NI	NN	Р	S	WH	ZZ
20	43	30.5	5	8	M8 x 1.25	22	33.5	26	13	23-0.020	M22 x 1.5	1/4	192		252
25	39	25.5	5.5	10	M10 x 1.25	27	37	32	17	25-0.020	M24 x 1.5	1/4	193	5.8 to 8.8	257
32	36	28.5	5.5	10	M10 x 1.25	27	43.5	38	17	31 ^{-0.025} -0.064	M30 x 1.5	3/8	195		265
40	32	23	7.5	14	M14 x 1.5	30	52.5	41	22	34 ^{-0.025} -0.064	M33 x 2.0	3/8	201.5	6.8 to 11.3	277

Ø 50 to Ø 100

										[mm]
Bore size [mm]	Α	AL	В	С	D	E	EA	FA	GA	Н
50	35	32	70	53	20	50 ⁰ -0.062	62	23	16	80
63	35	32	80	60	20	55 ⁰ _{-0.074}	58	23	16	80
80	40	37	95	75	25	65 ⁰ 0.074	61	23	20	90
100	40	37	116	90	30	80_0.074	63	25	20	95

Bore size [mm]	H 1	J	JC	К	KA	MM	NE	NF	Р	S	WH	ZZ
50	11	M10 x 1.5 thread depth 20	75	7	18	M18 x 1.5	25	27	1/2	215	6.8 to 11.3	305
63	11	M10 x 1.5 thread depth 20	75	7	18	M18 x 1.5	24.5	27	1/2	215		305
80	13	M12 x 1.75 thread depth 25	78	10	22	M22 x 1.5	30.5	32	3/4	228	8.5 to 13.5	328
100	16	M12 x 1.75 thread depth 25	80	10	26	M26 x 1.5	34	41	3/4	236		341

Dimensions: Axial Foot Type

																[mm]
Bore size [mm]	Α	AL	D	Е	F	GA	GB	н	H1	H2	JC	JD	К	KA	LD	LH
20	18	15.5	10	14.5	16	53.5	47.5	44	5	8	43	30.5	5	8	7	25
25	22	19.5	12	18	16	56.5	49.5	48	6	8	39	25.5	5.5	10	7	28
32	22	19.5	12	18	19	55	51.5	51	6	9	36	28.5	5.5	10	7	30
40	24	21	16	20.5	21	56	51.5	54.5	8	11	32	23	7.5	14	9	35

Bore size [mm]	LS	LT	LX	LY	LZ	MM	Ν	NA	NE	NF	NN	Р	S	WH	Х	Y	ZZ
20	232	6.5	40	41	55	M8 x 1.25	22	26	33.5	13	M22 x 1.5	1/4	192		20	9	265
25	233	6.5	40	46.5	55	M10 x 1.25	27	32	37	17	M24 x 1.5	1/4	193	5.8 to 8.8	20	9	270
32	241	7	45	53	60	M10 x 1.25	27	38	43.5	17	M30 x 1.5	3/8	195		23	9	278
40	251.5	7	55	62	75	M14 x 1.5	30	41	52.5	22	M33 x 2.0	3/8	201.5	6.8 to 11.3	25	11	292

Ø 50 to Ø 100

																[mm]	
Bore size [mm]	Α	AL	В	С	D	I	E	EA	FA	GA	Н	H1	JC	К	KA	LD	
50	35	32	70	53	20	50	0 -0.062	62	23	16	80	11	75	7	18	11	
63	35	32	80	60	20	55	0 -0.074	58	23	16	80	11	75	7	18	11	
80	40	37	95	75	25	65	0 -0.074	61	23	20	90	13	78	10	22	13	
100	40	37	116	90	30	80	0 -0.074	63	25	20	95	16	80	10	26	13	
Bore size [mm]	LH	LS	LT	LY	LX	LZ	М	M	М	NE	NF	I	Þ	S	W	/H	Х
50	52	275	10	88.5	53	73	7.5	M18	x 1.5	25	27	1	/2	215	6.8 to	0 11.3	30
63	55	289	10	95	60	80	7.5	M18	x 1.5	24.5	27	1	/2	215			37

