Heavy Duty Stopper Cylinder

Series RSH/RS1H
 $\varnothing 20, \varnothing 32 \quad \varnothing 50, \varnothing 63, \varnothing 80$

Stopper cylinder with built-in shock absorber

Heavy Duty Stopper Cylinder

Series
 RSH/RS1H $\varnothing 20, \varnothing 32 \quad \varnothing 50, \varnothing 63, \varnothing 80$

To stop pallets gently Stopper cylinder with built-in shock absorber

Amount of energy absorption can be adjusted to suit the load.

Stops the work piece gently with adjustable built-in shock absorber ($\varnothing 50$ to $\varnothing 80$).

The retardation value can be changed by rotating the adjustment dial.

Easy replacement of shock absorbers
Easy maintenance is possible with a shock absorber that can be removed simply by loosening the bolts and shock absorber fixing screw from the stopper.

3
 The roller lever direction can be changed in 90° steps.

To adapt the roller lever of the stopper to the work piece direction the roller lever can be positioned in 4 different directions (or 2 in case ø20) in 90° steps around the piston rod (with $\varnothing 50$ to $\varnothing 80$ the direction of the roller lever is selected in the part number).

Piping is available from 2 directions.

*With $\varnothing 50$ to $\varnothing 80$, the direction of the roller lever is selected in the part number.

Option

Even in the case of a light pallet, the locking mechanism prevents the pallet from rebounding due to spring.

The cancel cap holds the lever horizontally allowing a pallet to pass.

When the lever stands erect (when the energy is absorbed), the switch turns on a signal that determines the pallet has reached the stop position. (For more information, please refer to page 9.)

- High power rod

Bore size (mm)	$\mathbf{2 0}$	$\mathbf{3 2}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{6 3}$	$\mathbf{8 0}$
Rod size (mm)	14	20	32	40	40	50

3 types of operation

1. Single acting
2. Double acting
3. With double acting spring

Auto switch mounting available 2 types of roller materials Auto switches can be mounted are available depending without protruding from the body surface.
on the application. (Resin, Carbon steel)

Series Variations

Heavy Duty Stopper Cylinder Series RSH/RS1H $\varnothing 20, \varnothing 32$

How to Order

Applicable auto switches/Refer to pages 10 through 15 for detailed auto switch specifications.

Type	Special function	Electrical entry		Wiring (output)	Load voltage			Auto switch models		Lead wire length (m) *			Applicable load			
					DC		AC	Electrical entry direction		$\begin{gathered} 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 3 \\ (L) \end{gathered}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$				
							Perpendicular	In-line								
든	-	Grommet	Yes	$\begin{gathered} \begin{array}{c} 3 \text {-wire } \\ \text { (NPN equiv) } \end{array} \\ \hline \end{gathered}$	-	5 V		-	-		Z76	\bigcirc	\bigcirc	-	circuit	-
${ }_{0}^{3}$				2-wire	24 V	12V	100 V	-	Z73	\bigcirc	\bigcirc	\bigcirc	-	Relay, PLC		
-			No			5V, 12V	100 V or less	-	Z80	\bigcirc	\bigcirc	-	${ }_{\text {circuit }}$			
		Grommet	Yes	3-wire (NPN)	24V	5V, 12V	-	Y69A	Y59A	\bigcirc	\bigcirc	\bigcirc	IC circuit	Relay, PLC		
	-			3-wire (PNP)				Y7PV	Y7P	\bigcirc	\bigcirc	\bigcirc				
				2-wire		12V		Y69B	Y59B	\bigcirc	\bigcirc	\bigcirc	-			
	Diagnostic indication (2-color display)			3-wire (NPN)		5V, 12V		Y7NWV	Y7NW	\bigcirc	\bigcirc	\bigcirc	IC circuit			
				3-wire (PNP)				Y7PWV	Y7PW	\bigcirc	\bigcirc	\bigcirc				
				2-wire		12V		Y7BWV	Y7BW	\bigcirc	\bigcirc	\bigcirc	-			
	Water resistance (2-color display)							-	Y7BA	-	\bigcirc	\bigcirc				

**Solid state switches marked with a " \bigcirc " symbol are produced upon receipt of order.

Specifications

RSH

Model		RSH		RS1H		
Bore size (mm)		20	32	50	63	80
Action		Double acting, Double acting spring, Single acting (Spring extended)				
Style of rod end		Lever with built-in shock absorber type				
Fluid				Air		
Proof pres		1.5 MPa				
Max. operating pressure		1.0 MPa				
Ambient and fluid temperature		-10 to $60^{\circ} \mathrm{C}$ (with no condensation)				
Lubrication		Not required (non-lube)				
Cushion		Rubber bumper				
Stroke len	h tolerance	${ }_{0}^{+1.4}$				
Mounting		Flange				
Port size	For use in Japan	M5 x 0.8	Rc $1 / 8$	Rc $1 / 8$	Rc $1 / 4$	Rc $1 / 4$
	For use in U.S.A.	-	NPT 1/8	NPT 1/8	NPT 1/4	NPT 1/4
	For use in Europe	-	G 1/8	G 1/8	G 1/4	G 1/4
Auto switch		Can be installed				

Bore size, Standard strokes

Model	Bore size (mm)	Standard stroke
RSH	$\mathbf{2 0}$	15
	$\mathbf{3 2}$	20
RS1H	$\mathbf{5 0}$	30
	$\mathbf{6 3}$	30
	$\mathbf{8 0}$	40

Weights
(kg)

Action	Rod end configuration	Bore size (mm)	Weight
Double acting type Double acting spring type Single acting spring extended	Lever with built-in shock absorber type	$\mathbf{2 0}$	0.41
		$\mathbf{3 2}$	0.75
		$\mathbf{5 0}$	2.03
	$\mathbf{6 3}$	3.56	

Series RSH/RS1H

Construction

ฮ20, ø32
Double acting (DL, DM)

ø20

ฮ50, ø63, ø80

Double acting (DL, DM)

Double acting spring type (BL, BM)

Single acting spring extended
(TL, TM)

Construction

Parts list (Single acting)

