Rotary Actuator Rack \& Pinion Style Series CRA1

Size: 30, 50, 63, 80, 100

Models with cushion or with solenoid

 valve available.(Only sizes 50 or larger are available.)
Angle adjustment is possible.
Size $30 \cdots \cdots \cdots \cdots \cdots$ Fine angle adjuster is standard equipment.
Size 50 or larger \cdots Angle adjustable type
Auto switch is mountable.
Adjustment of switch location is easy with rail mounting.

Series Variations

Rotary Actuator
 Rack \& Pinion Style
 Series CRA1
 Size: 30, 50, 63, 80, 100

How to Order

Foot Bracket Part No.

Size	Foot bracket	Mounting screws included in foot bracket
$\mathbf{3 0}$	CRA1L30-Y-1	$\mathrm{M} 5 \times 0.8 \times 25$
$\mathbf{5 0}$	CRA1L50-Y-1	$\mathrm{M} 8 \times 1.25 \times 35$
$\mathbf{6 3}$	CRA1L63-Y-1	$\mathrm{M} 10 \times 1.5 \times 40$
$\mathbf{8 0}$	CRA1L80-Y-1	$\mathrm{M} 12 \times 1.75 \times 50$
$\mathbf{1 0 0}$	CRA1L100-Y-1	$\mathrm{M} 12 \times 1.75 \times 50$

Rotary Actuator Rack \＆Pinion Style
 Series CRA1

Specifications

Type	Pneumatic Air－hydro									
Size	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	
Fluid	Air（Non－lube）						Hydraulic oil			
Max．operating pressure	1 MPa									
Min．operating pressure	0.1 MPa									

Ambient and	
fluid temperature	0 to $60^{\circ} \mathrm{C}$（No freezing）

Cushion	None	Not attached，Air cushion				None			
Output（N．m）${ }^{(1)}$	1.9	9.3	17	32	74	9.3	17	32	74
Allowable surge pressure	－					1.5 MPa			
Backlash	（2）	Within 1°							
Tolerance in rotating angle	－	$\begin{gathered} +4^{\circ} \\ 0 \end{gathered}$							

Note 1）Output under the operating pressure of 0.5 MPa ．Refer to page 11－1－29 for further information
Note 2）Since CRA1 $\square 30$ has a stopper installed，there is no backlash produced under pressure．

Allowable Kinetic Energy／Safe Range of Rotation Time

Model	Allowable kinetic energy			Adjustable range of rotation time safe in operation Rotation time（ $\mathrm{s} / 90^{\circ}$ ）
	Allowable kinetic energy（mJ）		Cushion angle	
	Without cushion	With cushion ${ }^{\text {Note）}}$		
CRA1■W30	10	－	－	0.2 to 1
CRA1ロロ50	50	980	35°	0.2 to 2
CRA1ロロ63	120	1500	35°	0.2 to 3
CRA1ロロ80	160	2000	35°	0.2 to 4
CRA1ロロ100	540	2900	35°	0.2 to 5

> Note) Allowable kinetic energy of the bumpers equipped model

The maximum absorbed energy under proper adjustment of the cushion needle．

JIS Symbol

P．11－7－32 to 11－7－51

Weight／Standard

Model	Standard weight		Additional weight	
	90°	180°	Foot bracket	Flange bracket
CRA1BW30	0.3	0.4	0.1	-
CRA1BW50	1.5	1.7	0.3	0.5
CRA1BW63	2.5	3	0.5	0.9
CRA1BW80	4.3	5	0.9	1.5
CRA1BW100	8.5	9.5	1.2	2

Weight／With Auto Switches and Solenoid Valves

Size	Additional weight	
	With 2 auto switches	With solenoid valve＊
$\mathbf{3 0}$	0.1	-
$\mathbf{5 0}$	0.2	0.2
$\mathbf{6 3}$	0.4	0.2
$\mathbf{8 0}$	0.6	0.2
$\mathbf{1 0 0}$	0.9	0.2

回
＊Weight of the solenoid valve is not included．Refer to page 11－7－19 concerning weight of the solenoid valve．

Series CRA1

With One-touch Fittings

Piping steps and installation space are saved by One-touch fittings built in the connection ports.

Specifications

Applicable size	$\mathbf{3 0}, \mathbf{5 0}, \mathbf{6 3}$
Type	Pneumatic
Max. operating pressure	1 MPa
Min. operating pressure	0.1 MPa
Auto switch	Mountable

Refer to pages 11-7-10 to 11-7-12 for dimensions.

Applicable Tubing Specifications

Size	30	50	63
Applicable tubing O.D.	$ø 4$	$ø 6$	
Applicable tubing material	Nylon, Soft nylon, Polyurethane		

Clean Series

Vacuum ports are equipped to prevent dust from being produced from the rod part of the rotary actuators.

Specifications

Type	Pneumatic
Applicable size	$\mathbf{3 0 , 5 0}$
Max. operating pressure	1 MPa
Min. operating pressure	0.1 MPa
Auto switch	Mountable

For further specifications, refer to "Pneumatic Clean Series" catalog.

Copper-free

No influence on cathode ray tubes by copper ion and fluorine resin. As standard models are already made applicable to copper free styles, they can be applied as they are.

Specifications

Type	Pneumatic
Applicable size	$\mathbf{3 0 , 5 0 , 6 3 , 8 0}, \mathbf{1 0 0}$
Max. operating pressure	1 MPa
Min. operating pressure	0.1 MPa
Auto switch	Mountable

Shaft Type Variations/Without Key Grooves (Size 30)
Shaft Type: T, J, K
Specifications

Type	Pneumatic
Size	30
Shaft type	Single round shaft (T), Double round shaft (K), Double shaft/(Long shaft without key and with four chamfers) (J)
Cushion	None
Auto switch	Mountable
Mounting	
* Refer to page 11-7-3 for other specifications.	

Dimensions

Rotary Actuator Rack \& Pinion Style Series CRA1

Shaft Variations/Without Key Groove (Size 50 to 100)
Shaft Type: T, J, K

Specifications

Type	Pneumatic	Air-hydro
Size	50, 63, 80, 100	
Fluid	Air (Non-lube)	Hydraulic oil
Shaft type	Single round shaft (T), Double round shaft (K) Double shaft/Long shaft without key and with four chamfers (J)	
Cushion	Not attached, Air cushion	None
Auto switch	Mountable	
Mounting	Basic style, Foot style	

CRB2
\square Note) Except flange style.

* Refer to page 11-7-3 for other specifications.

Dimensions
(mm)

Shaft type	T (Single round shaft)		J (Double shaft/Long shaft without key \& with four chamfers)					K (Double round shaft)		
Configuration										
Size	D (g6)	H	D (g6)	H	M	N	UU	D (g6)	H	UU
50	15	36	15	36	20	15	118	15	36	134
63	17	41	17	41	22	17	139	17	41	158
80	20	50	20	50	25	20	167	20	50	192
100	25	60	25	60	30	25	202	25	60	232

R Refer to pages 11-7-11 to 11-7-12 for other specifications.

Series CRA1

Shaft Variations (Size 30)

\mathbf{S} (Single shaft key)

Specifications

Type	Pneumatic
Size	30
Max. operating pressure (MPa)	1 MPa
Min. operating pressure (MPa)	0.1 MPa
Shaft type	Single shaft key (S), Double shaft with four chamfers (X), Double shaft key (Y), Double shaft with four chamfers (Z)
Mounting	Basic style, Foot style
Auto switch	Mountable

\square * Refer to page 11-7-3 for other specifications.
X (Single shaft with four chamfers)

Rotary Actuator Rack \& Pinion Style

Rotation Range of Key Groove

If air pressure is applied from the A side of the direction indication label, the shaft rotates clockwise. If air pressure is applied from the B side, the shaft rotates counterclockwise.

Size: 30

Stopper screw A: For end adjustment in clockwise direction
Stopper screw B: For end adjustment in counter clockwise direction

Size: 50 to 100

How to Set Rotation Time

Even if the torque that is generated by the rotary actuator is small, the parts could become damaged depending on the inertia of the load. Therefore, the rotation time should be determined by calculating the load's inertial moment and kinetic energy. Refer to pages 11-1-34 to 35 for details on how to set the rotation time.

[^0]
Series CRA1

Construction

Without air cushion
 Size: 30

(8) 18

Without air cushion Size: 50 to 100

No.	Description	Material	Note
(12)	Piston seal	NBR	
(13)	O-ring	NBR	
(14)	Bearing	Bearing steel	
(15)	Hexagon socket head cap screw with spring washer	Chrome molybdenum steel	Black zinc chromated
(16)	Hexagon socket head cap flange screw	Chrome molybdenum steel	Zinc chromated
(17)	Cross-recessed countersunk head screw	Steel wire	Black dyed
(18)	Hexagon nut	Steel wire	Black dyed
(19)	Spring pin	Steel wire	
(20)	Parallel keyway	Carbon steel	
(21)	Parallel keyway	Carbon steel	
(22)	Connecting screw	Carbon steel	Zinc chromated
(23)	Round head Phillips screw	Steel wire	Black zinc chromated

Rotary Actuator Rack \＆Pinion Style

With air cushion

Component Parts

No．	Description	Material	Note
(24)	Auto switch mounting rail	Aluminum alloy	
(25)	Auto switch	-	
(26)	Plastic magnet	Magnetic material	
(27)	Round head Phillips screw	Steel wire	Nickel plated
(28)	Hexagon nut	Steel wire	Nickel plated
(29)	Needle valve	Steel wire	Nickel plated
(30)	Lock nut	Steel wire	Nickel plated
(31)	Cushion seal	NBR	
(32)	O－ring	NBR	
(33)	Round head Phillips screw	Steel wire	Nickel plated

With auto switch
Size： 30

CRB2
CRBU2
CRB1
MSU
CRJ
CRA1

Replacement Parts（Corresponding parts shown below are set．）

Size	Replacement parts			
	Standard	With air cushion	With auto switch	Air－hydro
CRA1DW30－90	P294010－20	－	P294010－20	－
CRA1ロW30－180	P294010－21	－	P294010－21	－
CRA1Dप50	P294020－20A	P294020－20A	P294020－20A	P294020－23A
CRA1Dप63	P294030－20A	P294030－20A	P294030－20A	P294030－23A
CRA1Dप80	P294040－20	P294040－20	P294040－20	P294040－23
CRA1ロロ100	P294050－20A	P294050－20A	P294050－20A	P294050－23A
Corresponding parts	（9），（11），12）and（19）are set．			

Note）When ordering spare parts，write＂1 piece＂for 1 set of the parts for one actuator．

Series CRA1

Size 30/Basic Style: CRA1BW, Foot Style: CRA1LW
Basic style: CRA1BW30

Foot style: CRA1LW30

* () are the dimensions for rotation of 180°.
\star The dimensions below show pressurization to B port.

Rotary Actuator Rack \& Pinion Style

Size 50, 63, 80, 100/Basic Style: CRA1B \square
Size: 50 to 100
Single shaft type: CRA1BS

* The dimensions above show pressurization to B port.
* () are the dimensions for rotation of 180° and 190°.

																	*	$\underset{\text { Keyway }}{\text { dimensions }}$	
Model	Rc	A	B	C	$\mid(\mathrm{g} 6)$	(h9)	F	H	J	K	S	U	W	BA	BB	CA	CB	b	sions
CRA1BS50	1/8	62	48	46	15	25	2.5	36	M8 x 1.25 Depth 8	5	$\begin{array}{\|l\|l} \hline 144 \\ (177) \end{array}$	98	17	17	8.5	8.5	13	$5^{0} 0.030$	25
CRA1BS63	1/8	76	60	57	17	30	2.5	41	M10 $\times 1.5$ Depth 12	5	$\begin{array}{\|c\|} \hline 163 \\ (201.5) \\ \hline \end{array}$	117	19.5	20	10	10	14	$6_{-0.030}^{0}$	30
CRA1BS80	1/4	92	72	70	20	35	3	50	$\begin{array}{\|c} \hline \text { M12 } \times 1.75 \\ \text { Depth } 13 \\ \hline \end{array}$	5	$\begin{array}{\|l\|} \hline 186 \\ (230) \\ \hline \end{array}$	142	22.5	23.5	12	12	18	$6_{-0.030}^{0}$	40
CRA1BS100	3/8	112	85	85	25	40	4	60	$\begin{array}{\|c\|} \hline \text { M12 } \times 1.75 \\ \text { Depth } 14 \\ \hline \end{array}$	5	$\begin{aligned} & 245 \\ & (311) \\ & \hline \end{aligned}$	172	28	25	12.5	12.5	18	8-0.036	45

\star For model with air cushion

Single shaft with four chamfers: CRA1BX

Note) Other dimensions are the same as

the single shaft.					
Model	G	H	N	U	\mathbf{L}
CRA1BX50	11	27	15	89	14
CRA1BX63	13	29	17	105	16
CRA1BX80	15	38	20	130	19
CRA1BX100	19	44	25	156	24

Double shaft key: CRA1BY

Note) Other dimensions are the same as the

single shaft.				
Model	H	K	UU	ℓ
CRA1BY50	36	5	134	25
CRA1BY63	41	5	158	30
CRA1BY80	50	5	192	40
CRA1BY100	60	5	232	45

Double shaft type: CRA1BW Double shaft

Series CRA1

Size 50, 63, 80, 100/Foot Style: CRA1L \square, Flange Style: CRA1F \square
Foot style: CRA1L■

- Dimensions above show pressurization to B port.
* () are the dimensions for rotation of 180° and 190°.

Model	LA	LB	LC	LD	LE	LF	LH	LT
CRA1L $\square \mathbf{5 0}$	62	9	44	200 (233)	224 (257)	41	108	4.5
CRA1L $\square \mathbf{6 3}$	76	11	55	235 (273.5)	263 (301.5)	48	127	5
CRA1L $\square \mathbf{8 0}$	92	13	67	274 (318)	316 (360)	58	154	6
CRA1L $\square \mathbf{1 0 0}$	112	13	87	333 (399)	375 (441)	73.5	189.5	6

Flange style
Double shaft: CRA1FW

Note) Other dimensions are the
same as the single shaft.

Flange style Single shaft with four chamfers: CRA1FX

Note) | Other dimensions are the |
| :--- |
| same as the single shaft. |

Model	H	N	U
CRA1FX $\square 50$	30	15	105
CRA1FX $\square 63$	33	17	124
CRA1FX $\square 80$	43	20	153
CRA1FX $\square 100$	44	25	174

Flange style Single shaft: CRA1FS

Note) Other dimensions are the same as standard.										
Model	F	H	MM	U	FD	FT	FX	FY	ZX	ZY
CRA1F $\square \square \mathbf{5 0}$	4	39	M 6×1.0 depth 12	114	9	13	90	50	110	81
CRA1F $\square \square \mathbf{6 3}$	5	45	M 6×1.0 depth 12	136	11.5	15	105	59	130	101
CRA1F $\square \mathbf{8 0}$	5	55	M8 1.25 depth 16	165	13.5	18	130	76	160	119
CRA1F $\square \square \mathbf{1 0 0}$	5	60	M10 depth 20	190	13.5	18	150	92	180	133

Flange style
Double shaft key:
CRA1FY

Flange style Double shaft with four chamfers: CRA1FZ

(2) Note) Other dimensions are the
same as the single shaft.

Rotary Actuator with Auto Switch Rack \& Pinion Style Series CDRA1
 Size: 30, 50, 63, 80, 100

How to Order

Mounting style	
$\left.\begin{array}{c\|c\|c}\text { B } & \text { Basic style } \\ \hline \mathbf{L} & \text { Foot style } \\ \hline\end{array} \quad \right\rvert\,$Rotating angle 90 180 $) 180^{\circ}$	

Built-in magnet 6

Mounting styled

\mathbf{B}	Basic style
\mathbf{L}^{*}	Foot style
\mathbf{F}	Flange style

* For part numbers of foot bracket, refer to page 11-7-2.

Standard	S	Single shaft
	W	Double shaft
Option	\mathbf{X}	Single shaft with four chamfers
	Y	Double shaft key
	\mathbf{Z}	Double shaft with four chamfers

Shaft type

CDRA1

Size 30
Size 50 to 100

Rotating angle

180	180°

- Number of auto switches

\mathbf{S}	$1 \mathrm{pc}$.
$\mathbf{N i l}$	2 pcs.

Note) Maximum number of auto switches mountable is two.

Cushion model, refer to the table below.

* Auto switches are shipped together, (but not assembled).

- Rotating angle

Standard	90	90°
	180	180°
Option	100	100°
	190	190°

Applicable Auto Switch/Refer to page 11-11-1 for further information on auto switches.

\%	Special function	Electrical entry	등은은응으	Wiring (Output)	Load voltage			Auto switch model			Lead wire * length (m)				Pre-wire connector	Applicable load		
					DC		AC	Size 30		Size 50 to 100	0.5	3	5	None				
							Perpendicular	In-line	In-line	(Nil)	(L)	(Z)	(N)					
	-	Grommet	$\stackrel{\infty}{\sim}$	3-wire (NPN equiv.)	-	5 V		-	-	A76H	A56	-	\bigcirc	-	-	-	IC circuit	-
				2-wire	-	-	200 V	A72	A72H	-	-	\bigcirc	-	-	-	-	Relay, PLC	
					24 V	12 V	100 V	A73	A73H	-	-	\bigcirc	\bigcirc	-	-			
							-	-	-	A53	-	\bigcirc	\bigcirc	-	-			
		Connector						A73C	-	-	-	\bigcirc	\bigcirc	\bigcirc	-			
		Grommet				-	$100 \mathrm{~V}, 200 \mathrm{~V}$	-	-	A54	-	-	\bigcirc	-	-			
	Diagnosis indication (2-color)						-	A79W	-	A59W	\bigcirc	\bigcirc	-	-	-			
	-	Grommet	$\stackrel{\substack{\infty \\ \hline}}{ }$	3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$	-	F7NV	F79	F59	-	\bigcirc	\bigcirc	-	\bigcirc	IC circuit	PLC	
				3-wire (PNP)				F7PV	F7P	F5P	-	\bigcirc	\bigcirc	-	\bigcirc			
				2-wire		12 V		F7BV	J79	J59	-	\bigcirc	\bigcirc	-	\bigcirc	-		
					-	- 1	$100 \mathrm{~V}, 200 \mathrm{~V}$	-	-	J51	\bigcirc	\bigcirc	\bigcirc	-	-			
		Connector			24 V	12 V	-	J79C	-	-	-	-	\bigcirc	\bigcirc	-			
	Diagnosis indication (2-color)	Grommet		3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		F7NWV	F79W	F59W	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	IC circuit		
				3-wire (PNP)				-	F7PW	F5PW	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc			
				2-wire		-		F7BWV	J79W	J59W	-	\bigcirc	\bigcirc	-	\bigcirc	-		
	Water resistant (2-color)							-	F7BA **	F5BA **	-	\bigcirc	\bigcirc	-	\bigcirc			
								F7BAV **	-	-	-	\bigcirc	\bigcirc	-	-			
				4-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		-	F79F	F59F	-	\bigcirc	\bigcirc	-	\bigcirc	IC circuit		

[^1]- For F7NWV, F7BWV switch types, refer to Best Pneumatics Vol. 8.

Series CDRA1

Rotation Range of Key Groove/Switch Mounting Position

Size: 50 to 100
CDRA1 $\square \square 50$ to 100

Proper Auto Switch Mounting Position at Rotation End

Working Principle

In the diagram below, switch B is $O N$. When pressure is applied from A, the piston moves to B, causing the shaft to rotate clockwise. At this time, magnet B goes out of the movement range of switch B, causing switch B to turn OFF. Furthermore, the piston moves to the right, causing magnet A to enter the movement range of switch A. As a result, switch A turns ON.

Operating angle $\theta \mathrm{m}$: Converts the operating range (Lm) of the auto switch into the rotation angle. Angle of hysteresis: The hysteresis of the auto switch is converted to degrees.

Model	A (mm)	Operating angle $\theta \mathrm{m}$	Hysteresis angle (1)
CDRA1 $\square \mathbf{W 3}$-90	$9(19)$	95°	20°
CDRA1 $\square 50-90$	$9(26)$	65°	20°
CDRA1 $\square \square 63-90$	$11(30)$	60°	10°
CDRA1 $\square \mathbf{8 0 - 9 0}$	$15(37)$	45°	7°
CDRA1 $\square \square 100-90$	$27(60)$	35°	5°

* The dimensions inside () are for 180°.
** Up to 2 auto switches can be mounted per actuator. The dimensions in the table are the values that represent the most sensitive positions of the auto switches. Thus, they are not the dimensions that represent the mounting position at the time of shipment.
\star Please consult with SMC concerning the angles for the auto switches other than the models D-A73 and D-A53.
Auto Switch Specifications/Refer to page 11-11-1 for further information on auto switch single body.

Type	Model	Electrical entry	Features	Applicable size
Reed switch	D-A80	Grommet (Perpendicular)	Without indicator light	30
	D-A80H	Grommet (In-line)		
	D-A80C	Connector (In-line)		
	D-A64	Grommet (In-line)	Without indicator light, built-in contact protection circuit	50 to 100
	D-A67	Grommet (In-line)	Without indicator light	
Solid state switch	D-F7NTL	Grommet (In-line)	With timer	30
	D-F5NTL	Grommet (In-line)		50 to 100

* With pre-wire connector is also available for D-F5NTL, D-F7NTL. For details, refer to pages 11-11-34 to 35.

Sets of Mounting Screws for Auto Switch (Round head Phillips screw, Hexagon nut)

Model	Part no.
CDRA1 \square W30	P294010-24
CDRA1 $\square \mathbf{5 0}$ to 100	P294020-24

Size 30/Basic Style: CDRA1BW, Foot Style: CDRA1LW

With auto switch

Basic style: CDRA1BW30

Foot style: CDRA1LW30

This drawing is for 90° specifications.

Foot style: CDRA1LW30

* () are the dimensions for rotation of 180°.
\star The dimensions below show pressurization to B port.

Series CDRA1

Size 50, 63, 80, 100/Basic Style: CRA1B \square
With auto switch
Single shaft type: CDRA1BS

Double shaft type:
CDRA1BW
Single shaft

Double shaft

Double Shaft Type

Model	$\mathbf{D}(\mathbf{g} 6)$	\mathbf{G}	\mathbf{M}	\mathbf{N}	$\mathbf{U U}$	\mathbf{L}
CDRA1BW50	15	11	20	15	118	14
CDRA1BW63	17	13	22	17	139	16
CDRA1BW80	20	15	25	20	167	19
CDRA1BW100	25	19	30	25	202	24

Single Shaft Type
\star The dimensions below show pressurization to B port.

Model	Port size Rc	A	B	C	$\begin{gathered} \hline \text { D } \\ (\mathrm{g} 6) \end{gathered}$	$\begin{gathered} \text { DD } \\ \text { (h9) } \end{gathered}$	F	H	J	K	S	U	W	BA	BB	CA	CB	SA	SB	SC	SD	SE	Keyway dimensions	
																							b	ℓ
CDRA1BS50	1/8	62	48	46	15	25	2.5	36	M8 x 1.25 depth 8	5	156 (189)	98	17	17	8.5	8.5	13	33	13.5	12	14	34	$5_{-0.030}^{0}$	25
CDRA1BS63	1/8	76	60	57	17	30	2.5	41	M10 x 1.5 depth 12	5	175 (213.5)	117	19.5	20	10	10	14	33	14.5	12	21	34	$6_{-0.030}^{0}$	30
CDRA1BS80	1/4	92	72	70	20	35	3	50	M12 $\times 1.75$ depth 13	5	199 (243)	142	22.5	23.5	12	12	18	33	15.5	12	29	34	$6_{-0.030}^{0}$	40
CDRA1BS100	$3 / 8$	112	85	85	25	40	4	60	M12 $\times 1.75$ depth 14	5	259 (325)	172	28	25	12.5	12.5	18	33	16	12	39	34	$8{ }_{-0.036}^{0}$	45

Single shaft with four chamfers: CDRA1BX \square

Double shaft key:
CDRA1BY \square

,
Note) Other dimensions are the same as the single shaft.

Model	\mathbf{G}	\mathbf{H}	\mathbf{N}	\mathbf{U}	\mathbf{L}
CDRA1BX $\square 50$	11	27	15	89	14
CDRA1BX $\square 63$	13	29	17	105	16
CDRA1BX $\square 80$	15	38	20	130	19
CDRA1BX $\square 100$	19	44	25	156	24

Note) Other dimensions are the same as the single shaft.

Model	H	K	UU	ℓ
CDRA1BY $\square \mathbf{5 0}$	36	5	134	25
CDRA1BY $\square \mathbf{6 3}$	41	5	158	30
CDRA1BY $\square \mathbf{8 0}$	50	5	192	40
CDRA1BY $\square \mathbf{1 0 0}$	60	5	232	45

Double shaft with four chamfers: CDRA1BZ

Size 50, 63, 80, 100/Foot Style: CDRA1L, Flange Style: CDRA1F
Foot style: CDRA1L

\star Dimensions above show pressurization to B port.

* () are the dimensions for rotation of 180° and 190°.

Model	LA	LB	LC	LD	LE	LF	LH	LT
CDRA1L $\square \mathbf{5 0}$	62	9	44	212 (245)	236 (269)	41	108	4.5
CDRA1L $\square 63$	76	11	55	247 (285.5)	275 (313.5)	48	127	5
CDRA1L $\square \mathbf{8 0}$	92	13	67	287 (331)	329 (373)	58	154	6
CDRA1L $\square 100$	112	13	87	347 (413)	389 (455)	73.5	189.5	6

Flange style Single shaft: CRA1FS

2
Note) Other dimensions are the same as standard.

Model	F	H	MM	U	FD	FT	FX	FY	ZX	ZY
CDRA1F $\square \mathbf{5 0}$	4	39	M 6×1.0 depth 12	114	9	13	90	50	110	81
CDRA1F $\square \mathbf{6 3}$	5	45	M 6×1.0 depth 12	136	11.5	15	105	59	130	101
CDRA1F $\square \mathbf{8 0}$	5	55	M8 1.25 depth 16	165	13.5	18	130	76	160	119
CDRA1F $\square \mathbf{1 0 0}$	5	60	M10 x 1.5 depth 20	190	13.5	18	150	92	180	133

Flange style Double shaft key: CDRA1FY

Flange style
Double shaft with four chamfers: CDRA1FZ

Note)Other dimensions are the same as the single shaft.				
Model	\mathbf{H}	\mathbf{N}	\mathbf{U}	$\mathbf{U U}$
CDRA1FZ $\square 50$	30	15	105	125
CDRA1FZ $\square 63$	33	17	124	146
CDRA1FZ $\square 80$	43	20	153	178
CDRA1FZ $\square 100$	44	25	174	204

CRB2
CRBU2
CRB1

MRQ
D-
20-

Flange style
Double shaft:
CDRA1FW

Note) $\begin{array}{c}\text { Other dimensions are } \\ \text { the same as the single } \\ \text { shaft. }\end{array}$ Model $\mathbf{H}_{\mathbf{H}} \mathbf{N}$	\mathbf{U}	UU		
CDRA1FW $\square 50$	39	15	114	134
CDRA1FW $\square 63$	45	17	136	158
CDRA1FW $\square 80$	55	20	165	190
CDRA1FW $\square 100$	60	25	190	220

Flange style
Single shaft with four chamfers: CDRA1FX

Note) Oth $\begin{aligned} & \text { Othe } \\ & \text { tha }\end{aligned}$	Other dimensions are the same as the single shaft.		
Model	H	N	U
CDRA1FX $\square 50$	30	15	105
CDRA1FX $\square 63$	33	17	124
CDRA1FX $\square 80$	43	20	153
CDRA1FX $\square 100$	44	25	174

CDRA1FX $\square 100$	44	25	174

Rotary Actuator with Solenoid Valve Rack \& Pinion Style
 Series CVRA1
 Size: 50, 63, 80, 100

How to Order

Rated voltage	
$\mathbf{1}$	100 VAC $50 / 60 \mathrm{~Hz}$
$\mathbf{2}$	200 VAC $50 / 60 \mathrm{~Hz}$
$\mathbf{3}$	110 to $120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$
$\mathbf{4}$	220 VAC, $50 / 60 \mathrm{~Hz}$
$\mathbf{5}$	24 VDC
$\mathbf{6}$	12 VDC
$\mathbf{7}$	240 VAC, $50 / 60 \mathrm{~Hz}$
$\mathbf{9}$	Other

Electrical entry		
G	Grommet (Lead wire: 300 mm)	
H	Grommet (Lead wire: 600 mm)	
E	Grommet terminal	
T	Conduit terminal	
D	DIN terminal	
L	L plug connector	With lead wire
LN		Without lead wire
LO		Without connector
M	M plug connector	With lead wire
MN		Without lead wire
MO		Without connector

Light/Surge voltage suppressor

Nil	None
$\mathbf{Z} *$	With light/surge voltage suppressor
$\mathbf{S} *$	With surge voltage suppressor
*ight attached type (Z) is not	
available for grommet type. Surge	
voltage suppressor attached type	
is available only for grommet	
type.	

Auto switch

* For the applicable auto switch model, refer to the table below.
* Auto switches are shipped together, (but not assembled).
Number of auto switches

\mathbf{S}	1 pc.
$\mathbf{N i l}$	2 pcs.

Applicable Auto Switch/Refer to page 11-11-1 for further information on auto switches.

Type	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch model	$\substack{\text { Lead wire length } \\ (\mathrm{m})}$			Pre-wire connector	Applicable load	
					DC		AC		$\begin{gathered} \hline 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 3 \\ (L) \end{gathered}$	$\begin{array}{\|c\|} \hline 5 \\ (Z) \end{array}$			
든	-	Grommet	Yes	3-wire (NPN equiv.)	-	5 V	-	A56	\bigcirc	-	-	-	IC circuit	-
3				2-wire	24 V	12 V	-	A53	\bigcirc	-	\bullet	-	-	Relay, PLC
\%						-	$100 \mathrm{~V}, 200 \mathrm{~V}$	A54	\bigcirc	\bigcirc	\bigcirc	-		
$\underset{\square}{\text { ¢ }}$	Diagnosis indication (2-color)						-	A59 W	\bigcirc	\bigcirc	-	-		
		Grommet	Yes	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	F59	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	Relay, PLC
				3-wire (PNP)				F5P	-	\bigcirc	\bigcirc	\bigcirc		
				2-wire		12 V		J59	\bigcirc	\bullet	\bigcirc	\bigcirc	-	
					-	-	$100 \mathrm{~V}, 200 \mathrm{~V}$	J51	\bigcirc	\bullet	\bigcirc	-		
				3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	$100 \mathrm{~V}, 200 \mathrm{~V}$	F59 W	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	
	Diagnosis indication			3-wire (PNP)				F5PW	\bigcirc	-	\bigcirc	\bigcirc		
				2-wire		-		J59 W	\bigcirc	\bullet	\bigcirc	\bigcirc	-	
	Water resistant (2-color)							F5BA **	-	\bigcirc	\bigcirc	\bigcirc		
	Diagnosis output (2-color)			4-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		F59F	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	

[^2]* Lead wire length symbols: $0.5 \mathrm{~m} \cdot \ldots .$. Nil (Example) A53
* Auto switches marked with "○" are made-to-order specifications.

[^3]Refer to page 11-11-36 for detailed solid state switches with pre-wire connectors.

Caution

FBe sure to read before handing. I Refer to pages 11-13-3 to 4 for I ISafety Instructions and Common I IPrecautions on the products I imentioned in this catalog, and I Irefer to pages 11-1-4 to 6 for I I Precautions on every series.

Rotation Range of Keygrooves Solenoid Valve Mounting Positions

Light/Surge Voltage Suppressor

Note) Light is not available on grommet type.

Specifications

Fluid			Air					
Proof pressure			1.35 MPa					
Max. operating pressure			0.9 MPa					
Min. operating pressure			0.15 MPa					
Ambient and fluid temperature			$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (No freezing)					
Lubrication			Non-lube					
Mounting			Basic style, Foot style					
Solenoid valve part no.			VF3 \square 20-7 $\square \square \square-02-X 14$				RB2	
Electrical entry			Grommet, Grommet terminal, Conduit terminal, DIN terminal, L plug connector, M plug connector				CRBU2	
Coil rated voltage		AC	100, $200 \mathrm{~V}(50 / 60 \mathrm{~Hz}$)					
		DC	24 V					
Allowable voltage change			-15 to $+10 \%$ of the rated voltage				SU	
Coil insulation			Equivalent to B class $\left(130^{\circ} \mathrm{C}\right)$					
Power consumption		AC	Inrush $\quad 5.6 \mathrm{VA}(50 \mathrm{~Hz})$, 5.0 VA (60 Hz)				CRJ	
		Holding	$3.4 \mathrm{VA}(50 \mathrm{~Hz})$, 2.3 VA (60 Hz)					
Apparent current			DC	1.8 W				CRA1
Weight (kg)							CRQ2	
Model	dditional weight	No. of positions/solenoids					IVSQ	
		2 position single	2 position double	3 position closed center	3 position exhaust center	3 position pressure center	MRQ	
CVRA1 $\square \square 50$ to 100	0.2	0.2	0.3	0.4	0.4	0.4	D-	
How to calculate weight Weight = Basic weight * + Add'I weight + No. of positions/solenoids * Refer to page 11-7-3 for basic weight.							20-	

Manual Override

How to Adjust the Rotation Speed

Rotation direction

When current is applied to SOL1, the shaft rotates clockwise.

How to adjust the rotation speed:
Turn the needle valve of the throttle valve clockwise to reduce the exhaust flow volume, thus slowing the rotation speed.
Throttle valve A regulates the clockwise rotation speed of the shaft and throttle valve B regulates the counterclockwise speed to the shaft.

Electrical Wiring

The DIN terminal and the terminal pin (with light/surge voltage suppressor) are connected internally as shown below. Therefore, connect them the respective power supply terminals.

DIN terminal With terminal block

Instant Energizing Time

[^4]

Series CVRA1

Construction

With solenoid valve

Component Parts

No.	Description	Material	Note
(1)	Body	Aluminum alloy	Hard anodized
(2)	Right cover	Aluminum alloy	Black anodized
(3)	Left cover	Aluminum alloy	Black anodized
(4)	Piston	Aluminum alloy	Chromated
(5)	Shaft	Chrome molybdenum steel	
(6)	Parallel keyway	Carbon steel	
(7)	Slider	Resin	
(8)	Connecting screw	Carbon steel	Zinc chromated
(9)	Bearing retainer	Aluminum alloy	Black anodized
(10)	Hexagon socket head cap screw with spring washer	Chromium molybdenum steel	Black zinc chromated
(11)	Tube gasket	NBR	
(12)	Piston seal	NBR	
(13)	Bearing	Bearing steel	
(14)	Round head Phillips screw	Steel wire	Black zinc chromated
(15)	Spring pin	Steel wire	
(16)	Rack	Carbon steel	Nitrided
(17)	Solenoid valve		

Replacement Parts (The corresponding parts shown below are sets.)

Size (Type)	With solenoid valve, With solenoid valve auto switch
C \square VRA1 $\square 50$	P294020-49A
C \square VRA1 $\square 63$	P294030-49A
C \square VRA1 $\square \square 80$	P294040-49
C \square VRA1 $\square 100$	P294050-49A
Corresponding parts no.	(7), (11), 12), (15, (23), (24), (25) are set.

