Electric Actuators

(EcTinus RoHS

Card Motor Series LAT3

Page 439

High Rigidity Slider Series LEJ

Miniature

Series LEPY/LEPS

* Except the AC servo motor and Card Motor.

A Wide Range of Variations

Series LE \square

Lifi UplPush

Rod Type

Series LEY DustDrip proof compaitio
Step Motor (Servo/24 VDC)
Servo Motor (24 VDC)

Basic type
Series LEY

3

In-line motor type Series LEY \square D

Guide Rod Type Series LEYG
Step Motor (Servo/24 VDC)
Servo Motor (24 VDC)

- Lateral end load: 5 times more

Sparce Staning

Guide Rod Slider

Series LEL
Step Motor (Servo/24 VDC)
Belt drive

- Low-profile/Flat

Support Guide Page 79

Series LEFS-X139

Winiature Compact and Lightweight

Series LEP

Step Motor (Senol24 VDC)

Slide Table

Compact type Series LES

Step Motor (Servol24 VDC) Servo Motor (24 VDC)

Basic type

Series LES \square R

Symmetrical type In-line motor type
Series LES \square L Series LES \square D

High rigidity type Series LESH
Step Motor (Servo/24 VDC) Servo Motor (24 VDC)

Basic type
Series LESH \square R

Symmetrical type In-line motor type Series LESH \square L Series LESH \square D

Application Example

Positioning of pallets on a conveyer

Gripper

Series LEH Step Motor (Senoezvoci)

 F type (2 fingers) Series LEHF

Can hold round workpieces. S type (3 fingers) Series LEHS

Controller/Driver

Step Motor (Servo/24 VDC)
Pulse input type
Series LECPA

Card Motor

Series LAT3

The transportation, pushing and length measurement systems have been miniaturized through the use of a linear motor.

Application Examples

Measurement

Measures the size of the part and displays a numerical value using the multi-counter (manufactured by SMC).

Positioning repeatability: $\pm 5 \mu \mathrm{~m}$
Lens focusing

Maximum operating frequency: 500 cpm Rejection of non-conforming products, etc.

Controller

Step data input type

Series LATC4
Just input 3 parameters: Positioning time, Target position, Load mass.

- 15 points positioning
- Built-in position display output
- Built-in function for measuring and check of workpieces
- Easy programming (Cycle time input)

Series Variations Series LE \square

Series	Compatible motor	Size										age
		6	8	10	16	20	25	32	40	50		

Slider Type

LEFS	Linear guide\qquad	Ball screw		Step motor (Servo/24 VDC)
				Servo motor (24 VDC)
				Step motor (Servo/24 VDC)
				Servo motor (24 VDC)
LEFS	Linear guide caancom comparios	$\begin{aligned} & \text { Ball } \\ & \text { screw } \end{aligned}$		$A C$ servo motor
LEFB	Linear guide	Belt		AC servo motor

High Rigidity Slider Type

LEJS	Linear guide	Ball screw		$A C$ servo motor	
LEJB	Linear guide	Belt			

Guide Rod Slider

Rod Type

LEY	Rod Dustidip proof compatible	Ball screw		Step motor (Servo/24 VDC)
				Servo motor (24 VDC)
LEYG	Guide rod	Ball screw		Step motor (Servo/24 VDC)
				Servo motor (24 VDC)
LEY	Rod Ousbitipprocicampaiibe	Ball screw		AC servo motor
LEYG	Guide rod	Ball screw		AC servo motor

Page 87

Page 127

Compact Type

LES Linear guide | Slide |
| :---: |
| screw |

High Rigidity Type

LESH Linear guide | Ball |
| :---: |
| screw |

Miniature Type

LEPY

Electric Rotary Table

Electric Grippers

Note) Size 30

Controller \& Driver Series LEC \square

Compatible actuators

Electric Actuators Product Lineup

Series Variations Series LAT3

| Controller series | | Compatible motor | Control method | Compatible actuator | Page |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Slider Type Series LEF

Positioning repeatability: $\pm 0.1 \mathrm{~mm}$ (Step/Servo motor) $\pm 0.08 \mathrm{~mm}$ (AC servo motor)

Electric Actuators Simplified Selection Flow Chart

High Rigidity Slider Type Series LEJ

Positioning repeatability: $\pm \mathbf{0 . 0 4} \mathbf{~ m m}$

Guide Rod Slider Series LEL
Positioning repeatability: $\pm \mathbf{0 . 1} \mathbf{~ m m}$

Front matter 12

Electric Slide Table Series LES

Positioning repeatability: $\pm 0.05 \mathrm{~mm}$

	Model		Size	$\begin{array}{l\|} \hline \text { Screw } \\ \text { lead } \\ (\mathrm{mm}) \end{array}$	Motor size	Stroke (mm)	$\begin{array}{lllllllll}5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45\end{array}$								Speed (mm/s)$10 \quad 50 \quad 100150200250300$					Page
	Rod type Series LEPY	LEPY6	6	4	Basic	Up to 75			\rightarrow											$\begin{aligned} & \text { Page } \\ & 277 \end{aligned}$
				8												- - -				
				5	Basic															
			0	5	Compact	Up to 75														
		LEPY	10		Basic															
				10	Compact	Up to 75														

Positioning repeatability: $\pm 0.05 \mathrm{~mm}$

Electric Rotary Table Series LER
Positioning repeatability: $\pm 0.05^{\circ}$

Front matter 14

Electric Gripper Series LEH

Card Motor Series LAT3

	Model		Resolution	Stroke	Pushing force (N)						Speed (mm/s)					Max. load mass (g)		Page	
7			1		2	3	4	5	6		100	200	300		Horizontal	Vertical			
-	Series LAT3			$30 \mu \mathrm{~m}$	10												500		$\begin{gathered} \text { Page } \\ 439 \end{gathered}$
O			20													0			
あ			30													50			

Positioning repeatability: $\pm 0.005 \mathrm{~mm}$, Measurement accuracy: $\pm 0.01 \mathrm{~mm}$

Front matter 15

Electric Actuators

OElectric Actuator/Slider Type Series LEF Page 1
Step Motor (Servo/24 VDC)/Servo Motor (24 VDC) TypeBall Screw Drive Series LEFSPage 8
Ball Screw Drive Series 11-LEFS Geann Boom Speaiciaion Page 13
Belt Drive Series LEFB Page 8
AC Servo Motor Type
Ball Screw Drive Series LEFS Page 42
Ball Screw Drive Series 11-LEFS Crananfoom Specticioion Page 48
Belt Drive Series LEFB Page 52
-Electric Actuator/High Rigidity Slider Type Series LEJ Page 87
AC Servo Motor Type
Ball Screw Drive Series LEJS Page 90
Belt Drive Series LEJB Page 90

- Electric Actuator/Guide Rod Slider Page 113
Step Motor (Servo/24 VDC) Type
Electric Actuator/Guide Rod Slider Series LEL Page 116
-Electric Actuator/Rod Type series LEY/ Guide Rod Type Series LEYG Page 127
Step Motor (Servo/24 VDC)/Servo Motor (24 VDC) Type
Rod Type Series LEY Page 134
Rod Type Series LEY-X5 (Oissioinip Proof (P665) Speceiciaion Page 138
Guide Rod Type Series LEYG Page 162
AC Servo Motor Type
Rod Type Series LEY Size: 25, 32 Page 184
Rod Type Series LEY Size: 63 Dissibinip Proof (P660) Speceicaion Page 189(Select options)
Rod Type Series LEY-X5 DissiDinip Proor (P665) Speciricion Page 184
Guide Rod Type Series LEYG Page 208
OElectric Slide Table Page 221
Step Motor (Servo/24 VDC)/Servo Motor (24 VDC) Type
Compact Type Series LES Page 226
High Rigidity Type Series LESH Page 250

Electric Actuators

-Electric Actuator/Miniature Rod Type/Miniature Slide Table TypePage 277
Step Motor (Servo/24 VDC) Type
Miniature Rod Type Series LEPY Page 280
Miniature Slide Table Type Series LEPS Page 289
-Electric Rotary Table Page 303
Step Motor (Servo/24 VDC) Type
Rotary Table Series LER Page 306
-Electric Gripper Series LEH Page 319
Step Motor (Servo/24 VDC) Type
2-Finger Type Series LEHZ Page 324
2-Finger Type/With Dust Cover Series LEHZJ Page 338
2-Finger Type Series LEHF Page 350
3-Finger Type Series LEHS Page 363
-Controller/Driver Page 377
©Step Data Input Type Page 386Step Motor (Servo/24 VDC) Series LECP6Servo Motor (24 VDC) Series LECA6© Gateway Unit Series LEC-GPage 398
© Programless Type/Programless Controller Series LECP1Page 401
©Pulse Input Type/
Step Motor Driver Series LECPA Page 408
Controller Setting Kit LEC-W2 Page 395, 415
Teaching Box LEC-T1Page 396, 416
-AC Servo Motor Driver Series LECS \square Page 419Page 439
Card Motor Controller Series LATC4 Page 448
Page 464

Electric Actuator Series LEF

Slider Type

Step Motor (Servo/24 vDC)	Controller/ Driver
Servo Motor (24 vDC)	-Page 377
Step data input type Series LECP6/LECA6 64 points positioning	
Programless type Series LECP1 14 points positioning Pulse input type Series LECPA	

Series LEF

Compact

Heightwwidth dimensions reduced by approx. 50\%

* Compared with SMC LJ1 series

EEasy mounting of the body/Reduction of the installation labor
Possible to mount the main body without removing the external cover, etc.

Equipped with seal bands as standard
Covers the guide, ball screw and belt. Prevents grease from splashing and external foreign matter from entering.

Step Motor (Servo/24 VDC) Servo Motor (24 VDC)

Ball Screw Drive/Series LEFS size: 16, 25, 32, 40

Max. work load: 60 kg
Positioning repeatability: $\pm \mathbf{0 . 0 2} \mathrm{mm}$

Non-magnetizing lock mechanism (Option)

Drop prevention in case of power failure (Maintained)

* The belt drive actuator LEFB cannot be used vertically for applications.

Compatible motors

- Step motor (Servo/24 VDC) Ideal for transfer of high load at a low speed
- Servo motor (24 VDC)

Stable at a high speed and silent operation

Slider type with lower height
Belt Drive/Series LEFB size: 16, 25, 32
Max. stroke: $\mathbf{2 , 0 0 0} \mathrm{mm}$
Max. speed: 2,000 mm/s

AC Servo Motor

Ball Screw Drive/Series LEFS Size: 25, 32, 40

High output motor (100/200/400 W) Improved high speed transfer ability High acceleration/deceleration compatible: $20,000 \mathrm{~mm} / \mathrm{s}^{2}$
Pulse input type
With internal absolute encoder (For LECSB/C/S)

Belt Drive/Series LEFB Size: 25, 32,40
Max. speed: 2,000 mm/s
Max. stroke: 3,000 mm
Max. acceleration/deceleration: $\mathbf{2 0 , 0 0 0} \mathrm{mm} / \mathrm{s}^{2}$

Motor bottom mounting type

Clean Room Specilication

Ball Screw Drive/Series 11-LEFS

ISO Class 4 ${ }^{* 1, * 2}$ (ISO14644-1)!

- Built-in vacuum piping
- Possible to mount the main body without removing the external cover, etc.
- Body-integrated linear guide specification
*1 Changes depending on the suction flow rate. Refer to page 14 for details.
*2 Class 10 (Fed.Std.209E)

Series LEF

Application Examples

Series Variations

Ball Screw Drive/Series LEFS

Type	Size	Lead (mm)	Stroke (mm)*2
Step motor (Servo/24 VDC)	16	5 10	100, 200, 300, 400
	25	6 12	100, 200, 300, 400, 500, 600
	32	8 16	100, 200, 300, 400, 500, 600, 700, 800
	40	10 20	200, 300, 400, 500, 600, 700, 800, 900, 1000
Servo motor (24 VDC)	16	5 10	100, 200, 300, 400
	25	6 12	100, 200, 300, 400, 500, 600
AC servo motor	25	6 12	100, 200, 300, 400, 500, 600
	32	8 16	100, 200, 300, 400, 500, 600, 700, 800
	40	10 20	200, 300, 400, 500, 600, 700, 800, 900, 1000

*1 The size corresponds to the bore of the air cylinder with an equivalent force. (For the ball screw drive)
*2 Consult with SMC for non-standard strokes as they are produced as special orders.
$* 3$ For clean room specification, refer to pages 26 and 64.

Belt Drive/Series LEFB

Type	Size	Equivalent lead (mm)	Stroke (mm)*2
Step motor (Servo/24 VDC)	16	48	300, 500, 600, 700, 800, 900, 1000
	25	48	300, 500, 600, 700, 800, 900, 1000, 1200, 1500, 1800, 2000
	32	48	$300,500,600,700,800,900,1000,1200,1500,1800,2000$
Servo motor (24 VDC)	16	48	300,500,600, 700, 800, 900, 1000
	25	48	300, $500,600,700,800,900,1000,1200,1500,1800,2000$
AC servo motor	25	54	300, 400, 500, 600, 700, 800, 900, 1000, (1100), 1200, (1300), (1400), 1500, (1600), (1700), (1800), (1900), 2000
	32	54	$300,400,500,600,700,800,900,1000,(1100), 1200,(1300),(1400), 1500,(1600),(1700),(1800),(1900), 2000,2500$
	40	54	$300,400,500,600,700,800,900,1000,(1100), 1200,(1300),(1400), 1500,(1600),(1700),(1800),(1900), 2000,2500,3000$

[^0]*2 Consult with SMC for non-standard strokes as they are produced as special orders.
*3 The belt drive actuator cannot be used vertically for applications.

Selection Example

Operating conditions

Step 1
Check the work load-speed. <Speed-Work load graph> (Pages 9 and 10) Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.
Selection example) The LEFS25A-200 is temporarily selected based on the graph shown on the right side.

<Speed-Work load graph>
(LEFS25/Step motor)

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.

Cycle time:

T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, please calculate the settling time with reference to the following value.
$\mathrm{T} 4=0.2[\mathrm{~s}]$
Step 3
Check the guide moment.

Based on the above calculation result, the LEFS25A-200 is selected.

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}] \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{200-0.5 \cdot 300 \cdot(0.1+0.1)}{300} \\
& =0.57[\mathrm{~s}] \\
\mathrm{T} 4 & =0.2[\mathrm{~s}]
\end{aligned}
$$

Therefore, the cycle time can be obtained as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.1+0.57+0.1+0.2 \\
& =\mathbf{0 . 9 7}[\mathbf{s}]
\end{aligned}
$$

L : Stroke [mm]
\cdots (Operating condition)
V : Speed [mm/s]
... (Operating condition)
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right.$]
... (Operating condition)
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right.$]
... (Operating condition)
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating
at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant
speed operation to stop
T4: Settling time [s]
Time until in position is completed

Speed-Work Load Graph (Guide)

Step Motor (Servo/24 VDC)

LEFS16/Ball Screw Drive

LEFS25/Ball Screw Drive

Horizontal

Vertical

LEFS32/Ball Screw Drive

Horizontal

Vertical

LEFS40/Ball Screw Drive

Horizontal

Vertical

Series LEF

Speed-Work Load Graph (Guide)
Servo Motor (24 VDC)

LEFS16A/Ball Screw Drive

Vertical

LEFS25A/Ball Screw Drive

Step Motor (Servo/24 VDC)

LEFB/Belt Drive

* When moving force is 100%

Horizontal

Vertical

Servo Motor (24 VDC)
LEFB/Belt Drive

* When moving force is 250%

Horizontal

	Load overhanging direction m ：Work load［kg］ Me：Dynamic allowable moment［ $\mathrm{N} \cdot \mathrm{m}$ ］ L ：Overhang to the work load center of gravity［mm］		Model			
			LEF16	LEF25	LEF32	LEFS40
$\bar{\pi}$ N 오						
		으즐				
¢		읓				
$\frac{\pi}{0}$		¢				

Series LEF

Table Accuracy

Model	Traveling parallelism [mm] (Every 300 mm)	
	(1) C side traveling parallelism to A side	(2) D side traveling parallelism to B side
LEF16	0.05	0.03
LEF25	0.05	0.03
LEF32	0.05	0.03
LEF40	0.05	0.03

Note) Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

[^1] Note 2) Please confirm the clearance and play of the guide separately.

Particle Generation Measuring Method

The particle generation data for SMC Clean Series are measured in the following test method.

Test Method (Example)

Place the specimen in the acrylic resin chamber and operate it while supplying the same flow rate of clean air as the suction flow rate of the measuring instrument ($28.3 \mathrm{~L} / \mathrm{min}$). Measure the changes of the particle concentration over time until the number of cycles reaches the specified point.
The chamber is placed in an ISO Class 5 equivalent clean bench.

Measuring Conditions

Chamber	Internal volume	28.3 L
	Supply air quality	Same quality as the supply air for driving
Measuring instrument	Description	Minimum measurable particle diameter
	Suction flow rate	$0.1 \mu \mathrm{~m}$
	Sampling time	Interval time
	Sampling air flow	$28.3 \mathrm{~L} / \mathrm{min}$

> Particle generation measuring circuit

IEvaluation Method

To obtain the measured values of particle concentration, the accumulated value Note 1) of particles captured every 5 minutes, by the laser dust monitor, is converted into the particle concentration in every $1 \mathrm{~m}^{3}$.
When determining particle generation grades, the 95% upper confidence limit of the average particle concentration (average value), when each specimen is operated at a specified number of cycles ${ }^{\text {Note } 2 \text {) }}$ is considered.
The plots in the graphs indicate the 95% upper confidence limit of the average particle concentration of particles with a diameter within the horizontal axis range.

Note 1) Sampling air flow rate: Number of particles contained in 141.5 L of air
Note 2) Actuator: 1 million cycles

Series 11-LEFS

Clean Room Speciication

Particle Generation Characteristics

Step Motor (Servo/24 VDC), Servo Motor (24 VDC)

11-LEFS16 Speed 500mm/s

11-LEFS32 Speed $500 \mathrm{~mm} / \mathrm{s}$

11-LEFS25 Speed $500 \mathrm{~mm} / \mathrm{s}$

11-LEFS40 Speed $500 \mathrm{~mm} / \mathrm{s}$

11-LEFS16/Ball Screw Drive

11-LEFS25/Ball Screw Drive

Horizontal

Vertical

11-LEFS32/Ball Screw Drive

Horizontal

Vertical

11-LEFS40/Ball Screw Drive

Horizontal

Vertical

Series 11-LEFS
Clean Room Speciication
Speed-Work Load Graph (Guide)
Servo Motor (24 VDC)

11-LEFS16A/Ball Screw Drive

Vertical

11-LEFS25A/Ball Screw Drive

Vertical

Acceleration／Deceleration
－
$1,000 \mathrm{~mm} / \mathrm{s}^{2} \quad-\quad-3,000 \mathrm{~mm} / \mathrm{s}^{2}$ \qquad $5,000 \mathrm{~mm} / \mathrm{s}^{2}$

$\stackrel{\text { 들 }}{ }$	Load overhanging direction m ：Work load［kg］ Me：Dynamic allowable moment［ $\mathrm{N} \cdot \mathrm{m}$ ］ L ：Overhang to the work load center of gravity［mm］		Model			
－			11－LEFS16	11－LEFS25	11－LEFS32	11－LEFS40
		은				
제		읓				
		을				

Electric Actuator/Slider Type Ball Screw Drive
 Step Motor (Sevoo/24 VDC)
 Servo Motor (24 VDC)

 Series LEFS C $\epsilon \mathrm{SN}_{\mathrm{s}}$

 Series LEFS C $\epsilon \mathrm{SN}_{\mathrm{s}}$ LEFS16, 25, 32, 40

 LEFS16, 25, 32, 40}

How to Order

Lead [mm] Symbol LEFS16 LEFS25 LEFS32 LEFS40

A	10	12	16	20
B	5	6	8	10

Stroke [mm]

100	100
to	to
1000	1000

* Refer to the applicable stroke table.