No.	Description	Material	Note
1	Rod cover	Aluminium alloy	Metallic painted
2	Bottom plate	Aluminium alloy	Chromate
3	Cylinder tube	Aluminium alloy	Hard anodized
4	Piston	Aluminium alloy	Chromate
5	Piston rod	ø20: Stainless steel $\varnothing 32, \varnothing 50, \varnothing 63, \varnothing 80$: Carbon steel	Hard chromium electro plating
6	Bushing	Bronze alloy	
7	Guide rod	Carbon steel	Hard chromium electro plating
8	Stopper screw	Stainless steel	
9	Lever	Carbon steel	Nickel plated
10	Lever holder	Carbon steel	Nickel plated
11	Bumper A	Urethane rubber	
12	Bumper B	Urethane rubber	
13	Roller	Resin	- $\square \square \mathrm{L}$
		Carbon steel	$-\square \square \mathrm{M}$
14	Spring pin	Carbon tool steel	ø20, 32 only
15	Roller pin	Carbon steel	
16	Lever pin	Carbon steel	
17	Ring A	Aluminium alloy	Clear anodized
18	Ring B	Aluminium alloy	Clear anodized
19	Adjustment dial	Aluminium alloy	ø20, 32 only
20	End rod	Special steel	ø20, 32 only
21	Lever spring	Stainless steel wire	
22	Magnet	Magnet	
23	Flat washer	Steel wire	Nickel plated
24	Flat washer	Steel wire	Nickel plated
25	C type snap ring for shaft	Carbon tool steel	
26	C type snap ring for shaft	Carbon tool steel	
27	C type snap ring for shaft	Carbon tool steel	
28	Return spring	Piano wire	
29	Hexagon socket head set screw	Chrome molybdenum steel	
30	Hexagon socket head set screw	Chrome molybdenum steel	ø20 only
31	Hexagon socket head plug	Chrome molybdenum steel	Nickel plated
32	Spring pin	Carbon tool steel	ø20 only
33	Wear ring	Resin	
34	Element	Bronze	ø20 is socket set screw
35	Snap ring	Steel wire	
36	Shock absorber	-	
37	Piston seal	NBR	
38	Rod seal	NBR	
39	Scraper	NBR	ø20, 32 only
40	Tube gasket	NBR	
41	O-ring	NBR	

Replacement parts: Seal kit

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Kit no.			Contents
	Double acting	Double acting spring type	Single acting	
20	RSH20D-PS	RSH20T-PS		Set of items 37 to 41 in above table
32	RSH32D-PS	RSH32T-PS		
50	RSH50D-PS	RSH50T-PS		Set of items 37 to 41 in above table (not including 39)
63	RSH63D-PS	RSH63T-PS		
80	RSH80D-PS	RSH80T-PS		

Replacement parts: Shock absorber
*The seal kits for $\varnothing 20$ to $\varnothing 32$ consist of items 37 to 41 and those for $\varnothing 50$ to $\varnothing 80$ consist of items 37 to 41 . Please order them by using the seal kit number corresponding to each bore size.

Bore size (mm)	Order no.
$\mathbf{2 0}$	RSH-R20
$\mathbf{3 2}$	RSH-R32
$\mathbf{5 0}$	RS1H-R50
$\mathbf{6 3}$	RS1H-R63
$\mathbf{8 0}$	RS1H-R80

Series RSH/RS1H

Dimensions/Bore size: ø20

RSH20-15 $\square \square$

*The figure shows an extended piston rod.
Note 1) The figure shows dimensions at the maximum energy absorption capacity.
Note 2) Dimensions with auto switch are identical to the above.
Note 3) The dimensions marked with "*" vary according to adjustment of the shock absorber dial.

RSH32-20 \square

2
Note 1) The figure shows dimensions at the maximum energy absorption capacity.
Note 2) Dimensions with auto switch are identical to the above.
Note 3) The dimensions marked with "*" vary according to adjustment of the shock absorber dial.

P (Piping port)		
Nil	TN	TF
Rc $1 / 8$	NPT $1 / 8$	G 1/8

Series RSH/RS1H

Dimensions/Bore size: ø50, ø63, ø80

(mm)

Bore size (mm)	Stroke	A	B	CD	CT	CZ	D	E	FT	FX	FZ	GA	GB	H	Widthacross coners	L	N	0	QA	QB
50	30	221	93	20	8	36	32	64	20	73	93	16	16	128	85	45	9	14 depth 5	10	7
63	30	243.5	99	20	10	45	40	77	25	90	114	24	24	144.5	103	54	11	18 depth 6	12.5	8.5
80	40	299.5	128	25	10	45	50	98	25	110	138	24	35	171.5	132	56	13	20 depth 6	12.5	10
Bore size (mm)	Stroke	R	S	T	U	V	W	WB	X	Y	θ°			Model	\mathbf{P} (Piping port)					
50	30	40	21	2	5.5	15.5	72	32	5	10	24					Nil		TN		F
63	30	47	24.5	3.5	6.4	16	87.5	38.5	5	10	24			RS1H50		Rc $1 / 8$		NPT 1/8	G	1/8
80	40	54	31	3	6.7	19.4	109	49	6	12.5	23			RS1H63		Rc $1 / 4$		NPT 1/4	G	1/4
Note 1) Dim Note 2) The			witch			the a	above.							RS1H80		Rc $1 / 4$		NPT 1/4	G	1/4

Auto Switch Proper Mounting Position

Auto switch proper mounting position

	$\begin{aligned} & \text { D-Z7 } \square \\ & \text { D-Z80 } \\ & \text { D-Y59 } \square \\ & \text { D-Y7P } \\ & \text { D-Y7 } \square \mathbf{W} \end{aligned}$		$\begin{aligned} & \text { D-Y69 } \square \\ & \text { D-Y7PV } \\ & \text { D-Y7 } \square \mathrm{WV} \end{aligned}$		D-Y7BAL	
	A	B	A	B	A	B
20	18	8(6.5)	18	9.5	18	2
32	13.5	10.5(9)	13.5	12	13.5	4.5
50	22	12(10.5)	22	13.5	22	6
63	24.5	15.5(14)	24.5	17	24.5	9.5
80	37	22(20.5)	37	23.5	37	16

The values inside () are for D-Z73.

How to Install Auto Switch

To set the auto switch, insert the auto switch into the switch groove from the direction shown in the drawing to the below, After placing it in the mounting position, use a flat head watchmakers screw driver to tighten the mounting screw which is included.

Note) When adjusting the auto switch mounting screws, use a flat head watchmaker's screwdriver. The guideline of the tightening torque is 0.05 to 0.1 Nm .
Turn another 90° from the position where tightening is felt by hand.

Lever Detection Switch (Proximity Switch)

Proximity switch specifications/Maker: OMRON Co. Ltd.