Size 50, 63, 80, 100/Basic Style: CVRA1BS50 to 100
Single shaft type: CVRA1BS $\square 50$ to 100

Double shaft type:

Double Shaft Type

Double Shaft Type				(mm)			
Model	D $(\mathrm{g} 6)$	\mathbf{G}	\mathbf{M}	\mathbf{N}	UU	\mathbf{L}	
CVRA1BW $\square \mathbf{5 0}$	15	11	20	15	118	14	
CVRA1BW $\square \mathbf{6 3}$	17	13	22	17	139	16	
CVRA1BW $\square \mathbf{8 0}$	20	15	25	20	167	19	
CVRA1BW $\square \mathbf{1 0 0}$	25	19	30	25	202	24	

Single Shaft Type

Model	A	B	BA	C	CA	CB	$\begin{array}{\|c} \hline \mathrm{D} \\ (\mathrm{~g} 6) \end{array}$	$\begin{array}{\|c\|} \hline \text { DD } \\ \text { (h9) } \end{array}$	F	H	J	K	S*	U	W	Valve dimensions		Keyway dimensions	
																VH	VJ	b	ℓ
CVRA1BS $\square 50$	62	48	17	46	8.5	13	15	25	2.5	36	$\begin{gathered} \hline \text { M } 8 \times 1.25 \\ \text { depth } 8 \end{gathered}$	5	$\begin{gathered} \hline 144 \\ (177) \end{gathered}$	98	17	39	13.5	5 -0.090	25
CVRA1BS $\square 63$	76	60	20	57	10	14	17	30	2.5	41	$\begin{gathered} \hline \text { M10 x } 1.5 \\ \text { depth } 12 \end{gathered}$	5	$\begin{gathered} 163 \\ (201.5) \end{gathered}$	117	19.5	39	20.5	6 -0.030	30
CVRA1BS $\square 80$	92	72	23.5	70	12	18	20	35	3	50	$\begin{gathered} \text { M12 } \times 1.75 \\ \text { depth } 13 \end{gathered}$	5	$\begin{gathered} 186 \\ (230) \end{gathered}$	142	22.5	43	28.5	$6^{-0.030}$	40
CVRA1BS $\square 100$	112	85	25	85	12.5	18	25	40	4	60	$\begin{gathered} \text { M12 } \times 1.75 \\ \text { depth } 14 \end{gathered}$	5	$\begin{gathered} 245 \\ (311) \\ \hline \end{gathered}$	172	28	43	38.5	8-0.038	45

* () are the dimensions for rotation of 180° and 190°.

Port Size

Model	Port size
CVRA1BS $\square 50$	Rc $1 / 4$
CVRA1BS $\square 63$	Rc $1 / 4$
CVRA1BS $\square 80$	Rc $1 / 4$
CVRA1BS $\square 100$	Rc $1 / 4$

Series CVRA1

Size 50，63，80，100／Basic Style：CVRA1B，Foot Style：CVRA1L

Single shaft with four chamfers：Double shaft key： CVRA1BX \square

				（mm）			
Model	G	H	\mathbf{L}	\mathbf{N}	\mathbf{U}		
CVRA1BX $\square 50$	11	27	14	15	89		
CVRA1BX $\square 63$	13	29	16	17	105		
CVRA1BX $\square 80$	15	38	19	20	130		
CVRA1BX $\square 100$	19	44	24	25	156		

Note）Other dimensions are the same as the single shaft．

Model	ℓ	H	K	UU
CVRA1BY $\square 50$	25	36	5	134
CVRA1BY $\square 63$	30	41	5	158
CVRA1BY $\square 80$	40	50	5	192
CVRA1BY $\square 100$	45	60	5	232

Note）Other dimensions are the
same as the single shaft．

Double shaft with four chamfers：CVRA1BZ \square

Model	G	H	\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{U}	UU
CVRA1BZ $\square 50$	11	27	14	20	15	89	109
CVRA1BZ $\square 63$	13	29	16	22	17	105	127
CVRA1BZ $\square 80$	15	38	19	25	20	130	155
CVRA1BZ $\square 100$	19	44	24	30	25	156	186

Note）Other dimensions are the

Foot style：CVRA1L $\square \square$

（mm）								
Model	LA	LB	LC	LD	LE	LF	LH	LT
CVRA1Lロ ${ }^{\text {50 }}$	62	9	44	$\begin{array}{\|c} \hline 200 \\ (233) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 224 \\ (257) \\ \hline \end{array}$	41	108	4.5
CVRA1Lロ 63	76	11	55	$\begin{array}{\|c} \hline 235 \\ (273.5) \end{array}$	$\begin{array}{\|c\|} \hline 263 \\ (301.5) \end{array}$	48	127	5
CVRA1Lロ ${ }^{\text {d }}$	92	13	67	$\begin{array}{\|c} \hline 274 \\ (318) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 316 \\ (360) \\ \hline \end{array}$	58	154	6
CVRA1Lロロ100	112	13	87	$\begin{array}{\|c} \hline 333 \\ (399) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 375 \\ (441) \\ \hline \end{array}$	73.5	189.5	6

．$)^{*}$（ ）are the dimensions for rotation of 180° and 190° ．
Note）Other dimensions are the same as the single shaft．

Size 50, 63, 80, 100/Basic Style: CDVRA1BS50 to 100
Single shaft type: CDVRA1BS $\square 50$ to 100

Single Shaft Type

Model	A	B	BA	C	CA	CB	$\begin{array}{\|l\|} \hline \sigma D \\ (\mathrm{~g} 6) \\ \hline \end{array}$	$\begin{aligned} & \text { ఠDD } \\ & \text { (h9) } \end{aligned}$	F	H	J	K	S	U	W	SA	SB	SC	SD	SE	Vave dimensions		Keyway	
																					VH	VJ	b	ℓ
CDVRA1BS $\square 50$	62	48	17	46	8.5	13	15	25	2.5	36	$\begin{gathered} \text { M8 } \times 1.25 \\ \text { depth } 8 \\ \hline \end{gathered}$	5	$\begin{gathered} 156 \\ (189) \\ \hline \end{gathered}$	98	17	33	13.5	12	14	34	39	13.5	$5{ }_{-0.030}^{0}$	25
CDVRA1BS $\square 63$	76	60	20	57	10	14	17	30	2.5	41	$\begin{array}{\|c} \hline \text { M10 } 1.1 .5 \\ \text { depth } 12 \\ \hline \end{array}$	5	$\begin{array}{\|c\|} \hline 175 \\ (213.5) \\ \hline \end{array}$	117	19.5	33	14.5	12	21	34	39	20.5	$6{ }_{-0.030}^{0}$	30
CDVRA1BS $\square 80$	92	72	23.5	70	12	18	20	35	3	50	$\begin{array}{\|c\|} \hline \begin{array}{c} \mathrm{M} 12 \times 1.75 \\ \text { depth } 13 \end{array} \\ \hline \end{array}$	5	$\begin{array}{r} 199 \\ (243) \\ \hline \end{array}$	142	22.5	33	15.5	12	29	34	43	28.5	$6_{-0.030}^{0}$	40
CDVRA1BS $\square 100$	112	85	25	85	12.5	18	25	40	4	60	$\begin{array}{\|c} \text { M12 } \times 1.75 \\ \text { depth } 14 \end{array}$	5	$\begin{gathered} 259 \\ (325) \\ \hline \end{gathered}$	172	28	33	16	12	39	34	43	38.5	$8{ }_{-0.036}^{0}$	45

* () are the dimensions for rotation of 180° and 190°.

Foot style: CDVRA1L $\square \square$

(mm)								
Model	LA	LB	LC	LD	LE	LF	LH	LT
CDVRA1L $\square \mathbf{5 0}$	62	9	44	212 (245)	236 (269)	41	108	4.5
CDVRA1L $\square \mathbf{6 3}$	76	11	55	247 (285.5)	275 (313.5)	48	127	5
CDVRA1L $\square \mathbf{8 0}$	92	13	67	287 (331)	329 (373)	58	154	6
CDVRA1L $\square \mathbf{1 0 0}$	112	13	87	347 (413)	389 (455)	73.5	189.5	6

* () are the dimensions for rotation of 180° and 190°.

Rotary Actuator: Angle Adjustable Type
 Rack \& Pinion Style
 Series CRA1미
 Size: 50, 63, 80, 100
 * Angle adjusting mechanism is provided as standard.

How to Order

Applicable Auto Switch/Refer to page 11-11-1 for further information on auto switches.

Type	Special function	Electricalentry		Wiring (Output)	Load voltage			Auto switch model	$\begin{array}{\|c\|} \hline \text { Lead wire * } \\ \text { length }(\mathrm{m}) \end{array}$			Pre-wire connector	Applicable load	
					DC		AC		$\begin{array}{\|c\|} \hline 0.5 \\ \hline \text { (Nil) } \end{array}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\left.\begin{array}{c} 5 \\ (Z) \end{array}\right)$			
¢		Grommet	Yes	3-wire (NPN equiv.)	-	5 V	-	A56	\bigcirc	-	-	-	IC circuit	
合	-			2-wire	24 V	12 V	-	A53	-	-	-	-	-	Relay, PLC
O						-	$100 \mathrm{~V}, 200 \mathrm{~V}$	A54	\bigcirc	\bigcirc	\bigcirc	-		
	Diagnosis indication (2-color)						-	A59 W	-	-	-	-		
		Grommet	Yes	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	F59	\bigcirc	-	\bigcirc	\bigcirc	IC circuit	Relay, PLC
				3-wire (PNP)				F5P	-	-	\bigcirc	\bigcirc		
	-					12 V		J59	\bigcirc	-	\bigcirc	\bigcirc		
				wire	-	-	$100 \mathrm{~V}, 200 \mathrm{~V}$	J51	\bigcirc	\bigcirc	\bigcirc	-		
				3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	F59 W	-	\bigcirc	\bigcirc	\bigcirc	IC circuit	
	Diagnosis indication			3-wire (PNP)				F5PW	\bigcirc	-	\bigcirc	\bigcirc		
				2-wire		-		J59 W	\bullet	-	\bigcirc	\bigcirc	-	
	Water resistant (2-color)							F5BA **	-	-	\bigcirc	\bigcirc		
	Diagnosis output (2-color)			4-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		F59F	-	\bigcirc	\bigcirc	\bigcirc	IC circuit	

[^5]

Specifications

Fluid	Air (Non-lube)
Cushion	None
Mounting	Basic style, Foot style, Flange style
Angle adjustable range	0° to 90°
Backlash	Within 1°

Weight
(kg)

Model	Standard weight		Additional weight
	90°	180°	
CRA1 $\square \square$ U50	1.5	1.7	0.5
CRA1 $\square \square$ U63	2.5	3.0	0.8
CRA1 $\square \square$ U80	4.3	5.0	1.5
CRA1 \square U100	8.5	9.5	2.0

Rotation Range of Key Groove

Adjusting direction is in the direction the arrows show.
Adjusting angle at 90° at maximum.
90° type: 90° to $0^{\circ}, 180^{\circ}$ type: 180° to 90°

Foot Bracket Part No.

Size	Foot
$\mathbf{5 0}$	P294020-25
$\mathbf{6 3}$	P294030-25
$\mathbf{8 0}$	P294040-25
$\mathbf{1 0 0}$	P294050-25
Note)	
Part no. in the table includes mounting screw.	

How to Adjust Angle

Rotation angle becomes smaller by tightening the angle adjusting screw to the right.
Adjusting Angle per One Rotation of Angle Adjusting Screw

Size	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Adjusting angle	8.2°	7.0°	6.1°	4.1°

Series CRA1 $\square \square \boldsymbol{U}$

Construction

Standard: CRA1 $\square \square \mathbf{U}$

Component Parts

No.	Description	Material	Note
(1)	Body	Aluminum alloy	Hard anodized
(2)	Right cover	Carbon steel	Black zinc chromated
(3)	Left cover	Aluminum alloy	Black anodized
(4)	Piston	Aluminum alloy	Chromated
(5)	Shaft	Chrome molybdenum steel	
(6)	Parallel keyway	Carbon steel	
(7)	Slider	Resin	
(8)	Connecting screw	Carbon steel	Zinc chromated
(9)	Bearing retainer	Aluminum alloy	Black anodized
(10)	Hexagon socket head cap screw with spring washer	Chrome molybdenum steel	Black zinc chromated
(11)	Tube gasket	NBR	
(12)	Piston seal	NBR	
(13)	Bearing	Bearing steel	
(14)	Round head Phillips screw	Steel wire	Black zinc chromated

Replacement Parts (The corresponding parts shown below are set.)

Size (Type)	With angle adjuster, With angle adjuster and auto switch
CRA1 $\square \square$ U50	P294020-22A
CRA1 $\square \square$ U63	P294030-22A
CRA1 \square U80	P294040-22
CRA1 \square U100	P294050-22A
Corresponding parts no.	(7), (11), 12, 15), and 20) are set.

With auto switch: CDRA1ロロU

No.	Description	Material	Note
(15)	Spring pin	Steel wire	
(16)	Rack	Carbon steel	Nitrided
(17)	Stopper	Carbon steel	Zinc chromated
(18)	Stopper screw	Carbon steel	Black zinc chromated
(19)	O-ring	NBR	
(20)	Seal washer	NBR	
(21)	E type stopper ring	Steel wire	Chromated
(22)	Hexagon nut	Steel wire	Nickel plated
(23)	Switch mounting rail	Aluminum alloy	
(24)	Auto switch		
(25)	Plastic magnet	Magnetic material	
(26)	Round head Phillips screw	Steel wire	Nickel plated
$(27$	Round head Phillips screw	Steel wire	Nickel plated
(28)	Hexagon nut	Steel wire	Nickel plated

Single Shaft Type
(mm)

	Port size																						Keyway	ons
Model	Rc	A	AU	B	BA	BB	BU	C	CU	(g6)	(h9)	DU	EU	F	H	J	K	MU	S	SU	U	W	b	,
CRA1BSU50	1/8	62	15	48	17	8.5	11	46	9	15	25	14	12	2.5	36	$\begin{gathered} \hline \text { M8 } \times 1.25 \\ \text { depth } 8 \end{gathered}$	5	M16 $\times 1.5$	$\begin{gathered} \hline 144 \\ (177) \end{gathered}$	45	98	17	$5{ }_{-0.030}^{0}$	25
CRA1BSU63	1/8	76	19	60	20	10	13	57	11	17	30	18	14	2.5	41	$\begin{array}{\|l} \hline \begin{array}{l} \text { M10 } \\ \text { depth } 1.5 \end{array} \\ \hline \end{array}$	5	M20 x 1.5	$\begin{gathered} \hline 163 \\ (201.5) \\ \hline \end{gathered}$	54.5	117	19.5	$6{ }_{-0.030}^{0}$	30
CRA1BSU80	1/4	92	22	72	23.5	12	16	70	13	20	35	22	19	3	50	$\begin{gathered} \text { M12 x } 1.75 \\ \text { depth } 13 \\ \hline \end{gathered}$	5	M24 x 1.5	$\begin{gathered} 186 \\ (230) \\ \hline \end{gathered}$	62.5	142	22.5	$6{ }_{-0.030}^{0}$	40
CRA1BSU100	3/8	112	22	85	25	12.5	16	85	13	25	40	22	19	4	60	$\begin{gathered} \text { M12 x } 1.75 \\ \text { depth } 14 \end{gathered}$	5	M24 x 1.5	$\begin{gathered} 245 \\ (311) \end{gathered}$	73.5	172	28	$8{ }_{-0.036}^{0}$	45

[^6]
Series CRA1 $\square \square \boldsymbol{U}$

Size 50, 63, 80, 100

Single shaft with four chamfers: CRA1BXU

Double shaft key:

(mm)					
Model	G	H	L	N	U
CRA1BXU $\square 50$	11	27	14	15	89
CRA1BXU $\square 63$	13	29	16	17	105
CRA1BXU $\square \mathbf{8 0}$	15	38	19	20	130
CRA1BXU $\square 100$	19	44	24	25	156

Note) Other dimensions are the same as the single shaft.

CRA1BYU

				(mm)		
Model	ℓ	H	K	UU		
CRA1BYU $\square 50$	25	36	5	134		
CRA1BYU $\square \mathbf{6 3}$	30	41	5	158		
CRA1BYU $\square \mathbf{8 0}$	40	50	5	192		
CRA1BYU $\square \mathbf{1 0 0}$	45	60	5	232		

,
Note) Other dimensions are the same as the single shaft.

Double shaft with four chamfers: CRA1BZU \square

Note) Other dimensions are the same as the single shaft.

Foot style: CRA1L \square

\star The dimensions below show pressurization to B port.

* () are the dimensions for rotation of 180° and 190°.	(mm)							
Model	LA	LB	LC	LD	LE	LF	LH	LT
CRA1L \square U50	62	9	44	200 (233)	224 (257)	41	108	4.5
CRA1L \square U63	76	11	55	235 (273.5)	263 (301.5)	48	127	5
CRA1L \square U80	92	13	67	274 (318)	316 (360)	58	154	6
CRA1L \square U100	112	13	87	333 (399)	375 (441)	73.5	189.5	6

[^7]Note) Other dimensions are the same as the single shaft.

Note) Other dimensions are the same as standard.

Model	F	FD	FT	FX	FY	H	MM	U	ZX	ZY
MRA1F \square U50	4	9	13	90	50	39	M6 $\times 1.0$ depth 12	114	110	81
CRA1F \square U63	5	11.5	15	105	59	45	M6 $\times 1.0$ depth 12	136	130	101
CRA1F \square U80	5	13.5	18	130	76	55	M8 $\times 1.25$ depth 16	165	160	119
CRA1F \square U100	5	13.5	18	150	92	60	M 10×1.5 depth 20	190	180	133

Flange style
Double shaft:
CRA1FWU

Flange style
Single shaft with four chamfers: CRA1FXU

Flange style
Double shaft key: CRA1FYU

(mm)			
Model	H	\mathbf{N}	\mathbf{U}
CRA1FXU50	30	15	105
CRA1FXU63	33	17	124
CRA1FXU80	43	20	153
CRA1FXU100	44	25	174

Note) Other dimensions are the same as the single shaft.

	(mm)		
Model	H	U	UU
CRA1FYU50	39	114	150
CRA1FYU63	45	136	177
CRA1FYU80	55	165	215
CRA1FYU100	60	190	250

Note) Other dimensions are the same as the single shaft.

Flange style Double shaft with four chamfers: CRA1FZU

Note) Other dimensions are the same as the single shaft.

Series CRA1 $\square \square \boldsymbol{U}$

Size 50, 63, 80, 100

Single shaft type: CDRA1BSU

* The dimensions above show pressurization to B port.

Double shaft type: CDRA1BWU

$\stackrel{\%}{ }$					(mm)	
Model	$\begin{array}{\|c\|} \hline \sigma D \\ (\mathrm{~g} 6) \end{array}$	$\square \mathrm{G}$	M	N	UU	øL
CDRA1BWU50	15	11	20	15	118	14
CDRA1BWU63	17	13	22	17	139	16
CDRA1BWU80	20	15	25	20	167	19
CDRA1BWU100	25	19	30	25	202	24

* () are the dimensions for rotation of 180° and 190°.

Model	Port size				OD	のDD			J		S	U	W		BB	SA	SB	SC	SD	SE	${ }_{\text {K }}^{\text {Keyway }}$ dimensio		AU	BU	CU	D	EU	S	MU
Model	Rc				(g6)	(h9)	F	H	J	K	S	U	W	BA	BB	SA	SB	SC	SD	SE	b	ℓ	AU	BU	CU	DU	EU	SU	MU
CDRA1BSU50	1/8	62	48	46	15	25	2.5	36	$\begin{gathered} \text { M8 } \times 1.25 \\ \text { depth } 8 \\ \hline \end{gathered}$	5	$\begin{gathered} 156 \\ (189) \end{gathered}$	98	17	17	8.5	33	13.5	12	14	34	$5_{-0.030}^{0}$	25	15	11	9	14	12	45	M16 x 1.5
CDRA1BSU63	1/8	76	60	57	17	30	2.5	41	$\begin{array}{\|l} \hline \text { M10 } \times 1.5 \\ \text { depth } 12 \\ \hline \end{array}$	5	$\begin{array}{\|c\|} \hline 175 \\ (213.5) \end{array}$	117	19.5	20	10	33	14.5	12	21	34	${ }_{6}{ }_{-0.030}^{0}$	30	19	13	11	18	14	54.5	M20 x 1.5
CDRA1BSU80	1/4	92	72	70	20	35	3	50	$\begin{gathered} \text { M12 } \times 1.75 \\ \text { depth } 13 \\ \hline \end{gathered}$	5	$\begin{gathered} 199 \\ (243) \end{gathered}$	142	22.5	23.5	12	33	15.5	12	29	34	$6_{-0.030}^{0}$	40	22	16	13	22	19	62.5	M24 x 1.5
CDRA1BSU100	3/8	112	85	85	25	40	4	60	$\begin{gathered} \text { M12 } \times 1.75 \\ \text { depth } 14 \end{gathered}$	5	$\begin{gathered} 259 \\ (325) \end{gathered}$	172	28	25	12.5	33	16	12	39	34	$8_{-0.036}^{0}$	45	22	16	13	22	19	73.5	M24 x 1.5

Foot style: CDRA1LSU

\star The dimensions above show pressurization to B port.
$*$ () are the dimensions for rotation of 180° and 190°.

Note) Other dimensions are the same as the single shaft. (mm)

Single shaft flange style: CDRA1FSU

Model	F	H	MM	U	のFD	FT	FX	FY	ZX	ZY
CDRA1FSU50	4	39	M 6×1.0 depth 12	114	9	13	90	50	110	81
CDRA1FSU63	5	45	M 6×1.0 depth 12	136	11.5	15	105	59	130	101
CDRA1FSU80	5	55	M8 x 1.25 depth 16	165	13.5	18	130	76	160	119
CDRA1FSU100	5	60	$\begin{array}{\|c\|} \hline \text { M10 x } 1.5 \\ \text { depth } 20 \end{array}$	190	13.5	18	150	92	180	133

Shaft Pattern Sequencing I

Applicable shaft type: S, W, Y
How to Order

How to order angle adjustable type
Refer to page 11-7-24 for "How to Order" angle adjustable type.

Combination is available only when all the conditions are fulfilled in above combination chart.

- Combination of Applicable Chart
- Combination
4 Types

A1	A2	C8	C 59
A2	A 24	C 10	-X 6
A13	A24	-X 6	-X 16
A14	C11	C 30	-X 16
A15	C 60	-X 10	-X 16
A14	C 32	C 61	C 62

Combination is available only when all the conditions are fulfilled in above combination chart.

* Combination of simple special and made-toorder is available for up to 4 types.
* Above is the typical example of combination.

Shaft shape pattern is dealt with simple made-to-order system.
 Please contact SMC for a specification sheet when placing an order.

Combination Chart of Simple Specials for Tip End Shape

Chart 1. Combination between -XA \square and -XA \square (S, W, Y shaft)

Symbol	Description	Shaft direction		Combination	
		Upper	Lower	XA1	XA24
XA1	Female thread at the end	\bullet	-	-	-
XA2	Female thread at the end	-	\bullet	-	-
XA13	Shaft through-hole	\bullet	\bullet	-	-
XA14	Shaft through-hole + Rod end female thread	\bullet	-	-	-
XA15	Shaft through-hole + Rod end female thread	-	\bullet	-	-
XA16	Shaft through-hole + Double shaft-end female threads	\bullet	\bullet	-	-
XA24	Double key	\bullet	-	-	-

Combination Chart of Made to Order
Chart 2. Combination between -XA \square and -XC \square (Refer to page 11-7-40 for made-to-order/details on -XC口.)

Symbol	Description	Shaft type			Applicable size	Combination	
		S	W	Y		XA1/2/13 to 16	XA24
XC7	Reversed shaft	\bigcirc	\bigcirc	-	50, 63, 80, 100	-	-
XC8 to XC11	Change of rotating range	\bigcirc	\bigcirc	\bigcirc		\bigcirc	-
XC30	Fluoro grease	\bigcirc	\bigcirc	\bigcirc	30 to 100	\bigcirc	\bigcirc
XC31 to XC36	Change of rotation range and shaft rotation direction	\bigcirc	\bigcirc	\bigcirc	50, 63, 80, 100	-	-
XC37 to XC46	Change of rotation range and angle adjusting direction	\bigcirc	\bigcirc	\bigcirc		\bigcirc	-
XC47 to XC58	Change of rotation range and angle adjusting direction (Angle adjusting screw is equipped on the left.)	\bigcirc	\bigcirc	-		-	-
XC59 to XC61	Change of port direction	\bigcirc	\bigcirc	\bigcirc	30 to 100	\bigcirc	\bigcirc
XC62	Reverse mounting of auto switch	\bigcirc	\bigcirc	\bigcirc	50, 63, 80, 100	\bigcirc	\bigcirc
XC63	One side hydro, One side air	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc
XC64	One side hydro, One side air	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc

Chart 3. Combination between -XA \square and $-\mathbf{X} \square$ (Refer to page 11-7-49 for made-to-order/details on -X \square.)

Symbol	Description	Shaft type			Applicable size	Combination	
		S	W	Y		XA1/2/13 to 16	XA24
X6	Shaft, Bolt, Parallel key stainless specification.	\bigcirc	\bigcirc	\bigcirc	30 to 100	-	\bigcirc
X7	Heat resistance ($100^{\circ} \mathrm{C}$)	-	\bigcirc	\bigcirc		\bigcirc	\bigcirc
X10	Angle adjustment for both sides	\bigcirc	\bigcirc	\bigcirc	50 to 100	-	\bigcirc
X11	Angle adjustment for single side, Air cushion with single side	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc
X16	Fluoro rubber for seals	\bigcirc	\bigcirc	\bigcirc	30 to 100	-	\bigcirc

[^8]Shaft shape pattern is dealt with simple made-to-order system. Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing I

-XA1 to XA24

Additional Reminders

1. Enter the dimensions within a range that allows for additional machining.
2. SMC will make appropriate arrangements if no dimensional, tolerance, or finish instructions are given in the diagram.
3. The length of the unthreaded portion is 2 to 3 pitches.
4. Unless specified otherwise, the thread pitch is based on coarse metric threads.
$\mathrm{P}=$ Thread pitch
M3 x $0.5, \mathrm{M} 4 \times 0.7, \mathrm{M} 5 \times 0.8$
M6 x $1, \mathrm{M} 8 \times 1.25$, M10 $\times 1.5$
5. Enter the desired figures in the portion of the diagram.
6. Chamfer face of the parts machining additionally is C 0.5

Symbol: A2

Machine female threads into the short shaft Note) Except flange style

The maximum dimension L 2 is, as a rule, twice the thread size
(Example) For M4: L2 $=8 \mathrm{~mm}$

- Applicable shaft types: S, W, Y

Symbol: A15
A special end is machined onto the short shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter. The maximum dimension L 2 is, as a rule, twice the thread size.
(Example) For M4: L2 $=8 \mathrm{~mm}$

- Applicable shaft types:

S, W, Y

S, W,

					(mm)
Thread	30	50	63	80	100
M3 $\times 0.5$	$\varnothing 2.5$	-	-	-	-
M5 x 0.8	-	$\varnothing 4$	$\varnothing 4$	-	-
M6 x 1	-	$\varnothing 5$	$\varnothing 5$	-	-
M8 $\times 1.25$	-	-	$\varnothing 6.8$	$\varnothing 6.8$	$\varnothing 6.8$
M10 $\times 1.5$	-	-	-	$\varnothing 8.5$	$\varnothing 8.5$
M12 $\times 1.75$	-	-	-	010.3	$\varnothing 10.3$
Rc 1/8	-	-	-	$\varnothing 8$	$\varnothing 8$
Rc 1/4	-	-	-	-	011

Symbol: A13 Shaft with through-hole

 Note) Except flange styleMinimum machining diameter for d1 is 0.1 mm . - Applicable shaft types: S, W, Y

Symbol: A16 Note) Except flange style
A special end is machined onto both the long shats, and a through-hole is drilled into both shafts. Femal hreads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes. The maximum dimension L1 is, as a rule, twice the thread size. (Example) For M5: L1 $=10 \mathrm{~mm}$

- Applicable shaft types: $\mathrm{S}, \mathrm{W}, \mathrm{Y}$

- Applicable sha - Equal dimensi the same mark	types: ns are in r. Q1 =	ed by - - Q1			(mm)
Size	30	50	63	80	100
M3 $\times 0.5$	$\varnothing 2.5$	-	-	-	-
M5 x 0.8	-	$\varnothing 4$	$\varnothing 4$	-	-
M6 x 1	-	$\varnothing 5$	$\varnothing 5$	-	-
M8 $\times 1.25$	-	-	$ø 6.8$	$\varnothing 6.8$	$\varnothing 6.8$
M10 x 1.5	-	-	-	$\varnothing 8.5$	$\varnothing 8.5$
M12 x 1.75	-	-	-	$\varnothing 10.3$	$\varnothing 10.3$
Rc 1/8	-	-	-	$\varnothing 8$	$\varnothing 8$
Rc 1/4	-	-	-	-	$\varnothing 11$

Symbol: A1

Machine female threads into the long shaft. Note) Except flange style

The maximum dimension L 1 is, as a rule, twice the thread size Example) For M3: L1 $=6 \mathrm{~mm}$

- Applicable shaft types: S, W, Y

Size	Q1
$\mathbf{3 0}$	M 3
$\mathbf{5 0}$	$\mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6$
$\mathbf{6 3}$	$\mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6$
$\mathbf{8 0}$	$\mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6, \mathrm{M} 8$
$\mathbf{1 0 0}$	$\mathrm{M} 5, \mathrm{M} 6, \mathrm{M} 8, \mathrm{M} 10$

Symbol: A14 Note) Except flange style

A special end is machined onto the long shaft, and a through-hole s drilled into it. Female threads are machined into the through hole, whose diameter is equivalent to the pilot hole diameter The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$

- Applicable shaft types: S, W, Y

Symbol: $\mathbf{A 2 4}$ Double key

Keys and keyways are machined at 180° from the standard position.
Applicable shaft types: S, W Y

- Equal dimensions are indicated by the same marker.

How to Order

How to order angle adjustable type
Refer to page 11-7-24 for "How to Order" angle adjustable type.

- Combination
4 Types
* Combination of simple special and made-to-order, it is possible for up to 4 types.
* Above is the typical example of combination.

Combination Chart of Simple Specials for Tip End Shape

Symbol	Description	Shaft direction		Shaft type					Combination				
		Upper	Lower	X	Z	T	J	K	* Corresponding shafts type available for combination				
XA33	Female thread at the end	\bigcirc	-	-	-	\bigcirc	\bigcirc	\bigcirc	XA33				
XA34	Female thread at the end	-	-	-	-	\bigcirc	\bigcirc	-	T, J, K *	XA34			
XA35	Female thread at the end	-	-	\bigcirc	\bigcirc	-	-	-	-	-	XA35		
XA36	Female thread at the end	-	-	\bigcirc	\bigcirc	-	-	-	-	-	X, Z^{*}		
XA37	Stepped round shaft	-	-	-	-	\bigcirc	\bigcirc	\bigcirc	-	T, J, K *	-	XA37	
XA38	Stepped round shaft	-	-	-	-	-	-	\bigcirc	K*	-	-	K *	
XA40	Shaft through hole	-	-	-	-	\bigcirc	-	\bigcirc	-	-	-	-	
XA41	Shaft through hole	-	-	-	\bigcirc	-	\bigcirc	-	-	-	-	-	
XA43	Shaft through-hole + Double shaft-end-female threads	\bigcirc	\bigcirc	-	-	\bigcirc	-	\bigcirc	-	-	-	-	
XA44	Shaft through-hole + Double shaft-end-female threads	-	-	-	\bigcirc	-	\bigcirc	-	-	-	-	-	
XA45	Middle-cut chamfer	-	-	-	-	\bigcirc	\bigcirc	\bigcirc	-	T, J, K *	-	T, J, K *	XA45
XA46	Middle-cut chamfer	-	-	-	-	-	-	\bigcirc	K*	-	-	-	K*

Combination Chart of Made to Order

Symbol	Description	Shaft type					Applicable size	Combination
		X	Z	T	J	K	Applicable size	XA33 to 38, 40 to 46
XC7	Reversed shaft	\bigcirc	-	\bigcirc	\bigcirc	-	50, 63,	-
XC8 to XC11	Change of rotating range	-	-	-	-	-	80, 100	-
XC30	Fluoro grease	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	30 to 100	-
XC31 to XC36	Change of rotation range and shaft rotation direction	-	-	-	-	-		-
XC37 to XC46	Change of rotation range and angle adjusting direction	-	-	-	-	-		-
XC47 to XC58	Change of rotation range and angle adjusting direction (Angle adjusting screw is equipped on the left.)	-	-	-	-	-	80, 100	-
XC59 to XC61	Change of port direction	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	30 to 100	\bigcirc
XC62	Reverse mounting of auto switch	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc		-
XC63	One side hydro, One side air	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
XC64	One side hydro, One side air	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc

Chart 6. Combination between -XA \square and -X \square (Refer to page 11-7-49 for made-to-order/details on -X \square.)

Symbol	Description	Shaft type					Applicable size	Combination
		X	Z	T	J	K		XA33 to 38, 40 to 46
X6	Shaft, Bolt, Parallel key stainless specifications	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	30 to 100	\bigcirc
X7	Heat resistance ($100^{\circ} \mathrm{C}$)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
X10	Angle adjustment for both sides	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	50 to 100	\bigcirc
X11	Angle adjustment for single side, Air cushion with single side	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		-
X16	Fluoro rubber for seals	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	30 to 100	-

[^9]
Shaft Pattern Sequencing II

Additional Reminders

1. Enter the dimensions within a range that allows for additional machining
2. SMC will make appropriate arrangements if no dimensional, tolerance, or finish instructions are given in the diagram.
3. The length of the unthreaded portion is 2 to 3 pitches.
4. Unless specified otherwise, the thread pitch is based on coarse metric threads.

$\mathrm{P}=$ Thread pitch

M3 $\times 0.5$, M $4 \times 0.7, \mathrm{M} 5 \times 0.8$
M6 x $1, \mathrm{M} 8 \times 1.25, \mathrm{M} 10 \times 1.5$
5. Enter the desired figures in the portion of the diagram.
6. Chamfer face of the parts machining additionally is C 0.5 .

