Rotary Actuator Series CRB1
 Vane Style/Size: 10, 15, 20, 30

Variations/Size: 10, 15, 20, 30

Rotary Actuator Vane Style
 Series CRB1/Size: 10, 15, 20, 30

Rotation angles: $90^{\circ}, 180^{\circ}, 270^{\circ}$ Up to 270° is possible for the entire series
Through the adoption of specially designed seals and stoppers, a swing angle of 270° has been achieved for the first time in a compact vane style actuator.
(Single vane style)

Low pressure operation made possible
The special sealing construction that has been adopted in the body supports a wide operating pressure range and enables the entire series to be used at low pressures.
Min. operating pressure
Size $10 \quad: 0.2 \mathrm{MPa}$
Size 15 to $30: 0.15 \mathrm{MPa}$

Direct mount applications possible

The rotary actuator body 3 bolts used. can be mounted directly.
*Direct mounting is not possible with unit sizes 10 to 30 .

Stainless steel shafts and bolts
(Carbon steel for size 30 and double-vane)

CRB1

Double vane style standard: $\mathbf{9 0}^{\circ}, \mathbf{1 0 0}^{\circ}$
The outside diameter is identical to the single vane construction (except size 10); however, due to the double vane construction, twice the torque of the single vane style can be obtained. circumference, it can be mounted in a position that is most appropriate for the application.

Port positions: body side and axial direction

The positions can be selected for ease of use. (Those that are equipped with various styles of units can only be connected to the body side.)
(On the body side)
(In the axial direction)

(Fittings are sold separately.)

Block-built (units) adopted
Various styles of units that can be housed within the body's outside diameter can easily be retrofitted to the rotary actuator units of the entire series.

Basic + Switch unit
Basic + Angle adjusting unit
Basic + Angle adjusting unit + Switch unit

Rotary Actuator
 Series CRB1
 Vane Style/Size: 10, 15, 20, 30

How to Order

Standard

Application	Symbol	Rotaion angle
Single	90	90°
	$\mathbf{1 8 0}$	180°
	$\mathbf{2 7 0}$	270°
Double	90	90°
vane	$\mathbf{1 0 0}$	100°

Flange Brackets Part No.

Model	Ass'y part No.
CRB1FW10	P211070-2
CRB1FW15	P211090-2
CRB1FW20	P211060-2
CRB1FW30	P211080-2

Rotary Actuator/Vane Style Series CRB1

Lightweight (single vane 180°)

Size 10....29 X 15t (Body part), 26g
Size 20... $\varnothing 42$ X $29 t$ (Body part), 105g
Rotation angle of 270° achieved High reliability
(Bearings are used for supporting the shaft.)
Shaft and bolts made of stainless
steel
(Carbon steel for size 30 and the double vane style)
Body can be used as a flange
(Bolts used: sizes 10, 15: M2.5; size 20: M3; size 30: M4)
Two styles of port positions: body side and axial direction

Angle adjustment unit can be mounted

A style that can be housed within the body's outside diameter can perform angle adjustments of 0° to 240°.
(CRB1BW10: 0° to 230°)

Double vane
P.1.1-20 to 1.2-28

Inner Volume

Single Vane Specifications

Model (Size)		CRB1BW	10-■S	CRB1BW15-■S	CRB1BW20-■S	CRB1BW30-■S		
Vane style		Single vane						
Rotation angle		$90^{\circ}, 180^{\circ}$	270°	$90^{\circ}, 180^{\circ} \quad 270^{\circ}$	$90^{\circ}, 180^{\circ}, 270^{\circ}$			
Fluid		Air (Non-lube)						
Proof pressure (MPa)		1.05				1.5		
Ambient and fluid temperature		5 to $60^{\circ} \mathrm{C}$						
Max. operating press. (MPa)		0.7				1.0		
Min. operating press. (MPa)		0.2		0.15				
Speed range ${ }^{(1)}\left(\mathrm{sec} / 90^{\circ}\right)$		0.03 to 0.3				0.04 to 0.3		
Allowable kinetic energy ${ }^{(2)}$ (J)		0.00015		0.001	0.003	0.02		
		0.00025	0.0004	0.015				
Shat load (N)	Allowable radial load			15		15	25	30
	Allowable thrust load	10		10	20	25		
Bearing		Ball bearing						
Port position		On the body side or in the axial direction						
Size	Body side	M5 X 0.8 $\mathrm{M} 3 \times 0.5^{\text {M }}$ M X $0.8 \mid \mathrm{M} 3 \times 0.5$			M5 X 0.8			
	Axial direction	M3 X 0.5			M5 X 0.8			
Shaft		Double shaft (One flat chamfering on each shaft)						
Angle adjustable range of the unit		0 to 2		0 to 240°				
Mounting		Basic, Flange						
Auto switch		Mountable (Port: Only on the body side)					rotation); the lower section indicates the energy value when the rubber bumper is not used.	

Double Vane Specifications

Model (Size)		CRB1BW10-DD	CRB1BW15-DD	CRB1BW20--D	CRB1BW30--D
Vane style		Double vane			
Rotation angle		$90^{\circ}, 100^{\circ}$			
Fluid		Air (Non-lube)			
Proof press (MPa)		1.05			1.5
Ambient and fluid temperature		5 to $60^{\circ} \mathrm{C}$			
Max. operating press. (MPa)		0.7			1.0
Min. operating press. (MPa)		0.2	0.15		
Speed range ${ }^{(1)}$ (sec/ $/ 0^{\circ}$)		0.03 to 0.3			0.04 to 0.3
Allowable kinetic energy (J)		0.0003	0.0012	0.0033	0.02
Shat load (N)	Allowable radial load	15	15	25	30
	Allowable thrust load	10	10	20	25
Bearing		Bearing			
Port position		On the body side or in the axial direction			
Port size (Body side, Axial direction)		M3 $\times 0.5$		M5 $\times 0.8$	
Shaft		Double shaft (One flat chamfering on each shaft)			
Mounting		Basic, Flange			
Auto switch		Mountable (Port: Only on the body side)			

,
Note 1) Make sure to operate within the adjustable speed range.
Exceeding the speed control upper limit $\left(0.3 \mathrm{sec} / 90^{\circ}\right)$ could cause the unit to stick or not operate.

Vane style	Single vane												Double vane							
Model	CRB1BW10- \square S			CRB1BW15- \square S			CRB1BW20- \square S			CRB1BW30-■S			CRB1BW10- $\square \mathrm{D}$		CRB1BW15- \square D		CRB1BW20-■D		CRB1BW30- \square D	
Rotation angle	90°	180°	270°	90°	100°	90°	100°	90°	100°	90°	100°									
Inner volume	$\begin{gathered} 1 \\ (0.6) \end{gathered}$	1.2	1.5	$\begin{gathered} 1.5 \\ (1.0) \end{gathered}$	2.9	3.7	$\begin{gathered} \hline 4.8 \\ (3.6) \end{gathered}$	6.1	7.9	$\begin{aligned} & 11.3 \\ & (8.5) \end{aligned}$	15	20.2	1.0	1.1	2.6	2.7	5.6	5.7	14.4	14.5

*The values in () indicate the internal volume of the air supply side at the time port A is pressurized

Weights

(g)

Vane style	Single vane												Double vane							
Model	CRB1BW10-■S			CRB1BW15- \square S			CRB1BW20- \square S			CRB1BW30- \square S			CRB1BW10-■D		CRB1BW15-■D		CRB1BW20-■D		CRB1BW30-■D	
Rotation angle	90 ${ }^{\circ}$	180°	270°	90°	180°	270°	90°	180°	270°	90 ${ }^{\circ}$	180°	270°	90°	100°	90°	100°	90°	100°	90°	100°
Body of rotary actuator	26.3	26.0	25.7	50	49	48	106	105	103	203	198	193	42	43	57	60	121	144	223	243
Flange bracket ass'y	9			10			19			25			9		10		19		25	
Auto switch unit + 2 switches	30			30			50			60			30		30		50		60	
Angle adjusting unit	30			47			90			150			30		47		90		150	

\triangle Precautions

''Be sure to read before handling.
'Refer to p. $0-20$ and $0-21$ for Safety Instructions and common I precautions for the products mentioned in this catalog, and 'refer to p.1.0-2 to 1.0-4 for precautions on every series.

Units Equipped with Angle Adjustment

. Caution

(1) If the rotary actuator body is used for a 90° or 180° application, the maximum angle will be limited by the rotation angle of the rotary actuator body. Make sure to take this into consideration when ordering equipment.
If the rotary actuator body is used for a 90° or 180° application, making an angle adjustment at the maximum angle of 90° or 180°, respectively, is not feasible because the rotation angle of the rotary actuator body is $90^{\circ}{ }_{0}^{4^{\circ}}$ (or $180^{\circ}+4^{\circ}$), respectively.
Therefore, in the case of the single vane type, use a rotary actuator body for 270°, and in the case of the double vane type, use a rotary actuator body for 100°. Furthermore, the " 90° " and " 180° " designations of the rotary actuator bodies are approximate; they should be used for angle adjustments within 85° and 175°, respectively.
(2) All of the connecting port positions are on the body side.
(3) The allowable kinetic energy is the same as that of the rotary actuator unit specifications.

Copper Free

The entire standard series of the vane rotary actuators does not affect color CRTs due to copper ions or fluororesins.

Specification

Vane style	Single, Double			
Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$
Operating press. range	0.2 to 0.7 MPa	0.15 to 0.7 MPa	0.15 to 1.0 MPa	
Speed adjust. range	0.03 to $0.3 \mathrm{~s} / 90^{\circ}$			0.04 to $0.3 \mathrm{~s} / 90^{\circ}$
Port position	On the body side or in the axial direction			
Piping	Basic only			
Mounting style				
Variations	Basic style, With auto switch, With angle adjuster			

Clean Series

This type can be used in a class 100 clean room due to the dual seal construction in the actuator shaft area and the ability to vent directly outside of the clean room through its relief port.

Specification

Vane style	Single	Single, Double		
Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$
Operating press. range	0.2 to 0.7 MPa	0.15 to 0.7 MPa	0.15 to 1.0 MPa	
Speed range	0.03 to $0.3 \mathrm{~s} / 90^{\circ}$			0.04 to $0.3 \mathrm{~s} / 90^{\circ}$
Port position	On the body side or in the axial direction			
Piping	Screw-in piping			
Relief port	M3 X 0.5			M5 X 0.8
Mounting style	Basic style, With auto switch			
Variations				

Construction

Rotary Actuator/Vane Style Series CRB1

Option Specifications/Flange Brackets/Size: 10, 15, 20, 30

Model				年
Basic style	With auto swicth	With angle adjuster	With angle adjuster and auto switch	
CRB1FW10	CDRB1FW10	CRB1FWU10	CDRB1FWU10	P211070-2
CRB1FW15	CDRB1FW15	CRB1FWU15	CDRB1FWU15	P211090-2
CRB1FW20	CDRB1FW20	CRB1FWU20	CDRB1FWU20	P211060-2
CRB1FW30	CDRB1FW30	CRB1FWU30	CDRB1FWU30	P211080-2

$)^{N}$
Notes) No flange metal fittings (with Phillips screw) are mounted when assembled in a factory.
The mounting location of flange metal fittings onto the body of rotary actuator can be adjusted at 60-degree intervals.

	Basic (Side port) CRB1FW	Size	Angle S SCRB	Size	\#11 (\#1+\#11)
	Basic (Axial direction port) CRB1FW	Size	Angle SE.......... SCRB	Size,	, \#12 (\#3+\#12)
CAD	W/ angle adjuster CRB1FWU	Size	Angle S SCRB	Size,	\#13 (\#5+\#13)
	W/ auto switch CDRB1FW	Size	AngleS SCRB	Size	\#14 (\#7+\#14)
	W/ angle adjuster and auto switch CDRB1FWU	Size	Angle S SCRB	Size	, \#15 (\#9+\#

Ass'y Part Number: P211060-2 (For C \square RB1FW \square 20)

Ass'y Part Number: P211090-2 (For C \square RB1FW $\square 15$)

Ass'y Part Numer: P211080-2 (For C \square RB1FW $\square 30$)

CRB1BW10

CRB1BW20

CRB1BW15

CRB1BW30

L dimensions of the body are shown below. If hexagonal head cap screws as accordance of JIS standard are used, the head part of the bolt can be fit in the groove on the actuators.

Model	L	Bolt
CRB1BW10	11.5^{*}	M2.5
CRB1BW15	16	M2.5
CRB1BW20	24.5	M3
CRB1BW30	34.5	M4

*Only the ones of size 10 have different types of vanes between single vane and double vane.
Length (L) for double vane is 20.5 .
*Refer to p.1.1-9, and 1.1-10 for dimensions of Q1 and Q2.

Rotation Range/From long shaft side.
(The chamfering locations shown below indicate the states when pressurized from B port.)

Single Vane
Double Vane

Note) For single and double vane styles: The cross angle rotation of $90^{\circ}, 180^{\circ}$, and 270° will be ${ }_{0}^{+5^{\circ}}$ only for size 10 .

Single vane -The dimensions below are of size 20.
 - Dimensions for 90° and for 180° shows the pressurization to B port, and

 dimensions for 270° show the location of the ports during rotation.For 90°
(From long shaft side)

(Short shaft side)

For 80° (From long shaft side)

For 270°
(From long shaft side)

Component Parts

No.	Descroption	Material	Note
(1)	Body (A)	Aluminum alloy	Black
(2)	Body (B)	Aluminum alloy	Black
(3)	Vane shaft	Stainless steel*	
(4)	Stopper	Resin	For 270
(5)	Stopper	Resin	For 180°
(6)	Bearing	High carbonate chrome steel	
(7)	Back-up ring	Stainless steel	Special bolt
(8)	Hexagon socket head cap screw	Stainless steel	Special packing
(9)	O ring	NBR	
(10)	Stopper packing	NBR	
*Carbon steel for CRB1BW30.			

Double vane

CRB1BW10-■D/Dimensions below shows the middle locations of pressurization to A port or B port.

For 90°
(From long shaft side)

CRB1BW15/20/30- \square D/Dimensions below are based on size 20

For 90° (From long shaft side)

For 100° (From long shaft side)

(Short shaft side)
Component Parts

No.	Description	Material	Note
(1)	Body (A)	Aluminum alloy	Black
(2)	Body (B)	Aluminum alloy	Black
(3)	Vane shaft	Carbon steel	
(4)	Stopper	Stainless steel	
(5)	Stopper	Resin	
(6)	Stopper	Stainless steel	
(7)	Bearing	High carbonate chrome steel	
(8)	Back-up ring	Stainless steel	

Component Parts

No.	Description	Material	Note
(9)	Cover	Aluminum alloy	Black
(10)	Plate	Resin	Black
(11)	Hexagon socket head cap screw	Stainless steel	Special bolt
(12)	O ring	NBR	
(13)	Stopper packing	NBR	Special packing
(14)	Gasket	NBR	Special packing
(15)	O ring	NBR	
(16)	O ring	NBR	

Series CRB1

Size 10, 15, 20, 30 m

Single vane

Port locations: Body side/

CRB1BW $\square-\square S$

Port locations:
Body side/
CRB1BW10- \square S

Port locations:
 Axial direction/
 CRB1BW $\square-\square$ SE

\square
The dimensions above show the pressurization state to B port of the one for 90° or 180°. Refer to p.1.1-7 for further information.

Port location: Body side
CRB1BW Size -םS...........SCRB Size, \#1
Port location: Axial direction
CRB1BW Size -■SE.........SCRB Size, \#3

Rotary Actuator/Vane Style Series CRB1

Double vane

Port locations: Body side/
CRB1BW10- \square D

Port locations: Body side/
CRB1BW15, 20, 30- \square D

Port direction:
Axial direction/
CRB1BW10-■DE

Port direction:
Axial direction/
CRB1BW15-20-30-■DE

Penetrated to threads on body B side

The dimensions above show the rotation middle position during pressurization to A or B Port.

Model	A	B	C	D	E(g6)	F(h9)	G1	G2	J	K	L	M	N	P	Q (Depth)			R	
															-Q1	-Q2	\star Q3	90°	100°
CRB1BW15- \square D	34	20	9	18	$5_{-0.012}^{-0.004}$	$12{ }_{-0.043}^{0}$	4	1.5	6	10	0.5	5	25	29	$\begin{gathered} \text { M3 } \\ \text { (10) } \end{gathered}$	$\begin{aligned} & 3.4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M3 } \\ & \text { (5) } \end{aligned}$	M3	
CRB1BW15-DDE												11	10						
CRB1BW20- \square D	42	29	10	20	$6_{-0.012}^{-0.004}$	$14{ }_{-0.043}^{0}$	4.5	1.5	7	10	0.5	9	25	36	$\begin{array}{\|c} \hline \text { M4 } \\ (13.5) \\ \hline \end{array}$	$\begin{gathered} \hline 4.5 \\ (11) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { M4 } \\ (7.5) \end{array}$	M5	
CRB1BW20- \square DE												14	13						
CRB1BW30- \square D	50	40	13	22	$8_{-0.014}^{-0.005}$	$16{ }_{-0.043}^{0}$	5	2	8	12	1.0	10	25	43	M5			M5	
CRB1BW30-DDE												15.5	14		(18)	(16.5)	(10)		

Rotary Actuator with Auto Switch Series CDRB1

Vane Style/Size: 10, 15, 20, 30

How to Order

Auto Switch Specifications/

[^0]$3 \mathrm{~m} \cdot \cdots \cdots$. L Ex.) R73CL \bullet Shock resistance- $300 \mathrm{~m} / \mathrm{s}^{2}$ (Reed type), $1000 \mathrm{~m} / \mathrm{s}^{2}$ (Solid state type)
5m...................Z Ex.) R73CZ
Not attached.... N Ex.) R73CN

Rotary Actuator/Vane Style Series CRB1

Applicable series	Auto switch models		Electrical entry	Page
CDRB1BW 10 CDRB1BW 15	Reed switch	D-90/90A	Grommet/2 wire style	$\begin{aligned} & 2.11-12 \\ & 2.11-14 \end{aligned}$
		D-97/93A		
	Solid state switch	D-S99/S99V*	Grommet/3 wire style (NPN)	2.11-23
		D-S9P/S9PV*	Grommet/3 wire style (PNP)	
		D-T99/T99V	Grommet/2 wire style	
CDRB1BW 20 CDRB1BW 30	Reed switch	D-R73	Grommet/2 wire style	2.11-15
		D-R80	Connector/2 wire style	
	Solid state switch	D-S79*	Grommet/3 wire style (NPN)	2.11-24
		D-S7P*	Grommet/2 wire style (PNP)	
		D-T79	Grommet/2 wire style, Connector/2 wire style	

*No connector style for 3 wire without connecting section style.
How to Adjust Auto Switch
Refer to p.1.0-19 and 1.0-20 for further information on auto switch adjusting method.

Units

All units are mountable to series CDRB1. Refer to p.1.0-23 for 1.0-24 further information. Combinable unit
(1)Auto switch unit
(2) Angle adjusting unit
*Switch block unit (Required when using 3 auto switches.)
*Joint unit (Required when connecting auto switch to angle adjusting unit.)

Series CDRB1

Size 10, 15, 20, 30/with auto switch

Single vane
CDRB1BW10/15- \square S

Single vane
CDRB1BW20/30- \square S

The dimensions above show pressurization to B port for 90° and 180°. Refer to p.1.1-7 for further information.

*1. 24: When auto switches of "D-90", "90A", "S99(V)", "T99(V)", "S9P(V)", styles are being used.
30: When "D-97", "93A" styles are being used.
*2. 60° : When auto switches of "D-90", "90A", "97", "93A" styles are being used.
69° : When auto switches of "D-S99(V)", "T99(V)", "S9P(V)" styles are being used.
Note) For auto switch attached style, positions for connecting ports are on body side.
*The diagrams of outer appearances show the auto switches with 1 right
hand operating switch and one left hand operating switch.

Model	A	B	C	D	$\underset{(\mathrm{g} 6)}{\mathrm{E}}$	$\begin{gathered} \mathrm{F} \\ \text { (h9) } \end{gathered}$	G	K	L	M	N	P	Q	R			Y
														90°	180°	270°	
CDRB1BW10- ${ }^{\text {S }}$	29	15	29	14	4	9	3	9	0.5	10	25	24	M3 X 0.5Depth5	M5 X 0.8		M3 $\times 0.5$	18.5
CDRB1BW15-■S	34	20	29	18	5	12	4	10	0.5	15	25	29	M3 X 0.5Depth5	M5 $\times 0.8$		M3 $\times 0.5$	18.5
CDRB1BW20-■S	42	29	30	20	6	14	4.5	10	0.5	20	25	36	M4 X 0.7Depth7	M5 X 0.8			25
CDRB1BW30-■S	50	40	31	22	8	16	5	12	1	30	25	43	M5 X 0.8Depth10	M5 $\times 0.8$			25

\square CDRB1BW Size - S.........SCRB Size, \#7
CAD

Rotary Actuator/Vane Style Series CRB1

Double vane
 CRB1BW15/20/30- \square D

(Same size as single vane style.)

CDRB1BW15- \square D

CDRB1BW20/30- \square D

The dimensions above show the rotation middle position during pressurization to A or B port.
*1) 24: When auto switches of "D-90", "90A", "S99(V)", "T99(V)", "S9P(V)" styles are being used.
30: When "D-97", "93A", styles are being used.
*2) 60° : When auto switches of "D-90", "90A", "97", "93A" styles are being used.
69° : When auto switches of "D-S99(V)", "T99(V)", "S9P(V)" styles are being used.
*3) 25.5: When auto switches grommet "D-R73", "R80", "S79", "T79", and "S7P" styles are being used. 34.5: When auto switches "D-R73", "R80" and "T79" connector styles are being used.

Model	A	B	C	D	E(g6)	F(h9)	G	K	L	M	N	P	Q			S		Y
														90°	100°			
CDRB1BW15-■D	34	20	29	18	5	12	4	10	0.5	15	25	29	M3 X 0.5Depth5	M3	X 0.5	$24^{* 1}$	$30^{* 1}$	18.5
CDRB1BW20--D	42	29	30	20	6	14	4.5	10	0.5	20	25	36	M4 X 0.7Depth7	M5	$\times 0.8$		5*3	25
CDRB1BW30-■D	50	40	31	22	8	16	5	12	1	30	25	43	M5 X 0.8Depth10	M5	$\times 0.8$			25

Series CDRB1

Construction

- Single vane

The dimensions below show pressurization to B port of the switches for 90° and 180°.

- Double vane

The dimensions below show the rotation middle position during pressurization to A port or B port.

(The unit is common to single vane and double vane styles.)

Component Parts

No.	Description	Material
(1)	Cover (A)	Resin
(2)	Cover (B)	Resin
(3)	Magnet lever	Resin
(4)	Fixing block (A)	Aluminum alloy
(5)	Fixing block (B)	Aluminum alloy
(6)	Fixing block	Aluminum alloy
(7)	Switch block (A)	Resin
(8)	Switch block (B)	Resin
(9)	Switch block	Resin
$(10$	Magnet	Magnetic substance

No.	Description	Material
(11)	Arm	Stainless steel
(12)	Hexagon socket head cap screw	Stainless steel
(13)	Cross-recessed head cap screw	Stainless steel
(14)	Cross-recessed head cap screw	Stainless steel
(15)	Cross-recessed head cap screw	Stainless steel
(16)	Cross-recessed head cap screw	Stainless steel

*2 cross-recessed head cap screws (13) are attached for "CDRB1BW10"

Rotary Actuator with Angle Adjuster Series CRB1BWU

Vane Style/Size:10, 15, 20, 30

How to order

Series CRB1BWU

Construction (Units are common for both the single vane and double vane.)
With angle adjusting unit
CRB1BWU10/15/20/30-ם.

Single vane

Double vane

With angle adjusting unit and auto switch

CDRB1BWU10/15--■号 CDRB1BWU20/30/- \square S

CDRB1BWU10

Component Parts

No.	Description	Material	Notes
(1)	Stopper ring	Aluminum die casting	
(2)	Stopper lever	Carbon steel	
(3)	Lever retainer	Carbon steel	Zinc chromated
(4)	Rubber bumper	NBR	
(5)	Stopper block	Carbon steel	Zinc chromated
(6)	Block retainer	Carbon steel	Zinc chromated
(7)	Cap	Resin	
(8)	Hexagon socket head cap bolt	Stainless steel	Special bolt
(9)	Hexagon socket head cap bolt	Stainless steel	Special bolt
(10)	Hexagon socket head cap bolt	Stainless steel	Special bolt
(11)	Joint	Aluminum alloy	(1)
(12)	Hexagon socket head cap screw	Stainless steel	Only for CDRBUW10, the part
	Hexagon nut	Stainless steel	indicated with no. 12 is a hexagon nut.
(13)	Cross-recessed head cap screw	Stainless steel	(1)
(14)	Magnet lever	-	(1)

Note 1) Consists of the combination of an auto switch unit and an angle adjustment unit;
for detailed specifications, refer to p.1.0-23 and 1.0-24.

. Precautions

「 Be sure to read before handling
I Refer to p.0-20 and 0-21 for Safety Instructions and common ${ }_{\text {I }}$ precautions for the products mentioned in this catalog, and $L^{\text {refer to p.1.0-2 to 1.0-4 for precautions on every series. }}$

Unit with Angle Adjuster

Caution

(1) The maximum angle of the adjustable range of rotation angle will be restricted depending on the rotation angle of the rotary actuator body.

Rotation angle of rotary actuator body	Range of rotation angle
$270^{\circ+4}$	0° to $230^{\circ}(\text { Size: } 10)^{* 1}$
	$180^{\circ+4}$
$90^{\circ+4}$	0° to $240^{\circ}($ size: $15,20,30)$
	0° to 175°

[^1]
Rotary Actuator/Vane Style Series CRB1

Size $10,15,20,30 /$ with angle adjuster $\underset{\text { CAD }}{\square}$

Single vane

CRB1BWU10/15/20/30- \square S

Dimensions below show pressurization to A port of the switches for 90°. Refer to p.1.1-7.

Double vane

CRB1BWU10- \square D

CBB1

Dimensions below show the rotation middle position during pressurization to A port or B port.

Double vane

CRB1BWU15/20/30- \square D
Size of double vane style: The outer dimensions of 15, 20, 30 and the sizes shown in the dimension table are same as those of single vane size $15,20,30$ styles.

Model	A	B	C	D	$\begin{gathered} E \\ (\mathrm{~g} 6) \end{gathered}$	$\begin{gathered} \text { F } \\ \text { (h9) } \end{gathered}$	G	H	K	L	M	N	P	Q
CRB1BWU10- \square S	29	15	19.5	14	4	9	3	3	9	0.5	10	25	24	M3 X 0.5 Depth6
CRB1BWU15- \square S														
CRB1BWU15- \square D	34	20	21.2	18	5	12	4	3.2	10	0.5	15	25	29	M3 X 0.5 Depth5
CRB1BWU20- \square	42	29	25	20	6	14	4.5	4	10	0.5	20	25	36	M4 X 0.7 Depth7
CRB1BWU20-■D														M4 X 0.7 Depth7
CRB1BWU30- \square S	50	40	29	22	8	16	5	4.5	12	1	30	25	43	M5 X 0.8 Depth10
CRB1BWU30-DD							5	4.5	12	1	30	25	43	M5 X 0.8 Depth10

Model	R			
	90°	100°	180°	270°
CRB1BWU10- \square S	M5 X 0.8	-	M5 X 0.8	M3 $\times 0.5$
CRB1BWU10--D	Refer to the drawings above.*		-	
CRB1BWU15- \square S	M5 X 0.8	-	M5 X 0.8	M3 $\times 0.5$
CRB1BWU15--D	M3 $\times 0.5$		-	
CRB1BWU20- \square S	M5 X 0.8	-	M5 X 0.8	
CRB1BWU20--D	M5 $\times 0.8$			
CRB1BWU30-■S	M5 X 0.8	-	M5 X 0.8	
CRB1BWU30--D	M5 X 0.8		-	

CRB1BWU Size-SSCRB Size, \#5

Single vane
 CDRB1BWU10/15-■S

Double vane CDRB1BWU10-■D

Double vane

CDRB1BWU15/20/30-■D
The outside diameter dimension diagram and dimension table for sizes 15 , 20, and 30 of the double vane style provide the same dimensions as those of sizes 15,20 , and 30 of the single vane style.

Model	A	B	C	D	$\begin{gathered} \mathrm{E} \\ (\mathrm{~g} 6) \end{gathered}$	$\begin{gathered} \text { F } \\ \text { (h9) } \end{gathered}$	G	K	L	M
CDRB1BWU10-■S	29	15	45.5	14	4	9	3	9	0.5	10
$\begin{aligned} & \hline \text { CDRB1BWU15- } \square S \\ & \hline \text { CDRB1BWU15- } \square \text { D } \end{aligned}$	34	20	47	18	5	12	4	10	0.5	15
$\begin{aligned} & \hline \text { CDRB1BWU20- } \square \mathrm{S} \\ & \hline \text { CDRB1BWU20-■D } \end{aligned}$	42	29	51	20	6	14	4.5	10	0.5	20
CDRB1BWU30- $\square S$ CDRB1BWU30- $\square D$	50	40	55.5	22	8	16	5	12	1	30
	N	P	Y	Q			R			
Model							90°	100°	180°	270°
CDRB1BWU10- \square S	25	24	18.5	M3 X 0.5 Depth 6			M5 $\times 0.8$	-	M5 $\times 0.8$	м3 $\times 0.5$
CDRB1BWU10-D							Refer to the			
CDRB1BWU15-■S	25	29	18.5	M3 X 0.5 Depth 5			M5 $\times 0.8$	-	M5 0.8	M3 $\times 0.5$
CDRB1BWU15--D							M3 $\times 0.5$		-	-
CDRB1BWU20-■S	25	36	25	M4 X 0.7 Depth 7			M5 $\times 0.8$	-	M5	$\times 0.8$
CDRB1BWU20-■D							M5 X 0.8		-	-
CDRB1BWU30-■S	25	43	25	M5 X 0.8 Depth10			M5 $\times 0.8$		M5	$\times 0.8$
CDRB1BWU30-D							M5	0.8	-	-

,
Note) The connecting port position for those equipped with an angle adjustment unit or auto switch is on the body side.
Note) The outside drawing indicates one each of the right-hand and left-hand switches.

Series CRB1/Size: 10, 15, 20, 30
 Made to Order Specifications
 Change of Shaft End Shape/-XA1 to XA47

Consult SMC for further information on specifications, dimensions and delivery.

A wide selection of models is now available, as non-standard shaft configurations for the CRB1 series (sizes: 10, 15, 20, and 30) are provided in 46 types of patterns.

Additional reminders

- Enter the dimensions within a range that allows for additional machining.
-SMC will make appropriate arrangements if no dimensions, tolerance, or finish instructions are given in the diagram.
-The length of the unthreaded portion is 2 to 3 pitches.
- Unless specified otherwise, the thread pitch is based on coarse metric threads.
$\mathrm{P}=$ thread pitch
M3 X 0.5; M4 X 0.7; M5 X 0.8
\bullet Enter the desired values in the $-=-_$, portion of the diagram.
-To shorten the shaft, use the dimensional charts for patterns A17 to A19 for reference
- If equipped with an auto switch, the manufacturable patterns are those for shafts J and W.
- Consult SMC for made to order specifications other than those mentioned in "How to Order".
- Individual drawings for specific made to order models may not be available. Consult SMC separately if drawings are needed.

How to Order

Without auto switches 2 patterns (A1, C6)

Applicable patterns

Size	10, 15, 20, 30
Patterns	XA 1 to XA23,
	XA31 to XA34,
	XA37 to XA47,
	XC 1 to XC 7, XC30

Applicable shaft/Pattern combination table (Size: 10, 15, 20, 30)

Shaft Type/W: Double shafts (Standard)

Symbol	Description		Shaft direction		Applicable
		Upper	Lower	size	
-XA	1	Female thread at the shaft end	\bullet	-	$15,20,30$
-XA	2	Female thread at the shaft end	-	\bullet	
-XA	3	Male thread at the shaft end	\bullet	-	
-XA	4	Male thread at the shaft end	-	\bullet	
-XA	5	Round shaft with steps	-	-	
-XA	6	Round shaft with steps			

With auto switches Only for pattern A1

Refer to p.1.1-11 for further information.

Series CRB1/Size: 10, 15, 20, 30
 Made to Order Specifications
 Change of Shaft End Shape/-XA1 to XA8
 Consult SMC for further information on specifications, dimensions and delivery.

Additional reminders

- Enter the dimensions within a range that allows for additional machining.
- SMC will make appropriate arrangements if no dimensions, tolerance, or finish instructions are given in the diagram
- The length of the unthreaded portion is 2 to 3 pitches.
- Unless specified otherwise, the thread pitch is based on coarse metric threads.
$\mathrm{P}=$ thread pitch
- M3 X 0.5; M4 X 0.7; M5 X 0.8

Enter the desired figures in the 1_{-1}^{-2} portion of the diagram.

- To shorten the shaft, use the dimensional tables for patterns A17 to A19 for reference.

Symbol: A3

The shaft can be further shortened by machining male threads on the long end of the shaft.
(If the shaft is not to be shortened, leave the X dimension blank.)

Size	X	Lmax	Q
10	9 to 14	X-5	M4
15	11 to 18	X-6	M5
20	13 to 20	X-7	M6
30	16 to 22	X-8	M8

Symbol: A6

The shaft can be further shortened by machining a round shoulder on the short end of the shaft.
(If the shaft is not to be shortened, leave the Y dimension blank.)

Size	Y	Lmax
10	2 to 8	Y-1
15	3 to 9	Y-1.5
20	3 to 10	Y-1.5
30	3 to 13	Y-2

Symbol: A1

The shaft can be further shortened by machining female threads into the long end of the shaft. (If the shaft is not to be shortened, leave the X dimension blank.)

- Size 10 mm is not manufacturable.
- L dimension (maximum size) is 2 times as large as the thread size as a rule

Ex.) M	$=6 \mathrm{~mm}$		(mm)
Size	X	Q	
15	to 18	M3	
20	4.5 to 20	M3, M4	
		M3, M	

Symbol: A4

The shaft can be further shortened by machining male threads on the short end of the shaft.
(If the shaft is not to be shortened, leave the Y dimension blank.)

Size	Y	Lmax	Q
$\mathbf{1 0}$	7 to 8	$\mathrm{Y}-3$	M 4
$\mathbf{1 5}$	8.5 to 9	$\mathrm{Y}-3.5$	M 5
$\mathbf{2 0}$	10	$\mathrm{Y}-4$	M 6
$\mathbf{3 0}$	13	$\mathrm{Y}-5$	M 8

Symbol: A7

The shaft can be further shortened by machining a round shoulder and machining male threads on the long end of the shaft.
(If the shaft is not to be shortened, leave the X dimension blank.)

					(mm)
Size	X	Lmax	Q		
$\mathbf{1 0}$	7.5 to 14	$X-3$	M 3		
$\mathbf{1 5}$	10	to 18	$\mathrm{X}-4$		
$\mathrm{M} 3, \mathrm{M} 4$					
$\mathbf{2 0}$	12	to 20	$\mathrm{X}-4.5$		
$\mathbf{3 0}$	14	to 22	$\mathrm{X}-5$		

Symbol: A2
The shaft can be further shortened by machining female threads into the short end of the shaft. (If the shaft is not to be shortened, leave the Y dimension blank.)

- Size 10 mm is not manufacturable
- L dimension (maximum size) is 2 times as large as the thread size as a rule
Ex.) M3: L = 6mm

Ex.) $\mathrm{M} 3: L=6 \mathrm{~mm}$	(mm)	
Size	Y	Q
$\mathbf{1 5}$	1.5 to 9	M 3
$\mathbf{2 0}$	1.5 to 10	$\mathrm{M} 3, \mathrm{M} 4$
$\mathbf{3 0}$	2 to 13	$\mathrm{M} 3, \mathrm{M} 4, \mathrm{M} 5$

Symbol: A5

The shaft can be further shortened by machining a round shoulder on the long end of the shaft.
(If the shaft is not to be shortened, leave the X dimension blank.)

Symbol: A8

The shaft can be further shortened by machining a round shoulder and machining male threads on the short end of the shaft
If the shaft is not to be shortened, leave the Y dimension blank.)

					(mm)
Size	Y	Lmax	Q		
$\mathbf{1 0}$	5.5 to 8	Y-1	M3		
$\mathbf{1 5}$	7.5 to 9	Y-1.5	M3, M4		
$\mathbf{2 0}$	9 to 10	Y-1.5	M3, M4, M5		
$\mathbf{3 0}$	11	to 13	Y-2		

Symbol: A9

The shaft can be further shortened by changing the length of the standard flat of the long end of the shaft. (If the shaft is not to be shortened, leave the X dimension blank.)

(mm)		
Size	X	L1
$\mathbf{1 0}$	5 to 14	$9-(14-X)$ to $(X-3)$
15	8 to 18	$10-(18-X)$ to $(X-4)$
$\mathbf{2 0}$	10 to 20	$10-(20-X)$ to $(X-4.5)$
$\mathbf{3 0}$	10 to 22	$12-(22-X)$ to $(X-5)$

Symbol: A12

The shaft can be further shortened by milling double flats on the short end of the shaft.
(If no changes are to be made to the standard flat, and the shaft is not to be shortened, leave the L1 and Y dimensions blank.)

Symbol: A15
Applicable to the single vane style only.
Machine a special end (at the short end of the shaft), and machine female threads in the through hole at the short end of the shaft, thus creating a through hole to serve as the pilot.

- Size 10 is not manufacturable.
-The L dimension (maximum) is, as a rule, twice the size of the bolt. Example: For M4 bolt: L max $=8 \mathrm{~mm}$

	(mm)		
Size	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$
M3 X 0.5	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$
M4 X 0.7	-	$\varnothing 3.3$	$\varnothing 3.3$
M5 X 0.8	-	-	$\varnothing 4.2$

Symbol: A10

The shaft can be further shortened by changing the length of the
standard flat of the short end of the shaft (If the shaft is not to be standard flat of the short end of the shaft. (If the shaft is not to be shortened, leave the Y dimension blank.)

Symbol: A13 Applicable to the single vane style only.
Shaft through hole $\mathrm{d} 2=\varnothing_{\llcorner }^{\text {- }}$ -
,

- Size 10 mm is not manufacturable.
- For size $15 \mathrm{~mm}, \mathrm{~d} 1=\varnothing 2.5, \mathrm{~L} 1=$ max. 18 .
- For size 15 mm only, inscribe the L1, L2, and d1 dimensions
when = d2 is ø2.6 or more.
- Sizes 20 mm and 30 mm are $\mathrm{d} 1=\mathrm{d} 2$.
- The minimum range of the machinable dimension for the d2 area is 0.1 mm .

$\quad(\mathrm{mm})$		
Size	d 1	d 2
$\mathbf{1 5}$	$\varnothing 2.5$	$\varnothing 2.5$ to $\varnothing 3$
$\mathbf{2 0}$	-	$\varnothing 2.5$ to $\varnothing 4$
$\mathbf{3 0}$	-	$\varnothing 2.5$ to $\varnothing 4.5$

Symbol: A16 Applicable to the single vane style only.

Machine special ends (at both ends of the shaft), and machine female threads in the through holes at both ends of the shaft, thus creating through holes to serve as pilot.

- Size 10 is not manufacturable.
- The L dimension (maximum) is, as a rule, twice the size of the bolt.
Example: For M5 bolt: L max. $=10 \mathrm{~mm}$

Size	15	20	30
M3 X 0.5	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$
M4 X 0.7		$\varnothing 3.3$	$\varnothing 3.3$
M5 X 0.8	-		$\varnothing 4.2$

Symbol: A11

The shaft can be further shortened by milling double flats on the long end of the shaft. (lf no changes are to be made to the standard flat, and the shaft is not to be shortened, leave the L1 and X dimensions blank.)

*: 0.5mm or more
L1: Standard chamfering part

(mm)			
Size	X	L1	L2max
$\mathbf{1 0}$	5 to 14	$9-(14-X)$ to $(X-3)$	$X-3$
$\mathbf{1 5}$	8 to 18	$10-(18-X)$ to $(X-4)$	$X-4$
$\mathbf{2 0}$	10 to 20	$10-(20-X)$ to $(X-4.5)$	$X-4.5$
$\mathbf{3 0}$	10 to 22	$12-(22-X)$ to $(X-5)$	$X-5$

Symbol: $\mathbf{A} 14$ Applicable to the single vane style only.
Machine a special end (at the long end of the shaft), and machine female threads in the through hole at the long end of the shaft, thus creating a through hole to serve as the pilot.

- Size 10 is not manufacturable
- The L dimension (maximum), is, as a rule, twice the size of the bolt.
Example: For M3 bolt: L max. $=6 \mathrm{~mm}$

Example: For M3 bolt: L max. $=6 \mathrm{~mm}$			
Size	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$
$\mathrm{M} 3 \times 0.5$	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$
$\mathrm{M} 4 \times 0.7$	-	$\varnothing 3.3$	$\varnothing 3.3$
$\mathrm{M} 5 \times 0.8$	-	-	$\varnothing 4.2$

Symbol: A17

Shorten the long end of the shaft.