2 Motor type

Symbol	Type	Applicable size				Compatiblecontrollers/driver
		LEFS16	LEFS25	LEFS32	LEFS40	
Nil	Step motor (Servo/24 VDC)	\bullet	\bullet	\bullet	\bullet	LECP6 LECP1 LECPA
A	Servo motor (24 VDC)	\bullet	\bullet	-	-	LECA6

\triangle Caution

[CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEF series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the servo motor (24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 394 for the noise filter set. Refer to the LECA Operation Manual for installation.

[UL-compliant products]

When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

Applicable stroke table											
Model Stroke	100	200	300	400	500	600	700	800	900	1000	Manufacturable stroke range [mm]
LEFS16	-	-	-	\bullet	-	-	-	-	-	-	100 to 400
LEFS25	\bullet	-	\bullet	\bullet	\bullet	-	-	-	-	-	100 to 600
LEFS32	\bullet	\bullet	\bullet	\bullet	\bullet	-	\bullet	\bullet	-	-	100 to 800
LEFS40	-	\bullet	-	-	-	-	\bullet	\bullet	-	\bullet	200 to 1000

* Consult with SMC for non-standard strokes as they are produced as special orders.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^2]

5 Motor option

Nil	Without option
B	With lock

6 Actuator cable type ${ }^{* 1}$

Nil	Without cable
\mathbf{S}	Standard cable $^{* 2}$
\mathbf{R}	Robotic cable（Flexible cable）

＊1 The standard cable should be used on fixed
parts．For using on moving parts，select the
1 The standard cable should be used on fixed
parts．For using on moving parts，select the robotic cable．
Only available for the motor type＂Step robotic cable．
＊2 Only available for the motor type＂Step motor．＂
9 I／O cable length［m］${ }^{* 1}$

$\mathbf{N i l}$	Without cable $^{\prime}$
$\mathbf{1}$	1.5
3	$3^{* 2}$
5	$5^{* 2}$

＊1 When＂Without controller／driver＂is selected for controller／driver types，I／O cable cannot be se－ lected．Refer to page 394 （For LECP6／LECA6）， page 407 （For LECP1）or page 414 （For LECPA） if I / O cable is required．
＊2 When＂Pulse input type＂is selected for controller／driver types，pulse input usable only with differential．Only 1.5 m cables usable with open collector．

8 Controller／Driver type＊1		
Nil	Without controller／driver	
6N	LECP6／LECA6	NPN
6P	（Step data input type）	PNP
1N	LECP1＊2 （Programless type）	NPN
1P		PNP
AN	LECPA ${ }^{2}$ （Pulse input type）	NPN
AP		PNP

＊1 For details about controllers／driver and compatible motors，refer to the compatible controllers／driver below．
＊2 Only available for the motor type＂Step motor．＂

7 Actuator cable length［m］	
Nil	Without cable
$\mathbf{1}$	1.5
3	3
$\mathbf{5}$	5
8	8^{*}
A	10^{*}
B	15^{*}
C	20^{*}

＊Produced upon receipt of order（Robotic cable only） Refer to the specifications Note 2）on pages 20 and 21.

＊DIN rail is not included．Order it separately．

先

Compatible Controllers／Driver

	Step data

Series LEFS

Specifications

Model			LEFS16		LEFS25		LEFS32		LEFS40	
	Stroke [mm] Note 1)		100, 200, 300, 400		$\begin{aligned} & 100,200,300 \\ & 400,500,600 \end{aligned}$		$\begin{aligned} & 100,200,300,400 \\ & 500,600,700,800 \end{aligned}$		$\begin{gathered} 200,300,400,500,600 \\ 700,800,900,1000 \end{gathered}$	
	Work load [kg] Note 2)	Horizontal	9	10	20	20	40	45	50	60
		Vertical	2	4	7.5	15	10	20	-	23
	Speed [mm/s] ${ }^{\text {Note 2) }}$		10 to 500	5 to 250	12 to 500	6 to 250	16 to 500	8 to 250	20 to 500	10 to 250
	Max. acceleration/deceleration [mm/s ${ }^{2}$]		3,000							
	Positioning repeatability [mm]		± 0.02							
	Lead [mm]		10	5	12	6	16	8	20	10
	Impact/Vibration resistance [m/sid ${ }^{\text {2 }}$ Note 3)		50/20							
	Actuation type		Ball screw							
	Guide type		Linear guide							
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40							
	Operating humidity range [\%RH]		90 or less (No condensation)							
	Motor size		$\square 28$		$\square 42$		$\square 56.4$			
	Motor type		Step motor (Servo/24 VDC)							
	Encoder		Incremental A/B phase (800 pulse/rotation)							
	Rated voltage [V]		24 VDC $\pm 10 \%$							
	Power consumption [W] Note 4)		22		38		50		100	
	Standby power consumption when operating [W] ${ }^{\text {Net 5] }}$		18		16		44		43	
	Max. instantaneous power consumption [W] Nasie6)		51		57		123		141	
	Type ${ }^{\text {Note } 7)}$		Non-magnetizing lock							
	Holding force [N]		20	39	78	157	108	216	113	225
	Power consumption [W] Note 8)		2.9		5		5		5	
	Rated voltage [V]		24 VDC $\pm 10 \%$							

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) Speed changes according to the work load. Check "Speed-Work Load Graph (Guide)" on page 9. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m .
Note 3) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 4) The power consumption (including the controller) is for when the actuator is operating.
Note 5) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation.
Note 6) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 7) With lock only
Note 8) For an actuator with lock, add the power consumption for the lock.

Specifications
Servo Motor（24 VDC）

Model			LEFS16A		LEFS25A	
	Stroke［mm］${ }^{\text {Note 1）}}$		100，200，300， 400		$\begin{aligned} & 100,200,300 \\ & 400,500,600 \end{aligned}$	
	Work load［kg］${ }^{\text {Note 2）}}$	Horizontal	7	10	11	18
		Vertical	2	4	2.5	5
	Speed［mm／s］${ }^{\text {Note 2）}}$		10 to 500	5 to 250	12 to 500	6 to 250
	Max．acceleration／deceleration［ $\left.\mathrm{mm} / \mathrm{s}^{2}\right]$		3，000			
	Positioning repeatability［mm］		± 0.02			
	Lead［mm］		10	5	12	6
	Impact／Vibration resistance［m／s ${ }^{2}$ ］Note 3）		50／20			
	Actuation type		Ball screw			
	Guide type		Linear guide			
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40			
	Operating humidity range［\％RH］		90 or less（No condensation）			
	Motor size		$\square 28$		$\square 42$	
	Motor output［W］		30		36	
	Motor type		Servo motor（24 VDC）			
	Encoder		Incremental A／B（800 pulse／rotation）／Z phase			
	Rated voltage［V］		24 VDC $\pm 10 \%$			
	Power consumption［W］Note 4）		63		102	
	Standby power consumption when operating［W］$]^{\text {Wdes }}$ ）		Horizontal 4／Vertical 9		Horizontal 4／Vertical 9	
	Max．instantaneous power consumption［W］Noie 6］		70		113	
	Type Note 7）		Non－magnetizing lock			
	Holding force［ N ］		20	39	78	157
	Power consumption［W］Note 8）		2.9		5	
	Rated voltage［V］		24 VDC $\pm 10 \%$			

Note 1）Consult with SMC for non－standard strokes as they are produced as special orders．
Note 2）Check＂Speed－Work Load Graph（Guide）＂on page 10 for details．
Furthermore，if the cable length exceeds 5 m ，then it will decrease by up to 10% for each 5 m ．
Note 3）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 4）The power consumption（including the controller）is for when the actuator is operating．
Note 5）The standby power consumption when operating（including the controller）is for when the actuator is stopped in the set position during the operation．
Note 6）The maximum instantaneous power consumption（including the controller）is for when the actuator is operating．This value can be used for the selection of the power supply．
Note 7）With lock only
Note 8）For an actuator with lock，add the power consumption for the lock．

Weight

Series	LEFS16				
Stroke［mm］	100	200	300	400	
Product weight［kg］	0.90	1.05	1.20	1.35	
Additional weight with lock［kg］	0.12				

Series	LEFS25					
Stroke［mm］	100	200	300	400	500	600
Product weight［kg］	1.84	2.12	2.40	2.68	2.96	3.24
Additional weight with lock［kg］	0.26					

Series	LEFS32							
Stroke［mm］	100	200	300	400	500	600	700	800
Product weight［kg］	3.35	3.75	4.15	4.55	4.95	5.35	5.75	6.15
Additional weight with lock［kg］	0.53							

Series	LEFS40								
Stroke［mm］	200	300	400	500	600	700	800	900	1000
Product weight［kg］	5.65	6.21	6.77	7.33	7.89	8.45	9.01	9.57	10.13
Additional weight with lock［kg］									

Series LEFS

Construction
LEFS16, 25, 32

A-A

LEFS40

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Rail guide	-	
$\mathbf{3}$	Ball screw assembly	-	
$\mathbf{4}$	Connected shaft	LEFS16, 25, 32	
	Spacer	LEFS40	-
$\mathbf{5}$	Table	Aluminum alloy	Anodized
$\mathbf{6}$	Blanking plate	Aluminum alloy	Anodized
$\mathbf{7}$	Seal band stopper	Synthetic resin	
$\mathbf{8}$	Housing A	Aluminum die-casted	Coating
$\mathbf{9}$	Housing B	Aluminum die-casted	Coating
$\mathbf{1 0}$	Bearing stopper	Aluminum alloy	

No.	Description	Material	Note
$\mathbf{1 1}$	Motor mount	Aluminum alloy	Coating
$\mathbf{1 2}$	Coupling	-	
13	Motor cover	Aluminum alloy	Anodized
14	End cover	Aluminum alloy	Anodized
15	Motor	-	
16	Rubber bushing	NBR	
17	Band stopper	Stainless steel	
18	Dust seal band	Stainless steel	
19	Seal magnet	-	
20	Bearing	-	
21	Bearing	-	

Dimensions: Ball Screw Drive

Dimensions: Ball Screw Drive

Electric Actuator/Slider Type Ball Screw Drive Sise Molor emempec
 Clean Proom Speciication

How to Order

Lead [mm]
Symbol 11-LEFS16 11-LEFS25 11-LEFS32 11-LEFS40

A	10	12	16	20
B	5	6	8	10

4 Stroke [mm]	
$\mathbf{1 0 0}$	100
to	to
$\mathbf{1 0 0 0}$	1000

* Refer to the applicable stroke table.

2 Motor type

Symbol	Type	Applicable size				Compatible controllers/driver
	11-LEFS16	11-LEFS25	11-LEFS32	11-LEFS4	Step motor (Servo/24 VDC)	\bullet
\bullet	\bullet	\bullet	LECP6 LECP1 LECPA			
A	Servo motor (24 VDC)	\bullet	\bullet	-	-	LECA6

\triangle Caution

[CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEF series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the servo motor (24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 394 for the noise filter set. Refer to the LECA Operation Manual for installation.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

Applicable stroke table

- Standard

Model Stroke	100	200	300	400	500	600	700	800	900	1000	Manufacturable stroke range [mm]
11-LEFS16	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	100 to 400
11-LEFS25	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	100 to 600
11-LEFS32	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	-	\bigcirc	-	-	100 to 800
11-LEFS40	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	200 to 1000

* Consult with SMC for non-standard strokes as they are produced as special orders.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^3]
5 Motor option

Nil	Without option
B	With lock

8 Actuator cable length [m]

Nil	Without cable
$\mathbf{1}$	1.5 m
$\mathbf{3}$	3 m
$\mathbf{5}$	5 m
$\mathbf{8}$	$8 \mathrm{~m}^{*}$
\mathbf{A}	$10 \mathrm{~m}^{*}$
\mathbf{B}	$15 \mathrm{~m}^{*}$
\mathbf{C}	$20 \mathrm{~m}^{*}$

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 2) on pages 28 and 29.

11 Controller/Driver mounting

Nil	Screw mounting
D	DIN rail mounting*

* DIN rail is not included. Order it separately.

9 Controller/Driver type* ${ }^{* 1}$		
Nil	Without controller/driver	
6N	LECP6/LECA6	NPN
6P	(Step data input type)	PNP
1N	LECP1*2(Programless type)	NPN
1P		PNP
AN	LECPA ${ }^{* 2}$(Pulse input type)	NPN
AP		PNP

*1 For details about controllers/driver and compatible motors, refer to the compatible controllers/driver below.
*2 Only available for the motor type "Step motor."
(7) Actuator cable type ${ }^{* 1}$

Nil	Without cable
\mathbf{S}	Standard cable ${ }^{* 2}$
\mathbf{R}	Robotic cable (Flexible cable)

*1 The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.
*2 Only available for the motor type "Step motor."
(10 I / O cable length $[\mathrm{m}]^{11}$

Nil	Without cable
$\mathbf{1}$	1.5 m
$\mathbf{3}$	$3 \mathrm{~m}^{* 2}$
$\mathbf{5}$	$5 \mathrm{~m}^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 394 (For LECP6/LECA6), page 407 (For LECP1) or page 414 (For LECPA) if $/ / 0$ cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.

Compatible Controllers/Driver

Type	Step data input type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECA6	LECP1	LECPA
Features	Value (St Standar	data) input ontroller	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Servo motor (24 VDC)	Step motor (Servo/24 VDC)	
Maximum number of step data	64 points		14 points	-
Power supply voltage	24 VDC			
Reference page	Page 386	Page 386	Page 401	Page 408

Clean Room Speciication

Specifications

Model				11-LEFS16		11-LEFS25		11-LEFS32		11-LEFS40	
	Stroke [mm] ${ }^{\text {Note 1) }}$			100, 200, 300, 400		$\begin{aligned} & 100,200,300 \\ & 400,500,600 \end{aligned}$		$100,200,300,400$$500,600,700,800$		$\begin{gathered} 200,300,400,500,600 \\ 700,800,900,1000 \\ \hline \end{gathered}$	
	Work load [kg] ${ }^{\text {Note 2) }}$		Horizontal	9	10	20	20	40	45	50	60
			Vertical	2	4	7.5	15	10	20	-	23
	Speed [mm/s] ${ }^{\text {Note } 2)}$			10 to 500	5 to 250	12 to 500	6 to 250	16 to 500	8 to 250	20 to 500	10 to 250
	Max. acceleration/deceleration [$\mathrm{mm} / \mathrm{s}^{2}$]			3,000							
	Positioning repeatability [mm]			± 0.02							
	Lead [mm]			10	5	12	6	16	8	20	10
	Impact/Vibration resistance [m/s²] ${ }^{\text {Note 3) }}$			50/20							
	Actuation type			Ball screw							
	Guide type			Linear guide							
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40							
	Operating humidity range [\%RH]			90 or less (No condensation)							
	Cleanliness class ${ }^{\text {Note 4) }}$			ISO Class 4 (ISO 14644-1) Class 10 (Fed.Std.209E)							
	Grease Ball screw/Linear guide portion $^{\text {a }}$			Low particle generation grease							
	Motor size			$\square 28$		$\square 42$		$\square 56.4$			
	Motor type			Step motor (Servo/24 VDC)							
	Encoder			Incremental A/B phase (800 pulse/rotation)							
	Rated voltage [V]			24 VDC $\pm 10 \%$							
	Power consumption [W] Note 5)			22		38		50		100	
	Standby power consumption when operating [W] ${ }^{\text {videb] }}$			18		16		44		43	
	Max. instantaneous power consumption [W] Nide7]			51		57		123		141	
-	Type Note 8)			Non-magnetizing lock							
焏:	Holding force [N]			20	39	78	157	108	216	113	225
등:	Power consumption [W] Note 9)			2.9		5		5		5	
	Rated voltage [V]			24 VDC $\pm 10 \%$							

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) Speed changes according to the work load. Check "Speed-Work Load Graph (Guide)" on page 15. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m .
Note 3) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 4) The amount of particle generation changes according to the operating conditions and suction flow rate. Refer to the particle generation characteristics for details.
Note 5) The power consumption (including the controller) is for when the actuator is operating.
Note 6) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation.
Note 7) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 8) With lock only
Note 9) For an actuator with lock, add the power consumption for the lock.