Symbol: A33
Machine female threads into the long shaft. Note) Except flange style

The maximum dimension L 1 is, as a rule, twice the thread size (Example) For M3: L1 $=6 \mathrm{~mm}$

- Applicable shaft types: J, K, T

(mm)	
Size	Q1
$\mathbf{3 0}$	M 3
$\mathbf{5 0}$	$\mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6, \mathrm{M} 8$
$\mathbf{6 3}$	$\mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6, \mathrm{M} 8, \mathrm{M} 10$
$\mathbf{8 0}$	$\mathrm{M} 4, \mathrm{M} 5, \mathrm{M6}, \mathrm{M} 8, \mathrm{M} 10, \mathrm{M} 12$
$\mathbf{1 0 0}$	$\mathrm{M} 5, \mathrm{M} 6, \mathrm{M} 8, \mathrm{M} 10, \mathrm{M} 12$

Symbol: A36 Machine female threads into the short shaft Note) Except flange style

The maximum dimension L2 is, as a rule, twice the thread size. (Example) For M4: L2 $=8 \mathrm{~mm}$

- Applicable shaft types: X, Z

(mm)	
Size	Q2
$\mathbf{3 0}$	$M 3$
$\mathbf{5 0}$	$M 4, M 5, M 6, M 8$
$\mathbf{6 3}$	$M 4, M 5, M 6, M 8, M 10$
$\mathbf{8 0}$	$M 4, M 5, M 6, M 8, M 10, M 12$
$\mathbf{1 0 0}$	$M 5, M 6, M 8, M 10, M 12$

\section*{| Symbol: $\mathbf{A 4 0}$ | $\begin{array}{l}\text { Shaft with through-hole } \\ \text { Note) Except flange style }\end{array}$ |
| :--- | :--- |}

- Minimum machining diameter for d 1 is 0.1 mm . - Applicable shaft types: K, T

K axis
Taxis

Symbol: A34
Machine female threads into the short shaft. Note) Except flange style

The maximum dimension L 2 is, as a rule, twice the thread size (Example) For M3: L2 $=6 \mathrm{~mm}$

- Applicable shaft types: J, K, T

(mm)

(mm)		
Size	Q2	
$\mathbf{3 0}$	M 3	
$\mathbf{5 0}$	$\mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6, \mathrm{M} 8$	
$\mathbf{6 3}$	$\mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6, \mathrm{M} 8, \mathrm{M} 10$	
$\mathbf{8 0}$	$\mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6, \mathrm{M} 8, \mathrm{M} 10, \mathrm{M} 12$	
$\mathbf{1 0 0}$	$\mathrm{M} 5, \mathrm{M} 6, \mathrm{M} 8, \mathrm{M} 10, \mathrm{M} 12$	
Symbol: $\mathbf{A} \mathbf{3 7}$	Note) Except flange style	

The long shaft can be further shortened by machining it into a stepped round shaft.

- Minimum machining diameter is 0.1 mm .
(If shortening the shaft is not required, indicate "*" for dimension X.)
(If not specifying dimension C 1 , indicate "*" instead.)
- Applicable shaft types: J, K, T
- Equal dimensions are indicated by the same marker.

Symbol: A41 Shaft with through-hole Note) Except flange style

- Minimum machining diameter for d1 is 0.1 mm .
- Applicable shaft types: J, X, Z

X axis

J axis	
\quad (mm)	
Size	d1
30	$\varnothing 2.5$
50	$\varnothing 4$ to $\varnothing 7.5$
63	$\varnothing 4$ to $\varnothing 8$
$\mathbf{8 0}$	$\varnothing 6.8$ to $\varnothing 11$
$\mathbf{1 0 0}$	$\varnothing 6.8$ to $\varnothing 13$

Shaft shape pattern is dealt with simple made-to-order system.
 Please contact SMC for a specification sheet when placing an order.

Shaft through-hole and female thread machining

- Applicable shaft types: J, X, Z
- Equal dimensions are indicated by the same marker.

(mm)					
Size Thread	30	50	63	80	100
M3 x 0.5	$\varnothing 2.5$	-	-	-	-
M5 x 0.8	-	$\varnothing 4$	$\varnothing 4$	-	-
M6 x 1	-	$\varnothing 5$	$\varnothing 5$	-	-
M8 x 1.25	-	-	$\varnothing 6.8$	$\varnothing 6.8$	$\varnothing 6.8$
M10 $\times 1.5$	-	-	-	$\emptyset 8.5$	$\varnothing 8.5$
M12 $\times 1.75$	-	-	-	$\varnothing 10.3$	010.3
Rc 1/8	-	-	-	$\varnothing 8$	$\varnothing 8$
Re 1/4	-	-	-	-	$\varnothing 11$

How to Order

How to order model with auto switches
Refer to page 11-7-13 for "How to
Order" products with auto switch.

How to order model with solenoid valve
Refer to page 11-7-18 for "How to order" products with solenoid valve,

How to order angle adjustable type
Refer to page 11-7-24 for "How to Order" angle adjustable type.

Combination Chart of Made to Order

Chart 7. Combination between -XC \square and -XC \square

Part no.	Description	Shaft type								Applicable size	Combination							
		S	W	X	Y	Z	T	J	K									
XC 7	Reversed shaft	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	-	$\begin{gathered} 50,63 \\ 80,100 \end{gathered}$	XC7	* Corresponding shafts type available for combination						
$\begin{array}{r} \mathrm{XC} 8 \\ \text { to } \\ \text { XC11 } \\ \hline \end{array}$	Change of rotating range	\bigcirc	-	-	\bigcirc	-	-	-	-		-	$\begin{array}{r} \mathrm{XC} 8 \\ \text { to } \\ \text { XC11 } \\ \hline \end{array}$						
XC30	Fluoro grease	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	30 to 100	S, W, X, T, U^{*}	S, W, Y*	XC30					
$\begin{array}{r} \text { XC31 } \\ \text { to } \\ \text { XC36 } \\ \hline \end{array}$	Changes of rotation range and the revolving direction of shaft	\bigcirc	-	-	\bigcirc	-	-	-	-	$\begin{gathered} 50,63 \\ 80,100 \end{gathered}$	-	-	S, W, Y*	$\begin{array}{r} \text { XC31 } \\ \text { to } \\ \text { XC36 } \\ \hline \end{array}$				
$\begin{aligned} & \text { XC37 } \\ & \text { to } \\ & \text { XC46 } \end{aligned}$	Changes of rotation range and the angle adjustment direction	\bigcirc	-	-	\bigcirc	-	-	-	-		-	-	S, W, Y*	-	$\begin{aligned} & \text { XC37 } \\ & \text { to } \\ & \text { XC46 } \end{aligned}$			
$\begin{aligned} & \text { XC47 } \\ & \text { to } \end{aligned}$	Change of rotation range and angle adjusting direction (Angle adjustment screw is set on the left side.)	\bigcirc	-	-	-	-	-	-	-		-	-	-	-	($\begin{aligned} & \text { XC47 } \\ & \text { to } \\ & \text { XC58 } \end{aligned}$		
$\begin{aligned} & \text { XC59 } \\ & \text { to } \\ & \text { XC61 } \end{aligned}$	Change of port direction	-	-	-	-	-	-	-	-	30 to 100	S, W, Y*	\bigcirc	S, W, Y *	$\begin{aligned} & \text { XC59 } \\ & \text { to } \\ & \text { XC61 } \end{aligned}$				
XC62	Reverse mounting of auto switch	-	-	-	-	-	-	-	-	$\begin{gathered} 50,63 \\ 80,100 \end{gathered}$	\bigcirc	-	-	-	-	-	-	XC62
XC63	One side hydro, One side air	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc		\bigcirc	-	-	-	-	-	-	\bigcirc
XC64	One side hydro, One side air	\bigcirc		\bigcirc	\bigcirc	-	\bigcirc	-	-	\bigcirc	-							

Chart 8. Combination between -X \square and -XC \square (Refer to page 11-7-49 for made-to-order/details on -X \square.)

Part no.	Description	Shaft type								Applicable size	XC7	XC8 to 11	XC30	XC31 to 36	XC37 to 58	XC59 to 61	XC62
		S	W	X	Y	Z	T	J	K								
X6	Shaft, Bolt, Parallel key stainless spec.	\bigcirc	30 to 100	\bigcirc	-	-	-	-	-	-							
X7	Heat resistance ($100^{\circ} \mathrm{C}$)	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bullet		-	\bigcirc	-	-	\bigcirc	\bigcirc	-
X10	Angle adjustment for both sides	\bigcirc	-	-	-	-	-	-	-	50 to 100	-	-	-	-	-	-	-
X11	Angle adjustment for single side, Air cushion with single side	\bigcirc	-	-	-	-	\bigcirc	\bigcirc	-		-	-	-	-	-	-	-
X16	Fluoro rubber for seals	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	-	30 to 100	-	\bigcirc	-	-	-	\bigcirc	-

Series CRA1
Made to Order Specifications:
-XC7: Reverse Mounting of Rotation Shaft (Size: 50 to 100) -XC8 to -XC11: Change of Rotation Range (Size: 50 to 100) -XC30 Fluoro Grease (Size: 30 to 100)
Please consult with SMC for further information on specifications, dimensions and delivery.

Note) If it is pressurized from the port indicated with the arrow, the shaft rotates in the clockwise direction.

 with the arrow, the shaft rotates in the clockwise direction.

Symbol: C11

The rotation range is changed.

Note) If it is pressurized from the port indicated with the arrow, the shaft rotates in the clockwise direction.

Lubricant oil in the seal part of packing and inner wall of the cylinder is changed to fluoro type. (Not the low speed specifications.)	Fluoro grease -	Applicable size	30, 50, 63, 80, 100
		Applicable shaft type	$\begin{aligned} & \mathrm{S}, \mathrm{~W}, \mathrm{X}, \mathrm{Y} \\ & \mathrm{Z}, \mathrm{~T}, \mathrm{~J}, \mathrm{~K} \end{aligned}$
		Refer to page 11-7-3 Except air-hydro type	ther specifications.

Series CRA1
 Made to Order Specifications:
 -XC31 to -XC36: Change of Rotation Range and
 Rotation Direction of Shaft

Please consult with SMC for further information on specifications, dimensions and delivery.

CRA1 \qquad XC31
Specifications

Applicable size	$\mathbf{5 0 , 6 3 , 8 0 , 1 0 0}$
Applicable shaft type	Shaft S, W, Y

- Change of the rotation range and the rotation direction of shaft (-XC31 to XC36)

The patterns with the rotation angle of 90° and 180° are applicable to the respective patterns with the rotation angles of 100° and 190° of the made-to-order specifications.

Series CRA1
 Made to Order Specifications:
 -XC37 to -XC42: Change of Rotation Range and
 Angle Adjusting Direction

Please consult with SMC for further information on specifications, dimensions and delivery.

Series CRA1
 Made to Order Specifications:
 -XC43 to -XC46: Change of Rotation Range and
 Angle Adjusting Direction

Please consult with SMC for further information on specifications, dimensions and delivery.

5 Change of Rotation Range and Angle Adjusting

CRA1 \rightarrow Re	\rightarrow Refer to "How to Order" on page 11-7-40. -XC43	
Specifications		
Applicable size	50, 63, 80, 100	- Change of rotation range and angle adjusting direction (-XC43 to XC46)
Applicable shaft type	Shaft S, W, Y	

The patterns with the rotation angle of 90° and 180° are applicable to the respective patterns with the rotation angles of 100° and 190° of the Made to order specifications.

The rotation range under the adjustment of an angle at 120° is indicated below.

Symbol: C45

The rotation range and the angle adjusting direction of the angle adjustable type are changed.
 The rotation range under the adjustment of an angle at

Note) If it is pressurized by the port indicated with the arrow, the shaft rotates in the clockwise direction.

Series CRA1

Made to Order Specifications:
-XC47 to XC52: Change of Rotation Range and
Angle Adjusting Direction (Angle adjusting screw
moved to the left)
Please consult with SMC for further information on specifications, dimensions and delivery.

Series CRA1
 Made to Order Specifications:

-XC53 to XC58: Change of Rotation Range and
Angle Adjusting Direction (Angle adjusting screw
moved to the left)
Please consult with SMC for further information on specifications, dimensions and delivery.

6 Change of Rotation Range and Angle Adjusting Direction (Angle adjusting screw moved to the lefi)

CRA1 $\quad \rightarrow$ Refer to "How to Order"
Specifications
Applicable size
Applicable shaft type

XC53

- Change of rotation range and angle adjusting direction (Angle adjusting screw moved to the left) (-XC53 to XC58)

The patterns with the rotation angle of 90° and 180° are applicable to the respective patterns with the rotation angles of 100° and 190° of the made-to-order specifications.

Series CRA1
 Made to Order Specifications:
 -XC59 to -XC61: Change of Port Location (Size 30 to 100)
 -XC62: Reverse Auto Switch Mounting (Size 50 to 100)

Please consult with SMC for further information on specifications, dimensions and delivery.

8 Reverse Mounting of the Auto Switch Against the Standard
CRA1 \square \rightarrow Refer to"How to Order" auto switch equipped type on page 11-7-13. - XC62

Symbol: C62

The auto switch is reverse mounted to the standard.

Series CRA1
 Made to Order Specifications:
 -XC63, -XC64: One Side Air-hydro, One Side Air Type

Please consult with SMC for further information on specifications, dimensions and delivery.

9 One Side Air-hydro, One Side Air Type

The patterns with the rotation angle of 90° and 180° are applicable to the respective patterns with the rotation angles of 100° and 190° of the made-to-order specifications.

Symbol: C63

One side air, one side air-hydro specifications (Left side air, Right side hydro)

Symbol: C64

One side air, one side air-hydro specifications (Left side hydro, Right side air)

The figure shows the pressurized situation to the air pressure port.

Series CRA1
 Made to Order Specifications:
 -X6 to -X11

Please consult with SMC for further information on specifications, dimensions and delivery.
How to Order

Combination Chart of Made to Order
Chart 9. Combination between -X \square and -X \square
(S, W, X, Y, Z, T, J, K shaft)

Part no.	Description	Shaft type								Applicable size	Combination		
		S	W	X	Y	Z	T	J	K				
X6	Shaft, Bolt, Parallel key stainless spec.	\bigcirc	30 to 100	X6									
X7	Heat resistance ($100^{\circ} \mathrm{C}$)	\bigcirc		\bigcirc	X7								
X10	Angle adjustment for both sides	\bigcirc	50 to 100	-	\bigcirc								
X11	Angle adjustment for single side, Air cushion with single side	\bigcirc		-	-	X10 to X11							
X16	Fluoro rubber for seals	\bigcirc	30 to 100	\bigcirc	-	-							

Series CRA1

Made to Order Specifications:
-X6: Shaft, Bolt, Parallel Key Stainless Spec.
-X7: Heat Resistant Type
Please consult with SMC for further information on specifications, dimensions and delivery.

Stainless steel for main part

For applications in areas that pose a risk of rust or corrosion, a portion of the materials used in the standard parts has been changed to stain-less steel.

Specifications

Type	Pneumatic
Size	30, 50, 63, 80, 100
Fluid	Air (Non-lube)
Max. operating pressure	1 MPa
Min. operating pressure	0.1 MPa
Stainless steel part	Shaft, Bolt, Parallel key
Cushion	30 Without cushion
Auto switch	With or without air cushion
* Refer to page 11-7-3 for other specifications.	
** Except for the angle adjustable type.	

-X16
 Fluoro rubber for seals .

Seal is now changed to fluoro rubber.
Specifications

Type	Pneumatic
Size	30, 50, 63, 80, 100
Fluid	Air (Non-lube)
Max. operating pressure	1 MPa
Min. operating pressure	0.1 MPa
Ambient and fluid temperature	$0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (No freezing)
Seal material	FPM
Cushion	30 - Without cushion 50 to 100 - With or without air cushion
Auto switch	Mountable

Specifications

Type	Pneumatic
Size	$\mathbf{3 0 , 5 0 , 6 3 , 8 0 , 1 0 0}$
Rotation	$90^{\circ}, 180^{\circ}$ (Size 30 to 100) $100^{\circ}, 190^{\circ}$ (Size 50 to 100)
Ambient and fluid temperature	0 to $100^{\circ} \mathrm{C}$
Lubrication	ISO VG32
Seal material	FPM
Shaft type	Single shaft, Double shaft, Single shaft with four chamfers, Double shaft key, Double shaft with four chamfers, Double round shaft, Double shaft (Round shaft, with four chamfers), Double round shaft
Cushion	30 - Without cushion 50 to $100-$ With or without air cushion
Auto switch	Not mountable

* Refer to page 11-7-3 for other specifications.
** Except for models with solenoid valve.

Series CRA1

Made to Order Specifications:
-X10: Both Sides Angle Adjustable Type
-X11: One Side Angle Adjustable, One Side Cushion Type
Please consult with SMC for further information on specifications, dimensions and delivery.
4 Both Sides Angle Adjustable Type -X10

Specifications

Type	Pneumatic
Size	$\mathbf{5 0}, \mathbf{6 3 , 8 0 , 1 0 0}$
Rotation	$90^{\circ}, 180^{\circ}, 100^{\circ}, 190^{\circ}$
Shaft type	Single shaft (S), Double shaft (W), Single shaft with four chamfers (X), Double shaft key (Y), Double shaft with four chamfers (Z), Single round shaft (T), Double shaft/Round shaft, with four chamfers (J), Double round shaft (K)
Cushion	None
Variation	With auto switch, With solenoid valve

* Refer to page 11-7-3 for other specifications.

Rotation at 180°

Mini-rotary Actuator
Rack \& Pinion Style
Series CRJ
Size: 05, 1

witramenemene Series CRJ

Rack \& Pinion Style/Size: 05, 1

Flexible mounting

A new compact body design not only reduces overall space requirements, but also achieves space-savings in wiring and piping. Ease in mounting is maximized thanks to the merits of the new compact body.

- Free mounting

■ Wiring and piping direction can be selected depending on mounting conditions.
Mounting examples for auto switch and speed controller

Allowable load improved

 Large roller bearing and large diameter output shaft add to overall compactness while ensuring high rigidity.

Backlash reduced

Even with a single rack design, the use of a special construction minimizes backlash.

Stopping the pinion gear by having it strike against the flat surface of the piston eliminates backlash.

4 to 5 times allowable kinetic energy (Basic type compared to CRJB)

Angle is adjustable: $\pm 5^{\circ}$ at each rotation end

Series Variations

Series		Rotating angle				Connection port location	Auto switch
		90°	100°	180°	190°		
Basic type	CRJB05	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Front ported Side ported	D-F8
	CRJB1	\bigcirc	\bigcirc	\bigcirc	\bigcirc		$\begin{aligned} & \text { D-F9 } \\ & \text { D-M9 } \end{aligned}$
With external stopper	CRJU05	\bullet	-	\bullet	-		
	CRJU1	\bigcirc	-	\bigcirc	-		

Series CRJ

\triangle Precautions

I'Be sure to read before handling. Refer to pages 11-13-3 to 4 for Safety Instructions and Common Precautions I
I on the products mentioned in this catalog, and refer to pages 11-1-4 to 6 for Precautions on every series.

Rotation Adjustment

\triangle Caution

As a standard feature, the actuator with external stopper is equipped with a rotation angle adjustment screw that can be used to adjust the angle of rotation.

Size	Angle adjustment per single rotation of angle adjustment screw
$\mathbf{0 5}$	2.3°
$\mathbf{1}$	2.3°

The rotation adjustment range for the actuator with external stopper is $\pm 5^{\circ}$ at each rotation end. Please note that adjusting beyond this range, may cause product malfunction.

Mounting of Speed Controller and Fittings

\triangle Caution

The M3 x 0.5 piping port is used. In case the speed controller or fittings are directly connected, use the series listed below.

- Speed controller

AS12■1F/Elbow type
AS13■1F/Universal type

- One-touch fitting

One-touch mini Series KJ

- Reducer bushing Series M3

Mounting of Auto Switch

\triangle Caution

If a size 05 actuator with auto switch is being used, keep the magnetic body away at least 2 mm or more from the bottom of the actuator.
If the magnetic body comes closer than 2 mm , malfunction of the auto switch may occur due to the magnetic force drop.

* When using the bottom face for mounting, a non-magnetic spacer (such as aluminum) is required as shown below.

Maintenance

\triangle Caution

This product requires special tools; therefore, it cannot be disassembled for maintenance.

External Stopper Unit

\triangle Caution

Order external stopper unit with the unit part numbers shown below.

Model	Unit part no.
CRJU05-90	P531010-1
CRJU05-180	P531010-2
CRJU1-90	P531020-1
CRJU1-180	P531020-2

Note 1) External stopper units for 180° cannot be applied to the 90° Mini-rotary Actuators.
Note 2) When using external stoppers for 90°, use Minirotary Actu- ators with a rotation range of 100°, and for 180°, use actuators with a rotation range of 190°.

External Stopper Assembly Procedure

* Actuators with external stopper (Model CRJU) come already assembled; therefore, the following procedure is not required.

1. Assemble the stopper retainer to the stopper temporarily. Then place the stopper retainer in the single flat position and tighten with hexagon socket head cap screws. Leave a space of approximately 0.5 mm between the stopper and the Minirotary actuator, as shown in Fig. (1).
Tighten the hexagon socket head cap screws evenly so that the stopper retainer is not unevenly tightened as in Fig. (2). Furthermore, take precautions to avoid applying excessive force to the shaft when tightening.
2. Tighten the holder assembly with hexagon socket head cap screws.

	Tightening torque (N.m)
Hexagon socket head cap screw	0.8 to 1.2

Mini-rotary Actuator
 Rack \& Pinion Style
 Series CRJ

How to Order

CRB2

- Connection port location

90	90°
180	180°

Applicable Auto Switch/Refer to pages 11-11-1 for further information on auto switches.

Type	Special function	Electrical entry		Wiring (Output)	Load voltage		Auto switch model		Lead wire length* (m)		
					DC	AC	Electrical en	direction	$\begin{aligned} & 0.5 \\ & \text { (Nil) } \\ & \hline \end{aligned}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$
							Perpendicular	In-line			
	-	Grommet	Yes	$\begin{array}{\|l\|} \hline \text { 3-wire (NPN) } \\ \hline \text { 3-wire (PNP) } \end{array}$	24 V 12 V	-	-	M9N	\bigcirc	\bigcirc	-
							F8N	-	\bigcirc	\bigcirc	\bigcirc
							-	M9P	\bigcirc	-	-
							F8P	-	-	-	\bigcirc
				2-wire			-	M9B	-	-	-
							F8B	-	\bigcirc	\bigcirc	\bigcirc
	Diagnosis indication (2-color)			3-wire (NPN)			-	F9NW	\bigcirc	-	\bigcirc
				3-wire (PNP)			-	F9PW	-	-	\bigcirc
				2-wire			-	F9BW	-	-	\bigcirc

Series CRJ

Specifications

Size	05		1	
	Basic type	With external stopper	Basic type	With external stopper
Fluid	Air (Non-lube)			
Max. operating pressure	0.7 MPa			
Min. operating pressure	0.15 MPa			
Ambient and fluid temperature	0 to $60^{\circ} \mathrm{C}$ (No freezing)			
Rotating angle ${ }^{\text {Note) }}$	$\begin{gathered} 90_{0}^{+8^{\circ}}, 100^{+10^{\circ}} \\ 180^{+8^{\circ}}, 190^{+10^{\circ}} \end{gathered}$	90, 180	$\begin{gathered} 90_{0}^{+8^{\circ}}, 100_{0}^{+10^{\circ}} \\ 180^{+8^{\circ}}, 190_{0}^{+10^{\circ}} \end{gathered}$	90, 180
Angle adjustment range	-	$\pm 5^{\circ}$ at each rotation end	-	$\pm 5^{\circ}$ at each rotation end
Cylinder bore size		6		8
Port size	M3 x 0.5			

Note) If optimum accuracy of the (rotating) angle is required, select an actuator with external stopper.

Allowable Kinetic Energy and

 Rotation Time Adjustment Range| Size | | Allowable kinetic energy
 (mJ) | Rotation time adjustment range
 for stable operation
 $\left(\mathrm{s} / 90^{\circ}\right)$ | |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0} \mathbf{0 5}$ | Basic type | CRJB05 | 0.25 | 0 |
| | With external stopper | CRJU05 | 1.0 | |
| $\mathbf{1}$ | Basic type | CRJB1 | 0.40 | |
| | With external stopper | CRJU1 | 2.0 | |

Weight

Type		Model	Weight (g) ${ }^{\text {Note) }}$
Basic type	05	CRJB05-90	32
		CRJB05-100	
		CRJB05-180	39
		CRJB05-190	
	1	CRJB1-90	54
		CRJB1-100	
		CRJB1-180	67
		CRJB1-190	
With external stopper	05	CRJU05-90	47
		CRJU05-180	53
	1	CRJU1-90	70
		CRJU1-180	81

Note) Values above do not include auto switch weights.

Rotating Direction and Rotating Angle

- The shaft turns clockwise when the A port is pressurized, and counterclockwise when the B port is pressurized.
- For actuators with external stopper, the rotation end can be set within the ranges shown in the drawing by adjusting the stopper bolt.

Basic type

For 90° and 100°

With external stopper

For 180°

Note) - The drawings show the rotation range for the shaft's single flat.

- The single flat position in the drawings shows the counterclockwise rotation end when the rotation angle is adjusted to 90° and 180°.

Series CRJ

Construction

Basic type: CRJB

With external stopper: CRJU

Component Parts

No.	Description	Material	No.	Description	Material
(1)	Body	Aluminum alloy	(1)	Magnet	Magnetic material
(2)	Piston	Stainless steel	(11)	Round head no. 0 Philips screw	Steel wire
(3)	Shaft	Stainless steel	(12)	Hexagon socket head set screw	Stainless steel
(4)	Bearing retainer	Aluminum alloy	(13)	Stopper	Chrome molybdenum steel
(5)	Cover	Aluminum alloy	(14)	Holder	Aluminum alloy
(6)	Bearing	Bearing steel	(15)	Stopper retainer	Steel
(7)	Piston seal	NBR	(16)	Hexagon socket head set screw	Steel wire
(8)	O-ring	NBR	(17)	Hexagon nut	Steel wire
(9)	Wear ring	Resin	(18)	Hexagon socket head cap screw	Stainless steel

[^10]
Dimensions/Size 05, 1

Basic type: CRJB
Note 1) This dimension is for the actuator with D-F9 type auto switch (not including the 2-color indication type).

With external stopper: CRJU

Note 2) For the 180° specification, the slated line area do not exist.
Note 3) The maximum dimensions that appear are those measured at the maximum rotating angle. settings: 100° and 190°.

Size	EA	EB	HA
CRJU05	5.6	33.8	6.5
CRJU1	5.6	35.8	7.5

Size	$\begin{gathered} \text { Rotatin } \\ \text { angle } \end{gathered}$	A	BA	BB	BC	BD	BE	BF	BG	BH	BI	CA	CB	D	DD	J	JA	JB	JC	JD	H	N	Q	S	SD	UU	W	
CRJB05	90°	19.5	30	32.4	9.5	11	6.5	3.5	17.1	20	7	21.5	5.5	5g6	10h9	M4 x 0.7	5.8	3.5	M4 x 0.7	5	. 5	12.5	13.5	43	3.4	28	4.5	
	180°			43.4								27												54				
JB	90°		35	37.4		14	9	4.5	21.1	22	8.5	24	7.5		$14 \mathrm{~h} 9$	$\text { M5 x } 0.8$	7.5	4.5	$\text { M5 x } 0.8$	6	15.5	13.5	16.5	48	5.9	$\begin{array}{l\|l\|} 32 & 5.5 \end{array}$		
	80°			50.4								30.												61				

Series CRJ

Proper Auto Switch Mounting Position (Detection at rotation end)

For D-F9, D-M9

For D-F8

Size	Rotating angle	D-F9, D-M9 auto switch			D-F8 auto switch		
		A	Operating angle θ m	Hysteresis angle	B	Operating angle θ m	Hysteresis angle
	90°	20.5	$\begin{gathered} 40^{\circ} \\ \left(35^{\circ}\right) \end{gathered}$	$\begin{gathered} 10^{\circ} \\ \left(10^{\circ}\right) \end{gathered}$	16.5	20°	10°
05	180°	23.2			19.2		
1	90°	22.4	$\begin{gathered} 30^{\circ} \\ \left(25^{\circ}\right) \end{gathered}$	$\begin{gathered} 10^{\circ} \\ \left(10^{\circ}\right) \end{gathered}$	18.4	15°	10°
	180°	25.6			21.6		

Operating angle $\theta \mathrm{m}$: Value of the operating range Lm of a single auto switch
Hysteresis angle : Value of auto switch hysteresis converted to an angle Note) Figures in parentheses are the cases for D-M9 switch types.

Compact Rotary Actuator Rack \& Pinion Style

Series CRQ2

Size: 10, 15, 20, 30, 40
Unidirectional pipe connection possible
Rotary actuator body serves as a flange.

Built-in cushion

10, 15: Rubber bumper
20, 30, 40: Air cushion

Equipped with an angle adjusting mechanism

Double piston style Compact, with no backlash.
from protruding from the body edge and realizes space-savings.
Centering is easy when mounting the main body.
Pin hole for positioning the main body

Compact Rotary Actuator Rack \& Pinion Style
 Series CRQ2

Size: 10, 15, 20, 30, 40

How to Order

Applicable Auto Switch/Refer to page 11-11-1 for further information on auto switches.

Type	Special function	Electricalentry		Wiring (Output)	Load voltage			Auto switch model		Lead wire length (m) *			Pre-wire connector	Applicable load	
					DC		AC	Perpendicular	In-line	$\begin{gathered} 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$			
이응	-	Grommet	Yes	3-wire (NPN equiv.)	-	5 V	-	A96V	A96	\bullet	-	-	-	IC circuit	-
¢ ¢				2-wire	24 V	12 V	100 V	A93V	A93	\bullet	\bullet	-	-	-	$\begin{aligned} & \text { Relay, } \\ & \text { PLC } \end{aligned}$
				3-wire (NPN)		5 V ,		M9NV	M9N	-	-	\bigcirc	\bigcirc	IC	
	-			3-wire (PNP)		12 V		M9PV	M9P	\bullet	\bullet	\bigcirc	\bigcirc	circuit	
$\frac{0}{3}$				2-wire		12 V		M9BV	M9B	\bullet	\bullet	\bigcirc	\bigcirc	-	
\otimes	Diagnostic	Grommet	Yes	3-wire (NPN)		5 V ,		F9NWV	F9NW	\bullet	\bullet	\bigcirc	\bigcirc	IC	Relay,
$\frac{\pi}{6}$	indication			3-wire (PNP)		12 V		F9PWV	F9PW	\bullet	\bullet	\bigcirc	\bigcirc	circuit	PLC
응	(2-color)							F9BWV	F9BW	\bullet	\bullet	\bigcirc	\bigcirc		
¢	Water resistant (2-color)			2-wire		12 V		-	F9BA**	-	-	\bigcirc	\bigcirc	-	

* Although it is possible to mount water resistant type auto switches, note that the rotary actuator itself is not of water resistant construction.
** Lead wire length symbols: $0.5 \mathrm{~m} \ldots .$. Nil (Example) A93
* Auto switches marked with " \bigcirc " are made-to-order specification.
$3 \mathrm{~m}$. L (Example) A93L
$5 \mathrm{~m} \mathrm{Z}$ (Example) F9NWZ
- Auto switches other than those listed above are also available. Refer to page 11-8-9 for details.

[^11]Specifications

Size	10	15	20	30	40
Fluid	Air (Non-lube)				
Max. operating pressure	0.7 MPa		1 MPa		
Min. operating pressure	0.15 MPa		0.1 MPa		
Ambient and fluid temperature	0° to $60^{\circ} \mathrm{C}$ (No freezing)				
Cushion	Rubber bumper		Not attached, Air cushion		
Angle adjustment	$\pm 5^{\circ}$				
Rotation	80° to $100^{\circ}, 170^{\circ}$ to 190°				
Port size	M5 x 0.8		Rc $1 / 8, \mathrm{G} 1 / 8$, NPT $1 / 8$, NPTF $1 / 8$		
Mounting	Basic style				
Output (N.m) *	0.3	0.75	1.8	3.1	5.3

Allowable Kinetic Energy and Rotation Time Adjustment Range

Size	Allowable kinetic energy			Stable operational rotation time adjustment range	
	Allowable kinetic energy (mJ)			Cushion angle	
	Without cushion	Rubber bumper	With air cushion*		-
$\mathbf{R o t a t i o n ~ t i m e ~} \mathrm{s} / 90^{\circ}$					

* Allowable kinetic energy for the bumper equipped type

Maximum absorbed energy under proper adjustment of the cushion needles.

Weight

Size	Standard weight ${ }^{*}$	
	90°	180°
$\mathbf{1 0}$	120	150
15	220	270
20	600	700
30	900	1100
40	1400	1600

* Values less the weight of auto switch.

. Precautions

IBe sure to read before handling. Refer to pages 11-13-3 to 11-13-4 for i ISafety Instructions and Common Precautions on the products I Imentioned in this catalog, and refer to pages 11-1-4 to 11-1-6 for I Precautions on every series.

© Caution

The angle adjustment bolt is set at random within the adjustable rotating range. Therefore, it must be readjusted to obtain the angle that suits your application.