Model	E2E-X1C1	E2E-X2D1-N
Applicable cylinder bore size	RSH20, 32	RS1H50, 63, 80
Output type	Normally open	
Power supply voltage (Operating voltage range)	12 to 24VDC (10 to 30VDC), Ripple10\% or less (P-P)	
Current consumption (Leakage current)	17 mA or less	0.8 mA or less
Response frequency	3 kHz	1.5 kHz
Control output (chest)	Open collector maximum 100mA	3 to 100 mA
Indicator light	Detection indication (Red LED)	Operation indication (Red LED), Set operation indication (Green LED)
Ambient temperature	-25 to $70^{\circ} \mathrm{C}$ (No freezing)	
Operating ambient humidity	35 to 95\% RH	
Residual voltage ${ }^{\text {Note 1) }}$	2 V or less	3 V or less
Withstand voltage ${ }^{\text {Note 2) }}$	500VAC	1000VAC
Vibration	Endurance 10 to 55 Hz , Duplex amplitude 1.5mm $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction each 2 h	
Impact	Endurance 500m/s² (approx. 50G), X, Y, Z direction each 10 times	
Enclosure	IEC standards IP67 (Immersion proof shape and oil proof shape by JEM standards)	

Note 1) At load current 100 mA and cord length of 2 m
Note 2) Between case and whole charging part

Dimensions

E2E-X1C1 (For RSH20, 32)

E2E-X2D1-N (For RS1H50, 63, 80)
*Vinyl insulation round cord (oil proof, vibration proof) $0.14 \mathrm{~mm}^{2}$, 3-wires, O.D. ø2.9, Standard 2 m , Cord extension (Individual metal piping), Max. 100 m

Mounting Position

- E2E-X1C1 (For RSH20, 32)

While holding the lever in the detection range of the switch, screw in the switch gradually until the indicator light (red) turns on. Then, screw the switch in further, halfway between the turn-on point and the lever.

-E2E-X2D1-N (For RS1H50, 63, 80)
While holding the lever in the detection range of the switch, screw in the switch until the indicator light (green) turns on. Then, give an additional half rotation of screw. After that, incline the lever by 90° and confirm that the indicator light is not on and does not show either red or green.

Output Circuit

E2E-X1C1/3-wire

*Maximum 100mA (load current)

E2E-X2D1-N/2-wire

Series RSH/RS1H
 Auto Switch Specifications

Auto Switch Common Specifications

Type	Reed switch	Solid state switch
Leakage current	None	3 wire: $100 \mu \mathrm{~A}$ or less, 2 wire: 0.8 mA or less
Operating time	1.2 ms	1 ms or less
Impact resistance	$300 \mathrm{~m} / \mathrm{s}^{2}$	$1000 \mathrm{~m} / \mathrm{s}^{2}$
Insulation resistance	$50 \mathrm{M} \Omega$ or more at 500VDC (between lead wire and case)	
Withstand voltage	1500VAC 1 min. (between lead wire and case)	1000VAC for 1 min (between lead wire and case)
Ambient temperature	-10 to $60^{\circ} \mathrm{C}$	
enclosure	IEC529 standard IP67, JISC0920 watertight construction	

Lead Wire Length

Lead wire length indication

(Example) D-Y59A L L Lead wire length

$\mathbf{N i l}$	0.5 m
\mathbf{L}	3 m
\mathbf{Z}	5 m

Note 1) Lead wire length Z: 5 m applicable auto switch
Reed switch: D-Z73
Solid state: All models are produced upon receipt of order (standard availability).

Contact Protection Boxes/ CD-P11, CD-P12

<Applicable switches>

D-Z7, Z8
The above auto switches do not have internal contact protection circuits.

1. The operating load is an induction load.
2. The length of wiring to the load is 5 m or more.
3. The load voltage is $\mathbf{1 0 0}$ or 200VAC.

Use a contact protection box in any of the above situations.
The life of the contacts may otherwise be reduced. (They may stay ON all the time.)

Specifications

Part no.	CD-P11		CD-P12
Load voltage	100 VAC	200 VAC	24 VDC
Maximum load current	25 mA	12.5 mA	50 mA

*Lead wire length - Switch connection side 0.5 m Load connection side 0.5 m

Internal circuit

CD-P11	
CD-P12	

Dimensions

Connection

To connect a switch to a contact protection box, connect the lead wire from the side of the contact protection box marked SWITCH to the lead wire coming out of the switch. Furthermore, the switch unit should be kept as close as possible to the contact protection box, with a lead wire length of no more than 1 meter between them.

Series RSH/RS1H
 Auto Switch Connections and Examples

Basic Wiring

Examples of Connection to PLC

Sink input specifications
3-wire, NPN

2-wire

Source input specifications
3-wire, PNP

2-wire

Connection Examples for AND (Series) and OR (Parallel)

3-wire

AND connection for NPN output

 (using relays)

2-wire with 2 switch AND connection

When two switches are connected in series, a load may malfunction because the load voltage will decline when in the ON state. The indicator lights will light up if both of the switches are in the ON state.

$$
\begin{aligned}
\text { Load voltage at } \mathrm{ON} & =\begin{array}{c}
\text { Power supply } \\
\text { voltage }
\end{array}-\begin{array}{c}
\text { Internal } \\
\text { voltage } \\
\text { drop }
\end{array} \\
& =24 \mathrm{~V}-4 \mathrm{Vcs} \times 2 \mathrm{pcs} . \\
& =16 \mathrm{~V}
\end{aligned}
$$

Example: Power supply is 24VDC Internal voltage drop in switch is 4 V

AND connection for NPN output OR connection for NPN output (performed with switches only)

The indicator lights will light up when both switches are turned ON.

2-wire with 2 switch OR connection

Example: Load impedance is $3 \mathrm{k} \Omega$
Leakage current from switch is 1 mA

<Solid state>
When two switches are connected in parallel, malfunction will not increase when may occur because turned OFF. However, dethe load voltage will pending on the number of increase when in the switches in the ON state, OFF state.
Load voltage at $\mathrm{OFF}=\underset{\text { Leakage }}{\text { current }}$

$$
\begin{aligned}
& =1 \mathrm{~mA} \times 2 \mathrm{pcs.} \times 3 \mathrm{k} \Omega \\
& =6 \mathrm{~V}
\end{aligned}
$$

-

Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications.

Solid State Switches/Direct Mount Type D-Z73, D-Z76, D-Z80

Grommet

Auto Switch Internal Circuits

D-Z76

D-Z80

Note) (1)The operating load is inductive load.
(2)The wiring to the load is 5 m or longer. (3) The load voltage is 100 VAC .

If any of the above conditions is applicable, the life time of the contact may be shortened. Use a contact protection box. (Refer to page 10 about the contact protection box.)

Auto Switch Specifications

D-Z7 (with indicator light)			
Auto switch part no.	D-Z73		D-Z76
Applicable load	Relay, PLC		IC circuit
Load voltage	24VDC	100VAC	4 to 8VDC
Maximum load current and load current range	5 to 40 mA	5 to 20 mA	20 mA
Contact protection circuit	None		
Internal voltage drop	2.4 V or less (to 20 mA) $/ 3 \mathrm{~V}$ or less (to 40 mA)		0.8 V or less
Indicator light	Red LED lights when ON		
D-Z8 (with indicator light)			
Auto switch part no.	D-Z80		
Applicable load	Relay, PLC, IC circuit		
Load voltage	$24 \mathrm{~V} \text { DC or less }$	48 V AC	100 V AC
Maximum load current	50 mA	40 mA	20 mA
Contact protection circuit	None		
Internal resistance	1Ω or less (Includes the lead wire length of 3m.)		