Series CRB1／Size：10，15，20， 30
 Made to Order Specifications
 Change of Shaft End Shape／－XA18 to XA23
 Consult SMC for further information on specifications，dimensions and delivery．

Additional reminders

－Enter the dimensions within a range that allows for additional machining
－SMC will make appropriate arrangements if no dimensions，tolerance，or finish instructions are given in the diagram．
－The length of the unthreaded portion is 2 to 3 pitches．
－Unless specified otherwise，the thread pitch is based on coarse metric threads．
$\mathrm{P}=$ thread pitch
M3 X 0．5；M4 X 0．7；M5 X 0.8
－Enter the desired figures in the「ここ．portion of the diagram．
－To shorten the shaft，use the dimensional tables for patterns A17 to A19 for reference．

Symbol：A20

Reverse the assembly of the shaft（thus shortening the long end and the short end of the shaft．）

（mm）			
Size	X	Y	
$\mathbf{1 0}$	3 to 10	1 to 12	
$\mathbf{1 5}$	4 to 11.5	1.5 to 15.5	
$\mathbf{2 0}$	4.5 to 13	1.5 to 17	
$\mathbf{3 0}$	5 to 16	2 to 19	

Symbol：A23

The shaft can be further shortened by milling perpendicular double flats on the long end of the shaft．（If no changes are to be made to the standard flat and the shaft is not to be shortened，leave the L1 and X dimensions blank．）

The＂＊＂mark indicates 0.5 minimum．
L 1 is the standard flat．

（mm）

Size	X	L1	L2max
$\mathbf{1 0}$	5 to 14	$9-(14-X)$ to $(X-3)$	$X-3$
$\mathbf{1 5}$	8 to 18	$10-(18-X)$ to $(X-4)$	$X-4$
$\mathbf{2 0}$	10 to 20	$10-(20-X)$ to $(X-4.5)$	$X-4.5$
$\mathbf{3 0}$	10 to 22	$12-(22-X)$ to $(X-5)$	$X-5$

Symbol：A18

Shorten the short end of the shaft．

Symbol：A21

The shaft can be further shortened by machining a round shoulder and double flats on the long end of the shaft．（If the shaft is not to be shortened，leave X dimension blank．）

Symbol：A19
Shorten both the long and the short end of the shaft．

（mm）			
Size	X	Y	
$\mathbf{1 0}$	3 to 14	1 to 8	
$\mathbf{1 5}$	4 to 18	1.5 to 9	
$\mathbf{2 0}$	4.5 to 20	1.5 to 10	
$\mathbf{3 0}$	5 to 22	2 to 13	

Symbol：A22

The shaft can be further shortened by machining a round shoulder and double flats on the short end of the shaft．（If the shaft is not to be shortened，leave Y dimension blank．）

Depending on the
type of change that has been made，th standard flat may
remain．

Size	Y	L1max	L2
$\mathbf{1 0}$	4 to 8	Y－2．5	$\mathrm{L} 1+1.5$
$\mathbf{1 5}$	4.5 to 9	$\mathrm{Y}-3$	$\mathrm{~L} 1+1.5$
$\mathbf{2 0}$	5 to 10	$\mathrm{Y}-3.5$	$\mathrm{~L} 1+2$
$\mathbf{3 0}$	$\mathbf{7}$ to 13	$\mathrm{Y}-5$	$\mathrm{~L} 1+3$

Series CRB1/size: 10, 15, 20, 30 Made to Order Specifications
Change of Shaft End Shape/-XA31 to XA40
Consult SMC for further information on specifications, dimensions and delivery.

Additional reminders

- Enter the dimensions within a range that allows for additional machining.
- SMC will make appropriate arrangements if no dimensions, tolerance, or finish instructions are given in the diagram.
-The length of the unthreaded portion is 2 to 3 pitches.
- Unless specified otherwise, the thread pitch is based on coarse metric threads.
$\mathrm{P}=$ thread pitch
M3 X 0.5; M4 X 0.7; M5 X 0.8
- Enter the desired figures in the $\left\lceil_{\llcorner }^{-}\right\urcorner$portion of the diagram.
- To shorten the shaft, use the dimensional tables for patterns A17 to A19 for reference.

Symbol: A33

Machine female threads into the long end of the shaft.
-The L dimension (maximum) is, as a rule, twice the size of the bolt.
(Example: For M3 bolt: L max. $=6 \mathrm{~mm}$)

- Applicable shaft styles - shafts J, K, T

Symbol: A38

The shaft can be further shortened by machining a round shoulder on the short end of the shaft. (If the shaft is not to be shortened, leave the Y dimension blank.)

- Applicable shaft styles - shaft K

Size	Y	Lmax
$\mathbf{1 0}$	2 to 14	$\mathrm{Y}-1$
$\mathbf{1 5}$	3 to 18	$\mathrm{Y}-1.5$
$\mathbf{2 0}$	3 to 20	$\mathrm{Y}-1.5$
$\mathbf{3 0}$	3 to 22	$\mathrm{Y}-2$

Symbol: A31

Machine female threads into the long end of the shaft

- The L dimension (maximum) is, as a rule, twice the size of the bolt.
(Example: For M3 bolt: L max. $=6 \mathrm{~mm}$)
- Applicable shaft styles - shafts S, Y

Symbol: A34

Machine female threads into the short end of the shaft.
-The L dimension (maximum) is, as a rule, twice the size of the bolt.
(Example: For M3 bolt: L max. $=6 \mathrm{~mm}$)
However, in the case of the M5 bolt for shaft T, it is 1.5 times the size of the bolt.
-Applicable shaft styles — shafts J, K, T

(mm)

	Q		
S			
Size	J	K	T
10	Not manufacturable		
15	M3		
20	M3, M4		
30	M3, M4, M5		

Symbol: A39 Applicable to the single vane type only Shaft through hole (shafts S, Y additionally machined)

- Size 10 is not manufacturable. For size 15 is $\mathrm{d} 1=\varnothing 2.5, \mathrm{~L} 1=$ max. X 18 The minimum range of the machinable dimension for the d 2 area is 0.1 mm .
-For sizes 20 and 30 are $\mathrm{d} 1=\mathrm{d} 2$.
-With size 15 , enter the L1 L 2 , and d 1 dimensions when d2 is $\varnothing 2.6$ or more. -Applicable shaft styles -shafts S, Y

Symbol: A32

Machine female threads into the short end of the shaft. -The L dimension (maximum) is, as a rule, twice the size of the bolt. (If M5 only 1.5 times)
(Example: For M4 bolt: L max. $=8 \mathrm{~mm}$)
-Applicable shaft styles - shafts S, Y

Symbol: A37
The shaft can be further shortened by machining a round shoulder on the long end of the shaft. (If the shaft is not to be shortened, leave the X dimension blank.)

- Applicable shaft styles — shafts J, K, T

Symbol: A40 Applicable to the single vane only. Shaft through hole (shafts K, T additionally machined)

- Size 10 is not manufacturable. For size 15 is $\mathrm{d} 1=\varnothing 2.5, \mathrm{~L} 1=\max . \mathrm{X} 18$ The minimum range of the machinable dimension for the d 2 area is 0.1 mm . -For sizes 20 and 30 are d1 $=\mathrm{d} 2$.
- With size 15 , enter the L1, L 2 , and d 1 dimensions when d2 is $\varnothing 2.6$ or more. -Applicable shaft styles -shafts S, Y

(mm)		
${ }^{\text {Shatit }}$	K T	K T
Size	d1	d2
15	2.5	2.5 to 3
20	-	2.5 to 4
30	-	2.5 to 4.5

Series CRB1/Size: 10, 15, 20, $\mathbf{3 0}$
Made to Order Specifications
Change of Shaft End Shape/-XA41 to XA47
Consult SMC for further information on specifications, dimensions and delivery.

Additional reminders

- Enter the dimensions within a range that allows for additional machining.
- SMC will make appropriate arrangements if no dimensions, tolerance, or finish instructions are given in the diagram.
- The length of the unthreaded portion is 2 to 3 pitches.
- Unless specified otherwise, the thread pitch is based on coarse metric threads. $\mathrm{P}=$ thread pitch
M3 X 0.5; M4 X 0.7; M5 X 0.8
- Enter the desired figures in the portion of the diagram.
- To shorten the shaft, use the dimensional tables for patterns A17 to A19 for reference.

Symbol: A43
Applicable only to single vane.
Machine special ends (at both ends of the shaft), and machine female threads in the through holes at both ends of the shaft, thus creating through holes to serve as the pilot holes.

Size	15		20		30	
Thread	K	T	K	T	K	T
M3 X 0.5	2.5		2.5		2.5	
M 4×0.7	-		3.3		3.3	
M5 X 0.8	-		-		4.2	

Symbol: A46

The shaft can be further shortened by machining an intermediate flat on the short end of the shaft (the position is that of the standard flat).

Symbol: A41
Applicable only to single vane

- Size 10 is not manufacturable
- For size 15 is $d 1=2.5, L 1=$ max. 18 The minimum
range of the machinable dimension for the d2 area is
range of the machinable dimension for the d2 area is
0.1 mm . Enter the $\mathrm{L} 1, \mathrm{~L} 2$, and d 1 dimensions when d2 is $\varnothing 2.6$ or more.
- For sizes 20 and 30 are d1 = d2.
- Applicable shaft styles - shaft J

(mm)		
Size	d1	d2
$\mathbf{1 5}$	2.5	2.5 to 3
$\mathbf{2 0}$	-	2.5 to 4
$\mathbf{3 0}$	-	2.5 to 4.5

Symbol: A44

Applicable only to single vane.
Machine special ends (at both ends of the shaft), and machine female threads in the through holes at both ends of the shaft, thus creating through holes to serve as the pilot holes.

- Size 10 is not manufacturable - The L dimension (maximum) is, as a rule, twice the size of the bolt. (Example: For M5 bolt: L max. $=10 \mathrm{~mm}$.) - Applicable shaft styles- shaft J

(mm)			
Thread \quad Size	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$
M3 $\times 0.5$	2.5	2.5	2.5
M4 00.7		3.3	3.3
M5 X 0.8	-	-	4.2

Symbol: A47

Machining a key groove in the long end of the shaft (the position is that of the standard flat). A key must be ordered separately.

- Applicable shaft styles - shafts J, K, T	(mm)		
Size	a	L	N
$\mathbf{2 0}$	$2 \mathrm{~h} 9-0.025$	10	6.8
$\mathbf{3 0}$	$3 \mathrm{~h} 9-0.025$	14	9.2

Symbol: A42 Applicable only to single vane.
Machine special ends (at both ends of the shaft), and machine female threads in the through holes at both ends of the shaft, thus creating through holes to serve as the pilot holes.

- Size 10 is not manufacturable - The L dimension (maximum) is, as a rule, twice the size the bolt. (Example: For M5 the bolt. (Example: For
bolt: L max. $=10 \mathrm{~mm}$.) However, for the short end of However, for the short end of
shaft S: For M5 bolt: L max. = shaft S:
7.5 mm .
- Applicable shaft styles -
shafts S, Y

Symbol: A45
The shaft can be further shortened by machining an intermediate flat on the long end of the shaft (the position is that of the standard flat).

- Applicable shaft styles — shafts J, K, T

										(mm)		
Ser	X			W			L1max			L2max		
Size ${ }^{\text {aty }}$	J	K	T	J	K	T	J	K	T	J	K	T
10	6.5 to 14			0.5 to 2			X-3			L1-1		
15	8 to 18			0.5 to 2.5			X-4			L1-1		
20	9 to 20			0.5 to 3			X-4.5			L1-1		
30	11.5 to 22			0.5 to 4			X-5			L1-2		

\triangle Caution

Symbols: A45, A46 and dimensions W and L1-L2
The intermediate flat may interfere with the center hole if dimensions W and (L1-L2) are at the measurements given below.

Size	W	L1 - L2
$\boldsymbol{\varnothing 1 0}$	1 to 2	1 to 3
$\boldsymbol{\varnothing 1 5}$	1.5 to 2.5	1 to 3
$\boldsymbol{\varnothing 2 0}$	2 to 3	1 to 3
$\boldsymbol{\varnothing} 0$	3 to 4	2 to 3

Series CRB1/Size: 10, 15, 20, 30
 Made to Order Specifications
 -XC1 to -XC4

Consult SMC for further information on specifications, dimensions and delivery.

CRB1BWP Refer to the "How to Order" on p.1.1-20. XC1
Symbols
Connecting port is added to the body (A) side.
*Not available for models with auto switch.

5 Symbol
 Location change of body tightening bolt -XC3

CRB1BWP

ocation change of body tightening bolt

Three holes in screw parts of the body (B) to penetrate screws.
*Not available for models with auto switch.

Symbol
 -XC4

CRB1BWP

Location change of the rotation range (90° to the right from the starting point)

Applicable only to single vane.

Rotation starting point is located on
the horizontal line (90° to the right).
Angle error of "CRB1BW10" is 0° to $+5^{\circ}$.

Rotation starting point is one chamfered
Diagram viewed from position during pressurization from A port.

*Write required angle in \square below.
Symbol: XC5 Applicable only to single vane style.
Rotation starting point is located at the angle of 45°. Angle error of "CRB1BW10" is from 0° to $+5^{\circ}$.
Port sizes of "CRB1BW10" and "CRB1BW15" are M3.

Symbol: XC6 Applicable only to single vane style.
Rotation starting point is located on horizontal line (left at the angle of 90°).
Angle error of "CRB1BW10" is from 0° to $+5^{\circ}$.
$\theta=\square{ }^{+9} 8$
$\max .110^{\circ}$

CRB1BWP $\begin{aligned} & \text { Refer to "How to Order" on p.1.1-20.-XC7 }\end{aligned}$

Dimensions

Size	Y	Xm
$\mathbf{1 0}$	12	10
$\mathbf{1 5}$	15.5	11.5
$\mathbf{2 0}$	17	13
$\mathbf{3 0}$	19	16

Fluorine grease is used for lubricant for seal part of packing and inner wall of the actuator.

Shaft styles of series CRB1 except for standard shaft style (W).

Rotary Actuator Vane Style

Series CRB1
 Size: 50, 63, 80, 100

Series Variations

Series CRB1
Size: 50, 63, 80, 100

How to Order

Applicable Auto Switch/Refer to page 11-11-1 for detailed auto switch switches.

Type	Electrical entry	ㄷㅡㅡ			oad voltag		Auto switch model	Lea	ire	gth	m) *	Applicable load	
		$\begin{aligned} & \text { 䯧 } \\ & \text { 苞 } \end{aligned}$	Wiring (Output)	DC		AC		$\begin{gathered} 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$	None (N)		
Reed switch	Grommet	안	2-wire	24 V	48 V	$\begin{gathered} 24 \mathrm{~V}, 48 \mathrm{~V} \\ 100 \mathrm{~V} \end{gathered}$	R80	\bigcirc	\bigcirc	-	-	IC circuit	Relay, PLC
	Connector				100 V		R80C	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
	Grommet	$\stackrel{\infty}{\infty}$			-		R73	\bigcirc	\bigcirc	-	-	-	
	Connector				-	100 V	R73C	\bigcirc	\bullet	-	\bigcirc		
Solid state switch	Grommet	$\stackrel{\infty}{\underset{\sim}{\infty}}$	2-wire	24 V	12 V	-	T79	\bigcirc	\bigcirc	-	-	-	Relay, PLC
	Connector						T79C	\bigcirc	\bigcirc	-	\bigcirc		
	Grommet		3 -wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		S79	\bigcirc	-	-	-	IC circuit	
	Grommet		3 -wire (PNP)				S7P	-	-	-	-		
* Lead wire length symbols:		$\begin{gathered} 0.5 \mathrm{~m} \cdots \mathrm{Nil} \\ 3 \mathrm{~m} \cdots \mathrm{~L} \\ 5 \mathrm{~m} \cdots \mathrm{Z} \\ \text { None } \cdots \mathrm{N} \end{gathered}$		(Example) (Example) (Example) (Example)	$\begin{aligned} & \text { R73C } \\ & \text { R73CL } \\ & \text { R73CZ } \\ & \text { R73CN } \end{aligned}$								

Excellent reliability and durability The use of bearings to support thrust and radial loads improves reli-ability and durability.
 \square The body of the rotary actuator can be mounted directly.
 - Two different port locations

Size: 50

Size: $\mathbf{8 0}$

Specifications

Size		CRB1BW50	CRB1BW63	CRB1BW80	CRB1BW100	CRB1BW50	CRB1BW63	CRB1BW80	CRB1BW100
Vane type		Single vane (S)				Double vane (D)			
Rotating angle	Standard	$90^{\circ+4}{ }_{0}, 180^{\circ+4}{ }_{0}, 270^{\circ+4}$				$90^{\circ+4}$			
	Option	$100^{\circ+4}, 190_{0}^{\circ+4}, \quad 280^{\circ+4}$				$100^{\circ+4}{ }_{0}$			
Fluid		Air (Non-lube)							
Proof pressure		1.5 MPa							
Ambient and fluid temperature		5 to $60^{\circ} \mathrm{C}$							
Max. operating pressure		1.0 MPa							
Min. operating pressure		0.15 MPa							
Speed regulation range (s/90 ${ }^{\circ}$)		0.1 to 1							
Allowable kinetic energy		0.082 J	0.12 J	0.398 J	0.6 J	0.112 J	0.16 J	0.54 J	0.811 J
Shaft load lo	Allowable radial load	245 N	390 N	490 N	588 N	245 N	390 N	490 N	588 N
	vable thrust load	196 N	340 N	490 N	539 N	196 N	340 N	490 N	539 N
Bearing		Bearing							
Port location		Side ported or Axial ported							
SizeS 	Side ported	Rc $1 / 8$		Rc $1 / 4$		Rc $1 / 8$		Rc $1 / 4$	
	Axial ported	Rc $1 / 8$		Rc $1 / 4$		Rc $1 / 8$		Rc $1 / 4$	
Mounting		Basic style, Foot style							
Volume									
$\left(\mathrm{cm}^{3}\right)$									
Classification	Rotating angle	Single vane (S)				Double vane (D)			
		CRB1BW50	CRB1BW63	CRB1BW80	CRB1BW100	0 CRB1BW50	CRB1BW63	CRB1BW80	CRB1BW100
Standard	90°	30	70	88	186	48	98	136	272
	180°	49	94	138	281	-	-	-	-
	270°	66	118	188	376	-	-	-	-
Option	100°	32	73	93	197	52	104	146	294
	190°	51	97	143	292	-	-	-	-
	280°	68	121	193	387	-	-	-	-

Weight

JIS Symbol

cm^{3})

20-

Model	Rotating angle	Single vane (S)				Double vane (D)			
		CRB1BW50	CRB1BW63	CRB1BW80	CRB1BW100	CRB1BW50	CRB1BW63	CRB1BW80	CRB1BW100
Main body	90°	810	1365	2070	3990	830	1410	2120	4150
	180°	790	1330	2010	3880	-	-	-	-
	270°	770	1290	1950	3760	-	-	-	-
	100°	808	1360	2065	3980	822	1400	2100	4100
	190°	788	1325	2005	3870	-	-	-	-
	280°	766	1285	1940	3735	-	-	-	-
Auto switch unit +2 switches		65	85	95	165	65	85	95	165
Foot bracket assembly		384	785	993	1722	384	785	993	1722

Caution

IBe sure to read before handling. Refer to pages 11-13-3 to 11-13-4 for i ISafety Instructions and Common Precautions on the products I Imentioned in this catalog, and refer to pages 11-1-4 to 11-1-6 for I I Precautions on every series.

Series CRB1

Effective Output

Key Position and Rotation Range

Key positions in the illustrations below show the intermediate rotation position when A or B port is pressurized.
Top View from Long Shaft Side
Single vane type

Direct Mounting of Body

Model	L	Screw
CRB1BW50	48	M6
CRB1BW63	52	M8
CRB1BW80	60	M8
CRB1BW100	80	M10

With One-touch Fittings

With One-touch fittings facilitate the piping work and greatly reduce the installation space.

Specifications

Vane type	Single vane	Double vane
Size	50	
Operating pressure range (MPa)	0.15 to 1.0	
Speed regulation range $\left(\mathrm{s} / 90^{\circ}\right)$	0.1 to 1	
Port location	Side ported or Axial ported	
Piping	With One-touch fittings	
Mounting	Basic style, Foot style	
Variations	Basic style, With auto switch	

Applicable Tubing and Size

Applicable tubing O.D/I.D (mm)	$\varnothing 6 / \varnothing 4$
Applicable tubing material	Nylon, Soft nylon, Polyurethane

Refer to page 11-4-8 for construction drawing. Refer to page 11-4-12 for external dimensions.

Clean Series

The double-seal construction of the actuator shaft section of these series to channel exhaust through the relief ports directly to the outside of a clean room environment allows operation of these cylinders in a class 100 clean room.

Specifications

Vane type	Single vane
Size	$\mathbf{5 0 , 6 3}$
Operating pressure range (MPa)	0.15 to 1.0
Speed regulation range $\left(\mathrm{s} / 90^{\circ}\right)$	0.1 to 1
Port location	Side ported or Axial ported
Piping	Screw-in type
Relief port size	$\mathrm{M} 5 \times 0.8$
Mounting	Basic style
Variations	Basic style, With auto switch

The internal construction of the illustration above shows a single vane style.
For further specifications, refer to "Pneumatic Clean Series" catalog.

Copper-free

Series CRB1

Rotary Actuator with Solenoid Valve

How to Order

Specifications

Fluid	Air
Operating pressure (MPa)	0.15 to 0.7
Rotating angle	Standard: $90^{\circ}, 180^{\circ}, 270^{\circ} ;$ Option: $100^{\circ}, 190^{\circ}, 280^{\circ}$
Rotation time adjustment range $\left(\mathrm{s} / 90^{\circ}\right)$	0.3 to 1.0
Applicable solenoid valve	Size 50, 63: VZ3000, Size 80, 100: VZ5000
Operating voltage	100 VAC, 200 VAC, 24 VDC
Electrical entry	L plug connector, DIN terminal
	M plug connector

Allowable Kinetic Energy

Size	Vane style	Allowable kinetic energy
	Single vane	0.082 J
	Double vane	0.112 J
$\mathbf{6 3}$	Single vane	0.120 J
	Double vane	0.160 J
$\mathbf{8 0}$	Single vane	0.398 J
	Double vane	0.54 J
$\mathbf{1 0 0}$	Single vane	0.6 J
	Double vane	0.811 J

* Speed regulation range: 0.3 to $1 \mathrm{~s} / 90^{\circ}$

Dimensions

Rotary Actuator: Replaceable Shaft

A shaft can be replaced with a different shaft type except for standard shaft type (W).

\mathbf{J}	Double shaft (Long shaft without keyway \& Four chamfers)
\mathbf{K}	Double round shaft
\mathbf{S}	Single shaft key
\mathbf{T}	Single round shaft
\mathbf{X}	Single shaft with four chamfers
\mathbf{Y}	Double shaft key
\mathbf{Z}	Double shaft with four chamfers

	(mm)	
Nominal size	\mathbf{C}	\mathbf{D}
$\mathbf{5 0}$	19.5	39.5
$\mathbf{6 3}$	21	45
$\mathbf{8 0}$	23.5	53.5
$\mathbf{1 0 0}$	30	65

$\overline{\text { Note) Dimensions and tolerance of the shaft and keyway are the same as }}$ the standard.

Series CRB1

Construction

Standard (Keys in the illustrations below show the intermediate rotation position.)
$\begin{aligned} & \text { For } 270 \\ & \\ & \\ & \text { (Top view } \\ & \text { from long shatt side) }\end{aligned}$
Single vane

For $90^{\circ}{ }^{\text {(Top view }}$
from long shaft side)

Single vane

For 90° (Top view
from long shaft side)
Double vane

Component Parts

No.	Description	Material	Note
(1)	Body (A)	Aluminum die-casted	CRB1BW50/63/80, painted
		Cast aluminum	CRB1BW100, painted
(2)	Body (B)	Aluminum die-casted	CRB1BW50/63/80, painted
		Cast aluminum	CRB1BW100, painted
(3)	Vane shaft	Carbon steel	
(4)	Stopper	Aluminum die-casted	
(5)	Stopper	Resin	For 90
(6)	Stopper	Resin	For 180
(7)	Bearing	High carbon chrome bearing steel	
(8)	Hexagon socket (with washer)	Carbon steel	
(9)	Fuji lock bolt	Carbon steel	
(10)	Parallel keyway	Carbon steel	
(11)	O-ring	NBR	
(12)	O-ring	NBR	Special O-ring
(13)	Stopper seal	NBR	Special seal
(14)	Holding rubber	NBR	

With auto switch
(Keys in the illustrations below show the actuator for 180° when A port is pressurized.)

Component Parts

No.	Description	Material	Note
(1)	Cover (A)	Resin	
(2)	Cover (B)	Resin	
(3)	Magnet lever	Resin	
(4)	Holding block	Aluminum alloy	
(5)	Switch block (A)	Resin	
(6)	Switch block (B)	Resin	
(7)	Magnet	Magnetic body	
(8)	Arm	Stainless steel	
(9)	Rubber cap	NBR	
(10	Round head Phillips screw	Stainless steel	
(11)	Hexagon socket head set screw	Stainless steel	
(12)	Round head Phillips screw	Carbon steel	For CDRB1BW50/63/80
	Hexagon socket head cap screw	Carbon steel	For CDRB1BW100
(13)	Round head Phillips screw	Stainless steel	

Dimensions: 50, 63, 80, 100

Single vane type/Double vane type

CDRB1BW $\square-\square$ S/D
<Port location: Side ported>

Model	A1	A2	B	C	D	$\begin{gathered} E_{1} \\ (\mathrm{~g} 6) \end{gathered}$	$\begin{gathered} E_{2} \\ \text { (h9) } \end{gathered}$	$\begin{gathered} F \\ (h 9) \end{gathered}$	G	H	J	K	L	M1	M2	N	P	Q	$\begin{gathered} \hline \mathbf{R} \\ (\mathrm{Rc}) \end{gathered}$	S	T	\mathbf{U}	V	W	X	Y	Z
CRB1BW50- \square	67	78	70	19.5	39.5	$12^{-0.0066}$	11.9 ${ }_{-0.043}^{0}$	$25_{-0.052}^{0}$	3	10	13	5	13.5	26	18	14	50	M6 x 1 depth 9	1/8	60	R6	11	34	66	46	5.5	
CRB1BW50-7]E														21	-	18											6.5
CRB1BW63- $\square \square$	82	98	80	21	45	$15^{-0.0066}$	$14.9{ }_{-0.043}^{0}$	$28{ }_{-0.052}^{0}$	3	12	14	5	17	29	22	15	60	$\begin{gathered} \text { M8 x } 1.25 \\ \text { depth } 10 \end{gathered}$	1/8	75	R7.5	14	39	83	52	8	9
CRB1BW63- $\square \square$														27	-	25											
CRB1BW80- \square	95	110	90	23.5	53.5	$17_{-0.017}^{-0.066}$	$16.9{ }_{-0.043}^{0}$	$30_{-0.052}^{0}$	3	13	16	5	19	30	30	20	70	$\begin{aligned} & \text { M8 x } 1.25 \\ & \text { depth } 12 \\ & \hline \end{aligned}$	1/4	88	R8	15			63	7.5	9
CRB1BW80-7]E														29	-	30							48	94			
CRB1BW100- \square	125	140	103	30	65	$25_{-0.020}^{-0.07}$	$24.9{ }_{-0.052}^{0}$	$45_{-0.062}^{0}$	4	19	22		28	35.5	32	24	80	$\begin{gathered} \text { M10 x } 1.5 \\ \text { depth } 13 \end{gathered}$			R11	11.5	60	120			
CRB1BW100-7]E												5		38	-	38			1/4	108					78	7.5	11

* For single vane: Above illustrations show actuators for 180° when B port is pressurized.

Series CRB1

Dimensions：50，63，80， 100 （With auto switch unit）
Single vane type／Double vane type
CDRB1BW $\square-\square$ S／D
＜Port location：Side ported＞

			（m
Keyway dimension			
Model	b（h9）	h（h9）	ℓ
CDRB1BW50－■ด口	4－0．030	$4{ }_{-0.030}^{0}$	20
CDRB1BW63－■ด口	$5-0.030$	$5{ }_{-0.030}^{0}$	25
CDRB1BW80－■प口	$5-0.030$	$5-0.030$	36
CDRB1BW100－$\square \square$	7－0．036	7－0．036	40

＊For single vane：Above illustrations show actuators for 180° when B port is pressurized．

Model	A1	A2	B	C	D	$\begin{gathered} E \\ (\mathrm{~g} 6) \end{gathered}$	$\begin{gathered} F \\ (h 9) \end{gathered}$	G1	G2	H （R）	J	K	L	M1	M2	N	P	Q	$\begin{gathered} \mathrm{R} \\ (\mathrm{Rc}) \end{gathered}$	S	T	\mathbf{U}	V	W	X	Y	Z
CDRB1BW50－\square	67	78	70	32	39.5	$12_{-0.017}^{-0.006}$	$25{ }_{-0.052}^{0}$	3	6.5	R22．5	32.5	5	13.5	26	18	14	50	$\begin{aligned} & \text { M6 x } 1 \\ & \text { depth } 9 \end{aligned}$	1／8	60	R6	11	34	66	46	5.5	
CDRB1BW50－－7E														21	－	18											6.5
CDRB1BW63－\square	82	98	80	34	45	$15_{-0.017}^{-0.006}$	$28{ }_{-0.052}^{0}$	3	8	R30	21	5	17	29	22	15	60	$\begin{gathered} \text { M8 x } 1.25 \\ \text { depth } 10 \\ \hline \end{gathered}$	1／8	75	R7．5	14	39	83		8	9
CDRB1BW63－－7E														27		25									52		
CDRB1BW80－\square	95	110	90	34	53.5	$17_{-0.017}^{-0.006}$	$30_{-0.052}^{0}$	3	8	${ }^{\text {R30 }}$	21	5	19	30	30	20	70	$\begin{array}{\|c\|} \hline \text { M8 x } 1.25 \\ \text { depth } 12 \\ \hline \end{array}$	1／4	88	R8	15	48	94			
CDRB1BW80－－7E														29	－	30									63	7.5	9
CDRB1BW100－\square	125	140	103	39	65	$25_{-0.020}^{-0.007}$	$45_{-0.062}^{0}$	4	13	R30	21	5	28	35.5	32	24	80	M10 x 1.5 depth 13	1／4	108		11.5	60				
CDRB1BW100－7］E														38	－	38					R11			120	78	7.5	11

[^2]
Option: Foot bracket

Applicable size	Foot bracket assembly no.	LA1	LA2	LB1	LB2	LC	LD	LE	LF	LG	LH	LJ1	LJ2	LK	LM	T
50	P411020-5	78	70	45	50	36	25.5	10	4.5	45	7.5	34	66	60.5	84	48
63	P411030-5	100	90	56		44	30	$\varnothing 12$	5	60	9.5	39	83	75.5	110	52
80	P411040-5	111	100	63		46	32	$\varnothing 12$	6	65	9.5	48	94	88.5	120.5	60
100	P411050-5	141	126	80		55	39.5	$\varnothing 14$	6	80	11.5	60	120	108.5	150.5	80

Note1) The foot bracket (with bolt, nut, and washer) is not mounted on the actuator at the time of shipment.
Note 2) The foot bracket can be mounted on the rotary actuator bracket 90° intervals.
Note 3) Refer to the foot bracket assembly part no. in the table at right when foot bracket assembly is required separately.

Model		Foot bracket assembly no.
Standard	With auto switch	
CRB1LW50	CDRB1LW50	P411020-5
CRB1LW63	CDRB1LW63	P411030-5
CRB1LW80	CDRB1LW80	P411040-5
CRB1LW100	CDRB1LW100	P411050-5

Series CRB1

With One-touch Fittings: 50

Standard
CRB1■W50F-■
<Port location: Side ported>

CRB1 \quad W50F- -1 E
<Port location: Axial ported>

Applicable Tubing and O.D/I.D

Applicable tubing O.D/I.D (mm)
Applicable tubing material

With auto switch
CDRB1 \square W50F- $\square \square-\square$
<Port location: Side ported>

CDRB1 \square W50F- $\square \square E-\square$
<Port location: Axial ported>

Shaft shape pattern is dealt with simple made-to-order system. Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing I
-XA1 to XA24
Applicable shaft type: W (Standard)

$\mathrm{XA} \square \mathrm{XC} \square$ Combination
Combination other than -XA \square, such as Made to Order (-XCD), is also available. Refer to pages 11-4-18 to 11-4-19 for details of made-to-order specifications.

Symbol	Description	Applicable size	$\begin{gathered} \text { XA1, XA2 } \\ \text { XA13 to } 16,24 \end{gathered}$
XC1	Add connection port	$\begin{aligned} & 50,63 \\ & 80,100 \end{aligned}$	\bigcirc
XC4	Change of rotation range and direction		\bullet
XC5	Change of rotation range and direction		-
XC6	Change of rotation range and direction		\bigcirc
XC7	Reversed shaft		-
XC26	Change of rotation range and direction		\bigcirc
XC27	Change of rotation range and direction		\bigcirc
XC30	Fluorine grease		\bigcirc

A total of four XA \square and XC \square combinations is available.
Example: -XA1A2C1C30

Series CRB1

Axial: Top (Long shaft side)

Symbol: A1

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft type: W

	(mm)
Size	Q1
$\mathbf{5 0}$	M3, M4, M5
$\mathbf{6 3}$	M4, M5, M6
$\mathbf{8 0}$	M4, M5, M6
$\mathbf{1 0 0}$	M5, M6, M8

Symbol: A14

 Applicable to single vane type onlyA special end is machined onto the long shaft, and a through-hole is drilled into it. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M5: L1 $=10 \mathrm{~mm}$
- Applicable shaft type: W

Symbol: A24

Double key
Keys and keyways are machined at 180° of standard position.

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

Size	Keyway dimension	LL
$\mathbf{5 0}$	$4 \times 4 \times 20$	
$\mathbf{6 3}$	$5 \times 5 \times 25$	5
$\mathbf{8 0}$	$5 \times 5 \times 36$	
$\mathbf{1 0 0}$	$7 \times 7 \times 40$	

Axial: Bottom (Short shaft side)

Symbol: A2

Machine female threads into the short shaft.

- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M4: L2 $=8 \mathrm{~mm}$
- Applicable shaft type: W

	(mm)
Size	Q2
$\mathbf{5 0}$	M3, M4, M5
$\mathbf{6 3}$	M4, M5, M6
$\mathbf{8 0}$	M4, M5, M6
$\mathbf{1 0 0}$	$M 5, M 6, M 8$

Symbol: A15

Applicable to single vane type only
A special end is machined onto the short shaft, and a through hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter.

- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M4: L2 $=8 \mathrm{~mm}$
- Applicable shaft type: W

Double Shaft

Symbol: A13

Shaft with through-hole

- Minimum machining diametor for d 1 is 0.1 mm .
- Applicable shaft type: W

	(mm)
Size	$\mathbf{d 1}$
$\mathbf{5 0}$	$\varnothing 4$ to $\varnothing 5$
$\mathbf{6 3}$	$\varnothing 4$ to $\varnothing 6$
$\mathbf{8 0}$	$\varnothing 4$ to $\varnothing 6.5$
$\mathbf{1 0 0}$	$\varnothing 5$ to $\varnothing 8$

Symbol: A16

Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M5: L1 = 10 mm
- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

Size	50	63	80	100
Thread				
M5 x 0.8	$\varnothing 4.2$	$\varnothing 4.2$	$\varnothing 4.2$	-
M6 x 1	-	$\varnothing 5$	$\varnothing 5$	$\varnothing 5$
M8 x 1.25	-	-	-	$\varnothing 6.8$

Series CRB1 (Size: 50, 63, 80, 100) Simple Specials:
-XA31 to -XA46: Shaft Pattern Sequecing II

Shaft shape pattern is dealt with simple made-to-order system.
 Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing II
-XA31 to XA46
Applicable shaft type: J, K, S, T, X, Y, Z

CRB2
CRBU2
CRB1
MSU
CRJ
CRA1
CRQ2
MSQ
MRQ
D-
20-

Axial: Top (Long shaft side)

Symbol	Description	Shaft type	Applicable size
XA31	Shaft-end female thread	S, Y	50,
XA33	Shaft-end female thread	$\mathrm{J}, \mathrm{K}, \mathrm{T}$	63,
XA35	Shaft-end female thread	X, Z	80,
XA37	Stepped round shaft	J, K, T	100
XA45	Middle-cut chamfer	J, K, T	

- Axial: Bottom (Short shaft side)

Symbol	Description	Shaft type	Applicable size
XA32	*	Shaft-end female thread	S, Y

Combination

XA \square Combination

Symbol	Combination						
XA31	XA31	* These are shaft types that can be combined.					
XA32	\bigcirc						
XA33	-	XA33					
XA34	-	\bigcirc	XA34				
XA35	-	-	-	XA35			
XA36	-	J*	K, T *	X, Z *	XA36		
XA37	-	-	-	-	J*	XA37	
XA38	-	K*	K, ${ }^{\text {* }}$	-	-	\bigcirc	
XA45	-	-	-	-	J*	-	XA45
XA46	-	\bigcirc	-	-	-	\bigcirc	\bigcirc

Combinations of XA39 to XA44 with others are not available.
A combination of up to two XA \square s are available.
Example: -XA1A24

XA \square, XC \square Combinations

Combination other than -XA \square, such as made-to order (-XC \square), is also available. Refer to pages 11-4-18 to 11-4-19 for details of made-to-order specifications.

Symbol	Description	Shaft type	XA31 to XA46
		J, K, S, T, X, Y, Z	
XC1	Add connection port	\bigcirc	-
XC4	Change of rotation range and direction	\bigcirc	\bigcirc
XC5	Change of rotation range and direction	\bigcirc	\bigcirc
XC6	Change of rotation range and direction	\bigcirc	\bigcirc
XC7	Reversed shaft	J, S, T, X	-
XC26	Change of rotation range and direction	\bigcirc	\bigcirc
XC27	Change of rotation range and direction	\bigcirc	\bigcirc
XC30	Fluorine grease	\bigcirc	\bigcirc

[^3]
Axial: Top (Long shaft side)

Symbol: A31

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: S, Y

Symbol: A33
Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: J, K, T

Symbol: A35
Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: X, Z

\bigcirc		
Size ${ }^{\text {trpe }}$	X	Z
50		
63		
80		
100		

Symbol: A37 The long shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension X.)
(If not specifying dimension C 1 , indicate "*" instead.)

- Equal dimensions are indicated by the same marker.
- Applicable shaft types: J, K, T

Axial: Bottom (Short shaft side)

Symbol: A32

(Example) For M4: L2 $=8 \mathrm{~mm}$

- Applicable shaft types: S, Y

Symbol: A34

- The maximum dimension L 2 is, as a rule, twice the thread size
(Example) For M3: L2 $=6 \mathrm{~mm}$
- Applicable shaft types: K, T

Symbol: A36

Machine female threads into the short shaft

- The maximum dimension L 2 is, as a rule, twice the thread size.
(Example) For M3: L2 $=6 \mathrm{~mm}$
- Applicable shaft types: J, X, Z

Symbol: A38
The short shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension Y.)
(If not specifying dimension C 2 , indicate "*" instead.)

- Equal dimensions are indicated by the same marker
- Applicable shaft type: K

(mm)			
Size	Y	L2 max	D2
50	4 to 39.5	Y - 3	3 to 11.9
63	4 to 45	Y - 3	3 to 14.9
80	4 to 53.5	Y-3	3 to 16.9
100	5 to 65	$\mathrm{Y}-4$	3 to 24.9

Axial: Top (Long shaft side)

Symbol: A45
The long shaft can be further shortened by machining a middle-cut chamfer into it
(The position of the chamfer is same as the standard one.)
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Minimum machining dimension is 0.1 mm . Applicable shaft types: $\mathrm{J}, \mathrm{K}, \mathrm{T}$

\triangle Caution

For the shaft patterns A45 and A46, a middle-cut chamfer may interfere with the center hole if the W1/W2 dimensions and (L1 - L3), (L2 - L4) dimensions are less than what are shown in the tables at right.

Axial: Bottom (Short shaft side)

Symbol: $\mathbf{A} \mathbf{4 6}$ The short shaft can be further shortened by machining a middle-cut chamfer into it.
(The position of the chamfer is same as the standard one.)
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Minimum machining dimension is 0.1 mm .
- Applicable shaft type: K

(mm)

Size	W1, W2	L1 - L3, L2 - L4
$\mathbf{5 0}$	4.5 to 6	2 to 5.5
$\mathbf{6 3}$	6 to 7.5	2 to 3

Size	W1, W2	L1 - L3, L2 - L4
$\mathbf{8 0}$	6.5 to 8.5	2 to 6.5
$\mathbf{1 0 0}$	10.5 to 12.5	2 to 6.5

Double Shaft

Symbol: A39

Applicable to single vane type only
Shaft with through-hole

- Minimum machining diameter for d1 is 0.1 mm
- Applicable shaft types: S, Y

S axis

Y axis

Applicable to single vane type only
symbol: A41
Shaft with through-hole

- Minimum machining diameter for d1 is 0.1 mm .
- Applicable shaft types: J, X, Z

J axis

	(mm)		
	d1		
	J	X	Z
50	ø4 to ø5		
63	ø4 to ø6		
80	ø4 to ø6.5		
100	$ø 5$ to ø8		

Symbol: A43

Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through holes, whose diameter is equivalent to the diameter of the pilot holes.