Series CRQ2

Construction

Basic type
 Size 10/15

Component Parts

No.	Description	Material	Note
(1)	Body	Aluminum alloy	White hard anodized
(2)	Cover	Aluminum alloy	Electroless nickel plated
(3)	Plate	Aluminum alloy	
(4)	End cover	Aluminum alloy	Electroless nickel plated
(5)	Piston	Stainless steel	
(6)	Shaft	Stainless steel	For 10, 15
	Chrome molybdenum steel	For 20, 30, 40	
(7)	Seal retainer	Aluminum alloy	Chromated
(8)	Bearing retainer	Aluminum alloy	White hard anodized
(9)	Wearing	Resin	
(10)	Hexagon socket head cap screw	Stainless steel	
(11)	Hexagon nut with flange	Steel wire	Electroless nickel plated
(12)	Cross recessed No. 0 screw	Steel wire	Zinc chromated
(13)	Cross recessed No. 0 screw	Steel wire	Nickel plated 10, 15
	Round head Phillips screw		Nickel plated 20, 30, 40

No.	Description	Material	Note
(14)	Hexagon socket head set screw	Chrome molybdenum steel	Electroless nickel plated
(15)	Bearing	Bearing steel	
(16)	Parallel key	Carbon steel	$20,30,40$
(17)	Steel ball	Stainless steel	$20,30,40$
(18)	Type CS retaining ring	Stainless steel	
(19)	Seal		
(20)	Gasket		
(21)	Piston seal		
(22)	Cushion seal		$20,30,40$ with cushion
(23)	Seal washer		
(24)	Magnet		
(25)	Cushion valve ass'y		$20,30,40$ with cushion
(26)	Cushion pad	Rubber material	

Replacement Parts

Description	Part no.					Description
	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	
Seal kit	$\mathrm{P} 473010-1$	$\mathrm{P} 473020-1$	$\mathrm{P} 473030-1$	$\mathrm{P} 473040-1$	$\mathrm{P} 473050-1$	$19,20,21,23$

Construction

With auto switch
Size 10/15

With cushion Size 20/30/40

With auto switch
Size 20/30/40

CRB2
CRBU2

CRB1

MSU
CRJ
CRA1
CRQ2
MSQ
MRQ
D-
20-

With auto switch and cushion Size 20/30/40

Series CRQ2

Dimensions

Size 10/15

With double shaft

Size	Rotating angle	A	AU*	B	BA	BB	BC	BD	BU	$\begin{gathered} \text { D } \\ (\mathrm{g} 6) \end{gathered}$	$\begin{aligned} & \text { DD } \\ & \text { (h9) } \end{aligned}$	H
10	$90^{\circ}, 180^{\circ}$	42	(8.5)	29	8.5	17	6.7	2.2	16.7	5	12	18
15	$90^{\circ}, 180^{\circ}$	53	(9.5)	31	9	26.4	10.6	-	23.1	6	14	20

Size	Rotating angle	W	Q	S	US	UW	ab	M	TA	TC	TD
10	90°	4.5	17	56	35	44	6	9	15.5	8	15.4
	180°			69							
15	90°	5.5	20	65	40	50	7	10	16	9	17.6
	180°			82							

* AU dimension is not the dimension at the time of shipment, since its dimension is for adjustment parts. S: Upper 90° Lower 180°

With double shaft

Size	Rotating angle	A	AU*	B	BA	BB	BC	BD	BE	BU	CA	CB	$\underset{(\mathrm{g} 6)}{\mathrm{D}}$	$\begin{gathered} \text { DD } \\ \text { (h9) } \end{gathered}$	F	H	J	JA	JB
20	$90^{\circ}, 180^{\circ}$	63	(11)	50	14	34	14.5	-	-	30.4	7	4.7	10	25	2.5	30	M8 $\times 1.25$	11	6.5
30	$90^{\circ}, 180^{\circ}$	69	(11)	68	14	39	16.5	49	16	34.7	8.1	4.9	12	30	3	32	M10 $\times 1.5$	14	8.5
40	$90^{\circ}, 180^{\circ}$	78	(13)	76	16	47	18.5	55	16	40.4	8.3	5.2	15	32	3	36	M10 $\times 1.5$	14	8.6

Size	Rotating angle	JJ	K	Q	S	W	Keyway dimensions		US	TA	TB	TC	TD	$\begin{gathered} \text { TF } \\ \text { (H9) } \end{gathered}$	$\begin{gathered} \text { TG } \\ (\mathrm{H} 9) \end{gathered}$	TL	UW	G	M	N	L
							b	1													
20	90°	-	3	29	104	11.5	$4_{-0.03}^{0}$	20	59	24.5	1	13.5	27	4	4	2.5	74	8	15	11	9.6
	180°				130																
30	90°	M5 x 0.8 depth 6	4	33	122	13.5	$4_{-0.03}^{0}$	20	65	27	2	19	36	4	4	2.5	83	10	18	13	11.4
	180°				153																
40	90°	M6 x 1 depth 7	5	37	139	17	$5_{-0.03}^{0}$	25	73	32.5	2	20	39.5	5	5	3.5	93	11	20	15	14
	180°				177																

* AU dimension is not the dimension at the time of shipment, since its dimension is for adjustment parts.
** In addition to Rc 1/8, G 1/8, NPT 1/ 8, NPTF $1 / 8$ are also available.

Series CRQ2

Rotation Range

When pressurized from the port indicated by the arrow, the shaft will rotate in a clockwise direction.

Size 10/15

Size 20/30/40

Unit Used as Flange Mount

The L dimensions of this unit are shown in the table below.
When hexagon socket head cap bolt of the JIS standard is used, the head of the bolt will recess into the groove of actuator.

Size	\mathbf{L}	Screw
$\mathbf{1 0}$	13	M4
$\mathbf{1 5}$	16	M4
$\mathbf{2 0}$	22.5	M6
$\mathbf{3 0}$	24.5	M8
$\mathbf{4 0}$	28.5	M8

Size	Rotating angle	Reed switch				Solid state switch			
		A	B	Operating angle $(\theta \mathrm{m})$	$\begin{gathered} \text { Hysteresis } \\ \text { angle } \end{gathered}$	A	B	$\begin{aligned} & \text { Operating } \\ & \text { angle (} \text { (} \mathrm{m} \text { a } \end{aligned}$	$\begin{gathered} \text { Hysteresis } \\ \text { angle } \end{gathered}$
10	90°	6.5	13	63°	12°	10.5	17	$\begin{gathered} 75^{\circ} \\ \left(41^{\circ}\right) \end{gathered}$	3°
	180°	9.5	22.5			13.5	26.5		
15	90°	9.5	18	52°	9°	13.5	22	$\begin{gathered} 69^{\circ} \\ \left(32^{\circ}\right)^{*} \end{gathered}$	3°
	180°	13.5	30.5			17.5	34.5		
20	90°	22	34.5	41°	9°	26	38.5	$\begin{gathered} 56^{\circ} \\ \left(25^{\circ}\right)^{*} \end{gathered}$	4°
	180°	28	53.5			32	57.5		
30	90°	29	45	32°	7°	33	49	$\begin{gathered} 43^{\circ} \\ \left(20^{\circ}\right)^{*} \end{gathered}$	3°
	180°	37	68			41	72		
40	90°	34	53	24°	5°	38	57	$\begin{gathered} 36^{\circ} \\ \left(17^{\circ}\right) * \end{gathered}$	4°
	180°	43.5	81.5			47.5	85.5		

Operating angle $\theta \mathrm{m}$: The value of the individual switch's movement range
Hysteresis angle: Value of the switch's hysteresis as represented by an angle.

* Figures in parentheses are the cases for D-M9■, D-M9 \square V switch types.

Series CRQ2

1. Shaft Type Variation, Four Chamfers (Size 20/30/40)

2. Shaft Type Variation, Double Shaft With Key (Size 20/30/40)

Specifications

Fluid	Air (Non-lube)
Applicable shaft type	Double shaft with key (Y)
Applicable size	$20,30,40$
Max. operating pressure	1 MPa
Min. operating pressure	0.1 MPa
Cushion	Not attached, Air cushion $^{\text {Rotating angle }} 80^{\circ}$ to $100^{\circ}, 170^{\circ}$ to 190°
Port size	Rc $1 / 8, \mathrm{G} 1 / 8$, NPT $1 / 8$, NPTF $1 / 8$
Auto switch	Mountable

Dimensions
Y

Size	$\mathbf{D}(\mathbf{g 6})$	\mathbf{W}	\mathbf{H}	$\mathbf{U Y}$
$\mathbf{2 0}$	10	11.5	30	89
$\mathbf{3 0}$	12	13.5	32	97
$\mathbf{4 0}$	15	17	36	109

3. Shaft Type Variation/Without Key Groove

Shaft Type: T, J, K

Dimensions

Shaft type	T		J			K	
Form							
Size	D (g6)	H	M	N	UT	UJ	UK
10	5	18	9	6	35	44	53
15	6	20	10	7	40	50	60
20	10	30	15	11	59	74	89
30	12	32	18	13	65	83	97
40	15	36	20	15	73	93	109

How to Order

Chart 1. Combination between -XA \square and -XA \square (S, W shaft)

* Describes the combination available for corresponding shaft shapes.

XA2 Female thread at the end

XA3 Tip end of male thread | XA5 | Stepped round shaft |
| :--- | :--- | XA6 XA7 \quad Round shaft with steps and male thread XA9 Change of the length of standard chamfered face XA10 Change of the length of standard chamfered face XA11 Two-sided chamfer

XA12	Two-sided chamfer

XA13 Shaft through-hole XA14 Shaft through-hole and female thread \begin{tabular}{|l|l|}
\hline XA15 \& Shaft through-hole and female thread

\hline

\hline XA16 \& Shaft through-hole and female thread

\hline
\end{tabular}

XA17 Shortened shaft
XA19 \quad Shortened shaft
XA20 \quad Reversed shaft
XA21 Stepped round shaft with double-sided chamfer

XA22	Stepped round shaft with double-sided chamfer
XA23	Rightang

Combination Chart of Made to Order

Chart 2. Combination between -XA \square and -XC \square (Made to Order/ Details of -XC \square, refer to page 11-8-20.)

Symbol	Description	Applicable size	Combination XA1 to XA24	Symbol	Description	Applicable size	Combination XA1 to XA24
XC7	Reversed shaft		-	XC18			\bigcirc
XC8			-	XC19	hange of rotating range	0	-
XC9	Change of rotating range		\bigcirc	XC20	Change in angle adjustable range 90° to 190°	,	\bigcirc
XC10	Change of rotating range		\bigcirc	XC21			-
XC11			-	XC22	Without inner rubber bumper	10, 15	\bigcirc
XC12		20, 30, 40	\bigcirc	XC30	Fluoro grease	10, 15, 20, 30, 40	\bigcirc

[^12]Change in angle adjustable range 0° to 100°
20, 30, 40

* Chart 5. Refer to page 11-8-20 for combination available between -XC \square and -XC口.

Change in angle adjustable range 90° to 190°

Thread type

Combination is available only when all the conditions are fulfilled amon Combination of simple specials and made-to-order it is possible for up to 4 types.
$\mathrm{XC16}$
$\mathrm{XC17}$

Additional Reminders

1. Enter the dimensions within a range that allows for additional machining
2. SMC will make appropriate arrangements if no dimensional, tolerance, or finishin structions are given in the diagram.
3. The length of the unthreaded portion is 2 to 3 pitches.
4. Unless specified otherwise, the thread pitch is based on coarse metric threads.
P = Thread pitch
5. $\mathrm{M} 3 \times 0.5$; 44×0.7; $5 \times 0.8 ; \mathrm{M} 6 \times 1$ Enter the desired figures in the [---] portion of the diagram.
6. XA1 to XA24 are the standard products that have been additionally machined.
7. Chamfer face of the parts machining additionally is C 0.5 .

Symbol: A3

The long shaft can be further shortened by machining male threads into it.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft types: S, W

Size	X	L1 max	Q1
$\mathbf{1 0}$	9 to 18	$X-4$	M5
$\mathbf{1 5}$	10 to 20	$X-4$	M6

Symbol: A6

The short shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension Y .)
(If not specifying dimension C 2 , indicate "*" instead.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

Size	Y	L2 max	D2
10	1 to 9	Y	$\varnothing 3.5$ to $\varnothing 4.9$
15	1 to 10	Y	$\varnothing 3.5$ to $\varnothing 5.9$

Symbol: A1

Machine female threads into the long shaft.
The maximum dimension L1 is, as a rule, twice the thread
size (Example) For M3: L1 $=6 \mathrm{~mm}$

- Applicable shaft types: S, W

Size 10, 15

Size 20, 30, 40
(mm)

(mm)	
Size	Q1
$\mathbf{1 0}$	M 3
15	$\mathrm{M} 3, \mathrm{M} 4$
$\mathbf{2 0}$	$\mathrm{M} 3, \mathrm{M} 4$
$\mathbf{3 0}$	$\mathrm{M} 3, \mathrm{M} 4, \mathrm{M} 5$
$\mathbf{4 0}$	$\mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6$

Symbol: A4

The short shaft can be further shortened by machining male threads into it.
(If shortening the shaft is not required, indicate "*" for dimension Y.)

- Applicable shaft type: W

Size	Y	L2 max	Q2
10	7 to 9	$\mathrm{Y}-2$	M5
$\mathbf{1 5}$	8 to 10	$\mathrm{Y}-3$	M 6

Symbol: A7

The long shaft can be further shortened by machining it into a stepped round shaft with male threads.
(If shortening the shaft is not required, indicate "*" for dimension X.)
(If not specifying dimension C 1 , indicate "*" instead.)

- Applicable shaft types: S, W

Symbol: A2

Machine female threads into the short shaft.
The maximum dimension L2 is, as a rule, twice the thread size. (Example) For M4: L2 $=8 \mathrm{~mm}$

- Applicable shaft types: S, W

Size 10, 15
Size 20, 30, 40
(mm)

(mm)	
Size	Q2
10	M 3
15	$\mathrm{M} 3, \mathrm{M} 4$
20	$\mathrm{M} 3, \mathrm{M} 4$
30	$\mathrm{M} 3, \mathrm{M} 4, \mathrm{M} 5$
$\mathbf{4 0}$	$\mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6$

Symbol: A5

The long shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension X.)
(If not specifying dimension C 1 , indicate "*" instead.)

- Applicable shaft types: S, W
- Equal dimensions are indicated by the same marker.

Symbol: A8
The short shaft can be further shortened by machining it into a stepped round shaft with male threads. (If shortening the shaft is not required, indicate " $*$ " for dimension Y .)
(If not specifying dimension C^{2}, indicate "*" instead.)

- Applicable shaft type: W

Shaft shape pattern is dealt with simple made-to-order system.
 Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing I

Additional Reminders

1. Enter the dimensions within a range that allows for additional machining.
2. SMC will make appropriate arrangements if no dimensional, tolerance, or finish instructions are given in the diagram.
3. The length of the unthreaded portion is 2 to 3 pitches.
4. Unless specified otherwise, the thread pitch is based on coarse metric threads.

$$
P=\text { Thread pitch }
$$

5. $\mathrm{M} 3 \times 0.5$; $\mathrm{M} 4 \times 0.7$; $\mathrm{M} 5 \times 0.8 ; \mathrm{M} 6 \times 1$

Enter the desired figures in the $[--]_{--}^{[-]}$portion of the diagram.
6. XA9 to XA24 are the standard products that have been additionally machined.
7. Chamfer face of the parts machining additionally is C0.5.

Symbol: A11

The long shaft can be further shortened by machining
a double-sided chamfer on to it.

- Since L1 is a standard chamfer, dimension E1 is 0.5 mm or more.
(If altering the standard chamfer and shortening the shaft are not required, indicate " $*$ " for both the L 1 and X dimensions.)
- Applicable shaft types: S, W

Symbol: A14

A special end is machined onto the long shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: S, W

Size 10,15

Size 10, 15			Size 20, 30, 40		(mm)
	10	15	20	30	40
M3 x 0.5	ø2.5	ø2.5	ø2.5	-	-
M4 x 0.7	-	ø3.3	ø3.3	ø3.3	-
M5 x 0.8	-	-	-	ө4.2	${ }^{6} 4.2$
M6 $\times 1$	-	-	-	-	$\varnothing 5$

Symbol: A9

The long shaft can be further shortened by changing the length of the standard chamfer on the long shaft side. (If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft types: S, W

Symbol: A12

The short shaft can be further shortened by machining a double-sided chamfer on to it.

- Since L2 is a standard chamfer, dimension E2 is 0.5 mm or more.
(If altering the standard chamfer and shortening the shaft are not required, indicate " $*$ " for both the L 2 and Y dimensions.) - Applicable shaft type: W

Symbol: A15

A special end is machined onto the short shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter.

- The maximum dimension L2 is, as a rule, twice the thread
size. (Example) For M4: L2 $=8 \mathrm{~mm}$
- Applicable shaft types; S, W

Symbol: A10

The short shaft can be further shortened by changing the length of the standard chamfer.
(If shortening the shaft is not required, indicate "*" for dimension Y.)

- Applicable shaft type: W

Symbol: A13

Shaft with through-hole
Minimum machining diameter for d 1 is 0.1 mm .

- Applicable shaft types: S, W

Size 10, 15

Size 20, 30, 40

Symbol: A16

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shatts. Female threads, are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- The maximum dimension L1 is, as a rule, twice the thread size. (Example) For M5: L1 $=10 \mathrm{~mm}$
size. (Example) For M5: L1 = 10
- Applicable shaft types: S, W
- Applicable shaft types: S, W

(mm)		
Size	X	Y
$\mathbf{1 0}$	2 to 10	1 to 17
$\mathbf{1 5}$	2 to 11	1 to 19
$\mathbf{2 0}$	2.5 to 16.5	29
$\mathbf{3 0}$	3 to 20	30
$\mathbf{4 0}$	3 to 22	34

Symbol: A23

The long shaft can be further shortened by machining right-angle double-sided chamfer onto it.

- Since L1 is a standard chamfer, dimension E1 is 0.5 mm or more.
(If altering the standard chamfer and shortening th shaft are not required, indicate "*" for both the L1 and X
dimensions.)
- Applicable shaft types: S, W

(mm)

Symbol: A21

The long shaft can be further shortened by machining it into a stepped round shaft with a double-sided chamfer. (If shortening the shaft is not required, indicate "*" for dimension X.) (If not specifying dimension C1, indicate
"*" instead.)

- Applicable shaft types: S, W
- Equal dimensions are indicated by
same marke

Symbol: A22

The short shaft can be further shortened by machining it into a stepped round shaft with a double-sided chamfer. (If shortening the shaft is not required, indicate "*" for
dimension Y).
(If not specifying dimension C 2 , indicate " "*" instead.)

Shaft Pattern Sequencing II

Applicable shaft type: X, Y, Z, T, J and K

How to Order

* Combination of simple specials and made-to-order, it is possible for up to 4 types.

Combination Chart of Simple Specials for Tip End Shape

Chart 3. Combination between -XA \square and -XA \square (X, Y, Z, T, J, K shafts)

Symbol	Description	Top port		Shaft type						Applicable size	Combination							
		Upper	Lower	J	K	T	X	Y	Z									
XA31	Female thread at the end	\bigcirc	-	-	-	-	-	\bigcirc	-	20, 30, 40	XA31		* Corresponding shafts type					
XA32	Female thread at the end	-	\bigcirc	-	-	-	-	\bigcirc	-		Y*							
XA33	Female thread at the end	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	$\begin{gathered} 10,15, \\ 20,30,40 \end{gathered}$	-	XA33						
XA34	Female thread at the end	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-		-	K, T*	XA34					
XA35	Female thread at the end	\bigcirc	-	-	-	-	\bigcirc	-	\bigcirc	20, 30, 40	-	-	-	XA35				
XA36	Female thread at the end	-	-	\bigcirc	-	-	-	-	\bigcirc		-	J*	-	X, Z *	XA36			
XA37	Stepped round shaft	\bigcirc	-	-	\bigcirc	\bigcirc	-	-	-	$\begin{gathered} 10,15, \\ 20,30,40 \\ \hline \end{gathered}$	-	-	K*	-	J*	XA37		
XA38	Stepped round shaft	-	\bigcirc	-	\bigcirc	-	-	-	-		-	K*	-	-	-	K*		
XA39	Shaft through hole	\bigcirc	\bigcirc	-	-	-	-	\bigcirc	-	20, 30, 40	-	-	-	-	-	-		
XA40	Shaft through hole	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	$\begin{gathered} 10,15, \\ 20,30,40 \end{gathered}$	-	-	-	-	-	-		
XA41	Shaft through hole	\bigcirc	-	\bigcirc	-	-	\bigcirc	-	\bigcirc		-	-	-	-	-	-		
XA42	Shaft through hole and female thread	\bigcirc	\bigcirc	-	-	-	-	\bigcirc	-	20, 30, 40	-	-	-	-	-	-		
XA43	Shaft through hole and female thread	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	$\begin{gathered} 10,15, \\ 20,30,40 \end{gathered}$	-	-	-	-	-	-		
XA44	Shaft through hole and female thread	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	-	\bigcirc		-	-	-	-	-	-	XA38	
XA45	Middle-cut chamfer	\bigcirc	-	-	\bigcirc	\bigcirc	-	-	-		-	-	K*	-	J*	-	K*	XA45
XA46	Middle-cut chamfer	-	\bigcirc	-	\bigcirc	-	-	-	-		-	-	-	-	-	K*	-	K*

Chart 4. Combination between - XA \square and -XC \square (Made to Order/Details of-XC \square, refer to page 11-8-20.)

Symbol	Description	Applicable size	Combination
			XA31 to XA46
XC7	Reversed shaft	$\begin{gathered} 10,15, \\ 20,30,40 \end{gathered}$	-
XC8	Change of rotating range		\bigcirc
XC9			\bigcirc
XC10			\bigcirc
XC11			\bigcirc
XC12	Change in angle adjustable range 0° to 100°		\bigcirc
XC13			\bigcirc
XC14			\bigcirc
XC15			\bigcirc
XC16	Change in angle adjustable range 90° to 190°		\bigcirc
XC17			\bigcirc
XC18	Change of rotating range	20, 30, 40	\bigcirc
XC19			\bigcirc
XC20	Change in angle adjustable range 90° to 190°		\bigcirc
XC21			\bigcirc
XC22	Without inner rubber bumper	10, 15	\bigcirc
XC30	Fluoro grease	10, 15, 20, 30, 40	-

Shaft shape pattern is dealt with simple made-to-order system. Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing II

Additional Reminders

1. Enter the dimensions within a range that allows for additional machining
2. SMC will make appropriate arrangements if no dimensional, tolerance, or finishin structions are given in the diagram.
3. The length of the unthreaded portion is 2 to 3 pitches.
4. Unless specified otherwise, the thread pitch is based on coarse metric threads.
$\mathrm{P}=$ Thread pitch
5. $\mathrm{M} 3 \times 0.5 ; \mathrm{M} 4 \times 0.7$; $\mathrm{M} 5 \times 0.8$; $\mathrm{M} 6 \times 1$

Enter the desired figures in the [---] portion of the diagram.
6. XA31 to XA46 are the standard products that have been additionally machined.
7. Chamfer face of the parts machining additionally is C 0.5 .

Symbol: A33

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule,
twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: J, K, T

Size	Q1
$\mathbf{1 0}$	$M 3$ 3
$\mathbf{1 5}$	$M 3, M 4$
$\mathbf{2 0}$	$M 3, M 4, M 5, M 6$
$\mathbf{3 0}$	$M 4, M 5, M 6, M 8$
$\mathbf{4 0}$	$M 4, M 5, M 6, M 8, M 10$

Symbol: A36

Machine female threads into the short shaft.

- The maximum dimension L2 is, as a rule,
twice the thread size.
(Example) For M4: L2 $=8 \mathrm{~mm}$
- Applicable shaft types: J, Z

(mm)	
Size	Q2
$\mathbf{2 0}$	$\mathrm{M} 3, \mathrm{M} 4$
$\mathbf{3 0}$	$\mathrm{M} 3, \mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6$
$\mathbf{4 0}$	$\mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6, \mathrm{M} 8$

Symbol: A31

Machine female threads into the long shaft.

- The maximum dimension L 1 is, as a rule,
twice the thread size
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft type: Y

Symbol: A34

Machine female threads into the short shaft

- The maximum dimension L2 is, as a rule,
twice the thread size.
(Example) For M5: L2 $=10 \mathrm{~mm}$
- Applicable shaft types: K, T, X

(mm)

(mm)	
Size	Q2
$\mathbf{1 0}$	M 3
$\mathbf{1 5}$	$\mathrm{M} 3, \mathrm{M} 4$
$\mathbf{2 0}$	$\mathrm{M} 3, \mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6$
$\mathbf{3 0}$	$\mathrm{M} 4, \mathrm{M} 5, \mathrm{M}, \mathrm{M} 8$
$\mathbf{4 0}$	$\mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6, \mathrm{M} 8, \mathrm{M} 10$

Symbol: A37

The long shaft can be further shortened by machining it into a stepped round shaft. (If shortening the shaft is no required, indicate "*" for dimension X.) (If not specifying
dimension C1, indicate "*" instead.)

- Applicable shaft types: J, K, T
- Equal dimensions are indicated by the same marker

Symbol: A32

Machine female threads into the short shaft. - The maximum dimension $L 2$ is, as a rule, twice the thread size.
(Example) For M4: L2 $=8 \mathrm{~mm}$

- Applicable shaft type: Y

	(mm)
Size	Q2
$\mathbf{2 0}$	M3, M4
$\mathbf{3 0}$	M3, M4, M5
$\mathbf{4 0}$	M4, M5, M6

Symbol: A35

Machine female threads into the long shaft.
The maximum dimension L1 is, as a rule,
twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$

- Applicable shaft types: X, Z

Size	Q1
$\mathbf{2 0}$	M3, M4
$\mathbf{3 0}$	M3, M4, M5, M6
$\mathbf{4 0}$	M4, M5, M6, M8

Symbol: A38

The short shaft can be further shortened by machining into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension Y.)
(If not specifying dimension C2, indicate "*" instead.)

- Applicable shaft type: K
- Equal dimensions are indicated by the same marker.

-XA31 to XA46

Symbol: A39

Shaft with through-hole
Minimum machining diameter for d1 is 0.1 mm .

- Applicable shaft type: Y

(mm)	
Size	d1
$\mathbf{2 0}$	$\varnothing 2.5$ to $\varnothing 3.5$
$\mathbf{3 0}$	$\varnothing 3$ to $\varnothing 5.5$
$\mathbf{4 0}$	$\varnothing 4$ to $\varnothing 7$

Symbol: A42

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes,
whose diameter is equivalent to the diameter of the pilot
holes.

- The maximum dimension L 1 is, as a rule,
twice the thread size
- Applicable shaft type: Y
- Equal dimensions are indicated by the

(mm)

Size			
Thread	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
M3 $\times \mathbf{0 . 5}$	$\varnothing 2.5$	-	-
M4 $\times \mathbf{0 . 7}$	$\varnothing 3.3$	$\varnothing 3.3$	-
M5 $\times \mathbf{0 . 8}$	-	$\varnothing 4.2$	$\varnothing 4.2$
M6 $\times \mathbf{1}$	-	-	$\varnothing 5$

Symbol: A45

The long shaft can be further shortened by machining a middle-cut chamfer into it.
(If shortening the shaft is not required, indicate " $*$ "
for dimension X.)
(The position is that of the standard flat at the key groove portion.)

Size	X	W1	L1 max	L3 max
$\mathbf{1 0}$	6 to 18	0.5 to 1.5	X -2	L1 -1
$\mathbf{1 5}$	6.5 to 20	0.5 to 1.5	$\mathrm{X}-2$	$\mathrm{~L} 1-1$
$\mathbf{2 0}$	9.5 to 30	1 to 2	$\mathrm{X}-2.5$	$\mathrm{~L} 1-2$
$\mathbf{3 0}$	11.5 to 32	1 to 2	$\mathrm{X}-3$	$\mathrm{~L} 1-2$
$\mathbf{4 0}$	12.5 to 36	1 to 2	$\mathrm{X}-3$	$\mathrm{~L} 1-2$

Symbol: A40

Shaft with through-hole
Minimum machining diameter for d 1 is 0.1 mm

- Applicable shaft types: K, T

T axis
K axis

	(mm)
Size	d1
$\mathbf{1 0}$	$\varnothing 2$ to $\varnothing 3$
$\mathbf{1 5}$	$\varnothing 2$ to $\varnothing 4$
$\mathbf{2 0}$	$\varnothing 2.5$ to $\varnothing 6$
$\mathbf{3 0}$	$\varnothing 3$ to $\varnothing 8$
$\mathbf{4 0}$	$\varnothing 4$ to $\varnothing 10$

Symbol: A43

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes. - The maximum dimension L1 is, as a rule,
twice the thread size.

- Applicable shaft types: K, T
- Equal dimensions are indicated by the II

Symbol: A44
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes - The maximum dimension L1 is, as a rule, twice the - The maximum

- Applicable shaft types: J, X,
- Equal dimensions are indicated by the same marker.

How to Order

Combination Chart of Made to Order

Chart 5. Combination between -XC \square and -XC \square					
Symbol	Description	Applicable size	Combination		
XC7	Reversed shaft	$\begin{gathered} 10,15, \\ 20,30,40 \end{gathered}$			
$\begin{gathered} \text { XC8 } \\ \text { to } \\ \text { XC11 } \end{gathered}$	Change of rotating range				
$\begin{aligned} & \mathrm{XC12} \\ & \text { to } \\ & \mathrm{XC15} \end{aligned}$	Change in angle adjustable range 0° to 100°				
XC16	Change in angle adjustable range 90° to 190°				
XC18	Change of rotating range	20, 30, 40			
XC19			$\begin{gathered} \text { XC7 } \\ \text { to } \\ \text { XC17 } \end{gathered}$		
XC20	Change in angle adjustable range 90° to 190°			$\begin{aligned} & \text { XC18 } \\ & \text { to } \\ & \text { XC21 } \end{aligned}$	
XC22	Without inner rubber bumper	10, 15	\bigcirc		XC22
XC30	Fluoro grease	10, 15, 20, 30, 40	\bigcirc	\bigcirc	\bigcirc

Series CRQ2 (Size: 10, 15, 20, 30, 40)
 Made to Order Specifications:
 -XC7

Please consult with SMC for further information on specifications, dimensions and delivery.

Specifications

Applicable size	$\mathbf{1 0}, \mathbf{1 5}, \mathbf{2 0}, \mathbf{3 0}, \mathbf{4 0}$
Applicable shaft type	$\mathrm{S}, \mathrm{W}, \mathrm{X}, \mathrm{T}, \mathrm{J}$ shaft

Size 10, 15

				(mm)
Size	\mathbf{M}	\mathbf{H}		
$\mathbf{1 0}$	10	17		
$\mathbf{1 5}$	11	19		
$\mathbf{2 0}$	16.5	29		
$\mathbf{3 0}$	20	30		
$\mathbf{4 0}$	22	34		

Short shaft side

Size 20, 30, 40

Series CRQ2 (Size: $10,15,20,30,40)$ Made to Order Specifications:
-XC8 to -XC19: Change of Rotating Range
Please consult with SMC for further information on specifications, dimensions and delivery.

Additional Reminders

The rotation starting point shows the positions of one flat chamfering and the key groove when pressurized to the connecting port (B).

The figure shows the view from the long shaft end.

Symbol: C11

Angle adjustment at the rotation starting point and the end point are at $\pm 5^{\circ}$.
Rotating range is changed. Rotation angle is at $180^{\circ} \pm 10^{\circ}$. The rotation starting point is on the horizontal line (left).

The figure shows the view from the long shaft end.

Symbol: C9

Angle adjustment at the rotation starting point and the end point are at $\pm 5^{\circ}$
Rotating range is changed. Rotation angle is at $90^{\circ} \pm 10^{\circ}$. The rotation starting point is on the horizontal line (left).

The figure shows the view from the long shaft end.

Symbol: C18

Angle adjustment at the rotation starting point and the end point are at $\pm 5^{\circ}$
Rotating range is changed. Rotation angle is at $180^{\circ} \pm 10^{\circ}$ The rotation starting point is on the perpendicular line (down).

Symbol: C10

Angle adjustment at the rotation starting point and the end point are at $\pm 5^{\circ}$.
Rotating range is changed. Rotation angle is at $90^{\circ} \pm 10^{\circ}$. The rotation starting point is on the perpendicular line (up)

The figure shows the view from the long shaft end.

Symbol: C19

Angle adjustment at the rotation starting point and the end point are at $\pm 5^{\circ}$.
Rotating range is changed. Rotation angle is at $180^{\circ} \pm 10^{\circ}$. The rotation starting point is on the perpendicular line (up).

Series CRQ2 (Size: 10, 15, 20, 30, 40)
Made to Order Specifications:
-XC12 to -XC21: Change of Angle Adjusting Range (0° to $100^{\circ}, 90^{\circ}$ to 190°)
Please consult with SMC for further information on specifications, dimensions and delivery.

3
Change of Angle Adjustable Range (0° to $100^{\circ}, 90^{\circ}$ to 190°)

CRB2
CRBU2

The figure shows the view from
the long shaft end.

The rotation angle can be adjusted between 90° to 190°.

Size	Lmax
$\mathbf{1 0}$	15
$\mathbf{1 5}$	18
$\mathbf{2 0}$	24
$\mathbf{3 0}$	27
$\mathbf{4 0}$	31.5

Size	Lmax
$\mathbf{1 0}$	15
$\mathbf{1 5}$	18
$\mathbf{2 0}$	24
$\mathbf{3 0}$	27
$\mathbf{4 0}$	31.5

The figure shows the view
from the long shaft end.

Series CRQ2 (Size: $10,15,20,30,40)$ Made to Order Specifications:

-XC22: Without Inner Rubber Bumper, -XC30: Fluoro Grease -X6: Shaft, Parallel Key Made of Stainless Steel Spec.
Please consult with SMC for further information on specifications, dimensions and delivery.

5 Fluoro Grease
-XC30
CRQ2B
CDRQ2B

Fluoro grease is used as lubricant oil in seal part of packing and inner wall of cylinder.

Specifications

Fluid	Air (Non-lube)
Applicable size	10,15
Max. operating pressure	0.7 MPa
Min. operating pressure	0.15 MPa
Port size	$\mathrm{M} 5 \times 0.8$
Rotation	80° to $100^{\circ}, 170^{\circ}$ to 190°
Applicable shaft type	Single shaft, Double shaft
Auto switch	Mountable
*Refer to page 11-8-3 for other specifications.	

Refer to page 11-8-6 for other specifications.

CRQ2B

 CDRQ2B

Stainless steel is used as a substitute material for standard parts when used under conditions with a possibility of oxidization or decay.

Fluid	Air (Non-lube)
Applicable shaft type	Single shaft (S), Double shaft (W)
Applicable size	$20,30,40$
Max. operating pressure	1 MPa
Min. operating pressure	0.1 MPa
Cushion	Not attached, Air cushion
Rotation range	80° to $100^{\circ}, 170^{\circ}$ to 190°
Stainless steel part	Shaft, Parallel key
Port size	Rc $1 / 8, \mathrm{G} 1 / 8$, NPT 1/8, NPTF $1 / 8$
Auto switch	Mountable

Rotary Actuator with Solenoid Valve Rack \& Pinion Style
 Series CVRA1
 Size: 50, 63, 80, 100

How to Order

Rated voltage	
$\mathbf{1}$	100 VAC $50 / 60 \mathrm{~Hz}$
$\mathbf{2}$	200 VAC $50 / 60 \mathrm{~Hz}$
$\mathbf{3}$	110 to $120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$
$\mathbf{4}$	220 VAC, $50 / 60 \mathrm{~Hz}$
$\mathbf{5}$	24 VDC
$\mathbf{6}$	12 VDC
$\mathbf{7}$	240 VAC, $50 / 60 \mathrm{~Hz}$
$\mathbf{9}$	Other

Electrical entry		
G	Grommet (Lead wire: 300 mm)	
H	Grommet (Lead wire: 600 mm)	
E	Grommet terminal	
T	Conduit terminal	
D	DIN terminal	
L	L plug connector	With lead wire
LN		Without lead wire
LO		Without connector
M	M plug connector	With lead wire
MN		Without lead wire
MO		Without connector

Light/Surge voltage suppressor

Nil	None
$\mathbf{Z} *$	With light/surge voltage suppressor
$\mathbf{S} *$	With surge voltage suppressor
*ight attached type (Z) is not	
available for grommet type. Surge	
voltage suppressor attached type	
is available only for grommet	
type.	

Auto switch

* For the applicable auto switch model, refer to the table below.
* Auto switches are shipped together, (but not assembled).
Number of auto switches

\mathbf{S}	1 pc.
$\mathbf{N i l}$	2 pcs.

Applicable Auto Switch/Refer to page 11-11-1 for further information on auto switches.