100 10

118 10

30.5

3/4

3/4

8.5 to 13.5

M22 x 1.5

M26 x 1.5

Y

ZZ

Dimensions: Rod Side Flange Type

Ø 20 to Ø 40

																	[mm]
Bore size [mm]	Α	AL	В	D	Е	F	FL	FD	FT	FX	FY	FW	FZ	GA	GB	H1	H2
20	18	15.5	32	10	14.5	16	11.5	7	6	51	21	38	68	53.5	47.5	5	8
25	22	19.5	36	12	18	16	11.5	7	9	53	27	44	70	56.5	49.5	6	8
32	22	19.5	44	12	18	19	14.5	7	9	55	33	50	72	55	51.5	6	9
40	24	21	53	16	20.5	21	16.5	9	9	66	36	60	84	56	51.5	8	11

Bore size [mm]	Н	JC	JD	К	KA	MM	Ν	NA	NC	NE	NF	NI	NN	Р	S	WH	ZZ
20	44	43	30.5	5	8	M8 x 1.25	22	26	5.5	33.5	13	23-0.020	M22 x 1.5	1/4	192		252
25	48	39	25.5	5.5	10	M10 x 1.25	27	32	5.5	37	17	25-0.020	M24 x 1.5	1/4	193	5.8 to 8.8	257
32	51	36	28.5	5.5	10	M10 x 1.25	27	38	4.5	43.5	17	31 ^{-0.025} -0.064	M30 x 1.5	3/8	195		265
40	54.5	32	23	7.5	14	M14 x 1.5	30	41	4.5	52.5	22	34-0.025	M33 x 2.0	3/8	201.5	6.8 to 11.3	277