- Lead wire - Oil proof heavy duty vinyl cord, $\varnothing 3.4,0.2 \mathrm{~mm}^{2}, 3$ cores (brown, black, blue),

2 cores (brown, blue), 0.5 m ($\varnothing 2.7,0.18 \mathrm{~mm}^{2}, 2$-wire only in case of D-Z73)
Note 1) Refer to page 10 for reed state switch common specifications.
Note 2) Refer to page 10 for lead wire length.

Auto Switch Weights

Unit: g

Model		D-Z73	D-Z76	D-Z80
Lead wire length m	0.5	7	10	9
	3	31	55	49
	5	50	-	-

Auto Switch Dimensions

D-Z73 (L)

D-Z76, Z80

Solid State Switches/Direct Mount Type D-Y59A, D-Y69A, D-Y7P(V)

Grommet

Auto Switches Specifications

D-Y5 \square, D-Y6 \square, D-Y7P, D-Y7PV (with indicator light)						
Auto switch part no.	D-Y59A	D-Y69A	D-Y7P	D-Y7PV	D-Y59B	D-Y69B
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24VDC relay, PLC	
Power supply voltage	5, 12, 24VDC (4.5 to 28VDC)				-	
Current consumption	10 mA or less				-	
Load voltage	28VDC or less		-		24VDC (10 to 28VDC)	
Load current	40 mA or less		80 mA or less		5 to 40 mA	
Internal voltage drop	1.5 V or less(0.8V or less at 10 mA load current)		0.8 V or less		4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less at 24 VDC	
Indicator light	Red LED lights when ON					

- Lead wire-Oil proof heavy duty vinyl cord, $\varnothing 3.4,0.15 \mathrm{~mm}^{2}, 3$ cores (brown, black, blue), 2 cores (brown, blue), 0.5 m
Note 1) Refer to page 10 for solid state switch common specifications.
Note 2) Refer to page 10 for lead wire length.

Auto Switch Weights

Unit: g

\left.| Model | | D-Y59B | D-Y69B | D-Y59A | D-Y69A |
| :---: | :---: | :---: | :---: | :---: | :---: |$\right]$ D-Y7P(V)

Auto Switch Dimensions

D-Y59A, D-Y7P, D-Y59B

D-Y69A, D-Y7PV, D-Y69B

2-Color Indication Solid State Switches/Direct Mount Type D-Y7NW(V), D-Y7PW(V), D-Y7BW(V)

Grommet

The optimum operation position can be judged by the color of the light (red \rightarrow green \leftarrow red)

Auto Switch Internal Circuits

D-Y7PW, Y7PWV

D-Y7BW, Y7BWV

Indicator light/Display method

Auto Switch Specifications

D-Y7 $\square \mathrm{W}, \mathrm{D}-\mathrm{Y} 7 \square \mathrm{WV}$ (with indicator light)						
Auto switch part no.	D-Y7NW	D-Y7NWV	D-Y7PW	D-Y7PWV	D-Y7BW	D-Y7BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		s	
Applicable load	IC circuit, Relay, PLC				24VDC relay, PLC	
Power supply voltage	5, 12, 24VDC (4.5 to 28V)				S	
Current consumption	10 mA or less				S	
Load voltage	28VDC or less		s		24VDC (10 to 28VDC)	
Load current	40 mA or less		80mA or less		5 to 40 mA	
Internal voltage drop	1.5 V or less (0.8V or less at 10 mA load current)		0.8 V or less		4 V or less	
Leakage voltage	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Actuated position///////////////// Red LED light up Optimum operating position//////Green LED light up					

- Lead wires Oil proof heavy duty vinyl cord, ø3.4, $0.15 \mathrm{~mm}^{2}, 3$ cores (brown, black, blue), 2 cores (brown, blue), 0.5 m
Note 1) Refer to page 10 for solid state switch common specifications
Note 2) Refer to page 10 for lead wire length.

Auto Switch Weights

Unit: g

Model		D-Y7NW(V)	D-Y7PW(V)	D-Y7BW(V)
Lead wire length m	0.5	11	11	11
	3	54	54	54
	5	88	88	88

Auto Switch Dimensions
D-Y7 $\square W$

D-Y7 $\square W V$

2-Color Indication Solid State Switches/Direct Mount Type D-Y7BAL

Grommet

Improved water (coolant liquid) resistance

©Caution Operation instructions

Consult SMC when using solvents other than water.

Auto Switch Internal Circuits

Auto Switch Specifications

D-Y7BAL (with indicator light)	
Auto switch part no.	D-Y7BAL
Wiring type	2-wire
Applicable load	24VDC relay, PLC
Load voltage	24VDC (10 to 28VDC)
Load current	5 to 40mA or less
Internal voltage drop	4 V or less
Leakage current	Actuated position........................Red LED light up Optimum operating position........Green LED light up
Indicator light	

- Lead wire-Oil proof heavy duty vinyl cord, ø3.4, $0.15 \mathrm{~mm}^{2}$, 2 cores (brown, blue), 0.5 m (standard)

Note 1) Refer to page 10 for solid state switch common specifications.
Note 2) Refer to page 10 for lead wire length.
Auto Switch Weights

Model		D-Y7BA
Lead wire length m	0.5	-
	3	54
	5	88

Auto Switch Dimensions

Series RSH/RS1H Model Selection

Operating Range

(Example) Load weight 300kg, Transfer speed $20 \mathrm{~m} / \mathrm{min}$, Friction coefficient $\mu=0.1$
(How to read graph)
In graph [2], find the intersection of the vertical axis representing the weight of 300 kg and the horizontal axis representing the speed of $20 \mathrm{~m} / \mathrm{min}$. And select the bore size $\varnothing 63$ positioned within the operating range of the cylinder.

Graph ${ }^{1}$

Bore size $\varnothing 50$, $\varnothing 63, \varnothing 80 / \mu=0$

Graph(3)
Bore size \varnothing 20, $\varnothing 32 / \mu=0$

Graph(2)

Bore size $\varnothing 50, \varnothing 63, \varnothing 80 / \mu=0.1$

Graph(4)

Bore size $\varnothing 20, ~ \varnothing 32 / \mu=0.1$

Lateral Load and Operating Pressure

The greater lateral load needs higher cylinder operating pressure. Set the operating pressure by using the graph as a guideline.