Type	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch model	$\substack{\text { Lead wire length } \\ (\mathrm{m})}$			Pre-wire connector	Applicable load	
					DC		AC		$\begin{gathered} \hline 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 3 \\ (L) \end{gathered}$	$\begin{array}{\|c\|} \hline 5 \\ (Z) \end{array}$			
든	-	Grommet	Yes	3-wire (NPN equiv.)	-	5 V	-	A56	\bigcirc	-	-	-	IC circuit	-
3				2-wire	24 V	12 V	-	A53	\bigcirc	-	\bullet	-	-	Relay, PLC
\%						-	$100 \mathrm{~V}, 200 \mathrm{~V}$	A54	\bigcirc	\bigcirc	\bigcirc	-		
$\underset{\square}{\text { ¢ }}$	Diagnosis indication (2-color)						-	A59 W	\bigcirc	\bigcirc	-	-		
		Grommet	Yes	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	F59	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	Relay, PLC
				3-wire (PNP)				F5P	-	\bigcirc	\bigcirc	\bigcirc		
				2-wire		12 V		J59	\bigcirc	\bullet	\bigcirc	\bigcirc	-	
					-	-	$100 \mathrm{~V}, 200 \mathrm{~V}$	J51	\bigcirc	\bullet	\bigcirc	-		
				3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	$100 \mathrm{~V}, 200 \mathrm{~V}$	F59 W	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	
	Diagnosis indication			3-wire (PNP)				F5PW	\bigcirc	-	\bigcirc	\bigcirc		
				2-wire		-		J59 W	\bigcirc	\bullet	\bigcirc	\bigcirc	-	
	Water resistant (2-color)							F5BA **	-	\bigcirc	\bigcirc	\bigcirc		
	Diagnosis output (2-color)			4-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		F59F	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	

[^13]* Lead wire length symbols: $0.5 \mathrm{~m} \cdot \ldots .$. Nil (Example) A53
* Auto switches marked with "○" are made-to-order specifications.

[^14]Refer to page 11-11-36 for detailed solid state switches with pre-wire connectors.

Caution

FBe sure to read before handing. I Refer to pages 11-13-3 to 4 for I ISafety Instructions and Common I IPrecautions on the products I imentioned in this catalog, and I Irefer to pages 11-1-4 to 6 for I I Precautions on every series.

Rotation Range of Keygrooves Solenoid Valve Mounting Positions

Light/Surge Voltage Suppressor

Note) Light is not available on grommet type.

Specifications

Fluid			Air					
Proof pressure			1.35 MPa					
Max. operating pressure			0.9 MPa					
Min. operating pressure			0.15 MPa					
Ambient and fluid temperature			$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (No freezing)					
Lubrication			Non-lube					
Mounting			Basic style, Foot style					
Solenoid valve part no.			VF3 \square 20-7 $\square \square \square-02-X 14$				RB2	
Electrical entry			Grommet, Grommet terminal, Conduit terminal, DIN terminal, L plug connector, M plug connector				CRBU2	
Coil rated voltage		AC	100, $200 \mathrm{~V}(50 / 60 \mathrm{~Hz}$)					
		DC	24 V					
Allowable voltage change			-15 to $+10 \%$ of the rated voltage				SU	
Coil insulation			Equivalent to B class $\left(130^{\circ} \mathrm{C}\right)$					
Power consumption		AC	Inrush $\quad 5.6 \mathrm{VA}(50 \mathrm{~Hz})$, 5.0 VA (60 Hz)				CRJ	
		Holding	$3.4 \mathrm{VA}(50 \mathrm{~Hz})$, 2.3 VA (60 Hz)					
Apparent current			DC	1.8 W				CRA1
Weight (kg)							CRQ2	
Model	dditional weight	No. of positions/solenoids					IVSQ	
		2 position single	2 position double	3 position closed center	3 position exhaust center	3 position pressure center	MRQ	
CVRA1 $\square \square 50$ to 100	0.2	0.2	0.3	0.4	0.4	0.4	D-	
How to calculate weight Weight = Basic weight * + Add'I weight + No. of positions/solenoids * Refer to page 11-7-3 for basic weight.							20-	

Manual Override

How to Adjust the Rotation Speed

Rotation direction

When current is applied to SOL1, the shaft rotates clockwise.

How to adjust the rotation speed:
Turn the needle valve of the throttle valve clockwise to reduce the exhaust flow volume, thus slowing the rotation speed.
Throttle valve A regulates the clockwise rotation speed of the shaft and throttle valve B regulates the counterclockwise speed to the shaft.

Electrical Wiring

The DIN terminal and the terminal pin (with light/surge voltage suppressor) are connected internally as shown below. Therefore, connect them the respective power supply terminals.

DIN terminal With terminal block

Instant Energizing Time

[^15]

Series CVRA1

Construction

With solenoid valve

Component Parts

No.	Description	Material	Note
(1)	Body	Aluminum alloy	Hard anodized
(2)	Right cover	Aluminum alloy	Black anodized
(3)	Left cover	Aluminum alloy	Black anodized
(4)	Piston	Aluminum alloy	Chromated
(5)	Shaft	Chrome molybdenum steel	
(6)	Parallel keyway	Carbon steel	
(7)	Slider	Resin	
(8)	Connecting screw	Carbon steel	Zinc chromated
(9)	Bearing retainer	Aluminum alloy	Black anodized
(10)	Hexagon socket head cap screw with spring washer	Chromium molybdenum steel	Black zinc chromated
(11)	Tube gasket	NBR	
(12)	Piston seal	NBR	
(13)	Bearing	Bearing steel	
(14)	Round head Phillips screw	Steel wire	Black zinc chromated
(15)	Spring pin	Steel wire	
(16)	Rack	Carbon steel	Nitrided
(17)	Solenoid valve		

Replacement Parts (The corresponding parts shown below are sets.)

Size (Type)	With solenoid valve, With solenoid valve auto switch
C \square VRA1 $\square 50$	P294020-49A
C \square VRA1 $\square 63$	P294030-49A
C \square VRA1 $\square \square 80$	P294040-49
C \square VRA1 $\square 100$	P294050-49A
Corresponding parts no.	(7), (11), 12), (15, (23), (24), (25) are set.

Size 50, 63, 80, 100/Basic Style: CVRA1BS50 to 100
Single shaft type: CVRA1BS $\square 50$ to 100

Double shaft type:

Double Shaft Type

Double Shaft Type				(mm)			
Model	D $(\mathrm{g} 6)$	\mathbf{G}	\mathbf{M}	\mathbf{N}	UU	\mathbf{L}	
CVRA1BW $\square \mathbf{5 0}$	15	11	20	15	118	14	
CVRA1BW $\square \mathbf{6 3}$	17	13	22	17	139	16	
CVRA1BW $\square \mathbf{8 0}$	20	15	25	20	167	19	
CVRA1BW $\square \mathbf{1 0 0}$	25	19	30	25	202	24	

Single Shaft Type

Model	A	B	BA	C	CA	CB	$\begin{array}{\|c} \hline \mathrm{D} \\ (\mathrm{~g} 6) \end{array}$	$\begin{array}{\|c\|} \hline \text { DD } \\ \text { (h9) } \end{array}$	F	H	J	K	S*	U	W	Valve dimensions		Keyway dimensions	
																VH	VJ	b	ℓ
CVRA1BS $\square 50$	62	48	17	46	8.5	13	15	25	2.5	36	$\begin{gathered} \hline \text { M } 8 \times 1.25 \\ \text { depth } 8 \end{gathered}$	5	$\begin{gathered} \hline 144 \\ (177) \end{gathered}$	98	17	39	13.5	5 -0.090	25
CVRA1BS $\square 63$	76	60	20	57	10	14	17	30	2.5	41	$\begin{gathered} \hline \text { M10 x } 1.5 \\ \text { depth } 12 \end{gathered}$	5	$\begin{gathered} 163 \\ (201.5) \end{gathered}$	117	19.5	39	20.5	6 -0.030	30
CVRA1BS $\square 80$	92	72	23.5	70	12	18	20	35	3	50	$\begin{gathered} \text { M12 } \times 1.75 \\ \text { depth } 13 \end{gathered}$	5	$\begin{gathered} 186 \\ (230) \end{gathered}$	142	22.5	43	28.5	$6^{-0.030}$	40
CVRA1BS $\square 100$	112	85	25	85	12.5	18	25	40	4	60	$\begin{gathered} \text { M12 } \times 1.75 \\ \text { depth } 14 \end{gathered}$	5	$\begin{gathered} 245 \\ (311) \\ \hline \end{gathered}$	172	28	43	38.5	8-0.038	45

* () are the dimensions for rotation of 180° and 190°.

Port Size

Model	Port size
CVRA1BS $\square 50$	Rc $1 / 4$
CVRA1BS $\square 63$	Rc $1 / 4$
CVRA1BS $\square 80$	Rc $1 / 4$
CVRA1BS $\square 100$	Rc $1 / 4$

Series CVRA1

Size 50，63，80，100／Basic Style：CVRA1B，Foot Style：CVRA1L

Single shaft with four chamfers：Double shaft key： CVRA1BX \square

				（mm）			
Model	G	H	\mathbf{L}	\mathbf{N}	\mathbf{U}		
CVRA1BX $\square 50$	11	27	14	15	89		
CVRA1BX $\square 63$	13	29	16	17	105		
CVRA1BX $\square 80$	15	38	19	20	130		
CVRA1BX $\square 100$	19	44	24	25	156		

Note）Other dimensions are the same as the single shaft．

Model	ℓ	H	K	UU
CVRA1BY $\square 50$	25	36	5	134
CVRA1BY $\square 63$	30	41	5	158
CVRA1BY $\square 80$	40	50	5	192
CVRA1BY $\square 100$	45	60	5	232

Note）Other dimensions are the
same as the single shaft．

Double shaft with four chamfers：CVRA1BZ \square

Model	G	H	\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{U}	UU
CVRA1BZ $\square 50$	11	27	14	20	15	89	109
CVRA1BZ $\square 63$	13	29	16	22	17	105	127
CVRA1BZ $\square 80$	15	38	19	25	20	130	155
CVRA1BZ $\square 100$	19	44	24	30	25	156	186

Note）Other dimensions are the

Foot style：CVRA1L $\square \square$

（mm）								
Model	LA	LB	LC	LD	LE	LF	LH	LT
CVRA1Lロ ${ }^{\text {50 }}$	62	9	44	$\begin{array}{\|c} \hline 200 \\ (233) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 224 \\ (257) \\ \hline \end{array}$	41	108	4.5
CVRA1Lロ 63	76	11	55	$\begin{array}{\|c} \hline 235 \\ (273.5) \end{array}$	$\begin{array}{\|c\|} \hline 263 \\ (301.5) \end{array}$	48	127	5
CVRA1Lロ ${ }^{\text {d }}$	92	13	67	$\begin{array}{\|c} \hline 274 \\ (318) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 316 \\ (360) \\ \hline \end{array}$	58	154	6
CVRA1Lロロ100	112	13	87	$\begin{array}{\|c} \hline 333 \\ (399) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 375 \\ (441) \\ \hline \end{array}$	73.5	189.5	6

．$)^{*}$（ ）are the dimensions for rotation of 180° and 190° ．
Note）Other dimensions are the same as the single shaft．

Size 50, 63, 80, 100/Basic Style: CDVRA1BS50 to 100
Single shaft type: CDVRA1BS $\square 50$ to 100

Single Shaft Type

Model	A	B	BA	C	CA	CB	$\begin{array}{\|l\|} \hline \sigma D \\ (\mathrm{~g} 6) \\ \hline \end{array}$	$\begin{aligned} & \text { ఠDD } \\ & \text { (h9) } \end{aligned}$	F	H	J	K	S	U	W	SA	SB	SC	SD	SE	Vave dimensions		Keyway	
																					VH	VJ	b	ℓ
CDVRA1BS $\square 50$	62	48	17	46	8.5	13	15	25	2.5	36	$\begin{gathered} \text { M8 } \times 1.25 \\ \text { depth } 8 \\ \hline \end{gathered}$	5	$\begin{gathered} 156 \\ (189) \\ \hline \end{gathered}$	98	17	33	13.5	12	14	34	39	13.5	$5{ }_{-0.030}^{0}$	25
CDVRA1BS $\square 63$	76	60	20	57	10	14	17	30	2.5	41	$\begin{array}{\|c} \hline \text { M10 } 1.1 .5 \\ \text { depth } 12 \\ \hline \end{array}$	5	$\begin{array}{\|c\|} \hline 175 \\ (213.5) \\ \hline \end{array}$	117	19.5	33	14.5	12	21	34	39	20.5	$6{ }_{-0.030}^{0}$	30
CDVRA1BS $\square 80$	92	72	23.5	70	12	18	20	35	3	50	$\begin{array}{\|c\|} \hline \begin{array}{c} \mathrm{M} 12 \times 1.75 \\ \text { depth } 13 \end{array} \\ \hline \end{array}$	5	$\begin{array}{r} 199 \\ (243) \\ \hline \end{array}$	142	22.5	33	15.5	12	29	34	43	28.5	$6_{-0.030}^{0}$	40
CDVRA1BS $\square 100$	112	85	25	85	12.5	18	25	40	4	60	$\begin{array}{\|c} \text { M12 } \times 1.75 \\ \text { depth } 14 \end{array}$	5	$\begin{gathered} 259 \\ (325) \\ \hline \end{gathered}$	172	28	33	16	12	39	34	43	38.5	$8{ }_{-0.036}^{0}$	45

* () are the dimensions for rotation of 180° and 190°.

Foot style: CDVRA1L $\square \square$

(mm)								
Model	LA	LB	LC	LD	LE	LF	LH	LT
CDVRA1L $\square \mathbf{5 0}$	62	9	44	212 (245)	236 (269)	41	108	4.5
CDVRA1L $\square \mathbf{6 3}$	76	11	55	247 (285.5)	275 (313.5)	48	127	5
CDVRA1L $\square \mathbf{8 0}$	92	13	67	287 (331)	329 (373)	58	154	6
CDVRA1L $\square \mathbf{1 0 0}$	112	13	87	347 (413)	389 (455)	73.5	189.5	6

* () are the dimensions for rotation of 180° and 190°.

Rotary Table
 Rack \& Pinion Style

 Series MSQ

 Series MSQ
 Size: 1, 2, 3, 7, 10, 20, 30, 50, 70, 100, 200

Series MSQ now includes smaller sizes 1, 2, 3 and 7

Compact rotary table with Low Table Height

Easy mounting of workpiece

Pivoting angle adjustment range: 0 to 190°

With internal

 shock absorber
Easy mounting of body

Reference diameter

Reference diameter (hole)
 High precision

Movement in direction of table's radial thrust: $\mathbf{0 . 0 1} \mathbf{~ m m}$ or less

By using high precision bearing, the movement in the direction of table's radial thrust is reduced.

Piping from 2 directions (front and side) is possible.

Rotary Table Series MSQ

Rack \& Pinion Style

Small sizes 1, 2, 3, and 7

Small size and lightweight

(Picture of MSQB1A)
Measurements
Measurements

Size	Model	A	B	C	D	Mass (g)
$\mathbf{1}$	MSQB1A	50.5	28	25	16	$\mathbf{7 0}$
$\mathbf{2}$	MSQB2A	56	30	28	18	$\mathbf{1 0 5}$
$\mathbf{3}$	MSQB3A	60	34.5	30.5	20.5	$\mathbf{1 5 0}$
$\mathbf{7}$	MSQB7A	73.5	41	34.5	23	$\mathbf{2 5 0}$

Variety of installation options for space-saving

Offers maximum space-saving installation by taking advantage of the compact body, space-saving wiring and piping. Free mounting

Wiring and piping can be selected according

Easy center alignment at mounting

to mounting conditions
Example of auto switch and speed controller mounting

External shock absorber types

4 to 10 times more allowable kinetic energy

(Compared with internal shock absorber)
2 types of shock absorbers are available, for low energy and high energy.
Allowable Kinetic Energy Comparison (For size 30)

Total length shortened
Longitudinal mounting spare is reduced because there is no protrusion from adjustment bolts or internal shock absorbers.

Table height is the same for both types with adjustment bolts or internal shock absorbers.

Rotating angle: $\mathbf{9 0}^{\circ} \mathbf{1 8 0}^{\boldsymbol{\circ}}$

Symmetric type

Basic: MSQB

Size	With adjustment bolt	
		Clean
1	\bigcirc	\bigcirc
2	\bigcirc	\bigcirc
3	\bigcirc	\bigcirc
7	\bigcirc	\bigcirc
10	\bigcirc	\bigcirc
20	\bigcirc	\bigcirc
30	\bigcirc	\bigcirc
50	\bigcirc	\bigcirc
70	\bigcirc	-
100	\bigcirc	-
200	\bigcirc	-

With internal shock absorber		With external shock absorber
	Clean	
-	-	-
-	-	-
-	-	-
-	-	-
\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc
-	\bigcirc	\bigcirc
\bigcirc	-	-
\bigcirc	-	-
\bigcirc	-	-

Series MSQ

Model Selection

Model Selection Procedure

 Formula
Operating conditions

Enumerate the operating conditions according to the mounting position.

$\mathrm{M}=\mathrm{Fr} \cdot \mathrm{L}$
Horizontal Mounting

Model used

Operating pressure
Mounting orientation

- Load type

Ts (N.m)
Tf (N.m)
Ta (N•m)
Load configuration
Rotation time \mathbf{t} (s)
Rotation angle θ (rad)
Load mass m (kg)
Distance between central axis and center of gravity H (mm)
Mass point distance L (mm)

Rotary table: MSQB50A, Pressure: 0.5 MPa
Mounting orientation: Vertical
Load type: Inertial load Ta
Load configuration: $\mathbf{1 0 0 ~ m m \times 6 0 ~ m m ~ (R e c t a n g u l a r ~ p l a t e) ~}$
Rotation time t: 0.3 s , Rotation angle: 90°
Load mass m: 0.4 kg
Distance between central
axis and center of gravity $\mathrm{H}: \mathbf{4 0} \mathrm{mm}$

CRB2
CRBU2
CRB1
MSU
CRJ
CRA1
$10 \times \mathrm{Ta}=10 \times \mathrm{I} \times \dot{\mathrm{\omega}}$
$=10 \times 0.00109 \times\left(2 \times(\pi / 2) / 0.3^{2}\right)$
$=0.380 \mathrm{~N} \cdot \mathrm{~m}<$ Effective torque OK
Note) I substitutes for (5) the value for inertial moment.

Rotation time

Confirm that it is within the
adjustable range of rotation time.

Effective torque \geq Ts
Effective torque \geq (3 to 5) • Tf
Effective torque ≥ 10. $\mathbf{T a}$
Effective torque
cive torque

Required torque

Confirm the type of load as shown below, and select an actuator that satisfies the required torque.
Static load: Ts

- Resistance load: Tf

Load types
Inertial load: Ta
0.2 to $1.0 \mathrm{~s} / 90^{\circ}$
$0.3 \mathrm{~s} / 90^{\circ} \mathrm{OK}$

Allowable load

Confirm that the radial load, thrust
load and moment are within the
allowable ranges.

Thrust load: $m \times 9.8 \leq$ Allowable load
Moment: m x $9.8 \times \mathrm{H} \leq$ Allowable moment
$0.4 \times 9.8=3.92 \mathrm{~N}<$ Allowable load OK
$0.4 \times 9.8 \times 0.04=0.157 \mathrm{~N} \cdot \mathrm{~m}$
$0.157 \mathrm{~N} \cdot \mathrm{~m}$ < Allowable moment OK

Inertial moment

Find the load's inertial moment
"I" for the energy calculation.
$\mathrm{I}=\mathrm{mx}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) / 12+\mathrm{m} \times \mathrm{H}^{2}$
Inertial moment

$$
\begin{aligned}
\mathrm{I} & =0.4 \times\left(0.10^{2}+0.06^{2}\right) / 12+0.4 \times 0.04^{2} \\
& =0.00109 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

Kinetic energy

Confirm that the load's kinetic
energy is within the allowable value.
$1 / 2 \times I \times \omega^{2} \leq$ allowable energy
$\omega=2 \theta / t$ (ω : Terminal angular velocity)
θ : Rotation angle (rad)
t : Rotation time (s)
Allowable kinetic energy/Rotation time
$1 / 2 \times 0.00109 \times(2 \times(\pi / 2) / 0.3)^{2}$
$=60 \mathrm{~mJ}<$ Allowable energy OK

Effective Torque

Unit: N•m										
Size	Operating pressure (MPa)									
	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
1	0.017	0.035	0.052	0.070	0.087	0.10	0.12	-	-	-
2	0.035	0.071	0.11	0.14	0.18	0.21	0.25	-	-	-
3	0.058	0.12	0.17	0.23	0.29	0.35	0.41	-	-	-
7	0.11	0.22	0.33	0.45	0.56	0.67	0.78	-	-	-
10	0.18	0.36	0.53	0.71	0.89	1.07	1.25	1.42	1.60	1.78
20	0.37	0.73	1.10	1.47	1.84	2.20	2.57	2.93	3.29	3.66
30	0.55	1.09	1.64	2.18	2.73	3.19	3.82	4.37	4.91	5.45
50	0.9	1.85	2.78	3.71	4.64	5.57	6.50	7.43	8.35	9.28
70	1.36	2.72	4.07	5.43	6.79	8.15	9.50	10.9	12.2	13.6
100	2.03	4.05	6.08	8.11	10.1	12.2	14.2	16.2	18.2	20.3
200	3.96	7.92	11.9	15.8	19.8	23.8	27.7	31.7	35.6	39.6

Note) Effective torque values are representative values and not to be considered as guaranteed values. Use them as a guide.

Size: 1 to 7

Size: 10 to 50

Size: 70 to 200

Allowable Load

Do not allow the load and moment applied to the table to exceed the allowable values shown in the table below.
(Operation beyond the allowable values can cause adverse effects on service life, such as play in the table and loss of accuracy.)

Load Type

-Static load: Ts
A load as represented by the clamp which requires pressing force only
During examination if it is decided to consider the mass of the clamp itself in the drawing below, it should be regarded as an inertial load.
(Example)

-Resistance load: Tf

A load that is affected by external forces such as friction or gravity
Since the object is to move the load, and speed adjustment is necessary, allow an extra margin of 3 to 5 times in the effective torque.
*Actuator effective torque \geq (3 to 5) Tf
During examination if it is decided to consider the mass of the lever itself in the drawing below, it should be regarded as an inertial load.

OInertial load: Ta

A load that must be rotated by the actuator
Since the object is to rotate the inertial load, and speed adjustment is necessary, allow an extra margin of 10 times or more in the effective torque.
*Actuator effective torque $\geq \mathrm{S} \cdot \mathrm{Ta}$
(S is 10 times or more)

1. Thin shaft

Position of rotational axis:
Perpendicular to the shaft
through one end

5. Thin rectangular plate (Rectangular parallelepiped)
Position of rotational axis:
Through the center of gravity and perpendicular to the plate (also the same in case of a thicker plate)

6. Cylinder
(Including thin round plate)
Position of rotational axis:
Center axis

7. Solid sphere

Position of rotational axis:
Diameter

10. Gear transmission
9. Load at lever end

$I=m_{1} \cdot \frac{a_{1}^{2}}{3}+m_{2} \cdot a_{2}^{2}+K$
(Example) When shape of m_{2} is a sphere, refer to 7 , and $K=m_{2} \cdot \frac{2 \mathrm{r}^{2}}{5}$

3. Thin rectangular plate

 (Rectangular parallelepiped)Position of rotational axis: Through the plate's center of gravity

4. Thin rectangular plate

(Rectangular parallelepiped)
Position of rotational axis:
Perpendicular to the plate through one of its points (also the same in case of a thicker plate)

8. Thin round plate

Position of rotational axis: Diameter

Kinetic Energy/Rotation Time

Even in cases where the torque required for rotation of the load is small, damage to internal parts may result from the inertial force of the load.
Select models giving consideration to the load's inertial moment and rotation time during operation.
(The inertial moment and rotation time charts can be used for your convenience in making model selections on page 8.)
(1) Allowable kinetic energy and rotation time adjustment range

From the table below, set the rotation time within the adjustment range for stable operation. Note that operation exceeding the rotation time adjustment range, may lead to sticking or stopping of operation.

Size	Allowable kinetic energy (mJ)				Rotation time adjustment range for stable operation $\mathrm{s} / 90^{\circ}$		
	With adjustment bolt	With internal shock absorber	With external shock absorber		With adjustment bolt	With internal shock absorber	With external shock absorber
			For low energy	For high energy			
1	1	-	-	-	0.2 to 0.7	-	-
2	1.5						
3	2						
7	6				0.2 to 1.0		
10	7	39	161	231		0.2 to 0.7	$0.2 \text { to } 1.0^{\text {Note) }}$
20	25	116	574	1060			
30	48	116	805	1210			
50	81	294	1310	1820			
70	240	1100	-	-	0.2 to 1.5	0.2 to 1.0	-
100	320	1600			0.2 to 2.0		
200	560	2900			0.2 to 2.5		

Note) Refer to the note regarding the rotation time adjustment range on page 11-9-24.
(2) Inertial moment calculation

Since the formula for inertial moment differ depending on the configuration of the load, refer to the inertial moment calculation formula on this page.

Series MSQ

Kinetic Energy/Rotation Time

(3)Model selection Select models by applying the inertial moment and rotation time which have been found to the charts below.

With adjustment bolt

With external shock absorber

With internal shock absorber

(1)<Viewing the charts>

Inertial moment $\cdots \cdots 0.015 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
Rotation time $\cdots \cdots \cdots \cdots0 .45 \mathrm{~s} / 90^{\circ}$
MSQ $\square 20 \mathrm{~L}$ is selected for the above.

2)<Example>

Load configuration: A cylinder of radius 0.5 m and mass 0.4 kg Rotation time: $0.7 \mathrm{~s} / 90^{\circ}$
$\mathrm{I}=0.4 \times \frac{0.5^{2}}{2}=0.05 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
In the inertial moment and rotation time chart, find the intersection of the lines extended from the points corresponding to $0.05 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ on the vertical axis (inertial moment) and $0.7 \mathrm{~s} / 90^{\circ}$ on the horizontal axis (rotation time). Since the resulting intersection point lines within the MSQ $\square 20 \mathrm{~L}$ selection range, MSQ $\square 20 \mathrm{~L}$ can be selected.

Rotation Accuracy: Displacement Values at 180° (Reference values)

Table Displacement (Reference values)

Rotary Table: Basic Type/High Precision Type Rack \& Pinion Style
 Series MSQ
 Size: 1, 2, 3, 7

How to Order
High precision type

Applicable Auto Switch/Refer to page 11-11-1 for further information on auto switches.

$\stackrel{\otimes}{\perp}$	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch type Electrical entry direction		Lead wire length (m)*			Applicable load	
								$\begin{gathered} 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$				
					DC		AC				Perpendicular	In-line		
ㄷ 0	-	Grommet	Yes	3-wire (NPN)	24 V	12 V	-	F8N	M9N	-	\bigcirc	\bigcirc	IC circuit	Relay, PLC
				3-wire (PNP)				F8P	M9P	-	\bigcirc	\bigcirc		
				2-wire				F8B	M9B	\bigcirc	\bigcirc	\bigcirc	-	
	Diagnostic indication (2-color display)			3-wire (NPN)				-	F9NW	-	\bigcirc	\bigcirc		
				3-wire (PNP)				-	F9PW	-	\bigcirc	\bigcirc		
				2-wire				-	F9BW	\bigcirc	\bigcirc	\bigcirc	-	
	d wire length	symbols:	$\begin{gathered} 5 \mathrm{~m} \\ \mathrm{~m} \ldots \\ \mathrm{~m} \ldots \end{gathered}$		$\begin{aligned} & \text { (Exa } \\ & \text { (Exa } \\ & \text { (Exa } \end{aligned}$	mple) mple) mple)	N							
* So	state switch	hes marked	O" ar	re produced up	on re	eipt of	rder.							

- -50 Without indicator light
- -61 Flexible lead wire
- Pre-wire connector

Series MSQ

High precision type/MSQA

JIS Symbol

Specifications

Size	1	2	3	7
Fluid	Air (non-lube)			
Maximum operating pressure	0.7 MPa			
Minimum operating pressure	0.1 MPa			
Ambient and fluid temperature	0 to $60^{\circ} \mathrm{C}$ (with no freezing)			
Cushion	None		Rubber bumper	
Angle adjustment range	0 to 190°			
Maximum rotation	190°			
Cylinder bore size	$ø 6$	ø8	$\varnothing 10$	$\varnothing 12$
Port size	M3 $\times 0.5$			M5 x 0.8

Allowable Kinetic Energy and Rotation Time Adjustment Range

Size	Allowable kinetic energy (mJ)	Rotation time adjustment range for suitable operation $\left(\mathrm{s} / 90^{\circ}\right)$
$\mathbf{1}$	1	
$\mathbf{2}$	1.5	
$\mathbf{3}$	2	
$\mathbf{7}$	6	0.2 to 1.0

Weight

Size	1	2	3	7
Basic type	75	105	150	250
High precision type	80	115	165	265

Clean Series

Prevents dispersion of the particles generated inside of the product into the clean room by sucking them out of the vacuum port on the body side.

How to Order

Specifications and Allowable Load

Particle generation grade	Grade 1 Note)
Suction flow rate (example)	$1 \mathrm{\ell} / \mathrm{min}$ (ANR)
11-MSQA is identical to the high precision type and 11-MSQB is identical to the basic type.	
Note) Please refer to "Pneumatic Clean Series"	
catalog for further details.	

Dimensions

Clean series products do not have a hollow axis.

Rotation Direction and Rotation Angle

- The rotary table turns in the clockwise direction when the A port is pressurized, and in the counterclockwise direction when the B port is pressurized.
- By adjusting the adjustment bolt, the rotation end can be set within the range shown in the drawing for the desired rotation angle.

With adjust bolt, internal shock absorber

Size	Adjustment angle per rotation of angle adjustment screw
$\mathbf{1}$	8.2°
$\mathbf{2}$	10.0°
$\mathbf{3}$	10.9°
$\mathbf{7}$	10.2°

Series MSQ

Construction

MSQA \square A
(High precision type)

Component Parts

No.	Description	Material
(1)	Body	Aluminium alloy
(2)	Cover	Aluminium alloy
(3)	Plate	Aluminium alloy
(4)	Seal	NBR
(5)	End cover	Aluminium alloy
(6)	Piston	Stainless steel
(7)	Pinion	Chrome molybdenum steel
(8)	Hexagon nut	Steel wire
(9)	Adjustment bolt	Steel wire
(10)	Cushion pad	Size: 3, 7
(11)	Table	Rubber material
(12)	Bearing retainer	Aluminium alloy
(13)	Magnet	Aluminium alloy
(14)	Wear ring	Magnetic material

No.	Description		Material
(15)	Piston seal		NBR
(16)	Deep groove ball bearing		Bearing steel
(17)	Basic type	Deep groove ball bearing	Bearing steel
	High precision type	Special bearing	
(18)	Round head Philips screw No. 0	Basic Size: 1 to 3	Steel wire
	Round head Philips screw	type Size: 7	
	Round head Philips screw	High precision type	
(19)	Round head Philips screw No. 0		Steel wire
(20)	Hexagon socket head set bolt		Stainless steel
(21)	Parallel pin		Carbon steel
(22)	Seal washer		NBR
(23)	Hexagon socket head set screw		Stainless steel
(24)	O-ring		NBR

* (23) The hexagon socket head set screws are tightened at different positions depending on the position of the connecting port.

Dimensions: Size 1, 2, 3, 7
Basic type: MSQB $\square A$

High precision type:
MSQA \square A

CRB2
CRBU2
CRB1
MSU
CRJ
CRA1
CRQ2
MSQ
MRQ

(mm)								
Size	A	AU	AV	AW	AX	AY	BA	BB
$\mathbf{1}$	28	2.8	11	8.2	5.5	1.5	35	39.6
$\mathbf{2}$	30	3.6	12.6	9.2	7	2	37	45.1
$\mathbf{3}$	34.5	4.4	15.5	10.5	8	2.5	43	46.7
$\mathbf{7}$	41	4.8	18.4	12.2	10	3	50	59.2

Size	BC	BD	BE	BG	BH	BI	BJ	D	DD	DE	DF	DG	FA	FB	FD	H	J	JA	JB	JC	JD	JE	JF	JG
1	4.5	32	17	11	8.2	30	4.5	27h9	27.5h9	14H9	3.5	4.5 Hg	4.8	2	3.7	9	3.3	6	3.5	M4 x 0.7	2.2	5.3	M4 $\times 0.7$	4
2	5.5	34	18.5	12.6	9.2	35	4.5	29h9	29.5h9	14H9	3.8	5 Hg	5.3	2.5	4.2	10	3.3	6	3.5	$\mathrm{M} 4 \times 0.7$	2.2	5.3	M 4×0.7	4
3	5.5	38	23	15.5	10.5	40	4.5	33h9	34 h 9	17H9	5	$6 \mathrm{H9}$	5.3	2.5	4.2	10	4.2	7.5	4.5	M5 x 0.8	2.5	6	M4 $\times 0.7$	4
7	5.5	45	30	18.4	12.2	50	5	39h9	40 h 9	20H9	6	$7 \mathrm{H9}$	6.5	2.5	4.5	11.5	4.2	7.5	4.5	M5 x 0.8	2.5	6	M5 $\times 0.8$	5

Size	JJ	JK	JU	P	Q	S	SD	SF	SU	UU	WA	WB	WC	WD	WE	WF	XA	XB	XC	YA	YB	YC
1	M3 $\times 0.5$	3.5	M3 $\times 0.5$	M3 $\times 0.5$	16	50.5	10.8	24.4	9.4	25	9.5	2H9	2	M3 0.5	4.8	20	22.5	2H9	2	11	2H9	2
2	M3 $\times 0.5$	3.5	M4 $\times 0.7$	M3 $\times 0.5$	18	56	13.4	26.2	11.3	28	10	2H9	2	M3 $\times 0.5$	5.3	21	24.5	2H9	2	11.5	2H9	2
3	M3 $\times 0.5$	3.5	M5 x 0.8	M3 $\times 0.5$	20.5	60	15.2	31	11.8	30.5	12	2H9	2	M3 $\times 0.5$	5.3	25	27	2H9	2	13.5	2H9	2
7	M4 x 0.7	4.5	M6 x 1	M5 x 0.8	23	73.5	15.4	37.4	14.9	34.5	14	3H9	3	M4 $\times 0.7$	6.5	29	32.5	3H9	3	15.5	3H9	3

Rotary Table: Basic Type/High Precision Type Rack \& Pinion Style

Series MSQ
Size: 10, 20, 30, 50, 70, 100, 200

How to Order

Applicable Auto Switch/Reefer to page 11-11-1 for further information on auto switches.

$\stackrel{\otimes}{\AA}$	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch model		Lead wire length (m)*			Applicable load		
					DC		AC			$\begin{gathered} 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$			
							Perpendicular	In-line							
	-	Grommet	No	2-wire	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$		100 V or less	A90V	A90	\bigcirc	\bigcirc	-	IC circuit	Relay, PLC
			Yes	3-wire (NPN equiv.)	-	5 V	-	A96V	A96	\bigcirc	\bigcirc	-	-		
				2-wire	24 V	12 V	100 V	A93V	A93	\bigcirc	\bigcirc	-	-	Relay, PLC	
ㄷ 0		Grommet	Yes	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	M9NV	M9N	-	\bigcirc	\bigcirc	IC circuit	Relay, PLC	
	-			3-wire (PNP)				M9PV	M9P	\bigcirc	\bigcirc	\bigcirc			
				2-wire		12 V		M9BV	M9B		-	\bigcirc	-		
	Diagnostic indication (2-color display)			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		F9NWV	F9NW	\bigcirc	\bigcirc	\bigcirc	IC circuit		
				3-wire (PNP)				F9PWV	F9PW	\bigcirc	\bigcirc	\bigcirc			
								F9BWV	F9BW	\bigcirc	\bigcirc	\bigcirc			
	Improved water resistance (2-color display)			2-wire		12 V		-	F9BA**	-	-	\bigcirc	-		

** Though it is possible to mount water resistant auto switch, the rotary table itself is not water resistance type.

* Lead wire length symbols: $0.5 \mathrm{~m} \ldots \ldots \mathrm{Nil} \quad$ (Example) M9N

$3 \mathrm{~m} \cdots \ldots \ldots \ldots \ldots \mathrm{~L}$	(Example) M9NL
$5 \mathrm{~m} \ldots \ldots \ldots \ldots .$.	