Specifications

Model				11－LEFS16A		11－LEFS25A	
	Stroke［mm］${ }^{\text {Note 1）}}$			100，200，300， 400		$\begin{aligned} & 100,200,300 \\ & 400,500,600 \end{aligned}$	
	Work load［kg］${ }^{\text {Note 2）}}$		Horizontal	7	10	11	18
			Vertical	2	4	2.5	5
	Speed［mm／s］${ }^{\text {Note 2）}}$			10 to 500	5 to 250	12 to 500	6 to 250
	Max．acceleration／deceleration［ $\mathrm{mm} / \mathrm{s}^{2}$ ］			3，000			
	Positioning repeatability［mm］			± 0.02			
	Lead［mm］			10	5	12	6
	Impact／Vibration resistance［ $\left.\mathrm{m} / \mathrm{s}^{2}\right]^{\text {Note } 3)}$			50／20			
	Actuation type			Ball screw			
	Guide type			Linear guide			
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］			5 to 40			
	Operating humidity range［\％RH］			90 or less（No condensation）			
	Cleanliness class ${ }^{\text {Note 4）}}$			ISO Class 4 （ISO 14644－1） Class 10 （Fed．Std．209E）			
	Grease ${ }^{\text {Ball screw／Linear guide portion }}$			Low particle generation grease			
	Motor size			$\square 28$		$\square 42$	
	Motor output［W］			30		36	
	Motor type			Servo motor（24 VDC）			
	Encoder			Incremental A／B（800 pulse／rotation）／Z phase			
	Rated voltage［V］			24 VDC $\pm 10 \%$			
	Power consumption［W］Note 5）			63		102	
	Standby power consumption when operating［W］${ }^{\text {Wefe 6］}}$			Horizontal 4／Vertical 9		Horizontal 4／Vertical 9	
	Max．instantaneous power consumption［W］${ }^{\text {Ndee 7］}}$			70		113	
	Type Note 8）			Non－magnetizing lock			
	Holding force［ N ］			20	39	78	157
	Power consumption［W］Note 9）			2.9		5	
	Rated voltage［V］			24 VDC $\pm 10 \%$			

Note 1）Consult with SMC for non－standard strokes as they are produced as special orders．
Note 2）Check＂Speed－Work Load Graph（Guide）＂on page 16 for details．Furthermore，if the cable length exceeds 5 m ，then it will decrease by up to 10% for each 5 m ．
Note 3）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 4）The amount of particle generation changes according to the operating conditions and suction flow rate．Refer to the particle generation characteristics for details．
Note 5）The power consumption（including the controller）is for when the actuator is operating．
Note 6）The standby power consumption when operating（including the controller）is for when the actuator is stopped in the set position during operation． Note 7）The maximum instantaneous power consumption（including the controller）is for when the actuator is operating．This value can be used for the selection of the power supply． Note 8）With lock only
Note 9）For an actuator with lock，add the power consumption for the lock．

Weight

Model	11－LEFS16				
Stroke［mm］	100	200	300	400	
Product weight［kg］	0.90	1.05	1.20	1.35	
Additional weight with lock［kg］	0.12				

Model	11－LEFS25						
Stroke［mm］	100	200	300	400	500	600	
Product weight［kg］	1.84	2.12	2.40	2.68	2.96	3.24	
Additional weight with lock［kg］	0.26						

Model	11－LEFS32							
Stroke［mm］	100	200	300	400	500	600	700	800
Product weight［kg］	3.35	3.75	4.15	4.55	4.95	5.35	5.75	6.15
Additional weight with lock［kg］	0.53							

Model	11－LEFS40								
Stroke $[\mathrm{mm}]$	200	300	400	500	600	700	800	900	1000
Product weight［kg］	5.65	6.21	6.77	7.33	7.89	8.45	9.01	9.57	10.13
Additional weight with lock［kg］									

Dimensions: Ball Screw Drive

Dimensions: Ball Screw Drive

Electric Actuator/Slider Type Belt Drive

How to Order

The belt drive actuator cannot be used vertically for applications.

Equivalent lead [mm]
T 48

Stroke [mm]

300	300
to	to
2000	2000

* Refer to the applicable stroke table.
(2) Motor type

Symbol	Type	Applicable size			Compatible controllers/driver
Nil	Step motor (Servo/24 VDC)	\bullet	LEFB16	LEFB25	LEFB32
A	Servo motor $(24$ VDC)	\bullet	\bullet	\bullet	LECP6 LECP1 LECPA

\triangle Caution

[CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEF series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the servo motor (24VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 394 for the noise filter set. Refer to the LECA Operation Manual for installation.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

Applicable stroke table

Model	Stroke	$\mathbf{3 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$	$\mathbf{8 0 0}$	$\mathbf{9 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{1 2 0 0}$	$\mathbf{1 5 0 0}$	$\mathbf{1 8 0 0}$
$\mathbf{2 0 0 0}$											
LEFB16	\bullet	-	-	-	-						
LEFB25	\bullet										
LEFB32	\bullet										

Made to order	Made to Order Specifications (For details, refer to page 79.)
Symbol Specifications X139 Support guide	

* Consult with SMC for non-standard strokes as they are produced as special orders.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^4]
Electric Actuator／Slider Type
 Belt Drive Series LEFB

5 Motor option

Nil	Without option
\mathbf{B}	With lock

6 Actuator cable type ${ }^{* 1}$

Nil	Without cable
\mathbf{S}	Standard cable $^{* 2}$
\mathbf{R}	Robotic cable（Flexible cable）

＊1 The standard cable should be used on fixed parts．For using on moving parts，select the robotic cable．
＊2 Only available for the motor type＂Step motor．＂
（9）I／O cable length $[\mathrm{m}]^{41}$

Nil	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	$3^{* 2}$
$\mathbf{5}$	$5^{* 2}$

＊1 When＂Without controller／driver＂is selected for controller／driver types，I／O cable cannot be se－ lected．Refer to page 394 （For LECP6／LECA6）， page 407 （For LECP1）or page 414 （For LEC－ PA ）if I / O cable is required．
＊2 When＂Pulse input type＂is selected for controller／driver types，pulse input usable only with differential．Only 1.5 m cables usable with open collector．

Nil	Without controller／driver	
6N	LECP6／LECA6 （Step data input type）	NPN
6P		PNP
1N	LECP1＊2 （Programless type）	NPN
1P		PNP
AN	LECPA＊${ }^{2}$ （Pulse input type）	NPN
AP		PNP

＊1 For details about controllers／driver and compatible motors，refer to the compatible controllers／driver below．
＊2 Only available for the motor type＂Step motor．＂
7 Actuator cable length $[\mathrm{m}]$

Nil	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	8^{*}
A	10^{*}
B	15^{*}
C	20^{*}

＊Produced upon receipt of order（Robotic cable only）
Refer to the specifications Note 2）on pages 34 and 35.

＊DIN rail is not included．Order it separately．

凹

Series LEFB

Specifications

Model		LEFB16	LEFB25	LEFB32
	Stroke [mm] ${ }^{\text {Note 1) }}$	$\begin{gathered} 300,500,600,700 \\ 800,900,1000 \end{gathered}$	$\begin{gathered} 300,500,600,700,800,900 \\ 1000,1200,1500,1800,2000 \\ \hline \end{gathered}$	$\begin{aligned} & 300,500,600,700,800,900 \\ & 1000,1200,1500,1800,2000 \\ & \hline \end{aligned}$
	Work load [kg] Note 2) Horizontal	1	5	14
	Speed [mm / s] ${ }^{\text {Note 2) }}$	48 to 1100	48 to 1400	48 to 1500
	Max. acceleration/deceleration [mm/s $\left.\mathrm{s}^{2}\right]$	3,000		
	Positioning repeatability [mm]	± 0.1		
	Equivalent lead [mm]	48	48	48
	ImpactVibration resistance [[m/ s^{2}] ${ }^{\text {Note } 31}$	50/20		
	Actuation type	Belt		
	Guide type	Linear guide		
	Operating temperature range [${ }^{\circ} \mathrm{C}$]	5 to 40		
	Operating humidity range [\%RH]	90 or less (No condensation)		
	Motor size	$\square 28$	$\square 42$	$\square 56.4$
	Motor type	Step motor (Servo/24 VDC)		
	Encoder	Incremental A/B phase (800 pulse/rotation)		
	Rated voltage [V]	24 VDC $\pm 10 \%$		
	Power consumption [W] ${ }^{\text {Note 4) }}$	24	32	52
	Standby power consumption when opeating (W) ${ }^{\text {Wexis }}$	18	16	44
	Max. instantaneous power consumption [W] Ndeit]	51	60	127
	Type Note 7)	Non-magnetizing lock		
	Holding force [N]	4	19	36
	Power consumption [W] ${ }^{\text {Note } 8)}$	2.9	5	5
	Rated voltage [V]	$24 \mathrm{VDC} \pm 10 \%$		

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) Speed changes according to the work load. Check "Speed-Work Load Graph (Guide)" on page 10. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m .
Note 3) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 4) The power consumption (including the controller) is for when the actuator is operating.
Note 5) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation.
Note 6) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 7) With lock only
Note 8) For an actuator with lock, add the power consumption for the lock.

Electric Actuator/Slider Type Belt Drive

Specifications

Model		LEFB16A	LEFB25A
	Stroke [mm] ${ }^{\text {Note 1) }}$	$\begin{gathered} 300,500,600,700 \\ 800,900,1000 \end{gathered}$	$\begin{gathered} 300,500,600,700,800,900 \\ 1000,1200,1500,1800,2000 \\ \hline \end{gathered}$
	Work load [kg] ${ }^{\text {Note 2) }}$) Horizontal	1	2
	Speed [mm/s] ${ }^{\text {Note 2) }}$	48 to 2000	48 to 2000
	Max. acceleration/deceleration [$\mathrm{mm} / \mathrm{s}^{2}$]	3,000	
	Positioning repeatability [mm]	± 0.1	
	Equivalent lead [mm]	48	48
	Impact/Vibration resistance [$\mathrm{m} / \mathrm{s}^{2}$] Note 3)	50/20	
	Actuation type	Belt	
	Guide type	Linear guide	
	Operating temperature range [${ }^{\circ} \mathrm{C}$]	5 to 40	
	Operating humidity range [\%RH]	90 or less (No condensation)	
Electric specifications	Motor size	$\square 28$	$\square 42$
	Motor output [W]	30	36
	Motor type	Servo motor (24 VDC)	
	Encoder	Incremental A/B (800 pulse/rotation)/Z phase	
	Rated voltage [V]	24 VDC $\pm 10 \%$	
	Power consumption [W] Note 4)	78	69
	Standby power consumption when operating ($W^{\text {Nides }}$ (${ }^{\text {a }}$	Horizontal 4	Horizontal 5
	Max. instantaneous power consumption [W] ${ }^{\text {/cita }}$ 6)	87	120
	Type Note 7)	Non-magnetizing lock	
	Holding force [N]	4	19
	Power consumption [W] Note 8)	2.9	5
	Rated voltage [V]	24 VDC $\pm 10 \%$	

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) Check "Speed-Work Load Graph (Guide)" on page 10 for details. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m .
Note 3) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 4) The power consumption (including the controller) is for when the actuator is operating.
Note 5) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation.
Note 6) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 7) With lock only
Note 8) For an actuator with lock, add the power consumption for the lock.

Weight

Series	LEFB16							
Stroke [mm]	300	500	600	700	800	900	1000	
Product weight [kg]	1.19	1.45	1.58	1.71	1.84	1.97	2.10	
Additional weight with lock [kg]	0.12							

Series	LEFB25										
Stroke [mm]	300	500	600	700	800	900	1000	1200	1500	1800	2000
Product weight [kg]	2.39	2.85	3.08	3.31	3.54	3.77	4.00	4.46	5.15	5.84	6.30
Additional weight with lock [kg]	0.26										

Series	LEFB32										
Stroke [mm]	300	500	600	700	800	900	1000	1200	1500	1800	2000
Product weight [kg]	4.12	4.80	5.14	5.48	5.82	6.16	6.50	7.18	8.20	9.22	9.90
Additional weight with lock [kg]	0.53										

Series LEFB

Construction

Series LEFB

No.	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Rail guide	-	
3	Belt	-	
4	Belt holder	Carbon steel	Chromate treated
5	Belt stopper	Aluminum alloy	Anodized
6	Table	Aluminum alloy	Anodized
7	Blanking plate	Aluminum alloy	Anodized
8	Seal band stopper	Synthetic resin	
9	Housing A	Aluminum die-cast	Coating
10	Pulley holder	Aluminum alloy	
11	Pulley shaft	Stainless steel	
12	End pulley	Aluminum alloy	Anodized
13	Motor pulley	Aluminum alloy	Anodized
14	Motor mount	Aluminum alloy	Anodized
15	Motor cover	Aluminum alloy	Anodized
16	End cover	Aluminum alloy	Anodized
17	Band stopper	Stainless steel	
18	Motor	-	
19	Rubber bushing	NBR	
20	Stopper	Aluminum alloy	
21	Dust seal band	Stainless steel	
22	Bearing	-	
23	Bearing	-	
24	Tension adjustment bolt	Chromium molybdenum steel	Chromate treated
25	Pulley fixing bolt	Chromium molybdenum steel	Chromate treated

Electric Actuator/Slider Type Belt Drive Series LEFB

Dimensions: Belt Drive

Series LEFB

Dimensions: Belt Drive
LEFB32

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of R chamfering. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) Position after return to origin.
Note 4) [] for when the direction of return to origin has changed.

Model	L	A	B	n	D	E
LEFB32 \square T-300 \square	585.6	306	489	6	2	400
LEFB32 \square T-500 \square	785.6	506	689	8	3	600
LEFB32 \square T-600 \square	885.6	606	789	8	3	600
LEFB32 \square T-700 \square	985.6	706	889	10	4	800
LEFB32 \square T-800 \square	1085.6	806	989	10	4	800
LEFB32 \square T-900 \square	1185.6	906	1089	12	5	1000
LEFB32 \square T-1000 \square	1285.6	1006	1189	12	5	1000
LEFB32 \square T-1200 \square	1485.6	1206	1389	14	6	1200
LEFB32 \square T-1500 \square	1785.6	1506	1689	18	8	1600
LEFB32 \square T-1800 \square	2085.6	1806	1989	20	9	1800
LEFB32 \square T-2000 \square	2285.6	2006	2189	22	10	2000

Design

\triangle Caution

1．Do not apply a load in excess of the operating limit．
Select a suitable actuator by work load and allowable moment． If the product is used outside of the operating limit，the eccentric load applied to the guide will be excessive and have adverse effects such as creating play on the guide，degrading accuracy and shortening the life of the product．

2．Do not use the product in applications where excessive external force or impact force is applied to it．

This can cause failure．
Handling

© Caution

1．Set the position determination width in the step data to at least 0.5 （at least 1 for the belt type）．
Otherwise，completion signal of in position may not be output．
2．INP output signal
1）Positioning operation
When the product comes within the set range by step data ［In position］，the INP output signal will turn on．
Initial value：Set to［0．50］or higher．

\triangle Caution

3．Never hit at the stroke end except during return to origin．
When incorrect instructions are inputted，such as using the product outside of the operating limit or operation outside of actual stroke through changes in the controller／driver setting and or origin position，the table may collide against the stroke end of the actuator．Please check these points before use．
If the table collides against the stroke end of the actuator，the guide，belt or internal stopper can be broken．This may lead to abnormal operation．

Handle the actuator with care when it is used in the vertical direction as the workpiece will fall freely from its own weight．

4．The moving force should be the initial value．
If the moving force is set below the initial value，it may cause an alarm．

5．The actual speed of this actuator is affected by the work load．
Check the model selection section of the catalog．
6．Do not apply a load，impact or resistance in addition to the transferred load during return to origin．
Additional force will cause the displacement of the origin position since it is based on detected motor torque．
7．Do not dent，scratch or cause other damage to the body and table mounting surfaces．
This may cause unevenness in the mounting surface，play in the guide or an increase in the sliding resistance．

8．Do not apply strong impact or an excessive moment while mounting a workpiece．
If an external force over the allowable moment is applied，it may cause play in the guide or an increase in the sliding resistance．

9．Keep the flatness of mounting surface $0.1 \mathbf{~ m m}$ or less．
Unevenness of a workpiece or base mounted on the body of the product may cause play in the guide and an increase in the sliding resistance．
10．When mounting the product，keep a 40 mm or longer diameter for bends in the cable．
11．Do not hit the table with the workpiece in the positioning operation and positioning range．

Electric Actuator/

Handling

\triangle Caution

12. When mounting the product, use screws with adequate length and tighten them with adequate torque.
Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

The traveling parallelism is the reference plane for the body mounting reference plane.
If the traveling parallelism for a table is required, set the reference plane against parallel pins, etc.

Workpiece fixed

Model	Bolt	Max. tightening torque $(\mathrm{N} \cdot \mathrm{m})$	$\mathrm{L}($ Max. screw-in depth) (mm)
LEF $\square \mathbf{1 6}$	$\mathrm{M} 4 \times 0.7$	1.5	6
LEF $\square \mathbf{2 5}$	$\mathrm{M} 5 \times 0.8$	3.0	8
LEF $\square \mathbf{3 2}$	$\mathrm{M} 6 \times 1$	5.2	9
LEFS40	$\mathrm{M} 8 \times 1.25$	12.5	13

To prevent the workpiece fixing bolts from touching the body, use bolts that are 0.5 mm or shorter than the maximum screw-in depth. If long bolts are used, they can touch the body and cause a malfunction, etc.

[^5]14. The belt drive actuator cannot be used vertically for applications.
15. Check the specifications for the minimum speed of each actuator.
Otherwise, unexpected malfunctions, such as knocking, may occur.
16. In the case of the belt drive actuator, vibration may occur during operation at speeds within the actuator specifications, this could be caused by the operating conditions. Change the speed setting to a speed that does not cause vibration.

Maintenance

© Warning

Maintenance frequency

Perform maintenance according to the table below

Frequency	Appearance check	Internal check	Belt check
Inspection before daily operation	\bigcirc	-	-
Inspection every 6 months $/ 1000 \mathrm{~km} /$ 5 million cycles*	\bigcirc	\bigcirc	\bigcirc

* Select whichever comes sooner.

- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts.
2. Loose or mechanical play in fixed parts or fixing screws.

- Items for belt check

Stop operation immediately and replace the belt when belt appear to be below. Further, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out.

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt

Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign matter caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky.
f. Crack on the back of the belt

AC Servo Motor

Ball Screw Drive Page 56

Series LEFS

Belt Drive Page 68
Series LEFB

AC Servo Motor Driver Page 419
Series LECS \square

Electric Actuator/Slider Type
 AC Servo Motor
 Ball Screw Drive/Series LEFS
 Model Selection

Selection Procedure

Selection Example

Operating conditions

Step 1
Check the work load-speed. <Speed-Work load graph> (Page 43) Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.

Selection example) The LEFS40S4B-200 is temporarily selected based on the graph shown on the right side.

<Speed-Work load graph>
(LEFS40)

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.

Cycle time:

T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]$
-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, please calculate the settling time with reference to the following value.

$$
\mathrm{T} 4=0.05[\mathrm{~s}]
$$

Step 3 Check the guide moment.

Based on the above calculation result, the LEFS40S4B-200 is selected.