RSH20, 32

RS1H50, 63, 80

Series RSH/RS1H

 Safety InstructionsThese safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by a label of "Caution", "Warning" or "Danger". To ensure safety, be sure to observe ISO 4414 Note 1), JIS B 8370 Note 2) and other safety practices.

Note 2) JIS B 8370: General Rules for Pneumatic Equipment

© Warning

1. The compatibility of pneumatic equipment is the responsibility of the person who designs the pneumatic system or decides its specifications.
Since the products specified here are used in various operating conditions, their compatibility for the specific pneumatic system must be based on specifications or after analysis and/or tests to meet your specific requirements.
2. Only trained personnel should operate pneumatically operated machinery and equipment.
Compressed air can be dangerous if handled incorrectly. Assembly, handling or repair of pneumatic systems should be performed by trained and experienced operators.
3. Do not service machinery/equipment or attempt to remove components until safety is confirmed.
4. Inspection and maintenance of machinery/equipment should only be performed after confirmation of safe locked-out control positions.
5. When equipment is to be removed, confirm the safety process as mentioned above. Cut the supply pressure for this equipment and exhaust all residual compressed air in the system.
6. Before machinery/equipment is restarted, take measures to prevent shooting-out of cylinder piston rod, etc. (Bleed air into the system gradually to create back pressure.)
7. Contact SMC if the product is to be used in any of the following conditions:
8. Conditions and environments beyond the given specifications, or if product is used outdoors.
9. Installation on equipment in conjunction with atomic energy, railway, air navigation, vehicles, medical equipment, food and beverages, recreation equipment, emergency stop circuits, press applications, or safety equipment.
10. An application which has the possibility of having negative effects on people, property, or animals, requiring special safety analysis.

Be sure to read before handling.

Design

. Warning

1. There is a danger of sudden action by air cylinders if sliding parts of machinery are twisted, etc., and changes in forces occur.
In such cases, human injury may occur; e.g., by catching hands or feet in the machinery, or damage to the machinery itself may occur. Therefore, the machine should be designed to avoid such dangers.
2. Install a protective cover when there is a risk of human injury.
If a driven object and moving parts of a cylinder pose a danger of human injury, design the structure to avoid contact with the human body.
3. Securely tighten all mounting parts and connecting parts so that they will not become loose.
Especially when a cylinder operates with high frequency or is installed where there is a lot of vibration, ensure that all parts remain secure.
4. A deceleration circuit or shock absorber, etc., may be required.
When a driven object is operated at high speed or the load is heavy, a cylinder's cushion will not be sufficient to absorb the impact. Install a deceleration circuit to reduce the speed before cushioning, or install an external shock absorber to relieve the impact. In this case, the rigidity of the machinery should also be examined.
5. Consider a possible drop in circuit pressure due to a power outage, etc.
When a cylinder is used in a clamping mechanism, there is a danger of work pieces dropping if there is a decrease in clamping force due to a drop in circuit pressure caused by a power outage, etc. Therefore, safety equipment should be installed to prevent damage to machinery and/or human injury. Suspension mechanisms and lifting devices also require consideration for drop prevention.
6. Consider a possible loss of power source.

Measures should be taken to protect against human injury and equipment damage in the event that there is a loss of power to equipment controlled by air pressure, electricity or hydraulics, etc.
7. Design circuitry to prevent sudden lurching of driven objects.
When a cylinder is driven by an exhaust center type directional control valve or when starting up after residual pressure is exhausted from the circuit, etc., the piston and its driven object will lurch at high speed if pressure is applied to one side of the cylinder because of the absence of air pressure inside the cylinder. Therefore, equipment should be selected and circuits designed to prevent sudden lurching, because there is a danger of human injury and/or damage to equipment when this occurs.
8. Consider emergency stops.

Design so that human injury and/or damage to machinery and equipment will not be caused when machinery is stopped by a safety device under abnormal conditions, a power outage or a manual emergency stop.
9. Consider the action when operation is restarted after an emergency stop or abnormal stop.
Design the machinery so that human injury or equipment damage will not occur upon restart of operation. When the cylinder has to be reset at the starting position, install safe manual control equipment.

Selection

\triangle Warning

1. Confirm the specifications.

The products advertised in this catalog are designed according to use in industrial compressed air systems. If the products are used in conditions where pressure, temperature, etc., are out of specification, damage and/or malfunction may be caused. Do not use in these conditions. (Refer to specifications.)
Consult SMC if you use a fluid other than compressed air.

2. Intermediate stops

When intermediate stopping of a cylinder piston is performed with a 3-position closed center type directional control valve, it is difficult to achieve stopping positions as accurately and precisely as with hydraulic pressure due to the compressibility of air.
Furthermore, since valves and cylinders are not guaranteed for zero air leakage, it may not be possible to hold a stopped position for an extended period of time. Contact SMC in case it is necessary to hold a stopped position for an extended period.

\triangle Caution

1. Operate within the limits of the maximum usable stroke.
The piston rod will be damaged if operated beyond the maximum stroke.
Refer to the air cylinder model selection procedure for the maximum useable stroke.
2. Operate the piston in such a way that collision damage will not occur at the stroke end.
The operation range should prevent damage from occur ring when a piston, having inertial force, stops by striking the cover at the stroke end. Refer to the cylinder model selection procedure for the maximum usable stroke.
3. Use a speed controller to adjust the cylinder drive speed, gradually increasing from a low speed to the desired speed setting.
4. Provide intermediate supports for long stroke cylinders.
Provide intermediate supports for cylinders with long strokes to prevent rod damage due to sagging of the rod, deflection of the tube, vibration and external loads.

Series RSH/RS1H Actuator Precautions 2
Be sure to read before handling.

Mounting

\triangle Caution

1. Do not scratch or gouge the cylinder tube or the sliding parts of the piston rod by striking or grasping them with other objects.
Cylinder bores are manufactured to precise tolerances, so that even a slight deformation may cause malfunction.
Scratches and gouges on the sliding part of the piston rod can damage packing and cause air leakage.
2. Prevent sticking of rotating parts.

Prevent sticking of rotating parts (pin, etc.) by applying sufficient lubrication.
3. Do not use until you can verify that equipment can operate properly.
Verify correct mounting by suitable function and leakage tests after compressed air and power are connected following mounting, maintenance or conversions.

4. Instruction manual

The product should be mounted and operated after thoroughly reading the manual and understanding its contents.
Keep the instruction manual where it can be referred to as needed.

Piping

\triangle Caution

1. Preparation before piping

Before piping is connected, it should be thoroughly blown out with air (flushing) or washed to remove chips, cutting oil and other debris from inside the pipe.
2. Wrapping of pipe tape

When screwing together pipes and fittings, etc., be certain that chips from the pipe threads and sealing material do not get inside the piping.
Also, when pipe tape is used, leave 1.5 to 2 thread ridges exposed at the end of the threads.