Ø 50 to Ø 100

												[mm]		
Α	AL	В	С	D	I	E	EA	FA	FD	FT	FW	FX		
35	32	70	53	20	50	0 -0.062	62	23	11	15	78	96		
35	32	80	60	20	55	0 -0.074	58	23	11	15	84	104		
40	37	95	75	25	65	0 -0.074	61	23	13	18	106	130		
40	37	116	90	30	80	0 -0.074	63	25	13	20	120	145		
FY	FZ	GA	Н	H1	JC	ĸ	KA	M	М	NE	NF	Р		S
53	116	16	80	11	75	7	18	M18	x 1.5	25	27	1/2		215
60	124	16	80	11	75	7	18	M18	x 1.5	24.5	27	1/2		215
75	155	20	90	13	78	10	22	M22	x 1.5	30.5	32	3/4		228
	35 35 40 40 FY 53 60	35 32 35 32 40 37 40 37 FY FZ 53 116 60 124	35 32 70 35 32 80 40 37 95 40 37 116 FY FZ GA 53 116 16 60 124 16	35 32 70 53 35 32 80 60 40 37 95 75 40 37 116 90 FY FZ GA H 53 116 16 80 60 124 16 80	NI P P P P 35 32 70 53 20 35 32 80 60 20 40 37 95 75 25 40 37 116 90 30 FY FZ GA H H1 53 116 16 80 11 60 124 16 80 11	35 32 70 53 20 50 35 32 80 60 20 55 40 37 95 75 25 65 40 37 116 90 30 80 FY FZ GA H H1 JC 53 116 16 80 11 75 60 124 16 80 11 75	35 32 70 53 20 50-&BBE 35 32 80 60 20 55-BBO74 40 37 95 75 25 65-BBO74 40 37 116 90 30 80-BBO74 FY FZ GA H H1 JC K 53 116 16 80 111 75 7 60 124 16 80 111 75 7	35 32 70 53 20 50-6xe 62 35 32 80 60 20 55-6xr4 58 40 37 95 75 25 65-6xr4 61 40 37 116 90 30 80-6xr4 63 FY FZ GA H H1 JC K KA 53 116 16 80 11 75 7 18 60 124 16 80 11 75 7 18	35 32 70 53 20 50-%052 62 23 35 32 80 60 20 55-%074 58 23 40 37 95 75 25 65-%074 61 23 40 37 116 90 30 80-%074 63 25 FY FZ GA H H1 JC K KA M 53 116 16 80 11 75 7 18 M18 60 124 16 80 11 75 7 18 M18	35 32 70 53 20 50-%∞2 62 23 11 35 32 80 60 20 55-%074 58 23 11 40 37 95 75 25 65-%074 61 23 13 40 37 116 90 30 80-%074 63 25 13 FY FZ GA H H1 JC K KA MM 53 116 16 80 11 75 7 18 M18 × 1.5 60 124 16 80 11 75 7 18 M18 × 1.5	35 32 70 53 20 50-802 62 23 11 15 35 32 80 60 20 55-8074 58 23 11 15 40 37 95 75 25 65-8074 61 23 13 18 40 37 116 90 30 80-8074 63 25 13 20 FY FZ GA H H1 JC K KA MM NE 53 116 16 80 11 75 7 18 M18 x 1.5 25 60 124 16 80 11 75 7 18 M18 x 1.5 24.5	35 32 70 53 20 50- $\frac{9}{0.062}$ 62 23 11 15 78 35 32 80 60 20 $55-\frac{9}{0.074}$ 58 23 11 15 78 35 32 80 60 20 $55-\frac{9}{0.074}$ 58 23 11 15 84 40 37 95 75 25 $65-\frac{9}{0.074}$ 61 23 13 18 106 40 37 116 90 30 $80-\frac{9}{0.074}$ 63 25 13 20 120 FY FZ GA H H1 JC K KA MM NE NF 53 116 16 80 11 75 7 18 M18 × 1.5 25 27 60 124 16 80 11 75 7 18 M18 × 1.5 24.5 27	A AL B C D E EA FA FD FT FW FX 35 32 70 53 20 50-%02 62 23 11 15 78 96 35 32 80 60 20 55-%074 58 23 11 15 84 104 40 37 95 75 25 65-%074 61 23 13 18 106 130 40 37 116 90 30 80-%074 63 25 13 20 120 145 FY FZ GA H H1 JC K KA MM NE NF P 53 116 16 80 11 75 7 18 M18 × 1.5 25 27 1/2 60 124 16 80 11 75 7 18 M18 × 1.5 <	A AL B C D E EA FA FD FT FW FX 35 32 70 53 20 50. ⁰ / _{0.662} 62 23 11 15 78 96 35 32 80 60 20 55. ⁰ / _{0.674} 58 23 11 15 84 104 40 37 95 75 25 65. ⁰ / _{0.674} 61 23 13 18 106 130 40 37 116 90 30 80. ⁰ / _{0.674} 63 25 13 20 120 145 FY FZ GA H H1 JC K KA MM NE NF P 53 116 16 80 11 75 7 18 M18 × 1.5 25 27 1/2 60 124 16 80 11 75 7 18

10

26

16

80

M26 x 1.5 34

41

3/4

236

WH

6.8 to 11.3

8.5 to 13.5

ZZ

305 305

328

341

100

90 172 20 95

Dimensions: Head Side Flange Type

Ø 20 to Ø 40

																		[mm]			
Bore size [mm]	Α	AL	В	С	D	E	F	FL	FD	FT	FX	FY	FW	FZ	GA	GB	H1	H2			
20	18	15.5	32	40.5	10	14.5	16	11.5	7	6	51	21	38	68	53.5	47.5	5	8	-		
25	22	19.5	36	45.5	12	18	16	11.5	7	9	53	27	44	70	56.5	49.5	6	8			
32	22	19.5	44	51.5	12	18	19	14.5	7	9	55	33	50	72	55	51.5	6	9			
40	24	21	53	61.5	16	20.5	21	16.5	9	9	66	36	60	84	56	51.5	8	11			
Bore size [mm]	н	JC	JD	K	KA	M	М	N	NA	NB	NC	NE	NF	N 1	11	N	N	P	S	WH	ZZ
20	44	43	30.5	5	8	M8 x	1.25	22	26	30	5.5	33.5	13	23	-0.020 -0.053	M22	x 1.5	1/4	192		252
25	48	39	25.5	5.5	10	M10>	(1.25	27	32	36.9	5.5	37	17	25	-0.020 -0.053	M24	x 1.5	1/4	193	5.8 to 8.8	257
32	51	36	28.5	5.5	10	M10>	(1.25	27	38	43.9	4.5	43.5	17	31	-0.025 -0.064	M30	x 1.5	3/8	195		265
40	54.5	32	23	7.5	14	M14	x 1.5	30	41	47.3	4.5	52.5	22	34	-0.025 -0.064	M33	x 2.0	3/8	201.5	6.8 to 11.3	277