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{200-0.5 \cdot 300 \cdot(0.1+0.1)}{300} \\
& =0.57[\mathrm{~s}] \\
\mathrm{T} 4 & =0.05[\mathrm{~s}]
\end{aligned}
$$

Therefore, the cycle time can be obtained as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.1+0.57+0.1+0.05 \\
& =0.82[\mathbf{s}]
\end{aligned}
$$

L : Stroke [mm]
\cdots (Operating condition)
V : Speed [mm/s]
\cdots (Operating condition)
a1: Acceleration [$\mathrm{mm} / \mathrm{s}^{2}$]
\cdots (Operating condition)
a2: Deceleration [$\mathrm{mm} / \mathrm{s}^{2}$]
... (Operating condition)
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until in position is completed

Speed-Work Load Graph (Guide)

LEFS25/Ball Screw Drive

Vertical

[mm / s]

Model	AC servo motor	Lead		Stroke [mm]									
		Symbol	[mm]	Up to 100	Up to 200	Up to 300	Up to 400	Up to 500	Up to 600	Up to 700	Up to 800	Up to 900	Up to 1000
LEFS25	$\begin{gathered} 100 \mathrm{~W} \\ \square 40 \end{gathered}$	A	12	900				720	540	-	-	-	-
		B	6	450				360	270	-	-	-	-
		(Motor rotation speed)		(4500 rpm)				(3650 rpm)	(2700 rpm)	-	-	-	-
LEFS32	$\begin{gathered} 200 \mathrm{~W} \\ \square 60 \end{gathered}$	A	16	1000	1000	1000	1000	1000	800	620	500	-	-
		B	8	500	500	500	500	500	400	310	250	-	-
		(Motor rotation speed)		(3750 rpm)					(3000 rpm)	(2325 rpm)	(1875 rpm)	-	-
LEFS40	400 W $\square \square 60$	A	20	-	1000					940	760	620	520
		B	10	-	500					470	380	310	260
		(Motor rotation speed)		-	(3000 rpm)					(2820 rpm)	(2280 rpm)	(1860 rpm)	(1560 rpm)

"Regeneration Option" Models

Size	Model
LEFS25 \square	LEC-MR-RB-032
LEFS32 \square	LEC-MR-RB-032
LEFS40 \square	LEC-MR-RB-032

Allowable Stroke Speed

Required conditions for "Regeneration option"

*Regeneration option required when using product above "Regeneration" line in graph. (Order separately)
[How to read the graph]
Required conditions change depending on the operating conditions.
Regeneration (50\%) : Duty ratio 50\% or more
Regeneration (100\%): Duty ratio 100\%

Vertical

LEFS40/Ball Screw Drive

Horizontal

Horizontal

LEFS32/Ball Screw Drive
Horizontal

Vertical

Series LEFS

Work Load-Acceleration/Deceleration Graph (Guide)
LEFS25/Ball Screw Drive: Horizontal

LEFS25S \square A

LEFS25S \square B

LEFS25/Ball Screw Drive: Vertical

LEFS25S \square A

LEFS25S \square B

LEFS32/Ball Screw Drive: Horizontal

LEFS32S \square A

LEFS32S \square B

LEFS32/Ball Screw Drive: Vertical

LEFS32S \square A

LEFS32S \square B

Work Load-Acceleration/Deceleration Graph (Guide)

LEFS40/Ball Screw Drive: Horizontal

LEFS40/Ball Screw Drive: Vertical

LEFS40S \square A

LEFS40S \square B

 gravity of the workpiece overhangs in two directions, refer to the Electric Actuator Selection Software for confirmation. http://www.smcworld.com

Table Accuracy

Model	Traveling parallelism［mm］（Every 300 mm ）	
	（1）C side traveling parallelism to A side	（2）D side traveling parallelism to B side
LEFS25	0.05	0.03
LEFS32	0.05	0.03
LEFS40	0.05	0.03

Note）Traveling parallelism does not include the mounting surface accuracy．

Table Displacement（Reference Value）

Note 1）This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table．
Note 2）Please confirm the clearance and play of the guide separately．

Particle Generation Characteristics

Particle Generation Measuring Method

The particle generation data for SMC Clean Series are measured in the following test method.

Test Method (Example)

Place the specimen in the acrylic resin chamber and operate it while supplying the same flow rate of clean air as the suction flow rate of the measuring instrument $(28.3 \mathrm{~L} / \mathrm{min})$. Measure the changes of the particle concentration over time until the number of cycles reaches the specified point.
The chamber is placed in an ISO Class 5 equivalent clean bench.

-Measuring Conditions

Chamber	Internal volume	
	Supply air quality	Same quality as the supply air for driving
Measuring instrument	Description	Laser dust monitor (Automatic particle counter by lightscattering method)
	Minimum measurable particle diameter	$0.1 \mu \mathrm{~m}$
	Suction flow rate	$28.3 \mathrm{~L} / \mathrm{min}$
Setting conditions	Sampling time	5 min
	Interval time	55 min
	Sampling air flow	141.5 L

Particle generation measuring circuit

Evaluation Method

To obtain the measured values of particle concentration, the accumulated value Note 1) of particles captured every 5 minutes, by the laser dust monitor, is converted into the particle concentration in every $1 \mathrm{~m}^{3}$.
When determining particle generation grades, the 95% upper confidence limit of the average particle concentration (average value), when each specimen is operated at a specified number of cycles Note 2) is considered.
The plots in the graphs indicate the 95% upper confidence limit of the average particle concentration of particles with a diameter within the horizontal axis range.
Note 1) Sampling air flow rate: Number of particles contained in 141.5 L of air
Note 2) Actuator: 1 million cycles

Particle Generation Characteristics

AC Servo Motor（100／200／400 W）

11－LEFS25 Speed $900 \mathrm{~mm} / \mathrm{s}$

11－LEFS40 Speed $1000 \mathrm{~mm} / \mathrm{s}$

11－LEFS32 Speed 1000 mm／s

Electric Actuator/Slider Type AC Servo Motor
Ball Screw Drive/Series 11-LEFS
Model Selection
Speed-Work Load Graph (Guide)
AC Servo Motor

11-LEFS25/Ball Screw Drive

Vertical

11-LEFS32/Ball Screw Drive

Horizontal

Vertical

11-LEFS40/Ball Screw Drive

Horizontal

Required conditions for "Regeneration option"

* Regeneration option required when using product above "Regeneration" line in graph. (Order separately) [How to read the graph]
Required conditions change depending on the operating conditions.
Regeneration (50%) : Duty ratio 50% or more
Regeneration (100\%): Duty ratio 100\%

Vertical

Allowable Stroke Speed

"Regeneration Option" Models

Size	Model
11-LEFS25 \square	LEC-MR-RB-032
11-LEFS32 \square	LEC-MR-RB-032
11-LEFS40 \square	LEC-MR-RB-032

Model	AC servo motor	Lead		Stroke [mm]									
		Symbol	[mm]	Up to 100	Up to 200	Up to 300	Up to 400	Up to 500	Up to 600	Up to 700	Up to 800	Up to 900	Up to 1000
11-LEFS25	$\begin{gathered} 100 \mathrm{~W} \\ \square 40 \end{gathered}$	A	12	900				720	540	-	-	-	-
		B	6			0		360	270	-	-	-	-
		(Motor rotation speed)		(4500 rpm)				(3650 rpm)	(2700 rpm)	-	-	-	-
11-LEFS32	$\begin{gathered} 200 \mathrm{~W} \\ \square 60 \end{gathered}$	A	16	1000	1000	1000	1000	1000	800	620	500	-	-
		B	8	500	500	500	500	500	400	310	250	-	-
		(Motor rotation speed)		(3750 rpm)					(3000 rpm)	(2325 rpm)	(1875 rpm)	-	-
11-LEFS40	$\begin{gathered} 400 \mathrm{~W} \\ \square 60 \end{gathered}$	A	20	-	1000					940	760	620	520
		B	10	-	500					470	380	310	260
		(Motor rotation speed)		-	(3000 rpm)					(2820 rpm)	(2280 rpm)	(1860 rpm)	(1560 rpm)

Dynamic Allowable Moment AC Servo Motor

* This graph shows the amount of allowable overhang when the center of gravity of the workpiece overhangs in one direction. When the center of gravity of the workpiece overhangs in two directions, refer to the Electric Actuator Selection Software for confirmation. http://www.smcworld.com
Acceleration/Deceleration -- $1,000 \mathrm{~mm} / \mathrm{s}^{2} \quad---3,000 \mathrm{~mm} / \mathrm{s}^{2} \quad \cdots \cdots \cdots 5,000 \mathrm{~mm} / \mathrm{s}^{2}$

Electric Actuator/Slider Type AC Servo Motor

Belt Drive/Series LEFB Model Selection

Selection Procedure

\checkmark

 +

Selection Example

Operating conditions

Step 1
Check the work load-speed. <Speed-Work load graph> (Page 53) Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.

Selection example) The LEFB40S4S-2000 is temporarily selected based on the graph shown on the right side.

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.

Cycle time:

T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3:
Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, please calculate the settling time with reference to the following value.

$$
\mathrm{T} 4=0.05[\mathrm{~s}]
$$

Step 3 Check the guide moment.

Based on the above calculation result, the LEFB40S4S-2000 is selected.

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=1500 / 3000=0.5[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=1500 / 3000=0.5[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{2000-0.5 \cdot 1500 \cdot(0.5+0.5)}{1500} \\
& =0.83[\mathrm{~s}] \\
\mathrm{T} 4 & =0.05[\mathrm{~s}]
\end{aligned}
$$

Therefore, the cycle time can be obtained as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.5+0.83+0.5+0.05 \\
& =1.88[\mathbf{s}]
\end{aligned}
$$

<Speed-Work load graph> (LEFB40)

L : Stroke [mm]
... (Operating condition)
V : Speed [mm/s]
... (Operating condition)
a1: Acceleration [$\mathrm{mm} / \mathrm{s}^{2}$]
... (Operating condition)
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right.$]
... (Operating condition)
T1: Acceleration time [s] Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until in position is completed

Speed－Work Load Graph（Guide）

LEFB $\square /$ Belt Drive

＊The shaded area in the graph requires the regeneration option（LEC－MR－RB－032）．

Cycle Time Graph（Guide）

LEFB $\square / B e l t$ Drive

＊Cycle time is for when maximum speed
＊Maximum stroke：LEFB25： 2000 mm LEFB32： 2500 mm LEFB40： 3000 mm

Work Load－Acceleration／Deceleration Graph（Guide）
LEFB \square／Belt Drive
LEFB25S \square（Duty ratio）

LEFB32S \square（Duty ratio）

LEFB40S \square（Duty ratio）

Series LEFB

Table Accuracy

Model	Traveling parallelism［mm］（Every 300 mm ）	
	（1）C side traveling parallelism to A side	（2）D side traveling parallelism to B side
LEFB25	0.05	0.03
LEFB32	0.05	0.03
LEFB40	0.05	0.03

Note）Traveling parallelism does not include the mounting surface accuracy．

Note 1）This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table．
Note 2）Please confirm the clearance and play of the guide separately．

Electric Actuator/Slider Type Ball Screw Drive ac sevo Moor

Series LEFS C $\epsilon=$ LEFS25, 32, 40

How to Order

Symbol	Type	Output(W)	Actuator size	Compatible drivers
S2*	AC servo motor (Incremental encoder)	100	25	LECSA \square-S1
S3		200	32	LECSA■-S3
S4		400	40	LECSA2-S4
S6*	AC servo motor (Absolute encoder)	100	25	LECSB \square-S5 LECSC \square-S5 LECSS \square-S5
S7		200	32	LECSB \square-S7 LECSC \square-S7 LECSS \square-S7
S8		400	40	$\begin{aligned} & \text { LECSB2-S8 } \\ & \text { LECSC2-S8 } \\ & \text { LECSS2-S8 } \\ & \hline \end{aligned}$

* For motor type S2 and S6, the compatible driver part number suffixes are S1 and S5 respectively.
Driver type

	Compatible drivers	Power supply voltage (V)	Size		
			25	32	40
Nil	Without driver	-	-	-	\bigcirc
A1	LECSA1-S \square	100 to 120	\bigcirc	\bigcirc	-
A2	LECSA2-S \square	200 to 230	-	\bigcirc	\bigcirc
B1	LECSB1-S \square	100 to 120	\bigcirc	\bigcirc	
B2	LECSB2-S \square	200 to 230	\bigcirc	\bigcirc	\bigcirc
C1	LECSC1-S \square	100 to 120	\bigcirc	\bigcirc	-
C2	LECSC2-S \square	200 to 230	-	\bigcirc	\bigcirc
S1	LECSS1-S \square	100 to 120	-	\bigcirc	-
S2	LECSS2-S \square	200 to 230	\bigcirc	\bigcirc	\bigcirc

9 I/O connector

$\mathbf{N i l}$	Without connector
\mathbf{H}	With connector

Example)

3) Lead [mm]
Symbol LEFS25 LEFS32 LEFS40 A 12 16 20 Stroke $[\mathrm{mm}]$ B 8 100 to

5 Motor option

Nil	Without option
B	With lock

6 Cable type ${ }^{\text {Note 1) } \text {) Note } 2 \text {) }}$

Nil	Without cable
S	Standard cable
R	Robotic cable (Flexible cable)

Note 1) Motor cable and encoder cable are included. (Lock cable is also included if motor option "With lock" is selected.)
Note 2) Standard cable entry direction is "(B) Counter axis side". (Refer to page 435 for details.)

7. Cable length ${ }^{\text {Note } 3)}$ [m]	
Nil	Without cable
$\mathbf{2}$	2
$\mathbf{5}$	5
\mathbf{A}	10

Note 3) The length of the encoder, motor and lock cables are the same.

When the driver type is selected, the cable is included. Select cable type and

S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver

* Applicable stroke table - Standard										
$\underbrace{}_{\text {Model }} \quad$Stroke (mm)	100	200	300	400	500	600	700	800	900	1000
LEFS25	-	\bigcirc	-	-	-	-	-	-	-	-
LEFS32	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-
LEFS40	-	\bigcirc								

Compatible Drivers

Driver type	Pulse input type /Positioning type	Pulse input type	CC-Link direct input type	SSCNET III type
Series	LECSA	LECSB	LECSC	LECSS
Number of point tables	Up to 7	-	Up to 255 (2 stations occupied)	-
Pulse input	\bigcirc	\bigcirc	-	-
Applicable network	-	-	CC-Link	SSCNET III
Control encoder	Incremental 17-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder
Communication function	USB communication	USB communication, RS422 communication	USB communication, RS422 communication	USB communication
Power supply voltage (V)	100 to 120 VAC ($50 / 60 \mathrm{~Hz}$), 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)			
Reference page	Page 419			

Electric Actuator／Slider Type Ball Screw Drive

Specifications

LEFS25，32， 40 AC Servo Motor

Model				LEFS25S ${ }_{6}^{2}$		LEFS32S ${ }_{7}^{3}$		LEFS40S ${ }_{8}^{4}$	
	Stroke［mm］Note 1）			$\begin{gathered} 100,200,300,400 \\ 500,600 \end{gathered}$		$\begin{aligned} & 100,200,300,400 \\ & 500,600,700,800 \end{aligned}$		$\begin{gathered} 200,300,400,500 \\ 600,700,800,900 \\ 1000 \end{gathered}$	
	Work load［kg］Note 2）		Horizontal	20	20	40	45	50	60
			Vertical	8	15	10	20	15	30
	Note 3） Max．speed ［ mm / s ］	Stroke range	Up to 400	900	450	1000	500	1000	500
			401 to 500	720	360	1000	500	1000	500
			501 to 600	540	270	800	400	1000	500
			601 to 700	－	－	620	310	940	470
			701 to 800	－	－	500	250	760	380
			801 to 900	－	－	－	－	620	310
			901 to 1000	－	－	－	－	520	260
	Max．acceleration／deceleration［mm／s ${ }^{\text {2 }}$ ］			20，000（Refer to page 43 for limit according to work load and duty ratio．）					
	Positioning repeatability［mm］			± 0.02					
	Lead［mm］			12	6	16	8	20	10
	Impact／Vibration resistance［m／s ${ }^{\mathbf{2}}$ ］Note 4）			50／20					
	Actuation type			Ball screw					
	Guide type			Linear guide					
	Operating temperature range［ ${ }^{\mathbf{C}}$ ］			5 to 40					
	Operating humidity range［\％RH］			90 or less（No condensation）					
	Motor output／Size			$100 \mathrm{~W} / \square 40$		200 W／$\square 60$		$400 \mathrm{~W} / \square 60$	
	Motor type			AC servo motor（100／200 VAC）					
	Encoder			Motor type S2，S3，S4：Incremental 17－bit encoder（Resolution： 131072 p／rev） Motor type S6，S7，S8：Absolute 18－bit encoder（Resolution： $262144 \mathrm{p} / \mathrm{rev}$ ）					
	Power consumption［W］${ }^{\text {Note 5）}}$		Horizontal	45		65		210	
			Vertical	145		175		230	
	Standby power consumption when operating［W］Note 6）		Horizontal	2		2		2	
			Vertical	8		8		18	
	Max．instantaneous power consumption［W］${ }^{\text {Note 7）}}$			445		725		1275	
－\％	Type Note 8）			Non－magnetizing lock					
它：	Holding force［N］			131	255	197	385	330	660
总券	Power consumption at $\mathbf{2 0}^{\circ} \mathrm{C}$［W］${ }^{\text {Note 9）}}$			6.3		7.9		7.9	
	Rated voltage［V］					24 VDC－${ }_{-10 \%}$			

Note 1）Consult with SMC for non－standard strokes as they are produced as special orders．
Note 2）For details，refer to＂Speed－Work Load Graph（Guide）＂on page 43.
Note 3）The allowable speed changes according to the stroke．
Note 4）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 5）The power consumption（including the driver）is for when the actuator is operating．
Note 6）The standby power consumption when operating（including the driver）is for when the actuator is stopped in the set position during the operation．
Note 7）The maximum instantaneous power consumption（including the driver）is for when the actuator is operating．
Note 8）Only when motor option＂With lock＂is selected．
Note 9）For an actuator with lock，add the power consumption for the lock．

Weight
 ＋igh

Series	LEFS25					
Stroke［mm］	100	200	300	400	500	600
Product weight［kg］	2.20	2.50	2.75	3.05	3.30	3.60
Additional weight with lock［kg］	0.35					

Series	LEFS32							
Stroke［mm］	100	200	300	400	500	600	700	800
Product weight $[\mathrm{kg}]$	3.60	4.00	4.40	4.80	5.20	5.60	6.00	6.40
Additional weight with lock［kg］	0.70							

Series	LEFS40								
Stroke $[\mathrm{mm}]$	200	300	400	500	600	700	800	900	1000
Product weight $[\mathrm{kg}]$	6.20	6.75	7.35	7.90	8.35	9.00	9.55	10.15	10.70
Additional weight with lock［kg］									

Series LEFS

Construction

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Rail guide	-	
$\mathbf{3}$	Ball screw shaft	-	
$\mathbf{4}$	Ball screw nut	-	
$\mathbf{5}$	Table	Aluminum alloy	Anodized
$\mathbf{6}$	Blanking plate	Aluminum alloy	Anodized
$\mathbf{7}$	Seal band stopper	Synthetic resin	
$\mathbf{8}$	Housing A	Aluminum die-cast	Coating
$\mathbf{9}$	Housing B	Aluminum die-cast	Coating
$\mathbf{1 0}$	Bearing stopper	Aluminum alloy	

No.	Description	Material	Note
11	Motor mount	Aluminum alloy	Coating
$\mathbf{1 2}$	Coupling	-	
13	Motor cover	Aluminum alloy	Anodized
14	Motor end cover	Aluminum alloy	Anodized
15	Motor	-	
16	Grommet	NBR	
17	Band stopper	Stainless steel	
18	Dust seal band	Stainless steel	
19	Bearing	-	
20	Bearing	-	

Dimensions: Ball Screw Drive

Model	L	A	B	n	D	E
LEFS25] -400--	689	406	510	8	3	360
	729	406	510	8	3	360
	789	506	610	10	4	480
	829	506	610	10	4	480
	889	606	710	12	5	600
LEFS25]-600B-प[]	929	606	710	12	5	600

Motor option: With lock
(2.2)

Note 1) When mounting the actuator using the
body mounting reference plane, set the
Note 1) When mounting the actuator using the
body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of R chamfering. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) The Z phase first detecting position from the stroke end of the motor side.
Motor option: With lock
Encoder cable (ø7)

Model	L	A	B	n	D	E
LEFS32 $\square \square-100-\square \square \square \square$	441	106	230	4	-	-
LEFS32 $\square \square$-100B- $\square \square \square \square$	471					
LEFS32 $\square \square-200-\square \square \square \square$	541	206	330	6	2	300
LEFS32 $\square \square-200 \mathrm{~B}-\square \square \square \square$	571					
LEFS32 $\square \square \mathbf{- 3 0 0 - \square \square \square \square}$	641	306	430	6	2	300
LEFS32 $\square \square$-300B- $\square \square \square \square$	671					
LEFS32 $\square \square$-400- $\square \square \square \square$	741	406	530	8	3	450
LEFS32 $\square \square$-400B- $\square \square \square \square$	771					

Model	L	A	B	n	D	E
LEFS32 $\square \square-500-\square \square \square \square$	841	506	630	10	4	600
LEFS32 $\square \square-500 \mathrm{~B}-\square \square \square \square$	871					
LEFS32 $\square \square-600-\square \square \square \square$	941	606	730	10	4	600
LEFS32 $\square \square-600 \mathrm{~B}-\square \square \square \square$	971					
LEFS32 $\square \square-700-\square \square \square \square$	1041	706	830	12	5	750
LEFS32 $\square \square-700 \mathrm{~B}-\square \square \square \square$	1071					
LEFS32 $\square \square-800-\square \square \square \square$	1141	806	930	14	6	900
LEFS32 $\square \square$-800B- $\square \square \square \square$	1171					

Series LEFS

Dimensions: Ball Screw Drive

LEFS40

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of R chamfering. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) The Z phase first detecting position from the stroke end of the motor side.