- The maximum dimension L1 is, as a rule, twice the thread size.
- Applicable shaft types: K, T•Equal dimensions are indicated by the same marker.
(mm)

Symbol: A40

Shaft with through-hole

- Minimum machining diameter for d 1 is 0.1 mm .
- Applicable shaft types: K, T

K axis

Symbol: A42

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- The maximum dimension L 1 is, as a rule, twice the thread size.
- Applicable shaft types: S, Y • Equal dimensions are indicated by the same marker.

S axis

Applicable to single vane type only
Symbol: A44
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes

- The maximum dimension L1 is, as a rule, twice the thread size.
- Applicable shaft types: $J, X, Z \bullet$ Equal dimensions are indicated by the same marker.

Z axis

J axis

Series CRB1 (Size: 50, 63, 80, 100) Made to Order Specifications:
 -XC1, 4, 5, 6, 7, 26, 27, 30

Made-to-Order Symbol

Symbol	Description	Applicable shaft type	Applicable
		W, J, K, S, T, X, Y, Z	size

* This specification is not available for rotary actuators with auto

Combination

Symbol	Combination	
	XC1	XC30
XC1	-	\bigcirc
XC4	\bigcirc	\bigcirc
XC5	\bigcirc	\bigcirc
XC6	\bigcirc	\bigcirc
XC7	\bigcirc	\bigcirc
XC26	\bigcirc	\bigcirc
XC27	\bigcirc	\bigcirc
XC30	\bigcirc	-

| Symbol: C4 |
| :--- | | Change of rotation. (Applicable to single vane type only) |
| :--- |
| Rotation starts from the horizontal line (90° down from the |
| top to the right side). |

Start of rotation is the position of the key when A port is pressurized.
(Top view from long shaft side)

Symbol: C5 Change of rotation. (Applicable to single vane type only) Rotation starts from the horizontal line (45° down from the top to the left side).

End of rotation

Size	Rotation range (θ)
50	
63	$45^{\circ+8^{\circ}}, 90^{\circ+6^{\circ}}, 135^{\circ+6^{\circ}}$
80	$180^{\circ+4^{\circ}}{ }_{0}, 225^{\circ+4_{0}}$
100	

Start of rotation is the position of the key when B port is pressurized (Top view from long shaft side)

Symbol: C7
The shafts are reversed.

Size	$\mathbf{Y m})$	
$\mathbf{5 0}$	39.5	\mathbf{X}
$\mathbf{6 3}$	45	21
$\mathbf{8 0}$	53.5	23.5
100	56	30

Symbol: C27 Change of rotation. (Applicable to double vane type only) Rotation: 90° Rotation starts from the horizontal line 45° down from the top to the right side).

Start of rotation is the position of the key when A port is pressurized.
(Top view from long shaft side)

Start of rotation is the position of the key when B port is pressurized. (Top view from long shaft side)

Symbol: 226 Change of rotation. (Applicable to single vane type only) Rotation starts from the horizontal line (45° down from the top to the right side)

Start of rotation is the position of the key when A port is pressurized. (Top view from long shaft side)

Symbol: $\mathbf{C 3 0}$ Change the standard grease to fluoro grease

 Not for low-speed specification.)1 Auto Switch Unit Part No.
Each unit can be retrofitted to the rotary actuator.

Series	Model	Vane type	Unit part no.
Series CRB2	CDRB2BW10	Single/Double type	P611070-1
	CDRB2BW15		P611090-1
	CDRB2BW20		P611060-1
	CDRB2BW30		P611080-1
	CDRB2BW40	Single type	P612010-1
		Double type	P611010-1
Free mount type Series CRBU2	CDRBU2W10	Single/Double type	P611070-1
	CDRBU2W15		P611090-1
	CDRBU2W20		P611060-1
	CDRBU2W30		P611080-1
	CDRBU2W40		P612010-1
Series CRB1	CDRB1BW50	Single/Double type	P411020-1
	CDRB1BW63		P411030-1
	CDRB1BW80		P411040-1
	CDRB1BW100		P411050-1

* Auto switch unit can be ordered separately if the rotary actuator with auto switch unit is required after the product being delivered. Auto switch itself will not be included. Please order separately.

2 Switch Block Unit Part No.

Auto switch unit comes with one right-hand and one left-hand switch blocks that are used for addition or when the switch block is damaged.

Series	Model	Unit part no.	
Series CRB2	CDRB2BW10, 15	Right-handed	P611070-8
		Left-handed	P611070-9
	CDRB2BW20, 30	Right-handed	P611060-8
		Left-handed	
	CDRB2BW40	Right-handed	P611010-8
		Left-handed	P611010-9
Free mount type Series CRBU2	CDRBU2W10, 15	Right-handed	P611070-8
		Left-handed	P611070-9
	CDRBU2W20, 30	Right-handed	P611060-8
		Left-handed	
	CDRBU2W40	Right-handed	P611010-8
		Left-handed	P611010-9
Series CRB1	CDRB1BW50	Right-handed	P411020-8
		Left-handed	P411020-9
	CDRB1BW63, 80, 100	Right-handed	P411040-8
		Left-handed	P411040-9

* Solid state switch for size 10 and 15 requires no switch block, therefore the unit part no. will be P611070-13.

3 Angle Adjuster Part No.
Each unit can be retrofitted to the rotary actuator.

Series	Model	Vane type	Unit part no.
Series CRB2	CRB2BWU10	Single/Double type	P611070-3
	CRB2BWU15		P611090-3
	CRB2BWU20		P611060-3
	CRB2BWU30		P611080-3
	CRB2BWU40	Single type	P612010-3
		Double type	P611010-3
Free mount type Series CRBU2	CRBU2WU10	Single/Double type	P611070-3
	CRBU2WU15		P611090-3
	CRBU2WU20		P611060-3
	CRBU2WU30		P611080-3
	CRBU2WU40		P612010-3

4 Auto Switch Angle Adjuster Part No.

Each unit can be retrofitted to the rotary actuator.

Series	Model	Vane type	Unit part no.
Series CRB2	CDRB2BWU10	Single/Double type	P611070-4
	CDRB2BWU15		P611090-4
	CDRB2BWU20		P611060-4
	CDRB2BWU30		P611080-4
	CDRB2BWU40	Single type	P612010-4
		Double type	P611010-4
Free-mount type Series CRBU2	CDRBU2WU10	Single/Double type	P611070-4
	CDRBU2WU15		P611090-4
	CDRBU2WU20		P611060-4
	CDRBU2WU30		P611080-4
	CDRBU2WU40		P612010-4

5 Joint Unit Part No.

Joint unit is a unit required to retrofit the angle adjuster to a rotary actuator with a switch unit or to retrofit the switch unit to a rotary actuator with angle adjuster.

Series	Model	Vane type	Unit part no.
Series CRB2	CDRB2BWU10	Single/Double type	P211070-10
	CDRB2BWU15		P211090-10
	CDRB2BWU20		P211060-10
	CDRB2BWU30		P211080-10
	CDRB2BWU40		P211010-10
Free mount type Series CRBU2	CDRBU2WU10	Single/Double type	P211070-10
	CDRBU2WU15		P211090-10
	CDRBU2WU20		P211060-10
	CDRBU2WU30		P211080-10
	CDRBU2WU40		P211010-10

Series CDRB2/CDRBU2/CRB1
 With Auto Switch

Applicable Auto Switch

Applicable series	Auto switch model		Electrical entry
CDRB2BW10/15 CDRBU2W10/15	Reed switch	D-90, D-90A	Grommet, 2-wire
		D-97, D-93A	
	Solid state switch	D-S99, D-S99V *	Grommet, 3-wire (NPN)
		D-S9P, D-S9PV *	Grommet, 3-wire (PNP)
		D-T99, D-T99V	Grommet, 2-wire
CDRB2BW20/30/40 CDRBU2W20/30/40 CRB1BW50/63/80/100	Reed switch	D-R73	Grommet, 2-wire
		D-R80	Connector, 2-wire
	Solid state switch	D-S79 *	Grommet, 3-wire (NPN)
		D-S7P *	Grommet, 3-wire (PNP)
		D-T79	Grommet, 2-wire; Connector, 2-wire

* Solid state switch with 3-wire type has no connector type.

Operating Range and Hysteresis

* Operating range: $\theta \mathrm{m}$

The range between the position where the auto switch turns ON as the magnet inside the auto switch unit moves and the position where the switch turns OFF as the magnet travels the same direction.

* Hysteresis range: $\theta \mathrm{d}$

The range between the position where the auto switch turns ON as the magnet inside the auto switch unit moves and the position where the switch turns OFF as the magnet travels the opposite direction.

Model	Operating range: $\theta \mathrm{m}$	Switch actuation range: $\theta \mathrm{d}$
CDRB2BW10/15	110°	10°
CDRBU2W10/15		
CDRB2BW20/30	90°	
CDRBU2W20/30		8°
CDRB2BW40	52°	7°
CDRBU2W40		
CDRB1BW50	38°	

How to Change the Detecting Position of Auto Switch

* When setting the detection location, loosen the tightening screw a bit and move a switch to the preferred location and then tighten again and fix it. At this time, if tightened too much, screw can become damaged and unable to fix location. Be sure to set the tightening torque around $0.49 \mathrm{~N} \cdot \mathrm{~m}$.

Adjustment of Auto Switch

Rotation range of the output shaft with single flat (key for size 40 only) and auto switch mounting position Size: 10, 15, 20, 30, 40
<Single vane>

* Solid-lined curves indicate the rotation range of the output shaft with single flat (key). When the single flat (key) is pointing to end of rotation (1), the switch for end of rotation (1) will operate, and when the single flat (key) is pointing to end of rotation (2), the switch for end of rotation (2) will operate.
* Broken-lined curves indicate the rotation range of the built-in magnet. Rotation range of the switch can be decreased by either moving the switch for end of rotation (1) clockwise or moving the switch for end of rotation (2) counterclockwise. Auto switch in the illustrations above is at the most sensitive position.
* Each auto switch unit comes with one righthand and one left-hand switch.

Series CDRB2/CDRBU2/CRB1

Adjustment of Auto Switch

Rotation range of the output key (keyway) and auto switch mounting position
Size: 50, 63, 80, 100
<Single vane>

Rotation: $\mathbf{9 0}^{\circ}$

Rotation: $\mathbf{1 8 0}^{\circ}$

Rotation: $\mathbf{2 7 0}{ }^{\circ}$

* Solid-lined curves indicate the rotation range of the output key (keyway). When the key is pointing to end of rotation (1), the switch for end of rotation (1) will operate, and when the key is pointing to end of rotation (2), the switch for end of rotation (2) will operate.
* Broken-lined curves indicate the rotation range of the built-in magnet. Rotation range of the switch can be decreased by either moving the switch for end of rotation (2) clockwise or moving the switch for end of rotation (2) counterclockwise. Auto switch in the illustrations above is at the most sensitive position.
* Each auto switch unit comes with one right-hand and one left-hand switch.
* The magnet position can be checked with a convenient indication by removing a rubber cap when adjusting the auto switch position.
* Since four chamfers are machined into the axis of rotation, a magnet position can be readjusted at 90° intervals.

Safety Instructions

These safety instructions are intended to prevent a hazardous situation and／or equipment damage．These instructions indicate the level of potential hazard by labels of ＂Caution＂，＂Warning＂or＂Danger＂．To ensure safety，be sure to observe ISO 4414 Note 1）， JIS B $8370{ }^{\text {Note 2）}}$ and other safety practices．
Note 1) ISO 4414: Pneumatic fluid power--General rules relating to systems.

Note 2）JIS B 8370：General Rules for Pneumatic Equipment

\triangle Warning

1．The compatibility of pneumatic equipment is the responsibility of the person who designs the pneumatic system or decides its specifications．
Since the products specified here are used in various operating conditions，their compatibility for the specific pneumatic system must be based on specifications or after analysis and／or tests to meet your specific requirements．The expected performance and safety assurance will be the responsibility of the person who has determined the compatibility of the system．This person should continuously review the suitability of all items specified，referring to the latest catalog information with a view to giving due consideration to any possibility of equipment failure when configuring a system．
2．Only trained personnel should operate pneumatically operated machinery and equipment．
Compressed air can be dangerous if an operator is unfamiliar with it．Assembly，handling or repair of pneumatic systems should be performed by trained and experienced operators．
3．Do not service machinery／equipment or attempt to remove components until safety is confirmed．
1．Inspection and maintenance of machinery／equipment should only be performed once measures to prevent falling or runaway of the driver objects have been confirmed．
2．When equipment is to be removed，confirm the safety process as mentioned above．Cut the supply pressure for this equipment and exhaust all residual compressed air in the system．
3．Before machinery／equipment is restarted，take measures to prevent shooting－out of cylinder piston rod，etc．
4．Contact SMC if the product is to be used in any of the following conditions：
1．Conditions and environments beyond the given specifications，or if product is used outdoors．
2．Installation on equipment in conjunction with atomic energy，railway，air navigation，vehicles， medical equipment，food and beverages，recreation equipment，emergency stop circuits，clutch and brake circuits in press applications，or safety equipment．
3．An application which has the possibility of having negative effects on people，property，or animals， requiring special safety analysis．

Common Precautions

Be sure to read before handling.

For detailed precautions on every series, refer to main text.

Selection

Warning

1. Confirm the specifications.

Products represented in this catalog are designed for use in compressed air appllications only (including vacuum), unless otherwise indicated.
Do not use the product outside their design parameters.
Please contact SMC when using the products in applications other than compressed air (including vacuum).

Mounting

Warning

1. Instruction manual

Install the products and operate them only after reading the instruction manual carefully and understanding its contents. Also keep the manual where it can be referred to as necessary.
2. Securing the space for maintenance

When installing the products, please allow access for maintenance.

3. Tightening torque

When installing the products, please follow the listed torque specifications.

Piping

\triangle Caution

1. Before piping

Make sure that all debris, cutting oil, dust, etc, are removed from the piping.

2. Wrapping of pipe tape

When screwing piping or fittings into ports, ensure that chips from the pipe threads or sealing material do not get inside the piping. Also, when the pipe tape is used, leave 1.5 to 2 thread ridges exposed at the end of the threads.

Air Supply

Warning

1. Operating fluid

Please consult with SMC when using the product in applications other than compressed air (including vacuum).
Regarding products for general fluid, please ask SMC about applicable fluids.
2. Install an air dryer, aftercooler, etc.

Excessive condensate in a compressed air system may cause valves and other pneumatic equipment to malfunction. Installation of an air dryer, after cooler etc. is recommended.

3. Drain flushing

If condensate in the drain bowl is not emptied on a regular basis, the bowl will over flow and allow the condensate to enter the compressed air lines.
If the drain bowl is difficult to check and remove, it is recommended that a drain bowl with the auto-drain option be installed.
For compressed air quality, refer to "Air Preparation Equipment" catalog.

4. Use clean air

If the compressed air supply is contaminated with chemicals, cynthetic materials, corrosive gas, etc., it may lead to break down or malfunction.

Operating Environment

Warning

1. Do not use in environments where the product is directly exposed to corrosive gases, chemicals, salt water, water or steam.
2. Do not expose the product to direct sunlight for an extended period of time.
3. Do not use in a place subject to heavy vibrations and/or shocks.
4. Do not mount the product in locations where it is exposed to radiant heat.

Maintenance

Warning

1. Maintenance procedures are outlined in the operation manual.
Not following proper procedures could cause the product to malfunction and could lead to damage to the equipment or machine.
2. Maintenance work

If handled improperly, compressed air can be dangerous.
Assembly, handling and repair of pneumatic systems should be performed by qualified personnel only.
3. Drain flushing

Remove drainage from air filters regularly. (Refer to the specifications.)
4. Shut-down before maintenance

Before attempting any kind of maintenance make sure the supply pressure is shut of and all residual air pressure is released from the system to be worked on.
5. Start-up after maintenance and inspection

Apply operating pressure and power to the equipment and check for proper operation and possible air leaks. If operation is abnormal, please verify product set-up parameters.
6. Do not make any modifications to be product.

Do not take the product apart.

Quality Assurance Information (ISO 9001, ISO 14001)

Reliable quality of products in the global market

To enable our customers throughout the world to use our products with even greater confidence, SMC has obtained certification for international standards "ISO 9001" and "ISO 14001", and created a complete structure for quality assurance and environmental controls. SMC products pursue to meet its customers' expectations while also considering company's contribution in society.

Quality management system
ISO 9001
This is an international standard for quality control and quality assurance. SMC has obtained a large number of certifications in Japan and overseas, providing assurance to our customers throughout the world.

SMC's quality control system

Environmental management system

ISO 14001
This is an international standard related to environmental management systems and environmental inspections. While promoting environmentally friendly automation technology, SMC is also making diligent efforts to preserve the environment.

SMC Product Conforming to Inter

SMC products complying with EN/ISO, CSA/UL standards are supporting

The CE mark indicates that machines and components meet essential requirements of all the EC Directives applied.
It has been obligatory to apply CE marks indicating conformity with EC Directives when machines and components are exported to the member Nations of the EU.
Once "A manufacturer himself" declares a product to be safe by means of CE marking (declaration of conformity by manufacturer), free distribution inside the member Nations of the EU is permissible.

■ CE Mark

SMC provides CE marking to products to which EMC and Low Voltage Directives have been applied, in accordance with CETOP (European hydraulics and pneumatics committee) guide lines.

■ As of February 1998, the following 18 countries will be obliged to conform to CE mark legislation Iceland, Ireland, United Kingdom, Italy, Austria, Netherlands, Greece, Liechtenstein, Sweden, Spain, Denmark, Germany, Norway, Finland, France, Belgium, Portugal, Luxembourg

\square EC Directives and Pneumatic Components

- Machinery Directive

The Machinery Directive contains essential health and safety requirements for machinery, as applied to industrial machines e.g. machine tools, injection molding machines and automatic machines. Pneumatic equipment is not specified in Machinery Directive. However, the use of SMC products that are certified as conforming to EN Standards, allows customers to simplify preparation work of the Technical Construction File required for a Declaration of Conformity.

- Electromagnetic Compatibility (EMC) Directive

The EMC Directive specifies electromagnetic compatibility. Equipment which may generate electromagnetic interference or whose function may be compromised by electromagnetic interference is required to be immune to electromagnetic affects (EMS/immunity) without emitting excessive electromagnetic affects (EMI/emission).

- Low Voltage Directive

This directive is applied to products, which operate above 50 VAC to 1000 VAC and 75 VDC to 1500 VDC operating voltage, and require electrical safety measures to be introduced.

- Simple Pressure Vessels Directive

This directive is applied to welded vessels whose maximum operating pressure (PS) and volume of vessel (V) exceed $50 \mathrm{bar} / \mathrm{L}$. Such vessels require EC type examination and then CE marking.

national Standards

you to comply with EC directives and CSA/UL standards.

■ CSA Standards \& UL Standards

UL and CSA standards have been applied in North America (U.S.A. and Canada) symbolizing safety of electric products, and are defined to mainly prevent danger from electric shock or fire, resulting from trouble with electric products. Both UL and CSA standards are acknowledged in North America as the first class certifying body. They have a long experience and ability for issuing product safety certificate. Products approved by CSA or UL standards are accepted in most states and governments beyond question.
Since CSA is a test certifying body as the National Recognized Testing Laboratory (NRTL) within the jurisdiction of Occupational Safety and Health Administration (OSHA), SMC was tested for compliance with CSA Standards and UL Standards at the same time and was approved for compliance with the two Standards. The above CSA NRTL/C logo is described on a product label in order to indicate that the product is approved by CSA and UL Standards.

■ TSSA (MCCR) Registration Products

TSSA is the regulation in Ontario State, Canada. The products that the operating pressure is more than 5 psi (0.03 MPa) and the piping size is bigger than 1 inch . fall into the scope of TSSA regulation.

Products conforming to CE Standard

(E) With CE symbol for simple visual recognition

In this catalog each accredited product series is indicated with a CE mark symbol. However, in some cases, every available models may not meet CE compliance. Please visit our web site for the latest selection of available models with CE mark.
http://www.smcworld.com

SMC's Global Service Network

America

U.S.A. SMC Corporation of America

3011 North Franklin Road Indianapolis, IN 46226, U.S.A.
TEL: 317-899-4440 FAX: 317-899-3102
CANADA SMC Pneumatics (Canada) Ltd.
6768 Financial Drive Mississauga, Ontario, L5N 7J6 Canada
TEL: 905-812-0400 FAX: 905-812-8686
MEXICO SMC Corporation (Mexico), S.A. DE C.V.
Carr. Silao-Trejo K.M. 2.5 S/N, Predio San Jose del Duranzo
C.P. 36100, Silao, Gto., Mexico

TEL: 472-72-2-55-00 FAX: 472-72-2-59-44/2-59-46
CHILE SMC Pneumatics (Chile) S.A.
Av. La Montaña 1,115 km. 16,5 P. Norte Parque
Industrial Valle Grande, Lampa Santiago, Chile
TEL: 02-270-8600 FAX: 02-270-8601
ARGENTINA SMC Argentina S.A.
Teodoro Garcia 3860 (1427) Buenos Aires, Argentina
TEL: 011-4555-5762 FAX: 011-4555-5762
BOLIVIA SMC Pneumatics Bolivia S.R.L.
Avenida Beni Numero 4665
Santa Cruz de la Sierra-Casilla de Correo 2281, Bolivia
TEL: 591-3-3428383 FAX: 591-3-3449900
VENEZUELA SMC Neumatica Venezuela S.A. Apartado 40152, Avenida Nueva Granada, Edificio Wanlac, Local 5, Caracas 1040-A, Venezuela
TEL: 2-632-1310 FAX: 2-632-3871
PERU (Distributor) IMPECO Automatizacion Industrial S.A.
AV. Canevaro 752, Lince, Lima, Peru
TEL: 1-471-6002 FAX: 1-471-0935
URUGUAY (Distributor) BAKO S.A.
Galicia 1650 esq. Gaboto C.P. 11200, Montevideo, Uruguay
TEL: 2-401-6603 FAX: 2-409-4306
BRAZIL SMC Pneumaticos Do Brasil Ltda.
Rua. Dra. Maria Fidelis, nr. 130, Jardim Piraporinha-Diadema-S.P.
CEP: 09950-350, Brasil
TEL: 11-4051-1177 FAX: 11-4071-6636
COLOMBIA (Distributor) Airmatic Ltda.
Calle 18 69-05 Apart. Aereo 081045 Santa Fe de Bogotá, Colombia
TEL: 1-424-9240 FAX: 1-424-9260

Europe

U.K. SMC Pneumatics (U.K.) Ltd.

Vincent Avenue, Crownhill, Milton Keynes, MK8 0AN, Backinghamshire, U.K. TEL: 01908-563888 FAX: 01908-561185
GERMANY SMC Pneumatik GmbH
Boschring 13-15 D-63329 Egelsbach, Germany
TEL: 06103-4020 FAX: 06103-402139
ITALY SMC Italia S.p.A.
Via Garibaldi 62 I-20061 Carugate Milano, Italy
TEL: 02-9271365 FAX: 02-9271365
FRANCE SMC Pneumatique S.A.
1 Boulevard de Strasbourg, Parc Gustave Eiffel, Bussy Saint Georges, F-77600
Marne La Vallee Cedex 3 France
TEL: 01-64-76-10-00 FAX: 01-64-76-10-10
SWEDEN SMC Pneumatics Sweden AB
Ekhagsvägen 29-31, S-141 05 Huddinge, Sweden
TEL: 08-603-07-00 FAX: 08-603-07-10
SWITZERLAND SMC Pneumatik AG
Dorfstrasse 7, Postfach 117, CH-8484 Weisslingen, Switzerland
TEL: 052-396-3131 FAX: 052-396-3191
AUSTRIA SMC Pneumatik GmbH (Austria)
Girakstrasse 8, A-2100 Korneuburg, Austria
TEL: 0-2262-6228-0 FAX: 0-2262-62285
SPAIN SMC España, S.A.
Zuazobidea 14 Pol. Ind. Júndiz 01015 Vitoria, Spain
TEL: 945-184-100 FAX: 945-184-510
IRELAND SMC Pneumatics (Ireland) Ltd.
2002 Citywest Business Campus, Naas Road, Saggart, Co. Dublin, Ireland TEL: 01-403-9000 FAX: 01-466-0385

NETHERLANDS (Associated company) SMC Pneumatics BV
De Ruyterkade 120, NL-1011 AB Amsterdam, Netherlands
TEL: 020-5318888 FAX: 020-5318880
GREECE (Distributor) S.Parianopoulos S.A.
7, Konstantinoupoleos Street 11855 Athens, Greece
TEL: 01-3426076 FAX: 01-3455578
DENMARK SMC Pneumatik A/S
Knudsminde 4 B DK-8300
Odder, Denmark
TEL: 70252900 FAX: 70252901

Europe

FINLAND SMC Pneumatics Finland OY
PL72, Tiistinniityntie 4, SF-02231 ESP00, Finland
TEL: 09-8595-80 FAX: 09-8595-8595
NORWAY SMC Pneumatics Norway A/S
Vollsveien 13C, Granfoss Næringspark N-1366 LYSAKER, Norway
TEL: 67-12-90-20 FAX: 67-12-90-21
BELGIUM (Distributor) SMC Pneumatics N.V./S.A.
Nijverheidsstraat 20 B-2160 Wommelgem Belguim
TEL: 03-355-1464 FAX: 03-355-1466
POLAND SMC Industrial Automation Polska Sp.z.o.o.
ul. Konstruktorska 11A, PL-02-673 Warszawa, Poland
TEL: 022-548-5085 FAX: 022-548-5087
TURKEY (Distributor) Entek Pnömatik San.ve Tic. Ltd. Sti
Perpa Tic. Merkezi Kat:11 No. 162580270 Okmeydani Istanbul, Türkiye
TEL: 0212-221-1512 FAX: 0212-221-1519
RUSSIA SMC Pneumatik LLC
36/40 Sredny prospect V.O. St. Petersburg 199004, Russia
TEL: 812-118-5445 FAX: 812-118-5449
CZECH SMC Industrial Automation CZ s.r.o.
Hudcova 78a, CZ-61200 Brno, Czech Republic
TEL: 05-4121-8034 FAX: 05-4121-8034
HUNGARY SMC Hungary Ipari Automatizálási kft.
Budafoki ut 107-113 1117 Budapest
TEL: 01-371-1343 FAX: 01-371-1344
ROMANIA SMC Romania S.r.I.
Str. Frunzei, Nr. 29, Sector 2, Bucharest, Romania
TEL: 01-3205111 FAX: 01-3261489
SLOVAKIA SMC Priemyselná automatizáciá, s.r.o
Nova 3, SK-83103 Bratislava
TEL: 02-4445-6725 FAX: 02-4445-6028
SLOVENIA SMC Industrijska Avtomatilca d.o.o
Grajski trg 15, SLO- 8360 Zuzemberk, Slovenia
TEL: 07388-5240 FAX: 07388-5249
LATVIA SMC Pneumatics Latvia SIA
Šmerļa ielā 1-705, Rīga LV-1006
TEL: 7779474 FAX: 7779475

SOUTH AFRICA (Distributor) Hyflo Southern Africa (Pty.) Ltd.
P.O.Box 240 Paardeneiland 7420 South Africa

TEL: 021-511-7021 FAX: 021-511-4456
EGYPT (Distributor) Saadani Trading \& Ind. Services
15 Sebaai Street, Miami 21411 Alexandria, Egypt
TEL: 3-548-50-34 FAX: 3-548-50-34

Oceania/Asia

AUSTRALIA SMC Pneumatics (Australia) Pty.Ltd.
14-18 Hudson Avenue Castle Hill NSW 2154, Australia
TEL: 02-9354-8222 FAX: 02-9894-5719
NEW ZEALAND SMC Pneumatics (New Zealand) Ltd.
8C Sylvia Park Road Mt.Wellington Auckland, New Zealand
TEL: 09-573-7007 FAX: 09-573-7002
TAIWAN SMC Pneumatics (Taiwan) Co.,Ltd.
17, Lane 205, Nansan Rd., Sec.2, Luzhu-Hsiang, Taoyuan-Hsien, TAIWAN TEL: 03-322-3443 FAX: 03-322-3387
HONG KONG SMC Pneumatics (Hong Kong) Ltd.
29/F, Clifford Centre, 778-784 Cheung, Sha Wan Road, Lai Chi Kok, Kowloon,
Hong Kong
TEL: 2744-0121 FAX: 2785-1314
SINGAPORE SMC Pneumatics (S.E.A.) Pte. Ltd.
89 Tuas Avenue 1, Jurong Singapore 639520
TEL: 6861-0888 FAX: 6861-1889
PHILIPPINES SHOKETSU SMC Corporation
Unit 201 Common Goal Tower, Madrigal Business Park,
Ayala Alabang Muntinlupa, Philippines
TEL: 02-8090565 FAX: 02-8090586
MALAYSIA SMC Pneumatics (S.E.A.) Sdn. Bhd.
Lot 36 Jalan Delima1/1, Subang Hi-Tech Industrial Park, Batu 340000 Shah Alam Selangor, Malaysia
TEL: 03-56350590 FAX: 03-56350602
SOUTH KOREA SMC Pneumatics Korea Co., Ltd.
Woolim e-BIZ Center (Room 1008), 170-5, Guro-Dong, Guro-Gu,
Seoul, 152-050, South Korea
TEL: 02-3219-0700 FAX: 02-3219-0702
CHINA SMC (China) Co., Ltd.
7 Wan Yuan St. Beijing Economic \& Technological Development Zone 100176, China TEL: 010-67882111 FAX: 010-67881837

THAILAND SMC Thailand Ltd.
134/6 Moo 5, Tiwanon Road, Bangkadi, Amphur Muang, Patumthani 12000, Thailand
TEL: 02-963-7099 FAX: 02-501-2937
INDIA SMC Pneumatics (India) Pvt. Ltd.
D-107 to 112, Phase-2, Extension, Noida, Dist. Gautaim Budh Nagar,
U.P. 201 305, India

TEL: (0120)-4568730 FAX: 0120-4568933
INDONESIA (Distributor) P.T. Riyadi Putera Makmur
Jalan Hayam Wuruk Komplek Glodok Jaya No. 27-28 Jakarta 11180 Indonesia TEL: 021-625 5548 FAX: 021-625 5888

PAKISTAN (Distributor) Jubilee Corporation
First Floor Mercantile Centre, Newton Road Near Boulton Market P.O. Box 6165 Karachi 74000 Pakistan
TEL: 021-243-9070/8449 FAX: 021-241-4589
ISRAEL (Distributor) Baccara Automation Control
Kvutzat Geva 18915 Israel
TEL: 04-653-5960 FAX: 04-653-1445
SAUDI ARABIA (Distributor) Assaggaff Trading Est.
P.O. Box 3385 Al-Amir Majed Street, Jeddah-21471, Saudi Arabia

TEL: 02-6761574 FAX: 02-6708173

Rotary Actuator Vane Style
 Series CRB2
 Size: 10, 15, 20, 30, 40

Series Variations
Fluid

Rotary Actua

Rotating angle: $90^{\circ}, \mathbf{1 8 0}^{\circ}, 270^{\circ}$
All series can rotate up to 270°.
The use of specially designed seals and stoppers now enables our compact vane type rotary actuators to rotate up to 270°.
(Single vane type)

Direct mounting

The body of rotary actuator can be mounted directly. * Not possible to use direct mount type with units sized 10 to 40.

Excellent reliability and durability
The use of bearings in all series to support thrust and radial loads, along with the implementation of an internal rubber bumper (except size 10), improves reliability and durability.
Two different connecting port locations (side and axial) are available.

The port location can be selected according to the application. (Types with various units sized 10 to 40 are body side face only.)

Low pressure operation

Special seal construction allows for a broader operating pressure range and makes operation in low pressure applications possible.
Min. operating pressure
Size 10: 0.2 MPa
Size 15 to $100: 0.15 \mathrm{MPa}$

Unrestricted auto

 switch mounting positionSince the switches can be moved anywhere along the circumference of rotary actuator, they can be mounted at the optimum position according to the rotary actuator's specifications.

Difect mounting from 3 different directions is possible (CRBU2).

Series CRBU2 can be mounted in 3 directions: axial, vertical, and lateral. In the axial direction, there are 3 mounting variations.

Lateral Mounting
Since it may not be
necessary to use all the
convenient mounting
holes to mount the
actuator from three
directions at the same
time, the remaining
holes can be used for
other purposes.

Block (Unit) type construction

For all series' rotary actuator's single body, various units for body outside diameter integral type can be easily retrofit.

tor Vane Style

CRB2/Size:

$10,15,20,30,40$

CBB?

CRBU2/Size:

CRB1/Size:

50, 63, 80, 100
Double vane construction is now a standard feature for 90° and 100° rotation type actuators.

Although the outside dimensions of the double vane construction actuators are equivalent to those of the single vane construction type (except for size 10). Double vane construction can get twice the torque of the single vane style.

Basic Type + Angle Adjuster + Switch Unit

Series CRB2/CRBU2/CRB1 Model Selection

Selection Procedure

Formula
Selection Example

Operating conditions

Operating conditions are as follows:

- Model used
- Operating pressure
- Load type

Ts (N•m)
Tf (N.m)
$\mathrm{Ta}(\mathrm{N} \cdot \mathrm{m})$

- Load configuration
- Rotation time t (s)
- Rotation
- Load mass m (kg)
- Distance between central axis and center of gravity H (mm)

Rotary actuator: CRB2BW30-90S, Pressure: 0.5 MPa Mounting position: Vertical, Type of load: Inertial load Ta Load configuration: $60 \mathrm{~mm} \times 40 \mathrm{~mm}$ (Rectangular plate) Rotation time (t): 0.3 s , Rotation: $90^{\circ}(\theta=\pi / 2$) Load mass (m): 0.15 kg , Distance between central axis and center of gravity (H): 30 mm

Required torque

Confirm the type of load as shown below, and select an actuator that satisfies the required torque.

- Static load: Ts
- Resistance load: T Load type
- Inertial load: Ta

Effective torque \geq Ts
Effective torque \geq (3 to 5) Tf
Effective torque $\geq 10 \mathrm{Ta}$
Effective torque

Inertial load
$10 \times \mathrm{Ta}=10 \times \mathrm{I} \times \dot{\mathrm{\omega}}=10 \times 0.0002 \times \pi / 0.3^{2}$
$=0.07 \mathrm{~N} \cdot \mathrm{~m}<$ Effective torque OK
Note) I is obtained by substituting the value of inertia moment (5).
$\dot{\omega}=\frac{2 \theta}{t^{2}}(\dot{\omega}:$ Angular acceleration $)$

Rotation time

Confirm that it is within the
adjustable range of rotation time.

Model	Rotation time adjustment range for stable operation $S / 90^{\circ}$
CRB2BW/CRBU2W10 to 20	0.03 to 0.3
CRB2BW/CRBU2W30	0.04 to 0.3
CRB2BW/CRBU2W40	0.07 to 0.5
CRB1BW50 to 100	0.1 to 1

$0.3 / 90^{\circ} \mathrm{OK}$

Allowable loads

Confirm that the radial load, thrust load, and moment are within the allowable ranges.

Thrust load: m x $9.8 \leq$ Allowable load
$0.15 \times 9.8=1.47 \mathrm{~N}$ < Allowable load OK

Moment of inertia

Find the load's moment of
inertia "I" for the energy calculation.

$$
\begin{gathered}
\mathrm{I}=\mathrm{m} \times\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) / 12+\mathrm{m} \times \mathrm{H}^{2} \\
\text { Moment of inertia }
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{I} & =0.15 \times\left(0.06^{2}+0.04^{2}\right) / 12+0.15 \times 0.03^{2} \\
& =0.0002 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

Kinetic energy
Confirm that the load's kinetic energy is within the allowable value.
$1 / 2 \times$ I $\times \omega^{2}=<$ Allowable energy
$\omega=2 \theta / \mathrm{t}$ (ω : Terminal angular velocity)
θ : Rotation angle (rad)
t : Rotation time (s)
Allowable kinetic energy/Rotation time
$1 / 2 \times(0.0002) \times(2 \times(\pi / 2) / 0.3)^{2}=$
0.01096 J < Allowable energy OK

Effective Torque

(N•m)											
Size	Vane type	Operating pressure (MPa)									
		0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
10	Single vane	-	0.03	0.06	0.09	0.12	0.15	0.18	-	-	-
	Double vane	-	0.07	0.13	0.19	0.25	0.31	0.37	-	-	-
15	Single vane	0.06	0.10	0.17	0.24	0.32	0.39	0.46	-	-	-
	Double vane	0.13	0.20	0.34	0.48	0.65	0.79	0.93	-	-	-
20	Single vane	0.16	0.23	0.39	0.54	0.70	0.84	0.99	-	-	-
	Double vane	0.33	0.47	0.81	1.13	1.45	1.76	2.06	-	-	-
30	Single vane	0.44	0.62	1.04	1.39	1.83	2.19	2.58	3.03	3.40	3.73
	Double vane	0.90	1.26	2.10	2.80	3.70	4.40	5.20	6.09	6.83	7.49
40	Single vane	0.81	1.21	2.07	2.90	3.73	4.55	5.38	6.20	7.03	7.86
	Double vane	1.78	2.58	4.3	5.94	7.59	9.24	10.89	12.5	14.1	15.8
50	Single vane	1.20	1.86	3.14	4.46	5.69	6.92	8.14	9.5	10.7	11.9
	Double vane	2.70	4.02	6.60	9.21	11.8	14.3	16.7	19.4	21.8	24.2
63	Single vane	2.59	3.77	6.11	8.45	10.8	13.1	15.5	17.8	20.2	22.5
	Double vane	5.85	8.28	13.1	17.9	22.7	27.5	32.3	37.10	41.9	46.7
80	Single vane	4.26	6.18	10.4	14.2	18.0	21.9	25.7	30.0	33.8	37.6
	Double vane	8.70	12.6	21.1	28.8	36.5	44.2	51.8	60.4	68.0	75.6
100	Single vane	8.6	12.2	20.6	28.3	35.9	43.6	51.2	59.7	67.3	75
	Double vane	17.9	25.2	42.0	57.3	72.6	87.9	103	120	135	150

Load Type

During examination if it is decided to consider the mass of the lever itself in the drawing below, it should be regarded as an inertial load.

- Static load:Ts

A load as represented by the clamp which requires pressing force only
$\binom{$ During examination if it is decided to consider the mass of the clamp }{ itself in the drawing below, it should be regarded as an inertial load } (itself in the drawing below, it should be regarded as an inertial load.)
(Example)

Resistance load: Tf

A load that is affected by external forces such as friction or gravity
Since the object is to move the load, and speed adjustment is necessary, allow an extra margin of 3 to 5 times in the effective torque.

* Actuator effective torque \geq (3 to 5) Tf
$\binom{$ During examination if it is decided to consider the mass }{ of the lever itself in the drawing below, it should be } $\left(\begin{array}{l}\text { of the lever itself in the drawing below, it should be } \\ \text { regarded as an inertial load. }\end{array}\right.$

- Inertial load: Ta

The load which must be rotated by the actuator Since the object is to rotate the load, and speed adjustment is necessary, allow an extra margin of 10 times or more in the effective torque.

* Actuator effective torque \geq S.Ta
(S is 10 times or more)

Accelerating torque calculation $\mathrm{Ta}=\mathrm{I} \cdot \dot{\omega}(\mathrm{N} \cdot \mathrm{m})$

Allowable Load

Application of the load on the axial direction is tolerated if no dynamic load is generated and the values are within what is shown in the table below. However, avoid such operation that the load is applied directly to the shaft.
(N)

Model	Load direction		
	Fsa	Fsb	Fr
CRB2BW, CRBU2W10	9.8	9.8	14.7
CRB2BW, CRBU2W15	9.8	9.8	14.7
CRB2BW, CRBU2W20	19.6	19.6	24.5
CRB2BW, CRBU2W30	24.5	24.5	29.4
CRB2BW, CRBU2W40	40	40	60
CRB1BW50	196	196	245
CRB1BW63	340	340	390
CRB1BW80	490	490	490
CRB1BW100	539	539	588

Rotary Actuator
 Vane Style

Series CRB2
Size: 10, 15, 20, 30, 40
How to Order

Applicable Auto Switch/Refer to page 11-1-1 for further information on auto switches.