Ø 50 to Ø 100

														[mm]	
Bore size [mm]	Α	AL	В	С	D	E	E	EA	FA	FD	FT	FW	FX	FY	
50	35	32	70	53	20	50	0 -0.062	62	23	11	15	78	96	53	
63	35	32	80	60	20	55	0 -0.074	58	23	11	15	84	104	60	
80	40	37	95	75	25	65	0 -0.074	61	23	13	18	106	130	75	
100	40	37	116	90	30	80	0 -0.074	63	25	13	20	120	145	90	
Bore size [mm]	FZ	GA	Н	H1	JC	K	KA	M	M	NE	NF	I	2	S	WH
50	116	16	80	11	75	7	18	M18	x 1.5	25	27	1.	/2	215	6.8 to 11.3
63	124	16	80	11	75	7	18	M18	x 1.5	24.5	27	1.	/2	215	
80	155	20	90	13	78	10	22	M22	x 1.5	30.5	32	3	/4	228	8.5 to 13.5
100	172	20	95	16	80	10	26	M26	x 1.5	34	41	3	/4	236	

ΖZ

310 310

336 351

RHC Series Accessory

Mounting Nut

Part no.	Applicable bore size [mm]	В	С	D	d	Н
SOR-20	20	26	30	26	M22 x 1.5	8
SOR-25	25	32	36.9	32	M24 x 1.5	8
SOR-32	32	38	43.9	38	M30 x 1.5	9
SOR-40	40	41	47.3	41	M33 x 2.0	11

Rod End Nut

[mm]

Material: Carbon steel

[mm]

Part no.	Applicable bore size [mm]	В	С	D	d	Н
NT-02	20	13	15	12.5	M8 x 1.25	5
NT-03	25/32	17	19.6	16.5	M10 x 1.25	6
NT-04	40	22	25.4	21.0	M14 x 1.5	8
NT-05	50/63	27	31	26	M18 x 1.5	11
NT-08	80	32	37	31	M22 x 1.5	13
NT-10	100	41	47.3	39	M26 x 1.5	16