Model	L	A	B	n	D	E
LEFS40 $\square \square-200-\square \square \square \square$	614.5	206	378	6	2	300
LEFS40 $\square \square$-200B- $\square \square \square \square$	644.5					
LEFS40ㅁ- 300- $\square \square \square \square$	714.5	306	478	6	2	300
LEFS40 $\square \square-300 \mathrm{~B}-\square \square \square \square$	744.5					
LEFS40 $\square \square$-400- $\square \square \square \square$	814.5	406	578	8	3	450
LEFS40 \square-400B- $\square \square \square \square$	844.5					
LEFS40 \square-500- $\square \square \square \square$	914.5	506	678	10	4	600
LEFS40 $\square \square-500 \mathrm{~B}-\square \square \square \square$	944.5					
LEFS40 $\square \square-600-\square \square \square \square$	1014.5	606	778	10	4	600
LEFS40 $\square \square-600 \mathrm{~B}-\square \square \square \square$	1044.5					
LEFS40 $\square \square-700-\square \square \square \square$	1114.5	706	878	12	5	750
LEFS40 $\square \square-700 \mathrm{~B}-\square \square \square \square$	1144.5					
LEFS40 \square-800- $\square \square \square \square$	1214.5	806	978	14	6	900
LEFS40 $\square \square$-800B- $\square \square \square \square$	1244.5					
LEFS40口П-900- $\square \square \square \square$	1314.5	906	1078	14	6	900
LEFS40 $\square \square-900 \mathrm{~B}-\square \square \square \square$	1344.5					
LEFS40 $\square \square-1000-\square \square \square \square$	1414.5	1006	1178	16	7	1050
LEFS40 $\square \square-1000 \mathrm{~B}-\square \square \square \square$	1444.5					

Design

\triangle Caution

1．Do not apply a load in excess of the operating limit．
Select a suitable actuator by work load and allowable moment． If the product is used outside of the operating limit，the eccentric load applied to the guide will be excessive and have adverse effects such as creating play on the guide，degrading accuracy and shortening the life of the product．
2．Do not use the product in applications where excessive external force or impact force is applied to it．
This can cause failure．

Selection

© Warning

1．Do not increase the speed in excess of the operating limit．
Select a suitable actuator by the relationship of the allowable work load and speed，and the allowable speed of each stroke． If the product is used outside of the operating limit，it will have adverse effects such as creating noise，degrading accuracy and shortening the life of the product．

2．Do not use the product in applications where excessive external force or impact force is applied to it．
This can cause failure．
3．When the product repeatedly cycles with partial strokes（see the table below），operate it at a full stroke at least once every 10 strokes．
Otherwise，lubrication can run out．

Model	Partial stroke
LEFS25	65 mm or less
LEFS32	70 mm or less
LEFS40	105 mm or less

4．When external force is applied to the table，it is necessary to add external force to the work load as the total carried load for the sizing．
When a cable duct or flexible moving tube is attached to the actuator，the sliding resistance of the table increases and may lead to operational failure of the product．
5．The forward／reverse torque limit is set to 100% （3 times the motor rated torque）as default．
This value is the maximum torque（the limit value）in the ＂Position control mode＂，＂Speed control mode＂or＂Positioning mode＂．When the product is operated with a smaller value than the default，acceleration when driving can decrease．Set the value after confirming the actual device to be used．

© Caution

1．Do not allow the table to hit the end of stroke．
When incorrect instructions are inputted，such as using the product outside of the operating limit or operation outside of actual stroke through changes in the controller／driver setting and or origin position，the table may collide against the stroke end of the actuator．Please check these points before use． If the table collides against the stroke end of the actuator，the guide，belt or internal stopper can be broken．This may lead to abnormal operation．

Handle the actuator with care when it is used in the vertical direction as the workpiece will fall freely from its own weight．
2．The actual speed of this actuator is affected by the work load and stroke．
Check specifications with reference to the model selection section of the catalog．
3．Do not apply a load，impact or resistance in addition to the transferred load during return to origin．
4．Do not dent，scratch or cause other damage to the body and table mounting surfaces．
This may cause unevenness in the mounting surface，play in the guide or an increase in the sliding resistance．
5．Do not apply strong impact or an excessive moment while mounting a workpiece．
If an external force over the allowable moment is applied，it may cause play in the guide or an increase in the sliding resistance．
6．Keep the flatness of mounting surface 0.1 mm or less．
Unevenness of a workpiece or base mounted on the body of the product may cause play in the guide and an increase in the sliding resistance．
7．When mounting the product，keep a 40 mm or longer diameter for bends in the cable．
8．Do not hit the table with the workpiece in the positioning operation and positioning range．

Handling

\triangle Caution

9. When mounting the product, use screws with adequate length and tighten them with adequate torque.
Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

The traveling parallelism is the reference plane for the body mounting reference plane. If the traveling parallelism for a table is required, set the reference plane against parallel pins, etc.

Workpiece fixed

Model	Bolt	Max. tightening torque $(\mathrm{N} \cdot \mathrm{m})$	$\mathrm{L}($ Max. screw-in depth $)(\mathrm{mm})$
LEFS25	$\mathrm{M} 5 \times 0.8$	3.0	8
LEFS32	$\mathrm{M} 6 \times 1$	5.2	9
LEFS40	$\mathrm{M} 8 \times 1.25$	12.5	13

To prevent the workpiece fixing bolts from touching the body, use bolts that are 0.5 mm or shorter than the maximum screw-in depth. If long bolts are used, they can touch the body and cause a malfunction, etc.
10. Do not operate by fixing the table and moving the actuator body.
11. Check the specifications for the minimum speed of each actuator.

Otherwise, unexpected malfunctions, such as knocking, may occur.

Electric Actuator/Slider Type Ball Screw Drive acsenowar min Series 11-LEFS C ϵ LEFS25, 32, 40

How to Order

(2) Motor type				
Symbol	Type	Output (W)	Actuator size	Compatible drivers
S2*	AC servo motor (Incremental encoder)	100	25	LECSAD-S1
S3		200	32	LECSA■-S3
S4		400	40	LECSA2-S4
S6*	AC servo motor (Absolute encoder)	100	25	LECSBD-S5 LECSCD-S5 LECSSロ-S5
S7		200	32	LECSB $\square-$-S7 LECSC - -S7 LECSD \square-S7
S8		400	40	LECSB2-S8

* For motor type S2 and S6, the compatible driver part number suffixes are S 1 and S 5 respectively.
(3) Lead [mm]

Symbo	11-LEFS25	11-LEFS32	11-LEFS40
A	12	16	20
B	6	8	10

5 Motor option

Nil	Without option
B	With lock

4) Stroke [mm]

100	100
to	to
1000	1000

* Refer to the applicable stroke table.

* Select " D " for the vacuum port for suction of $50 \mathrm{~L} / \mathrm{min}$ (ANR) or more.

Cable type Note 1) Note 2)

Nil	Without cable
S	Standard cable
R	Robotic cable (Flexible cable)

Note 1) The motor and encoder cables are included. (The lock cable is also included when the motor with lock option is selected.)
Note 2) Standard cable entry direction is "(B) Counter axis side". (Refer to page 435 for details.)

* Applicable stroke table

Note 3) The length of the encoder, motor and lock cables are the same.

	Compatible drivers	Power supply voltage (V)	Size		
			$\mathbf{4 0}$		
Nil	Without driver	-	\bullet	\bullet	\bullet
A1	LECSA1-S \square	100 to 120	\bullet	\bullet	-
A2	LECSA2-S \square	200 to 230	\bullet	\bullet	\bullet
B1	LECSB1-S \square	100 to 120	\bullet	\bullet	-
B2	LECSB2-S \square	200 to 230	\bullet	\bullet	\bullet
C1	LECSC1-S \square	100 to 120	\bullet	\bullet	-
C2	LECSC2-S \square	200 to 230	\bullet	\bullet	\bullet
S1	LECSS1-S \square	100 to 120	\bullet	\bullet	-
S2	LECSS2-S \square	200 to 230	\bullet	\bullet	\bullet

* When the driver type is selected, the cable is included. Select cable type and cable length.
Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver
* Consult with SMC for non-standard strokes as they are produced as special orders.

Compatible Drivers

	Pulse input type /Positioning type	Pulse input type	CC-Link direct input type	SSCNET III type
Driver type				

Specifications
11－LEFS25，32， 40 AC Servo Motor

Model				11－LEFS25S ${ }_{6}^{2}$		11－LEFS32S ${ }_{7}$		11－LEFS40S ${ }_{8}^{4}$	
	Stroke［mm］Note 1）			$\begin{gathered} 100,200,300,400 \\ 500,600 \end{gathered}$		$\begin{aligned} & 100,200,300,400 \\ & 500,600,700,800 \\ & \hline \end{aligned}$		$\begin{gathered} 200,300,400,500,600 \\ 700,800,900,1000 \\ \hline \end{gathered}$	
	Work load［kg］Note 2）		Horizontal	20	20	40	45	50	60
			Vertical	8	15	10	20	15	30
	Max．speed ［ mm / s ］	Stroke range	Up to 400	900	450	1000	500	1000	500
			401 to 500	720	360	1000	500	1000	500
			501 to 600	540	270	800	400	1000	500
			601 to 700	－	－	620	310	940	470
			701 to 800	－	－	500	250	760	380
			801 to 900	－	－	－	－	620	310
			901 to 1000	－	－	－	－	520	260
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］			5，000（Refer to page 50 for limit according to work load and duty ratio．）					
	Positioning repeatability［mm］			± 0.02					
	Lead［mm］			12	6	16	8	20	10
	Impact／Vibration resistance［m／s ${ }^{\mathbf{2}}{ }^{\text {］Note 4）}}$			50／20					
	Actuation type			Ball screw					
	Guide type			Linear guide					
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］			5 to 40					
	Operating humidity range［\％RH］			90 or less（No condensation）					
	Cleanliness class ${ }^{\text {Note } 5)}$			ISO Class 4 （ISO 14644－1） Class 10 （Fed．Std．209E）					
	Grease \quad Ball screw／Linear guide portion			Low particle generation grease					
	Motor output／Size			$100 \mathrm{~W} / \square 40$		$200 \mathrm{~W} / \square 60$		$400 \mathrm{~W} / \square 60$	
	Motor type			AC servo motor（100／200 VAC）					
	Encoder			Motor type S2，S3，S4：Incremental 17－bit encoder（Resolution： 131072 p／rev） Motor type S6，S7，S8：Absolute 18－bit encoder（Resolution： $262144 \mathrm{p} / \mathrm{rev}$ ）					
	Power consumption［W］Note 6）		Horizontal	45		65		210	
			Vertical	145		175		230	
	Standby power consumption when operating［W］Note 7）		Horizontal	2		2		2	
			Vertical	8		8		18	
	Max．instantaneous power consumption［W］${ }^{\text {Note } 8)}$			445		725		1275	
－$=0$	Type ${ }^{\text {Note 9）}}$			Non－magnetizing lock					
気	Holding force［ N ］			131	255	197	385	330	660
Oi	Power consumption at $20^{\circ} \mathrm{C}$［W］${ }^{\text {Note 10）}}$			6.3		7.9		7.9	
	Rated voltage［V］			24 VDC $_{-10 \%}^{0}$					

Note 1）Consult with SMC for non－standard strokes as they are produced as special orders．
Note 2）For details，refer to＂Speed－Work Load Graph（Guide）＂on page 50.
Note 3）The allowable speed changes according to the stroke．
Note 4）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 5）The amount of particle generation changes according to the operating conditions and suction flow rate．Refer to the particle generation characteristics for details．
Note 6）The power consumption（including the driver）is for when the actuator is operating．
Note 7）The standby power consumption when operating（including the driver）is for when the actuator is stopped in the set position during the operation．
Note 8）The maximum instantaneous power consumption（including the driver）is for when the actuator is operating．
Note 9）Only when motor option＂With lock＂is selected．
Note 10）For an actuator with lock，add the power consumption for the lock．

Weight

Series	11－LEFS25						
Stroke $[\mathrm{mm}]$	100	200	300	400	500	600	
Product weight $[\mathrm{kg}]$	2.20	2.50	2.75	3.05	3.30	3.60	
Additional weight with lock $[\mathrm{kg}]$	0.35						

Series			11－LEFS32					
Stroke［mm］	100	200	300	400	500	600	700	800
Product weight［kg］	3.60	4.00	4.40	4.80	5.20	5.60	6.00	6.40
Additional weight with lock［kg］	0.70							

Series	11－LEFS40								
Stroke［mm］	200	300	400	500	600	700	800	900	1000
Product weight $[\mathrm{kg}]$	6.20	6.75	7.35	7.90	8.35	9.00	9.55	10.15	10.70
Additional weight with lock $[\mathrm{kg}]$									

Dimensions: Ball Screw Drive

Model	L	A	B	n	D	E
11-LEFS32 $\square \square-100-\square \square \square \square$	441	106	230	4	-	-
11-LEFS32 $\square \square-100 \mathrm{~B}-\square \square \square \square$	471					
11-LEFS32 $\square \square-200-\square \square \square \square$	541	206	330	6	2	300
11-LEFS32 $\square \square-200 \mathrm{~B}-\square \square \square \square$	571					
11-LEFS32 $\square \square$-300- $\square \square \square \square$	641	306	430	6	2	300
11-LEFS32 $\square \square-300 \mathrm{~B}-\square \square \square \square$	671					
11-LEFS32 $\square \square-400-\square \square \square \square$	741	406	530	8	3	450
11-LEFS32 $\square \square-400 \mathrm{~B}-\square \square \square \square$	771					

Model	L	A	B	n	D	E
11-LEFS32 $\square \square-500-\square \square \square \square$	841	506	630	10	4	600
11-LEFS32 $\square \square-500 \mathrm{~B}-\square \square \square \square$	871					
11-LEFS32 $\square \square-600-\square \square \square \square$	941	606	730	10	4	600
11-LEFS32 $\square \square-600 \mathrm{~B}-\square \square \square \square$	971					
11-LEFS32 $\square \square-700-\square \square \square \square$	1041	706	830	12	5	750
11-LEFS32 $\square \square-700 \mathrm{~B}-\square \square \square \square$	1071					
11-LEFS32 $\square \square-800-\square \square \square \square$	1141	806	930	14	6	900
11-LEFS32 $\square \square-800 \mathrm{~B}-\square \square \square \square$	1171					

Dimensions：Ball Screw Drive
11－LEFS40

Note 1）When mounting the actuator using the body mounting reference plane，set the height of the opposite surface or pin to be 3 mm or more because of R chamfering．（Recommended height 5 mm ）
Note 2）Distance within which the table can move when it returns to origin．Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table．
Note 3）The Z phase first detecting position from the stroke end of the motor side．

Model	L	A	B	n	D	E
11－LEFS40 $\square \square-200-\square \square \square \square$	614.5	206	378	6	2	300
11－LEFS40 $\square \square-200 \mathrm{~B}-\square \square \square \square$	644.5					
11－LEFS40■口－300－$\square \square \square \square$	714.5	306	478	6	2	300
11－LEFS40 \square－300B－$\square \square \square \square$	744.5					
11－LEFS40 \square－400－$\square \square \square \square$	814.5	406	578	8	3	450
11－LEFS40 $\square \square-400 \mathrm{~B}-\square \square \square \square$	844.5					
11－LEFS40 $\square \square-500-\square \square \square \square$	914.5	506	678	10	4	600
11－LEFS40 \square－500B－$\square \square \square \square$	944.5					
11－LEFS40 $\square \square-600-\square \square \square \square$	1014.5	606	778	10	4	600
11－LEFS40 $\square-600 \mathrm{~B}-\square \square \square \square$	1044.5					
11－LEFS40■口－700－$\square \square \square \square$	1114.5	706	878	12	5	750
11－LEFS40 $\square-700 \mathrm{~B}-\square \square \square \square$	1144.5					
11－LEFS40 $\square \square-800-\square \square \square \square$	1214.5	806	978	14	6	900
11－LEFS40 $\square \square-800 \mathrm{~B}-\square \square \square \square$	1244.5					
11－LEFS40ロव－900－$\square \square \square \square$	1314.5	906	1078	14	6	900
11－LEFS40口П－900B－$\square \square \square \square$	1344.5					
11－LEFS40ㅁ－1000－$\square \square \square \square$	1414.5	1006	1178	16	7	1050
11－LEFS40 $\square \square$－1000B－$\square \square \square \square$	1444.5					