Lubrication

©Caution

1. Lubrication of non-lube type cylinder

The cylinder is lubricated for life at the factory and can be used without any further lubrication.
However, in the event that additional cylinder lubrication is required, be sure to use ISO VG32 Class 1 turbine oil (with no additives).
Stopping lubrication later may lead to malfunctions because the new lubricant will cancel out the original lubricant. Therefore, additional lubrication must be continued once it has been started.

\triangle Warning

1. Use clean air.

Do not use compressed air containing chemicals, synthetic oils containing organic solvents, salt, or corrosive gases, as this can cause damage or malfunction.

©Caution

1. Install air filters.

Install air filters immediately upstream of valves. The filtration degree should be $5 \mu \mathrm{~m}$ or finer.
2. Install an after-cooler, air dryer, or water separator (Drain Catch).
Air that includes excessive drainage or condensate may cause malfunction of valves and other pneumatic equipment. To prevent this, install an after-cooler, air dryer or water separator (Drain Catch).
3. Use the product within the specified range of fluid and ambient temperature.
Take measures to prevent freezing when below $5^{\circ} \mathrm{C}$ or less, since moisture in circuits can freeze and cause damage to seals and lead to malfunction.
Refer to SMC's "Best Pneumatics vol. 4" catalog for further details on compressed air quality.

Operating Environment

. Warning

1. Do not use in environments where there is a danger of corrosion.
Refer to the construction drawings regarding cylinder materials.
2. In dusty locations or where water or oil splashing is a regular occurrence, protect the rod by installing a rod cover.
3. When using auto switches, do not operate in an environment where there are strong magnetic fields.

Maintenance

. Warning

1. Perform maintenance inspection and service according to the procedure indicated in the instruction manual.
Improper handling and maintenance may cause malfunctioning and damage of machinery or equipment to occur.
2. Removal of components, and supply/exhaust of compressed air.
Before any machinery or equipment is removed, first ensure that the appropriate measures are in place to prevent the fall or erratic movement of driven objects and equipment, then cut off the electric power and reduce the pressure in the system to zero only then should you proceed with the removal of any machinery and equipment.
When machinery is restarted, proceed with caution after confirming that appropriate measures are in place to prevent cylinder from lurching.

©Caution

1. Filter drainage

SMC

Series RSH/RS1H
Auto Switch Precautions 1
Be sure to read before handling.

Design and Selection

Ⓦarning

1. Confirm the specifications.

Read the specifications carefully and use the product appropriately. The product may be damaged or malfunction if it is used outside the range of specifications for load current, voltage, temperature, or impact.
2. Take precautions when multiple cylinders are used close together.
When two or more auto switch cylinders are lined up in close proximity to each other, magnetic field interference may cause the switches to malfunction. Maintain a minimum cylinder separation of 40 mm . (When the allowable interval is specified for each cylinder series, use the indicated value.)
3. Monitor the length of time that a switch is ON at an intermediate stroke position.
When an auto switch is placed at an intermediate position of the stroke and a load is driven at the time the piston passes, the auto switch will operate, but if the speed is too great the operating time will be shortened and the load may not operate properly. The maximum detectable piston speed is:

$$
\mathrm{V}(\mathrm{~mm} / \mathrm{s})=\frac{\text { Auto switch operating range }(\mathrm{mm})}{\text { Load operating time }} \times 1000
$$

4. Keep wiring as short as possible.

<Reed switches>

As the length of the wiring to a load gets longer, the rush current at switching ON becomes greater, and this may shorten the product's life. (The switch will stay ON all the time.)

1) For an auto switch without a contact protection circuit, use a contact protection box when the wire length is 5 m or longer.

<Solid state switches>

2) Although wire length should not affect switch function, use a wire that is 100 m or shorter.
5. Monitor the internal voltage drop of the switch.
<Reed switches>
1) Switches with an indicator light (Except D-Z76)

- If auto switches are connected in series as shown below, take note that there will be a large voltage drop because of internal resistance in the light emitting diodes. (Refer to internal voltage drop in the auto switch specifications.)
[The voltage drop will be " n " times larger when " n " auto switches are connected.]
Even though an auto switch operates normally, the load may not operate.

- Similarly, when operating below a specified voltage, it is possible that the load may be ineffective even though the auto switch function is normal. Therefore, the formula below should be satisfied after confirming the minimum operating voltage of the load.

Supply _ Internal voltage > Minimum operating voltage - drop of switch $>$ voltage of load

2) If the internal resistance of a light emitting diode causes a problem, select a switch without an indicator light (Model D-Z80).

<Solid state switches>

3) Generally, the internal voltage drop will be greater with a 2-wire solid state auto switch than with a reed switch. Take the same precautions as in 1).

Also, note that a 12VDC relay is not applicable.

6. Monitor leakage current.

<Solid state switch>
With a 2-wire solid state auto switch, current (leakage current) flows to the load to operate the internal circuit even when in the OFF state.

Operating current of load (OFF condition) > Leakage current
If the condition given in the above formula are not met, the switch will not reset correctly (it stays ON). Use a 3-wire switch if this condition cannot be satisfied.
Moreover, leakage current flow to the load will be " n " times larger when " n " auto switches are connected in parallel.

7. Do not use a load that generates surge volt-

 age.<Reed switches>
If driving a load that generates surge voltage, use as a relay, use a switch with a built-in contact protection circuit or a contact protection box.
<Solid state switches>
Although a zener diode for surge protection is connected at the output side of a solid state auto switch, damage may still occur if a surge is applied repeatedly. When directy driving a load that generates surge, such as a relay or solenoid valve, use a switch with a built-in surge absorbing element.
8. Cautions for use in an interlock circuit

When an auto switch is used for an interlock signal requiring high reliability, devise a double interlock system to safeguard against malfunctions by providing a mechanical protection function, or by also using another switch (sensor) together with the auto switch. Also perform periodic maintenance inspections and confirm proper operation.
9. Ensure sufficient clearance for maintenance activities.
When designing an application, be sure to allow sufficient clearance for maintenance and inspections.

Series RSH/RS1H Auto Switch Precautions 2
Be sure to read before handling.

Mounting and Adjustment

\triangle Warning

1. Do not drop or bump.
 Do not drop, bump or apply excessive impacts (300m/s² or more for reed switches and $1000 \mathrm{~m} / \mathrm{s}^{2}$ or more for solid state switches) while handling.
 Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction.
 2. Do not carry a cylinder by the auto switch lead wires.
 Never carry a cylinder by its lead wires. This may not only cause broken lead wires, but it may cause internal elements of the switch to be damaged by the stress.
 3. Mount switches using the proper tightening torque.