SMC

RHC Series Auto Switch Mounting 1

Minimum Stroke for Auto Switch Mounting

					n: No. of auto switches [mm]					
	No. of auto switches mounted									
Auto switch model	1	2	2		n					
		Different surfaces	Same surface	Different surfaces	Same surface					
D-A9□ D-M9□ D-M9□W	10	15 Note 1)	45 Note 1)	$15 + 45 \frac{(n-2)}{2}$ (n = 2, 4, 6) Note 3)	45 + 45 (n – 2) (n = 2, 3, 4, 5…)					
D-M9□	5	15 Note 1)	40 Note 1)	$20 + 35 \frac{(n-2)}{2}$ (n = 2, 4, 6) Note 3)	55 + 35 (n - 2) (n = 2, 3, 4, 5···)					
D-M9⊡W	10	15 Note 1)	40 Note 1)	$20 + 35 \frac{(n-2)}{2}$ (n = 2, 4, 6) Note 3)	55 + 35 (n – 2) (n = 2, 3, 4, 5…)					
D-M9□A	10	25	40 Note 1)	$25 + 35 \frac{(n-2)}{2}$	60 + 35 (n - 2) (n = 2, 3, 4, 5···)					
D-A9□	5	15	30 Note 1)	$(n = 2, 4, 6)^{Note 3}$ $15 + 35 \frac{(n-2)}{2}$ $(n = 2, 4, 6)^{Note 3}$	50 + 35 (n - 2) (n = 2, 3, 4, 5…)					
D-M9⊡V	5	20	35	$(n = 2, 4, 6)^{Note 3}$ $20 + 35 \frac{(n-2)}{2}$ $(n = 2, 4, 6)^{Note 3}$	35 + 35 (n – 2) (n = 2, 3, 4, 5…)					
D-A9⊡V	5	15	25	$(n = 2, 4, 6)^{Note 3}$ $15 + 35 \frac{(n-2)}{2}$ $(n = 2, 4, 6)^{Note 3}$	25 + 35 (n - 2) (n = 2, 3, 4, 5···)					
D-M9⊡WV D-M9⊡AV	10	20	35	$20 + 35 \frac{(n-2)}{2}$ (n = 2, 4, 6) Note 3)	35 + 35 (n – 2) (n = 2, 3, 4, 5…)					
D-C7□ D-C80	10	15	50	$15 + 45 \frac{(n-2)}{2}$ (n = 2, 4, 6) Note 3)	50 + 45 (n - 2) (n = 2, 3, 4, 5···)					
D-H7□ D-H7□W D-H7BA D-H7BA D-H7NF	10	15	60	$15 + 45 \frac{(n-2)}{2}$ (n = 2, 4, 6) Note 3)	60 + 45 (n - 2) (n = 2, 3, 4, 5…)					
D-C73C D-C80C D-H7C	10	15	65	$15 + 50 \frac{(n-2)}{2}$ (n = 2, 4, 6) Note 3)	65 + 50 (n - 2) (n = 2, 3, 4, 5…)					
D-B5□/B64 D-G5□/K59 D-G5□W/K59W D-G5BA D-G5NT	10	15	75	$15 + 50 \frac{(n-2)}{2}$ (n = 2, 4, 6) Note 3)	75 + 55 (n – 2) (n = 2, 3, 4, 5…)					
D-B59W	15	20	75	$20 + 50 \frac{(n-2)}{2}$ (n = 2, 4, 6) Note 3)	75 + 55 (n - 2) (n = 2, 3, 4, 5…)					
D-A3□ D-A44 D-G39 D-K39	10	35	100	35 + 30 (n - 2) (n = 2, 3, 4, 5)	100 + 100 (n - 2) (n = 2, 3, 4, 5…)					

Note 3) When "n" is an odd number, an even number that is one larger than this odd number is used for the calculation.

SMC

Note 2) Minimum stroke for auto switch mounting in types other than those mentioned in Note 1.

RHC Series Auto Switch Mounting 2

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

Reed auto switch

SMC

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

Auto Switc	Switch Proper Mounting Position										[mm]					
Auto switch model Bore size	D-A D-A	\9□ \9□V	D-M9 D-M9 D-M9 D-M9 D-M9 D-M9	□W □A □V □WV			D-E D-E		D-H7 D-H7 D-H7 D-H7 D-H7	7C 7NF 7⊡W	D-G D-G D-G D-G D-K D-K	5 DW 5NT 5BA 59	D-B	59W	D-A D-A D-G D-K	44 39
[mm]	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В
20	14.5	20	18.5	24	15	20.5	9	14.5	14	19.5	10.5	16	12	17.5	8.5	14
25	14.5	20	18.5	24	15	20.5	9	14.5	14	19.5	10.5	16	12	17.5	8.5	14
32	14.5	22	18.5	26	15	22.5	9	16.5	14	21.5	10.5	18	12	19.5	8.5	16
40	19.5	27	23.5	31	20	27.5	14	21.5	19	26.5	15.5	23	17	24.5	13.5	21
50	17.5	27.5	21.5	31.5	18	28	12	22	17	27	13.5	23.5	15	25	11.5	21.5
63	17.5	27.5	21.5	31.5	18	28	12	22	17	27	13.5	23.5	15	25	11.5	21.5
80	_	_	_	_	_	_	13.5	27.5	_	_	15	29	16.5	30.5	13	27
100	_	_	_	_	—	_	15.5	29.5	—	—	17	31	18.5	32.5	15	29

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.