Electric Actuator/Slider Type Belt Drive cacsenmat

Series LEFB LEFB25, 32, 40

How to Order

Specifications

LEFB25，32， 40 AC Servo Motor

Model			LEFB25S ${ }_{6}^{2}$	LEFB32S ${ }_{7}^{3}$	LEFB40S ${ }_{8}^{4}$
	Stroke［mm］${ }^{\text {Note 1）}}$		$\begin{gathered} 300,400,500 \\ 600,700,800 \\ 900,1000,(1100) \\ 1200,(1300,1400) \\ 1500,(1600,1700) \\ (1800,1900), 2000 \end{gathered}$	$300,400,500$ $600,700,800$ $900,1000,(1100)$ $1200,(1300,1400)$ $1500,(1600,1700)$ $(1800,1900), 2000$ 2500	$300,400,500$ $600,700,800$ $900,1000,(1100)$ $1200,(1300,1400)$ $1500,(1600,1700)$ $(1800,1900), 2000$ 2500,3000
	Work load［kg］${ }^{\text {Note 2）}}$	Horizontal	5	15	25
	Max．speed［mm／s］		2，000	2，000	2，000
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］		20，000（Refer to page 53 for limit according to work load and duty ratio．）Note 3）		
	Positioning repeatability［mm］		± 0.08		
	Equivalent lead［mm］		54		
	Impact／Vibration resistance［m／s ${ }^{2}$ ］Note 4）		50／20		
	Actuation type		Belt		
	Guide type		Linear guide		
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40		
	Operating humidity range［\％RH］		90 or less（No condensation）		
	Motor output／Size		$100 \mathrm{~W} / \square 40$	$200 \mathrm{~W} / \square 60$	$400 \mathrm{~W} / \square 60$
	Motor type		AC servo motor（100／200 VAC）		
	Encoder		Motor type S2，S3，S4：Incremental 17－bit encoder（Resolution： 131072 p／rev） Motor type S6，S7，S8：Absolute 18－bit encoder（Resolution： $262144 \mathrm{p} / \mathrm{rev}$ ）		
	Power consumption［W］Note 5）	Horizontal	29	41	72
		Vertical	－	－	－
	Standby power consumption when operating［W］Note 6）	Horizontal	2	2	2
		Vertical	－	－	－
	Max．instantaneous power consumption［W］${ }^{\text {Note T］}}$		445	725	1275
	Type ${ }^{\text {Note 8）}}$		Non－magnetizing lock		
	Holding force［ N ］		27	54	110
	Power consumption at $\mathbf{2 0}{ }^{\circ} \mathrm{C}$［W］${ }^{\text {Note 9）}}$		6.3	7.9	7.9
	Rated voltage［V］		$24 \mathrm{VDC}_{-10 \%}^{0}$		

Note 1）Consult with SMC as all non－standard and non－made－to－order strokes are produced as special orders．
Note 2）For details，refer to＂Speed－Work Load Graph（Guide）＂on page 53.
Note 3）Maximum acceleration／deceleration changes according to the work load．Check＂Work Load－Acceleration／Deceleration Graph＂of the catalog．
Note 4）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 5）The power consumption（including the driver）is for when the actuator is operating．
Note 6）The standby power consumption when operating（including the driver）is for when the actuator is stopped in the set position during the operation．
Note 7）The maximum instantaneous power consumption（including the driver）is for when the actuator is operating．
Note 8）Only when motor option＂With lock＂is selected．
Note 9）For an actuator with lock，add the power consumption for the lock．

Weight

Series	LEFB25S \square S																	
Stroke [mm]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
Product weight [kg]	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00	5.25	5.50	5.75	6.00	6.25	6.50	6.75	7.00	7.25
Additional weight with lock [kg]	0.35																	

Series	LEFB32S \square S																		
Stroke [mm]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500
Product weight [kg]	4.90	5.25	5.60	5.95	6.30	6.65	7.00	7.35	7.70	8.05	8.40	8.75	9.10	9.45	9.80	10.15	10.50	10.85	12.60
Additional weight with lock [kg]	0.75																		

Series	LEFB40S \square S																			
Stroke [mm]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500	3000
Product weight [kg]	7.10	7.55	8.00	8.45	8.90	9.35	9.80	10.25	10.70	11.15	11.60	12.05	12.50	12.95	13.40	13.85	14.30	14.75	17.00	19.25
Additional weight with lock [kg]	0.7																			

Handling

\triangle Caution

1. The belt drive actuator cannot be used vertically for applications.
2. In the case of the belt drive actuator, vibration may occur during operation at speeds within the actuator specifications, this could be caused by the operating conditions. Change the speed setting to a speed that does not cause vibration.

Maintenance

© Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check	Belt check
Inspection before daily operation	\bigcirc	-	-
Inspection every 6 months $/ 1000 \mathrm{~km} /$ 5 million cycles*	\bigcirc	\bigcirc	\bigcirc

[^6]- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

Maintenance

© Warning

- Items for internal check

1. Lubricant condition on moving parts.
2. Loose or mechanical play in fixed parts or fixing screws.

- Items for belt check

Stop operation immediately and replace the belt when belt appear to be below. Further, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out.

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign matter caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky.
f. Crack on the back of the belt

Construction
LEFB25S \square S

Component Parts

No．	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Rail guide		
3	Belt		
4	Belt holder	Carbon steel	Chromate treated
5	Belt stopper	Aluminum alloy	Anodized
6	Table	Aluminum alloy	Anodized
7	Blanking plate	Aluminum alloy	Anodized
8	Seal band stopper	Synthetic resin	
9	Housing A	Aluminum die－cast	Coating
10	Pulley holder	Aluminum alloy	
11	Pulley shaft	Stainless steel	
12	End pulley	Aluminum alloy	Anodized
13	Motor pulley	Aluminum alloy	Anodized
14	Return flange	Aluminum alloy	Coating

Component Parts

No．	Description	Material	Note
15	Housing	Aluminum alloy	Coating
16	Motor mount	Aluminum alloy	Coating
17	Motor cover	Aluminum alloy	Anodized
18	Motor end cover	Aluminum alloy	Anodized
19	Band stopper	Stainless steel	
20	Motor		
21	Rubber bushing	NBR	
22	Stopper	Aluminum alloy	
23	Dust seal band	Stainless steel	
24	Bearing		
25	Bearing	Stainless steel	
26	Spacer	Chromium molybdenum steel	Chromate treated
27	Tension adjustment bolt	Chromium molybdenum steel	Chromate treated
28	Pulley fixing bolt		

Construction

LEFB32/40S \square S

* Motor bottom mounting type is the same.

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Rail guide		
3	Belt		
4	Belt holder	Aluminum alloy	Anodized
5	Belt stopper	Aluminum alloy	Anodized
6	Table	Aluminum alloy	Anodized
7	Blanking plate	Synthetic resin	
8	Seal band stopper	Aluminum alloy	Coating
9	End block		
10	End block cover	Aluminum alloy	
11	Pulley holder	Stainless steel	
12	Pulley shaft	Aluminum alloy	Anodized
13	End pulley	Aluminum alloy	Anodized
14	Motor pulley		

Component Parts

No.	Description	Material	Note
$\mathbf{1 5}$	Return flange	Aluminum alloy	Coating
$\mathbf{1 6}$	Housing	Aluminum alloy	Coating
$\mathbf{1 7}$	Motor mount	Aluminum alloy	Coating
$\mathbf{1 8}$	Motor cover	Aluminum alloy	Anodized
$\mathbf{1 9}$	Motor end cover	Aluminum alloy	Anodized
$\mathbf{2 0}$	Band stopper	Stainless steel	
$\mathbf{2 1}$	Motor		
$\mathbf{2 2}$	Rubber bushing	NBR	
$\mathbf{2 3}$	Dust seal band	Stainless steel	
$\mathbf{2 4}$	Bearing		
$\mathbf{2 5}$	Bearing		
$\mathbf{2 6}$	Bearing		
$\mathbf{2 7}$	Tension adjustment bolt	Chromium molybdenum steel	Chromate treated

Dimensions: Belt Drive

LEFB25/Motor top mounting type

Motor option: With lock

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{A}	\mathbf{n}	\mathbf{D}	\mathbf{E}
300	552	306	467	6	2	340
400	652	406	567	8	3	510
500	752	506	667	8	3	510
600	852	606	767	10	4	680
700	952	706	867	10	4	680
800	1052	806	967	12	5	850
900	1152	906	1067	14	6	1020
1000	1252	1006	1167	14	6	1020
1100	1352	1106	1267	16	7	1190
1200	1452	1206	1367	16	7	1190
1300	1552	1306	1467	18	8	1360
1400	1652	1406	1567	20	9	1530
1500	1752	1506	1667	20	9	1530
1600	1852	1606	1767	22	10	1700
1700	1952	1706	1867	22	10	1700
1800	2052	1806	1967	24	11	1870
1900	2152	1906	2067	24	11	1870
2000	2252	2006	2167	26	12	2040

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of R chamfering. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) The Z phase first detecting position from the stroke end of the motor side.

Series LEFB

Dimensions: Belt Drive

LEFB25U/Motor bottom mounting type

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of R chamfering. (Recommended height 5 mm)

Dimensions						
Stroke	\mathbf{L}	A	B	n	\mathbf{D}	\mathbf{E}
300	552	306	467	6	2	340
400	652	406	567	8	3	510
500	752	506	667	8	3	510
600	852	606	767	10	4	680
700	952	706	867	10	4	680
800	1052	806	967	12	5	850
900	1152	906	1067	14	6	1020
1000	1252	1006	1167	14	6	1020
1100	1352	1106	1267	16	7	1190
1200	1452	1206	1367	16	7	1190
1300	1552	1306	1467	18	8	1360
1400	1652	1406	1567	20	9	1530
1500	1752	1506	1667	20	9	1530
1600	1852	1606	1767	22	10	1700
1700	1952	1706	1867	22	10	1700
1800	2052	1806	1967	24	11	1870
1900	2152	1906	2067	24	11	1870
2000	2252	2006	2167	26	12	2040

Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) The Z phase first detecting position from the stroke end of the motor side.

Dimensions: Belt Drive

LEFB32/Motor top mounting type

(L)

Motor option: With lock

Dimensions

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
300	590	306	430	6	2	400
400	690	406	530	6	2	400
500	790	506	630	8	3	600
600	890	606	730	8	3	600
700	990	706	830	10	4	800
800	1090	806	930	10	4	800
900	1190	906	1030	12	5	1000
1000	1290	1006	1130	12	5	1000
1100	1390	1106	1230	14	6	1200
1200	1490	1206	1330	14	6	1200
1300	1590	1306	1430	16	7	1400
1400	1690	1406	1530	16	7	1400
1500	1790	1506	1630	18	8	1600
1600	1890	1606	1730	18	8	1600
1700	1990	1706	1830	20	9	1800
1800	2090	1806	1930	20	9	1800
1900	2190	1906	2030	22	10	2000
2000	2290	2006	2130	22	10	2000
2500	2790	2506	2630	28	13	2600

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of R chamfering. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) The Z phase first detecting position from the stroke end of the motor side.

Series LEFB

Dimensions: Belt Drive

LEFB32U/Motor bottom mounting type

Motor option: With lock

Dimensions

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
300	590	306	430	6	2	400
400	690	406	530	6	2	400
500	790	506	630	8	3	600
600	890	606	730	8	3	600
700	990	706	830	10	4	800
800	1090	806	930	10	4	800
900	1190	906	1030	12	5	1000
1000	1290	1006	1130	12	5	1000
1100	1390	1106	1230	14	6	1200
1200	1490	1206	1330	14	6	1200
1300	1590	1306	1430	16	7	1400
1400	1690	1406	1530	16	7	1400
1500	1790	1506	1630	18	8	1600
1600	1890	1606	1730	18	8	1600
1700	1990	1706	1830	20	9	1800
1800	2090	1806	1930	20	9	1800
1900	2190	1906	2030	22	10	2000
2000	2290	2006	2130	22	10	2000
2500	2790	2506	2630	28	13	2600

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of R chamfering. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) The Z phase first detecting position from the stroke end of the motor side.

Dimensions：Belt Drive
LEFB40／Motor top mounting type

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
300	641.5	306	478	6	2	400
400	741.5	406	578	6	2	400
500	841.5	506	678	8	3	600
600	941.5	606	778	8	3	600
700	1041.5	706	878	10	4	800
800	1141.5	806	978	10	4	800
900	1241.5	906	1078	12	5	1000
1000	1341.5	1006	1178	12	5	1000
1100	1441.5	1106	1278	14	6	1200
1200	1541.5	1206	1378	14	6	1200
1300	1641.5	1306	1478	16	7	1400
1400	1741.5	1406	1578	16	7	1400
1500	1841.5	1506	1678	18	8	1600
1600	1941.5	1606	1778	18	8	1600
1700	2041.5	1706	1878	20	9	1800
1800	2141.5	1806	1978	20	9	1800
1900	2241.5	1906	2078	22	10	2000
2000	2341.5	2006	2178	22	10	2000
2500	2841.5	2506	2678	28	13	2600
3000	3341.5	3006	3178	32	15	3000

Note 1）When mounting the actuator using the body mounting reference plane， set the height of the opposite surface or pin to be 3 mm or more because of R chamfering．（Recommended height 5 mm ）
Note 2）Distance within which the table can move when it returns to origin．Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table．
Note 3）The Z phase first detecting position from the stroke end of the motor side．

Series LEFB

Dimensions: Belt Drive

LEFB40U/Motor bottom mounting type

Motor option: With lock

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
300	641.5	306	478	6	2	400
400	741.5	406	578	6	2	400
500	841.5	506	678	8	3	600
600	941.5	606	778	8	3	600
700	1041.5	706	878	10	4	800
800	1141.5	806	978	10	4	800
900	1241.5	906	1078	12	5	1000
1000	1341.5	1006	1178	12	5	1000
1100	1441.5	1106	1278	14	6	1200
1200	1541.5	1206	1378	14	6	1200
1300	1641.5	1306	1478	16	7	1400
1400	1741.5	1406	1578	16	7	1400
1500	1841.5	1506	1678	18	8	1600
1600	1941.5	1606	1778	18	8	1600
1700	2041.5	1706	1878	20	9	1800
1800	2141.5	1806	1978	20	9	1800
1900	2241.5	1906	2078	22	10	2000
2000	2341.5	2006	2178	22	10	2000
2500	2841.5	2506	2678	28	13	2600
3000	3341.5	3006	3178	32	15	3000

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of R chamfering. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) The Z phase first detecting position from the stroke end of the motor side.

Please contact SMC for detailed dimensions，specifications and lead times．

1 Support Guide

A support guide is designed to support workpieces with significant overhang．

－X139

－As the dimensions are the same as the LEF series body，installation is simple and contributes to a reduction in installation and assembly labor．
－The standard equipped seal bands prevent grease from splashing and external foreign matter from entering．
－The dimensions of the product mounting hole and pitch are the same as those of the LEFB（belt type）．

Application example

After installing the actuator on the drive side，perform the alignment of the support guide．However，when the mounting flatness exceeds 0.1 ，install a floating mechanism separately on the workpiece installation surface（table）．

How to Order

Applicable stroke table

Model	Applicable strokes													
	100	200	300	400	500	600	700	800	900	1000	1200	1500	1800	2000
LEFS16－［Stroke］－X139	－	－	\bullet	\bullet	\bullet	－	－	－	－	－	－	－	－	－
LEFS25－［Stroke］－X139	\bullet													
LEFS32－［Stroke］－X139	\bullet	－	\bullet	\bullet	\bullet	\bigcirc	\bullet	\bullet	\bigcirc	－	\bullet	\bullet	\bullet	\bullet
LEFS40－［Stroke］－X139	\bullet	\bullet	\bigcirc	\bullet	－	\bullet	\bullet	－	\bigcirc	－	\bullet	－	\bullet	\bullet

：Available —：Not available

Series LEF

Dimensions

LEFS16, 25, 32, 40

Dimensions
(mm)

Model	External dimensions		
	Height	Width	Total length
LEFS16-[Stroke]-X139	40	40	$49+[$ Stroke $]$
LEFS25-[Stroke]-X139	48	58	$130+[$ Stroke $]$
LEFS32-[Stroke]-X139	60	70	$150+[$ Stroke $]$
LEFS40-[Stroke]-X139	68	90	$204+[$ Stroke $]$

Weight

Model	Stroke													
	100	200	300	400	500	600	700	800	900	1000	1200	1500	1800	2000
LEFS16-[Stroke]-X139	0.31	0.43	0.55	0.67	0.79	0.91	1.03	1.15	1.27	1.39	-	-	-	-
LEFS25-[Stroke]-X139	0.67	0.89	1.11	1.33	1.55	1.77	1.99	2.21	2.43	2.65	3.09	3.75	4.41	4.85
LEFS32-[Stroke]-X139	1.08	1.40	1.72	2.04	2.36	2.68	3.00	3.32	3.64	3.96	4.60	5.56	6.52	7.16
LEFS40-[Stroke]-X139	1.86	2.29	2.72	3.15	3.58	4.01	4.44	4.87	5.30	5.73	6.59	7.88	9.17	10.03

Rated Load

Rated load	LEFS16	LEFS25	LEFS32	LEFS40
Basic dynamic rated load	6250	8950	16500	22700
Basic static rated load	8350	13900	22000	34500

Table Accuracy

Model	Traveling parallelism [mm] (Every 300 mm)	
	(1) C side traveling parallelism to A side	(2) D side traveling parallelism to B side
LEF16	0.05	0.03
LEF25	0.05	0.03
LEF32	0.05	0.03
LEF40	0.05	0.03

Note) Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

Note 1) This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table.
Note 2) Please confirm the clearance and play of the guide separately.

Acceleration／Deceleration

$1,000 \mathrm{~mm} / \mathrm{s}^{2} \quad---3,000 \mathrm{~mm} / \mathrm{s}^{2}$ \qquad $5,000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LEF

Dimensions
LEFS16

Dimensions

Dimensions

LEFS25

Dimensions

Dimensions					
Part no.	L	B	\mathbf{n}	D	E
LEFS25-100-X139	230	210	4	1	170
LEFS25-200-X139	330	310	4	1	170
LEFS25-300-X139	430	410	6	2	340
LEFS25-400-X139	530	510	6	2	340
LEFS25-500-X139	630	610	8	3	510
LEFS25-600-X139	730	710	8	3	510
LEFS25-700-X139	830	810	10	4	680
LEFS25-800-X139	930	910	12	5	850
LEFS25-900-X139	1030	1010	12	5	850
LEFS25-1000-X139	1130	1110	14	6	1020
LEFS25-1200-X139	1330	1310	16	7	1190
LEFS25-1500-X139	1630	1610	20	9	1530
LEFS25-1800-X139	1930	1910	24	11	1870
LEFS25-2000-X139	2130	2110	26	12	2040

Series LEF

Dimensions
LEFS32

Dimensions					
Part no.	L	B	n	D	E
LEFS32-100-X139	250	230	4	1	200
LEFS32-200-X139	350	330	4	1	200
LEFS32-300-X139	450	430	6	2	400
LEFS32-400-X139	550	530	6	2	400
LEFS32-500-X139	650	630	8	3	600
LEFS32-600-X139	750	730	8	3	600
LEFS32-700-X139	850	830	10	4	800
LEFS32-800-X139	950	930	10	4	800
LEFS32-900-X139	1050	1030	12	5	1000
LEFS32-1000-X139	1150	1130	12	5	1000
LEFS32-1200-X139	1350	1330	14	6	1200
LEFS32-1500-X139	1650	1630	18	8	1600
LEFS32-1800-X139	1950	1930	20	9	1800
LEFS32-2000-X139	2150	2130	22	10	2000

Dimensions
LEFS40

Dimensions

Dimensions
Part no．

Electric Actuator
 Series LEJ

($\in \mathbb{R O H B}$
High Rigidity Slider Type

Low-profile/Low center of gravity

 Height dimension reduced by approx. 36% (Reduced by 32 mm)

Ball Screw Drive Series LEJS

Size: 40, 63
Page 90
Work load: 85 kg
Positioning repeatability: $\pm 0.02 \mathrm{~mm}$
Max. acceleration/deceleration: $\mathbf{2 0 , 0 0 0 ~ m m / s ^ { 2 }}$

Belt Drive Series LEJB
Size: 40, 63 -Page 90
Max. stroke: 3,000 mm
Max. speed: 3,000 mm/s
Max. acceleration/deceleration: $\mathbf{2 0 , 0 0 0 ~ m m} / \mathrm{s}^{2}$

Series LEJ

-High precision/High rigidity
Double axis linear guide reduces deflection

-Reduction of the installation labor
Possible to mount the main body without removing the external cover, etc.