Applicable size	$\begin{gathered} 0 \\ \stackrel{0}{2} \\ \end{gathered}$	Electrical entry		Wiring (Output)	Load voltage			Auto switch model	Lead wire type	Lead wire length (m) ${ }^{\text {* }}$				Applicable load	
						DC	AC			$\begin{gathered} 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{Z}) \end{gathered}$	None (N)		
For 10 and 15		Grommet	안	2-wire	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	$5 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}$	90	Parallel cord	\bigcirc	\bigcirc	\bigcirc	-	$\underset{\text { circuit }}{\text { IC }}$	Relay, PLC
						$5 \mathrm{~V}, 12 \mathrm{~V}$, 100 V	$\begin{aligned} & 5 \mathrm{~V}, 12 \mathrm{~V}, \\ & 24 \mathrm{~V}, 100 \mathrm{~V} \end{aligned}$	90A	Heay-duty cord	\bigcirc	\bullet	\bigcirc	-		
			$\stackrel{\otimes}{\underset{\sim}{\infty}}$			-	-	97	Parallel cord	\bigcirc	\bigcirc	\bigcirc	-	-	
							100 V	93A	Heavy-duty cord	\bigcirc	\bigcirc	\bigcirc	-		
							-	T99		\bigcirc	\bigcirc	-	-		
						2 V		T99V		\bigcirc	\bigcirc	-	-		
				3-wire		$5 \mathrm{~V}, 12 \mathrm{~V}$		S99		\bigcirc	\bigcirc	-	-	$\begin{gathered} \text { IC } \\ \text { circuit } \end{gathered}$	
				(NPN)				S99V		\bigcirc	\bullet	-	-		
				$\begin{aligned} & \text { 3-wire } \\ & \text { (NPN) } \end{aligned}$				S9P		\bigcirc	\bigcirc	-	-		
								S9PV		\bigcirc	\bullet	-	-		
For 20, 30 and 40		Grommet	$\stackrel{\bullet}{\stackrel{\bullet}{>}}$	2-wire	24 V	-	100 V	R73	Heavy-duty cord	\bigcirc	\bigcirc	-	-	-	$\begin{aligned} & \text { Relay, } \\ & \text { PLC } \end{aligned}$
		Connector						R73C		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
		Grommet	之			$\begin{aligned} & 48 \mathrm{~V}, \\ & 100 \mathrm{~V} \end{aligned}$	$\begin{gathered} 24 \mathrm{~V}, 48 \mathrm{~V}, \\ 100 \mathrm{~V} \end{gathered}$	R80		\bigcirc	\bigcirc	-	-	IC circuit	
		Connector						R80C		\bigcirc	\bigcirc	-	\bigcirc		
		Grommet	$\stackrel{\mathscr{\infty}}{\boldsymbol{\infty}}$			12 V	-	T79		\bigcirc	\bigcirc	-	-	-	
		Connector						T79C		\bigcirc	\bullet	\bigcirc	\bigcirc		
				3 -wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		S79		\bigcirc	\bigcirc	-	-	IC circuit	
		Gro		3 -wire (PNP)				S7P		\bigcirc	\bullet	-	-		

Flange Assembly Part No.

Model	Assembly part no.
CRB2FW10	P211070-2
CRB2FW15	P211090-2
CRB2FW20	P211060-2
CRB2FW30	P211080-2

* Lead wire length symbols: $0.5 \mathrm{~m} \cdots$ Nil (Example) R73C
$3 \mathrm{~m} \cdots \mathrm{~L}$ (Example) R73CL
$5 \mathrm{~m} \cdots \mathrm{Z}$ (Example) R73CZ
None ... N (Example) R73CN

Single Vane Specifications

JIS Symbol

Model (Size)		CRB2BW10-7S		CRB2BW15-■S	CRB2BW20-■S	CRB2BW30-■S	CRB2BW40-■S		
Vane type		Single vane							
Rotating angle		$90^{\circ}, 180^{\circ}$	270°	$90^{\circ}, 180^{\circ} 270^{\circ}$	$90^{\circ}, 180^{\circ}, 270^{\circ}$				
Fluid		Air (Non-lube)							
Proof pressure (MPa)		1.05				1.5			
Ambient and fluid temperature		5 to $60^{\circ} \mathrm{C}$							
Max. operating pressure (MPa)		0.7				1.0			
Min. operating pressure (MPa)		0.2		0.15					
Speed adjustable range ($\left.\sec / 90^{\circ}\right)^{(1)}$		0.03 to 0.3				0.04 to 0.3	0.07 to 0.5		
Allowable kinetic energy $(\mathrm{J})^{(2)}$		0.00015		0.001	0.003	0.02	0.04		
		0.00025	0.0004	0.015	0.03				
Shat load (N)	Allowable radial load			15		15	25	30	60
	Allowable thrust load	1	0	10	20	25	40		
Bearing type		Bearing							
Port location		Side ported or Axial ported							
Size	Side ported	M 5×0.8	M $\times 0.5$	M5 x 0.8 M 3×0.5	M5 x 0.8				
	Axial ported	M3 x 0.5			M5 x 0.8				
Shaft type		Double shaft (Double shaft with single flat on both shafts)					Double shatit Llonn shatat key a singe fiat		
Angle adjustable range ${ }^{(3)}$		0 to	230°	0 to 240°			0 to 230°		
Mounting		Basic style, Flange style					Basic		
Auto switch		Mountable (Side ported only)							

Note 3) Adjustment range in the table is for 270°. For 90° and 180°, refer to page 11-2-9.
Double Vane Specifications

	Model (Size)	CRB2BW10-D	CRB2BW15-7	CRB2BW20-■D	CRB2BW30-7D	CRB2BW40-םD
Vane type		Double vane				
Rotating angle		$90^{\circ}, 100^{\circ}$				
Fluid		Air (Non-lube)				
Proof pressure (MPa)		1.05			1.5	
Ambient and fluid temperature		5 to $60^{\circ} \mathrm{C}$				
Max. operating pressure (MPa)		0.7			1.0	
Min. operating pressure (MPa)		0.2	0.15			
Speed adjustable range (sec/ 90°) ${ }^{(1)}$		0.03 to 0.3			0.04 to 0.3	0.07 to 0.5
Allowable kinetic energy (J) ${ }^{(2)}$		0.0003	0.0012	0.0033	0.02	0.04
Shatt load (N)	Allowable radial load	15	15	25	30	60
	Allowable thrust load	10	10	20	25	40
Bearing type		Bearing				
Port location		Side ported or Axial ported				
Port size (Side ported, Axial ported)		M3 x 0.5		M5 x 0.8		
Shaft type		Double shaft (Double shaft with single flat on both shafts)				
Angle adjustable range ${ }^{(3)}$		0 to 90°				
Mounting		Basic style, Flange style				
Auto switch		Mountable (Side ported only)				

Volume

,
Note 1) Make sure to operate within the speed regulation range. Exceeding the maximum speed $\left(0.3 \mathrm{sec} / 90^{\circ}\right)$ can cause the unit to stick or not operate.
Note 2) The upper numbers in this section in the table indicate the energy factor when the rubber bumper is used (at
the end of the rotation), and the lower numbers indicate the energy factor when the rubber bumper is not used Note 3) Adjustment range in the table is for 100°. For 90°, refer to page 11-2-9.

Vane type	Single vane															Double vane									
Model	CRB2BW10-■S			CRB2BW15-■S			CRB2BW20-■S			CRB2BW30-■S			CRB2BW40-■S			CRB2BW10-7D		CRB2BW15-DD		CRB2BW20-वD		CRB2BW30-7D		CRB2BW40-7	
Rotation	90°	180°	270°	90°	100°																				
Volume	$\begin{gathered} 1 \\ (0.6) \end{gathered}$	1.2	1.5	$\begin{gathered} 1.5 \\ (1.0) \end{gathered}$	2.9	3.7	$\begin{aligned} & 4.8 \\ & (3.6) \end{aligned}$	6.1	7.9	$\begin{aligned} & 11.3 \\ & (8.5) \end{aligned}$	15	20.2	$\begin{gathered} 25 \\ (18.7) \end{gathered}$	31.5	41	1.0	1.1	2.6	2.7	5.6	5.7	14.4	14.5	33	34

* Values inside () are volume of the supply side when A port is pressurized.

Weight

Vane type	Single vane															Double vane									
Model	CRB2BW10-■S			CRB2BW15-■S			CRB2BW20-■S			CRB2BW30-■S			CRB2BW40-■S			CRB2BW10-वD		CRB2BW15-वD		CRB2BW20-D		CRB2BW30-वD		CRB2BW40-[D	
Rotating angle	90°	180°	270°	90°	100°																				
Body of rotary actuator	26.3	26.0	25.7	50	49	48	106	105	103	203	198	193	387	376	365	42	43	57	60	121	144	223	243	400	446
Flange assembly		9			10			19			25			-			9		0		9		5		-
Auto switch unit +2 switches		30			30			50			60			46.5			0		0		0	6	0		. 5
Angle adjuster		30			47			90			150			203			30		7		0	15	50		03

Series CRB2

Rotary Actuator: Replaceable Shaft
A shaft can be replaced with a different shaft type except for standard shaft type (W).

							(mm)
Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$		
C	8	9	10	13	15		
D	14	18	20	22	30		

Note 1) Only side ports are available except for basic type.
Note 2) Dimensions and tolerance of the shaft and single flat (a parallel keyway for size 40) are the same as the standard.

			(mm)		
Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
C	8	9	10	13	15
D	14	18	20	22	30

Note 1) Only side ports are available except for basic type.
Note 2) Dimensions and tolerance of the shaft and single flat (a parallel keyway for size 40) are the same as the standard.

Copper-free

$I_{\text {Copper-free }}^{20-C R B 2 B W}$ Size Rotating angle Vane type Port location

Use the standard vane type rotary actuators in all series to prevent any adverse effects to color CRTs due to copper ions or fluororesin.

Specifications

Vane type	Single/Double vane				
Size	10	15	20	30	40
Operating pressure range (MPa)	0.2 to 0.7	0.15 to 0.7		0.15 to 1.0	
Speed regulation range ($\mathrm{s} / 90^{\circ}$)	0.03 to 0.3			0.04 to 0.3	0.07 to 0.5
Port location	Side ported or axial ported				
Piping	Screw-in type				
Mounting	Basic style only				
Variations	Basic type, With auto switch, With angle adjuster				

\triangle Precautions

「Be sure to read before handling. Refer to pages 11-13-3 Ito 4 for Safety Instructions and Common Precautions I I on the products mentioned in this catalog, and refer to I I pages 11-1-4 to 6 for Precautions on every series.
Angle Adjuster

\triangle Caution

1. In case of a rotary actuator for a 90° or 180° application, the maximum angle will be limited by the rotation of the rotary actuator itself. Make sure to take this into consideration when ordering.
In case of a rotary actuator for a 90° or 180° application, angle adjustment at the maximum angle of 90° or 180°, respectively, is not feasible. This is due to the fact that the rotation of the rotary actuator is limited to $90^{\circ}{ }_{0}^{+4^{\circ}}$ or $180^{\circ}{ }_{0}^{+4^{\circ}}$, respectively. Therefore, for the single vane type, use a rotary actuator with a rotation angle of 270°, and for the double vane type, use a rotary actuator with a rotation of 100°. When operating a rotary actuator with a rotation of 90° or 180°, the rotation should be adjusted to within 85° and 175°, respectively, as a guide.
2. Connection ports are side ports only.
3. The allowable kinetic energy is the same as the specifications of the rotary actuator by itself (i.e., without angle adjuster).

CRB2

Series CRB2

Option Specifications: Flange (Size: 10, 15, 20, 30)

Type				
Flange assembly part no.				
	With auto switch	With angle adjuster	With angle adjuster and auto switch	CDRB2FW10
CRB2FWU10	CDRB2FWU10	P211070-2		
CRB2FW15	CDRB2FW15	CRB2FWU15	CDRB2FWU15	P211090-2
CRB2FW20	CDRB2FW20	CRB2FWU20	CDRB2FWU20	P211060-2
CRB2FW30	CDRB2FW30	CRB2FWU30	CDRB2FWU30	P211080-2

Note 1) The flange (with countersunk head screws) is not mounted on the actuator at the time of shipment.
Note 2) The flange can be mounted on the rotary actuator at 60-degree intervals.

Assembly Part No.: P211070-2 (for C \square RB2FW $\square 10$)

Assembly Part No.: P211060-2 (for C \square RB2FW $\square 20$)

Assembly Part No.: P211090-2
(for C \square RB2FW $\square 15$)

M3 countersunk head

Assembly Part No.: P211080-2
(for C \square RB2FW $\square 30$)

Effective Output

CRB2BW15

Direct Mounting of Body

Dimension " L " of the actuators is provided in the table below for JIS standard hexagon socket head cap screws. If these types of screw are used, their heads will fit in the mounting hole.

Model	L	Screw
CRB2BW10	11.5^{*}	M2.5
CRB2BW15	16	M2.5
CRB2BW20	24.5	M3
CRB2BW30	34.5	M 4
CRB2BW40	39.5	M 4

* Only the size 10 actuators have different L
dimensions for single and double vane.
* Refer to pages 11-2-14 to 11-2-15 for Q1 and Q2 dimensions.

Chamfered Position and Rotation Range: Top View from Long Shaft Side

Chamfered positions shown below illustrate the conditions of actuators when B port is pressurized.

Single vane type

180°

Double vane type

$90^{\circ}, 100^{\circ}$

* For size 40 actuators, a parallel keyway will be used instead of chamfer.

Note) For single vane type, rotation tolerance of $90^{\circ}, 180^{\circ}$, and 270° actuators will be ${ }_{0}^{+5^{\circ}}$ for size 10 actuators only. For double vane style, the tolerance of rotation angle of 90° will be ${ }_{0}^{+5^{\circ}}$ for size 10 only.

Series CRB2

Construction: 10, 15, 20, 30, 40
Single vane type • Illustrations below show size 20 actuators.

- Illustrations for 90° and 180° show the condition of the actuators when B port is pressurized, and the illustration for 270° shows the position of the ports during rotation.

For 90°
(Top view from long shaft side)

(Long shaft side)

(Short shaft side)

Double vane type

CRB2BW10- \square D/Illustrations below show the intermediate rotation position when A or B port is pressurized.

For 90°

For 100°
(Top view from long shaft side) (Top view from long shaft side)

Component Parts

No.	Description	Material	Note
1	Body (A)	Aluminum alloy	White
2	Body (B)	Aluminum alloy	White
3	Vane shaft	Carbon steel	
4	Stopper	Stainless steel	
5	Stopper	Resin	
6	Stopper	Stainless steel	
7	Bearing	High carbon chrome bearing steel	
8	Back-up ring	Stainless steel	
9	Cover	Aluminum alloy	White

* For size 40, material for no. (4) (6) is die-cast aluminum.

No.	Description	Material	Note
$(10$	Plate	Resin	White
(11)	Hexagon socket head cap screw	Stainless steel	Special screw
(12)	O-ring	NBR	
(13)	Stopper seal	NBR	Special seal
(14)	Gasket	NBR	Special seal
(15)	O-ring	NBR	
(16)	O-ring	NBR	
(17)	O-ring	NBR	Double vane only
(18)	Parallel keyway	Carbon steel	Size 40 only

Component Parts

No.	Description	Material	Note
(1)	Body (A)	Aluminum alloy	White
(2)	Body (B)	Aluminum alloy	White
(3)	Vane shaft	Stainless steel ${ }^{*}$	
(4)	Stopper	Resin	For 270°
5	Stopper	Resin	For 180°
(6)	Bearing	High carbon chrome bearing steel	
(7)	Back-up ring	Stainless steel	
(8)	Hexagon socket head cap screw	Stainless steel	Special screw
(9)	O-ring	NBR	
$(10$	Stopper seal	NBR	Special seal

* Carbon steel for CRB2BW30 and CRB2BW40.

CRB2BW15/20/30/40- \square D/Illustrations below show size 20 actions.
For 90°
For 100°
(Top view from long shaft side) (Top view from long shaft side)

(Short shaft side)
Internal rubber bumper

(18. (Long shaft side)
(11)
(Short shaft side) For size 40

Construction (With auto switch unit)
Single vane type • Following illustrations show actuators for 90° and $180^{\circ} \quad$ (Same switch units are used for both single and double vane types.) when B port is pressurized.
Double vane type • Following illustrations show the intermediate rotation position when A or B port is pressurized.

CRB2

Component Parts

No.	Description	Material
(1)	Cover (A)	Resin
(2)	Cover (B)	Resin
(3)	Magnet lever	Resin
(4)	Holding block (A)	Aluminum alloy
(5)	Holding block (B)	Aluminum alloy
6	Holding block	Aluminum alloy
(7)	Switch block (A)	Resin
(8)	Switch block (B)	Resin
(9)	Switch block	Resin
(10	Magnet	Magnetic body

No.	Description	Material
(11)	Arm	Stainless steel
(12)	Hexagon socket head set screw	Stainless steel
(13)	Round head Phillips screw	Stainless steel
(14)	Round head Phillips screw	Stainless steel
(15)	Round head Phillips screw	Stainless steel
(16)	Round head Phillips screw	Stainless steel
(17)	Rubber cap	NBR

* For CDRB2BW10, 2 round head Phillips screws, 13 , are required.

Single vane type - Following illustrations show actuators for 90° and 180° when B port is pressurized.

CRB2BW $\square-\square S$

<Port location: Side ported>

CRB2BW10- \square S
<Port location: Side ported>

CRB2BW $\square-\square$ SE <Port location: Axial ported>

Note) Depths of Q1 and Q2 with the mark indicate that the holes go through both bodies (A) and (B).

Note) The pre-drilled mounting threads for CRB2BW15, 20, and 30, 3 mounting holes depicted with the \star marks are for tightening the actuator and not to be used for external mounting.

Model	A	B	C	D	E (g6)	F (h9)	G1	G2	J	K	L	M	N	P	-Q1	-Q2	*Q3	R		
					(g6)													90°	180°	270°
CRB2BW10- \square S	29	15	8	14	$4_{-0.012}^{-0.004}$	$9^{-0}{ }_{-0.036}$	3	1	5	9	0.5	5	25	24	$\begin{gathered} \hline \text { M3 } \\ \text { (6) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 3.4 \\ & (5.5) \\ & \hline \end{aligned}$	-	M5		M3
CRB2BW10-■SE												8.5	9.5						M3	
CRB2BW15- \square S	34	20	9	18	$5^{-0.0004}$	$12_{-0.043}^{0}$	4	1.5	6	10	0.5	5	25	29	$\begin{aligned} & \text { M3 } \\ & \text { (10) } \\ & \hline \end{aligned}$	$\begin{aligned} & 3.4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M3 } \\ & \text { (5) } \end{aligned}$	M5		M3
CRB2BW15-■SE												11	10						M3	
CRB2BW20- \square S	42	29	10	20	$6_{-0.012}^{-0.004}$	$14_{-0.043}^{0}$	4.5	1.5	7	10	0.5	9	25	36	$\begin{gathered} \mathrm{M} 4 \\ (13.5) \\ \hline \end{gathered}$	$\begin{array}{r} 4.5 \\ (11) \\ \hline \end{array}$	$\begin{aligned} & \text { M4 } \\ & (7.5) \\ & \hline \end{aligned}$	M5		
CRB2BW20-■SE												14	13							
CRB2BW30-■S	50	40	13	22	$8_{-0.014}^{-0.005}$	$16_{-0.043}^{0}$	5	2	8	12	1.0	10	25	43	$\begin{aligned} & \text { M5 } \\ & \text { (18) } \\ & \hline \end{aligned}$	$\begin{array}{\|c} 5.5 \\ (16.5) \\ \hline \end{array}$	$\begin{aligned} & \text { M5 } \\ & \text { (10) } \end{aligned}$	M5		
CRB2BW30-■SE												15.5	14							

Double vane type • Following illustrations show the intermediate rotation position when A or B port is pressurized.

CRB2BW10- \square DE
<Port location: Axial ported>

CRB2BW15/20/30- \square D
<Port location: Side ported>

CRB2BW15/20/30-■DE <Port location: Axial ported>

Model	A	B	C	D	E (g6)	F (h9)	G1	G2	J	K	L	M	N	P	Q (Depth)			R	
															-Q1	-Q2	^Q3	90°	100°
CRB2BW15-DD	34	20	9	18	$5_{-0.012}^{-0.004}$	$12{ }_{-0.043}^{0}$	4	1.5	6	10	0.5	5	25	29	M3	3.4	M3	M3	
CRB2BW15--DE												11	10		(10)	(6)	(5)		
CRB2BW20- \square	42	29	10	20	$6_{-0.012}^{-0.004}$	$14{ }_{-0.043}^{0}$	4.5	1.5	7	10	0.5	9	25	36	$\begin{gathered} \hline \text { M4 } \\ (13.5) \end{gathered}$	$\begin{aligned} & 4.5 \\ & \text { (11) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M4 } \\ & (7.5) \end{aligned}$	M5	
CRB2BW20--DE												14	13						
CRB2BW30-DD	50	40	13	22	$8_{-0.014}^{-0.005}$	$16{ }_{-0.043}^{0}$	5	2	8	12	1.0	10	25	43			M5	M5	
CRB2BW30--DE												15.5	14		(18)	(16.5)	(10)		

Series CRB2

Dimensions: 40

Single vane type/Double vane type

CRB2BW40-■S/D
<Port location: Side ported>

CRB2BW40-■SE/DE <Port location: Axial ported>

Dimensions: 10, 15, 20, 30 (With auto switch unit)
Single vane type \bullet Following illustrations show actuators for 90° and 180° when B port is pressurized.

CDRB2BW10/15- $\square S$

CDRB2BW20/30- \square S

CRB2

* 1 The length is 24 when any of the following auto switches are used: D-90, D-90A, D-S99(V), D-T99(V), and D-S9P(V)

The length is 30 when any of the following auto switches are used: D-97 and D-93A

* 2 The angle is 60° when any of the following auto switches are used: D-90, D-90A, D-97, and D-93A.

The angle is 69° when any of the following auto switches are used: D-S99(V), D-T99(V), and D-S9P(V)
Note) For rotary actuators with auto switch unit, connection ports are side ports only.

* The above exterior view drawings illustrate rotary actuators with one right-hand and one left-hand switch.
(mm)

Model	A	B	C	D	$\begin{gathered} E \\ (\mathrm{~g} 6) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ \text { (h9) } \end{gathered}$	G	K	L	M	N	P	Q	R			Y
														90 ${ }^{\circ}$	180°	270°	
CDRB2BW10- \square S	29	15	29	14	4	9	3	9	0.5	10	25	24	M 3×0.5 depth 5	M5 $\times 0.8$		M 3×0.5	18.5
CDRB2BW15- \square S	34	20	29	18	5	12	4	10	0.5	15	25	29	M 3×0.5 depth 5	M5 $\times 0.8$		M 3×0.5	18.5
CDRB2BW20- \square	42	29	30	20	6	14	4.5	10	0.5	20	25	36	M 4×0.7 depth 7	M5 $\times 0.8$			25
CDRB2BW30- \square	50	40	31	22	8	16	5	12	1	30	25	43	M5 $\times 0.8$ depth 10	M5 $\times 0.8$			25

Series CDRB2

Dimensions: 10, 15, 20, 30 (With auto switch unit)
Double vane type • Illustrations below show the intermediate rotation position when A or B port is pressurized.

CDRB2BW10-■D

-3-M3×0.5 depth 6

CDRB2BW15/20/30-■D
(Dimensions are the same as the single vane type.)

CDRB2BW15- CD CDRB2BW20/30-■D

* 1 The length is 24 when any of the following auto switches are used: D-90, D-90A, D-S99(V), D-T99(V), and D-S9P(V)

The length is 30 when any of the following auto switches are used: D-97 and D-93A

* 2 The angle is 60° when any of the following auto switches are used: D-90, D-90A, D-97, and D-93A

The angle is 69° when any of the following auto switches are used: D-S99(V), D-T99(V), and D-S9P(V)

* 3 The length (Dimension S) is 25.5 when any of the following grommet type auto switches are used: D-R73, D-R80, D-S79, D-T79, and D-S7P The length (Dimension S) is 34.5 when any of the following connector type auto switches are used: D-R73, D-R80, and D-T79

Model	A	B	C	D	E (g6)	F (h9)	G	K	L	M	N	P	Q	R		S		Y
														90°	$10{ }^{\circ}$			
CDRB2BW15-■D	34	20	29	18	5	12	4	10	0.5	15	25	29	M 3×0.5 depth 5			$24^{* 1}$	$30^{* 1}$	18.5
CDRB2BW20-■D	42	29	30	20	6	14	4.5	10	0.5	20	25	36	$\mathrm{M} 4 \times 0.7$ depth 7				$34 .{ }^{* 3}$	25
CDRB2BW30-■D	50	40	31	22	8	16	5	12	1	30	25	43	M5 $\times 0.8$ depth 10			25.5	34.5	25

Dimensions: 40 (With auto switch unit)
Single vane type/Double vane type CDRB2BW40- - S/D

CRB2
CRBU2
CRB1
MSU
CRJ
CRA1
CRQ2
MSQ
MRQ
D-
20-

Rotary Actuator with Angle Adjuster Vane Style
 Series CRB2BWU
 Size: 10, 15, 20, 30, 40

How to Order

Applicabie Auto Switch/Refer to page 11-1-1 for further information on auto switches.

						Load vo	tage	Auto			ire	gth			
Applicable size	Type	Electrical entry	Indicator light	(Output)		DC	AC	switch model	Lead wire type	$\begin{gathered} \hline 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} \hline 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$	None (N)		cable ad
For 10 and 15		Grommet	No	2-wire	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	24 V or less	90	Parallel cord	\bigcirc	\bigcirc	\bigcirc	-	IC	Relay, PLC
							100 V or less	90A	Heavy-duty cord	\bigcirc	\bigcirc	\bigcirc	-		
			Yes			12 V	-	97	Parallel cord	\bigcirc	\bigcirc	\bigcirc	-	-	
							100 V	93A	Heavy-duty cord	\bigcirc	\bigcirc	-	-		
							-	T99		\bigcirc	\bigcirc	-	-		
						-		T99V		\bigcirc	\bigcirc	-	-		
				3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		S99		\bigcirc	\bigcirc	-	-	IC	
								S99V		\bigcirc	\bigcirc	-	-		
				3-wire (PNP)				S9P		\bigcirc	\bigcirc	-	-		
								S9PV		\bigcirc	\bigcirc	-	-		
For 20, 30 and 40		Grommet	Yes	2-wire	24 V	12 V	100 V	R73	Heavy-duty cord	\bigcirc	\bigcirc	-	-	-	Relay, PLC
		Connector					-	R73C		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
		Grommet	No			$5 \mathrm{~V}, 12 \mathrm{~V}$	100 V or less	R80		\bigcirc	\bigcirc	-	-	$\begin{aligned} & \text { IC } \\ & \text { circuit } \end{aligned}$	
		Connector					24 V or less	R80C		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
		Grommet	Yes			-	-	T79		\bigcirc	\bigcirc	-	-		
		Connector						T79C		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
		Grommet		3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		S79		\bigcirc	\bigcirc	-	-	$\underset{\text { circuit }}{ }$	
		Grommet		3-wire (PNP)				S7P		\bigcirc	\bigcirc	-	-		

[^4]Construction (Same switch units are used for both single and double vane type.)

With angle adjuster
CRB2BWU10/15/20/30/40- \square D

Single vane

Double vane

Component Parts

No.	Description	Material	Note
(1)	Stopper ring	Aluminum die-casted	
(2)	Stopper lever	Carbon steel	
(3)	Lever retainer	Carbon steel	Zinc chromated
(4)	Rubber bumper	NBR	
(5)	Stopper block	Carbon steel	Zinc chromated
(6)	Block retainer	Carbon steel	Zinc chromated
(7)	Cap	Resin	
(8)	Hexagon socket head cap screw	Stainless steel	Special screw
(9)	Hexagon socket head cap screw	Stainless steel	Special screw
(10)	Hexagon socket head cap screw	Stainless steel	Special screw
(11)	Joint	Aluminum alloy	Note)
(12)	Hexagon socket head cap screw	Stainless steel	Hexagon nut will be used for size 10 only.
	Hexagon nut	Stainless steel	
(13)	Round head Phillips screw	Stainless steel	Note)
(14)	Magnet lever	-	Note)
Note) These items (No. (11, (13), and (14) consist of auto switch unit and angle adjuster. Refer to pages 11-4-20 to 11-4-21 for detailed specifications.			

With angle adjuster + Auto switch unit
CDRB2BWU10/15- $\square_{\text {D }}^{\text {S }}$
CDRB2BWU20/30/40- $\square_{\text {D }}^{\text {S }}$

CDRB2BWU10

CRBU2
CRB1
MSU

\triangle Precautions

FBe sure to read before handling. Refer to pages 11-13-3] Ito 4 for Safety Instructions and Common Precautions I I on the products mentioned in this catalog, and refer to I I pages 11-1-4 to 6 for Precautions on every series.

Angle Adjuster

\triangle Caution

1. Since the maximum angle of the rotation adjustment range will be limited by the rotation of the rotary actuator itself, make sure to take this into consideration when ordering.

Rotating angle of the rotary actuator	Rotating angle adjustment range
$270^{\circ+4}$	0° to 230° (Size: 10,40$)^{*}$
	0° to 240° (Size: $\left.15,20,30\right)$
$180^{\circ+4}$	0° to 175°
$90^{\circ+4}$	

[^5]
Series CRB2BWU

Dimensions: 10, 15, 20, 30 (With angle adjuster)

Single vane type
CRB2BWU10/15/20/30- \square S

- Following illustrations show actuator for 90° when A port is pressurized.

Double vane type • Following illustrations show the CRB2BWU10- \square D
intermediate rotation position when A or B port is pressurized.

Double vane type
CRB2BWU15/20/30- \square D
Dimensions for double vane type sizes 15,20 , and 30 are the same as those of single type.

Model	A	B	C	D	$\begin{gathered} E \\ (\mathrm{~g} 6) \end{gathered}$	$\begin{gathered} F \\ (h 9) \end{gathered}$	G	H	K	L	M	N	P	Q
CRB2BWU10- \square S	29	15	19.5	14	4	9	3	3	9	0.5	10	25	24	M 3×0.5 depth 5
$\begin{aligned} & \text { CRB2BWU15- } \square \text { S } \\ & \hline \text { CRB2BWU15- } \square \text { D } \end{aligned}$	34	20	21.2	18	5	12	4	3.2	10	0.5	15	25	29	M 3×0.5 depth 5
CRB2BWU20- \square S	42	29	25	20	6	14	4.5	4	10	0.5	20	25	36	M4 x 0.7 depth 7
CRB2BWU30- \square S	50	40	29	22	8	16	5	4.5	12	1	30	25	43	M5 x 0.8 depth 10

Model	R			
	90°	100°	180°	270°
CRB2BWU10- \square S	M5 x 0.8	-	M5 x 0.8	M3 $\times 0.5$
CRB2BWU10- \square D	*Refer to the drawing.		-	
CRB2BWU15-■S	M5 x 0.8	-	M5 x 0.8	M3 $\times 0.5$
CRB2BWU15- \square D	M3 x 0.5		-	
CRB2BWU20- \square S	M5 x 0.8	-	M5 x 0.8	
CRB2BWU20- \square D	M5 x 0.8		-	
CRB2BWU30- \square S	M5 x 0.8	-	M5 x 0.8	
CRB2BWU30- \square D	M5 x 0.8		-	

Single vane type/Double vane type With angle adjuster
CRB2BWU40- \square S/D

Series CRB2BWU

Dimensions: 10, 15, 20, 30 (With angle adjuster and auto switch unit)

Single vane type
CDRB2BWU10/15- \square S

- Following illustrations show actuator for 90° when A port is pressurized.

Double vane type

- Following illustrations show the intermediate CDRB2BWU10- \square D rotation position when A or B port is pressurized.

Double vane type
CDRB2BWU15/20/30- \square D
Dimensions for double vane type sizes 15, 20, and 30 are the same as those of single type.

Model	A	B	C	D	$\underset{(\mathrm{g} 6)}{\mathrm{E}}$	$\begin{gathered} F \\ (h 9) \end{gathered}$	G	K	L	M
CDRB2BWU10- ${ }^{\text {S }}$	29	15	45.5	14	4	9	3	9	0.5	10
CDRB2BWU15- \square S	34	20	47	18	5	12	4	10	0.5	15
CDRB2BWU15-7D										
CDRB2BWU20-■S	42	29	51	20	6	14	4.5	10	0.5	20
CDRB2BWU20- \square										
CDRB2BWU30-■S	50	40	55.5	22	8	16	5	12	1	30
CDRB2BWU30- \square										

Model	N	P	Y	Q	R			
					90°	100°	180°	270°
CDRB2BWU10- \square S	25	24	18.5	M3 x 0.5 depth 5	M5 0.8	-	M5 0.8	M5 $\times 0.8$
CDRB2BWU10-DD					* Refert to the drawing.			
CDRB2BWU15- \square S	25	29	18.5	M3 x 0.5 depth 5	M5 $\times 0.8$	-	M5 0.8	M5 $\times 0.8$
CDRB2BWU15-DD					M3 \times	$\times .5$		
CDRB2BWU20- \square S	25	36	25	M4 x 0.7 depth 7	M5 $\times 0.8$	-	M5 x	0.8
CDRB2BWU20-DD					M5 x 0.8			
CDRB2BWU30- \square S	25	43	25	M5 x 0.8 depth 10	M5 $\times 0.8$	-	M5 x	0.8
CDRB2BWU30-D					M5 x	$\times .8$		

Note) • For rotary actuators with angle adjuster and auto switch unit, connection ports are side ports only.

- The above exterior view drawings illustrate the rotary actuator equipped with one right-hand and one left-hand switch.

Dimensions: 40 (With angle adjuster and auto switch unit)
Single vane type/Double vane type CDRB2BWU40- \square S/D

Series CRB2 (Size: 10, 15, 20, 30, 40) Simple Specials:
-XA1 to -XA24: Shaft Pattern Sequencing I

Shaft shape pattern is dealt with simple made-to-order system.
 Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing I

Applicable shaft type: w (Standard)

Shaft Pattern Sequencing Symbol

Axial: Top (Long shaft side)						
Symbol	Description	Applicable size				
		10	15	20	30	40
XA1	Shaft-end female thread		\bigcirc	\bigcirc	\bigcirc	
XA3	Shaft-end male thread	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA5	Stepped round shaft	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA7	Stepped round shaft with male thread	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA9	Modified length of standard chamfer	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA11	Two-sided chamfer	\bigcirc			\bigcirc	
XA14 *	Shaft through-hole + Shaft-end female thread		\bigcirc	\bigcirc	\bigcirc	
XA17	Shortened shaft	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA21	Stepped round shaft with double-sided chamfer	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA23	Right-angle chamfer	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA24	Double key					\bigcirc

* These specifications are not available for rotary actuators with auto switch unit and angle adjuster.

Axial: Bottom (Short shaft side)

Symbol	Description	Applicable size				
		10	15	20	30	40
XA2 *	Shaft-end female thread		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA4 *	Shaft-end male thread	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA6 *	Stepped round shaft	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA8*	Stepped round shaft with male thread	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA10 *	Modified length of standard chamfer	\bullet	\bullet	-	\bigcirc	\bigcirc
XA12 *	Two-sided chamfer	-	\bullet	\bullet	\bigcirc	\bigcirc
XA15 *	Shaft through-hole + Shaft-end female thread		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA18 *	Shortened shaft	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA22 *	Stepped round shaft with double-sided chamfer	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Double Shaft

Symbol	Description	Applicable size				
		$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
XA13 *			\bullet	\bullet	\bullet	\bullet
XA16 *	Shaft through-hole + Double shaft-end female thread		\bullet	\bullet	\bullet	\bullet
XA19 *	Shortened shaft	\bullet	\bullet		\bullet	
XA20 *	Reversed shaft	\bullet	\bullet		\bullet	\bullet

Combination

XA \square Combination

A combination of up to two $X A \square$ s are available.
Example: -XA1 A24
XA \square, XC \square Combination
Combination other than -XA \square, such as Made to Order (-XC \square), is also available.
Refer to pages 11-2-34 to 11-2-35 for details of made-to-order specifications.

Symbol	Description	Applicable size	Combination
			XA1 to XA24
XC1 *	Change connection port location	10, 15, 20, 30, 40	\bigcirc
XC2 *	Change threaded hole to through-hole	15, 20, 30, 40	\bigcirc
XC3 *	Change the screw position	10, 15, 20, 30, 40	\bigcirc
XC4	Change rotation range		\bigcirc
XC5	Change rotation range between 0 to 200°		\bigcirc
XC6	Change rotation range between 0 to 110°		\bigcirc
XC7 *	Reversed shaft		-
XC30	Fluorine grease		-

* These specifications are not available for rotary actuators with auto switch unit and

These specifica
angle adjuster.
A total of four XA \square and $\mathrm{XC} \square$ combinations is available.
Example: -XA1A24C1C30
-XA2C1C4C30

Axial: Top (Long shaft side)

Symbol: A1 The long shaft can be further shortened by machining female threads into it.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Not available for size 10.
- The maximum dimension L1 is, as a rule, twice the thread size
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft type: W

Size	$\mathbf{~ X ~}$	Q1
$\mathbf{1 5}$	4 to 18	M3
$\mathbf{2 0}$	4.5 to 20	M3, M4
$\mathbf{3 0}$	5 to 22	M3, M4, M5

Symbol: A5 The long shaft can be further shortened by machining it into stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Symbol: A7 The long shaft can be further shortened by machining it into a stepped round shaft with male threads.

(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

(mm)			
Size	X	L1 max	Q1
10	7.5 to 14	X-3	M3
15	10 to 18	X-4	M3, M4
20	12 to 20	X-4.5	M3, M4, M5
30	14 to 22	X-5	$\begin{aligned} & \text { M3, M4, } \\ & \text { M5, M6 } \end{aligned}$

Axial: Bottom (Short shaft side)

Symbol: A2 The short shaft can be further shortened by machining female threads into it
(If shortening the shaft is not required, indicate "*" for dimension Y .)
Not available for size 10

- The maximum dimension L2 is, as a rule, twice the thread size
(Example) For M3: L2 $=6 \mathrm{~mm}$
- Applicable shaft type: W

Symbol: A4 The short shaft can be further shortened by machining male threads into it.
(If shortening the shaft is not required, indicate "*" for dimension Y .) - Applicable shaft type: W

			Size	Y	L2 max	Q2
		$\text { Q2 }=M: \begin{aligned} & \text { ב-- } \end{aligned}$	10	7 to 8	Y - 3	M4
			15	8.5 to 9	$Y-3.5$	M5
			20	10	Y - 4	M6
			30	13	Y - 5	M8
			40	15	Y-6	M10

Symbol: A6 The short shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

Symbol: A8 The short shaft can be further shortened by machining it

 o(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

Size	Y	L2 max	Q2
10	5.5 to 8	Y - 1	M3
15	7.5 to 9	Y - 1.5	M3, M4
20	9 to 10	Y - 1.5	M3, M4, M5
30	11 to 13	Y -2	M3, M4, M5, M6
40	14 to 15	Y - 4.5	$\begin{gathered} \text { M3, M4, M5, } \\ \text { M6, M8 } \end{gathered}$

Axial: Top (Long shaft side)

Symbol: A9

The long shaft can be further shortened by changing the length of the standard chamfer on the long shaft side.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W

Size
$\mathbf{1 0}$

Symbol: A11
The long shaft can be further shortened by machining a double-sided chamfer onto it.
(If altering the standard chamfer and shortening the shaft are not required,
indicate " $*$ " for both the L1 and X dimensions.)

- Since L1 is a standard chamfer, dimension E1 is 0.5 mm or more, and 1 mm or more with a shaft bore size of $\varnothing 30$
- Applicable shaft type: W

Symbol: A14
Applicable to single vane type only
A special end is machined onto the long shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter.

- Not available for size 10.
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 max. $=6 \mathrm{~mm}$
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

Symbol: A17

Shorten the long shaft.

- Applicable shaft type: W

Axial: Bottom (Short shaft side)

Symbol: A10 The short shaft can be further shortened by changing the length of the standard chamfer.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

		(mm)		
		Size	Y	L2
	$\begin{array}{r} 4 \\ 17 \\ > \\ > \end{array}$	10	3 to 8	$5-(8-Y)$ to $(Y-1)$
「		15	3 to 9	$6-(9-Y)$ to $(Y-1.5)$
$\stackrel{\text { II }}{\triangle}$		20	3 to 10	$7-(10-Y)$ to $(Y-1.5)$
		30	5 to 13	$8-(13-Y)$ to $(Y-2)$
		40	7 to 15	$9-(15-Y)$ to $(Y-2)$

CRB2

Symbol: A15

Applicable to single vane type only
A special end is machined onto the short shaft, and a through-hole is drilled into it Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter.

- A parallel keyway is used on the long shaft for size 40.
- Not available for size 10.
- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M4: L2 max. $=8 \mathrm{~mm}$
- Applicable shaft type: W

Symbol: A18

Shorten the short shaft.

- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

Size	$\mathbf{(m m})$
$\mathbf{1 0}$	1 to 8
$\mathbf{1 5}$	1.5 to 9
$\mathbf{2 0}$	1.5 to10
$\mathbf{3 0}$	2 to13
$\mathbf{4 0}$	4.5 to15

Axial: Top (Long shaft side)

Symbol: A21 $\begin{aligned} & \text { The long shaft can be further shortened by machining it }\end{aligned}$ into a stepped round shaft with a double-sided chamfer.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Axial: Bottom (Short shaft side)

Symbol: A22 The short shaft can be further shortened by machining it into a stepped round shaft with a double-sided chamfer.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

Double Shaft

Symbol: A13

Shaft with through-hole

- Not available for size 10
- Minimum machining diameter for d 1 is 0.1 mm .
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

	(mm)
Size	d1
$\mathbf{1 5}$	$\varnothing 2.5$
20	$\varnothing 2.5$ to $\varnothing 3.5$
$\mathbf{3 0}$	$\varnothing 2.5$ to $\varnothing 4$
40	$\varnothing 2.5$ to $\varnothing 3$

Symbol: A19

Both the long shaft and short shaft are shortened.

- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

	(mm)	
Size	\mathbf{X}	\mathbf{Y}
$\mathbf{1 0}$	3 to14	1 to 8
$\mathbf{1 5}$	4 to18	1.5 to 9
$\mathbf{2 0}$	4.5 to 20	1.5 to10
$\mathbf{3 0}$	5 to 22	2 to13

Symbol: A23
 The long shaft can be further shortened by machining right-angle double-sided chamfer onto it.

(If altering the standard chamfer and shortening the shaft are not required, indicate
*" for both the L1 and X dimensions.)

- Since L1 is a standard chamfer, dimension E1 is 0.5 mm or more, and 1 mm or
more with a shaft bore sizes of $\varnothing 30$ or $\varnothing 40$.
- Applicable shaft type: W

		(mm)	
Size	X	L1	L3 max
$\mathbf{1 0}$	5 to 14	$9-(14-X)$ to $(X-3)$	$X-3$
$\mathbf{1 5}$	8 to 18	$10-(18-X)$ to $(X-4)$	$X-4$
$\mathbf{2 0}$	10 to 20	$10-(20-X)$ to $(X-4.5)$	$X-4.5$
$\mathbf{3 0}$	10 to 22	$12(22-X)$ to $(X-5)$	$X-5$

Symbol: A16

Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10 .
- Not available for size 10 . L 1 is, as a rule, twice the thread size.
- The maximum dimension L1 is, as a r
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
(Example) For M5: L1 max. = 10 mm
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

(mm)				
M Size	15	20	30	40
M3 x 0.5	ø2.5	ø2.5	ø2.5	ø2.5
M4 x 0.7	-	ø3.3	ø3.3	-
M5 x 0.8	-	-	ø4.2	-

Symbol: A20

The rotation axis is reversed.
(The long shaft and short shaft are shortened.)

- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

	(mm)	
Size	\mathbf{X}	\mathbf{Y}
$\mathbf{1 0}$	3 to 10	1 to 12
$\mathbf{1 5}$	4 to 11.5	1.5 to 15.5
$\mathbf{2 0}$	4.5 to 13	1.5 to 17
$\mathbf{3 0}$	5 to 16	2 to 19
$\mathbf{4 0}$	6.5 to 17	-

Symbol: A24

Double key
Keys and keyways are machined at 180° from the standard position.

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

		(mm)
Size	Keyway dimensions	LL
40	$4 \times 4 \times 20$	2

Series CRB2 (Size: 10, 15, 20, 30, 40) Simple Specials:
-XA31 to -XA47: Shaft Pattern Sequencing II
Shaft shape pattern is dealt with simple made-to-order system. Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing II

Applicable shaft type: J, K, S, T, Y

- Axial: Top (Long shaft side)

Symbol	Description	Shaft type	Applicable size				
			10	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
XA31	Shaft-end female thread	S, Y		\bullet	\bullet	\bullet	
XA33	Shaft-end female thread	$\mathrm{J}, \mathrm{K}, \mathrm{T}$		\bullet	\bullet	\bullet	\bullet
XA37	Stepped round shaft	$\mathrm{J}, \mathrm{K}, \mathrm{T}$	\bullet	\bullet	\bullet	\bullet	\bullet
XA45	Middle-cut chamfer	$\mathrm{J}, \mathrm{K}, \mathrm{T}$	\bullet	\bullet	\bullet	\bullet	\bullet
XA47	Machined keyway	$\mathrm{J}, \mathrm{K}, \mathrm{T}$			\bullet	\bullet	

Axial: Bottom (Short shaft side)

Symbol	Description	Shaft type	Applicable size				
			10	15	20	30	40
XA32 *	Shaft-end female thread	S, Y		\bigcirc	\bigcirc	\bigcirc	
XA34 *	Shaft-end female thread	J, K, T		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA38 *	Stepped round shaft	K	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA46 *	Middle-cut chamfer	K	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Double Shaft

Symbol	Description	Shaft type	Applicable size				
			10	15	20	30	40
XA39 *	Shaft through-hole	S, Y		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA40 *	Shaft through-hole	K, T		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA41 *	Shaft through-hole	J		\bullet	\bullet	\bigcirc	\bigcirc
XA42 *	Shatt through-hole + Shatt-end female thread	S, Y		-	-	\bigcirc	\bigcirc
XA43 *	Shatt through-hole + Shatt-end female thread	K, T		\bullet	\bullet	\bigcirc	\bigcirc
XA44 *	Shatt through-hole + Shattend female thread	J		\bigcirc	\bigcirc	\bigcirc	\bigcirc

[^6]
Combination

XA \square Combination

Symbol	Combination					
XA31	XA31					
XA32	SY	XA32				
XA33	-	JKT	XA33			
XA34	-	-	JKT	XA34		
XA37	-	-	-	JKT	XA37	
XA38	-	-	K	-	K	XA38

A combination of up to two $X A \square$ s are available.
Example: -XA31A32
$\mathrm{XA} \square, \mathrm{XC} \square$ Combination
Combination other than -XA■, such as Made to Order (-XCD), is also available. Refer to page 11-2-34 to 11-2-35 for details of made-to-order specifications.

Symbol	Description	Applicable size	Combination
			XA31 to XA47
XC1	Change connection port location	10, 15, 20, 30, 40	-
XC2	Change threaded hole to through-hole	15, 20, 30, 40	\bigcirc
XC3	Change the screw position	10, 15, 20, 30, 40	-
XC4	Change rotation range		\bigcirc
XC5	Change rotation range between 0 to 200°		\bigcirc
XC6	Change rotation range between 0 to 110°		\bigcirc
XC7	Reversed shaft		-
XC30	Fluorine grease		\bigcirc
* These specifications are not available for rotary actuators with auto switch unit and angle adjuster. A total of four XA \square and $X C \square$ combinations is available. Example: -XA33A34C27C3C			

Axial: Top (Long shaft side)

Symbol: A31

- The maximum dimension L1 is, as a rule, twice the thread size.
.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: S, Y

Symbol: A33

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: J, K, T

Symbol: A37 The long shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft types: J, K, T
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

		(mm)	
Size	X	L1 max	D1
$\mathbf{1 0}$	4 to 14	X -3	$\varnothing 3$ to $\varnothing 3.9$
$\mathbf{1 5}$	5 to 18	X -4	$\varnothing 3$ to $\varnothing 3.9$
$\mathbf{2 0}$	6 to 20	X -4.5	$\varnothing 3$ to $\varnothing 5.9$
$\mathbf{3 0}$	6 to 22	X -5	$\varnothing 3$ to $\varnothing 7.9$
$\mathbf{4 0}$	8 to 30	X -6.5	$\varnothing 3$ to $\varnothing 9.9$

Symbol: A45 The long shaft can be further shortened by machining a middle-cut chamfer into it. (The position of the chamfer is same as the standard one.)
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft types: J, K, T

Size	X	W1	L1 max	L3 max
	J K T	J K T	J K T	J K T
10	6.5 to 14	0.5 to 2	X-3	L1-1
15	8 to 18	0.5 to 2.5	X-4	L1-1
20	9 to 20	0.5 to 3	X-4.5	L1-1
30	11.5 to 22	0.5 to 4	X-5	L1-2
40	15.5 to 30	0.5 to 5	X-5.5	L1-2

Axial: Bottom (Short shaft side)

Symbol: A32

The maximum dimension $L 2$ is, as a rule twice the thread size.
(Example) For M4: L2 $=8 \mathrm{~mm}$
However, for M5 with S shaft, the maximum dimension L2 is 1.5 times the thread size.

- Applicable shaft types: S, Y

Size	S	Y
10		
15		
20		
30		

Symbol: A34

Machine female threads into the short shaft.

- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M3: L2 $=6 \mathrm{~mm}$
However, for M5 with T shaft, the maximum dimension L2 is 1.5 times the
thread size.
- Applicable shaft types: J, K, T

J axis	(mm)			
		Q2		
	$\text { Size } \overbrace{\substack{\text { shatt } \\ \text { trpe }}}$	J	K	T
$\stackrel{+}{+} \square$	10	Not available		
\pm	15	M3		
$\left.\begin{array}{ll} 5 \\ 1 \\ 1 & 1 \end{array}\right]$	20	M3, M4		
$\begin{aligned} & \text { II } \\ & \mathrm{N} \end{aligned}$	30	M3, M4, M5		
$\underline{Q 2}=M_{L--1}^{--1}$	40	M3, M4, M5		

Symbol: $\mathbf{A 3 8}$ The short shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension Y.)
Applicable shaft type: K

- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

Size	Y	L2 max	Q2
$\mathbf{1 0}$	2 to 14	Y - 1	$\varnothing 3$ to $\varnothing 3.9$
$\mathbf{1 5}$	3 to 18	Y -1.5	$\varnothing 3$ to $\varnothing 4.9$
$\mathbf{2 0}$	3 to 20	Y -1.5	$\varnothing 3$ to $\varnothing 5.9$
$\mathbf{3 0}$	3 to 22	Y - 2	$\varnothing 3$ to $\varnothing 7.9$
$\mathbf{4 0}$	6 to 30	Y -4.5	$\varnothing 5$ to $\varnothing 9.9$

Symbol: A46 The short shaft can be further shortened by machining a middle-cut chamfer into it. (The position of the chamfer is same as the standard one.)
(If shortening the shaft is not required, indicate "*" for dimension Y.)

- Applicable shaft type: K

(mm)

Size	Y	W2	L2 max	L4 max
$\mathbf{1 0}$	4.5 to 14	0.5 to 2	Y - 1	L2 - 1
$\mathbf{1 5}$	5.5 to 18	0.5 to 2.5	Y - 1.5	L2 - 1
$\mathbf{2 0}$	6 to 20	0.5 to 3	Y - 1.5	L2 - 1
$\mathbf{3 0}$	8.5 to 22	0.5 to 4	Y -2	L2 - 2
$\mathbf{4 0}$	13.5 to 30	0.5 to 5	Y - 4.5	L2 - 2

Axial: Top (Long shaft side)

Symbol: A47 Machine a keyway into the long shaft. (The position of the keyway is the same as the standard one.) The key must be ordered separately. - Applicable shaft types: J, K, T				
(mm)				
	Size	a1	L1	N1
,		2h9 ${ }_{-0.025}^{0}$	10	6.8
	30	3h9 ${ }_{-0.025}^{0}$	14	9.2

Double Shaft

Symbol: A39

Applicable to single vane type only
Shaft with through-hole (Additional machining of S, Y shaft)
\bullet Applicable shaft types: S, Y - A parallel keyway is used on the long shaft for

- Equal dimensions

10
size 40.

- Not available for size 10.

Y axis

S axis
S axis

Shatt type	S

Symbol: A41

Applicable to single vane type only

Shaft with through-hole

- Not available for size 10.
- Applicable shaft type: J
- Equal dimensions are indicated by the same marker.

Size	$\mathbf{d} 1$
$\mathbf{1 5}$	$\varnothing 2.5$
$\mathbf{2 0}$	$\varnothing 2.5$ to $\varnothing 3.5$
$\mathbf{3 0}$	$\varnothing 2.5$ to $\varnothing 4$
$\mathbf{4 0}$	$\varnothing 2.5$ to $\varnothing 4.5$

Symbol: A43

Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose
diameter is equivalent to the
\bullet Not available for size 10 .
of the pilot holes.

- Not available for size 10 .
- Equal dimensions are indicated by the same
- The maximum dimension L1
a rule, twice the thread size. marker.
a rule, twice the thread size.
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
(Example) or M5: L1 max. $=10 \mathrm{~mm}$
However, for M5 on the short shaft of T shaft

f T shaft				(mm)
Size	15	20	30	40
Thread ${ }^{\text {tpee }}$	K T	K ${ }^{\text {T }}$	K T	K \quad T
M3 x 0.5	ø2.5	ø2.5	ø2.5	ø2.5
M4 $\times 0.7$	-	ø3.3	ø3.3	ø3.3
M5 x 0.8	-	-	$\varnothing 4.2$	ø4.2

Symbol: A40

Applicable to single vane type only
Shaft with through-hole (Additional machining of K, T shaft)

- Applicable shaft types: K, T
- Equal dimensions are indicated by the
same marker.
- Not available for size 10.

Symbol: A42

Applicable to single vane type only

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10 .
- The maximum dimension L1 is, as
a rule, twice the thread size.
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
However, for M5 on the short shaft
of S shaft

- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft types: S, Y
- Equal dimensions are indicated by the same marker.

				(mm)
Size	15	20	30	40
Thread	S Y		S Y	S Y
M3 x 0.5	ø2.5	ø2.5	ø2.5	$ø 2.5$
M4 x 0.7	-	ø3.3	ø3.3	-
M5 x 0.8	-	-	$\varnothing 4.2$	-

Symbol: A44

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10
- Not available for size 10.
- A parallel keyway is used on the long shaft for

The maximum dimension L1
a rule, twice the thread size.

- Applicable shaft type: J
(Example) For M5: L1 max. $=10 \mathrm{~mm} \bullet$ Equal dimensions are indicated by the same
 marker.

Size Thread	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
M3 $\times 0.5$	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$
M4 $\times 0.7$	-	$\varnothing 3.3$	$\varnothing 3.3$	$\varnothing 3.3$
M5 $\times 0.8$	-	-	$\varnothing 4.2$	$\varnothing 4.2$

Series CRB2 (Size: 10, 15, 20, 30, 40)
Made to Order Specifications:
-XC1, 2, 3, 4, 5, 6, 7, 30

Made to Order Symbol

Symbol	Description	$\begin{aligned} & \text { Applicable shaft type } \\ & \hline \mathbf{W}, \mathbf{J}, \mathbf{K}, \mathbf{S}, \mathbf{T}, \mathbf{Y} \end{aligned}$	Applicable size
XC1 *	Add connection port	\bigcirc	
XC2 *	Change threaded holes to through-hole	\bigcirc	10
XC3 *	Change the screw position	\bigcirc	15
XC4	Change of rotation range and direction	\bigcirc	0
XC5	Change of rotation range and direction	\bigcirc	20
XC6 *	Change of rotation range and direction	\bigcirc	30
XC7	Reversed shaft	W, J	40
XC30	Fluoro grease	-	

* For products with auto switch; angle adjustment unit cannot be selected.

Symbol: C1 Add connecting ports on Body (A)
(An additionally machined port will have an aluminum surface since it will be left unfinished.)

- Parallel keyway is used on the long shaft for size 40.
- This specification is not available for the rotary actuator with auto switch unit.

Combination

Symbol	Combination						
XC1	XC1						
XC2	\bigcirc	XC2					
XC3	\bigcirc	-	XC3				
XC4	\bigcirc	\bigcirc	\bigcirc	XC4			
XC5	\bigcirc	\bigcirc	\bigcirc	-	XC5		
XC6	\bigcirc	\bigcirc	\bigcirc	-	-	XC6	
XC7	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	XC7
XC30	\bigcirc						

Symbol: C5

Start of rotation is 45° up from the bottom of the vertical line to the left side

- Rotation tolerance for CRB2BW10 is ${ }_{0}^{5}$.
- Port size for CRB2BW10, 15 is M3
- A parallel keyway is used instead of chamfer for size 40.

Start of rotation is the position of the chamfer (keyway) when B port is pressurized.
(Top view from long shaft side)

Symbol: C7

The shafts are reversed.

- Parallel keyway is used on the long shaft for size 40.

		(mm)
Size	\mathbf{Y}	\mathbf{X}
$\mathbf{1 0}$	12	10
$\mathbf{1 5}$	15.5	11.5
$\mathbf{2 0}$	17	13
$\mathbf{3 0}$	19	16
$\mathbf{4 0}$	28	17

Symbol: C4

Change rotation range to 90°
Rotation starts from the horizontal line (90° down from the top to the right side)

- Rotation tolerance for CRB2BW10 is ${ }^{+50^{\circ}}$.
- A parallel keyway is used instead of chamfer for size 40.

Start of rotation is the position of the chamfer (keyway) when A port is pressurized.
(Top view from long shaft side)

Symbol: C6

Start of rotation is horizontal line (90° down from the top to the left side).

- Rotation tolerance for CRB2BW10 is $+5_{0}^{\circ}$.
- A parallel keyway is used instead of chamfer for size 40.

Start of rotation is the position of the chamfer (keyway) when B port is pressurized. (Top view from long shaft side)

Symbol: C30 Change the standard grease to fluoro grease (Not for low-speed specification.)

CRB2

Safety Instructions

These safety instructions are intended to prevent a hazardous situation and／or equipment damage．These instructions indicate the level of potential hazard by labels of ＂Caution＂，＂Warning＂or＂Danger＂．To ensure safety，be sure to observe ISO 4414 Note 1）， JIS B $8370{ }^{\text {Note 2）}}$ and other safety practices．
Note 1) ISO 4414: Pneumatic fluid power--General rules relating to systems.

Note 2）JIS B 8370：General Rules for Pneumatic Equipment

\triangle Warning

1．The compatibility of pneumatic equipment is the responsibility of the person who designs the pneumatic system or decides its specifications．
Since the products specified here are used in various operating conditions，their compatibility for the specific pneumatic system must be based on specifications or after analysis and／or tests to meet your specific requirements．The expected performance and safety assurance will be the responsibility of the person who has determined the compatibility of the system．This person should continuously review the suitability of all items specified，referring to the latest catalog information with a view to giving due consideration to any possibility of equipment failure when configuring a system．
2．Only trained personnel should operate pneumatically operated machinery and equipment．
Compressed air can be dangerous if an operator is unfamiliar with it．Assembly，handling or repair of pneumatic systems should be performed by trained and experienced operators．
3．Do not service machinery／equipment or attempt to remove components until safety is confirmed．
1．Inspection and maintenance of machinery／equipment should only be performed once measures to prevent falling or runaway of the driver objects have been confirmed．
2．When equipment is to be removed，confirm the safety process as mentioned above．Cut the supply pressure for this equipment and exhaust all residual compressed air in the system．
3．Before machinery／equipment is restarted，take measures to prevent shooting－out of cylinder piston rod，etc．
4．Contact SMC if the product is to be used in any of the following conditions：
1．Conditions and environments beyond the given specifications，or if product is used outdoors．
2．Installation on equipment in conjunction with atomic energy，railway，air navigation，vehicles， medical equipment，food and beverages，recreation equipment，emergency stop circuits，clutch and brake circuits in press applications，or safety equipment．
3．An application which has the possibility of having negative effects on people，property，or animals， requiring special safety analysis．

Common Precautions

Be sure to read before handling.

For detailed precautions on every series, refer to main text.

Selection

Warning

1. Confirm the specifications.

Products represented in this catalog are designed for use in compressed air appllications only (including vacuum), unless otherwise indicated.
Do not use the product outside their design parameters.
Please contact SMC when using the products in applications other than compressed air (including vacuum).

Mounting

Warning

1. Instruction manual

Install the products and operate them only after reading the instruction manual carefully and understanding its contents. Also keep the manual where it can be referred to as necessary.
2. Securing the space for maintenance

When installing the products, please allow access for maintenance.

3. Tightening torque

When installing the products, please follow the listed torque specifications.

Piping

\triangle Caution

1. Before piping

Make sure that all debris, cutting oil, dust, etc, are removed from the piping.

2. Wrapping of pipe tape

When screwing piping or fittings into ports, ensure that chips from the pipe threads or sealing material do not get inside the piping. Also, when the pipe tape is used, leave 1.5 to 2 thread ridges exposed at the end of the threads.

Air Supply

Warning

1. Operating fluid

Please consult with SMC when using the product in applications other than compressed air (including vacuum).
Regarding products for general fluid, please ask SMC about applicable fluids.
2. Install an air dryer, aftercooler, etc.

Excessive condensate in a compressed air system may cause valves and other pneumatic equipment to malfunction. Installation of an air dryer, after cooler etc. is recommended.

3. Drain flushing

If condensate in the drain bowl is not emptied on a regular basis, the bowl will over flow and allow the condensate to enter the compressed air lines.
If the drain bowl is difficult to check and remove, it is recommended that a drain bowl with the auto-drain option be installed.
For compressed air quality, refer to "Air Preparation Equipment" catalog.

4. Use clean air

If the compressed air supply is contaminated with chemicals, cynthetic materials, corrosive gas, etc., it may lead to break down or malfunction.

Operating Environment

Warning

1. Do not use in environments where the product is directly exposed to corrosive gases, chemicals, salt water, water or steam.
2. Do not expose the product to direct sunlight for an extended period of time.
3. Do not use in a place subject to heavy vibrations and/or shocks.
4. Do not mount the product in locations where it is exposed to radiant heat.

Maintenance

Warning

1. Maintenance procedures are outlined in the operation manual.
Not following proper procedures could cause the product to malfunction and could lead to damage to the equipment or machine.
2. Maintenance work

If handled improperly, compressed air can be dangerous.
Assembly, handling and repair of pneumatic systems should be performed by qualified personnel only.
3. Drain flushing

Remove drainage from air filters regularly. (Refer to the specifications.)
4. Shut-down before maintenance

Before attempting any kind of maintenance make sure the supply pressure is shut of and all residual air pressure is released from the system to be worked on.
5. Start-up after maintenance and inspection

Apply operating pressure and power to the equipment and check for proper operation and possible air leaks. If operation is abnormal, please verify product set-up parameters.
6. Do not make any modifications to be product.

Do not take the product apart.

Quality Assurance Information (ISO 9001, ISO 14001)

Reliable quality of products in the global market

To enable our customers throughout the world to use our products with even greater confidence, SMC has obtained certification for international standards "ISO 9001" and "ISO 14001", and created a complete structure for quality assurance and environmental controls. SMC products pursue to meet its customers' expectations while also considering company's contribution in society.

Quality management system
ISO 9001
This is an international standard for quality control and quality assurance. SMC has obtained a large number of certifications in Japan and overseas, providing assurance to our customers throughout the world.

SMC's quality control system

Environmental management system

ISO 14001
This is an international standard related to environmental management systems and environmental inspections. While promoting environmentally friendly automation technology, SMC is also making diligent efforts to preserve the environment.

SMC Product Conforming to Inter

SMC products complying with EN/ISO, CSA/UL standards are supporting

The CE mark indicates that machines and components meet essential requirements of all the EC Directives applied.
It has been obligatory to apply CE marks indicating conformity with EC Directives when machines and components are exported to the member Nations of the EU.
Once "A manufacturer himself" declares a product to be safe by means of CE marking (declaration of conformity by manufacturer), free distribution inside the member Nations of the EU is permissible.

■ CE Mark

SMC provides CE marking to products to which EMC and Low Voltage Directives have been applied, in accordance with CETOP (European hydraulics and pneumatics committee) guide lines.

■ As of February 1998, the following 18 countries will be obliged to conform to CE mark legislation Iceland, Ireland, United Kingdom, Italy, Austria, Netherlands, Greece, Liechtenstein, Sweden, Spain, Denmark, Germany, Norway, Finland, France, Belgium, Portugal, Luxembourg

\square EC Directives and Pneumatic Components

- Machinery Directive

The Machinery Directive contains essential health and safety requirements for machinery, as applied to industrial machines e.g. machine tools, injection molding machines and automatic machines. Pneumatic equipment is not specified in Machinery Directive. However, the use of SMC products that are certified as conforming to EN Standards, allows customers to simplify preparation work of the Technical Construction File required for a Declaration of Conformity.

- Electromagnetic Compatibility (EMC) Directive

The EMC Directive specifies electromagnetic compatibility. Equipment which may generate electromagnetic interference or whose function may be compromised by electromagnetic interference is required to be immune to electromagnetic affects (EMS/immunity) without emitting excessive electromagnetic affects (EMI/emission).

- Low Voltage Directive

This directive is applied to products, which operate above 50 VAC to 1000 VAC and 75 VDC to 1500 VDC operating voltage, and require electrical safety measures to be introduced.

- Simple Pressure Vessels Directive

This directive is applied to welded vessels whose maximum operating pressure (PS) and volume of vessel (V) exceed $50 \mathrm{bar} / \mathrm{L}$. Such vessels require EC type examination and then CE marking.

national Standards

you to comply with EC directives and CSA/UL standards.

■ CSA Standards \& UL Standards

UL and CSA standards have been applied in North America (U.S.A. and Canada) symbolizing safety of electric products, and are defined to mainly prevent danger from electric shock or fire, resulting from trouble with electric products. Both UL and CSA standards are acknowledged in North America as the first class certifying body. They have a long experience and ability for issuing product safety certificate. Products approved by CSA or UL standards are accepted in most states and governments beyond question.
Since CSA is a test certifying body as the National Recognized Testing Laboratory (NRTL) within the jurisdiction of Occupational Safety and Health Administration (OSHA), SMC was tested for compliance with CSA Standards and UL Standards at the same time and was approved for compliance with the two Standards. The above CSA NRTL/C logo is described on a product label in order to indicate that the product is approved by CSA and UL Standards.

■ TSSA (MCCR) Registration Products

TSSA is the regulation in Ontario State, Canada. The products that the operating pressure is more than 5 psi (0.03 MPa) and the piping size is bigger than 1 inch . fall into the scope of TSSA regulation.

Products conforming to CE Standard

(E) With CE symbol for simple visual recognition

In this catalog each accredited product series is indicated with a CE mark symbol. However, in some cases, every available models may not meet CE compliance. Please visit our web site for the latest selection of available models with CE mark.
http://www.smcworld.com

SMC's Global Service Network

America

U.S.A. SMC Corporation of America

3011 North Franklin Road Indianapolis, IN 46226, U.S.A.
TEL: 317-899-4440 FAX: 317-899-3102
CANADA SMC Pneumatics (Canada) Ltd.
6768 Financial Drive Mississauga, Ontario, L5N 7J6 Canada
TEL: 905-812-0400 FAX: 905-812-8686
MEXICO SMC Corporation (Mexico), S.A. DE C.V.
Carr. Silao-Trejo K.M. 2.5 S/N, Predio San Jose del Duranzo
C.P. 36100, Silao, Gto., Mexico

TEL: 472-72-2-55-00 FAX: 472-72-2-59-44/2-59-46
CHILE SMC Pneumatics (Chile) S.A.
Av. La Montaña 1,115 km. 16,5 P. Norte Parque
Industrial Valle Grande, Lampa Santiago, Chile
TEL: 02-270-8600 FAX: 02-270-8601
ARGENTINA SMC Argentina S.A.
Teodoro Garcia 3860 (1427) Buenos Aires, Argentina
TEL: 011-4555-5762 FAX: 011-4555-5762
BOLIVIA SMC Pneumatics Bolivia S.R.L.
Avenida Beni Numero 4665
Santa Cruz de la Sierra-Casilla de Correo 2281, Bolivia
TEL: 591-3-3428383 FAX: 591-3-3449900
VENEZUELA SMC Neumatica Venezuela S.A. Apartado 40152, Avenida Nueva Granada, Edificio Wanlac, Local 5, Caracas 1040-A, Venezuela
TEL: 2-632-1310 FAX: 2-632-3871
PERU (Distributor) IMPECO Automatizacion Industrial S.A.
AV. Canevaro 752, Lince, Lima, Peru
TEL: 1-471-6002 FAX: 1-471-0935
URUGUAY (Distributor) BAKO S.A.
Galicia 1650 esq. Gaboto C.P. 11200, Montevideo, Uruguay
TEL: 2-401-6603 FAX: 2-409-4306
BRAZIL SMC Pneumaticos Do Brasil Ltda.
Rua. Dra. Maria Fidelis, nr. 130, Jardim Piraporinha-Diadema-S.P.
CEP: 09950-350, Brasil
TEL: 11-4051-1177 FAX: 11-4071-6636
COLOMBIA (Distributor) Airmatic Ltda.
Calle 18 69-05 Apart. Aereo 081045 Santa Fe de Bogotá, Colombia
TEL: 1-424-9240 FAX: 1-424-9260

Europe

U.K. SMC Pneumatics (U.K.) Ltd.

Vincent Avenue, Crownhill, Milton Keynes, MK8 0AN, Backinghamshire, U.K. TEL: 01908-563888 FAX: 01908-561185
GERMANY SMC Pneumatik GmbH
Boschring 13-15 D-63329 Egelsbach, Germany
TEL: 06103-4020 FAX: 06103-402139
ITALY SMC Italia S.p.A.
Via Garibaldi 62 I-20061 Carugate Milano, Italy
TEL: 02-9271365 FAX: 02-9271365
FRANCE SMC Pneumatique S.A.
1 Boulevard de Strasbourg, Parc Gustave Eiffel, Bussy Saint Georges, F-77600
Marne La Vallee Cedex 3 France
TEL: 01-64-76-10-00 FAX: 01-64-76-10-10
SWEDEN SMC Pneumatics Sweden AB
Ekhagsvägen 29-31, S-141 05 Huddinge, Sweden
TEL: 08-603-07-00 FAX: 08-603-07-10
SWITZERLAND SMC Pneumatik AG
Dorfstrasse 7, Postfach 117, CH-8484 Weisslingen, Switzerland
TEL: 052-396-3131 FAX: 052-396-3191
AUSTRIA SMC Pneumatik GmbH (Austria)
Girakstrasse 8, A-2100 Korneuburg, Austria
TEL: 0-2262-6228-0 FAX: 0-2262-62285
SPAIN SMC España, S.A.
Zuazobidea 14 Pol. Ind. Júndiz 01015 Vitoria, Spain
TEL: 945-184-100 FAX: 945-184-510
IRELAND SMC Pneumatics (Ireland) Ltd.
2002 Citywest Business Campus, Naas Road, Saggart, Co. Dublin, Ireland TEL: 01-403-9000 FAX: 01-466-0385

NETHERLANDS (Associated company) SMC Pneumatics BV
De Ruyterkade 120, NL-1011 AB Amsterdam, Netherlands
TEL: 020-5318888 FAX: 020-5318880
GREECE (Distributor) S.Parianopoulos S.A.
7, Konstantinoupoleos Street 11855 Athens, Greece
TEL: 01-3426076 FAX: 01-3455578
DENMARK SMC Pneumatik A/S
Knudsminde 4 B DK-8300
Odder, Denmark
TEL: 70252900 FAX: 70252901

Europe

FINLAND SMC Pneumatics Finland OY
PL72, Tiistinniityntie 4, SF-02231 ESP00, Finland
TEL: 09-8595-80 FAX: 09-8595-8595
NORWAY SMC Pneumatics Norway A/S
Vollsveien 13C, Granfoss Næringspark N-1366 LYSAKER, Norway
TEL: 67-12-90-20 FAX: 67-12-90-21
BELGIUM (Distributor) SMC Pneumatics N.V./S.A.
Nijverheidsstraat 20 B-2160 Wommelgem Belguim
TEL: 03-355-1464 FAX: 03-355-1466
POLAND SMC Industrial Automation Polska Sp.z.o.o.
ul. Konstruktorska 11A, PL-02-673 Warszawa, Poland
TEL: 022-548-5085 FAX: 022-548-5087
TURKEY (Distributor) Entek Pnömatik San.ve Tic. Ltd. Sti
Perpa Tic. Merkezi Kat:11 No. 162580270 Okmeydani Istanbul, Türkiye
TEL: 0212-221-1512 FAX: 0212-221-1519
RUSSIA SMC Pneumatik LLC
36/40 Sredny prospect V.O. St. Petersburg 199004, Russia
TEL: 812-118-5445 FAX: 812-118-5449
CZECH SMC Industrial Automation CZ s.r.o.
Hudcova 78a, CZ-61200 Brno, Czech Republic
TEL: 05-4121-8034 FAX: 05-4121-8034
HUNGARY SMC Hungary Ipari Automatizálási kft.
Budafoki ut 107-113 1117 Budapest
TEL: 01-371-1343 FAX: 01-371-1344
ROMANIA SMC Romania S.r.I.
Str. Frunzei, Nr. 29, Sector 2, Bucharest, Romania
TEL: 01-3205111 FAX: 01-3261489
SLOVAKIA SMC Priemyselná automatizáciá, s.r.o
Nova 3, SK-83103 Bratislava
TEL: 02-4445-6725 FAX: 02-4445-6028
SLOVENIA SMC Industrijska Avtomatilca d.o.o
Grajski trg 15, SLO- 8360 Zuzemberk, Slovenia
TEL: 07388-5240 FAX: 07388-5249
LATVIA SMC Pneumatics Latvia SIA
Šmerļa ielā 1-705, Rīga LV-1006
TEL: 7779474 FAX: 7779475

SOUTH AFRICA (Distributor) Hyflo Southern Africa (Pty.) Ltd.
P.O.Box 240 Paardeneiland 7420 South Africa

TEL: 021-511-7021 FAX: 021-511-4456
EGYPT (Distributor) Saadani Trading \& Ind. Services
15 Sebaai Street, Miami 21411 Alexandria, Egypt
TEL: 3-548-50-34 FAX: 3-548-50-34

Oceania/Asia

AUSTRALIA SMC Pneumatics (Australia) Pty.Ltd.
14-18 Hudson Avenue Castle Hill NSW 2154, Australia
TEL: 02-9354-8222 FAX: 02-9894-5719
NEW ZEALAND SMC Pneumatics (New Zealand) Ltd.
8C Sylvia Park Road Mt.Wellington Auckland, New Zealand
TEL: 09-573-7007 FAX: 09-573-7002
TAIWAN SMC Pneumatics (Taiwan) Co.,Ltd.
17, Lane 205, Nansan Rd., Sec.2, Luzhu-Hsiang, Taoyuan-Hsien, TAIWAN TEL: 03-322-3443 FAX: 03-322-3387
HONG KONG SMC Pneumatics (Hong Kong) Ltd.
29/F, Clifford Centre, 778-784 Cheung, Sha Wan Road, Lai Chi Kok, Kowloon,
Hong Kong
TEL: 2744-0121 FAX: 2785-1314
SINGAPORE SMC Pneumatics (S.E.A.) Pte. Ltd.
89 Tuas Avenue 1, Jurong Singapore 639520
TEL: 6861-0888 FAX: 6861-1889
PHILIPPINES SHOKETSU SMC Corporation
Unit 201 Common Goal Tower, Madrigal Business Park,
Ayala Alabang Muntinlupa, Philippines
TEL: 02-8090565 FAX: 02-8090586
MALAYSIA SMC Pneumatics (S.E.A.) Sdn. Bhd.
Lot 36 Jalan Delima1/1, Subang Hi-Tech Industrial Park, Batu 340000 Shah Alam Selangor, Malaysia
TEL: 03-56350590 FAX: 03-56350602
SOUTH KOREA SMC Pneumatics Korea Co., Ltd.
Woolim e-BIZ Center (Room 1008), 170-5, Guro-Dong, Guro-Gu,
Seoul, 152-050, South Korea
TEL: 02-3219-0700 FAX: 02-3219-0702
CHINA SMC (China) Co., Ltd.
7 Wan Yuan St. Beijing Economic \& Technological Development Zone 100176, China TEL: 010-67882111 FAX: 010-67881837

THAILAND SMC Thailand Ltd.
134/6 Moo 5, Tiwanon Road, Bangkadi, Amphur Muang, Patumthani 12000, Thailand
TEL: 02-963-7099 FAX: 02-501-2937
INDIA SMC Pneumatics (India) Pvt. Ltd.
D-107 to 112, Phase-2, Extension, Noida, Dist. Gautaim Budh Nagar,
U.P. 201 305, India

TEL: (0120)-4568730 FAX: 0120-4568933
INDONESIA (Distributor) P.T. Riyadi Putera Makmur
Jalan Hayam Wuruk Komplek Glodok Jaya No. 27-28 Jakarta 11180 Indonesia TEL: 021-625 5548 FAX: 021-625 5888

PAKISTAN (Distributor) Jubilee Corporation
First Floor Mercantile Centre, Newton Road Near Boulton Market P.O. Box 6165 Karachi 74000 Pakistan
TEL: 021-243-9070/8449 FAX: 021-241-4589
ISRAEL (Distributor) Baccara Automation Control
Kvutzat Geva 18915 Israel
TEL: 04-653-5960 FAX: 04-653-1445
SAUDI ARABIA (Distributor) Assaggaff Trading Est.
P.O. Box 3385 Al-Amir Majed Street, Jeddah-21471, Saudi Arabia

TEL: 02-6761574 FAX: 02-6708173

Rotary Actuator Free Mount Style Series CRBU (Size: 10/15/20/30)

Direct mounting in three directions (Axial, Vertical,

CRB1
CRBU
CRA1
CRQ
MRQ
MSQ
MSUB

Variations

Rotary Actuator Vane Style/Free Mount Style Series CRBU/Size: 10, 15, 20, 30

Rotation angles: $90^{\circ}, \mathbf{8 0}^{\circ}, 270^{\circ}$ Up to 270° is possible in the entire series
Through the adoption of specially designed seals and stoppers, a rotation angle of 270° has been achieved for the first time in a compact vane style actuator. (Single vane style)

Low pressure operation made possible
The special sealing construction that has been adopted in the body supports a wide operating pressure range and enable the entire series to be used at low pressures. Min. operating pressure

- Size 10 20, 30 Size 15, 20, 30

Double vane style standard: $90^{\circ}, 100^{\circ}$
The outside diameter is identical to the single vane construction (except size 10); however, due to the double vane construction, twice the torque of the single vane style can be obtained.

Unrestricted auto switch mounting positions
Because the switch can be moved anywhere along the circumstance, it can be mounted in a position that is most appropriate for the specifications.

Port positions: body side and axial direction
The positions can be selected for ease of use. (Those that are equipped with various styles of units can only be connected to the body side.)
(On the body side)

(Fittings are sold separately.)
(In the axial direction)

(Fittings are sold separately.)

Block-built (units) adopted

Various styles of units that can be housed within the body's outside diameter can easily be retrofitted to the rotary actuator units of the entire series.

Direct Mounting In Three Directions Possible

Mounting in three directions, axial, vertical and side, is possible. Three mounting variations are available in mounting in axial direction.

Axial Direction Mounting Style

Body through hole

Vertical Mounting Style

Side Mounting Style

Round Indication Board Adopted
 possible. Therefore, it can be utilized in other ways apart from body mounting.

Indication board mounted axially sets the rotation range about the axis (one chamfering processed part) clear, and the indication of connecting port (A/B port) locations prevents wrong wiring.

90°

180°

*The above is an indication board of a single vane style.

Rotary Actuator

 Free Mount StyleSeries CRBU
How to Order

Free Mount Style Rotary Actuator Series CRBL

Single vane style specifications

Model		CRBUW10- \square S	CRBUW15- \square S	CRBUW20-■S	CRBUW30- \square S	
Rotation angle		$90^{\circ}, 180^{\circ}, 270^{\circ}$				
Fluid		Air (Non-lube)				
Proof pressure (MPa)		1.05			1.5	
Ambient and fluid temperature		5 to $60^{\circ} \mathrm{C}$				
Max. operating pressure (MPa)		0.7			1.0	
Min. operating pressure (MPa)		0.2	0.15			
Speed adjustable range ${ }^{(1)}\left(\mathrm{sec} / 90^{\circ}\right)$		0.03 to 0.3			0.04 to 0.3	
Allowable kinetic energy ${ }^{(2)}$ (J)		0.00015	0.001	0.003	0.02	
		0.00025	0.0004	0.015		
Shaft load	Allowable radial load (N)		15		25	30
	Allowable thrust load (N)	10		20	25	
Bearing		Ball bearing				
Port position		On the body side or in the axial direction				
Shaft style		Double shaft (With one flat chamfer to each shaft)				
Angle adjustable range of the unit		0 to 230°	0 to 240°			

Note 1) Make sure to operate within the adjustable speed range.
Exceeding the upper limit $\left(0.3\right.$ sec/ $\left.90^{\circ}\right)$ of speed control could cause the unit to stick or not operate at all.
Note 2) In the chart, the upper section indicates the energy factor when the rubber bumper is used (at the end of the rotation); the lower section indicates the energy value when the rubber bumper is not used.

Double vane style

\triangle Caution

Be sure to read before handling.
 Refer to p.0-20 and 0-21 for
 Safety Instructions and common
 I precautions on the products
 mentioned in this catalog, and refer to p.1.0-2 to 1.0-4 for precautions for every series.

Built-in One-touch Fittings

A free mount rotary actuator with built-in one-touch fittings. It dramatically reduces the piping process and saves space.