When a switch is tightened beyond the range of tightening torque, the mounting screws or switch may be damage. On the other hand, tightening below the range of tightening torque may allow the switch to slip out of position. (Refer to page 8 for how to install or move the switch and for specifications of the tightening torque, etc.)

4. Mount a switch at the center of the operating range.

Adjust the mounting position of an auto switch so that the piston stops at the center of the operating range (the range in which a switch is ON). (The mounting positions shown in the catalog indicate the optimum position at the stroke end.) If mounted at the end of the operating range (around the borderline of ON and OFF), the operation may be unstable.

Wiring

. Warning

1. Avoid repeatedly bending or stretching lead wires.
Broken lead wires will result from repeatedly applying bending stress or stretching force to the lead wires.
2. Be sure to connect the load before power is applied.
<2 wire type>
If the power is turned ON when an auto switch is not connected to a load, the switch will be instantly damaged because of excess current.

3. Confirm proper insulation of wiring.

Be certain that there is no faulty wiring insulation (such as contact with other circuits, ground fault, improper insulation between terminals). Damage may occur due to excess current flow into a switch.
4. Do not wire in conjunction with power lines or high voltage lines.
Wire separately from power lines or high voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits containing auto switches may malfunction due to noise from these other lines.

Wiring

5. Do not allow short circuit of loads.

<Reed switches>

If the power is turned ON with a load in a short circuited condition, the switch will be instantly damaged because of excess current flow into the switch.
<Solid state switches>
D-J51 and all models of PNP output type switches do not have built-in short circuit protection circuits. If loads are short circuited, the switches will be instantly damaged, as in the case of reed switches.
Take special care to avoid reverse wiring with the brown [red] power supply line and the black [white] output line on 3 wire type switches.

6. Avoid incorrect wiring.

<Reed switches>

A 24VDC switch with indicator light has polarity. The brown [red] lead wire is $(+)$, and the blue [black] lead wire is (-).

1) If connections are reversed, the switch will still operate, but the light emitting diode will not light up.

Also note that a current greater than the maximum specified one will damage a light emitting diode and make it inoperate.
Applicable models: D-Z73
<Solid state switches>

1) If connections are reversed on a 2-wire type switch, the switch will not be damaged because it is protected by a protection circuit, but it will remain in a normally ON state. However, it is still necessary to avoid reversed connections since the switch will be damaged if a load short circuits in this condition.
2) Even if (+) and (-) power supply line connections are reversed on a 3-wire type switch, the switch will still be protected by a protection circuit. However, if the (+) power supply line is connected to the blue [black] wire and the (-) power supply line is connected to the black [white] wire, the switch will be damaged.

* Lead wire color changes

Lead wire colors of SMC switches have been changed in order to meet NECA Standard 0402 for production beginning September, 1996 and thereafter. Please refer to the tables provided.
Special care should be taken regarding wire polarity during the time that the old colors still coexist with the new colors.

2-wire			3-wire		
	Old	New		Old	New
Output (+)	Red	Brown	Power supply (+)	Red	Brown
Output (-)	Black	Blue	Power supply GND	Black	Blue
			Output	White	Black
Solid state with diagnostic output			Solid state with latch type diagnostic output		
	Old	New		Old	New
Power supply (t)	Red	Brown	Power supply (+)	Red	Brown
Power supply GND	Black	Blue	Power supply GND	Black	Blue
Output	White	Black	Output	White	Black
Diagnostic output	Yellow	Orange	Latch type diagnostic output	Yellow	Orange

Solid state with latch

Series RSH/RS1H
Auto Switch Precautions 3
Be sure to read before handling.

Operating Environment

@ Warning

1. Never use in the presence of explosive gases.
The construction of our auto switches does not make them explo-sion-proof. Never use them in the presence of an explosive gas, as this may cause a serious explosion.
2. Do not use in an area where a magnetic field is generated.
Auto switches will malfunction or magnets inside cylinders will become demagnetized if used in such an environment.
3. Do not use in an environment where the auto switch will be continually exposed to water.

Auto switches satisfy IEC standard IP67 construction (JIS C 0920: watertight construction), Nevertheless, they should not be used in applications where they are continually exposed to water splash or spray. They may cause deterioration of the insulation or swelling of the potting resin inside switches and may lead to a malfunction.
4. Do not use in an environment laden with oil or chemicals.

Consult with SMC if auto switches will be used in an environment laden with coolants, cleaning solvent, various oils or chemicals. If auto switches are used under these conditions for even a short time, they may be adversely affected by a deterioration of the insulation, a malfunction due to swelling of the potting resin, or hardening of the lead wires.
5. Do not use in an environment with temperature cycles.
Consult with SMC if switches are to be used where there are temperature cycles other than normal temperature changes, as they may be adversely affected internally.
6. Do not use in an environment where there is excessive impact shock.
<Reed switches>
When excessive impact ($300 \mathrm{~m} / \mathrm{s}^{2}$ or more) is applied to a reed switch during operation, the contact point may malfunction and generate or cut off a signal momentarily (1ms or less). Consult with SMC regarding the need to use a solid state switch depending on the environment.
7. Do not use in an area where surges are generated.
<Solid state switches>
When there are units (such as solenoid type lifter, high frequency induction furnace, motor) that generate a large amount of surge in the area around cylinders with solid state auto switches, their proximity may cause deterioration or damage to internal circuit elements of the switch. Avoid and protect against sources of surge generation and crossed lines.
8. Avoid close contact with accumulated iron waste or magnetic substances.
When a large accumulated amount of ferrous waste such as machining chips or welding spatter, or a magnetic substance (something attracted by a magnet) is brought into close proximity to an cylinder with auto switches, this may cause the auto switches to malfunction due to a loss of the magnetic force inside the cylinder.

\triangle Warning

1. Perform the following maintenance inspection and services periodically in order to prevent possible danger due to unexpected auto switch malfunction.
1) Securely tighten switch mounting screws.

If screws become loose or the mounting position is dislocated, retighten screws securely after readjusting the mounting position.
2) Confirm that there is no damage to lead wires.

To prevent faulty insulation, replace switches or repair lead wires if damage is discovered.
3) Confirm that the green light on a 2-color indicator type switch lights up.
Confirm that the Green LED is ON when stopped at the set position. If the Red LED is ON when stopped at the set position, the mounting position is not appropriate. Readjust the mounting position until the Green LED lights up.

Other

© Warning

1. Consult with SMC concerning water resistance, elasticity of lead wires, and usage at welding sites.

Series RSH/RS1H Specific Product Precautions 1
Be sure to read before handling.
Refer to pages 17 through 22 for safety instructions, actuator precautions and auto switch precautions.