Auto Switch Mounting Height

Auto Swite	Auto Switch Mounting Height [mm]								
Auto switch model Bore size	D-M9□V D-M9□WV D-M9□AV D-A9□V	D-M9 D-H7 D-H7 W D-M9 W D-H7 W D-M9 A D-H7NF D-M9 A D-H7NF D-A9 D-C7/C8	D-B5□/B64 D-B59W D-G5□/K59 D-G5□W D-K59W D-G5NT D-G5BA D-H7C	D-C73C D-C80C	D-A3□ D-G39 D-K39	D-A44			
[mm]	Hs	Hs	Hs	Hs	Hs	Hs			
20	25.5	24.5	27.5	27	62	72			
25	28	27	30	29.5	64.5	74.5			
32	31.5	30.5	33.5	33	68	78			
40	36	35	38	37.5	72.5	82.5			
50	41.5	40.5	43.5	43	78	88			
63	48.5	47.5	50.5	50.5	85	95			
80	—	—	59	—	93.5	103.5			
100	_	_	69.5	_	104	114			

RHC Series Auto Switch Mounting 3

Operating Range

								[mm]	
Auto switch model	Bore size [mm]								
Auto switch model	20	25	32	40	50	63	80	100	
D-A9□(V)	7	6	8	8	8	9	—	—	
D-M9□(V)									
D-M9□W(V)	3.5	3.5	4	4	5	5.5	_	—	
D-M9□A(V)									
D-C7□/C80	8	10	9	10	10	11			
D-C73C/C80C	0	10	9	10	10	11			
D-B5□/B64	8	10	9	10	10	11	11	11	
D-B59W	13	13	14	14	14	17	16	18	
D-H7□/H7NF/H7□W/H7BA	4	4	4.5	5	6	6.5	6.5	7	
D-H7C	7	8.5	9	10	9.5	10.5	10.5	11	
D-A3□/A44	9	10	9	10	10	11	11	11	
D-G39/K39	8	9	9	9	9	10	10	11	
D-G5□/K59/G5□W	4	4	4.5	5	6	6.5	6.5	7	
D-K59W/G5BA/G5NT	4	4	4.5	5	0	0.5	0.5		

* Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately ± 30 % dispersion.) There may be the case it will vary substantially depending on an ambient

Mounting Bracket Part No.

Auto outitab model				Bore siz	ze [mm]			
Auto switch model	Ø 20	Ø 25	Ø 32	Ø 40	Ø 50	Ø 63	Ø 80	Ø 100
D-M9□(V) D-M9□W(V) D-A9□(V)	Note 1) BMA3-020	Note 1) BMA3-025	Note 1) BMA3-032	Note 1) BMA3-040	Note 1) BMA3-050	Note 1) BMA3-063	—	_
D-M9□A(V)	Note 2) BMA3-020S	Note 2) BMA3-025S	Note 2) BMA3-032S	Note 2) BMA3-040S	Note 2) BMA3-050S	Note 2) BMA3-063S	_	_
D-C7□/C80 D-C73C/C80C D-H7□ D-H7□W D-H7NF D-H7NF D-H7BA	BMA2-020A	BMA2-025A	BMA2-032A	BMA2-040A	BMA2-050A	BMA2-063A	_	_
D-B5□/B64 D-B59W D-G5□/K59 D-G5□W/K59W D-G5BAL/G59F D-G5NT	BA-01	BA-02	BA-32	BA-04	BA-05	BA-06	BA-08	BA-10
D-A3□/A44 D-G39/K39	BD1-01M	BD1-02M	BD1-02	BD1-04M	BD1-05M	BD1-06M	BD1-08M	BD1-10M

environment.