Equipped with seal bands as standard
Covers the guide, ball screw and belt. Prevents grease from splashing and externa foreign matter from entering.

AC Servo Motor

Ball Screw Drive/Series LEJS

Table displacement

-Weight reduction
Weight reduced by approx. 37%

* Stroke: 600 mm

Workpiece does not interfere with the motor Table height > Motor height

Non-magnetizing lock (Option)
Holding a workpiece
Positioning pin hole

Belt Drive/Series LEJB

-Solid state auto switch can be mounted (For checking the limit and intermediate signal)

- Switch wiring can be placed in the body
- D-M9 \square W (2-color indication), D-M9 \square

2-color indication solid state auto switch
Appropriate setting of the mounting position
can be performed without mistakes.

A green light
lights up at the optimum
operating range.

Application Examples

Glue dispensing/High speed trajectory is available

Recommended driver: LECSS
(SSCNET III)

Series Variations

Ball Screw Drive/series LEJS

* Consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.

Belt Drive/Series LEJB

Size	Equivalent lead (mm)	Stroke (mm)*1	Work load: Horizontal (kg)*2						Speed (mm / s)						Page
			5	10	15	20	25	30	500	1000	1500	2000	2500	3000	
40	27	$\begin{gathered} \text { (200), 300, (400), 500, (600), (700), } 800 \\ (900), 1000,(1200),(1500),(2000) \end{gathered}$													
63	42	$(300),(400), 500,(600),(700), 800$													
		(900), 1000, 1200, (1500), (2000), (3000)													

[^7]
Electric Actuator/High Rigidity Slider Type AC Servo Motor Ball Screw Drive/Series LEJS Belt Drive/Series LEJB Model Selection

Selection Procedure
$\geq<$

Step 1 Check the speed-work load. Step 2 Check the cycle time. Step 3 Check the allowable moment.

Selection Example

Operating conditions

- Work load: 60 [kg]
- Speed: 300 [mm/s]
- Acceleration/Deceleration: 3000 [mm/s²]
- Stroke: 300 [mm]
- Mounting orientation: Horizontal
- Motor type: Incremental encoder
- External force: 10 [N]

Step 1

Check the speed-work load.
Select the product by referring to "Speed-Work Load Graph" (Page 91). Selection example) The LEJS63S3B-300 is temporarily selected based on the graph shown on the right side.
The regeneration option (LEC-MR-RB-032) may be necessary. See the shaded area in the graph.

Step 2 Check the cycle time.

Refer to method 1 for a rough estimate, and method 2 for a more precise value.

Method 1: Check the cycle time graph (Page 92)

The graph is based on the maximum speed of each size.

Method 2: Calculation

Cycle time T can be found from the following equation.

- T1 and T3 can be obtained by the following equation. $\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]$

The acceleration and deceleration values have upper limits depending on the workpiece mass and the duty ratio.
Check that they do not exceed the upper limit, by referring to "Work load-Acceleration/Deceleration Graph (Guide)" (Pages 93 and 94).
For the ball screw type, there is an upper limit of the speed depending on the stroke. Check that if it does not exceed the upper limit, by referring to the specifications (Page 99).

- T2 can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4 varies depending on the motor type and load. The value below is recommended.
T4 = 0.05 [s]

Calculation example)
T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}]$,
$\mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}$
$=\frac{300-0.5 \cdot 300 \cdot(0.1+0.1)}{300}$
$=0.90[\mathrm{~s}]$
$\mathrm{T} 4=0.05[\mathrm{~s}]$
Therefore, the cycle time can be obtained as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.1+0.90+0.1+0.05 \\
& =\mathbf{1 . 1 5}[\mathbf{s}]
\end{aligned}
$$

Step 3 Check the allowable moment.

Refer to "Dynamic Allowable Moment" graphs (Pages 95 and 96).

Selection example) Select the LEJS63S3B-300 from the graph on the right side. Confirm that the external force is $20[\mathrm{~N}]$ or less (Refer to the allowable external force on page 99.). (The external force is the resistance due to cable duct, flexible trunking or air tubing.)

<Speed-Work load graph> (LEJS63)

L : Stroke [mm]
V : Speed [mm/s]
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right.$]
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right.$]
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until in position is completed
T5: Resting time [s]
Time the product is not running
T6: Total time [s]
Total time from T1 to T5
Duty ratio: Ratio of T to T6
$T \div T 6 \times 100$

<Dynamic allowable moment> (LEJS63)

Speed-Work Load Graph (Guide)
LEJS40/Ball Screw Drive

Horizontal

Vertical

Vertical

LEJB63/Belt Drive

Horizontal

* When the stroke of the LEJB40 series exceeds 1000 mm , the work load is 10 kg .
* The shaded area in the graph requires the regeneration option (LEC-MR-RB-032)
* The belt drive actuator cannot be used vertically for applications.

Cycle Time Graph (Guide)

LEJS40/Ball Screw Drive
LEJS40 \square A

LEJS40 \square B

LEJS63/Ball Screw Drive

LEJS63 \square A

LEJB40/Belt Drive

LEJS63 \square B

LEJB63/Belt Drive

* Work load/acceleration/deceleration graph
* Maximum speed/acceleration/deceleration values graph for each stroke

Model Selection Series LEJ

Work Load-Acceleration/Deceleration Graph (Guide)
LEJS40/Ball Screw Drive: Horizontal

LEJS40 \square A

LEJS40■B

Series LEJ

Work Load-Acceleration/Deceleration Graph (Guide)
LEJS63/Ball Screw Drive: Horizontal

LEJS63 \square A

LEJS63 \square B

LEJS63/Ball Screw Drive: Vertical

LEJS63 \square A

LEJB40/Belt Drive: Horizontal

LEJS63 \square B

LEJB63/Belt Drive: Horizontal

등	Load overhanging direction m ：Work load［kg］ Me：Dynamic allowable moment［ $\mathrm{N} \cdot \mathrm{m}$ ］ L ：Overmang to the work load center of gravity［mm］		Model			
d			LEJS40	LEJS63	LEJB40	LEJB63
		X				
$\overline{\bar{\pi}}$		Y				

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEJS/LEJB
Size: 40/63

Acceleration [mm/s²]: a Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph with reference to the model, size and mounting orientation.
3. Based on the acceleration and work load, obtain the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.

$$
\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z
$$

5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$ and $\alpha \mathbf{z}$ is 1 or less.
$\alpha x+\alpha y+\alpha z \leq 1$
When 1 is exceeded, please consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LEJS
Size: 40
Mounting orientation: Horizontal
Acceleration [mm/s²]: 5000
Work load [kg]: 20
Work load center position [mm]: Xc=0,Yc=50, Zc=200
2. Select the graph on page 95 , top and left side first row.

Mounting orientation

Table Accuracy (Reference Value)

Model	Traveling parallelism [mm] (Every 300 mm)	
	1 C side traveling parallelism to A side	(2) D side traveling parallelism to B side
LEJ $\square \mathbf{4 0}$	0.05	0.03
LEJ $\square \mathbf{6 3}$	0.05	0.03

Table Displacement (Reference Value)

Note) This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table. (Table clearance is included.)

Electric Actuator/High Rigidity Slider Type Ball Screw Drive ac seno morr

Series LEJS C€

How to Order

2 Motor type ${ }^{* 1}$				
Symbol Type Output $[W]$ Actuator size S2 AC servo motor (Incremental encoder) 100 40 Compatible drivers				
S3	AC servo motor (Incremental encoder)	200	63	LECSA \square-S1
S6	AC servo motor (Absolute encoder)	100	40	LECSB \square-S5 LECSC \square-S5 LECSS \square-S5
S7	AC servo motor (Absolute encoder)	200	63	LECSB \square-S7 LECSC \square-S7 LECSS \square-S7

*1: For motor type S2 and S6, the compatible driver part number suffixes are S1 and S5 respectively.
*2: For details of the driver, refer to page 419.

6 Cable type ${ }^{* 5, * 6, * 7}$

Nil	Without cable
S	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

*6: The motor and encoder cables are included. (The lock cable is included when the motor with lock option is selected.)
*7: Standard cable entry direction is "(A) Axis side". (Refer to page 435 for details.)
7 Cable length [m] ${ }^{* 5, * 8}$

Nil	Without cable
2	2 m
$\mathbf{5}$	5 m
\mathbf{A}	10 m

*8: The length of the motor, encoder and lock cables are the same.

8 Driver type ${ }^{* 5}$

Nil	Compatible drivers	Power supply voltage (V)
A1	LECSA1-S \square	100 to 120
A2	LECSA2-S \square	200 to 230
B1	LECSB1-S \square	100 to 120
B2	LECSB2-S \square	200 to 230
C1	LECSC1-S \square	100 to 120
C2	LECSC2-S \square	200 to 230
S1	LECSS1-S \square	100 to 120
S2	LECSS2-S \square	200 to 230

(9) $1 / 0$ connector | Nil | Without connectior |
| :---: | :---: |
| H | With connectior |

Applicable Stroke Table*4					- Standard OProduced upon receipt of order						
Stroke Model	200	300	400	500	600	700	800	900	1000	1200	1500
LEJS40	-	-	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-
LEJS63	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc

*4: Consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.
*5: When the driver type is selected, the cable is included. Select cable type and cable length. Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver

Compatible Drivers
For auto switches, refer to pages 108 and 109.

Driver type	Pulse input type /Positioning type	Pulse input type	CC-Link direct input type	SSCNET III type
Series	LECSA	LECSB	LECSC	LECSS
Number of point tables	Up to 7	-	Up to 255	-
Pulse input	\bigcirc	\bigcirc	-	-
Applicable network	-	-	CC-Link	SSCNET III
Control encoder	Incremental 17-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder
Communication	USB communication	USB communication, RS422 communication	USB communication, RS422 communication	USB communication
Power supply voltage (V)	100 to 120 VAC $(50 / 60 \mathrm{~Hz})$ 200 to 230 VAC $(50 / 60 \mathrm{~Hz})$			
Reference page	Page 419			

Specifications

LEJS40／63 AC Servo Motor

Model				LEJS40S ${ }_{6}^{2}$		LEJS63S ${ }_{7}^{3}$	
	Stroke［mm］Note 1）			$\begin{gathered} 200,300,(400), 500,600,(700), 800 \\ \text { (900), (1000), (1200) } \end{gathered}$		$\begin{gathered} 300,(400), 500,600,(700), 800,(900) \\ 1000,(1200),(1500) \end{gathered}$	
	Work load［kg］Note 2）		Horizontal	30	55	45	85
			Vertical	5	10	10	20
	Speed Note 3） ［mm／s］	Stroke range	Up to 500	1200	600	1200	600
			501 to 600	1050	520	1200	600
			601 to 700	780	390	1200	600
			701 to 800	600	300	930	460
			801 to 900	480	240	740	370
			901 to 1000	390	190	600	300
			1001 to 1100	320	160	500	250
			1101 to 1200	270	130	420	210
			1201 to 1300	－	－	360	180
			1301 to 1400	－	－	310	150
			1401 to 1500	－	－	270	130
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］			20000 （Refer to page 93 for limit according to work load and duty ratio．）			
	Positioning repeatability［mm］${ }^{\text {Note 4）}}$			± 0.02			
	Lead［mm］			16	8	20	10
	Impact／Vibration resistance［m／s ${ }^{\mathbf{2}}$ ］Note 5）			50／20			
	Actuation type			Ball screw			
	Guide type			Linear guide			
	Allowable external force［N］			20			
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］			5 to 40			
	Operating humidity range［\％RH］			90 or less（No condensation）			
	Regeneration option			May be required depending on speed and work load．（Refer to page 435．）			
	Motor output［W］／Size［mm］			100／$\square 40$		200／■60	
	Motor type			AC servo motor（100／200 VAC）			
	Encoder			Motor type S2，S3：Incremental 17－bit encoder（Resolution： $131072 \mathrm{p} / \mathrm{rev}$ ） Motor type S6，S7：Absolute 18－bit encoder（Resolution： $262144 \mathrm{p} / \mathrm{rev}$ ）			
	Power consumption［W］${ }^{\text {Note 6）}}$		Horizontal	65		80	
			Vertical	165		235	
	Standby power consumption when operating［W］${ }^{\text {Note } 7 \text { ）}}$		Horizontal	2		2	
			Vertical	10		12	
	Max．instantaneous power consumption［W］Note 8）			445		725	
	Type Note 9）			Non－magnetizing lock			
	Holding force［ N ］			101	203	330	660
	Power consumption at $20^{\circ} \mathrm{C}$［W］Note 10）			6.3		7.9	
	Rated voltage［V］			$24 \text { VDC }_{-10 \%}^{0}$			

Note 1）Consult with SMC as all non－standard and non－made－to－order strokes are produced as special orders．
Note 2）Check＂Speed－Work Load Graph（Guide）＂on page 91.
Note 3）The allowable speed changes according to the stroke．
Note 4）Conforming to JIS B 6191－1999
Note 5）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 6）The power consumption（including the driver）is for when the actuator is operating．
Note 7）The standby power consumption when operating（including the driver）is for when the actuator is stopped in the set position during the operation．
Note 8）The maximum instantaneous power consumption（including the driver）is for when the actuator is operating．
Note 9）Only when motor option＂With lock＂is selected．
Note 10）For an actuator with lock，add the power consumption for the lock．

Weight

Model	LEJS40									
Stroke［mm］	200	300	（400）	500	600	（700）	800	（900）	（1000）	（1200）
Product weight［kg］	5.6	6.4	7.1	7.9	8.7	9.4	10.2	11.0	11.7	13.3
Additional weight with lock［kg］	0.2 （Incremental encoder）／0．3（Absolute encoder）									
Model	LEJS63									
Stroke［mm］	300	（400）	500	600	（700）	800	（900）	1000	（1200）	（1500）
Product weight［kg］	11.4	12.7	13.9	15.2	16.4	17.7	18.9	20.1	22.6	26.4
Additional weight with lock［kg］	0.4 （Incremental encoder）／0．7（Absolute encoder）									

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw assembly	-	
$\mathbf{3}$	Linear guide assembly	-	
$\mathbf{4}$	Table	Aluminum alloy	Anodized
$\mathbf{5}$	Housing A	Aluminum alloy	Coating
$\mathbf{6}$	Housing B	Aluminum alloy	Coating
$\mathbf{7}$	Seal magnet	-	
$\mathbf{8}$	Motor cover	Aluminum alloy	Anodized
$\mathbf{9}$	End cover A	Aluminum alloy	Anodized
$\mathbf{1 0}$	Roller shaft	Stainless steel	
$\mathbf{1 1}$	Roller	Synthetic resin	
$\mathbf{1 2}$	Bearing stopper	Carbon steel	

No.	Description	Material	Note
13	Coupling	-	
14	Table cap	Synthetic resin	
15	Seal band stopper	Synthetic resin	
16	Blanking plate	Aluminum alloy	Anodized
17	Motor	-	
18	Grommet	NBR	
19	Dust seal band	Stainless steel	
20	Bearing	-	
21	Bearing	-	
22	Nut fixing pin	Carbon steel	
23	Magnet	-	

Dimensions：Ball Screw Drive
LEJS40

Note 1）Distance within which the table can move when it returns to origin．Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table．
Note 2）The Z phase first detecting position from the stroke end of the motor side．
Note 3）Auto switch magnet is located in the table center．

Model	L		A	B	n	C	D	E
	Without lock	With lock						
LEJS40S $\square \square$－200 \square－$\square \square \square \square$	523.5	563.5	206	260	6	1	200	80
LEJS40S $\square \square$－300 \square－$\square \square \square \square$	623.5	663.5	306	360	6	1	200	180
LEJS40S $\square \square$－400 \square－$\square \square \square \square$	723.5	763.5	406	460	8	2	400	80
LEJS40S $\square \square$－500 $\square-\square \square \square \square$	823.5	863.5	506	560	8	2	400	180
LEJS40S $\square \square$－600 $\square-\square \square \square \square$	923.5	963.5	606	660	10	3	600	80
LEJS40S $\square \square$－700 $\square-\square \square \square \square$	1023.5	1063.5	706	760	10	3	600	180
LEJS40S $\square \square$－800 \square－$\square \square \square \square$	1123.5	1163.5	806	860	12	4	800	80
LEJS40S $\square \square$－900 $\square-\square \square \square \square$	1223.5	1263.5	906	960	12	4	800	180
LEJS40S $\square \square$－1000 \square－$\square \square \square \square$	1323.5	1363.5	1006	1060	14	5	1000	80
LEJS40S $\square \square$－1200 \square－$\square \square \square \square$	1523.5	1563.5	1206	1260	16	6	1200	80

Series LEJS

Dimensions: Ball Screw Drive
LEJS63

Note 1) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) The Z phase first detecting position from the stroke end of the motor side.
Note 3) Auto switch magnet is located in the table center.