Specifications

Vane style	Single vane	
Size	$\mathbf{2 0}$	$\mathbf{3 0}$
Operating pressure MPa	0.15 to 0.7	0.15 to 1.0
Speed adjustable range	0.03 to $0.3 \mathrm{~s} / 90^{\circ}$	0.04 to $0.3 \mathrm{~s} / 90^{\circ}$
Port position	Only on the body side	
Piping	One-touch fittings installed type	
Mounting	Basic style only Variations With switches, With an angle adjuster, With switches and an angle adjuster	

O.D./I.D. of the applicable tube

O.D./I.D. of the applicable tube (mm)	$\varnothing 4 / \varnothing 2.5$
Material of the applicable tube	Nylon, Soft Nylon, Polyurethane

Dimensions

,
Note1) The exterior of the rotary actuator body has a standard
configuration.
Note2) The dimensions are the same for the one-touch fitting of the
Note2) The dimensions are the same for the one-touch fitting of the rotary actuator with auto switch, with angle adjuster, or with auto switch and angle adjuster.

Model	M	N	Z
CRBUW20F	11.5	12	11.5
CRBUW30F	12	13	10.5

 (mm)

Copper Free

The entire standard series of vane type rotary actuators does not affect color CRTs due to copper ions or fluororesins.

Specifications

Vane style	Single vane, Double vane			
Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$
Operating pressure MPa	0.2 to 0.7	0.15 to 0.7	0.15 to 1.0	
Speed adjustable range	0.03 to $0.3 \mathrm{~s} / 90^{\circ}$			0.04 to $0.3 \mathrm{~s} / 90^{\circ}$
Port position	On the body side or in the axial direction			
Shaft style	Double shafts (with one flat chamfer to both ends)			
Auto switch	Mountable			

Free Mount Style Rotary Actuator Series CRBU

Output

Chamfer positions and rotation range (Viewed from the long shaft side)

The chamfer positions below show the pressurization to the B port.
Single vane style

Double vane type

Note) For size 10 of the single vane style, the rotation angle of $90^{\circ}, 180^{\circ}$ and 270° is $+5_{0}^{\circ}$
For size 10 of the double vane style, the rotation angle of 90° is $+5_{0}^{\circ}$.

Series CRBU

Construction/Single Vane Style

Standard: CRBUW 10, 15, 20, 30-■S (Size 10: Without three positions for three equally divided length of circumference of female thread**)

For 270°
(View from long shaft side)

For 180°
(View from long shaft side)

For 90°
(View from long shaft side)

Component Parts

No.	Description	Material	Note
(1)	Body (A)	Aluminum alloy	
(2)	Body (B)	Aluminum alloy	
(3)	Vane shaft	Stainless steel*	
(4)	Stopper	Resin	For 270°
(5)	Stopper	Resin	For 180°
(6)	Bearing	High carbon chrome bearing steel	
(7)	Back-up ring	Stainless steel	
(8)	Hexagon socket head cap screw	Stainless steel	Special bolt
(9)	O ring	NBR	
(10)	Stopper packing	NBR	Special packing
CRBUW30:Carbon steel			

With Auto Switch (Units are common for single vane and double vane.)

CDRBUW10/15- \square S
CDRBUW20/30- \square S

Auto Switch Attached Style/Component Parts

No.	Description	Material
(1)	Cover (A)	Resin
(2)	Cover (B)	Resin
(3)	Magnet lever	Resin
(4)	Fixation block (A)	Aluminum alloy
(5)	Fixation block (B)	Aluminum alloy
(6)	Fixation block	Aluminum alloy
(7)	Switch block (A)	Resin
(8)	Switch block (B)	Resin
(9)	Switch block	Resin
(10)	Magnet	
(11)	Arm	Steel
(12)	Hexagon socket head cap screw	Steel
(13)	Cross-recessed head cap screw	Steel
(14)	Cross-recessed head cap screw	Steel
(15)	Cross-recessed head cap screw	Steel
(16)	Cross-recessed head cap screw	Steel

* Two cross-recessed head cap screws (13) are attached to "CDRBUW10".

Standard: CRBUW10- \square D

Standard: CRBUW15/20/30- \square D

For 90°
(View from long shaft side)

For 100°
(View from long shaft side)

CRB
CRBU

Component Parts

No.	Description	Material	Note
(1)	Body (A)	Aluminum alloy	
(2)	Body (B)	Aluminum alloy	
(3)	Vane shaft	Carbon steel	
(4)	Stopper	Stainless steel	
(5)	Stopper	Resin	
(6)	Stopper	Stainless steel	
(7)	Bearing	High carbon chrome bearing steel	
(8)	Back-up ring	Stainless steel	
(9)	Cover	Aluminum alloy	
(10)	Plate	Resin	
(11)	Hexagon socket head cap screw	Stainless steel	Special bolt
(12)	O ring	NBR	
(13)	Stopper packing	NBR	
(14)	Gasket	NBR	
(15)	O ring	NBR	
(16)	O ring	NBR	

For 100°
(View from long axis side)

Component Parts

No.	Description	Material	Note
(1)	Body (A)	Aluminum alloy	
(2)	Body (B)	Aluminum alloy	
(3)	Vane shaft	Carbon steel	
(4)	Stopper	Stainless steel	
(5)	Stopper	Resin	
(6)	Stopper	Stainless steel	
(7)	Bearing	High carbon chrome bearing steel	
(8)	Back-up ring	Stainless steel	
(9)	Hexagon socket head cap screw	Stainless steel	Special bolt
(10)	O ring	NBR	
(11)	Stopper packing	NBR	

Standard Style

The dimensions below show pressurization to B port of the actuators for 90° and 180°. Refer to p.1.2-7 for further information.)

Port locations: Body side
CRBUW \square - \square S

Port locations: Axial direction CRBUW■- \square SE

* Refer to the table below.

Model	A	B	C	D	E(g6)	F(h9)	G	H	J	K	L	M	N	P	Q1	$\begin{gathered} (\text { Depph }) \\ \text { Q2 } \end{gathered}$	R	S1	S2	T	U	V	W	X
CRBUW10- \square S	29	22	8	14	$4^{-0.004}$	$9_{-0.043}^{0}$	1	15.5	5	9	0.5	10.5	10.5	24	-	M3	M5 X 0.8	3.5	M3 X 0.5	17	3	25	31	41
CRBUW10- \square SE												8.5	9.5			(4)	M3 $\times 0.5$							
CRBUW15-■S	34	25	9	18	$5_{-0.012}^{-0.004}$	$12{ }_{-0.043}^{0}$	1.5	15.5	6	10	0.5	10.5	10.5	29	M3 X 0.5	-	M5 X 0.8	3.5	M3 X 0.5	21	3	29	36	48
CRBUW15-■SE												11	10				M3 $\times 0.5$							
CRBUW20-■S	42	34.5	10	20	$6_{-0.012}^{-0.004}$	$14_{-0.043}^{0}$	1.5	17	7	10	0.5	11.5	11	36	M4 X 0.7	-	M5 X 0.8	4.5	M4 X 0.7	26	4	36	44	59
CRBUW20- \square SE												14	13											
CRBUW30-■S	50	47.5	13	22	$8_{-0.014}^{-0.005}$	$1_{-0.043}^{0}$	2	17.5	8	12	1	12	13	43	M5 X 0.8	-	M5 X 0.8	5.5	M5 X 0.8	29	5	42	52	69
CRBUW30- \square SE												15.5	14											

With One-touch Fittings

With One-touch Fittings	(mm)			
Model	Applicable tube 0.D.	\mathbf{M}	\mathbf{N}	\mathbf{Y}
CRBUW2OF- \square S	$\varnothing 4$	11.2	12	11.5
CRBUW30F- \square S	$\varnothing 4$	12	13	10.5

[^7]* Applicable tube material: Nylon, Soft nylon, Polyurethane
* Sizes apart from the ones shown above are the same as standard style

Free Mount Style Rotary Actuator Series CRBU

Standard Style Dimensions/ Double Vane Style

* The dimensions below show rotation at middle point during pressurization to A / B port.

Port locations: Body side CRBUW10-■D

Port locations: Body side CRBUW15/20/30-
$\square D$
(The dimensions below are based on size 30.)
(The dimensions below
$\underline{2-S 2}$

$$
\frac{3-\mathrm{Q} 1}{(\text { For }} \frac{1}{\text { mounting unit) }}
$$

Model	A	B	C	D	E(g6)	F(h9)	G	H	J	K	L	M	N	P	Q1	R	S1	S2	T	U	V	W	X
CRBUW15-DD	34	25	9	18	$5_{-0.012}^{0.004}$	$12_{-0.043}^{0}$	1.5	15.5	6	10	0.5	10.5	10.5	29	M3 X 0.5	M5 X 0.8	3.5	M3 X 0.5	21	3	29	36	48
CRBUW15-DDE												11	10			M 3×0.5							
CRBUW20-■D	42	34.5	10	20	$6{ }_{-0.012}^{-0.004}$	$14_{-0.043}^{0}$	1.5	17	7	10	0.5	11.5	11	36	M4 X 0.7	M5 X 0.8	4.5	M4 X 0.7	26	4	36	44	59
CRBUW20--DE												14	13										
CRBUW30--D	50	47.5	13	22	$8^{-0.005}$	$16_{-0.043}^{-0.00}$	2	17.5	8	12	1	12	13	43	M5 X 0.8	M5 X 0.8	5.5	M5 X 0.8	29	4.5	42	52	69
CRBUW30-DE									8			15.5	14										

Applicable Auto Switch

Applicable series	Auto switch part No.		Electrical entry	Page
CDRBUW10 CDRBUW15	Reed switch	D-90/90A	Grommet	$\begin{aligned} & 2.11-12, \\ & 2.11-14 \end{aligned}$
		D-97/93A		
	Solid state switch	D-S99/S99V*	Grommet/3 wire style (NPN)	2.11-23
		D-S9P/S9PV	Grommet/3 wire style (PNP)	
		D-T99/T99V	Grommet/2 wire style	
CDRBUW20 CDRBUW30	Reed switch	D-R 7	Grommet	2.11-15
		D-R 8		
	Solid state switch	D-R 7*	Grommet/3 wire style (NPN)	2.11-24
		D-S7P	Grommet/3 wire style (PNP)	
		D-T 7	Grommet/2 wire type, Connector/2 wiretype	

* No connector type is available for solid state switch 3 wire style.

\triangle Caution

Be sure to read before handing. Refer to p.2.11-2 to 2.11-4 before handling auto switches.

Units

Every kind of unit is mountable to series CDRBU. Refer to p.1.0-23 and 1.0-24 for further information

- Combinable units:
(1) Auto switch unit
(2) Switch block unit
(3)Angle adjusting unit
(4) Angle adjusting unit with auto switch
(5) Joint unit

With Auto Switch Dimensions/Single Vane Style

*The dimensions below show pressurization to B port of actuators for 90° and for 180°.

CDRBUW10, 15- \square S

Free mounting rotary

* 1) 24: When auto switches "D-90, 90A, S99(V), T99, S9P(V)" types are used 30: When auto switches "D-97, 93A" types are used.
* 2) 60: When auto switches "D-90, 90A, 97, 93A" types are used.

69: When auto switches "D-S99(V),T 99, S9P(V)" types are used.

Refer to p.1.2-5 for further information

CDRBUW20, 30- \square S

(Approx. 26.5: Connector style)

,
Note) All connecting port locations are on the body side for auto switch attached style.
Note) The dimensions above are of one right hand side operating style attached and one left hand side operating style attached.

Model	A	B	C	D	E(g6)	F(h9)	G	H	K	L	M	N	R	S1	S2	T	U	V	W	X	Y
CDRBUW10-■S	29	22	29	14	$4_{-0.004}^{-0.004}$	$9{ }_{-0.036}$	1	15.5	9	0.5	10.5	10.5	M5 X 0.8	3.5	M3 X 0.5	17	3	25	31	41	18.5
CDRBUW15-■S	34	25	29	18	$5^{-0.004}$	${ }^{12-0.043}$	1.5	15.5	10	0.5	10.5	10.5	M5 X 0.8	3.5	M 3×0.5	21	3	29	36	48	18.5
CDRBUW20-■S	42	34.5	30	20	$6_{-0.012}^{-0.004}$	$14{ }_{-0.043}^{0}$	1.5	17	10	0.5	11.5	11	M5 X 0.8	4.5	M4 X 0.7	26	4	36	44	59	25
CDRBUW30-■S	50	47.5	31	22	$8^{-0.0005}$	$16-0.043$	2	17.5	12	1	12	13	M5 $\times 0.8$	5.5	M5 X 0.8	29	4.5	42	52	69	25

CDRBUW Size-S

With Auto Switch Dimensions/Double Vane Style

* The dimensions below show fluctuation at intermediate positions during pressurization to A port or B port.

CDRBUW10- \square D

CDRBUW15/20/30- \square D
(The dimensions below are based on size 20.)

(Approx. 26.5: Connector style)

CDRBUW20, 30-■D

* 1) 24: When auto switches "D-90, 90A, S99(V), T99(V), S9P(V)" types are used. * 3) 25.5: When auto switches grommet type "D-R73, R80, S79,S7P, T79"

30: When auto switches "D-97, 93A" types are used.

* 2) 60° : When auto switches "D-90, 90A, 97, 93A" types are used.
69° : When auto switches "D-S99(V),T99(V), S9P(V)" types are used.
types are used.
34.5: When auto switches connector type "D-R73, R80, T79" types are used.

Model	A	B	C	D	E(g6)	F(h9)	G	H	K	L	M	N	R	S1	S2	T	U	V	W	X	Y	Z	Z
CDRBUW15-■D	34	25	29	18	$5_{-0.012}^{-0.004}$	${ }_{1-0.043}^{0}$	1.5	15.5	10	0.5	10.5	10.5	M5 X 0.8	3.5	M3 X 0.5	21	3	29	36	48	18.5	$24^{* 1}$	$30^{* 1}$
CDRBUW20-■D	42	34.5	30	20	$6_{-0.012}^{-0.004}$	$14_{-0.043}^{0}$	1.5	17	10	0.5	11.5	11	M5 $\times 0.8$	4.5	M 4×0.7	26	4	36	44	59	25	$25.5{ }^{* 3} 34 .{ }^{* 3}$	
CDRBUW30-■D	50	47.5	31	22	$8_{-0.014}^{-0.005}$	16-0.043	2	17.5	12	1	12	13	M5 $\times 0.8$	5.5	M5 $\times 0.8$	29	4.5	42	52	69	25		

Rotary Actuator
Free Mount Style with Angle Adjuster

How to Order

Auto Switch Specifications/ Refer to p.2.11-1 for further information on auto switch single body.

Series CD RBUWU

Construction/Single Vane, Double Vane

Component Parts

No.	Description	Material	Note
(1)	Stopper ring	Aluminum die cast	
(2)	Stopper lever	Carbon steel	
(3)	Lever retainer	Carbon steel	Zinc chromated
(4)	Rubber damper	NBR	
(5)	Stopper block	Carbon steel	Zinc chromated
(6)	Block retainer	Carbon steel	Zinc chromated
(7)	Cap	Resin	
(8)	Hexagon socket head cap bolt	Stainless steel	Special bolt
(9)	Hexagon socket head cap bolt	Stainless steel	Special bolt
(10)	Hexagon socket head cap bolt	Stainless steel	Special bolt
(11)	Joint	Aluminum alloy	Note)
(12)	Hexagon socket head cap screw	Stainless steel	For CDRBuw10, a hexagon nut is
	Hexagon nut	Stainless steel	
used to the part indicated with no. .12.			
(13)	Round head Phillips screw	Stainless steel	Note)
(14)	Magnet lever	-	Note)

ote) It is consisted of an auto switch unit and an angle adjusting unit. Refer to p.1.0-23 and 1.0-24 for further specifications.

With angle adjuster and auto switch CDRBUW10/15- \square © \quad CDRBUWU20/30 - \square s

- Single vane

This diagram shows the pressurized state of port B in the rotary actuator used for a 90° or 180° application.

- Double vane

This diagram shows the intermediate rotation position of the rotary actuator with port A or port B pressurized.

\triangle Precautions

. Caution

(1) If the rotary actuator body is used for a 90° or 180° application, the maximum angle of the rotation angle adjustment range will be limited by the rotation angle of the rotary actuator body. Make sure to take this into consideration when ordering equipment.
(Refer to the table below)

Rotation angle of the rotary actuator body	Adjustable range of rotating angle
$270^{\circ+4}$	0° to $230^{\circ}(\text { size } 10)^{* 1}$
	0° to $240^{\circ}($ Size $15,20,30)$
$180^{\circ+4} 0$	0° to 175°
$90^{\circ+4} 0_{0}^{4}$	0° to 85°

*1: The maximum adjustable angle of the angle adjustment unit for size 10 is 230°.
(2) All connecting port positions are on the body side.
(3) The allowable kinetic energy is the same as the specifications of the rotary actuator unit itself.
4) To make a 90° adjustment on the double vane type, use a rotary actuator for a 100° application.

With Angle Adjuster Dimensions/Single Vane Style

*The dimensions below show pressurization to B port of actuators for 90° and for 180°. They are based on size 20.

CRBUWU10/15/20/30-■S

CAD CRBUWU Size -S..........SCRB Size, \#6

Model	A	B	C	D	E(g6)	F(h9)	G	H	K	L	M	N	R	S1	S2	T	U	V	W	X	Y
CRBUWU10-■S	29	22	19.5	14	$4^{-0.004}$	${ }^{9}{ }_{-0.036}$	1	15.5	9	0.5	10.5	10.5	M5 X 0.8	3.5	M3 $\times 0.5$	17	3	25	31	41	3
CRBUWU15-■S	34	25	21.2	18	$5^{-0.004}$	${ }_{1}^{12} 00043$	1.5	15.5	10	0.5	10.5	10.5	M5 X 0.8	3.5	M3 $\times 0.5$	21	3	29	36	48	3.2
CRBUWU20-■S	42	34.5	25	20	$6_{-0.012}^{-0.004}$	14-0.043	1.5	17	10	0.5	11.5	11	M5 X 0.8	4.5	M4 $\times 0.7$	26	4	36	44	59	4
CRBUWU30-■S	50	47.5	29	22	$8^{-0.005}$	16-0.043	2	17.5	12	1	12	13	M5 X 0.8	5.5	M5 X 0.8	29	4.5	42	52	69	4.5

With Angle Adjuster Dimensions/Double Vane Style

*The dimensions below show rotation middle points during pressurization to A port or B port.

CRBUWU10-DD

CRBUWU15/20/30- \square D
The dimensions below are based on size 20.

Model	A	B	C	D	$\mathrm{E}(\mathrm{g} 6)$	$\mathrm{F}(\mathrm{h} 9)$	G	H	K	L	M	N	R	S 1	S 2	T	U	V	W	X	Y
CRBUWU15- D	34	25	21.2	18	$5_{-0.012}^{-0.004}$	$12-0.043$	1.5	15.5	10	0.5	10.5	10.5	$\mathrm{M} 5 \times 0.8$	3.5	$\mathrm{M} 3 \times 0.5$	21	3	29	36	48	3.2
CRBUWU20- -D	42	34.5	25	20	$6_{-0.0012}^{-0.004}$	$14-0.043$	1.5	17	10	0.5	11.5	11	$\mathrm{M} 5 \times 0.8$	4.5	$\mathrm{M} 4 \times 0.7$	26	4	36	44	59	4
CRBUWU30-DD	50	47.5	29	22	$8_{-0.014}^{-0.005}$	$16-0.043$	2	17.5	12	1	12	13	$\mathrm{M} 5 \times 0.8$	5.5	$\mathrm{M} 5 \times 0.8$	29	4.5	42	52	69	4.5

* The dimensions below show pressurization to A port of actuators for 90° and for 180°.

CDRBUWU10/15- \square S

CDRBUWU20/30-■S

Model	B	C	D	R
CDRBUWU10- $\square \mathbf{S}$	22	45.5	14	$\mathrm{M} 5 \times 0.8$
CDRBUWU15- \square S	25	47	18	$\mathrm{M} 5 \times 0.8$
CDRBUWU20- $\square \mathbf{S}$	34.5	51	20	$\mathrm{M} 5 \times 0.8$
CDRBUWU30- $\square \mathbf{S}$	47.5	55.5	22	$\mathrm{M} 5 \times 0.8$

Note)All the port locations are on the body side for angle adjuster attached style and auto switch attached style.

With auto switch
Note)The dimension of switch attached style shows on
 rhauo swich right side handling switch attached style and one left side handling switch attached style.

With Angle Adjuster and Auto Switch Dimensions/Double Vane Style

* The dimensions below show rotation middle point during pressurization to A port or B port.

CDRBUWU10/15-■D

Model	B	C	D	R
CDRBUWU10- $\square \mathrm{D}$	31	45.5	14	$\mathrm{M} 5 \times 0.8$
CDRBUWU15-םD	25	47	18	$\mathrm{M} 5 \times 0.8$
CDRBUWU20-םD	34.5	51	20	$\mathrm{M} 5 \times 0.8$
CDRBUWU30-	47.5	55.5	22	$\mathrm{M} 5 \times 0.8$

CDRBUWU20/30-■D

[^8]
Series CRBU
 Made to Order Specifications Change of Shaft End Shape/-XA1 to XA47
 Consult SMC for further information on specifications, dimensions and delivery.

A wide selection of models is now available, as non-standard shaft configurations for the CRB1 Series (Sizes: 50, 80, 100) are provided in 46 types of patterns.

Additional reminders

- Enter the dimensions within a range that allows for additional machining.
- SMC will make appropriate arrangements if no dimensional, tolerance, or finish instructions are given in the diagram.
- The length of the unthreaded portion is 2 to 3 pitches
- The thread pitch is based on coarse metric threads.
$\mathrm{P}=$ thread pitch $\mathrm{M} 3 \times 0.5, \mathrm{M} 4 \times 0.7, \mathrm{M} 5 \times 0.8$
- Enter the desired figures in the --- portion of the diagram.
- If the shaft is required to be shortened, refer to the list of the dimensions for patterns A17 to A19.
- If equipped with an auto switch, the manufacturable patterns are those for shafts J and W only.
- Consult SMC for made to order specifications other than those mentioned in "How to Order".
- Individual drawings for specific made to order models may not be available.
Consult SMC separately if drawings are needed.
How to Order
Without auto switch For 2 patterns (A1, C6)

With auto switch For pattern A1

Applicable patterns	
Size	10, 15, 20, 30
	XA 1 to XA23,
Pattern	XA31 to XA34,
	XA37 to XA47,
	XC 1 to XC 7, XC30

Applicable shaftiPattern combination table (Size: 10, 15, 20, 30) Shaft shape/Double shaft (W): Standard

Symbol	Specification	Shaft direction		$\begin{gathered} \text { Applicable } \\ \text { size } \end{gathered}$
		Upward	Downward	
-XA 1	Rod end female thread	\bigcirc	-	15, 20, 30
-XA 2	Rod end female thread	-	\bigcirc	
-XA 3	Rod end male thread	\bigcirc	-	10
-XA 4	Rod end male thread	-	\bigcirc	
-XA 5	Round shaft with steps	\bigcirc	-	
-XA 6	Round shaft with steps	-	\bigcirc	15
-XA 7	Round shaft with steps and male thread	\bigcirc	-	
-XA 8	Round shaft with steps and male thread	-	\bigcirc	20
-XA 9	Change in length of the standard product's chamfer part	\bigcirc	-	30
-XA10	Change in length of the standard product's chamfer part	-	\bigcirc	
-XA11	2 flat chamfers	\bigcirc	-	
-XA12	2 flat chamfers	-	\bigcirc	
-XA13	Shaft through hole	\bigcirc	\bigcirc	15
-XA14	Shaft through hole and female thread	\bigcirc	-	20
-XA15	Shaft through hole and female thread	-	\bigcirc	
-XA16	Shaft through hole and female thread	\bigcirc	\bigcirc	30
-XA17	Shaft is shortened	\bigcirc	-	10
-XA18	Shaft is shortened	-	\bigcirc	
-XA19	Shaft is shortened	\bigcirc	\bigcirc	15
-XA20	Reverse mounting of the shaft	\bigcirc	\bigcirc	
-XA21	Round shaft with steps and two flat chamfers	\bigcirc	-	20
-XA22	Round shaft with steps and two flat chamfers	-	\bigcirc	30
-XA23	Right angled chamfer	\bigcirc	-	

Shaft shape/J, K, S, T, Y: Made to order

Symbol	Specification	direction $\begin{aligned} & \text { Spat } \\ & \text { deplicable shaft type }\end{aligned}$						$\begin{gathered} \text { Applicable } \\ \text { size } \end{gathered}$
				J K	K S			
-XA31	Rod end female thread	\bigcirc		-	-	-	,	15
-XA32	Rod end female thread	-	\bigcirc	-	-	-	\bigcirc	20
-XA33	Rod end female thread	\bigcirc			-	-	-	
-XA34	Rod end female thread			-	- -		-	30
-XA37	Round shaft with steps	\bigcirc		-	-	\bigcirc	-	10, 15,
-XA38	Round shaft with steps		-	-	-	-	-	20, 30
-XA39	Shaft through hole							
-XA40	Shaft through hole			-	-	-	-	15
-XA41	Shaft through hole	-		-		-		
-XA42	Shaft through hole and female thread				-		-	20
-XA43	Shaft through hole and female thread			-	- -	\bigcirc		30
-XA44	Shaft through hole and female thread				- -	-	-	
-XA45	Intermediate chamfer	\bigcirc		-	- -	\bigcirc	-	10, 15,
-XA46	Intermediate chamfer	-	-	-	-	-	-	20, 30
-XA47	Key groove	\bigcirc				-		20,30
-XC 1	A connecting port is added to the side end of the body (A)	-						
-XC 2	2 thread parts of the body (B) are used as through holes	-						
-XC 3	Position of the tightening bolts are changed	-	-					
-XC 4	Rotating range is changed. (90 0 to the right from the siating point)	-	-					15
-XC 5	Rotation ange is changed. (45 '0 the eft from the statring point)	-	-					20
-XC 6	Rotation angle is charged. (90 0 to the eftif fom the siating point)	-	-					
-XC 7	Reverse mounting of the shaft	- -	-	-	-	-	-	30
-XC30	Fluorine grease	-	-					

[^9]
Series CRBU
 Made to Order Specifications Change of Shaft End Shape/-XA1 to -XA17
 Consult SMC for further information on specifications, dimensions and delivery.

Change of shaft end shape

Additional reminders

- Enter the dimensions within a range that allows for additional machining.
- SMC will make appropriate arrangements if no dimensional, tolerance, or finish instructions are given in the diagram.
- The length of the unthreaded portion is 2 to 3 pitches.
- Unless specified otherwise, the thread pitch is based on coarse metric threads.
$\mathrm{P}=$ thread pitch
M3 X 0.5; M4 X 0.7; M5 X 0.8
- Enter the desired figures in the $1--$ n portion of 2 the diagram.
-To shorten the shaft, use the dimensional tables for patterns A17 to A19 for reference.

Symbol: A3

The shaft can be further shortened by machining male threads on the long end of the shaft. (If the shaft is not to be shortened, leave the X dimension blank.)

Size	X	Lmax	Q
$\mathbf{1 0}$	7 to 14	X-3	M4
$\mathbf{1 5}$	8.5 to 18	X-3.5	M5
$\mathbf{2 0}$	10 to 20	X-4	M6
$\mathbf{3 0}$	13 to 22	X-5	M8

Symbol: A6
The shaft can be further shortened by machining a round shoulder on the long end of the shaft. (If the shaft is not to be shortened, leave the Y dimension blank.)

		(mm)
Size	Y	Lmax
$\mathbf{1 0}$	2 to 8	Y-1
$\mathbf{1 5}$	3 to 9	Y-1.5
$\mathbf{2 0}$	3 to 10	Y-1.5
$\mathbf{3 0}$	3 to 13	Y-2

Symbol: A1

The shaft can be further shortened by machining female threads on the long end of the shaft. (If the shaft is not to be shortened, leave the X dimension blank.)

- Size 10 mm is not manufaturable.
- L dimension (maximum size) is 2 times as large as the thread size as a rule.

		(mm)
Size	X	Q
15	1.5 to 18	M3
20	1.5 to 20	M3, M4
30	2 to 22	M3, M4, M5

Symbol: A4

The shaft can be further shortened by machining male threads on the long end of the shaft. (If the shaft is not to be shortened, leave the Y dimension blank.)

Symbol: A7

The shaft can be further shortened by machining a round shoulder and machining male threads on the long end of the shaft. (If the shaft is not to be shortened, leave the X dimension blank.)
$\mathrm{Q}=\mathrm{M}_{\llcorner }^{[-]}$

Symbol: A2

The shaft can be further shortened by machining female threads on the long end of the shaft. (If the shaft is not to be shortened, leave the Y dimension blank.)

- Size 10 mm is not manufaturable.
- L dimension (maximum size) is 2 times as large as the thread size as a rule. Ex.) M3: $\mathrm{L}=6 \mathrm{~mm}$
(mm)

Size				Y	Q
15	1.5 to 9	M3			
20	1.5 to 10	M3, M4			
30	2 to 13	M3, M4, M5			

Symbol: A5

The shaft can be further shortened by machining a round shoulder on the long end of the shaft. (If the shaft is not to be shortened, leave the X dimension blank.)

	(mm)	
Size	X	Lmax
$\mathbf{1 0}$	2 to 14	$X-1$
$\mathbf{1 5}$	3 to 18	$X-1.5$
$\mathbf{2 0}$	3 to 20	$X-1.5$
$\mathbf{3 0}$	3 to 22	$X-2$

Symbol: A8

The shaft can be further shortened by machining a round shoulder and machining male threads on the short end of the shaft. (If the shaft is not to be shortened, leave the Y dimension blank.)

(mm)			
Size	Y	Lmax	Q
$\mathbf{1 0}$	5.5 to 8	Y-1	M3
$\mathbf{1 5}$	7.5 to 9	Y-1.5	M3, M4
$\mathbf{2 0}$	9.5 to 10	Y-1.5	M3, M4, M5
$\mathbf{3 0}$	11 to 13	Y-2	M3, M4, M5, M6

*1.5mm or more, L_{1} : Standard chamfering part
Symbol: A15 Applicable only to single vane.
Machine a special end (at the short end of the shaft), and machine female threads in the through hole at the short end of the shaft, thus creating a through hole to serve as the pilot hole.

- Size 10 is not manufacturable
-The L dimension (maximum) is, as a rule, twice the
size of the bolt.
Example: For M4 bolt: L max. $=8 \mathrm{~mm}$

Size	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$
M3 X 0.5	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$
M4 X 0.7	-	$\varnothing 3.3$	$\varnothing 3.3$
M5 X 0.8	-	-	$\varnothing 4.2$

Symbol: A10

The shaft can be further shortened by changing the length of the standard flat of the short end of the shaft. (If the shaft is not to be shortened, leave the Y dimension blank.)

Symbol: A13 Applicable only to single vane.
Shaft through hole

- For size $15 \mathrm{~mm}, \mathrm{~d}_{1}=\varnothing 2.5, \mathrm{~L}_{1}=\max .18$.
- For size 15 mm only, inscribe the L1, L2, and d1
dimensions when $=d 2$ is 2.6 or more
- Sizes 20 mm and $30 \mathrm{~mm}, \mathrm{~d}_{1}=\mathrm{d} 2$
- The minimum range of the machinable dimension for the d_{2} area is 0.1 mm . (mm)

Size	d 1	d 2
15	$\varnothing 2.5$	$\varnothing 2.5$ to 3
20	-	$\varnothing 2.5$ to 4
30	-	$\varnothing 2.5$ to 4.5

Symbol: A16 Applicable only to single vane.

Machine special ends (at both ends of the shaft), and machine female threads in the through holes at both ends of the shaft, thus creating through holes to serve as pilot holes.

- Size 10 is not manufacturable.
-The L dimension (maximum) is, as a rule, twice the size of the bolt.
Example: For M5 bolt: L max. $=10 \mathrm{~mm} \quad(\mathrm{~mm})$

Size	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$
M3 X 0.5	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$
M4 X 0.7	-	$\varnothing 3.3$	$\varnothing 3.3$
M5 X 0.8	-	-	$\varnothing 4.2$

Symbol: A11

The shaft can be further shortened by machining double flats on the long end of the shaft. (If no changes are to be made to the standard flat, and the shaft is not to be shortened, leave the L1 and X dimensions blank.)

- Size 10 is not manufacturable.
- The L dimension (maximum) is, as a rule, twice the size of the bolt. Example: For M3 bolt: L max. $=6 \mathrm{~mm}$

Size	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$
M3 X 0.5	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$
M4 X 0.7	-	$\varnothing 3.3$	$\varnothing 3.3$
M5 X 0.8	-	-	$\varnothing 4.2$

Symbol: A17

Shorten the long end of the shaft.

Short
side

Size	X
$\mathbf{1 0}$	1 to 14
15	1.5 to 8
$\mathbf{2 0}$	1.5 to 20
$\mathbf{3 0}$	2 to 22

(mm)

Size	X	L1	L2max
$\mathbf{1 0}$	3 to 14	$9-(14-X)$ to $(X-1)$	$X-1$
$\mathbf{1 5}$	3 to 18	$10-(18-X)$ to $(X-1.5)$	$X-1.5$
$\mathbf{2 0}$	3 to 20	$10-(20-X)$ to $(X-1.5)$	$X-1.5$
$\mathbf{3 0}$	5 to 22	$12-(22-X)$ to $(X-2)$	$X-2$

The "*" symbol indicates 0.5 mm minimum, L_{1} is the standard flat.

Symbol: A14 Applicable only to single vane.

Machine a special end (at the long end of the shaft), and machine female threads in the through hole at the long end of the shaft, thus creating a through hole to serve as the pilot hole.

\qquad

(mm)	
Size	X
$\mathbf{1 0}$	1 to 14
$\mathbf{1 5}$	1.5 to 8
$\mathbf{2 0}$	1.5 to 20
$\mathbf{3 0}$	2 to 22

Series CRBU

Made to Order Specifications
Change of Shaft End Shape/-XA18 to -XA23
Consult SMC for further information on specifications, dimensions and delivery.
Additional reminders

- Enter the dimensions within a range that allows
for additional machining.
- SMC will make appropriate arrangements if no
dimensional, tolerance, or finish instructions are
given in the diagram.
-The length of the unthreaded portion is 2 to 3
pitches.
-Unless specified otherwise, the thread pitch is
based on coarse metric threads.
$\mathrm{P}=$ thread pitch
M3 X 0.5; M4 X 0.7 ; M5 X 0.8
- Enter the desired figures in the L_{--}portion of
the diagram.
- To shorten the shaft, use the dimensional tables
for patterns A17 to A 19 for reference.

Symbol: A18

Shorten the short end of the shaft.

Symbol: A21

The shaft can be further shortened by machining a round shoulder and double flats on the long end of the shaft. (If the shaft is not to be shortened, leave the X dimension blank.)

					(mm)
Size	X	L1max	L2		

Symbol: A19

Shorten both the long end and the short end of the shaft.

Symbol: A22

The shaft can be further shortened by machining a round shoulder and double flats on the short end of the shaft. (If the shaft is not to be shortened, leave Y dimension blank.)

			(mm)	
Size	Y	L1max	L2	
$\mathbf{1 0}$	4 to 8	Y-2.5	$\mathrm{L} 1+1.5$	
$\mathbf{1 5}$	4.5 to 9	$\mathrm{Y}-3$	$\mathrm{~L} 1+1.5$	
$\mathbf{2 0}$	5 to 10	$\mathrm{Y}-3.5$	$\mathrm{~L} 1+2$	
$\mathbf{3 0}$	$\mathbf{7}$ to 13	$\mathrm{Y}-5$	$\mathrm{~L} 1+3$	

Symbol: A23

The shaft can be further shortened by milling perpendicular double flats on the long end of the shaft. (If no changes are to be made to the standard flat and the shaft is not to be shortened, leave the L1 and X dimensions blank.)

The "*" mark indicates 0.5 minimum.
L_{1} is the standard fla

Size	X	L L1	L2max
$\mathbf{1 0}$	3 to 14	$9-(14-X)$ to $(X-1)$	$X-1$
$\mathbf{1 5}$	3 to 18	$10-(18-X)$ to $(X-1.5)$	$X-1.5$
$\mathbf{2 0}$	3 to 20	$10-(20-X$ to $(X-1.5)$	$X-1.5$
$\mathbf{3 0}$	5 to 22	$12-(22-X)$ to $(X-2)$	$X-2$

Series CRBU

Made to Order Specifications
 Change of Shaft End Shapel-XA31 to XA40

Consult SMC for further information on specifications, dimensions and delivery.

Additional reminders

-Enter the dimensions within a range that allows for additional machining.
-SMC will make appropriate arrangements if no dimensional, tolerance, or finish instructions are given in the diagram.
-The length of the unthreaded portion is 2 to 3 pitches.
-Unless specified otherwise, the thread pitch is based on coarse metric threads.
$\mathrm{P}=$ thread pitch
M3 X 0.5; M4 X 0.7; M5 X 0.8

- Enter the desired figures in the ${ }_{L_{--}^{--}}^{-〕}$ portion of the diagram.
-To shorten the shaft, use the dimensional tables for patterns A17-A19 for reference.

Symbol: A33

Machine female threads into the long end of the shaft.
-The L dimension (maximum) is, as a rule, twice the size of the bolt. (Example: For M3 bolt: L max. $=6 \mathrm{~mm}$)
-Applicable shaft configurations - shafts J, K, T

Shaft Size	Q		
	J	K	T
10	Not available		
15	M3		
20	M3, M4		
30	M3, M4, M5		

Symbol: A38

The shaft can be further shortened by machining a round shoulder on the short end of the shaft. (If the shaft is not to be shortened, leave the Y dimension blank.)

- Applicable shaft configurations - shaft K

	(mm)	
Size	Y	Lmax
$\mathbf{1 0}$	2 to14	$\mathrm{Y}-1$
$\mathbf{1 5}$	3 to 18	$\mathrm{Y}-1.5$
$\mathbf{2 0}$	3 to 20	$\mathrm{Y}-1.5$
$\mathbf{3 0}$	3 to 22	$\mathrm{Y}-\mathbf{2}$

Symbol: A31

Machine female threads into the long end of the shaft
-The L dimension (maximum) is, as a rule, twice the size of the bolt.
(Example: For M3 bolt: L max. $=6 \mathrm{~mm}$)

- Applicable shaft contigurations - shafts S, Y

Symbol: A34

Machine female threads into the short end of the shaft. The L dimension (maximum) is, as a rule, twice the size of the bolt. (Example: For M3 bolt: L max. $=6 \mathrm{~mm}$)
However, in the case of the M5 bolt for shaft S , it is 1.5 times the size of the bolt.

- Applicable shaft configurations - shafts J, K, T

Symbol: A39 \quad Applicable only to single vane style
Shaft through hole (Shafts S and Y are machined additionally)

-Size 10 is not manuluacurable

- For size 15 is $\mathrm{d} 1=02.5, \mathrm{~L} 1=$ max. X 18

The minimum range of the machinable dimension for the d 2 area is 0.1 mm . (mm) -For sizes 20 and 30 are $\mathrm{d} 1=\mathrm{d} 2$. - With size 15, enter the L1, L2, and d1 dimensions when d2 is $\varnothing 2.6$ or more -Applicable shaft configurations shatts S, Y

Symbol: A32

Machine female threads into the short end of the shaft.
-The L dimension (maximum) is, as a rule, twice the size of the bolt. (Example: For M4 bolt: L max. $=8 \mathrm{~mm}$) - Applicable shaft contigurations - shafts S,Y

	Q	
Size	S	Y
10	Not available	
15	M3	
20	M3, M4	
30	M3, M4, M5	

Symbol: A37

The shaft can be further shortened by machining a round shoulder on the long end of the shaft. (If the shaft is not to be shortened, leave the X dimension blank.)
-Applicable shaft configurations - shafts $\mathrm{J}, \mathrm{K}, \mathrm{T}$

	(mm)					
Shaft form	J	K	T	J	K	T
Size	X			Lmax		
10	2 to 14			X-1		
15	3 to 18			X-1.5		
20	3 to 20			$\mathrm{X}-1.5$$\mathrm{X}-2$		
30	3 to 22					

Symbol: A40 Applicable only to single vane style.
Shaft through hole (Shafts K and T are machined additionally)

- Size 10 is not manufacturable.

- -or size 15 is $\mathrm{d} 1=02.5, \mathrm{~L} 1=$ max. X 18

The minimum range of the machinable dimension for the d 2 area is 0.1 mm . (mm) - For sizes 20 and 30 are $11=\mathrm{d} 2$. - With size 15 , enter the $\mathrm{L} 1, \mathrm{~L} 2$, and $d 1$ dimensions when d2 is 02.6 or more. - Applicable shaft contigurations shafts K, T

$\mathrm{Se}^{\text {Sharflomm }}$	K T	K
Size	d1	d2
15	2.5	2.5 to 3
20	-	2.5 to 4
30	-	2.5 to 4.5

Series CRBU

Made to Order Specifications
Change of Shaft End Shapel-XA41 to XA47
Consult SMC for further information on specifications, dimensions and delivery.

Additional reminders

- Enter the dimensions within a range that allows for additional machining.
- SMC will make appropriate arrangements if no dimensional, tolerance, or finish instructions are given in the diagram.
-The length of the unthreaded portion is 2 to 3 pitches.
-Unless specified otherwise, the thread pitch is based on coarse metric threads.
$\mathrm{P}=$ thread pitch
M3 X 0.5; M4 X 0.7; M5 X 0.8
- Enter the desired figures in the [-] portion of the diagram.
-To shorten the shaft, use the dimensional tables for patterns A17 to A19 for reference.