* Solid state switches marked " O " are produced upon receipt of order.

Made to Order

\rightarrow Please contact SMC.

- -50 Without indicator light
- -61 Flexible lead wire
- Pre-wire connector

Specifications

High precision type/MSQA

JIS Symbol

Size		10	20	30	50	70	100	200
Fluid		Air (non-lube)						
Maximum operating pressure	With adjustment bolt	1 MPa						
	With internal shock absorber	0.6 MPa ${ }^{\text {Note 1) }}$						
Minimum operating pressure	Basic type	0.1 MPa						
	High precision type	0.2 MPa	0.1 MPa			-		
Ambient and fluid temperature		0 to $60^{\circ} \mathrm{C}$ (with no freezing)						
Cushion	With adjustment bolt	Rubber bumper						
	With internal shock absorber	Shock absorber						
	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Shock absorber } \\ \text { model } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { RBA0805 } \\ \text {-X692 } \end{array}$	RBA1006-X692		$\begin{aligned} & \hline \text { RBA1411 } \\ & -\times 692 \\ & \hline \end{aligned}$	RBA2015-X821		$\begin{aligned} & \hline \text { RBA2725 } \\ & -\times 821 \\ & \hline \end{aligned}$
Angle adjustment range		0 to 190° Note 2)						
Maximum rotation		190°						
Cylinder bore size		$\varnothing 15$	$\varnothing 18$	$ø 21$	ø25	ø28	$\varnothing 32$	$\varnothing 40$
Port size	End ports	M5 x 0.8		Rc 1/8				
	Side ports	M5 x 0.8						

Note 1) The maximum operating pressure of the actuator is restricted by the maximum allowable thrust of the shock absorber.
Note 2) Be careful if the rotation angle of a type with internal shock absorber is set below the value in the table below, the piston stroke will be smaller than the shock absorber's effective stroke, resulting in decreased energy absorption ability.

Size	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{7 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$
Minimum rotation angle that will not allow decrease of energy absorption ability	52°	43°	40°	60°	71°	62°	82°

Allowable Kinetic Energy and Rotation Time Adjustment Range

Size	Allowable kinetic energy (mJ)		Rotation time adjustment range for stable operation $\left(\mathrm{s} / 90^{\circ}\right)$	
	With adjustment bolt	With internal shock absorber	With adjustment bolt	With internal shock absorber
$\mathbf{1 0}$	7	39		
$\mathbf{2 0}$	25	116	0.2 to 1.0	0.2 to 0.7
$\mathbf{3 0}$	48	116		
$\mathbf{5 0}$	81	294		0.2 to 1.0
$\mathbf{7 0}$	240	1100	0.2 to 1.5	
$\mathbf{1 0 0}$	320	1600	0.2 to 2.0	0.2 to 2.5

Note 1) Be careful if a type with internal absorber is used below the minimum speed, the energy absorption ability will decrease drastically.

Weight

(g)

Size		$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{7 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$
Basic type	With adjustment bolt	530	990	1290	2080	2880	4090	7580
	With internal shock absorber	540	990	1290	2100	2890	4100	7650
High precision type	With adjustment bolt	560	1090	1410	2240	-		
	With internal shock absorber	570	1090	1410	2260			

[^16]
Series MSQ

Rotation Direction and Rotation Angle

- The rotary table turns in the clockwise direction where the A port is pressurized, and in the counterclockwise direction when the B port is pressurized.
- By adjusting the adjustment bolt, the rotation end can be set within the ranges shown in the drawing for the desired rotation angle.
- The rotation angle can also be set on a type with internal absorber.

With adjust bolt, internal shock absorber

Size	Adjustment angle per rotation of angle adjustment screw
$\mathbf{1 0}$	10.2°
$\mathbf{2 0}$	7.2°
$\mathbf{3 0}$	6.5°
$\mathbf{5 0}$	8.2°
$\mathbf{7 0}$	7.0°
$\mathbf{1 0 0}$	6.1°
$\mathbf{2 0 0}$	4.9°

Note) - The drawing shows the rotation range of the positioning pin hole.

- The pin hole position in the drawing shows the counterclockwise rotation end when the adjustment bolts A and B are tightened equally and the rotation is adjusted 180°.

Rotation Range Example

- Various rotation ranges are possible as shown in the drawings below using adjustment bolts A and B.
(The drawings also show the rotation ranges of the positioning pin hole.)
- The rotation angle can also be set on a type with inertial absorber.

Clean Series
Prevents dispersion of the particles generated inside of the product into the clean room by sucking them out of the vacuum port on the body side.

How to Order

Particle generation grade
Suction flow rate (example)
11-MSQA is identical to the high precision type and 1 mote)
11-MSQB is identical to the basic type.
Note) Please refer to "Pneumatic Clean Series"
catalog for further details.

Basic type

11-MSQB \square A
11-MSQB $\square R$

High precision type
11-MSQA \square A
11-MSQA $\square R$

Specifications and Allowable Load

Size	DA(h9)	DB(h9)	$\mathbf{D C}(\mathrm{H} 9)$	$\mathbf{D D}(\mathrm{h} 9)$	HB	HC	HD
$\mathbf{1 0}$	46	45	20	35	20	5	59
$\mathbf{2 0}$	61	60	28	40	22	6	65
$\mathbf{3 0}$	67	65	32	48	22	6	68
$\mathbf{5 0}$	77	75	35	54	24	7	77

Dimensions other than above are identical to the basic type.

Size	DA(h8)	DB(h8)	DC(H8)	DD(h8)	HA	HB	HC	HD	HE
$\mathbf{1 0}$	46	45	20	35	15.5	24	5	63	9.5
$\mathbf{2 0}$	61	60	28	40	19.5	30	6	73	13.5
$\mathbf{3 0}$	67	65	32	48	19.5	30	6	76	13.5
$\mathbf{5 0}$	77	75	35	54	21.5	34	7	87	15.5

Dimensions other than above are identical to the high precision type.

Series MSQ

Construction

MSQ $\square \square R$

MSQAㅁ
(High precision type)

Component Parts

No.	Description		Material	No.	Descrip	tion	Material
(1)	Body		Aluminium alloy	(19)	Deep groove ball bearing	Size: 10 to 50	Bearing steel
(2)	Cover		Aluminium alloy		Needle bearing	Size: 70 to 200	
(3)	Plate		Aluminium alloy	(20)	Deep groove ball bearing	Basic type	Bearing steel
(4)	Seal		NBR		Angular contact ball bearing	High precision type	
(5)	End cover		Aluminium alloy	(21)	Round head philips screw	No. 0	Steel wire
(6)	Piston		Stainless steel	(22)	Round head philips screw	Size: 10	Stainless steel
(7)	Pinion		Chrome molybdenum steel		Low head cap screw	Size: 20 to 50	steel
(8)	Hexagon nut with flange	Size: 10 to 50	Steel wire		Hexagon socket head set bolt	Size: 70 to 200	Chrome molybdenum steel
	Hexagon nut	Size: 70 to 200		(23)	Hexagon socket head set	bolt	Stainless steel
(9)	Adjustment bolt		Chrome molybdenum steel	(24)	Hexagon socket	Size: 10 to 50	Stainless steel
(10)	Cushion pad		Rubber material		head set bolt	Size: 70 to 200	Carbon steel
(11)	Seal retainer		Aluminium alloy	(25)	CS type snap ring		Spring steel
(12)	Gasket		NBR	(26)	Parallel pin	Size: 10 to 50	Carbon steel
(13)	Gasket		NBR		Parallel key	Size: 70 to 200	Carbon steel
(14)	Table		Aluminium alloy	(27)	Seal washer		NBR
(15)	Bearing retainer		Aluminium alloy	(28)	Plug		Brass
(16)	Magnet		Magnetic material	(29)	O-ring	Size: 70 to 200 only	NBR
(17)	Wear ring		Resin	(30)	Steel balls	Size: $\mathbf{7 0}$ to 200 only	Stainless steel
(18)	Piston seal		NBR	(31)	Shock absorber		-

Replacement Parts

Description	Kit no.							Note
	10	20	30	50	70	100	200	
Seal kit	P523010-5	P523020-5	P523030-5	P523040-5	P391050-5	P391060-5	P391070-5	A set of above numbers (4), (12), (13), (17), (18) and (27)

Dimensions: Size 10, 20, 30, 50

Size	AA	A	AU	AV	AW	AX	AY	BA	BB	BC	BD	BE	CA	CB	D	DD	DE	DF	DG	FA	FB	FC	FD	H	J	JA	JB
10	55.4	50	8.6	20	15.5	12	4	9.5	34.5	27.8	60	27	4.5	28.5	45h9	46h9	20H9	5	15H9	8	4	3	4.5	13	6.8	11	6.5
20	70.8	65	10.6	27.5	16	14	5	12	46	30	76	34	6	30.5	60h9	61h9	28H9	9	17H9	10	6	2.5	6.5	17	8.6	14	8.5
30	75.4	70	10.6	29	18.5	14	5	12	50	32	84	37	6.5	33.5	65h9	67h9	32H9	9	22H9	10	4.5	3	6.5	17	8.6	14	8.5
50	85.4	80	14	38	22	19	6	15.5	63	37.5	100	50	10	37.5	75h9	77h9	35 H 9	10	26H9	12	5	3	7.5	20	10.5	18	10.5

Size	JC	JD	JJ	JU	P	Q	S	SD	SE	SF	SU	UU	WA	WB	WC	WD	WE	WF	XA	XB	XC	YA	YB	YC
10	M8 x 1.25	12	M5 x 0.8	M8 x 1	M5 x 0.8	34	92	9	13	45	17.7	47	15	3H9	3.5	M5 x 0.8	8	32	27	3H9	3.5	19	3H9	3.5
20	M10 $\times 1.5$	15	M6 x 1	M10 $\times 1$	M5 x 0.8	37	117	10	12	60	25	54	20.5	4H9	4.5	M6 x 1	10	43	36	4H9	4.5	24	4H9	4.5
30	$\mathrm{M} 10 \times 1.5$	15	M6 x 1	M10 $\times 1$	Rc 1/8	40	127	11.5	14	65	25	57	23	4H9	4.5	M6 x 1	10	48	39	4H9	4.5	28	4H9	4.5
50	M12 $\times 1.75$	18	M8 $\times 1.25$	M14 $\times 1.5$	Rc 1/8	46	152	14.5	15	75	31.4	66	26.5	5 H 9	5.5	M8 x 1.25	12	55	45	5 H 9	5.5	33	5H9	5.5

Series MSQ

Dimensions: Size 70, 100, 200
Basic type: MSQB $\square A$

With shock absorber

MSQB $\square R$

Size	AA	AB	A	AV	AW	AX	AY	BA	BB	BC	BD	BE	CB	D	DD	DE	DF	DG	FA	FB	FC	FD	H	J	JA	JB
70	90	92	84	42	25.5	27	8	17	75	44.5	110	57	36	88h9	90h9	46H9	16	22H9	12.5	5	3.5	9	22	10.4	17.5	10.5
100	101	102	95	50	29.5	27	8	17	85	50.5	130	66	42	98h9	100h9	56H9	19	24-49	14.5	6	3.5	12	27	10.4	17.5	10.5
200	119	120	113	60	36.5	36	10	24	103	65.5	150	80	57	116h9	118h9	64H9	24	32H9	16.5	9	5.5	15	32	14.2	20	12.5

(mm)

Size	JC	JD	JJ	JK	JU	Q	S	SD	SF	SU	UU	WA	WB	WC	WD	WE	WF	XA	XB	XC	YA	YB	YC
70	M12 $\times 1.75$	18	M8 $\times 1.25$	10	M20 $\times 1.5$	53	170	18	79	34.2	75	32.5	5H9	5.5	M 8×1.25	12.5	67	54	5H9	3.5	39	5H9	3.5
100	M12 $\times 1.75$	18	M 8×1.25	10	M20 $\times 1.5$	59	189	22	90	34.3	86	37.5	6H9	6.5	M10 $\times 1.5$	14.5	77	59	6H9	4.5	49	6H9	4.5
200	M16 $\times 2$	25	M12 $\times 1.75$	13	M27 $\times 1.5$	74	240	29	108	40.2	106	44	8 H 9	8.5	M12 $\times 1.75$	16.5	90	69	8H9	4.5	54	8H9	6.5

Rotary Table: Basic Type/High Precision Type W/ External Shock Absorber, Rack/Pinion Style Series MSQ

Size: 10, 20, 30, 50

How to Order

- Auto switch

Nil	Without auto switch (Built-in magnet)

* For the applicable auto switch model, refer to the table below.
* Auto switches are shipped together, (but not assembled).

Port location/Rotation

Applicable Auto Switch/Refer to page 11-11-1 for further intormation on auto switches.

$\stackrel{\otimes}{\stackrel{\circ}{2}}$	Special function	Electrical entry	Indicator light	Wiring (Output)	Load voltage			Auto switch model		Lead wire length (m)*			Applicable load		
					DC		AC			$\begin{gathered} 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$			
							Perpendicular	In-line							
	-	Grommet	No	2-wire	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$		100 V or less	A90V	A90	\bigcirc	\bigcirc	-	IC circuit	Relay, PLC
			Yes	3-wire (NPN equiv.)	-	5 V	-	A96V	A96	\bigcirc	\bigcirc	-	-		
				2-wire	24 V	12 V	100 V	A93V	A93	\bigcirc	\bigcirc	-	-	Relay, PLC	
	-	Grommet	Yes	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	M9NV	M9N	\bigcirc	\bigcirc	\bigcirc	IC circuit	Relay, PLC	
				3-wire (PNP)				M9PV	M9P	\bigcirc	\bigcirc	\bigcirc			
				2-wire		12 V		M9BV	M9B	\bigcirc	\bigcirc	\bigcirc	-		
	Diagnostic indication (2-color display)			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		F9NWV	F9NW	\bigcirc	\bigcirc	\bigcirc	IC circuit		
				3-wire (PNP)				F9PWV	F9PW	\bigcirc	\bigcirc	\bigcirc			
								F9BWV	F9BW	\bigcirc	\bigcirc	\bigcirc			
	Improved water resistance (2-color display)			2-wire		12 V		-	F9BA**	-	\bigcirc	\bigcirc	-		

[^17]*Solid state switches marked "O" are produced upon receipt of order.

Made to Order
 Please contact SMC.

- -50 Without indicator light
- -61 Flexible lead wire
- Pre-wire connector

Specifications

Size		10	20	30	50
Fluid		Air (non-lube)			
Maximum operating pressure		1 MPa			
Minimum operating pressure		0.2 MPa			
Ambient and fluid temperature		0 to $60^{\circ} \mathrm{C}$ (with no freezing)			
Cushion		Shock absorber			
Shock absorber type	For low energy	RB0805	RB1006		RB1411
	For high energy	RB0806	RB1007		RB1412
Rotation		$90^{\circ}, 180^{\circ}$			
Angle adjusting range		Each rotation end $\pm 3^{\circ}$			
Cylinder bore size		$\varnothing 15$	$\varnothing 18$	$\varnothing 21$	ø25
Port size	End ports	M5 x 0.8		Rc 1/8	
	Side ports	M5 x 0.8			

Allowable Kinetic Energy and

 Rotation Time Adjustment Range| Size | Allowable kinetic energy (mJ) | | Rotation time adjustment range for stable operation ($\mathrm{s} / 90^{\circ}$) |
| :---: | :---: | :---: | :---: |
| | Shock absorber for low energy | Shock absorber for high energy | |
| 10 | 161 | 231 | 0.2 to $1.0{ }^{\text {Note) }}$ |
| 20 | 574 | 1060 | |
| 30 | 805 | 1210 | |
| 50 | 1310 | 1820 | |

Note) Values above indicate the time between the start of rotation and the deceleration caused by the shock absorber. Although the time required by the rotary table to reach the rotation end after deceleration differs depending on the operating conditions (inertial moment of the
load, rotation speed and operating pressure), approximately 0.2 to 2 seconds are required. The range of angles within which the shock absorber operates is between the rotation end and the values shown below.

Size	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{5 0}$
For low energy	7.1°	6.9°	6.2°	9.6°
For high energy	8.6°	8.0°	7.3°	10.5°

Weight
(g)

Size		$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{5 0}$
Basic type	90° specifications	630	1200	1520	2480
	180° specifications	600	1140	1450	2370
High precision type	90° specifications	700	1390	1750	2810
	180° specifications	670	1340	1680	2690

[^18]
Rotation Direction and Rotation Angle

- The rotary table turns in the clockwise direction where the A port is pressurized, and in the counterclockwise direction when the B port is pressurized. - By adjusting the shock absorber, the rotation end can be set within the ranges shown in the drawing.

Standard type

Position of bottom positioning pin hole
esition of bottom positioning pin hole

For 180°

Position of bottom positioning pin hole

For 90°

Position of bottom positioning pin hole

With external shock absorber

Size	Adjustment angle per rotation of angle adjustment screw
10	1.4°
20	1.2°
30	1.1°
$\mathbf{5 0}$	1.3°

Note) • The drawings show the rotation range for the top positioning pin hole of the table.
The pin hole position in the drawing shows the counterclockwise rotation end when the shock absorbers are tightened equally and the rotation is adjusted to 180° and 90°.

Series MSQ

Construction

Component Parts

No.	Description	Material
(1)	End cover	Aluminium alloy
(2)	Table	Aluminium alloy
(3)	Arm	Chrome molybdenum steel
(4)	Shock absorber holder	Aluminium alloy
(5)	Hexagon socket head set bolt	Stainless steel
(6)	Hexagon socket head set bolt	Stainless steel
(7)	Taper plug	Steel wire
(8)	Hexagon nut	Steel wire
(9)	Shock absorber	-

Replacement Parts

Description	Kit no.				Note
	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{5 0}$	
Seal kit	P523010-6	P523020-6	P523030-6	P523040-6	Seal washer (27) is excluded from the kit contents described on page 11-9-20.

Dimensions: With External Shock Absorber Size: 10, 20, 30, 50
Basic type: MSQB $\square \mathbf{H}^{\text {L }} \square$

Note 1) This part is not available with 180° specification.

High precision type

| Size | AA | A | BA | BB | BC | BD | CA | CB | D | DD | DE | DF | DG | EA | EB | EC | ED | EE | EF | FA | FB | FC | FD | GA | GB | GC | GD | GE | H |
| :---: |
| $\mathbf{1 0}$ | 55.4 | 50 | 9.5 | 34.5 | 27.8 | 60 | 4.5 | 28.5 | 45 | 46 | $20 H 9$ | 5 | 15 H 9 | 52.9 | 44.3 | 33.5 | 14 | 97.2 | 80 | 8 | 4 | 3 | 4.5 | 20 | 15.6 | 11 | 7.5 | 45.2 | 13 |
| $\mathbf{2 0}$ | 70.8 | 65 | 12 | 46 | 30 | 76 | 6 | 30.5 | 60 | 61 | 28 H 9 | 9 | 17 H 9 | 61.8 | 55.3 | 43 | 18 | 117.1 | 100 | 10 | 6 | 2.5 | 6.5 | 25 | 19.5 | 14 | 9.5 | 56.4 | 17 |
| $\mathbf{3 0}$ | 75.4 | 70 | 12 | 50 | 32 | 84 | 6.5 | 33.5 | 65 | 67 | 32 H 9 | 9 | 22 H 9 | 63.1 | 60.3 | 46 | 19.5 | 123.4 | 110 | 10 | 4.5 | 3 | 6.5 | 27 | 21.5 | 14 | 9.5 | 61.5 | 17 |
| $\mathbf{5 0}$ | 85.4 | 80 | 15.5 | 63 | 37.5 | 100 | 10 | 37.5 | 75 | 77 | 35 H 9 | 10 | 26 H 9 | 86.7 | 71.4 | 56 | 22 | 158.1 | 130 | 12 | 5 | 3 | 7.5 | 32 | 28 | 18 | 11.5 | 72.9 | 20 |

Size	J	JA	JB	JC	JD	K	NA	NB	NC	ND	P	Q	S	SD	SE	SF	UU	WA	WB	WC	WD	WE	WF	YA	YB	YC
10	6.8	11	6.5	M8 $\times 1.25$	12	M8 x 1	10	5.5	12.5	4	M5 $\times 0.8$	34	92	9	13	45	47	15	3H9	3.5	M5 x 0.8	8	32	19	3H9	3.5
20	8.6	14	8.5	M10 1.5	15	M10 $\times 1$	14	8	16.5	4	M5 x 0.8	37	117	10	12	60	54	20.5	4H9	4.5	M6 x 1	10	43	24	4H9	4.5
30	8.6	14	8.5	M10 1.5	15	M10 $\times 1$	14	8	16.5	4	Rc 1/8	40	127	11.5	14	65	57	23	4H9	4.5	M6 x 1	10	48	28	4H9	4.5
50	10.5	18	10.5	M12 $\times 1.75$	18	M14 $\times 1.5$	19	8.5	19.5	6	Rc $1 / 8$	46	152	14.5	15	75	66	26.5	5 H 9	5.5	M8 $\times 1.25$	12	55	33	5H9	5.5

Series MSQ

Proper Auto Switch Mounting Position at Rotation End

- Size: 1 to 7

When D-F9 and M9 are used

When D-F8 is used

Size	Rotation	Solid state switch								
		D-F9口W			D-M9 \square			D-F8 \square		
		A	Operating angle θ m	Hysteresis angle	A	Operating angle θ m	Hysteresis angle	B	Operating angle θ m	Hysteresis angle
1	190°	20.9	40°	10°	20.9	55°	10°	16.9	20°	10°
2	190°	22.8	35°	10°	22.8	45°	10°	18.8	20°	10°
3	190°	24.4	30°	10°	24.4	40°	10°	20.4	15°	10°
7	190°	28.7	25°	10°	28.7	40°	10°	24.7	15°	10°

Operating angle $\theta \mathrm{m}$: Value of the operating range Lm of a single auto switch converted to an axial rotation angle.
Hysteresis angle : Value of auto switch hysteresis converted to an angle.

- Size: 10 to 200

Size	Rotation	Reed switch				Solid state switch							
		D-A9口, D-A9 \square V				D-M9 \square V, D-F9 \square W, D-F9 $\square W V, D-F 9 B A L$				D-M9 \square			
		A	B	Operating angle $\theta \mathrm{m}$	Hysteresis angle	A	B	Operating angle $\theta \mathrm{m}$	Hysteresis angle	A	B	Operating angle $\theta \mathrm{m}$	Hysteresis angle
10	190°	17	36	90°	10°	21	40	90°	10°	21	40	60°	10°
20	190°	23	50	80°	10°	27	54	80°	10°	27	54	50°	10°
30	190°	27	66	65°	10°	31	60	65°	10°	31	60	50°	10°
50	190°	33	68	50°	10°	37	72	50°	10°	37	72	40°	10°
70	190°	37	78	45°	10°	41	82	45°	10°	41	82	40°	10°
100	190°	44	91	40°	10°	48	95	40°	10°	48	95	30°	10°
200	190°	57	115	35°	10°	61	19	35°	10°	61	19	20°	10°

[^19] Hysteresis angle: Value of auto switch hysteresis converted to an angle.

Speed Adjustment

. Warning

1. Perform speed adjustment gradually from the low speed side.
Speed adjustment from the high speed side can cause product damage leading to human injury and damage to equipment an machinery.

Caution

1. When operating at high speed with a large load weight, a large amount of energy is applied to the actuator and can cause damage.
Refer to the model selection on page 11-9-5 to find the proper operating time.
2. Do not machine the fixed orifice of the port to enlarge its size. If the fixed orifice size is enlarged, the actuator operating speed and impact force will increase and cause damage.

Lubrication

© Caution

1. Use the product without lubrication.

This product is lubricated with grease at the factory, and further lubrication will result in a failure to meet the product's specifications.

Rotation Adjustment

© Caution

1. As a standard feature, the rotary table is equipped with a rotation adjustment screw (adjustment bolt or shock absorber) that can be used to adjust the rotation. The table below shows the rotation adjustment per single rotation of the rotation adjustment screw. Please refer to following pages for the rotation direction, rotation angle and rotation angle range.

$$
\text { MSQ size1 to } 7 \quad \rightarrow \text { page 11-9-13 }
$$

MSQ size10 to $200 \quad \rightarrow$ page 11-9-18
MSQ with external shock absorber \rightarrow page 11-9-25
With adjustment bolt, With external shock absorber

Size	Rotation adjustment per single rotation of rotation adjustment screw
$\mathbf{1}$	8.2°
$\mathbf{2}$	10.0°
$\mathbf{3}$	10.9°
$\mathbf{7}$	10.2°
$\mathbf{1 0}$	10.2°
$\mathbf{2 0}$	7.2°
$\mathbf{3 0}$	6.5°
$\mathbf{5 0}$	8.2°
$\mathbf{7 0}$	7.0°
$\mathbf{1 0 0}$	6.1°
$\mathbf{2 0 0}$	4.9°

With external shock absorber

Size	Rotation adjustment per single rotation of rotation adjustment screw
$\mathbf{1 0}$	1.4°
$\mathbf{2 0}$	1.2°
$\mathbf{3 0}$	1.1°
$\mathbf{5 0}$	1.3°

CRB2
CRBU2
CRB1
MSU
CRJ
CRA1

The rotation adjustment range for the external shock absorber is $\pm 3^{\circ}$ at each rotation end. When adjusted beyond this range, note that the shock absorber's durability may decrease.
2. Series MSQ is equipped with a rubber bumper or shock absorber. Therefore, perform rotation adjustment in the pressurized condition (minimum operation pressure: 0.1 MPa or more for adjustment bolt and internal shock absorber types, and 0.2 MPa or more for external shock absorber type.)

Shock Absorber

. Caution

1. Refer to the table below for tightening torques of the shock absorber setting nut.

Size	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{7 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$
Tightening torque $\mathrm{N} \cdot \mathrm{m}$	1.67	3.14		10.8	23.5	62.8	

2. Never rotate the bottom screw of the shock absorber. (It is not an adjustment screw.) This may cause oil leakage.

3. When rotation of the rotary table with internal shock absorber is set at a value smaller than the table below, the piston stroke becomes smaller than the shock absorber's effective stroke and energy absorption capacity decreases.

Size	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{7 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$
Minimum rotation without energy absorption capacity decrease	52°	43°	40°	60°	71°	62°	82°

4. Products with shock absorber are not designed to smooth stop but to absorb the kinetic energy of the load. If the load has to be stopped smoothly, a shock absorber of the optimum size meeting the operating conditions must be installed external to the equipment.
5. Shock absorbers are consumable parts. When a decrease in energy absorption capacity is noticed, it must be replaced.

With internal shock absorber

Size		Shock absorber model
10		RBA0805-X692
20		RBA1006-X692
30		
50		RBA1411-X692
70		RBA2015-X821
100		
200		RBA2725-X821
With external shock absorber		
Size	Type	Shock absorber model
10	For low energy	RB0805
	For high energy	RB0806
20	For low energy	RB1006
	For high energy	RB1007
30	For low energy	RB1006
	For high energy	RB1007
50	For low energy	RB1411
	For high energy	RB1412

External Shock Absorber

\triangle Caution

The threaded orifices shown below are not connecting ports. Never remove the plugs as this will cause malfunction.

Speed Controller and Fittings

\triangle Caution

Size 1, 2, and 3 use M3 $\times 0.5$ piping ports. When connecting a speed controller or fittings directly, use the following series.

- Speed controller

AS12ロ1F/Elbow type
AS13 $\square 1 F /$ Universal type

- One-touch fittings

One-touch miniature fittings Series KJ

- Miniature fittings Series M3

Auto Switch

\triangle Caution

In the case of sizes 1, 2, 3 and 7, when 2 pieces of auto switches are installed in one switch groove, the minimum detectable rotation angles are as follows.

Size	Minimum detectable rotation
$\mathbf{1}$	25°
$\mathbf{2}$	25°
$\mathbf{3}$	20°
$\mathbf{7}$	20°

Maintenance

\triangle Caution

Because sizes 1, 2, 3 and 7 require special tools, they cannot be disassembled.
Because sizes 10, 20, 30 and 50 have the table press fit into an angular type bearing, they cannot be disassembled.

Low-Speed Rotary Actuator

Possible to transfer a workpiece at low-speed.

- Realized a stable motion at $5 \mathrm{~s} / 90^{\circ}$.
Smooth motion without stick-slip phenomemon

Measurement conditions / Fluid: Air
Mounting orientation: Horizonal without load Operating pressure: 0.5 MPa
Pneumatic circuit: Meter-out circuit
Ambient temperature: Room temperature
Dimensions compatible with the CRQ2, MSQ series

Series MSQX

Series CRQ2X/MSQX Model Selection

* The selection procedure of the rotary for low-speed is the same as for an ordinary rotary. If the rotation time exceeds 2 s per 90°, however, the necessary torque and the kinetic energy are calculated with rotation time of 2 s per 90°.

Selection Procedure
 Remarks
 Selection Example

Operating conditions are as follows:

- Provisionally selected model
- Operating pressure: MPa
- Mounting position
- Load type

Static load: N.m
Resistance load: $N \cdot m$
Inertial load: N•m

- Load dimension: m
- Load mass: kg
- Rotation time: s
- Rotation angle: rad
- See P. 3 for load type.
- The unit of the rotation angle is Radians.
$180^{\circ}=\pi \mathrm{rad}$
$90^{\circ}=\pi / 2 \mathrm{rad}$

Calculation of moment of inertia

Calculate the moment of inertia of the load.
\Rightarrow P. 2

- If the moment of inertia of the load is made up of multiple components, calculate the moment of inertia of each component and add them together.

$$
\begin{aligned}
& \text { Load } 1 \text { moment of inertia: } I_{1} \\
& \qquad I_{1}=0.4 \times \frac{0.15^{2}+0.05^{2}}{12}+0.4 \times 0.05^{2}=0.001833
\end{aligned}
$$

$$
\text { Load } 2 \text { moment of inertia: } \mathbf{I}_{2}
$$

$$
I_{2}=0.2 \times \frac{0.025^{2}}{2}+0.2 \times 0.1^{2}=0.002063
$$

Total moment of inertia: I
$\mathbf{I}=\mathbf{I}_{1}+\mathbf{I}_{\mathbf{2}}=\mathbf{0 . 0 0 3 8 9 6 [\mathrm { kg } \cdot \mathrm { m } ^ { 2 }]}$

Calculation of necessary torque

Calculate necessary torque corre-
sponding to the load type, and ensure
it is within effective torque range.

- Static load (Ts)

Necessary torque T = Ts

- Resistance load (Tf)

Necessary torque T = Tf x (3 to 5)

- Inertial load (Ta)

Necessary torque $T=T a \times 10$
\Rightarrow P. 3

- When calculating the inertial load, if the rotation time exceeds 2 s per 90°, inertial load is calculated with rotation time of 2 s per 90°.
- Even for resistance load, when the load is rotated, necessary torque calculated from inertial load shall be added.

Necessary torque T = Tf x (3 to 5) +Ta $\times 10$

Inertial load: Ta

$\mathbf{T a}=\mathbf{I} \cdot \dot{\omega}$
$\dot{\omega}=\frac{2 \theta}{\mathbf{t}^{2}}\left[\mathrm{rad} / \mathrm{s}^{2}\right]$
Necessary torque: \mathbf{T}
$\mathrm{T}=\mathrm{Ta} \times 10$
$=0.003896 \times \frac{2 \times \pi}{4^{2}} \times 10=0.015[\mathrm{~N} \cdot \mathrm{~m}]$
(t is calculated with 2 s per 90°.)
$0.109 \mathrm{~N} \cdot \mathrm{~m}$ < Effective torque OK

Checking rotation time

Confirm that it is within the adjustable range of rotation time.
\Rightarrow P. 4

Converted to the time per 90° for comparison. (For comparison, $\mathbf{6 s} / 180^{\circ}$ is converted to $3 \mathrm{~s} / 90^{\circ}$.)

$1.0 \leq t \leq 5$

$t=3 \mathrm{~s} / 90^{\circ} \mathrm{OK}$

Calculation of kinetic energy

Confirm that the load's kinetic energy is within the allowable value.

Can be confirmed by the graph of the moment of inertia and the rotation time.
\Rightarrow P. 4

- If the rotation time exceeds 2 s per 90°, kinetic energy is calculated with rotation time of 2 s per 90°.
- If the allowable value is exceeded, an external cushioning mechanism such as an absorber needs to be installed.

$$
E=\frac{1}{2} \cdot I \cdot \omega^{2}
$$

$\omega=\frac{\mathbf{2} \cdot \theta}{\mathbf{t}}$

Kinetic energy

$$
\frac{1}{2} \times 0.003896 \times\left(\frac{2 \times \pi}{4}\right)^{2}=0.0048[\mathrm{~J}]
$$

(t is calculated with 2 s per 90°.)
0.0048 [J] < Allowable energy OK

Checking allowable load

Check if the load applied to the product is within the allowable range.

- If the allowable value is exceeded, an external bearing needs to be installed.

$$
\begin{aligned}
M & =0.4 \times 9.8 \times 0.05+0.2 \times 9.8 \times 0.1 \\
& =0.392[\mathrm{~N} \cdot \mathrm{~m}]
\end{aligned}
$$

0.392 [$\mathrm{N} \cdot \mathrm{m}$] < Allowable moment load OK

Equation Table of Moment of Inertia (Calculation of moment of inertia I)

1. Thin shaft

Position of rotational axis:
Perpendicular to the shaft through the center of gravity

2. Thin rectangular plate

Position of rotational axis:
Parallel to side b through the center of gravity

3. Thin rectangular plate
(Including rectangular parallelepiped)
Position of rotational axis:
Perpendicular to the plate through the center of gravity

$$
\mathrm{I}=\mathbf{m} \cdot \frac{\mathbf{a}^{2}+\mathbf{b}^{2}}{12}
$$

4. Round plate (Including column)

Position of rotational axis:
Passing through the center axis

6. Thin round plate

Position of rotational axis:
Passing through the diameter

$$
\mathrm{I}=\mathbf{m} \cdot \frac{\mathbf{r}^{2}}{4}
$$

7. Cylindrical

Position of rotational axis:
Passing through the diameter and the center of gravity

8. When rotational axis and the center of the load are not concentric.

$\mathbf{I}=\mathbf{K}+\mathbf{m} \cdot \mathbf{L}^{2}$
\mathbf{K} : The moment of inertia around the center of gravity of the load
In case of 4 . Round plate $K=\mathbf{m} \cdot \frac{\mathbf{r}^{2}}{2}$

9. Gear transmission

5. Solid sphere

Position of rotational axis:
Passing through the diameter

$$
\mathrm{I}=\mathbf{m} \cdot \frac{2 \mathrm{r}^{2}}{5}
$$

Load Type

Calculation method of necessary torque depends on the load type. Refer the below table.