Note 1) Set part number which includes the auto switch mounting band (BMA2-DDA) and the holder kit (BJ5-1/Switch bracket: Transparent). Since the switch bracket (made from nylon) are affected in an environment where alcohol, chloroform, methylamines, hydrochloric acid or sulfuric acid is splashed over, so

it cannot be used. Please consult SMC regarding other chemicals. Note 2) Set part number which includes the auto switch mounting band (BMA2-UUAS/Stainless steel screw) and the holder kit (BJ4-1/Switch bracket: White).

Note 3) For the D-M9DA(V) type auto switch, do not install the switch bracket on the indicator light.

[Mounting screw set made of stainless steel]

The following set of mounting screws made of stainless steel is available. Use it in accordance with the operating environment. (Please order the auto switch mounting bracket separately, since it is not included.)

SMC

BBA3: For D-B5/B6/G5/K5

BBA4: D-C7/C8/H7

The above stainless steel screws are used when a cylinder is shipped with the D-H7BA or G5BA auto switches. When only an auto switch is shipped independently, the BBA3 or BBA4 is attached.

Туре	Model	Electrical entry (Fetching direction)	Features	Applicable bore size [mm]			
	D-C73, C76		_	Ø 20 to Ø 63			
Reed	Reed D-C80	Without indicator light	0 20 10 0 03				
	D-B53	Grommet	—	Ø 20 to Ø 100			
	D-H7A1, H7A2, H7B	(In-line)	—	Ø 20 to Ø 63			
Solid state	D-H7NW, H7PW, H7BW		Diagnostic indication (2-colour indicator)	0 20 10 0 03			
	D-G5NT		With timer	Ø 20 to Ø 100			
For solid state auto switches, auto switches with a pre-wired connector are also available. Refer to website: www.smc.eu for details. Normally closed (NC = b contact) solid state auto switches (D-F9G/F9H types) are also available. Refer to website: www.smc.eu for details.							

(1) BJ□-1 is a set of "a" and "b".

BJ4-1 (Switch bracket: White)

BJ5-1 (Switch bracket: Transparent)

RHC Series Specific Product Precautions

Be sure to read this before handling the products. Refer to back page for Safety Instructions.

Mounting

Use an external guide, etc. for horizontal actuation of a load.

How to Rotate the Relief Valve Body (Ø 20, Ø 25, Ø 32, Ø 40)

The relief adjusting screw can be placed in any direction by rotating the relief valve body by following the steps given below.

Procedure

- Verify that there is no residual pressure in the cylinder. Then, loosen the mounting bracket (such as foot, flange, etc.).
- 2. Loosen the set screw that is provided in the relief valve body retainer and rotate the relief valve body.
- 3. While keeping the relief valve body retainer pressed against the relief valve body, secure it with the set screw. After having secured the relief valve body retainer, make sure that the relief valve body cannot be rotated. In the event that it does rotate, loosen the set screw again and repeat the operation described in step 3.

Handling

≜Caution

- Confirm that the relief valve body does not rotate when the cylinder is mounted. If there is play in the axial direction of the relief valve body, the cushion may become ineffective. When attaching brackets (foot, flange), do so after loosening the relief valve body set screw. Retighten the relief valve body set screw after the brackets have been attached. (Ø 20, 25, 32, 40)
- 2. The cylinder stroke end cushion adjusting screw is adjusted six turns (10 turns for Ø 63, Ø 80 and Ø 100) starting from the position where it is rotated fully clockwise to counterclockwise (fully closed). It should never be rotated more than six turns (more than 10 turns for Ø 63, Ø 80 and Ø 100) from the position where it is rotated fully counterclockwise (fully open). This may damage the spring inside the relief valve.
- 3. The cylinder ports are designed so that a maximum speed 3000 mm/s can be obtained. However, it may not be possible to attain the desired speed in the case of short cylinder strokes. It may also be impossible to attain the desired speed due to restriction by component equipment (valves, speed control valves, piping, fitting, etc.). Make every effort to ensure sufficient effective area in the component equipment.

Set screw

 Avoid applications in which lateral loads are applied to the cylinder piston rod. Especially in the case of long strokes, implement measures such as providing a guide for the load.

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of **"Caution," "Warning"** or **"Danger."** They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC) ¹⁾, and other safety regulations.

etc.