Symbol: A41 Applicable only to single vane style.
machine female threads in the through holes at both ends of the shaft, thus creating through holes to serve as the pilot holes.

-The L dimension (maximum) is, as a rule, twice the size of the bolt. (Example: For M5 bolt: L max. $=10 \mathrm{~mm}$.)
However, for the short end of shaft T: For M5 bolt: L max. $=7.5 \mathrm{~mm}$. - Applicable shaft configurations - shafts K, T

Size	15		20		30	
Thread	K	T	K	T	K	T
M3 X 0.5	2.5		2.5		2.5	
M4 X 0.7	-		3.3		3.3	
M5 X 0.8	-		-		4.2	

Symbol: A46

The shaft can be further shortened by machining an intermediate flat on the short end of the shaft (the position is that of the standard flat.)

-Size 10 is not manufacturable
-For size 15 is $\mathrm{d} 1=2.5, \mathrm{~L} 1=$ max. 18
The minimum range of the machinable dimension for the d 2 area is 0.1 mm .
Enter the $\mathrm{L} 1, \mathrm{~L} 2$, and d 1 dimensions when d 2 is $ø 2.6$ or more.
-For sizes 20 and 30 are $\mathrm{d} 1=\mathrm{d} 2$.
-Applicable shaft contiguration - shaft J pilot holes.

$$
\begin{aligned}
& \text { Symbol: A44 Applicable only to single vane style. } \\
& \text { Machine special ends (at both ends of the shaft), and } \\
& \text { machine female threads in the through holes at both ends } \\
& \text { of the shaft, thus creating through holes to serve as the } \\
& \begin{array}{l}
\\
\\
\cline { 2 - 4 } \\
\\
\\
\\
\\
\\
\\
\\
\\
\hline \text { Size } \\
\hline \mathbf{1 5} \\
\mathbf{2 0} \\
\mathbf{3 0} \\
\hline
\end{array}
\end{aligned}
$$

- Size 10 is not
manufacturable.
- The L dimension (maximum) is, as a rule, twice the size of the bolt.
(Example: For M5 bolt: L max. $=10 \mathrm{~mm}$.)

- Applicable shaft

Size			
Thread	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$
M3 X 0.5	2.5	2.5	2.5
M4 X 0.7	-	3.3	3.3
M5 X 0.8	-	-	4.2

Symbol: A47

Machining a key groove in the long end of the shaft (the position is that of the standard flat). A key must be ordered separately.

Symbol: A42 Applicable only to single vane style.
Machine special ends (at both ends of the shaft), and machine female threads in the through holes at both ends of the shaft, thus creating through holes to serve as the pilot holes.

- Size 10 is not manufacturable
- The L dimension (maximum) is, as a rule, twice the size of the bolt. (Example: For M5 bolt: L max. $0=10 \mathrm{~mm}$.) However, for the short end of shaft S: For M5 bolt: L max. $=7.5 \mathrm{~mm}$.
- Applicable shaft contigurations - shafts S, Y

Symbol: A45

The shaft can be further shortened by machining an intermediate flat on the long end of the shaft (the position is that of the standard flat.)

-Applicable shaft configurations — Shaft J, K, T (mm)

s	X			W			L1max			L2max		
Size ${ }^{\text {ram }}$	J	K	T	J	K	T	J	K	T	J	K	T
10	6.5 to 14			0.5 to 2			X-3			L1-1		
15	8 to 18			0.5 to 2.5			X-4			L1-1		
20	9 to 20			0.5 to 3			X-4.5			L1-1		
30	11.5 to 22			0.5 to 4			X-5			L1-2		

§ Caution

Symbols A45, A46, and dimensions W and (L1-L2)
The intermediate flat may interfere with the center hole if dimensions W and ($\mathrm{L} 1-\mathrm{L} 2$) are at the measurements given below.

Size	W	$\mathrm{L} 1-\mathrm{L} 2$
$\varnothing 10$	1 to 2	1 to 3
$\varnothing 15$	1.5 to 2.5	1 to 3
$\varnothing 20$	2 to 3	1 to 3
$\varnothing 30$	3 to 4	2 to 3

Series CRBU
 Made to Order Specifications
 -XC1 to XC4

Consult SMC for further information on specifications, dimensions and delivery.

CRBUWP Refer to "How to Order" on p.1.2-19. XC3

Symbol

Positions of the body tightening bolts are changed

Positions of the body tightening bolts are changed. Size 10 is not available.

2 thread parts of the body (B)
are machined to be through holes.
*SMC will make appropriate arrangements if no dimensional, tolerance, or finish instructions are indicated.

2 thread parts of the body (B) are used as through holes. (Aluminum is used, for when the additional machined part is untreated.)
 (Standard)

Size	d
$\mathbf{1 0}$	3.4
$\mathbf{1 5}$	3.4
$\mathbf{2 0}$	4.5
$\mathbf{3 0}$	5.5

CRBUWP Refer to "How to Order" on p.1.2-19. XC4
*SMC will make appropriate arrangements if no dimensional, tolerance, or finish instructions are indicated.
*There are no standard chamfering parts on shafts S and

SeriesCRBU Made to Order Specifications Change in Angle of Rotation/-XC5 to XC6 Reverse Mounting of Rotary Shatt-XC7, Fluorine Greasel-XC30

Consult SMC for further information on specifications, size and delivery.

* Write required value in \qquad \square in the diagram below.
* No basic chamfer position on S and Y shaft.

Rotation starting point is on the one chamfering position when pressurized to B port.

Applicable only to single vane style
Change in angle of rotation
Rotation starting point at the angle of 90° Error in the angle at from 0° to $+5^{\circ}$ for "CRBUW10".

$$
\begin{aligned}
& \theta=\square^{\circ}+4^{\circ} \\
& \max .110^{\circ}
\end{aligned}
$$

CRBUWP Refer to "How to Order" on p.1.2-19. XC7

Dimensions

		(mm)
Size	Y	X
$\mathbf{1 0}$	19	3
$\mathbf{1 5}$	20.5	6.5
$\mathbf{2 0}$	22.5	7.5
$\mathbf{3 0}$	26.5	8.5

Symbol

9

Fluorine Grease
-XC30

Fluorine Grease

Lubricant oil on the seal part of packing and inner wall of the cylinder is changed to fluorine grease.

Shaft styles except for standard shaft style (W) of series CRBU.

Rotary Actuator: Free Mount Type Vane Style Series CRBU2
 Size: 10, 15, 20, 30, 40

Rotary Actuator: Free Mount Type Vane Style

Series CRBU2
Size: 10, 15, 20, 30, 40

How to Order

Applicable Auto Switch/Refer to page 11-1-1 for further information on auto switches.

Applicable size	Type	Electrical entry		Wiring (Output)	Load voltage			Auto switch model	Lead wire type	Lead wire length (m) *				Applicable load	
					DC		AC			$\begin{gathered} \hline 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} \hline 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ \text { (Z) } \end{gathered}$	None (N)		
For 10 and 15	Reed switch	Grommet		2-wire	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	$5 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}$	90	Parallel cord	\bigcirc	\bigcirc	\bigcirc	-	IC circuit	Relay, PLC
			No				$\begin{array}{r} 5 \mathrm{~V}, 12 \mathrm{~V}, \\ 24 \mathrm{~V}, 100 \mathrm{~V} \\ \hline \end{array}$	90A	Heavy-duty cord	\bigcirc	\bigcirc	\bigcirc	-		
			Yes			-	-	97	Parallel cord	\bigcirc	\bigcirc	\bigcirc	-	-	
	Solid state switch						100 V	93A	Heavy-duty cord	\bigcirc	\bigcirc	\bigcirc	-		
							-	T99		\bigcirc	\bigcirc	-	-		
						-		T99V		-	\bigcirc	-	-		
				3-wire (NPN) 3-wire (PNP)		$5 \mathrm{~V}, 12 \mathrm{~V}$		S99		-	\bigcirc	-	-	IC circuit	
								S99V		-	\bigcirc	-	-		
								S9P		-	\bigcirc	-	-		
								S9PV		\bullet	\bigcirc	-	-		
For 20, 30, and 40	Reed switch	Grommet	Yes	2-wire	24 V	-	100 V	R73	Heavy-duty cord	\bigcirc	\bigcirc	-	-	-	Relay, PLC
		Connector						R73C		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
		Grommet	No			$\begin{aligned} & 48 \mathrm{~V}, \\ & 100 \mathrm{~V} \end{aligned}$	$\begin{gathered} 24 \mathrm{~V}, 48 \mathrm{~V}, \\ 100 \mathrm{~V} \\ \hline \end{gathered}$	R80		-	\bigcirc	-	-	IC circuit	
		Connector						R80C		-	\bigcirc	\bigcirc	\bigcirc		
	Solid state switch	Grommet	Yes			-	-	T79		-	\bigcirc	-	-	-	
		Connector						T79C		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
		Grommet		3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		S79		-	\bigcirc	-	-	IC circuit	
				3-wire (PNP)				S7P		\bigcirc	\bigcirc	-	-		

* Lead wire length symbols:

0.5 m	\ldots.	Nil	(Example) R73C
3 m	$\ldots .$.	L	(Example) R73CL
5 m	$\ldots \ldots$.	Z	(Example) R73CZ
None	$\ldots \ldots$	N	(Example) R73CN

Single Vane Specifications

Model (Size)	CRBU2W10-7	CRBU2W15-■S	CRBU2W20-■S	CRBU2W30-■	CRBU2W40-■S
Rotating angle	$90^{\circ}, 180^{\circ}, 270^{\circ}$				
Fluid	Air (Non-lube)				
Proof pressure (MPa)	1.05			1.5	
Ambient and fluid temperature	5 to $60^{\circ} \mathrm{C}$				
Max. operating pressure (MPa)	0.7			1.0	
Min. operating pressure (MPa)	0.2	0.15			
Speed regulation range ($\left.\mathrm{sec} / 90^{\circ}\right)^{(1)}$	0.03 to 0.3			0.04 to 0.3	0.07 to 0.5
Allowable kinetic energy ${ }^{(2)}$	0.00015	0.001	0.003	0.02	0.04
(J)		0.00025	0.0004	0.015	0.033
Shaft Allowable radial load (N)	15		25	30	60
load Allowable thrust load (N)	10		20	25	40

Bearing typ

Port location	Side ported or Axial ported		
Shaft type	Double shaft (Double shaft with single flat on both shafts)	(Long shathe eshath Singef flat)	
Ang			

Note 3) Adjustment range in the table is for 270°. For 90° and 180°, refer to page 11-3-5.
Double Vane Specifications

Model (Size)	CRBU2W10-■	CRBU2W15-7D	CRBU2W20-םD	CRBU2W30-7	CRBU2W40-7
Rotating angle	$90^{\circ}, 100^{\circ}$				
Fluid	Air (Non-lube)				
Proof pressure (MPa)	1.05			1.5	
Ambient and fluid temperature	5 to $60^{\circ} \mathrm{C}$				
Max. operating pressure (MPa)	0.7			1.0	
Min. operating pressure (MPa)	0.2	0.15			
Speed regulation range ($\left.\mathrm{sec} / 90^{\circ}\right)^{(1)}$	0.03 to 0.3			0.04 to 0.3	0.07 to 0.5
Allowable kinetic energy (J)	0.0003	0.0012	0.0033	0.02	0.04
Shaft Allowable radial load (N)	15		25	30	60
load Allowable thrust load (N)	10		20	25	40
Bearing type	Bearing				
Port location	Side ported or Axial ported				
Shaft type	Double shaft (Double shaft with single flat on both shafts)				
Angle adjustable ${ }^{(3)}$	0 to 90°				0 to 230°

.) Note 1) Make sure to operate within the speed regulation range. Exceeding the maximum speeds can cause the unit to stick or not operate.
Note 2) The upper numbers in this section in the table indicate the energy factor when the rubber bumper is used (at the end of the rotation), and the lower numbers indicate the energy factor when the rubber bumper is not used.
Note 3) Adjustment range in the table is for 100°. For 90°, refer to page 11-3-5.

Inner Volume and Connection Port

4 Caution

Fe sure to read before handling. Refer I I to pages 11-13-3 to 4 for Safety I I Instructions and Common Precautions I Ion the products mentioned in this I I catalog, and refer to pages 11-1-4 to 6 I I for Precautions on every series. JIS Symbol

Series CRBU2

Rotary Actuator: Replaceable Shaft
A shaft can be replaced with a different shaft type except standard shaft type (W).

Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
C	8	9	10	13	15
D	14	18	20	22	30

Note 1) Only side ports are available except for basic type.
Note 2) Dimensions and tolerance of the shaft and single flat (a parallel keyway for size 40) are the same as the standard.

Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
C	8	9	10	13	15
D	14	18	20	22	30

Note 1) Only side ports are available except basic type.
Note 2) Dimensions and tolerance of the shaft and single flat (a parallel keyway for size 40) are the same as the standard.

Copper-free

Use the standard vane type rotary actuators in all series to prevent any adverse effects to color CRTs due to copper ions or fluororesin.

Specifications

Vane type	Single/Double vane				
Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
Operating pressure range (MPa)	0.2 to 0.7	0.15 to 0.7	0.15 to 1.0		
Speed regulation range $\left(\mathrm{s} / 90^{\circ}\right)$	Side ported or Axial ported				
Port location	Sountable				
Shaft type	Double shaft (Shaft with single flat on both shafts)	 Single flat			
Auto switch					

. Precautions

FBe sure to read before handling. Refer to pages 11-13-3 I It to 4 for Safety Instructions and Common Precautions I I on the products mentioned in this catalog, and refer to I I pages 11-1-4 to 6 for Precautions on every series.

Angle Adjuster

\triangle Caution

1. Since the maximum angle of the rotation adjustment range will be limited by the rotation of the rotary actuator itself, make sure to take this into consideration when ordering.

Rotating angle of the rotary actuator	Rotating angle adjustment range
$270^{\circ+4}$	0 to $230^{\circ}(\text { Size: } 10,40)^{*}$
	0 to $240^{\circ}($ Size: $15,20,30)$
$180^{\circ+4}$	0 to 175°
$90^{\circ+4}$	0 to 85°

* The maximum adjustment angle of the angle adjuster for size 10 and 40 is 230°.

2. Connection ports are side ports only.
3. The allowable kinetic energy is the same as the specifications of the rotary actuator by itself (i.e., without angle adjuster).
4. Use a 100° rotary actuator if you desire to adjust the angle to 90° using a double vane type.

Series CRBU2

Effective Output

Chamfered Position and Rotation Range: Top View from Long Shaft Side

Chamfered positions shown below illustrate the conditions of the actuators when B port is pressurized.

2

* For size 40 actuators, a parallel keyway will be used instead of chamfer.

Note) For single vane style, rotation tolerance of $90^{\circ}, 180^{\circ}$, and 270° actuators ${ }_{0}^{+5}$ will be for size 10 actuators only. For double vane style, rotation tolerance of 90° actuators ${ }_{0}^{+5^{\circ}}$ will be for size 10 actuators only.

Construction: 10, 15, 20, 30, 40

Single vane type

Standard: CRBU2W10/15/20/30/40- \square S (3 female threads (one of them is indicated with "**") spaced equally apart in 120° are not available for size 10 .)

With auto switch unit CDRBU2W10/15- $\square_{\mathrm{D}}^{\mathrm{S}}$

CDRBU2W20/30/40- \square_{D}^{S}
CDRBU2W40-S/D

Component Parts

No.	Description	Material
(1)	Cover (A)	Resin
(2)	Cover (B)	Resin
(3)	Magnet lever	Resin
(4)	Holding block (A)	Aluminum alloy
(5)	Holding block (B)	Aluminum alloy
(6)	Holding block	Aluminum alloy
(7)	Switch block (A)	Resin
(8)	Switch block (B)	Resin
(9)	Switch block	Resin
(10)	Magnet	Magnetic body
(11)	Arm	Stainless steel
(12)	Hexagon socket head set screw	Stainless steel
(13)	Round head Phillips screw	Stainless steel
(14)	Round head Phillips screw	Stainless steel
(15)	Round head Phillips screw	Stainless steel
(16)	Round head Phillips screw	Stainless steel
(17)	Rubber cap	NBR (size 40 only)

* For CDRBU2W10, two round head Phillips screws (13), are required.

Series CRBU2

Construction: 10, 15, 20, 30, 40

Double vane type

Standard: CRBU2W10-■D

For 90°
(Top view from long shaft side)

Standard: CRBU2W15/20/30/40- \square D

For 90°
(Top view from long shaft side)

(Long shaft side)

For 100°
(Top view from long shaft side)

Component Parts

No.	Description	Material	Note
(1)	Body (A)	Aluminum alloy	
(2)	Body (B)	Aluminum alloy	
(3)	Vane shaft	Carbon steel	
(4)	Stopper	Stainless steel	
(5)	Stopper	Resin	
(6)	Stopper	Stainless steel	
(7)	Bearing	High carbon chrome bearing steel	
(8)	Back-up ring	Stainless steel	
(9)	Cover	Aluminum alloy	
(10)	Plate	Resin	
(11)	Hexagon socket head cap screw	Stainless steel	Special screw
(12)	O-ring	NBR	
(13)	Stopper seal	NBR	
(14)	Gasket	NBR	
(15)	O-ring	NBR	
(16)	O-ring	NBR	

For 100°
(Top view from long shaft side)

Component Parts

No.	Description	Material	Note
(1)	Body (A)	Aluminum alloy	
(2)	Body (B)	Aluminum alloy	
(3)	Vane shaft	Carbon steel	
(4)	Stopper	Stainless steel	
(5)	Stopper	Resin	
(6)	Stopper	Stainless steel	
(7)	Bearing	High carbon chrome bearing steel	
(8)	Back-up ring	Stainless steel	
(9)	Hexagon socket head cap screw	Stainless steel	Special screw
$(10$	O-ring	NBR	
(11)	Stopper seal	NBR	

Dimensions: 10, 15, 20, 30
Single vane type \bullet Following illustrations show actuators for 90° and 180° when B port is pressurized.

CRBU2W \square - \square S
<Port location: Side ported>

CRBU2W $\square-\square$ SE
<Port location: Axial ported>

CRBU2W10■- \square SE
<Port location: Axial ported>

Model	A	B	C	D	E (g6)	F (h9)	G	H	J	K	L	M	N	P	Q1	(Depth) Q2	R	S1	S2	T	U	V	W	X
$\begin{aligned} & \text { CRBU2W10- } \square \text { S } \\ & \hline \text { CRBU2W10- } \square \text { SE } \\ & \hline \end{aligned}$	29	22	8	14	$4_{-0.012}^{-0.004}$	$9_{-0.036}^{0}$	1	15.5	5	9	0.5	$\begin{array}{\|c} 10.5 \\ \hline 8.5 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 10.5 \\ \hline 9.5 \\ \hline \end{array}$	24	-	$\begin{array}{\|c\|} \hline \text { M3 } \\ (4) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { M5 } \times 0.8 \\ \hline \text { M } \times 0.5 \\ \hline \end{array}$	3.5	M3 x 0.5	17	3	25	31	41
CRBU2W15- \square S CRBU2W15- \square SE	34	25	9	18	$5_{-0.012}^{-0.004}$	$12{ }_{-0.043}^{0}$	1.5	15.5	6	10	0.5	$\begin{array}{\|l\|} \hline 10.5 \\ \hline 11 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10.5 \\ \hline 10 \\ \hline \end{array}$	29	M3 x 0.5	-	$\begin{array}{\|l\|} \hline \text { M5 } \times 0.8 \\ \hline \text { M3 } \times 0.5 \\ \hline \end{array}$	3.5	M3 x 0.5	21	3	29	36	48
CRBU2W20- \square S	42	34.5	10	20	$6_{-0.012}^{-0.04}$	$14{ }_{-0.043}^{0}$	1.5	17	7	10	0.5	$\begin{array}{\|l\|} \hline 11.5 \\ \hline 14 \\ \hline \end{array}$	$\frac{11}{13}$	36	M4 x 0.7	-	M5 x 0.8	4.5	M4 x 0.7	26	4	36	44	59
CRBU2W30- \square S	50	47.5	13	22	$8_{-0.014}^{-0.005}$	$16{ }_{-0.043}^{0}$	2	17.5	8	12	1		$\frac{13}{14}$	43	M5 x 0.8	-	M5 x 0.8	5.5	M5 x 0.8	29	4.5	42	52	69

Series CRBU2

Dimensions: 10, 15, 20, 30
Double vane type \bullet llustrations below show the intermediate rotation position when A or B port is pressurized.

CRBU2W10-■D

<Port location: Side ported>

CRBU2W15/20/30-DD
<Port location: Side ported>(lllustrations below show size 30 actuators.)

CRBU2W15/20/30-■DE <Port location: Axial ported>

Model	A	B	C	D	E(g6)	F(h9)	G	H	J	K	L	M	N	P	Q1	R	S1	S2	T	U	V	W	X
CRBU2W15-DD	34	25	9	18	$5_{-0.012}^{-0.004}$	$12{ }_{-0.043}^{0}$	1.5	15.5	6	10	0.5	10.510 .5		29	M3 x 0.5	M5 0.8	3.5	M3 x 0.5	21	3	29	36	48
CRBU2W15- \square DE													10			M3 $\times 0.5$							
CRBU2W20-DD	42	34.5	10	20	$6_{-0.012}^{-0.004}$	$14{ }_{-0.043}^{0}$	1.5	17	7	10	0.5	11.5	11	36	M4 x 0.7	M5 x 0.8	4.5	M4 x 0.7	26	4	36	44	59
CRBU2W20- \square DE													13										
CRBU2W30-DD	50	47.5	13	22	$8_{-0.014}^{-0.005}$	$16_{-0.043}^{-0.00}$	217.5		8	12	1		13	43	M5 x 0.8	M5 x 0.8	5.5	M5 x 0.8	29	4.5	42	52	69
CRBU2W30-DDE									15.5														

Dimensions: 40

Single vane type/Double vane type

CRBU2W40-■S/D

<Port location: Side ported>

D-

20-

CRBU2W40-■SE/DE

<Port location: Axial ported>

Series CRBU2

Dimensions: 10, 15, 20, 30 (With auto switch unit)
Single vane type Following illustrations show actuators for 90° and 180° when B port is pressurized.
CDRBU2W10/15- \square S
CDRBU2W20/30-■S

*1. The length is 24 when any of the following auto switches are used: D-90, D-90A, D-S99(V), D-T99 and D-S9P(V).
The length is 30 when any of the following auto switches are used: D-97 and D-93A
*2. The angle is 60° when any of the following auto switches are used: D-90, D-90A, D-97 and D-93A.
The angle is 69° when any of the following auto switches are used: D-S99(V), D-T99(V) and D-S9P(V).

For rotary actuators with auto switch unit connection ports are side ports only.

- The above exterior view drawings illustrate rotary actuators with one right-hand and one left-hand

(mm)																					
Model	A	B	C	D	E(g6)	$F(\mathrm{~h} 9)$	G	H	K	L	M	N	R	S1	S2	T	\mathbf{U}	V	W	X	Y
CDRBU2W10- \square S	29	22	29	14	$4_{-0.012}^{-0.004}$	$9_{-0.036}^{0}$	1	15.5	9	0.5	10.5	10.5	M5 x 0.8	3.5	M3 x 0.5	17	3	25	31	41	18.5
CDRBU2W15-■S	34	25	29	18	$5_{-0.012}^{-0.004}$	$12_{-0.043}^{0}$	1.5	15.5	10	0.5	10.5	10.5	M5 x 0.8	3.5	M3 x 0.5	21	3	29	36	48	18.5
CDRBU2W20- \square	42	34.5	30	20	$6_{-0.012}^{-0.004}$	$14_{-0.043}^{0}$	1.5	17	10	0.5	11.5	11	M5 x 0.8	4.5	$\mathrm{M} 4 \times 0.7$	26	4	36	44	59	25
CDRBU2W30- \square	50	47.5	31	22	$8{ }_{-0.014}^{-0.005}$	$16-0.043$	2	17.5	12	1	12	13	M5 x 0.8	5.5	M5 x 0.8	29	4.5	42	52	69	25

Double vane type - Illustrations below show the intermediate rotation position when A or B port is pressurized.

CDRBU2W10- \square D

CDRBU2W15/20/30-■D
(Illustrations below show size 20 actuators.)

(Approx. 26.5 for connector type) CDRBU2W20/30-■D

* 1. The length is 24 when any of the following auto switches are used: D-90, D-90A, D-S99(V), D-T99 and D-S9P(V).

The length is 30 when any of the following auto switches are used: D-97 and D-93A.

* 2. The angle is 60° when any of the following auto switches are used: D-90, D-90A, D-97 and D-93A.

The angle is 69° when any of the following auto switches are used: D-S99(V), D-T99(V) and D-S9P(V).

* 3. The length (Dimension S) is 25.5 when any of the following grommet type auto switches are used: D-R73, D-R80, D-S79, D-T79, and D-S7P.

The length (Dimension S) is 34.5 when any of the following connector type auto switches are used: D-R73, D-R80, and D-T79.

Model	A	B	C	D	E (g6)	F (h9)	G	H	K	L	M	N	R	S1	S2	T	U	V	W	X	Y		Z
CDRBU2W15- \square D	34	25	29	18	$5_{-0.012}^{-0.004}$	$12_{-0.043}^{0}$	1.5	15.5	10	0.5	10.5	10.5	M5 x 0.8	3.5	M3 x 0.5	21	3	29	36	48	18.5	$24 *$	$30{ }^{* 1}$
CDRBU2W20- \square D	42	34.5	30	20	$6_{-0.012}^{-0.004}$	$14_{-0.043}^{0}$	1.5	17	10	0.5	11.5	11	M5 x 0.8	4.5	M4 x 0.7	26	4	36	44	59	25	25.5	$34.5{ }^{* 3}$
CDRBU2W30-■D	50	47.5	31	22	$8_{-0.014}^{-0.005}$	$16{ }_{-0.043}^{0}$	2	17.5	12	1	12	13	M5 x 0.8	5.5	M5 x 0.8	29	4.5	42	52	69	25		

Series CRBU2

Dimensions: 40 (With auto switch unit)

Single vane type/Double vane type

CDRBU2W40-■S/D

Rotary Actuator with Angle Adjuster Free Mount Type, Vane Style Series CRBU2WU
 Size: 10, 15, 20, 30, 40

How to Order

Construction: 10, 15, 20, 30, 40

Single vane type/Double vane style
With angle adjuster
CRBU2W10/15/20/30/40- $\square_{\text {D }}^{\text {S }}$

Single vane

Double vane

Component Parts

No.	Description	Material	Note
(1)	Stopper ring	Aluminum die-casted	
(2)	Stopper lever	Carbon steel	Zinc chromated
(3)	Lever retainer	Carbon steel	Zinc chromated
(4)	Rubber bumper	NBR	Zinc chromated
(5)	Stopper block	Carbon steel	
(6)	Block retainer	Carbon steel	Special screw
(7)	Cap	Resin	Special screw
(8)	Hexagon socket head cap screw	Stainless steel	Special screw
(9)	Hexagon socket head cap screw	Stainless steel	
(10)	Hexagon socket head cap screw	Stainless steel	
(11)	Joint	Aluminum alloy	Note)
(12)	Hexagon socket head set screw	Stainless steel	Hexagon nut will be used for CDRBU2W10 only.
	Hexagon nut	Stainless steel	
(13)	Round head Phillips screw	Stainless steel	Note)
(14)	Magnet lever	-	Note)

\square Note) These items (no. 11, 13, and 14) consist of auto switch unit and angle adjuster. Refer to page 11-4-20 to 11-4-27 for detailed specifications. Stainless steel is used for size 10 only.

With angle adjuster + Auto switch unit CDRBU2WU10/15- $\square_{\mathrm{D}}^{\mathrm{S}} \quad$ CDRBU2WU20/30/40- $\square_{\mathrm{D}}^{\mathrm{S}}$

CRB2
CRBU2

- For single vane type:

Illustrations above show actuators for 90° and 180° when B port is pressurized.

- For double vane type:

Illustrations above show the intermediate rotation position when A or B port is pressurized.

\triangle Precautions

「Be sure to read before handling. Refer to pages 11-13-3 Ito 4 for Safety Instructions and Common Precautions I I on the products mentioned in this catalog, and refer to I I pages 11-1-4 to 6 for Precautions on every series.

Angle Adjuster

© Caution

1. Since the maximum angle of the rotation adjustment range will be limited by the rotation of the rotary actuator itself, make sure to take this into consideration when ordering.

Rotating angle of the rotary actuator	Rotating angle adjustment range
$270^{\circ+4}{ }_{0}^{4}$	0 to $230^{\circ}(\text { Size: } 10,40)^{*}$
	0 to $240^{\circ}($ Size: $15,20,30)$
$180^{\circ+4}{ }_{0}^{\circ}$	0 to 175°
$90^{\circ+4}$	0 to 85°

* The maximum adjustment angle of the angle adjuster for size 10 and 40 is 230°.

2. Connection ports are side ports only.
3. The allowable kinetic energy is the same as the specifications of the rotary actuator by itself.
4. Use a 100° rotary actuator if you desire to adjust the angle to 90° using a double vane type.

Series CRBU2WU

Dimensions: 10, 15, 20, 30 (With angle adjuster)

Double vane type
CRBU2WU10-■D

CRBU2WU15/20/30-DD
Illustrations below show size 20 actuators.

* Illustrations above show the intermediate rotation position when A or B port is pressurized.

(mm)																					
Model	A	B	C	D	E(g6)	F(h9)	G	H	K	L	M	N	R	S1	S2	T	U	V	W	X	Y
CRBU2WU15-■D	34	25	21.2	18	$5_{-0.002}^{-0.004}$	$12{ }_{-0.043}^{0}$	1.5	15.5	10	0.5	10.5	10.5	M5 $\times 0.8$	3.5	M3 $\times 0.5$	21	3	29	36	48	3.2
CRBU2WU20-■D	42	34.5	25	20	$6_{-0.012}^{-0.004}$	$14_{-0.043}^{0}$	1.5	17	10	0.5	11.5	11	M 5×0.8	4.5	M4 $\times 0.7$	26	4	36	44	59	4
CRBU2WU30-■D	50	47.5	29	22	$8_{-0.014}^{-0.005}$	$16{ }_{-0.043}^{0}$	2	17.5	12	1	12	13	M5 $\times 0.8$	5.5	M5 x 0.8	29	4.5	42	52	69	4.5

Dimensions: 40 (With angle adjuster)
Single vane type/Double vane type
CRBU2WU40- - S/D

Series CRBU2WU

Dimensions: 10, 15, 20, 30 (With angle adjuster and auto switch unit)

Single vane type
CDRBU2WU10/15- \square S

CDRBU2WU20/30-■S

		(mm)		
Model	B	C	D	R
CDRBU2WU10- $\square \mathbf{S}$	22	45.5	14	$\mathrm{M} 5 \times 0.8$
CDRBU2WU15-	25	47	18	$\mathrm{M} 5 \times 0.8$
CDRBU2WU20- $\square \mathbf{S}$	34.5	51	20	$\mathrm{M} 5 \times 0.8$
CDRBU2WU30- $\square \mathbf{S}$	47.5	55.5	22	$\mathrm{M} 5 \times 0.8$

Double vane type

CDRBU2WU10/15-■D

(mm)				
Model	B	C	D	R
CDRBU2WU10-7D	31	45.5	14	M5 x 0.8
CDRBU2WU15--D	25	47	18	M5 $\times 0.8$
CDRBU2WU20-DD	34.5	51	20	M5 x 0.8
CDRBU2WU30-DD	47.5	55.5	22	M5 x 0.8

2

* Following illustrations show actuators for 90° and 180° when A port is pressrized. Note) • For rotary actuators with angle adjuster and auto switch unit, connection ports are side ports only.
- The above exterior view drawings illustrate the rotary actuator equipped with one right-hand and one left-hand switches.
CDRBU2WU20/30-■D

* Illustrations above show the intermediate rotation position when A or B port is pressurized.
Note) • For rotary actuators with angle adjuster and auto switch unit, connection ports are side ports only.
- The above exterior view drawings illustrate the rotary actuator equipped with one right-hand and one left-hand switches.

Dimensions: 40 (With angle adjuster and auto switch unit)

Single vane type/Double vane type

 CDRBU2WU40-■S/D

Series CRBU2 (Size: 10, 15, 20, 30, 40) Simple Specials:
-XA1 to -XA24: Shaft Pattern Sequencing I

Shaft shape pattern is dealt with simple made-to-order system.
 Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing I

Applicable shaft type: W (Standard)

Shaft Pattern Sequencing Symbol

Axial: Top (Long shaft side)

Symbol	Description	Applicable size				
		10	15	20	30	40
XA1	Shaft-end female thread		\bigcirc	\bigcirc	\bigcirc	
XA3	Shaft-end male thread	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA5	Stepped round shaft	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA7	Stepped round shaft with male thread	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA9	Modified length of standard chamfer	-	\bigcirc	-	\bigcirc	
XA11	Two-sided chamfer	\bigcirc			\bigcirc	
XA14*	Shaft through-hole + Shaft-end female thread		\bigcirc	\bigcirc	\bullet	\bigcirc
XA17	Shortened shaft	-	\bigcirc	-	\bigcirc	
XA21	Stepped round shaft with double-sided chamfer	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA23	Right-angle chamfer	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA24	Double key					\bigcirc

* These specifications are not available for rotary actuators with auto switch unit and angle adjuster.

Axial: Bottom (Short shaft side)

Symbol	Description		Applicable size			
		$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
XA2 ${ }^{*}$	Shaft-end female thread		\bullet	\bullet	\bullet	\bullet
XA4 *	Shaft-end male thread	\bullet	\bullet	\bullet	\bullet	\bullet
XA6 *	Stepped round shaft	\bullet	\bullet	\bullet	\bullet	\bullet
XA8 *	Stepped round shaft with male thread	\bullet	\bullet	\bullet	\bullet	\bullet
XA10 *	Modified length of standard chamfer	\bullet	\bullet	\bullet	\bullet	\bullet
XA12 *	Two-sided chamfer	\bullet	\bullet	\bullet	\bullet	\bullet
XA15 *	Shaft through-hole + Shaft-end female thread		\bullet	\bullet	\bullet	\bullet
XA18* *	Shortened shaft	\bullet	\bullet	\bullet	\bullet	\bullet
XA22 *	Stepped round shaft with double-sided chamfer	\bullet	\bullet	\bullet	\bullet	\bullet

Double Shaft

Symbol	Description	Applicable size				
		$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
XA13 *	Shaft through-hole		\bullet	\bullet	\bullet	\bullet
XA16 *	Shaft through-hole + Double shaft-end female thread		\bullet	\bullet	\bullet	\bullet
XA19 *	Shortened shaft	\bullet	\bullet		\bullet	
XA20 *	Reversed shaft	\bullet	\bullet		\bullet	\bullet

Combination
XA \square Combination

A combination of up to two $X A \square$ s are available.
Example: -XA1 A24

$\mathrm{XA} \square, \mathrm{XC} \square$ Combination

Combination other than -XA \square, such as Made to Order (-XC \square), is also available.
Refer to pages 11-3-31 to 11-3-32 for details of made-to-order specifications.

Symbol	Description	Applicable size	Combination
			XA1 to XA24
XC1 *	Change connection port location	10, 15, 20, 30, 40	\bigcirc
XC2 *	Change threaded holes to through-holes	15, 20, 30, 40	-
XC3 *	Change the screw position	Size: 10, 15, 20, 30, 40	-
XC4	Change rotation range		-
XC5	Change rotation range between 0 to 200°		\bigcirc
XC6	Change rotation range between 0 to 110°		\bigcirc
XC7*	Reversed shaft		-
XC30	Fluorine grease		\bigcirc

* These specifications are not available for rotary actuators with auto switch unit and angle adjuster.

A total of four XA \square and $\mathrm{XC} \square$ combinations is available.
Example: -XA1A24C1C30
-XA2C1C4C30

Axial: Top (Long shaft side)

Symbol: A1 The long shaft can be further shortened by machining emale threads into it.
(If shortening the shaft is not required, indicate " $*$ " for dimension X .)

- Not available for size 10.
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft type: W

Symbol: A3 The long shaft can be further shortened by machining male threads into it.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W

Symbol: A5 The long shaft can be further shortened by machining it into a stepped round shaft
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Symbol: A7 The long shaft can be further shortened by machining it into a stepped round shaft with male threads.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

	(mm)		
Size	X	L1 max	Q1
$\mathbf{1 0}$	5.5 to 14	$\mathrm{X}-\mathbf{1}$	M 3
$\mathbf{1 5}$	7.5 to 18	$\mathrm{X}-\mathbf{1 . 5}$	$\mathrm{M} 3, \mathrm{M} 4$
$\mathbf{2 0}$	9 to 20	$\mathrm{X}-1.5$	$\mathrm{M} 3, \mathrm{M} 4, \mathrm{M} 5$
$\mathbf{3 0}$	11 to 22	$\mathrm{X}-\mathbf{2}$	$\mathrm{M} 3, \mathrm{M} 4$, $\mathrm{M} 5, \mathrm{M} 6$

Axial: Bottom (Short shaft side)

Symbol: A2 The long shaft can be further shortened by machining emale threads into it.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Not available for size 10.
- The maximum dimension L2 is, as a rule, twice the thread size
(Example) For M3: L2 $=6 \mathrm{~mm}$
- Applicable shaft type: W

Symbol: A4 \quad The short shaft can be further shortened by machining male threads into it.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: W

					(mm)
		Size	Y	L2 max	Q2
		10	7 to 8	Y - 3	M4
		15	8.5 to 9	$Y-3.5$	M5
		20	10	Y - 4	M6
		30	13	Y - 5	M8
		40	15	Y - 6	M10

Symbol: A6 The short shaft can be further shortened by machining it into a stepped round shaft
(If shortening the shaft is not required, indicate "*" for dimension Y.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

	(mm)	
Size	Y	L2 max
$\mathbf{1 0}$	$\mathbf{2}$ to $\mathbf{8}$	$\mathrm{Y}-\mathbf{1}$
$\mathbf{1 5}$	3 to 9	$\mathrm{Y}-\mathbf{1 . 5}$
$\mathbf{2 0}$	3 to 10	$\mathrm{Y}-1.5$
$\mathbf{3 0}$	3 to 13	$\mathrm{Y}-2$
$\mathbf{4 0}$	6 to 15	$\mathrm{Y}-\mathbf{4 . 5}$

Symbol: A8 The short shaft can be further shortened by machining it into a stepped round shaft with male threads.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(lf not specifying dimension C 2 , indicate "*" instead.)

Axial: Top (Long shaft side)

Symbol: A9 The long shaft can be further shortened by changing the ength of the standard chamfer on the long shaft side.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W

	(mm)	
Size	X	L1
$\mathbf{1 0}$	3 to 14	$9-(14-X)$ to $(X-1)$
$\mathbf{1 5}$	5.5 to 18	$10-(18-X)$ to $(X-1.5)$
$\mathbf{2 0}$	7 to 20	$10-(20-X)$ to $(X-1.5)$
$\mathbf{3 0}$	7 to 22	$10-(22-X)$ to $(X-1.5)$

Symbol: A11 The long shaft can be further shortened by machining a double-sided chamfer onto it.
(If altering the standard chamfer and shortening the shaft are not required, indicate " $*$ " for both the L1 and X dimensions.)

- Since L1 is a standard chamfer, dimension E1 is 0.5 mm or more.
- Applicable shaft type: W

	(mm)		
Size	X	L1	L3 max
$\mathbf{1 0}$	3 to 14	$9-(14-X)$ to $(X-1)$	$X-1$
$\mathbf{1 5}$	3 to 18	$10-(18-X)$ to $(X-1.5)$	$X-1.5$
$\mathbf{2 0}$	3 to 20	$10-(20-X)$ to $(X-1.5)$	$X-1.5$
$\mathbf{3 0}$	5 to $\mathbf{2 2}$	$12-(22-X)$ to $(X-2)$	$X-2$

Symbol: A14

Applicable to single vane type only
A special end is machined onto the long shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter.

- Not available for size 10
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) for M3: L1 max. $=6 \mathrm{~mm}$
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

Symbol: A17

Shorten the long shaft.

- Applicable shaft type: W

Axial: Bottom (Short shaft side)

Symbol: A10 The short shaft can be further shortened by changing the length of the standard chamfer.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: W

(mm)		
Size	Y	L2
10	3 to 8	5-(8-Y) to (Y - 1)
15	3 to 9	6-(9-Y) to (Y-1.5)
20	3 to 10	$7-(10-Y)$ to $(Y-1.5)$
30	5 to 13	$8-(13-Y)$ to $(Y-2)$
40	7 to 15	9-(15-Y) to (Y-4.5)

Symbol: A12 The short shaft can be further shortened by machining a
(If altering the standard chamfer and shortening the shaft are not required,
indicate "*" for both the L 2 and Y dimensions.