Load type		
Static load: Ts	Resistance load: Tf	Inertial load: Ta
Only pressing force is necessary. (e.g. for clamping)	Weight or friction force is applied to rotating direction.	Rotate the load with inertia.
	Gravity is applied. Friction force is applied.	Center of rotation and center of gravity of the load are concentric. Rotation shaft is vertical (up and down).
$\mathbf{T s}=\mathbf{F} \cdot \ell$ Ts: Static load ($\mathrm{N} \cdot \mathrm{m}$) F: Clamping force (N) l : Distance from the rotation center to the clamping position (m)	Gravity is applied in rotating direction. $\mathbf{T f}=\mathbf{m} \cdot \mathbf{g} \cdot \ell$ Friction force is applied in rotating direction. $\mathbf{T f}=\mu \cdot \mathbf{m} \cdot \mathbf{g} \cdot \ell$ Tf: Resistance load ($\mathrm{N} \cdot \mathrm{m}$) m : Load mass (kg) g : Gravitational acceleration $9.8\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ l : Distance from the rotation center to the point of application of the weight or friction force (m) μ : Friction coefficient	$\begin{aligned} & \mathbf{T a}=\mathrm{I} \cdot \omega=\mathrm{I} \cdot \frac{2 \theta}{\mathbf{t}^{2}} \\ & \mathrm{Ta}: \text { Inertial load }(\mathrm{N} \cdot \mathrm{~m}) \\ & \mathrm{I}: \text { Moment of inertia }\left(\mathrm{kg} \cdot \mathrm{~m}^{2}\right) \\ & \omega: \text { Angular acceleration }\left(\mathrm{rad} / \mathrm{s}^{2}\right) \\ & \theta: \text { Rotation angle }(\mathrm{rad}) \\ & \mathbf{t}: \text { Rotation time }(\mathrm{s}) \end{aligned}$ For low speed rotary, if the rotation time exceeds 2s per 90°, inertial load is calculated with rotation time of 2 s per 90°.
Necessary torque: $\mathbf{T}=\mathbf{T s}$	Necessary torque: $\mathbf{T}=\mathbf{T f} \times$ (3 to 5) ${ }^{\text {Note }}$)	Necessary torque: $\mathbf{T}=\mathbf{T a} \times 10^{\text {Note) }}$
- Resistance load: Gravity or friction force is ap Ex. 1) Rotation shaft is horizontal (lateral), load are not concentric. Ex. 2) Load moves by sliding on the floor * The total of resistance load and inertial load - Not resistance load: Neither weight or friction Ex. 1) Rotation shaft is vertical (up and down) Ex. 2) Rotation shaft is horizontal (lateral), load are not concentric. * Necessary torque is inertial load only. $\mathbf{T}=$	rotating direction. rotation center and the center of gravity of the necessary torque. $\mathbf{T}=\mathbf{T f} \times(3$ to 5$)+\mathbf{T a} \times 10$ applied in rotating direction. tion center and the center of gravity of the	To adjust the speed, margin is necessary fo Tf and Ta.

Effective Torque

Unit: N-m												
Model	Size	Operating pressure (MPa)										
		0.1	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
CRQ2X	10	-	0.09	0.12	0.18	0.24	0.30	0.36	0.42	-	-	-
	15	-	0.22	0.30	0.45	0.60	0.75	0.90	1.04	-	-	-
	20	0.37	0.55	0.73	1.10	1.47	1.84	2.20	2.57	2.93	3.29	3.66
	30	0.62	0.94	1.25	1.87	2.49	3.11	3.74	4.37	4.99	5.60	6.24
	40	1.06	1.59	2.11	3.18	4.24	5.30	6.36	7.43	8.48	9.54	10.6
MSQX	10	0.18	-	0.36	0.53	0.71	0.89	1.07	1.25	1.42	1.60	1.78
	20	0.37	-	0.73	1.10	1.47	1.84	2.20	2.57	2.93	3.29	3.66
	30	0.55	-	1.09	1.64	2.18	2.73	3.19	3.82	4.37	4.91	5.45
	50	0.93	-	1.85	2.78	3.71	4.64	5.57	6.50	7.43	8.35	9.28

Note 1) Values of operating torque in the above table are representative values, and not guaranteed. Make use of the values as a reference when ordering.
Note 2) Except for cases when an external stopper is used, the holding torque at the operation end is half of the table value.

Kinetic Energy/Rotating Time

In a rotational movement, the kinetic energy of a load may damage the internal parts, even if the required torque for a load is small. Consider the moment of inertia and rotation time before selecting a model.
(For model selection, refer to the moment of inertia and rotation time graph as shown on the below table.)

Allowable kinetic energy and rotation time adjustment range

Set the rotation time, within stable operational guidelines, using the adjustment range specification table as detailed below. When operating at low-speeds which exceed the rotation time adjustment range, use caution as it may result in sticking or malfunction.

Model	Size	Allowable kinetic energy (J)	Stable operational rotation time adjustment range $\left(\mathrm{s} / 90^{\circ}\right)$
CRQ2X	$\mathbf{1 0}$	0.00025	
	$\mathbf{1 5}$	0.00039	
	$\mathbf{2 0}$	0.7 to 5	
	$\mathbf{3 0}$	0.025	
	$\mathbf{4 0}$	0.048	
MSQX	$\mathbf{1 0}$	0.081	
	$\mathbf{2 0}$	0.007	
	$\mathbf{3 0}$	0.025	
	$\mathbf{5 0}$	0.048	

Model Selection Select a model based on the moment of inertia and rotation time as shown graph below.

CRQ2X

[^20]
Model Selection

Allowable Load

CRQ2X

A load up to the allowable radial/thrust load can be applied provided that a dynamic load is not generated. However, applications which apply a load directly to the shaft should be avoided whenever possible. In order to further improve the operating conditions, a method such as that shown in the drawing on the right side is recommended so that a direct load is not applied to the shaft.

MSQX
Do not allow the load and moment applied to the table to exceed the allowable values shown in the below table.
(Operation beyond the allowable values can cause adverse effects on service life, such as play in the table and loss of accuracy.)

Size				
	Allowable radial load (N)	Allowable thrust load (N)		Allowable moment ($\mathrm{N} \cdot \mathrm{m}$)
		(a)	(b)	
10	78	74	78	2.4
20	147	137	137	4.0
30	196	197	363	5.3
50	314	296	451	9.7

Rotary Actuator Technical Data Air Consumption

Air consumption is the volume of air which is expended by the rotary actuator's reciprocal operation inside the actuator and in the piping between the actuator and the switching valve, etc. This is necessary for selection of a compressor and for calculation of its running cost.

* The air consumption (QcR) required for one reciprocation of the rotary actuator alone is shown in the below table, and can be used to simplify the calculation.

Formulas
$Q_{C R}=2 V \times\left(\frac{P+0.1}{0.1}\right) \times 10^{-3}$
$Q_{C P}=2 \times \mathrm{a} \times e \times\left(\frac{P}{0.1}\right) \times 10^{-6}$
$Q_{C}=Q_{C R}+Q_{C P}$
$Q_{C R}=$ Air consumption of rotary actuator
QcP = Air consumption of tubing or piping
$\mathbf{V}=$ Internal volume of rotary actuator
$\mathbf{P}=$ Operating pressure
$\ell=$ Length of piping
$\mathbf{a}=$ Internal cross section of piping
Qc = Air consumption required for one reciprocation of rotary actuator

When selecting a compressor, it is necessary to choose one which has sufficient reserve for the total air consumption of pneumatic actuators downstream. This is affected by factors such as leakage in piping, consumption by drain valves and pilot valves, etc., and reduction of air volume due to drops in temperature.

Formulas

Qc2 $=$ Qc x $\mathrm{n} \times$ Number of actuators \times Reserve factor

Qcempressor discharge flow rate
[$/$ /min (ANR)] $\mathbf{n}=$ Actuator reciprocations per minute
Reserve factor: 1.5 or greater

Internal Cross Section of Tubing and Steel Piping

Nominal size	O.D. (mm)	I.D. (mm)	Internal cross section $\mathbf{a (m ^ { 2 })}$
T $\square \mathbf{0 4 2 5}$	4	2.5	4.9
T $\square \mathbf{0 6 0 4}$	6	4	12.6
TU0805	8	5	19.6
T $\square \mathbf{0 8 0 6}$	8	6	28.3
$\mathbf{1 / 8 B}$	-	6.5	33.2
T $\square \mathbf{1 0 7 5}$	10	7.5	44.2
TU1208	12	8	50.3
T $\square \mathbf{1 2 0 9}$	12	9	63.6
$\mathbf{1 / 4 B}$	-	9.2	66.5
TS1612	16	12	113
3/8B	-	12.7	127
T $\square \mathbf{1 6 1 3}$	16	13	133
$\mathbf{1 / 2 B}$	-	16.1	204
3/4B	-	21.6	366
1B	-	27.6	598

Air Consumption
[(ANR)]
[(ANR)]
$\left[\mathrm{cm}^{3}\right]$
[MPa]
[mm]
[mm^{2}]
[e (ANR)]

Model	Size	Rotation angle (${ }^{\circ}$)	Internal volume $\mathrm{V}\left(\mathrm{cm}^{3}\right)$	Operating pressure (MPa)										
				0.1	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
CRQ2X	10	90	1.2	-	0.006	0.007	0.009	0.012	0.014	0.016	0.018	-	-	-
		180	2.2	-	0.011	0.013	0.018	0.022	0.026	0.031	0.035	-	-	-
	15	90	2.9	-	0.015	0.017	0.023	0.029	0.035	0.041	0.046	-	-	-
		180	5.5	-	0.028	0.033	0.044	0.055	0.066	0.077	0.088	-	-	-
	20	90	7.1	0.028	0.036	0.043	0.057	0.071	0.085	0.099	0.114	0.128	0.142	0.156
		180	13.5	0.054	0.068	0.081	0.108	0.135	0.162	0.189	0.216	0.243	0.270	0.297
	30	90	12.1	0.048	0.060	0.073	0.097	0.121	0.145	0.169	0.193	0.218	0.242	0.266
		180	23.0	0.092	0.115	0.138	0.184	0.230	0.276	0.322	0.368	0.413	0.459	0.505
	40	90	20.6	0.082	0.103	0.123	0.164	0.206	0.247	0.288	0.329	0.370	0.411	0.452
		180	39.1	0.156	0.195	0.234	0.313	0.391	0.469	0.547	0.625	0.703	0.781	0.859
MSQX	10	190	6.6	0.026	0.033	0.040	0.053	0.066	0.079	0.092	0.106	0.119	0.132	0.145
	20		13.5	0.054	0.068	0.081	0.108	0.135	0.162	0.189	0.216	0.243	0.270	0.297
	30		20.1	0.080	0.101	0.121	0.161	0.201	0.241	0.281	0.322	0.362	0.402	0.442
	50		34.1	0.136	0.171	0.205	0.273	0.341	0.409	0.477	0.546	0.614	0.682	0.750

Low-Speed Compact Rotary Actuator Rack \& Pinion Type Series CRQ2X Size: 10, 15, 20, 30, 40

How to Order

Applicable Auto Switches/Refer to pages 24 through to 27 for further information on auto switches.

$\stackrel{\stackrel{\circ}{2}}{\stackrel{\circ}{\nwarrow}}$	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch model		Lead wire length (m)*				Applicable load		
					DC		AC			$\begin{array}{r} 0.5 \\ \text { (Nil) } \\ \hline \end{array}$	$\begin{gathered} 1 \\ (M) \end{gathered}$	$\begin{gathered} \hline 3 \\ \text { (L) } \end{gathered}$	$\begin{gathered} \hline 5 \\ (\mathrm{Z}) \end{gathered}$			
							Perpendicular	In-line								
		Grommet	Yes	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$		-	M9NV	M9N	\bigcirc	-	\bigcirc	\bigcirc	IC	Relay, PLC
	-			3-wire (PNP)			M9PV		M9P	\bigcirc	-	\bigcirc	\bigcirc	circuit		
				2-wire		12 V	M9BV		M9B	\bigcirc	-	\bigcirc	\bigcirc	-		
	Diagnostic indication (2-color)			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$	M9NWV		M9NW	\bigcirc	-	\bigcirc	\bigcirc	IC circuit		
				3-wire (PNP)			M9PWV		M9PW	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
				2-wire		12 V	M9BWV		M9BW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-		
	Water resistant (2-color)			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$	M9NAV		M9NA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit		
				3-wire (PNP)			M9PAV		M9PA	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
				2-wire		12 V	M9BAV		M9BA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-		
	-	Grommet	No	2-wire	24 V	12 V	100 V or less	A90V	A90	\bigcirc	-	\bigcirc	-	IC circuit	Relay, PLC	
			Yes	3-wire (NPN equiv.)	-	5 V	-	A96V	A96	\bigcirc	-	\bigcirc	-		-	
				2-wire	24 V	12 V	100 V	A93V	A93	\bigcirc	-	\bigcirc	-	-	Relay, PLC	

[^21]- Auto switches marked with " \bigcirc " are manufactured upon a receipt of order
- For details about auto switches with pre-wired connector, refer to "SMC Best Pneumatics 2004" Vol. 11 catalog.
- Auto switches are shipped together, (but not assembled).

Specifications

Size	10	15	20	30	40
Fluid	Air (Non-lube)				
Max. operating pressure	0.7 MPa		1 MPa		
Min. operating pressure	0.15 MPa		0.1 MPa		
Ambient and fluid temperature	0° to $60^{\circ} \mathrm{C}$ (No freezing)				
Cushion	Not attached				
Angle adjustment range	Rotation end $\pm 5^{\circ}$				
Rotation angle	80° to $100^{\circ}, 170^{\circ}$ to 190°				
Port size	M5 x 0.8		Rc $1 / 8$, G $1 / 8$, NPT $1 / 8$, NPTF $1 / 8$		
Output (N•m)*	0.30	0.75	1.8	3.1	5.3

* Output under the operating pressure at 0.5 MPa . Refer to page 4 for further information.

Allowable Kinetic Energy and Rotation Time Adjustment Range

Size	Allowable kinetic energy (J)	Stable operational rotation time adjustment range (s/90 $)$
$\mathbf{1 0}$	0.00025	0.7 to 5
$\mathbf{1 5}$	0.00039	
$\mathbf{2 0}$	0.025	
$\mathbf{3 0}$	0.048	
$\mathbf{4 0}$	0.081	

Note) If operated where the kinetic energy exceeds the allowable value, this may cause damage to the internal parts and result in product failure. Please pay special attention to the kinetic energy levels when designing, adjusting and during operation to avoid exceeding the allowable limit.

Weight

Size	(g)	
	90°	180°
10	120	150
15	220	270
20	600	700
30	900	1100
40	1400	1600

* Not including the weight of auto switch.

Series CRQ2X

Rotation Range

When pressurized from the port indicated by the arrow, the shaft will rotate in a clockwise direction.

Rotation angle: 90°

Rotation angle: $\mathbf{1 8 0}^{\boldsymbol{\circ}}$

Low-Speed Compact Rotary Actuator Rack \& Pinion Type

Construction
Standard
Size 10/15

Component Parts

No.	Description	Material
$\mathbf{1}$	Body	Aluminum alloy
$\mathbf{2}$	Cover	Aluminum alloy
$\mathbf{3}$	Plate	Aluminum alloy
$\mathbf{4}$	End cover	Aluminum alloy
$\mathbf{5}$	Piston	Stainless steel
$\mathbf{6}$	Size: 10, 15	Shaft
	Size: $\mathbf{2 0 , 3 0 , 4 0}$	
$\mathbf{7}$	Seal retainer	Chrome molybdenum steel
$\mathbf{8}$	Bearing retainer	Aluminum alloy
$\mathbf{9}$	Wear ring	Aluminum alloy
$\mathbf{1 0}$	Hexagon socket head cap screw	Resin
$\mathbf{1 1}$	Hexagon nut with flange	Stainless steel
$\mathbf{1 2}$	Cross recessed screw No. $\mathbf{0}$	Steel wire

Replacement Parts

Description	Part no.				Note	
	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$		
Seal kit	$\mathrm{P} 473010-23$	$\mathrm{P} 473020-23$	$\mathrm{P} 473030-23$	$\mathrm{P} 473040-23$	$\mathrm{P} 473050-23$	A set of above numbers (9), (19, (20), (21) and (22)

Series CRQ2X

Construction

With auto switch Size 10/15

With auto switch
Size 20/30/40

Dimensions

Size	Rotation angle	A	AU*	B	BA	BB	BC	BD	BU	$\underset{(\mathrm{g} 6)}{\mathrm{D}}$	$\begin{gathered} \text { DD } \\ \text { (h9) } \end{gathered}$	H
10	$90^{\circ}, 180^{\circ}$	42	(8.5)	29	8.5	17	6.7	2.2	16.7	5	12	18
15	$90^{\circ}, 180^{\circ}$	53	(9.5)	31	9	26.4	10.6	-	23.1	6	14	20

Size	Rotation angle	W	Q	S	US	UW	ab	M	TA	TC	TD
10	90°	4.5	17	56	35	44	6	9	15.5	8	15.4
	180°			69							
15	90°	5.5	20	65	40	50	7	10	16	9	17.6
	180°			82							

* The AU dimension is not the dimension at the time of shipment, since its dimension is for adjustment parts.

Series CRQ2X

Dimensions

Size 20/30/40

Size	Rotation angle	A	AU*	B	BA	BB	BC	BD	BE	BU	$\underset{\text { (g6) }}{\text { D }}$	$\begin{gathered} \text { DD } \\ \text { (h9) } \end{gathered}$	F	H	J	JA	JB	JJ	K
20	$90^{\circ}, 180^{\circ}$	63	(11)	50	14	34	14.5	-	-	30.4	10	25	2.5	30	M8 $\times 1.25$	11	6.5	-	3
30	$90^{\circ}, 180^{\circ}$	69	(11)	68	14	39	16.5	49	16	34.7	12	30	3	32	M10 $\times 1.5$	14	8.5	M5 x 0.8 depth 6	4
40	$90^{\circ}, 180^{\circ}$	78	(13)	76	16	47	18.5	55	16	40.4	15	32	3	36	M10 $\times 1.5$	14	8.6	M6 $\times 1$ depth 7	5

Size	Rotation angle	Q	S	W	Keyway dimensions		US	TA	TB	TC	TD	$\begin{gathered} \text { TF } \\ \text { (H9) } \end{gathered}$	$\begin{gathered} \text { TG } \\ \text { (H9) } \end{gathered}$	TL	UW	G	M	N	L
					b	I													
20	90°	29	104	11.5	$4_{-0.03}^{0}$	20	59	24.5	1	13.5	27	4	4	2.5	74	$8_{-0.1}^{0}$	15	11	9.6 ${ }_{-0.1}^{0}$
	180°		130																
30	90°	33	122	13.5	$4_{-0.03}^{0}$	20	65	27	2	19	36	4	4	2.5	83	$10_{-0.1}^{0}$	18	13	$11.4{ }_{-0.1}^{0}$
	180°		153																
40	90°	37	139	17	$5_{-0.03}^{0}$	25	73	32.5	2	20	39.5	5	5	3.5	93	$11{ }_{-0.1}^{0}$	20	15	$14 \stackrel{0}{-0.1}$
	180°		177																

[^22]
Unit Used as Flange Mount

The L dimensions of this unit are shown in the below table. When hexagon socket head cap bolt of the JIS standard is used, the head of the bolt will recess into the groove of actuator.

Size	\mathbf{L}	Screw
$\mathbf{1 0}$	13	M4
$\mathbf{1 5}$	16	M4
$\mathbf{2 0}$	22.5	M6
$\mathbf{3 0}$	24.5	M8
$\mathbf{4 0}$	28.5	M8

Auto Switch Proper Mounting Position (at Rotation End Detection)

Size	Rotation angle	Reed switch				Solid state switch			
		A	B	Operating angle (θ m)	$\begin{aligned} & \text { Hystere- } \\ & \text { sis } \\ & \text { angle } \\ & \hline \end{aligned}$	A	B	Operating angle (θ m)	$\begin{array}{\|l} \hline \text { Hystere- } \\ \text { sis } \\ \text { angle } \\ \hline \end{array}$
10	90°	15	21.5	63°	12°	19	25.5	75°	3°
	180°	18	31			22	35		
15	90°	18.5	27	52°	9°	22.5	31	69°	3°
	180°	22.5	39.5			26.5	43.5		
20	90°	36	48.5	41°	9°	40	52.5	56°	4°
	180°	42	67.5			46	71.5		
30	90°	43	59	32°	7°	47	63	43°	3°
	180°	51	82			55	86		
40	90°	50	69	24°	5°	54	73	36°	4°
	180°	59.5	97.5			63.5	101.5		

Operating angle $\theta \mathbf{m}$: Value of the operating range of single auto switch (Lm) as represented by rotation angle for shaft
Hysteresis angle: Value of the auto switch hysteresis as represented by angle

Note) For actual setting, adjustment shall be made after checking the auto switch operating condition.

Low-Speed Rotary Table Rack \& Pinion Type

 Series MSQX Size: 10, 20, 30, 50How to Order

Applicable Auto Switches/Refer to pages 24 through to 27 for further information on auto switches.

$\stackrel{\stackrel{\circ}{2}}{\underset{\sim}{2}}$	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch model		Lead wire length (m)*				Applicable load		
					DC		AC			$\begin{gathered} 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 1 \\ (M) \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\stackrel{5}{(\mathrm{Z})}$			
							Perpendicular	In-line								
$\underset{\sim}{\text { ᄃ }}$		Grommet	Yes	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$		-	M9NV	M9N	\bigcirc	-	\bigcirc	\bigcirc	IC	Relay, PLC
	-			3-wire (PNP)			M9PV		M9P	\bigcirc	-	\bigcirc	\bigcirc	circuit		
				2-wire		12 V	M9BV		M9B	\bigcirc	-	\bigcirc	\bigcirc	-		
	Diagnostic indication (2-color)			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$	M9NWV		M9NW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit		
				3-wire (PNP)			M9PWV		M9PW	\bigcirc	-	\bigcirc	\bigcirc			
				2-wire		12 V	M9BWV		M9BW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-		
	Water resistant (2-color)			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$	M9NAV		M9NA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit		
				3-wire (PNP)			M9PAV		M9PA	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
				2-wire		12 V	M9BAV		M9BA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-		
	-	Grommet	No	2-wire	24 V	12 V	100 V or less	A90V	A90	\bigcirc	-	\bigcirc	-	IC circuit	Relay, PLC	
			Yes	3-wire (NPN equiv.)	-	5 V	-	A96V	A96	\bigcirc	-	\bigcirc	-		-	
				2-wire	24 V	12 V	100 V	A93V	A93	\bigcirc	-	\bigcirc	-	-	Relay, PLC	

** Although it is possible to mount water resistant type auto switches, note that the rotary actuator itself is not of water resistant construction.

* Lead wire length symbols: $0.5 \mathrm{~m}$. Nil (Example) M9NW

$1 \mathrm{~m} \ldots \ldots$. M	M9NWM
$3 \mathrm{~m} \ldots \ldots . \mathrm{L}$	M9NWL
$5 \mathrm{~m} \ldots \ldots$	Z

- Auto switches marked with " \bigcirc " are manufactured upon a receipt of order.
- For details about auto switches with pre-wired connector, refer to "SMC Best Pneumatics 2004" Vol. 11 catalog
- Auto switches are shipped together, (but not assembled).

Made to Order \rightarrow Refer to "SMC Best Pneumatics 2004" Vol. 11 catalog.

- -50 Without indicator light
-61 Flexible lead wire
- Pre-wired connector

Specifications

Size		10	20	30	50
Fluid		Air (Non-lube)			
Max. operating pressure		1 MPa			
Min. operating pressure		0.1 MPa			
Ambient and fluid temperature		0° to $60^{\circ} \mathrm{C}$ (No freezing)			
Cushion		Not attached			
Angle adjustment range		0 to 190°			
Maximum rotation angle		190°			
Port size	End port	M5 x 0.8		Rc $1 / 8, \mathrm{G} 1 / 8$, NPT $1 / 8$, NPTF $1 / 8$	
	Side port	M5 x 0.8			
Output (N•m)*		0.89	1.8	2.7	4.6

* Output under the operating pressure at 0.5 MPa . Refer to page 4 for further information.

JIS Symbol

Allowable Kinetic Energy and Rotation Time Adjustment Range

Size	Allowable kinetic energy (J)	Stable operational rotation time adjustment range $\left(\mathrm{s} / 90^{\circ}\right)$
10	0.007	
20	0.025	
30	0.048	
50	0.081	

Note) If operated where the kinetic energy exceeds the allowable value, this may cause damage to the internal parts and result in product failure. Please pay special attention to the kinetic energy levels when designing, adjusting and during operation to avoid exceeding the allowable limit.

Weight

Size	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{5 0}$
Basic	530	990	1290	2080

[^23]
Series MSQX

Rotation Direction and Rotation Angle

- The rotary table turns in the clockwise direction when the A port is pressurized, and in the counter-clockwise direction when the B port is pressurized.
- By adjusting the adjustment bolt, the rotation end can be set within the range shown in the drawing for the desired rotation angle.

With Adjustment Bolt

Size	Adjustment angle per rotation of angle adjustment screw
$\mathbf{1 0}$	10.2°
$\mathbf{2 0}$	7.2°
$\mathbf{3 0}$	6.5°
$\mathbf{5 0}$	8.2°

Note) - The drawing shows the rotation range of the positioning pin hole.

- The pin hole position in the drawing shows the counter-clockwise rotation end when the adjustment bolts A and B are tightened equally and the rotation is adjusted 180°.

Rotation Angle Range Example

- Various rotation ranges are possible as shown in the drawings below using adjustment bolts A and B. (The drawings also show the rotation ranges of the positioning pin hole.)
- The rotation angle can also be set on a type with inertial absorber.

Table Displacement (Reference values)

- The following graphs show the displacement at point A, which is 100 mm apart from the center of rotation, where the load is applied.

Series MSQX

Construction

Component Parts

No.	Description	Material
$\mathbf{1}$	Body	Aluminium alloy
$\mathbf{2}$	Cover	Aluminium alloy
3	Plate	Resin
4	Seal	NBR
5	End cover	Aluminium alloy
6	Piston	Stainless steel
$\mathbf{7}$	Pinion	Chrome molybdenum steel
$\mathbf{8}$	Hexagon nut with flange	Steel wire
9	Adjustment bolt	Chrome molybdenum steel
$\mathbf{1 0}$	Seal retainer	Aluminium alloy
$\mathbf{1 1}$	Gasket	NBR
$\mathbf{1 2}$	Gasket	NBR
13	Table	Aluminium alloy
14	Bearing retainer	Aluminium alloy

Component Parts

No.	Description	Material
$\mathbf{1 5}$	Magnet	-
$\mathbf{1 6}$	Wear ring	Resin
$\mathbf{1 7}$	Piston seal	NBR
$\mathbf{1 8}$	Deep groove ball bearing	Bearing steel
$\mathbf{1 9}$	Deep groove ball bearing	Bearing steel
$\mathbf{2 0}$	Cross recessed screw No. 0	Steel wire
$\mathbf{2 1}$	Cross recessed screw	Size: $\mathbf{1 0}$
	Low head cap screw	Size: $\mathbf{2 0}$ to $\mathbf{5 0}$
$\mathbf{2 2}$	Hexagon socket head cap screw	Chrome molybdenum steel
$\mathbf{2 3}$	Hexagon socket head cap screw	Stainless steel
$\mathbf{2 4}$	CS-type retaining ring	Stainless steel
$\mathbf{2 5}$	Parallel pin	Spring steel
$\mathbf{2 6}$	Seal washer	Size: $\mathbf{1 0}$ to $\mathbf{5 0}$
$\mathbf{2 7}$	Plug	Carbon steel

Replacement Parts

Description	Part no.			Note	
	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$		
Seal kit	P523010-20	P523020-20	P523030-20	P523040-20	A set of above numbers (4), (11), (12), (16), (17) and (26)

Low-Speed Rotary Table Rack \& Pinion Type

Dimensions
Basic: MSQXB $\square A$

Size	AA	A	AU	AV	AW	AX	AY	BA	BB	BC	BD	BE	CA	CB	D	DD	DE	DF	DG	FA	FB	FC	FD	H	J	JA	JB
10	55.4	50	8.6	20	15.5	12	4	9.5	34.5	27.8	60	27	4.5	28.5	45h9	46h9	20H9	5	15H9	8	4	3	4.5	13	6.8	11	6.5
20	70.8	65	10.6	27.5	16	14	5	12	46	30	76	34	6	30.5	60h9	61h9	28H9	9	17H9	10	6	2.5	6.5	17	8.6	14	8.5
30	75.4	70	10.6	29	18.5	14	5	12	50	32	84	37	6.5	33.5	65h9	67h9	32H9	9	22H9	10	4.5	3	6.5	17	8.6	14	8.5
50	85.4	80	14	38	22	19	6	15.5	63	37.5	100	50	10	37.5	75h9	77h9	35H9	10	26H9	12	5	3	7.5	20	10.5	18	10.5

Size	JC	JD	JJ	JU	P	Q	S	SD	SE	SF	SU	UU	WA	WB	WC	WD	WE	WF	XA	XB	XC	YA	YB	YC
10	M 8×1.25	12	M5 x 0.8	M 8×1	M5 x 0.8	34	92	9	13	45	17.7	47	15	3H9	3.5	M5 x 0.8	8	32	27	3H9	3.5	19	3H9	3.5
20	M10 $\times 1.5$	15	M6x 1	M10 $\times 1$	M5 x 0.8	37	117	10	12	60	25	54	20.5	4H9	4.5	M6x 1	10	43	36	4H9	4.5	24	4H9	4.5
30	M10 1.5	15	M6 x 1	M10 x 1	Rc $1 / 8{ }^{* *}$	40	127	11.5	14	65	25	57	23	4H9	4.5	M6 x 1	10	48	39	4H9	4.5	28	4H9	4.5
50	M12 1.75	18	M8 $\times 1.25$	M14 $\times 1.5$	Rc 1/8**	46	152	14.5	15	75	31.4	66	26.5	5H9	5.5	M8 $\times 1.25$	12	55	45	5H9	5.5	33	5H9	5.5

[^24]
Series MSQX

Auto Switch Proper Mounting Position (at Rotation End Detection)

Size	Rotation angle	Reed switch					Solid state switch			
		\mathbf{B}	Operating angle $(\theta \mathbf{~ m})$	Hysteresis angle	\mathbf{A}	\mathbf{B}	Operating angle $(\theta \mathbf{~ m})$	Hysteresis angle		
$\mathbf{1 0}$	190°	17	36	90°	10°	21	40	60°	10°	
$\mathbf{2 0}$	190°	23	50	80°	10°	27	54	50°	10°	
$\mathbf{3 0}$	190°	27	56	65°	10°	31	60	50°	10°	
$\mathbf{5 0}$	190°	33	68	50°	10°	37	72	40°	10°	

Operating angle $\theta \mathrm{m}$: Value of the operating range of single auto switch (Lm) as represented by rotation angle for shaft Hysteresis angle: Value of the auto switch hysteresis as represented by angle
Note) For actual setting, adjustment shall be made after checking the auto switch operating condition.

Series CRQ2X/MSQX Auto Switch Specifications

Auto Switch Common Specifications

Type	Reed switch	Solid state switch
Leakage current	None	3-wire: $100 \mu \mathrm{~A}$ or less 2 -wire: 0.8 mA or less
Operating time	1.2 ms	1 ms or less
Impact resistance	$300 \mathrm{~m} / \mathrm{s}^{2}$	$1000 \mathrm{~m} / \mathrm{s}^{2}$
Insulation resistance	$50 \mathrm{M} \Omega$ or more at 500 VDC Mega (between lead wire and case)	
Withstand voltage	1500 VAC for 1 minute (between lead wire and case)	1000 VAC for 1 minute (between lead wire and case)
Ambient temperature	-10 to $60^{\circ} \mathrm{C}$	
Enclosure	IEC60529 standard IP67, JIS C 0920 waterproof construction	
Standard	Conforming to CE Standards	

Lead Wire Length

Lead wire length indication

Note 1) Applicable auto switch with 5 m lead wire " Z "
Solid state switch: Manufactured upon receipt of order as standard.
Note 2) To designate solid state switches with flexible specifications, add "-61" after the lead wire length. Flexible cable is used for D-M9 $\square(\mathrm{V})$, D M9 $\square \mathrm{W}(\mathrm{V}), \mathrm{D}-\mathrm{M} 9 \square \mathrm{~A}(\mathrm{~V})$ as standard. There is no need to place the suffix -61 to the end of part number.
Note 3) $1 \mathrm{~m}(\mathrm{M}): \mathrm{D}-\mathrm{M} 9 \square \mathrm{~W}, \mathrm{D}-\mathrm{M} 9 \square \mathrm{~A}(\mathrm{~V})$.
Note 4) Lead wire length tolerance

Lead wire length	Tolerance
0.5 m	$\pm 15 \mathrm{~mm}$
1 m	$\pm 30 \mathrm{~mm}$
3 m	$\pm 90 \mathrm{~mm}$
5 m	$\pm 150 \mathrm{~mm}$

Contact Protection Box: CD-P11, CD-P12

<Applicable switch model>

D-A9 \square (V) type
The above auto switch type does not have a built-in contact protection circuit.
(1) Where the operation load is an inductive load.
(2) Where the wiring length to load is greater than 5 m .
(3) Where the load voltage is $\mathbf{1 0 0}$ VAC.

Therefore, use a contact protection box with the switch for any of the above cases:
The contact life may be shortened (due to permanent energizing conditions). Since the solid state auto switch is a semiconductor switch which has no contacts, no contact protection box is needed.
(4) Where the load voltage is $\mathbf{1 1 0}$ VAC.

When the load voltage is increased by more than 10% to the rating of applicable auto switches above, use a contact protection box (CD-P11) to reduce the upper limit of the load current by 10% so that it can be set within the range of the load current range.

Specifications

Part no.	CD-P11		CD-P12		
Load voltage	100 VAC	200 VAC	24 VDC		
Max. load current	25 mA	12.5 mA	50 mA		* Lead wire length - Switch connection side 0.5 m
:---					
Load connection side 0.5 m					

Internal Circuit

CD-P11		OUT Bro ~ OUT Blue
CD-P12		OUT (+) Brown OUT (-) Blue

Dimensions

Connection

To connect a switch unit to a contact protection box, connect the lead wire from the side of the contact protection box marked SWITCH to the lead wire coming out of the switch unit. Keep the switch as close as possible to the contact protection box, with a lead wire length of no more than 1 meter.

Auto Switch
 Connections and Examples

Basic Wiring

Solid state 3-wire, NPN

Solid state 3-wire, PNP

2-wire
(Solid state)

2-wire

Power supplies for switch and load are separate.)