Instructions

© Caution

1. Shock absorber capacity variable adjustment method ($\varnothing 50$ to $\varnothing 80$)

To stop the work gently, loosen the fixing screw (M4) on the stopper and turn the shock absorber dial according to the energy value of the transferred object to select the optimum absorption position (retardation value). After adjustment, tighten the fixing screw firmly to secure the shock absorber dial.
Note 1) Cautions for adjustment
When adjusting the shock absorber retardation value, first try the maximum value and then proceed to smaller values. If the energy value of the transferred work piece is larger than the retardation value of the shock absorber, an excessive load will be applied to the lever and may cause malfunction.
Note 2) Although it is not possible to change the shock absorber drag value of $\varnothing 20$ and $\varnothing 32$ types, the shock absorber stroke can be changed by adjusting the height of the adjustment dial (6st to 4st.)

2. How to change the positional relationship between the transfer and piping directions

The positional relationship between the transfer and piping directions can be changed in 90° increments (or 180° increments in case of $\varnothing 20$).

- 20

- 032 to ø80

Loosen the fixing screw (M3) beside the rod cover and pull up the guide rod. The lever is released to allow 180° rotations.

Fit a driver (-) into the notch on the guide rod end surface and loosen the guide rod. The lever is released to allow rotations in 90° increments.
ø32, ø50, ø63, ø80

3. How to replace shock absorber during maintenance

Loosen the hexagon socket head bolts and shock absorber fixing screw (M4) on the stopper to remove the stopper from the lever holder. Incline the lever by 90° and pull out the shock absorber. (In case of $\varnothing 20$ and $\varnothing 32$, remove the stopper, loosen the adjustment dial and then pull out the shock absorber.)
*Cautions for assembly
After replacing the shock absorber, tighten the bolts and fixing screw firmly and apply grease to the shock absorber rod end surface.

Series RSH/RS1H Specific Product Precautions 2
Be sure to read before handling.
Refer to pages 17 through 22 for safety instructions, actuator precautions and auto switch precautions.

Selection

Danger

1. Use the equipment only within the specified operating range.
If the condition exceeds the specified operating range, it will cause excessive impact or vibration to the stopper cylinder, leading to possible damages.

\triangle Caution

1. Do not collide the pallet while the lever is standing erect.
In case of a lever with built-in shock absorber type, do not collide the next pallet while the lever is standing erect. Otherwise, all energy will be applied to the cylinder body.
2. When a load directly connected to the cylinder is stopped at an intermediate position:
Apply the operating range in the catalog only in these cases where the stopper cylinder is used to stop pallets on a conveyor belt. When using the stopper cylinder to stop loads directly connected to a cylinder or some other equipment, a lateral load is applied as the cylinder thrust. Consult SMC in such cases.

Mounting

\triangle Caution

1. Do not apply rotational torque to the cylinder rod.
Align the cylinder parallel to the working face of the pallet working when installing in order to prevent rotational torque working on the cylinder rod.
2. Do not scratch or gouge the sliding part of the piston rod or guide rod.
Scratches and gouges may damage the packing, causing air leakage or malfunction.

Operation

Caution

1. In case of an end lever type with locking mechanism, do not apply an external force from the opposite side when the lever is locked.
Lower the cylinder before adjusting the conveyor or moving the pallet.
2. Do not let your hand become caught when operating the cylinder.
The lever holder goes up and down while the cylinder is in operation. Pay sufficient attention not to let your hand or fingers become caught between the rod cover and lever holder.
3. Do not let water, cutting oil or dust splash on the equipment.
It can cause oil leakage and malfunction of the shock absorber.

SMC'S GLOBAL MANUFACTURING, DISTRIBUTION AND SERVICE NETWORK

EUROPE

AUSTRIA
SMC Pneumatik GmbH
CZECH
SMC Industrial Automation CZ s.r.o.

DENMARK

SMC Pneumatik A/S
FINLAND
SMC Pneumatics Finland Oy
FRANCE
SMC Pneumatique SA
GERMANY
SMC Pneumatik GmbH

HUNGARY

SMC Hungary Ipari Automatizálási Kft.
IRELAND
SMC Pneumatics (Ireland) Ltd.
ITALY
SMC Italia S.p.A.
LATVIA
SMC Pneumatics Latvia SIA
NETHERLANDS
SMC Pnuematics BV.
NORWAY
SMC Pneumatics Norway A/S
POLAND
SMC Industrial Automation Polska Sp.z.o.o.
ROMANIA
SMC Romania s.r.I.
RUSSIA
SMC Pneumatik LLC.

EUROPE

SLOVAKIA
SMC Priemyselná Automatizáciá, s.r.o.

SLOVENIA

SMC Industrijska Avtomatika d.o.o.
SPAIN/PORTUGAL
SMC España, S.A.
SWEDEN
SMC Pneumatics Sweden AB

SWITZERLAND

SMC Pneumatik AG.
UK
SMC Pneumatics (U.K.) Ltd.

ASIA

CHINA

SMC (China) Co., Ltd.
HONG KONG
SMC Pneumatics (Hong Kong) Ltd.
INDIA
SMC Pneumatics (India) Pvt. Ltd.
MALAYSIA
SMC Pneumatics (S.E.A.) Sdn. Bhd.

PHILIPPINES

SMC Pneumatics (Philippines), Inc.
SINGAPORE
SMC Pneumatics (S.E.A.) Pte. Ltd.
SOUTH KOREA
SMC Pneumatics Korea Co., Ltd.
TAIWAN
SMC Pneumatics (Taiwan) Co., Ltd.

ASIA

THAILAND
SMC Thailand Ltd.

NORTH AMERICA

CANADA

SMC Pneumatics (Canada) Ltd.

MEXICO

SMC Corporation (Mexico) S.A. de C.V.
USA
SMC Corporation of America

SOUTH AMERICA

ARGENTINA

SMC Argentina S.A.

BOLIVIA

SMC Pneumatics Bolivia S.R.L.
BRAZIL
SMC Pneumaticos Do Brazil Ltda.
CHILE
SMC Pneumatics (Chile) S.A.
VENEZUELA
SMC Neumatica Venezuela S.A.

OCEANIA

AUSTRALIA
SMC Pneumatics (Australia) Pty. Ltd.
NEW ZEALAND
SMC Pneumatics (N.Z.) Ltd.

SMC Corporation

1-16-4 Shimbashi, Minato-ku, Tokyo 105-8659, JAPAN
Tel: 03-3502-2740 Fax: 03-3508-2480
URL http://www.smcworld.com
© 2002 SMC Corporation All Rights Reserved

1st printing	July, 1995	$\mathrm{D}-036$	$\mathrm{P}-58(\mathrm{M})$
2nd printing	May, 2002	$\mathrm{D}-\mathrm{DAD}$	$\mathrm{P}-80(\mathrm{YG})$