- Since L2 is a standard chamfer, dimension E2 is 0.5 mm or more, and 1 mm
or more with shaft bore sizes of $\varnothing 30$ or $\varnothing 40$.
- Applicable shaft type: W

Size	\mathbf{Y}	$\mathbf{L 2}$	L2 max
$\mathbf{1 0}$	3 to 8	$5-(8-Y)$ to $(Y-1)$	$Y-1$
$\mathbf{1 5}$	3 to 9	$6-(9-Y)$ to $(Y-1.5)$	$Y-1.5$
$\mathbf{2 0}$	3 to 10	$7-(10-Y)$ to $(Y-1.5)$	$Y-1.5$
$\mathbf{3 0}$	5 to 13	$8-(13-Y)$ to $(Y-2)$	$Y-2$
$\mathbf{4 0}$	7 to 15	$9-(15-Y)$ to $(Y-4.5)$	$Y-4.5$

Symbol: A15

Applicable to single vane type only
A special end is machined onto the short shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter-

- Not available for size 10
- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) for M4: L2 max. $=8 \mathrm{~mm}$
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

Symbol: A18

Shorten the short shaft.

- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

	(mm)
Size	\mathbf{Y}
$\mathbf{1 0}$	$\mathbf{1}$ to 8
$\mathbf{1 5}$	1.5 to 9
$\mathbf{2 0}$	1.5 to 10
$\mathbf{3 0}$	2 to 13
$\mathbf{4 0}$	4.5 to 15

Axial: Top (Long shaft side)

Symbol: A21 The long shaft can be further shortened by machining it into a stepped round shaft with a double-sided chamfer.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Axial: Bottom (Short shaft side)

Symbol: A22 The short shaft can be further shortened by machining it into a stepped round shaft with a double-sided chamfer.
(If shortening the shaft is not required, indicate "*" for dimension Y.)
Applicable shaft type: W

- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

(mm)				
Size	X	L2 max	L4	D2
10	4 to 8	Y -2.5	L2+1.5	ø3
15	4.5 to 9	Y - 3	L2+1.5	ø3 to ø4
20	5to 10	$\mathrm{Y}-3.5$	L2+2	ø3 to ø5
30	7 to 13	$\mathrm{Y}-5$	L2+3	ø3 to ø6
40	8 to 15	$\mathrm{Y}-5.5$	L2+3	ø3 to ø6

Double Shaft

Symbol: A13

Applicable to single vane type only
Shaft with through-hole

- Not available for size 10.
- Minimum machining diameter for d 1 is 0.1 mm .
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

Size	d1
$\mathbf{1 5}$	$\varnothing 2.5$
$\mathbf{2 0}$	$\varnothing 2.5$ to $\varnothing 3.5$
$\mathbf{3 0}$	$\varnothing 2.5$ to $\varnothing 4$
$\mathbf{4 0}$	$\varnothing 2.5$ to $\varnothing 3$

Symbol: A19

Both the long shaft and short shaft are shortened.

- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

Size	\mathbf{X}	\mathbf{Y}
$\mathbf{1 0}$	$\mathbf{1}$ to 14	$\mathbf{1}$ to 8
$\mathbf{1 5}$	1.5 to 18	1.5 to 9
$\mathbf{2 0}$	1.5 to 20	1.5 to 10
$\mathbf{3 0}$	2 to 22	2 to 13

Symbol: A23 angle double-sided be further sho

(If altering the standard chamfer and shortening the shaft are not required, indicate "*" for both the L1 and X dimensions.)

- Since L1 is a standard chamfer, dimension E1 is 0.5 mm or more, and 1 mm or more with a shaft bore sizes of $\varnothing 30$ or $\varnothing 40$.
- Applicable shaft type: W

Symbol: A16

Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10 .
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) for M5: L1 max $=10 \mathrm{~mm}$
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

$\underline{\mathrm{Q}}=\mathrm{ML}_{\text {[---1 }}^{\text {- }}$	$\mathrm{M} \text { Size }$	15	20	30	40
	M3 x 0.5	ø2.5	ø2.5	ø2.5	ø2.5
Q1速	M4 x 0.7	-	ø3.3	ø3.3	-
	M5 x 0.8	-	-	$\varnothing 4.2$	-

Symbol: A20

The rotation axis is reversed.
(The long shaft and short shaft are shortened.)

- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

	(mm)	
Size	\mathbf{X}	\mathbf{Y}
$\mathbf{1 0}$	1 to 3	1 to 12
$\mathbf{1 5}$	1.5 to 6.5	1.5 to 15.5
$\mathbf{2 0}$	1.5 to 7.5	1.5 to 17
$\mathbf{3 0}$	2 to 8.5	2 to 19
$\mathbf{4 0}$	3 to 9	-

Symbol: A24

Double key
Keys and keyways are machined at 180° from the standard position.

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

	(mm)	
Size	Keyway dimensions	LL
40	$4 \times 4 \times 20$	2

Shaft Pattern Sequencing II

-XA31 to XA47
Applicable shaft type: J, K, S, T, Y

- Axial: Top (Long shaft side)

Symbol	Description	Shaft type	Applicable size				
			$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
XA31	Shaft-end female thread	S, Y		\bullet	\bullet	\bullet	
XA33	Shaft-end female thread	J, K, T		\bullet	\bullet	\bullet	\bullet
XA37	Stepped round shaft	J, K, T	\bullet	\bullet	\bullet	\bullet	\bullet
XA45	Middle-cut chamfer	J, K, T	\bullet	\bullet		\bullet	\bullet
XA47	Machined keyway	J, K, T			\bullet	\bullet	

Axial: Bottom (Short shaft side)

Symbol	Description	Shaft type	Applicable size				
			10	15	20	30	40
XA32 *	Shaft-end female thread	S, Y		\bigcirc	\bigcirc	\bigcirc	
XA34 *	Shaft-end female thread	J, K, T		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA38 *	Stepped round shaft	K	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA46 *	Middle-cut chamfer	K	\bigcirc	\bigcirc	-	-	\bigcirc

Double Shaft

Symbol	Description	Shaft type	Applicable size				
			10	15	20	30	40
XA39 *	Shaft through-hole	S, Y		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA40 *	Shaft through-hole	K, T		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA41 *	Shaft through-hole	J		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA42 *	Shaft through-hole + Shatt-end female thread	S, Y		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA43 *	Shaft through-hole + Shaft-end female thread	K, T		\bigcirc	-	-	\bigcirc
XA44 *	Shatt through-hole + Shatt-end female thread	J		\bigcirc	-	-	-

* These specifications are not available for rotary actuators with

Combination

XA \square Combination

Symbol	Combination					
XA31	XA31					
XA32	SY	XA32				
XA33	-	JKT	XA33			
XA34	-	-	JKT	XA34		
XA37	-	-	-	JKT	XA37	
XA38	-	-	K	-	K	XA38

[^10]
XA $\square, \mathrm{XC} \square$ Combination

Combination other than -XA \square, such as Made to Order (-XCD), is also available. Refer to pages 11-3-31 to 11-3-32 for details of made-to-order specifications.

Symbol	Description	Applicable size	$\begin{array}{\|l\|} \hline \text { Combination } \\ \hline \text { XA31 to XA47 } \\ \hline \end{array}$
XC1	Change connection port location	10, 15, 20, 30, 40	\bigcirc
XC2	Change threaded hole to through-hole	15, 20, 30, 40	\bigcirc
XC3	Change the screw position		\bigcirc
XC4	Change rotation range		\bigcirc
XC5	Change rotation range between 0 to 200°	10, 15, 20, 30, 40	\bigcirc
XC6	Change rotation range between 0 to 110°		\bigcirc
XC7	Reversed shaft		-
XC30	Fluorine grease		\bigcirc

[^11] auto switch unit and angle adjuster. A total of four XA \square and XC \square combinations is available. Example: -XA33 A34C27C3C

Series CRBU2

Axial: Top (Long shaft side)

Symbol: A31

Machine female threads into the long shaft.

- The maximum dimension L 1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: S, Y

Symbol: A33

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: J, K, T

Symbol: A37
The long shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft types: J, K, T
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Size	X	L1 max	D1
$\mathbf{1 0}$	2 to 14	$\mathrm{X}-1$	$\varnothing 3$ to $\varnothing 3.9$
$\mathbf{1 5}$	3 to 18	$\mathrm{X}-1.5$	$\varnothing 3$ to $\varnothing 4.9$
$\mathbf{2 0}$	3 to 20	$\mathrm{X}-1.5$	$\varnothing 3$ to $\varnothing 5.9$
$\mathbf{3 0}$	3 to 22	$\mathrm{X}-2$	$\varnothing 3$ to $\varnothing 7.9$
$\mathbf{4 0}$	4 to 30	$\mathrm{X}-3$	$\varnothing 3$ to $\varnothing 9.9$

Symbol: A45
The long shaft can be further shortened by machining a middle-cut chamfer into it. (The position of the chamfer is same as the standard one.) (If shortening the shaft is not required, indicate "*" for dimension X .)

- Applicable shaft types: J, K, T

$\begin{aligned} & \substack{\text { shant } \\ \text { Size }} \end{aligned}$	X	W1	L1 max	L3 max
	$J\|K\| T$	J K T	J K T	J K T
10	6.5 to 14	0.5 to 2	X-3	L1-1
15	8 to 18	0.5 to 2.5	X-4	L1-1
20	9 to 20	0.5 to 3	X-4.5	L1-1
30	11.5 to 22	0.5 to 4	X-5	L1-2
40	15.5 to 30	0.5 to 5	X-5.5	L1-2

Axial: Bottom (Short shaft side)

Symbol: A32

- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M4: L2 $=8 \mathrm{~mm}$
However, for M5 with S shaft, the maximum dimension L2 is 1.5 times
the thread size.
- Applicable shaft types: S, Y

	(mm)	
	Q2	
	S	Y
10	Not available	
15	M3	
20	M3, M4	
30	M3, M4, M5	

Symbol: A34

Machine female threads into the short shaft

- The maximum dimension L 2 is, as a rule, twice the thread size.
(Example) For M3: L2 $=6 \mathrm{~mm}$
However, for M5 with T shaft, the maximum dimension L2 is 1.5 times
the thread size.
- Applicable shaft types: J, K, T

(mm)			
Size	Q2		
	J	K	T
10	Not available		
15	M3		
20	M3, M4		
30	M3, M4, M5		
40	M3, M4, M5		

Symbol: A38 The short shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: K
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

Size	Y	L2 max	D2
10	2 to 14	Y - 1	ø3 to ø3.9
15	3 to 18	Y - 1.5	ø3 to ø4.9
20	3 to 20	Y-1.5	ø3 to ø5.9
30	6 to 22	Y -2	ø3 to $\varnothing 7.9$
40	6 to 30	Y-4.5	ø5 to ø9.9

Symbol: A46 $\begin{aligned} & \text { The short shaft can be further shortened by machining a } \\ & \text { middle-cut chamfer into it }\end{aligned}$ middle-cut chamfer into it.
(The position of the chamfer is same as the standard one.) (If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: K

Size	Y	W2	L2 max	L4 max
10	4.5 to 14	0.5 to 2	Y-1	L2-1
15	5.5 to 18	0.5 to 2.5	Y - 1.5	L2-1
20	6 to 20	0.5 to 3	Y - 1.5	L2-1
30	8.5 to 22	0.5 to 4	$\mathrm{Y}-2$	L2-2
40	13.5 to 30	0.5 to 5	Y -4.5	L2-2

Axial: Top (Long shaft side)

Symbol: A47 Machine a keyway into the long shaft. (The position of the keyway is the same as the standard one.) The key must be ordered separately.

- Applicable shaft types: J, K, T

Size	$\mathbf{a 1}$	$\mathbf{L 1}$	\mathbf{N}
$\mathbf{2 0}$	$2 h 99_{-0.025}^{0}$	10	6.8
$\mathbf{3 0}$	$3 h 99_{-0.025}^{0}$	14	9.2

Double Shaft

Symbol: A39

Applicable to single vane type only
Shaft with through-hole (Additional machining of S, Y shaft)

- Applicable shaft types: S, Y
- Equal dimensions are indicated by - A parallel keyway
the same marker. shaft for size 40 .
- Not available for size 10.
- Minimum machining diameter for d1 is 0.1 mm .

Y axis

Symbol: A41

Applicable to single vane type only
Shaft with through-hole

- Not available for size 10.
- Applicable shaft type: J.
- Equal dimensions are indicated by the same marker.
(mm)

Size	d1
$\mathbf{1 5}$	$\varnothing 2.5$
$\mathbf{2 0}$	$\varnothing 2.5$ to $\varnothing 3.5$
$\mathbf{3 0}$	$\varnothing 2.5$ to $\varnothing 4$
$\mathbf{4 0}$	$\varnothing 2.5$ to $\varnothing 4.5$

Symbol: A43

A special end is machined onto both the long and short shafts, and a through-hole is A silled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10.
- The maximum L1 dimension is, in principle,
twice the thread size.
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
However, for M5 on the short shaft of T shaft:

Symbol: A40

Applicable to single vane type only
Shaft with through-hole (Additional machining of K, T shaft)

- Applicable shaft types: K, T
- Equal dimensions are indicated
by the same marker.
- Not available for size 10.

$$
\mathrm{d} 3=\varnothing \quad-\quad \text {, }
$$

$$
\xrightarrow{\mathrm{d} 3=\varnothing}
$$

Symbol: A42

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shatts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10.
- The maximum dimension L1 is,
as a rule, twice the thread size,
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
However, for M5 on the short shaft of S shaft: L1 $=7.5 \mathrm{~mm}$

- $\mathrm{d} 1=\varnothing 2.5, \mathrm{~L} 1=18($ max $)$
machining diameter for d1 is 0.1 mm
- $\mathrm{d} 11=\mathrm{d} 3$ for sizes 20 to 40

Size ${ }^{\text {tre }}$	K T	K	T
	d1	d3	
15	$\varnothing 2.5$	$\varnothing 2.5$ to ø3	
20	-	$\varnothing 2.5$ to ø4	
30	-	ø2.5 to $\varnothing 4.5$	
40	-	$\varnothing 2.5$ to ø5	

- A parallel keywa

Applicable shaft types: S, Y

- Equal dimensions are indicated by the same marker.

				mm)
	15	20	30	40
	S Y	S Y	S Y	S
M3 x 0.5	ø2.5	ø2.5	$ø 2.5$	ø2.
M4 x 0.7	-	$ø 3.3$	ø3.3	-
M5 x 0.8	-	-	$\varnothing 4.2$	-

Symbol: A44
Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10.
- The maximum dimension L 1 is,
as a rule, twice the thread size
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
- A parallel keyway is used on the long shaft for size 40.
Applicable shaft type: J
-Equal dimensions are indicated by the same marker.

Size Thread	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
M3 $\mathbf{x} \mathbf{0 . 5}$	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$
M4 x 0.7	-	$\varnothing 3.3$	$\varnothing 3.3$	$\varnothing 3.3$
M5 $\mathbf{x} \mathbf{0 . 8}$	-	-	$\varnothing 4.2$	$\varnothing 4.2$

Series CRBU2 (Size: 10, 15, 20, 30, 40)
Made to Order Specifications:
-XC1, 2, 3, 4, 5, 6, 7, 30

Made to Order Symbol

| Symbol | Description | | Applicable shaft type |
| :---: | :--- | :---: | :---: | Applicable

* These specifications are not available for rotary actuators with auto switch unit and angle adjuster.

$\text { Symbol: C1 } \quad \begin{aligned} & \text { Add connecting ports on Body (A). } \\ & \text { (An additionally machined port will have an aluminum } \end{aligned}$				
- Parallel keyway is used on the long shaft for size 40. - This specification is not available for the rotary actuator with auto switch unit.				
dy (B) \quad (mm)				
-	Size	Q	M	N
	10	M3	8.5	9.5
,	15	M3	11	10
	20	M5	14	13
$\xrightarrow{+\infty}$	30	M5	15.5	14
	40	M5	21	20

Combination

Symbol	Combination						
XC1	XC1						
XC2	\bigcirc	XC2					
XC3	\bigcirc	-	XC3				
XC4	\bigcirc	\bigcirc	\bigcirc	XC4			
XC5	\bigcirc	\bigcirc	\bigcirc	-	XC5		
XC6	\bigcirc	\bigcirc	\bigcirc	-	-	XC6	
XC7	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	XC7
XC30	\bigcirc						

Symbol: C2	Change 2 threaded holes on Body (B) into through holes (An additionally machined port will have an aluminum surface since it will be left unfinished.)		
$\rightarrow{ }^{\oplus}$		(mm)	
(1)	(1)	Size	d
4	()	10	3.4
\oplus	$\oplus \oplus$	15	3.4
		20	4.5
A port B port	A port B port	30	5.5
(Standard)	(Altered)	40	5.5

Symbol: C3 Change the position of the screws for tightening the actuator

- Not available for size 10.

Symbol: C5

Applicable to single vane style only
Start of rotation is 45° up from the bottom of the vertical line to the left side.

- Rotation tolerance for CRBU2W10 is ${ }^{+50^{\circ}}$.
- A parallel keyway is used instead of chamfer for size 40.

Start of rotation is the position of the chamfer (keyway) when B port is pressurized.

Symbol: C7

The shafts are reversed.

- A parallel keyway is used instead of chamfer for size 40.

		(mm)
Size	\mathbf{Y}	\mathbf{X}
$\mathbf{1 0}$	19	3
$\mathbf{1 5}$	20.5	6.5
$\mathbf{2 0}$	22.5	7.5
$\mathbf{3 0}$	26.5	8.5
$\mathbf{4 0}$	36	9

Symbol: C4

Rotation starts from the horizontal line $\left(90^{\circ}\right.$ down from the top to the right side)

- Rotation tolerance for CRBU2W10 is ${ }^{+5}$
- A parallel keyway is used instead ${ }_{0}^{+5^{\circ}}$ of chamfer for size 40.

Start of rotation is the position of the chamfer (keyway) when A port is pressurized.

Symbol: C6

Applicable to single vane style only
Start of rotation is 45° up from the bottom of the vertical line to the left side.

- Rotation tolerance for CRBU2W10 is ${ }^{+5}$
- A parallel keyway is used instead of chamfer for size 40

Start of rotation is the position of the chamfer (keyway) when B port is pressurized.

Symbol: C30

Change the standard grease to fluoro grease (Not for low-speed specifications.)

D-

20-

Rotary Table Vane Style

Series MSU

Size: 1, 3, 7, 20

Series

Vane Style/

Rotary actuator with lightweight,

High precision type Series MSUA

Size: 1, 3, 7, 20
High precision/High rigidity
Improved table deflection accuracy:

Deflection accuracy: Displacement for 180° rotation 0.03 mm or less

Easy alignment when mounting the body

Disengageable

Maintenance work is simplified.
The drive unit can be replaced with the load mounted.

Mounting reference pin holes
(Alignment with center of body) Provided on three sides, excluding port side

Reference diameter h9

(Alignment with center of table rotation)

Angle adjustable

$90^{\circ} \pm 10^{\circ}, 180^{\circ} \pm 10^{\circ}$
Double vane (MSUB only) $90^{\circ} \pm 5^{\circ}$

Auto switch capable

Since switches can be moved anywhere on the circumference, they can be mounted at positions which accommodate the specifications.

Can be mounted from three directions: axial, lateral, vertical

Basic type

 Size: 1, 3, 7, 20- Single vane and double vane standardized

Double vane has the same dimensions as single vane
(Except size 1)

Series Variations

Series	Size	Rotating angle	Vane type	Applicable auto switch
High precision type MSUA	1	90°	Single vane	$\begin{array}{ll} \mathrm{D}-9, & \mathrm{D}-\mathrm{T99} \\ \mathrm{D}-9 \square \mathrm{~A}, \mathrm{D}-\mathrm{S99}, \mathrm{S9P} \end{array}$
	3			
	7	180°		$\begin{aligned} & \text { D-R73, D-T79 } \\ & \text { D-R80, D-S79, S7P } \end{aligned}$
	20			
Basic type MSUB	1	90°	Single vane	$\begin{aligned} & \text { D-9, } \quad \text { D-T99 } \\ & \text { D-9■A, D-S99, S9P } \end{aligned}$
	3			
	7	180°	Double vane *	$\begin{aligned} & \text { D-R73, D-T79 } \\ & \text { D-R80, D-S79, S7P } \end{aligned}$
	20			

[^12]
Series MSU

\triangle Precautions

'Be sure to read before handing. Refer to pages 11-13-3 to 4 for Safety Instructions and Common Precautions I I on the products mentioned in this catalog, and refer to pages 11-1-4 to 6 for Precautions on every series.

Selection

Warning

1. Ensure the load energy within the product's allowable energy value.
Operation with a load kinetic energy exceeding the allowable value can cause human injury and/or damage to equipment or machinery. (Refer to model section procedures in this catalog.)

1 Caution

1. When there are load fluctuations, allow a sufficient margin in the actuator torque.
In case of horizontal mounting (operation with product facing sideways), malfunction may occur due to load fluctuations.

Mounting

4 Caution

1. Adjust the rotation angle within the prescribed ranges. $\left(90^{\circ} \pm 10^{\circ}, 180^{\circ} \pm 10^{\circ}\right)\left(\pm 5^{\circ}\right.$ at end of rotation) Adjustment outside the prescribed ranges may cause malfunction of the product or failure of switches to operate.
2. Adjust the rotation time within the prescribed values using a speed controller, etc. (0.07 to $0.3 \mathrm{~s} / 90^{\circ}$)
The product is provided with a fixed throttle and is designed not to operate faster than $0.07 \mathrm{~s} / 90^{\circ}$. However, in cases such as a large load inertia, it can exceed the allowable energy causing damage to equipment. (Refer to the model selection procedures in this catalog.)
Furthermore, adjustment to a speed slower than $0.3 \mathrm{~s} / 90^{\circ}$ can cause sticking and slipping or stopping of operation.

Maintenance

\triangle Caution

<High precision type/MSUA>

In case a rotary unit and table unit are required for maintenance, order with the unit part numbers shown below.

Rotary unit

Model	Unit part no.
MSUA1- \square S	P402070-2A
MSUA1- \square SE	P402070-2B
MSUA3- \square S	P402090-2A
MSUA3- \square SE	P402090-2B
MSUA7- \square S	P402060-2A
MSUA7- \square SE	P402060-2B
MSUA20- \square S	P402080-2A
MSUA20- \square SE	P402080-2B

Model	Unit part no.
MSUA1- 90 \square	P402070-3A
MSUA1-180 \square	P402070-3B
MSUA3- 90 \square	P402090-3A
MSUA3-180 \square	P402090-3B
MSUA7-90 \square	P402060-3A
MSUA7-180 \square	P402060-3B
MSUA20-90 \square	P402080-3A
MSUA20-180 \square	P402080-3B

Note 1) Note that the rotation angle should not be changed even though the rotary unit has been changed. For maintenance, order units with a part number suitable for the model being used.
Note 2) Due to the integral construction of the MSUB series, the rotary and table units cannot be ordered separately.

Rotary Table: High Precision Type Vane Style
 Series MSUA

Size: 1, 3, 7, 20

How to Order

CRB2

CRBU2

CRB1
MSU

Applicable Auto Switch/Refer to page 11-11-1 for further information on auto swiches.

Applicable model	Type	Special function	Electrical entry	$\begin{array}{\|l\|l} \hline \text { 흐의 } \\ \text { 응 } \\ \text { 휴 } \\ \text { 읗 } \\ \hline \end{array}$	Wiring (Output)	Load voltage			Auto switch model		Lead wiretype	Lead wire length (m) ${ }^{*}$				Pre-wire connector	Applicable load		
						DC		AC			$\begin{gathered} 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{array}{\|c} 3 \\ (\mathrm{~L}) \end{array}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$	None (N)					
								Perpendicular	In-line										
MDSUA1 MDSUA3	Reed switch	-	Grommet	$\stackrel{\infty}{\infty}$		24 V	-		-	-	97	Parallel cord	\bigcirc	\bigcirc	\bigcirc	-	-	-	Relay, PLC
								100 V	-	93A	Heavy-duty cord	\bigcirc	\bigcirc	\bigcirc	-				
	Solid state switch	-			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$	-	S99V	S99		\bigcirc	\bigcirc	-	-	\bigcirc	IC circuit		
					3-wire (PNP)				S9PV	S9P		\bigcirc	\bigcirc	-	-	\bigcirc			
					2-wire		12 V		T99V	T99		\bigcirc	\bigcirc	-	-	\bigcirc	-		
MDSUA 7 MDSUA2O	Reed switch	-	Grommet	$\stackrel{\infty}{\infty}$	2-wire	24 V	- 10	100 V	-	R73		\bigcirc	\bigcirc	-	-				
			Connector						-	R73C		-	\bigcirc	\bigcirc	-				
	Solid state switch	-	Grommet		3-wire (NPN)		V		-	S79	Heavy-duty	\bigcirc	\bigcirc	-	-	\bigcirc		Relay,	
					3-wire (PNP)		2	-	-	S7P	cord	\bigcirc	\bigcirc	-	-	\bigcirc	circuit	PLC	
							V		-	T79		\bigcirc	\bigcirc	-	-	\bigcirc			
			Connector		2-wire		12 V		-	T79C		\bigcirc	-	\bigcirc	-	-			

[^13]* Auto switches marked with "○" are made-to-order specifications.

Order example: MSUA20 single vane type
(connection port side location selected)

1. Standard type (Without auto switches), Rotation 90°, side port location
MSUA20-90S
2. With switch unit (Without auto switches), Rotation 180°, side port location MDSUA20-180S
3. With switch unit + Auto switch R73, Rotation 180°, Side port location MDSUA20-180S-R73

Series MSUA

Specifications

Model *2		MSUA1		MSUA3		MSUA7		MSUA20	
Vane type		Single vane		Single vane		Single vane		Single vane	
Rotating angle *1		$90^{\circ} \pm 10^{\circ}$	$180^{\circ} \pm 10^{\circ}$						
Fluid		Air (Non-lube)							
Proof pressure (MPa)		1.05						1.5	
Ambient and fluid temperature		5 to $60^{\circ} \mathrm{C}$							
Operating pressure range (MPa)		0.2 to 0.7		0.15 to 0.7				0.15 to 1.0	
Rotation time adjustment range (sec/ 90°)		0.07 to 0.3							
Shaft load	Allowable radial load	20 N		40 N		50 N		60 N	
	Allowable thrust load	15 N		30 N		60 N		80 N	
	Allowable moment	$0.3 \mathrm{~N} \cdot \mathrm{~m}$		$0.7 \mathrm{~N} \cdot \mathrm{~m}$		$0.9 \mathrm{~N} \cdot \mathrm{~m}$		$2.9 \mathrm{~N} \cdot \mathrm{~m}$	
Bearing		Special bearing							
Port location		Side ported or Top ported							
Port size	Side ported	M 3×0.5		M5 x 0.8					
	Top ported	M3 $\times 0.5$				M5 x 0.8			
Deflection accuracy		0.03 mm or less							
*1 Single vane 90° can be adjusted to $90^{\circ} \pm 10^{\circ}$ (both ends of rotation $\pm 5^{\circ}$ ea Single vane 180° can be adjusted to $180^{\circ} \pm 10^{\circ}$ (both ends of rotation ± 5 Note) Refer to page 11-1-34 for allowable kinetic energy.				*2 Correspondence to equivalent conventional free-mount types					
				Rotary table MSUA1			Free-mount rotary actuator		
				CRBU2W10					
				MSUA3	CRBU2W15				
				MSUA7					
				MSUA20	CRBU2W30				

Table Rotation Range

Angle adjustment is possible as shown in the drawings below using adjustment bolts (A) and (B).

Weight

Size	Rotating angle	Basic weight	Auto switch unit + Auto switch 2 pcs.
		Single vane	
$\mathbf{1}$	90°	162	
	180°	161	30
$\mathbf{3}$	90°	261.5	
	180°	259.5	50
$\mathbf{7}$	90°	440	
	180°	436	60
$\mathbf{2 0}$	90°	675	
	180°	670.5	

Allowable Load

Do not permit the load and moment applied to the table to exceed the allowable values shown in the table below. (Operation above the allowable values can cause adverse effects on service life, such as play in the table and loss of accuracy.)

Size	Allowable radial load (N)	Allowable thrust load (N)	
1	20	15	
3	40	30	
7	50	60	
20	60	80	

Construction

Series MSUA

MSUA1- \square S/SE

(田, 回, [])

With auto switch: MDSUA1- $\square \mathbf{s}$

Series MSUA

MSUA3- \square S/SE

Top ported: MSUA3- \square SE

With auto switch: MDSUA3-■S

Series MSUA

Dimensions
MSUA7

With auto switch: MDSUA7- \square S

Series MSUA

MSUA20- \square S/SE

With auto switch: MDSUA20- \square S

Rotary Table: Basic Type Vane Style
 Series MSUB

Size: 1, 3, 7, 20

Applicable Auto Switch/Refer to page 11-11-1 for further information on auto switches.

Applicable model	Type	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch model		Lead wiretype	Lead wire length (m) *				Pre-wire connector	Applicable load		
						DC		AC			$\begin{aligned} & 0.5 \\ & \text { (Nil) } \end{aligned}$	$\begin{gathered} \hline 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$	None (N)					
								Perpendicular	In-line										
$\begin{aligned} & \text { MDSUB1 } \\ & \text { MDSUB3 } \end{aligned}$	Reed switch	-	Grommet	Yes	2-wire	24 V			-	-	97	Parallel cord	\bullet	\bullet	\bullet	-			Relay PLC
								100 V	-	93A	Heavyduty cord	\bullet	\bullet	\bullet	-				
	Solid state switch	-			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$	-	S99V	S99		\bullet	\bullet	-	-	\bigcirc	IC circuit		
					3-wire (PNP)				S9PV	S9P		\bullet	\bullet	-	-	\bigcirc			
					2-wire		12 V		T99V	T99		-	\bullet	-	-	\bigcirc	-		
MDSUB7 MDSUB2O	Reed switch	-	Grommet	Yes	2-wire	24 V	-		-	R73	Heavyduty cord	\bullet	\bullet	-	-	-	-	Relay, PLC	
			Connector					100 V	-	R73C		\bullet	\bullet	\bullet	\bullet				
	Solid state switch	-	Grommet		3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$	-	-	S79		\bullet	\bullet	-	-	\bigcirc	IC circuit		
					3-wire (PNP)				-	S7P		\bullet	\bullet	-	-	\bigcirc			
					2-wire		12 V		-	T79		\bullet	\bullet	-	-	\bigcirc	-		
			Connector						-	T79C		\bullet	\bullet	\bullet	\bullet	-			

[^14]Refer to page 11-5-30 for details on other applicable switches.

* Auto switches marked with "○" are made-to-order specifications.

Order example: MSUA20 single vane type
(connection port side location selected)

1. Standard type (Without auto switches), Rotation 90°, side port location MSUB20-90S
2. With switch unit (Without auto switches), Rotation 180°, Side port location MDSUB20-180S
3 . With switch unit + Auto switch R73, Rotation 180°, Side port location MDSUB20-180S-R73

Refer to page 11-11-36 for detailed solid state switches with pre-wire connectors.

Series MSUB

Specifications

Model *3		MSUB1			MSUB3			MSUB7			MSUB20		
Vane type		Single vane		Double vane									
Rotating angle *1		$90^{\circ} \pm 10^{\circ}$	$180^{\circ} \pm 10^{\circ}$	$90^{\circ} \pm 5^{\circ}$	$90^{\circ} \pm 10^{\circ}$	$180^{\circ} \pm 10^{\circ}$	$90^{\circ} \pm 5^{\circ}$	$90^{\circ} \pm 10^{\circ}$	$180^{\circ} \pm 10^{\circ}$	$90^{\circ} \pm 5^{\circ}$	$90^{\circ} \pm 10^{\circ}$	$180^{\circ} \pm 10^{\circ}$	$90^{\circ} \pm 5^{\circ}$
Fluid		Air (Non-lube)											
Proof pressure (MPa)		1.05										1.5	
Ambient and fluid temperature		5 to $60^{\circ} \mathrm{C}$											
Operating pressure range (MPa)		0.2 to 0.7			0.15 to 0.7						0.15 to 1.0		
Rotation time adjustment range (sec/ 90°)		0.07 to 0.3											
Shaft load	Allowable radial load	20 N			40 N			50 N			60 N		
	Allowable thrust	15 N			30 N			60 N			80 N		
		10 N			15 N			30 N			40 N		
	Allowable moment	$0.3 \mathrm{~N} \cdot \mathrm{~m}$			$0.7 \mathrm{~N} \cdot \mathrm{~m}$			$0.9 \mathrm{~N} \cdot \mathrm{~m}$			2.9 N $\cdot \mathrm{m}$		
Bearing		Bearing											
Port location		Side ported or Top ported											
Port size	Side ported	M3 $\times 0.5$			M5 x 0.8								
	Top ported	M3 0.5						M5 x 0.8					

*1 Single vane 90° can be adjusted to $90^{\circ} \pm 10^{\circ}$ (both ends of rotation $\pm 5^{\circ}$ each)
Single vane 180° can be adjusted to $180^{\circ} \pm 10^{\circ}$ (both ends of rotation $\pm 5^{\circ}$ each)
Double vane 90° type can be adjusted to $90^{\circ} \pm 5^{\circ}$ (both ends of rotation
$\pm 2.5^{\circ}$ each)

- Rotation angles other than 90° and 180° (single vane) are available by special order.
*2 The allowable thrust load is directional. For details refer to the allowable load table below.
Note) Refer to page 11-1-34 for allowable kinetic energy.

Table Rotation Range

Angle adjustment is possible as shown in the drawings below using adjustment bolts (A) and (B).

Weight

*3 Correspondence to equivalent conventional free-mount types

Rotary table	Free-mount rotary actuator
MSUB1	CRBU2W10
MSUB3	CRBU2W15
MSUB7	CRBU2W20
MSUB20	CRBU2W30

Size	Rotation angle	Basic weight		Auto switch unit + Auto switch 2 pcs.
		Double vane		
$\mathbf{1}$	90°	145	150	25
	180°	140	-	
$\mathbf{3}$	90°	230	240	30
	180°	225	-	
7	90°	360	375	50
	180°	355	-	
$\mathbf{2} \mathbf{2 0}$	90°	510	580	60
	180°	505	-	

Allowable Load

Do not permit the load and moment applied to the table to exceed the allowable values shown in the table below. (Operation above the allowable values can cause adverse effects on service life, such as play in the table and loss of accuracy.)

Size	Allowable radial load (N)	Allowable thrust load (N)		Allowable moment ($\mathrm{N} \cdot \mathrm{m}$)
1	20	(A) 15	(B) 10	0.3
3	40	30	15	0.7
7	50	60	30	0.9
20	60	80	40	2.9

Construction/Component Parts

Internal construction with auto switch

Units are common for both single and double vane.

Part no.: P211070-8 Part no.: P211070-9 Part no.: P211060-8

* Auto switch block unit shows the necessary assembly for mounting 1 piece of auto switch to the auto switch unit.

Series MSUB

MSUB1 (Single vane)

MSUB1-■S/SE

* If the adjustment bolt is removed, rotation will be approximately 270° for the single vane type and 100° for the double vane type. Since this will make it impossible to satisfy the specifications, operate with adjustment within the range of maximum values.

With auto switch: MDSUB1- \square S

*1) 24: When using FD-90/90A/S99(V)/T99(V)/S9P(V)
30: When using D-97/93A
*2) 60° : When using D-90/90A/97/93A
69: When using D-S99(V)/T99(V)/S9P(V)

* If the adjustment bolt is removed, rotation will be approximately 270° for the single vane type and 100° for the double vane type. Since this will make it impossible to satisfy the specifications, operate with adjustment within the range of maximum values.

MSUB1 (Double vane)

With auto switch: MDSUB1- \square D

*1) 24: When using D-90/90A/S99(V)/T99(V)/S9P(V)
30: When using D-97/93A
*2) 60° : When using D-90/90A/97/93A
69° : When using D-S99(V)/T99(V)/S9P(V)

If the adjustment bolt is removed, rotation will be approximately 270° for the single vane type and 100° for the double vane type. Since this will make it impossible to satisfy the specifications, operate with adjustment within the range of maximum values.

Series MSUB

MSUB3 (Single vane/Double vane)

(Single vane)
The outside drawings show the single vane type, but only the position of the chamfered sections shown in the above drawings differs from single and double vane.

* If the adjustment bolt is removed, rotation will be approximately 270° for the single vane type and 100° for the double vane type. Since this will make it impossible to satisfy the specifications, operate with adjustment within the range of maximum values.

With auto switch: MDSUB3

Series MSUB

Dimensions
MSUB7 (Single vane/Double vane)

MSUB7-■S/D

The outside drawings show the single vane type, but only the position of the chamfered sections shown in the above drawings differs from single and double vane.

* If the adjustment bolt is removed, rotation will be approximately 270° for the single vane type and 100° for the double vane type. Since this will make it impossible to satisfy the specifications, operate with adjustment within the range of maximum values.

With auto switch: MDSUB7

* If the adjustment bolt is removed, rotation will be approximately 270° for the single vane type and 100° for the double vane type. Since this will make it impossible to satisfy the specifications, operate with adjustment within the range of maximum values.

Connector Type

Series MSUB

MSUB20 (Single vane/Double vane)
MSUB20- \square S/D

With auto switch: MDSUB2O

Series MDSU
 Auto Switch Specifications

The auto switches below are also mountable in addition to the models in "How to Order". Refer to pages 11-11-10 to 11-11-15 for detailed auto switch specifications.

Applicable series	Type	Model	Electrical entry (Entry direction)	Features
MDSU $\square 1$	Reed switch	D-90	Grommet (In-line)	With no indicator light, Parallel cord
MDSU $\square 3$		D-90A	Grommet (In-line)	With no indicator light, Heavy-duty cord
MDSU $\square 7$		D-R80	Grommet (In-line)	No indicator light
MDSU $\square 20$		D-R80C	Connector (In-line)	

Table Positioning Pin Hole Rotation Range and Auto Switch Mounting Position

- In drawings that show the rotation range, the arrows on the solid line $90^{\circ}\left(180^{\circ}\right)$ indicate the rotation range of the positioning pin holes on the table surface. When the pin hole is at END1, the END1 switch operates, and when the pin hole is at END2, the END2 switch operates.
- The arrows on the broken line indicate the rotation range of the internal magnet. The rotation range of each switch can be reduced by moving the END1 switch clockwise and the END2 switch counterclockwise.

Auto Switch Operating Angle and Hysteresis Angle

Model	Operating angle	Hysteresis angle
MDSU $\square \mathbf{1 , 3}$	110°	10°
MDSU $\square \mathbf{7}, \mathbf{2 0}$	90°	

Refer to page 11-4-24 for operating angle of auto switch and angle of hysteresis and the procedure for moving the auto switch detection position.

[^0]:

[^1]: *1 The maximum adjustable angle of the angle adjustment unit for size 10 is 230°
 (2)All the positions of the connecting ports are on the body side
 (3)The allowable kinetic energy is the same as that of the specification of the rotary actuator unit.
 (4) To make a 90° adjustment on the double vane type, use a rotary actuator for 100°.

[^2]: ＊For single vane：Above illustrations show actuators for 180° when B port is pressurized．

[^3]: * These specifications are not available for rotary actuators with auto switch unit.
 A total of four XA \square and $X C \square$ combinations is available.
 Example: -XA1A2C1C30
 -XA2C1C4C30

[^4]: * Lead wire length symbols: $0.5 \mathrm{~m}$. Nil (Example) R73C

 | 3 m | $\cdots .$. | L | (Example) R73CL |
 | ---: | :--- | :--- | :--- |
 | 5 m | $\cdots .$. | Z | (Example) R73CZ |
 | None | $\cdots .$. | N | (Example) R73CN |

[^5]: The maximum adjustment angle of the angle adjuster for size 10 and 40 is 230°.
 2. Connection ports are side ports only.
 3. The allowable kinetic energy is the same as the specifications of the rotary actuator by itself (i.e., without angle adjuster).
 4. Use a 100° rotary actuator if you desire to adjust the angle to 90° using a double vane type.

[^6]: O
 These specifications are not available for rotary actuators with auto switch unit and angle adjuster.

[^7]:

 Port location (Body side)
 CRBUW Size -S........SCRB Size, \#2
 Port location (Axial direction)
 CRBUW Size-SE….SCRB Size, \#4

[^8]: 2
 Note) All the port locations are on the body side for angle adjuster attached style and auto switch attached style.
 Note) The dimensions of auto switch attached style shows one right side handling switch attached style and one left side handling switch attached style.

[^9]: 2
 Note) Standard style (double shafts: W) is also available for "-XC1" to "XC30".

[^10]: A combination of up to two $X A \square$ s are available.
 Example: -XA31 A32

[^11]: * These specifications are not available for rotary actuators with

[^12]: * Double vane is available with 90° rotation setting only.

[^13]: * Lead wire length symbols: $0.5 \mathrm{~m}$. Nil (Example) R73C
 $3 \mathrm{~m} \ldots \ldots . \mathrm{L}$ (Example) R73CL
 5 m Z (Example) R73CZ
 None N (Example) R73CN

[^14]: * Lead wire length symbols: 0.5 m Nil (Example) R73C
 $3 \mathrm{~m} \mathrm{L}$ (Example) R73CL
 $5 \mathrm{~m} \mathrm{Z}$ (Example) R73CZ
 None N (Example) R73CN