▲ Caution:	Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.
▲ Warning:	Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.
▲ Danger:	Danger indicates a hazard with a high level of risk which, if not avoided, will result in death or serious injury.

A Safety Instructions

▲ Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications. Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalogue information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.

2. Only personnel with appropriate training should operate machinery and equipment.

The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.

3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.

- 1. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
- 2. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
- 3. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.

4. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.

- 1. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
- 2. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalogue.
- 3. An application which could have negative effects on people, property, or animals requiring special safety analysis.
- 4. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.

▲ Caution

1. The product is provided for use in manufacturing industries. The product herein described is basically provided for peaceful use in manufacturing industries.

If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary. If anything is unclear, contact your nearest sales branch.

 ISO 4414: Pneumatic fluid power – General rules relating to systems. ISO 4413: Hydraulic fluid power – General rules relating to systems. IEC 60204-1: Safety of machinery – Electrical equipment of machiner.

IEC 60204-1: Safety of machinery – Electrical equipment of machines. (Part 1: General requirements) ISO 10218-1: Manipulating industrial robots - Safety.

Limited warranty and Disclaimer/Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".Read and accept them before using the product.

Limited warranty and Disclaimer

- 1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first. ²⁾ Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
- For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided. This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
- 3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalogue for the particular products.
- 2) Vacuum pads are excluded from this 1 year warranty. A vacuum pad is a consumable part, so it is warranted for a year after it is delivered. Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

- 1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
- The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

▲ Caution

SMC products are not intended for use as instruments for legal metrology.

Measurement instruments that SMC manufactures or sells have not been qualified by type approval tests relevant to the metrology (measurement) laws of each country.

Therefore, SMC products cannot be used for business or certification ordained by the metrology (measurement) laws of each country.

▲ Safety Instructions

SMC Corporation (Europe)

Austria Belgium +32 (0)33551464 Bulgaria +359 (0)2807670 Croatia Czech Republic +420 541424611 Denmark +45 70252900 Estonia +372 6510370 Finland +358 207513513 France Germany +49 (0)61034020 Greece +30 210 2717265 Hungary +36 23513000 Ireland +353 (0)14039000 +39 03990691 Italy Latvia +371 67817700

+43 (0)2262622800 www.smc.at www.smc.be www.smc.ba +385 (0)13707288 www.smc.hr www.smc.cz www.smcdk.com www.smcpneumatics.ee smc@info@smcee.ee www.smc.fi +33 (0)164761000 www.smc-france.fr www.smc.de www.smchellas.gr www.smc.hu www.smcautomation.ie www.smcitalia.it www.smc.lv

office@smc.at info@smc.be office@smc.bg office@smc.hr office@smc.cz smc@smcdk.com smcfi@smc.fi info@smc-france.fr info@smc.de sales@smchellas.gr office@smc.hu sales@smcautomation.ie mailbox@smcitalia.it info@smc.lv

Lithuania +370 5 2308118 Netherlands +31 (0)205318888 Norway +47 67129020 +48 222119600 Poland Portugal +351 214724500 Romania +40 213205111 Russia +7 (812)3036600 Slovakia +421 (0)413213212 www.smc.sk Slovenia +386 (0)73885412 Spain +34 945184100 Sweden +46 (0)86031240 Switzerland +41 (0)523963131 +90 212 489 0 440 Turkey UK +44 (0)845 121 5122 www.smc.uk

www.smclt.lt www.smc.nl www.smc-norge.no www.smc.pl www.smc.eu www.smcromania.ro www.smc.eu www.smc.si www.smc.eu www.smc.nu www.smc.ch

info@smclt.lt info@smc.nl post@smc-norge.no office@smc.pl apoioclientept@smc.smces.es smcromania@smcromania.ro sales@smcru.com office@smc.sk office@smc.si post@smc.smces.es smc@smc.nu info@smc.ch www.smcpnomatik.com.tr info@smcpnomatik.com.tr sales@smc.uk

South Africa +27 10 900 1233 www.smcza.co.za zasales@smcza.co.za