(Reed)

Example of Connection to PLC (Programmable Logic Controller)

- Sink input specification

3-wire, NPN

- Source input specification

3-wire, PNP

2-wire

2-wire

Connect according to the applicable PLC input specifications, since the connection method will vary depending on the PLC input specifications.

Example of AND (Serial) and OR (Parallel) Connection

- 3-wire

AND connection for NPN output (using relays)

2-wire with 2-switch AND connection

Load voltage at $\mathrm{ON}=\underset{\text { Power supply }}{\text { voltage }}-\underset{\text { voltage }}{\text { Residual }} \times 2 \mathrm{pcs}$.

$$
\begin{aligned}
& =24 \mathrm{~V}-4 \mathrm{~V} \times 2 \mathrm{pcs} . \\
& =16 \mathrm{~V}
\end{aligned}
$$

Example: Power supply is 24 VDC.
Internal voltage drop in switch is 4 V .

AND connection for NPN output (performed with switches only)

The indicator lights will illuminate when both switches are turned ON.

2-wire with 2-switch OR connection

Leakage current from switch is 1 mA .

Reed Switch: Direct Mounting Style D-A90(V)/D-A93(V)/D-A96(V) (E

Grommet

©Caution

Precautions

Fix the switch with the existing screw installed on the switch body. The switch may be damaged if a screw other than the one supplied is used.

Auto Switch Internal Circuit

D-A93(V)

D-A96(V)

Note) (1) In a case where the operation load is an inductive load.
(2) In a case where the wiring load is greater than 5 m .
(3) In a case where the load voltage is 100 VAC.
Use the auto switch with a contact protection box in any of the above mentioned cases. (For details about the contact protection box, refer to page 22.)

Auto Switch Specifications

				PLC: Prog	mable	gic Controller
D-A90/D-A90V (Without indicator light)						
Auto switch part no.	D-A90	D-A90V	D-A90	D-A90V	D-A90	D-A90V
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Applicable load	IC circuit, Relay, PLC					
Load voltage	24 VAC/DC or less		$48 \mathrm{VAC} / \mathrm{DC}$ or less		100 VAC/DC or less	
Maximum load current	50 mA		40 mA		20 mA	
Contact protection circuit	None					
Internal resistance	1Ω or less (including lead wire length of 3 m)					
Standard	Conforming to CE Standards					
D-A93/D-A93V/D-A96/D-A96V (With indicator light)						
Auto switch part no.	D-A93	D-A93V	D-A93	D-A93V	D-A96	D-A96V
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Applicable load	Relay, PLC				IC circuit	
Load voltage	24 VDC		100 VAC		4 to 8 VDC	
Load current range and max. load current	5 to 40 mA		5 to 20 mA		20 mA	
Contact protection circuit	None					
Internal voltage drop	D-A93 - 2.4 V or less (to 20 mA)/3 V or less (to 40 mA) D-A93V - 2.7 V or less				0.8 V or less	
Indicator light	Red LED illuminates when turned ON.					
Standard	Conforming to CE Standards					

- Lead wires

D-A90(V)/D-A93(V) — Oilproof heavy-duty vinyl cable: ø2.7, $0.18 \mathrm{~mm}^{2} \times 2$ cores (Brown, Blue), 0.5 m D-A96(V) - Oilproof heavy-duty vinyl cable: ø2.7, $0.15 \mathrm{~mm}^{2} \times 3$ cores (Brown, Black, Blue), 0.5 m
Note 1) Refer to page 22 for reed switch common specifications.
Note 2) Refer to page 22 for lead wire lengths.
Note 3) If load current is less than 5 mA , the visibility of the indicator light is decreased. If less than 2.5 mA , the light may become invisible. From the point of view of contact output, however, it is not a problem as long as the load current is more than 1 mA .

Weight

Unit: g

Auto switch part no.		D-A90(V)	D-A93(V)	D-A96(V)
Lead wire length (m)	0.5	6	6	8
	3	30	30	41

Dimensions
Unit: mm
D-A90/A93/A96

D-A90V/A93V/A96V

Solid State Switch: Direct Mounting Style D-M9N(V)/D-M9P(V)/D-M9B(V) (E

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- UL certified (style 2844) lead cable is used.
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard spec.
- Brightness of indicator light is 2 times greater than the conventional model (SMC comparison).

\triangle Caution

Precautions

Fix the switch with the existing screw installed on the switch body. The switch may be damaged if a screw other than the one supplied is used.
Auto Switch Internal Circuit

Auto Switch Specifications

PLC: Programmable Logic Controller						
D-M9 $\square / \mathrm{D}-\mathrm{M} 9 \square \mathrm{~V}$ (With indicator light)						
Auto switch part no.	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON.					
Standard	Conforming to CE Standards					

- Lead wires - Oilproof heavy-duty vinyl cable: $\varnothing 2.7 \times 3.2$ ellipse D-M9B(V) $0.15 \mathrm{~mm}^{2} \times 2$ cores
D-M9N(V), D-M9P(V) $\quad 0.15 \mathrm{~mm}^{2} \times 3$ cores
Note 1) Refer to page 22 for solid state switch common specifications.
Note 2) Refer to page 22 for lead wire lengths.

Weight

Unit: g

Auto switch part no.		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length (m)	0.5	8	8	7
	3	41	41	38
	5	68	68	63

Dimensions

Unit: mm
D-M9 \square

D-M9 \square V

SSMC

2-Color Indication Solid State Switch: Direct Mounting Style
 D-M9NW(V)/D-M9PW(V)/D-M9BW(V)

Auto Switch Specifications

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- UL certified (style 2844) lead cable is used.
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard spec. - The optimum operating position can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)
- Brightness of indicator light is 2 times greater than the conventional model (SMC comparison).

Auto Switch Internal Circuit

D-M9PW(V)

D-M9BW(V)

Indicator light / Display method

PLC: Programmable Logic Controller						
D-M9 \square W/D-M9 \square WV (With indicator light)						
Auto switch part no.	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP			-
Applicable load	IC circuit, Relay, PLC				24 VDC re	relay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)					
Current consumption	10 mA or less					
Load voltage	28 VD	or less		-	24 VDC (10	to 28 VDC)
Load current	40 mA or less				2.5 to	40 mA
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or	r less
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA	or less
Indicator light	Operating position Red LED illuminates. Optimum operating position Green LED illuminates.					
Standard	Conforming to CE Standards					

- Lead wires - Oilproof heavy-duty vinyl cable: ø 2.7×3.2 ellipse

D-M9BW(V)
$0.15 \mathrm{~mm}^{2} \times 2$ cores
D-M9NW(V), D-M9PW(V) $0.15 \mathrm{~mm}^{2} \times 3$ cores
Note 1) Refer to page 22 for solid state switch common specifications.
Note 2) Refer to page 22 for lead wire lengths.
Weight Unit: g

Auto switch part no.		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Lead wire length (m)	0.5	8	8	7
	1	14	14	13
	3	41	41	38
	5	68	68	63

Dimensions

D-M9■W

D-M9 $\square W V$

Water Resistant 2-Color Indication Solid State Switch: Direct Mounting Style D-M9NA(V)/D-M9PA(V)/D-M9BA(V) C E

Grommet

- Water (coolant) resistant type
- 2-wire load current is reduced (2.5 to 40 mA).
- UL certified (style 2844) lead cable is used.
- The optimum operating position can be determined by the color of the light. (Red Green Red)

Auto Switch Internal Circuit D-M9NA(V)

D-M9PA(V)

D-M9BA(V)

Indicator light / Display method

Auto Switch Specifications

PLC: Programmable Logic Controller						
D-M9 \square A/D-M9 \square AV (With indicator light)						
Auto switch part no.	D-M9NA	D-M9NAV	D-M9PA	D-M9PAV	D-M9BA	D-M9BAV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC r	relay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC	or less			24 VDC (10	to 28 VDC)
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating position Red LED illuminates. Optimum operating position Green LED illuminates.					
Standard	Conforming to CE Standards					

- Lead wires - Oilproof heavy-duty vinyl cable: ø2.7 x 3.2 ellipse D-M9BA(V) $0.15 \mathrm{~mm}^{2} \times 2$ cores
D-M9NA(V), D-M9PA(V) $\quad 0.15 \mathrm{~mm}^{2} \times 3$ cores
Note 1) Refer to page 22 for solid state switch common specifications.
Note 2) Refer to page 22 for lead wire lengths.

Weight

Auto switch part no.		D-M9NA(V)	D-M9PA(V)	D-M9BA(V)
Lead wire length (m)	0.5	8	8	7
	1	14	14	13
	3	41	41	38
	5	68	68	63

Dimensions

Unit: mm
D-M9 \square A

D-M9 \square AV

6. Most sensitive position

Series MSQX

Made to Order

Please contact SMC for detailed specifications, lead times and prices.

With External Stopper

Symbol

Prevent holding torque from being halved at the rotation end.

How to Order

Dimensions

Series CRQ2X/MSQX Safety Instructions

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by labels of "Caution", "Warning" or "Danger". To ensure safety, be sure to observe ISO 4414 Note 1), JIS B 8370 Note 2) and other safety practices.

Explanation of the Labels

Labels	Explanation of the labels
A. Danger	In extreme conditions, there is a possible result of serious injury or loss of life.
4 Warning	Operator error could result in serious injury or loss of life.
! Caution	Operator error could result in injury Note 3) or equipment damage. Note 4)

Note 1) ISO 4414: Pneumatic fluid power - General rules relating to systems
Note 2) JIS B 8370: General Rules for Pneumatic Equipment
Note 3) Injury indicates light wounds, burns and electrical shocks that do not require hospitalization or hospital visits for long-term medical treatment.
Note 4) Equipment damage refers to extensive damage to the equipment and surrounding devices.

Selection/Handling/Applications

1. The compatibility of the pneumatic equipment is the responsibility of the person who designs the pneumatic system or decides its specifications.
Since the products specified here are used in various operating conditions, their compatibility for the specific pneumatic system must be based on specifications or post analysis and/or tests to meet the specific requirements. The expected performance and safety assurance are the responsibility of the person who has determined the compatibility of the system. This person should continuously review the suitability of all items specified, referring to the latest catalog information with a view to giving due consideration to any possibility of equipment failure when configuring a system.
2. Only trained personnel should operate pneumatically operated machinery and equipment.

Compressed air can be dangerous if handled incorrectly. Assembly, handling or repair of pneumatic systems should be performed by trained and experienced operators. (Understanding JIS B 8370 General Rules for Pneumatic Equipment, and other safety rules are included.)
3. Do not service machinery/equipment or attempt to remove components until safety is confirmed.

1. Inspection and maintenance of machinery/equipment should only be performed once measures to prevent falling or runaway of the driven objects have been confirmed.
2. When equipment is removed, confirm that safety process as mentioned above. Turn off the supply pressure for this equipment and exhaust all residual compressed air in the system, and release all the energy (liquid pressure, spring, condenser, gravity).
3. Before machinery/equipment is restarted, take measures to prevent quick extension of a cylinder piston rod, etc.
4. If the equipment will be used in the following conditions or environment, please contact SMC first and be sure to take all necessary safety precautions.
5. Conditions and environments beyond the given specifications, or if product is used outdoors.
6. Installation on equipment in conjunction with atomic energy, railway, air navigation, vehicles, medical equipment, food and beverages, recreation equipment, emergency stop circuits, clutch and brake circuits in press applications, or safety equipment.
7. An application which has the possibility of having negative effects on people, property, requiring special safety analysis.
8. If the products are used in an interlock circuit, prepare a double interlock style circuit with a mechanical protection function for the prevention of a breakdown. And, examine the devices periodically if they function normally or not.

Exemption from Liability

1. SMC, its officers and employees shall be exempted from liability for any loss or damage arising out of earthquakes or fire, action by a third person, accidents, customer error with or without intention, product misuse, and any other damages caused by abnormal operating conditions.
2. SMC, its officers and employees shall be exempted from liability for any direct or indirect loss or damage, including consequential loss or damage, loss of profits, or loss of chance, claims, demands, proceedings, costs, expenses, awards, judgments and any other liability whatsoever including legal costs and expenses, which may be suffered or incurred, whether in tort (including negligence), contract, breach of statutory duty, equity or otherwise.
3. SMC is exempted from liability for any damages caused by operations not contained in the catalogs and/or instruction manuals, and operations outside of the specification range.
4. SMC is exempted from liability for any loss or damage whatsoever caused by malfunctions of its products when combined with other devices or software.

Series CRQ2X/MSQX Auto Switches Precautions 1
Be sure to read this before handling.

Design and Selection

\triangle Warning

1. Confirm the specifications.

Read the specifications carefully and use this product appropriately.
The product may be damaged or malfunction if it is used outside the range of specifications of current load, voltage, temperature or impact. We do not guarantee any damage in any case the product is used outside of the specification range.
2. Pay attention to the length of time that a switch is on at an intermediate stroke position.
When an auto switch is placed at an intermediate position of the stroke and a load is driven at the time the piston passes, the auto switch will operate. However if the speed is too great, the operating time will be shortened and the load may not operate properly. The maximum detectable piston speed is:

$$
\mathrm{V}(\mathrm{~mm} / \mathrm{s})=\frac{\text { Auto switch operating range }(\mathrm{mm})}{\text { Load operating time }(\mathrm{ms})} \times 1000
$$

3. Keep wiring as short as possible.
<Reed switch>
As the length of the wiring to a load gets longer, the rush current at switching ON becomes greater, and this may shorten the product's life. (The switch will stay ON all the time.)
Use a contact protection box when the wire length is 5 m or longer.

<Solid state switch>

Although wire length should not affect switch function, use a wire 100 m or shorter.
If the wiring is longer it will likely increase noise although the length is less than 100 m .
When the wire length is long, we recommend attaching the ferrite core to the both ends of the cable to prevent excess noise.
Since the solid state auto switch is a semiconductor switch which has no contacts, no contact protection box is needed.
4. Do not use a load that generates surge voltage. If a surge voltage is generated, the discharge occurs at the contact, possibly resulting in the shortening of product life.
<Reed switch>
If driving a load such as a relay that generates a surge voltage, use a switch with a built-in contact protection circuit or use a contact protection box.

<Solid state switch>

Although a zener diode for surge protection is connected at the output side of a solid state auto switch, damage may still occur if the surge is applied repeatedly. When a load, such as a relay or solenoid, which generates surge is directly driven, use a type of switch with a built-in surge absorbing element.

5. Cautions for use in an interlock circuit

When an auto switch is used for an interlock signal requiring high reliability, devise a double interlock system to avoid trouble by providing a mechanical protection function, or by also using another switch (sensor) together with the auto switch. Also perform periodic maintenance and confirm proper operation.
6. Do not make any modifications (including exchanging the printed circuit boards) to the product.
It may cause human injuries and accidents.

\triangle Caution

1. Use caution when multiple actuators are used and close to each other.
When two or more auto switch actuators are lined up in close proximity to each other, magnetic field interference may cause the switches to malfunction. Maintain a minimum cylinder separation of 40 mm . (When the allowable interval is specified for each cylinder series, use the indicated value.)
Use of a magnetic screen plate (MU-S025) or magnetic screen tape can reduce the interference of magnetic force.
2. Take note of the internal voltage drop of the auto switch.

<Reed switch>

1) Auto switches with an indicator light (Model D-A96(V))

- If auto switches are connected in series as shown below, take note that there will be a large voltage drop because of internal resistance in the light emitting diodes. (Refer to internal voltage drop in the auto switch specifications.)
[The voltage drop will be " n " times larger when " n " auto switches are connected.]
Even though an auto switch operates normally, the load may not operate.

- In the same way, when operating under a specified voltage, although an auto switch may operate normally, the load may not operate. Therefore, the formula below should be satisfied after confirming the minimum operating voltage of the load.

$$
\begin{gathered}
\text { Supply } \\
\text { voltage }
\end{gathered} \text { Internal voltage } \begin{gathered}
\text { Minimum operating of switch } \\
\text { voltage of load }
\end{gathered}
$$

2) If the internal resistance of a light emitting diode causes a problem, select a switch without an indicator light (Model DA90).
<Solid state switch>
3) Generally, the internal voltage drop will be greater with a 2wire solid state auto switch than with a reed switch. Take the same precautions as in 1).
Also, note that a 12 VDC relay is not applicable.

Series CRQ2X/MSQX Auto Switches Precautions 2

Be sure to read this before handling.

Design and Selection

\triangle Caution

3. Pay attention to leakage current.

<Solid state switch>

With a 2 -wire solid state auto switch, current (leakage current) flows to the load to operate the internal circuit even when in the OFF state.

$$
\begin{aligned}
& \text { Operating current of } \\
& \text { load (OFF condition) }
\end{aligned}
$$

If the criteria given in the above formula are not met, it will not reset correctly (stays ON). Use a 3 -wire switch if this specification will not be satisfied.
Moreover, leakage current flow to the load will be " n " times larger when " n " auto switches are connected in parallel.
4. Ensure sufficient clearance for maintenance activities.
When designing an application, be sure to allow sufficient clearance for maintenance and inspections.

5. Minimum stroke for auto switch mounting

The minimum stroke value for mounting one or two auto switches is obtained when the switch can detect at the cylinder stroke ends.
However, even if the switch is mounted at the proper position within the minimum stroke range, it may not be able to detect when the piston stops in the middle of the stroke due to a stopper, etc. It may also turn on in the middle of a stroke.
6. When multiple auto switches are required.
" n " indicates the number of switch which can be physically mounted. Detection intervals depends on the switch mounting structure and set position therefore some required interval and set positions may not be available.
7. Limitations of detectable positioning

When using certain mounting brackets, the surface and position where an auto switch can be mounted maybe restricted due to physical interference (bottom side of foot bracket etc.).
Please select the set position of the auto switch so that it does not interfere with the mounting bracket of the cylinder (trunnion or support ring etc.).
8. Use the cylinder and switch in proper combination.

The auto switch is pre-adjusted to activate properly for an auto-switch-capable SMC cylinder.
If the auto switch is mounted improperly, used for another brand of cylinder or used after the alternation of the machine installation, the switch may not activate properly.

Mounting and Adjustment

© Warning

1. Operating manual

Install the products and operate them only after reading the operating manual carefully and understanding its contents. Also keep the manual where it can be referred to as necessary.
2. Do not drop or bump.

Do not drop, bump or apply excessive impacts ($300 \mathrm{~m} / \mathrm{s}^{2}$ or more for reed switches and $1000 \mathrm{~m} / \mathrm{s}^{2}$ or more for solid state switches) while handling. Although the body of the auto switch may not be damaged, the inside of the auto switch could be damaged and cause a malfunction.
3. Mount auto switches using the proper fastening torque.
When a switch is tightened beyond the range of fastening torque, the mounting screws, auto switches, auto switch mounting bracket, etc. may be damaged. On the other hand, tightening below the range of fastening torque may allow the switch to slip out of position. (Refer to auto switch mounting for each series regarding auto switch mounting, moving, and fastening torque, etc.)
4. Mount an auto switch at the center of the operating range.
Adjust the mounting position of an auto switch so that the piston stops at the center of the operating range (the range in which a switch is ON). (The mounting position shown in a cata\log indicates the optimum position at stroke end.) If mounted at the end of the operating range (around the borderline of ON and OFF), operation will be unstable or the service life will be shortened.
<D-M9■>
When the auto switch is used to replace old series auto switch, it may not activate depending on operating condition because of its shorter operating range.
Such as

- Application where the stop position of actuator may vary and exceed the operating range of the auto switch, for example, pushing, pressing, clamping operation, etc.
- Application where the auto switch is used for detecting an intermediate stop position of the actuator. (In this case the detecting time will be reduced.)
In these applications, set the auto switch to the center of the required detecting range.

5. Secure the space for maintenance.

When installing the products, please allow access for maintenance.

\triangle Caution

1. Do not carry an actuator by the auto switch lead wires.
Never carry a cylinder (actuator) by its lead wires. This may not only cause broken lead wires, but it may cause internal elements of the auto switch to be damaged by the stress.
2. Fix the auto switch with appropriate screw installed on the auto switch body. If using other screws, auto switch may be damaged.

Series CRQ2X/MSQX Auto Switches
 Precautions 3

Be sure to read this before handling.

Wiring

. Warning

1. Confirm proper insulation of wiring.

Be certain that there is no faulty wiring insulation (contact with other circuits, ground fault, improper insulation between terminals, etc.). Damage may occur due to excess current flow into a switch.
2. Do not wire with power lines or high-voltage lines.

Wire separately from power lines or high-voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits, including auto switches, may malfunction due to noise from these other lines.

\triangle Caution

1. Avoid repeatedly bending or stretching lead wires.

Broken lead wires will result from applying bending stress or stretching force to the lead wires.
Stress and tensile force applied to the connection between the cable and switch increases the possibility of disconnection. Fix the cable in the middle so that it is not movable in the area where it connects with the switch.
2. Be sure to connect the load before power is applied.

<2-wire type>

If the power is turned ON when an auto switch is not connected to a load, the switch will be instantly damaged because of excess current.
It is the same as when the 2-wire brown cord (+, output) is directly connected to the (+) power supply terminal.
3. Do not allow short circuit of loads.

<Reed switch>

If the power is turned ON with a load in a short circuited condition, the switch will be instantly damaged because of excess current flow into the switch.

<Solid state switch>

Model D-M9 \square (V) except D-M9 $\square \mathrm{W}(\mathrm{V})$ and all models of PNP output type switches do not have built-in short circuit prevention circuits. If loads are short circuited, the switches will be instantly damaged, as in the case of reed switches.
Take special care to avoid reverse wiring with the power supply line (brown) and the output line (black) on 3-wire type switches.

\triangle Caution

4. Avoid incorrect wiring.

<Reed switch>

A 24 VDC switch with indicator light has polarity. The brown lead wire is (+) and the blue lead wire or the second terminal are (-).

1) If connections are reversed, a switch will operate, however, the light emitting diode will not light up.
Also note that a current greater than that specified will damage a light emitting diode and it will no longer operate.
Applicable models:
D-A93, D-A54
<Solid state switch>
2) If connections are reversed on a 2-wire type switch, the auto switch will not be damaged if protected by a protection circuit, but the switch will always stay in an ON state.
However, it is still necessary to avoid reversed connections, since the auto switch could be damaged by a load short circuit in this condition.
3) If connections are reversed (power supply line + and power supply line -) on a 3 -wire type switch, the switch will be protected by a protection circuit. However, if the power supply line $(+)$ is connected to the blue wire and the power supply line $(-)$ is connected to the black wire, the auto switch will be damaged.

<D-M9■>

The D-M9 \square does not have built-in short circuit protection circuit. Be aware that if the power supply connection is reversed (e.g. (+) power supply wire and (-) power supply wire connection is reversed), the auto switch will be damaged.
5. When the cable sheath is stripped, confirm the stripping direction. The insulator may be split or damaged depending on the direction. (D-M9 \square only)

Recommended Tool

Model name	Model no.
Wire stripper	D-M9N-SWY

[^25]

Be sure to read this before handling.

Operating Environment

. Warning

1. Never use in an atmosphere of explosive gases.

The construction of auto switches is not intended to prevent explosion. Never use in an atmosphere with an explosive gas since this may cause a serious explosion.
2. Do not use in an area where a magnetic field is generated.
Auto switches will malfunction or magnets inside actuators will become demagnetized.
3. Do not use in an environment where the auto switch will be continually exposed to water.
Although switches, satisfy IEC standard IP67 construction (JIS C 0920: waterproof construction), do not use switches in applications where continually exposed to water splash or spray. Poor insulation or swelling of the potting resin inside auto switches may cause malfunction.
4. Do not use in an environment with oil or chemicals.

Consult with SMC if auto switches will be used in an environment with coolant, cleaning solvent, various oils or chemicals. If auto switches are used under these conditions for even a short time, they may be adversely affected by improper insulation, malfunction due to swelling of the potting resin, or hardening of the lead wires.
5. Do not use in an environment with temperature cycles.
Consult with SMC if switches are used where there are temperature cycles other than normal temperature changes, as they may be adversely affected internally.
6. Do not use in an environment where there is excessive impact shock.
<Reed switch>
When excessive impact ($300 \mathrm{~m} / \mathrm{s}^{2}$ or more) is applied to a reed switch during operation, the contact point will malfunction and generate or cut off a signal momentarily (1 ms or less). Consult with SMC regarding the need to use a solid state switch depending upon the environment.
7. Do not use in an area where surges are generated.

<Solid state switch>

When there are units (solenoid type lifter, high-frequency induction furnace, motor, radio equipment etc.) which generate large surges or electromagnetic waves in the area around actuators with solid state auto switches, this may cause deterioration or damage to the auto switches. Avoid sources of surge generation and crossed lines.

\triangle Caution

1. Avoid accumulation of iron debris or close contact with magnetic substances.
When a large amount of ferrous debris such as machining chips or spatter is accumulated, or a magnetic substance (something attracted by a magnet) is brought into close proximity with an auto switch actuator, it may cause the auto switch (actuator) to malfunction due to a loss of the magnetic force inside the actuator.
2. Consult with SMC concerning water resistance, elasticity of lead wires, usage at welding sites, etc.
3. Do not use in direct sunlight.
4. Do not mount the product in locations where it is exposed to radiant heat.

Maintenance

\triangle Warning

1. Perform the following maintenance periodically in order to prevent possible danger due to unexpected auto switch malfunction.
1) Securely tighten auto switch mounting screws.

If screws become loose or the mounting position is dislocated, retighten them after readjusting the mounting position.
2) Confirm that there is no damage to lead wires.

To prevent faulty insulation, replace auto switches or repair lead wires, etc., if damage is discovered.
3) Confirm the lighting of the green light on the 2 -color indicator type auto switch.
Confirm that the green LED is on when stopped at the established position. If the red LED is on, the mounting position is not appropriate. Readjust the mounting position until the green LED lights up.
2. Maintenance procedures are outlined in the operation manual.
Not following proper procedures could cause the product to malfunction and could lead to damage to the equipment or machine.
3. Removal of equipment, and supply/exhaust of compressed air
Before any machinery or equipment is removed, first ensure that the appropriate measures are in place to prevent the fall or erratic movement of driven objects and equipment, then cut off the electric power and reduce the pressure in the system to zero. Only then should you proceed with the removal of any machinery and equipment.
When machinery is restarted, proceed with caution after confirming that appropriate measures are in place to prevent actuators from sudden movement.

Series CRQ2X/MSQX Specific Product Precautions

Be sure to read this before handling.

Selection

\triangle Caution

1. Changes in speed occur in applications in which there are changes to the load during operation, such as the load being lifted (lowered) against gravity.
2. The purpose of this product is stable rotation at lowspeed.
It does not provide any function to cushion the impact at the operation start or end.
3. Speed may vary at the rotation end depending on operating conditions. (This phenomenon can be avoided by using the external stopper.)

Air Supply

\triangle Caution

1. Do not use at dew point of $-60^{\circ} \mathrm{C}$ or lower.

Operation at dew point of $-60^{\circ} \mathrm{C}$ or lower may adversely affect the lubricant used inside and can lead to operation failure.

EUROPE

AUSTRIA

SMC Pneumatik GmbH
BELGIUM
SMC Pneumatics N.V./S.A.
BULGARIA
SMC Industrial Automation Bulgaria EOOD

CROATIA

SMC Industrijska automatika d.o.o.
CZECH REPUBLIC
SMC Industrial Automation CZ s.r.o.
DENMARK
SMC Pneumatik A/S
ESTONIA
SMC Pneumatics Estonia OÜ
FINLAND
SMC Pneumatics Finland OY
FRANCE
SMC Pneumatique SA
GERMANY
SMC Pneumatik GmbH
GREECE
SMC Hellas EPE
HUNGARY
SMC Hungary Ipari Automatizálási Kft.
IRELAND
SMC Pneumatics (Ireland) Ltd.
ITALY
SMC Italia S.p.A.
LATVIA
SMC Pnuematics Latvia SIA
LITHUANIA
SMC Pneumatics Lietuva, UAB
NETHERLANDS
SMC Pneumatics BV

NORWAY

SMC Pneumatics Norway A/S
POLAND
SMC Industrial Automation Polska Sp.z.o.o.
ROMANIA
SMC Romania s.r.I.
RUSSIA
SMC Pneumatik LLC

SLOVAKIA

SMC Priemyselná automatizáciá, s.r.o.
SLOVENIA
SMC INDUSTRIJSKA AVTOMATIKA d.o.o.
SPAIN/PORTUGAL
SMC España, S.A.
SWEDEN
SMC Pneumatics Sweden AB
SWITZERLAND
SMC Pneumatik AG.
UK
SMC Pneumatics (U.K.) Ltd.

ASIA

CHINA
SMC (China) Co., Ltd.
HONG KONG
SMC Pneumatics (Hong Kong) Ltd
INDIA
SMC Pneumatics (India) Pvt. Ltd.
INDONESIA
PT. SMC Pneumatics Indonesia
MALAYSIA
SMC Pneumatics (S.E.A.) Sdn. Bhd.
PHILIPPINES
SHOKETSU-SMC Corporation

SINGAPORE
SMC Pneumatics (S.E.A.) Pte. Ltd SOUTH KOREA SMC Pneumatics Korea Co., Ltd

TAIWAN

SMC Pneumatics (Taiwan) Co., Ltd.
THAILAND
SMC Thailand Ltd.

NORTH AMERICA

CANADA

SMC Pneumatics (Canada) Ltd.
MEXICO
SMC Corporation (Mexico) S.A. de C.V.
USA
SMC Corporation of America

SOUTH AMERICA

ARGENTINA

SMC Argentina S.A
BOLIVIA
SMC Pneumatics Bolivia S.R.L.
BRAZIL
SMC Pneumaticos Do Brazil Ltda.
CHILE
SMC Pneumatics (Chile) S.A.
VENEZUELA
SMC Neumatica Venezuela S.A.

OCEANIA
AUSTRALIA
SMC Pneumatics (Australia) Pty. Ltd.
NEW ZEALAND
SMC Pneumatics (N.Z.) Ltd.

SMC Corporation

Akihabara UDX 15F,
4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021, JAPAN
Phone: 03-5207-8249 FAX: 03-5298-5362
URL http://www.smcworld.com
© 2007 SMC Corporation All Rights Reserved

[^0]: ## Allowable load on the shaft

 Refer to the model selecting order step 3 for rotary actuators on page 11-$1-20$ concerning allowable loads on the shafts of Series CRA1.

[^1]: ** Although it is possible to mount water resistant type auto switches, note that the rotary actuator itself is not of water resistant construction.

 * Lead wire length symbols: $0.5 \mathrm{~m} \ldots .$. Nil (Example) A73C * Auto switches marked with " \bigcirc " are made to order specifications.
 $3 \mathrm{~m}$. L (Example) A73CL
 $5 \mathrm{~m}$. Z (Example) A73CZ
 None N (Example) A73CN
 Made to
 Order
 Refer to page 11-11-36 for detailed solid state
 - Refer to page 11-7-14 for applicable switches other than those indicated above.

[^2]: ** Although it is possible to mount water resistant type auto switches, note that the rotary actuator itself is not of water resistant construction.

[^3]: $3 \mathrm{~m} \cdots \cdots \mathrm{~L}$ (Example) A53L
 $5 \mathrm{~m} \cdot \ldots . . \mathrm{Z}$ (Example) A53Z

[^4]: To operate the double solenoid type by applying an instantaneous current, ensure that the current is applied for at least 0.1 second.

[^5]: ** Although it is possible to mount water resistant type auto switches, note that the rotary actuator itself is not of water resistant construction.

 * Lead wire length symbols: 0.5 m Nil (Example) A53
 $3 \mathrm{~m} \ldots \ldots . \mathrm{L}$ (Example) A53L
 $5 \mathrm{~m} \ldots \ldots . \mathrm{Z}$ (Example) A53Z
 *Auto switches marked with "O" are made to order specification
 $3 \mathrm{~m} \mathrm{L}$ (Example) A53L
 $5 \mathrm{~m} \ldots \ldots . \mathrm{Z}$ (Example) A53Z

 ## Made to
 Order

 Refer to page 11-11-36 for detailed solid state
 switches with pre-wire connectors.

[^6]: * () are the dimensions for rotation of 180° and 190°.

[^7]: \bigcirc

[^8]: * Chart 7. For combination between -XC \square and -XC \square, refer to page 11-7-40.

 Chart 8. For combination between $-\mathrm{X} \square$ and -XC \square, refer to page 11-7-40.
 Chart 9. For combination between -X \square and -X \square, refer to page 11-7-49.

[^9]: * Chart 7. For combination between -XC \square and -XC \square, refer to page 11-7-40.

 Chart 8. For combination between -X \square and -XC \square, refer to page 11-7-40.
 Chart 9. For combination between -X \square and -X \square, refer to page 11-7-49.

[^10]: * The mounting position of hexagon socket head set screws (No. 12) varies depending on the connecting port location.

[^11]: Made to
 Refer to page 11-11-36 for detailed solid
 state switches with pre-wire connectors.

[^12]: $\frac{\mathrm{XC14}}{\mathrm{XC15}}$

[^13]: ** Although it is possible to mount water resistant type auto switches, note that the rotary actuator itself is not of water resistant construction.

[^14]: $3 \mathrm{~m} \cdots \cdots \mathrm{~L}$ (Example) A53L
 $5 \mathrm{~m} \cdot \ldots . . \mathrm{Z}$ (Example) A53Z

[^15]: To operate the double solenoid type by applying an instantaneous current, ensure that the current is applied for at least 0.1 second.

[^16]: Note) Values above do not include auto switch weights.

[^17]: ** Though it is possible to mount water resistant auto switch, the rotary table itself is not water resistance type.

 * Lead wire length symbols: $0.5 \mathrm{~m} \cdots \cdots \cdots$......... (Example) M9N
 $\begin{array}{ll}3 \mathrm{~m} \cdots \cdots \cdots \cdots \cdot \mathrm{~L} \\ 5 \mathrm{~m} \cdots \cdots \cdots \cdots \mathrm{Z} & \quad \text { (Example) M9NL } \\ \text { (Example) M9NZ }\end{array}$

[^18]: Note) Values above do not include auto switch weights.

[^19]: Operating angle $\theta \mathrm{m}$: Value of the operating range Lm of a single auto switch converted to an axial rotation angle.

[^20]: * If the rotation time exceeds 2 s per 90°, kinetic energy is calculated with rotation time of 2 s per 90°.

[^21]: ** Although it is possible to mount water resistant type auto switches, note that the rotary actuator itself is not of water resistant construction.

 * Lead wire length symbols: $0.5 \mathrm{~m}$. Nil (Example) M9NW

 | $1 \mathrm{~m} \ldots \ldots$. | M |
 | :--- | :--- |
 | $3 \mathrm{~m} \ldots .$. | M9NWM |
 | $5 \mathrm{~m} \ldots \ldots$ | Z |

[^22]: * The AU dimension is not the dimension at the time of shipment, since its dimension is for adjustment parts.

 S: Upper 90°, Lower 180°
 ** In addition to Rc 1/8, G 1/8, NPT 1/ 8, NPTF $1 / 8$ are also available.

[^23]: * Not including the weight of auto switch.

[^24]: ** In addition to Rc 1/8, G 1/8, NPT 1/8, NPTF 1/8 are also available.

[^25]: * Stripper for a round cable (ø2.0) can be used for a 2-wire type cable.