Model	L		A	B	n	C	D	E
	Without lock	With lock						
LEJS63S $\square \square$-300 \square - $\square \square \square \square$	656.5	696.5	306	370	6	1	200	180
LEJS63S $\square \square$-400 \square - $\square \square \square \square$	756.5	796.5	406	470	8	2	400	80
LEJS63S $\square \square$-500 $\square-\square \square \square \square$	856.5	896.5	506	570	8	2	400	180
LEJS63S $\square \square$-600 $\square-\square \square \square \square$	956.5	996.5	606	670	10	3	600	80
LEJS63S $\square \square$-700 \square - $\square \square \square \square$	1056.5	1096.5	706	770	10	3	600	180
LEJS63S $\square \square$-800 \square - $\square \square \square \square$	1156.5	1196.5	806	870	12	4	800	80
LEJS63S $\square \square$-900 $\square-\square \square \square \square$	1256.5	1296.5	906	970	12	4	800	180
LEJS63S $\square \square$-1000 \square - $\square \square \square \square$	1356.5	1396.5	1006	1070	14	5	1000	80
LEJS63S $\square \square$-1200 \square - $\square \square \square \square$	1556.5	1596.5	1206	1270	16	6	1200	80
LEJS63S $\square \square$-1500 \square - $\square \square \square \square$	1856.5	1896.5	1506	1570	18	7	1400	180

Electric Actuator／High Rigidity Slider Type Belt Drive ac sevo Moor

Series LEJB C \subset

How to Order

2 Motor type ${ }^{* 1}$				
Symbol Type Output $[W]$ Actuator size S2 AC servo motor （Incremental encoder） 100 40 drivers				
S3	AC servo motor （Incremental encoder）	200	63	LECSA \square－S1
S6	AC servo motor （Absolute encoder）	100 －S3		
S7	AC servo motor （Absolute encoder）	200	63	LECSB \square－S5 LECSC－S5 LECSS \square－S5

＊1：For motor type S2 and S6，the compatible driver part number suffixes are S1 and S5 respectively．

5 Motor option					
Nil	Without option			Nil	Without option
:---:	:---:				
B	With lock				

Nil	Without cable
S	Standard cable
R	Robotic cable（Flexible cable）

＊5：The motor and encoder cables are included．（The lock cable is included when the motor with lock option is selected．）
＊6：Standard cable entry direction is ＂（A）Axis side＂．（Refer to page 435 for details．）
7 Cable length［m］${ }^{* 4, * 7}$

Nil	Without cable
2	2 m
5	5 m
A	10 m

＊7：The length of the motor， encoder and lock cables are the same．

8 Driver type ${ }^{44}$

Nil	Compatible drivers	Power supply voltage（V）
A1	LECSA1	100 to 120
A2	LECSA2	200 to 230
B1	LECSB1	100 to 120
B2	LECSB2	200 to 230
C1	LECSC1	100 to 120
C2	LECSC2	200 to 230
S1	LECSS1	100 to 120
S2	LECSS2	200 to 230

＊4：When the driver type is selected，the cable is included．Select cable type and cable length． Example）
S2S2：Standard cable（2 m）＋Driver（LECSS2）
S2 ：Standard cable（ 2 m ）
Nil ：Without cable and driver

For auto switches，refer to pages 108 and 109.
Compatible Drivers

Driver type	Pulse input type ／Positioning type	Pulse input type	CC－Link direct input type	SSCNET III type
Series	LECSA	LECSB	LECSC	LECSS
Number of point tables	Up to 7	－	Up to 255	－
Pulse input	\bigcirc	\bigcirc	－	－
Applicable network	－	－	CC－Link	SSCNET III
Control encoder	Incremental 17－bit encoder	Absolute 18－bit encoder	Absolute 18－bit encoder	Absolute 18－bit encoder
Communication	USB communication	USB communication，RS422 communication	USB communication，RS422 communication	USB communication
Power supply voltage（V）	100 to 120 VAC $(50 / 60 \mathrm{~Hz})$ 200 to 230 VAC $(50 / 60 \mathrm{~Hz})$			
Reference page	Page 419			

Applicable Stroke Table ${ }^{* 3}$						－Standard OProduced upon receipt of order							
	200	300	400	500	600	700	800	900	1000	1200	1500	2000	3000
LEJB40	\bigcirc	\bullet	\bigcirc	\bullet	\bigcirc	\bigcirc	\bullet	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	－
LEJB63	－	\bigcirc	\bigcirc	\bullet	\bigcirc	－	－	\bigcirc	\bullet	\bullet	\bigcirc	\bigcirc	\bigcirc

＊3：Consult with SMC as all non－standard and non－made－to－order strokes are produced as special orders．

Series LEJB

Specifications

LEJB40/63 AC Servo Motor

Model			LEJB40S ${ }_{6}^{2}$	LEJB63S ${ }_{7}^{3}$
	Stroke [mm] ${ }^{\text {Note 1) }}$		$\begin{gathered} (200), 300,(400), 500,(600),(700), 800 \\ (900), 1000,(1200),(1500),(2000) \end{gathered}$	$\begin{gathered} (300),(400), 500,(600),(700), 800 \\ (900), 1000,1200,(1500),(2000),(3000) \end{gathered}$
	Work load [kg]	Horizontal	20 (If the stroke exceeds 1000 mm : 10)	30
	Speed [mm/s] ${ }^{\text {Note 2) }}$		2000	3000
	Max. acceleration/deceleration [mm/s ${ }^{2}$]		20000 (Refer to page 94 for li	to work load and duty ratio.)
	Positioning repeatability [mm] ${ }^{\text {Note } 3)}$			
	Lead [mm]		27	42
	Impact/Vibration resistance [m/s ${ }^{\mathbf{2}}$] Note 4)		50/20	
	Actuation type		Belt	
	Guide type		Linear guide	
	Allowable external force [N]		20	
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40	
	Operating humidity range [\%RH]		90 or less (No condensation)	
	Regeneration option		May be required depending on speed and work load. (Refer to page 435.)	
	Motor output [W]/Size [mm]		100/ $\square 40$	200/口60
	Motor type		AC servo motor (100/200 VAC)	
	Encoder		Motor type S2, S3: Incremental 17-bit encoder (Resolution: $131072 \mathrm{p} / \mathrm{rev}$) Motor type S6, S7: Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$)	
	Power consumption [W] Note 5)	Horizontal	65	190
		Vertical	-	-
	Standby power consumption when operating [W] ${ }^{\text {Note 6) }}$	Horizontal	2	2
		Vertical	-	-
	Max. instantaneous power consumption [W] Note 7)		445	725
	Type Note 8)		Non-magnetizing lock	
	Holding force [N]		60	189
	Power consumption at $20^{\circ} \mathrm{C}$ [W] ${ }^{\text {Note 9) }}$		6.3	7.9
	Rated voltage [V]		$24 \mathrm{VDC}_{-10 \%}^{0}$	

Note 1) Consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.
Note 2) Check "Speed-Work Load Graph (Guide)" on page 91.
Note 3) Conforming to JIS B 6191-1999
Note 4) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 5) The power consumption (including the driver) is for when the actuator is operating.
Note 6) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
Note 7) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
Note 8) Only when motor option "With lock" is selected.
Note 9) For an actuator with lock, add the power consumption for the lock.

Weight

Model	LEJB40											
Stroke [mm]	(200)	300	(400)	500	(600)	(700)	800	(900)	1000	(1200)	(1500)	(2000)
Product weight [kg]	5.7	6.4	7.1	7.7	8.4	9.1	9.8	10.5	11.2	12.6	14.7	18.1
Additional weight with lock [kg]	0.2 (Incremental encoder)/0.3 (Absolute encoder)											
Model	LEJB63											
Stroke [mm]	(300)	(400)	500	(600)	(700)	800	(900)	1000	1200	(1500)	(2000)	(3000)
Product weight [kg]	11.5	12.7	13.8	15.0	16.2	17.4	18.6	19.7	22.1	25.7	31.6	43.4
Additional weight with lock [kg]	0.4 (Incremental encoder)/0.7 (Absolute encoder)											

Motor details

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Belt	-	
$\mathbf{3}$	Belt holder	Carbon steel	
$\mathbf{4}$	Belt stopper	Aluminum alloy	
$\mathbf{5}$	Linear guide assembly	-	
$\mathbf{6}$	Table	Aluminum alloy	Anodized
$\mathbf{7}$	Housing A	Aluminum alloy	Coating
$\mathbf{8}$	Housing B	Aluminum alloy	Coating
$\mathbf{9}$	Seal magnet	Aluminum alloy	Anodized
$\mathbf{1 0}$	Motor cover	Aluminum alloy	Anodized
$\mathbf{1 1}$	End cover A	Aluminum alloy	Anodized
$\mathbf{1 2}$	End cover B	Stainless steel	
$\mathbf{1 3}$	Roller shaft	Synthetic resin	
$\mathbf{1 4}$	Roller	Aluminum alloy	
$\mathbf{1 5}$	Pulley holder	Aluminum alloy	
$\mathbf{1 6}$	Drive pulley	Aluminum alloy	
$\mathbf{1 7}$	Speed reduction pulley	Aluminum alloy	
$\mathbf{1 8}$	Motor pulley	Aluminum alloy	
$\mathbf{1 9}$	Spacer		

No.	Description	Material	Note
20	Pulley shaft A	Stainless steel	
21	Pulley shaft B	Stainless steel	
22	Table cap	Synthetic resin	
23	Seal band stopper	Synthetic resin	
24	Blanking plate	Aluminum alloy	Anodized
25	Motor mount plate	Carbon steel	
26	Pulley block	Aluminum alloy	Anodized
27	Pulley cover	Aluminum alloy	Anodized
28	Belt stopper	Aluminum alloy	
29	Side plate	Aluminum alloy	Anodized
30	Motor plate	Carbon steel	
31	Belt	-	
32	Motor	-	
33	Grommet	NBR	
34	Dust seal band	Stainless steel	
35	Bearing	-	
36	Bearing	-	
37	Stopper pin	Stainless steel	
38	Magnet	-	

Series LEJB

Dimensions: Belt Drive

LEJB40

Note 1) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) The Z phase first detecting position from the stroke end of the motor side.
Note 3) Auto switch magnet is located in the table center.

Model	L	A	B	n	C	D	E
LEJB40S $\square \square$-200 \square - $\square \square \square \square$	542	206	260	6	1	200	80
LEJB40S $\square \square$-300 $\square-\square \square \square \square$	642	306	360	6	1	200	180
LEJB40S $\square \square$-400 $\square-\square \square \square \square$	742	406	460	8	2	400	80
LEJB40S $\square \square$-500 $\square-\square \square \square \square$	842	506	560	8	2	400	180
LEJB40S $\square \square$-600 $\square-\square \square \square \square$	942	606	660	10	3	600	80
LEJB40S $\square \square$-700 $\square-\square \square \square \square$	1042	706	760	10	3	600	180
LEJB40S $\square \square$-800 $\square-\square \square \square \square$	1142	806	860	12	4	800	80
LEJB40S $\square \square$-900 $\square-\square \square \square \square$	1242	906	960	12	4	800	180
LEJB40S $\square \square$-1000 \square - $\square \square \square \square$	1342	1006	1060	14	5	1000	80
LEJB40S $\square \square$-1200 $\square-\square \square \square \square$	1542	1206	1260	16	6	1200	80
LEJB40S $\square \square$-1500 \square - $\square \square \square \square$	1842	1506	1560	18	7	1400	180
LEJB40S $\square \square$-2000 \square - $\square \square \square \square$	2342	2006	2060	24	10	2000	80
06			BNC				

Dimensions: Belt Drive

LEJB63

Note 1) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) The Z phase first detecting position from the stroke end of the motor side.
Note 3) Auto switch magnet is located in the table center.

Model	L	A	B	n	C	D	E
LEJB63S $\square \square$-300 \square - $\square \square \square \square$	704	306	370	6	1	200	180
LEJB63S $\square \square$-400 $\square-\square \square \square \square$	804	406	470	8	2	400	80
LEJB63S $\square \square$-500 $\square-\square \square \square \square$	904	506	570	8	2	400	180
LEJB63S $\square \square$-600 $\square-\square \square \square \square$	1004	606	670	10	3	600	80
LEJB63S $\square \square$-700 $\square-\square \square \square \square$	1104	706	770	10	3	600	180
LEJB63S $\square \square$-800 $\square-\square \square \square \square$	1204	806	870	12	4	800	80
LEJB63S $\square \square$-900 $\square-\square \square \square \square$	1304	906	970	12	4	800	180
LEJB63S $\square \square$-1000 $\square-\square \square \square \square$	1404	1006	1070	14	5	1000	80
LEJB63S $\square \square$-1200 \square - $\square \square \square \square$	1604	1206	1270	16	6	1200	80
LEJB63S $\square \square$-1500 $\square-\square \square \square \square$	1904	1506	1570	18	7	1400	180
LEJB63S $\square \square$-2000 \square - $\square \square \square \square$	2404	2006	2070	24	10	2000	80
LEJB63S $\square \square$-3000 \square - $\square \square \square \square$	3404	3006	3070	34	15	3000	80

Solid State Auto Switch Direct Mounting Style D-M9N(V)/D-M9P(V)/D-M9B(V)

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard.

\triangle Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Internal Circuit

Auto Switch Specifications products conforming to the

Refer to SMC website for details about international standards.

				PLC: Prog	mable	Controller
D-M9 \square, D-M9 \square V (With indicator light)						
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED lights up when turned ON.					
Standards	CE marking, RoHS					

- Lead wires - Oilproof flexible heavy-duty vinyl cord: $\varnothing 2.7 \times 3.2$ ellipse, $0.15 \mathrm{~mm}^{2}$, 2 cores
(D-M9B(V)), 3 cores (D-M9N(V)/D-M9P(V))
Note) Refer to Best Pneumatics No. 2 for solid state auto switch common specifications.

Weight

[g]

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length (m)	0.5	8	8	7
	1	14	14	13
	3	41	41	38
	5	68	68	63

How to Order

Dimensions
D-M9■

D-M9 \square V

2－Color Indication Solid State Auto Switch

 Direct Mounting Style D－M9NW（V）／D－M9PW（V）／D－M9BW（V）
Grommet

－2－wire load current is reduced（2．5 to 40 mA ）．
－Flexibility is 1.5 times greater than the conventional model（SMC comparison）．
－Using flexible cable as standard．
－The optimum operating range can be determined by the color of the light． （Red \rightarrow Green \leftarrow Red）

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body．The auto switch may be damaged if a screw other than the one supplied is used．

Auto Switch Internal Circuit D－M9NW／M9NWV

D－M9PW／M9PWV

Auto Switch Specifications

PLC：Programmable Logic Controller						
D－M9 \square W，D－M9 \square WV（With indicator light）						
Auto switch model	D－M9NW	D－M9NWV	D－M9PW	D－M9PWV	D－M9BW	D－M9BWV
Electrical entry	In－line	Perpendicular	In－line	Perpendicular	In－line	Perpendicular
Wiring type	3－wire				2－wire	
Output type	NPN		PNP		－	
Applicable load	IC circuit，Relay，PLC				24 VDC relay，PLC	
Power supply voltage	5，12， 24 VDC （4．5 to 28 V ）				－	
Current consumption	10 mA or less				－	
Load voltage	28 VDC or less		－		24 VDC （10 to 28 VDC ）	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA （ 2 V or less at 40 mA ）				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range ．．．．．．．．．Red LED lights up． Optimum operating range ．．．．．．．．．．Green LED lights up．					
Standards	CE marking，RoHS					

－Lead wires－Oilproof flexible heavy－duty vinyl cord：ø2．7 $\times 3.2$ ellipse， $0.15 \mathrm{~mm}^{2}, 2$ cores （D－M9BW（V））， 3 cores（D－M9NW（V），D－M9PW（V））
Note）Refer to Best Pneumatics No． 2 for solid state auto switch common specifications．
Weight
［g］

Auto switch model		D－M9NW（V）	D－M9PW（V）	D－M9BW（V）
Lead wire length (m)	0.5	8	8	7
	1	14	14	13
	3	41	41	38
	5	68	68	63

How to Order

Dimensions
［mm］
D－M9 \square W

D－M9 \square WV

Design

\triangle Caution

1. Do not apply a load in excess of the operating limit.

Select a suitable actuator by work load and allowable moment. If the product is used outside of the operating limit, the eccentric load applied to the guide will be excessive and have adverse effects such as creating play on the guide, degrading accuracy and shortening the life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
The product can be damaged.
The components including the motor are manufactured to precise tolerances. So that even a slight deformation may cause a malfunction or seizure.

Selection

\triangle Warning

1. Do not increase the speed in excess of the operating limit.

Select a suitable actuator by the relationship of the allowable work load and speed, and the allowable speed of each stroke. If the product is used outside of the operating limit, it will have adverse effects such as creating noise, degrading accuracy and shortening the life of the product.
2. When the product repeatedly cycles with partial strokes (100 mm or less), lubrication can run out. Operate it at a full stroke at least once a day or every 1000 strokes.
3. When external force is applied to the table, it is necessary to add external force to the work load as the total carried load for the sizing.
When a cable duct or flexible moving tube is attached to the actuator, the sliding resistance of the table increases and may lead to operational failure of the product.

Handling

\triangle Caution

1. Do not allow the table to hit the end of stroke.

When incorrect instructions are inputted, such as using the product outside of the operating limit or operation outside of actual stroke through changes in the controller/driver setting and or origin position, the table may collide against the stroke end of the actuator. Please check these points before use.
If the table collides against the stroke end of the actuator, the guide, belt or internal stopper can be broken. This may lead to abnormal operation.

Handle the actuator with care when it is used in the vertical direction as the workpiece will fall freely from its own weight.
2. The actual speed of this actuator is affected by the work load and stroke.
Check specifications with reference to the model selection section of the catalog.
3. Do not apply a load, impact or resistance in addition to the transferred load during return to origin.
4. Do not dent, scratch or cause other damage to the body and table mounting surfaces.
This may cause unevenness in the mounting surface, play in the guide or an increase in the sliding resistance.
5. Do not apply strong impact or an excessive moment while mounting the product or a workpiece.
If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.
6. Keep the flatness of mounting surface 0.1 mm or less.
Unevenness of a workpiece or base mounted on the body of the product may cause play in the guide and an increase in the sliding resistance.
7. When mounting the actuator, use all mounting holes.

If all mounting holes are not used, it influences the specifications, e.g., the amount of displacement of the table increases.
8. Do not hit the table with the workpiece in the positioning operation and positioning range.
9. Do not apply external force to the dust seal band.

Particularly during the transportation.

Series LEJ

Electric Actuator／

Be sure to read before handling．Refer to page 469 for Safety Instructions and the Operation Manual for Electric Actuator Precautions．
Please download it via our website，http：／／www．smcworld．com

1 Caution

10．When mounting the product，use screws with adequate length and tighten them with adequate torque．

Tightening the screws with a higher torque than recommended may cause a malfunction，whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position．

To prevent the workpiece fixing bolts from touching the body，use bolts that are 0.5 mm or shorter than the maximum screw－in depth．If long bolts are used，they can touch the body and cause a malfunction，etc．

11．Do not operate by fixing the table and moving the actuator body．
12．The belt drive actuator cannot be used vertically for applications．
13．Vibration may occur during operation，this could be caused by the operating conditions．
If it occurs，adjust response value of auto tuning of driver to be lower．
During the first auto tuning noise may occur，the noise will stop when the tuning is complete．

14．When mounting the actuator using the body mounting reference plane，use a pin．Set the height of the pin to be 5 mm or more because of chamfering．（Recommended height 6 mm ）

Maintenance

© Warning

Maintenance frequency
Perform maintenance according to the table below．

Frequency	Appearance check	Internal check	Belt check
Inspection before daily operation	\bigcirc	-	-
Inspection every 6 months $/ 1000 \mathrm{~km} /$ 5 million cycles＊	\bigcirc	\bigcirc	\bigcirc

＊Select whichever comes sooner．
－Items for visual appearance check
1．Loose set screws，Abnormal dirt
2．Check of flaw and cable joint
3．Vibration，Noise
－Items for internal check
1．Lubricant condition on moving parts．
＊For lubrication，use lithium grease No． 2.
2．Loose or mechanical play in fixed parts or fixing screws．

－Items for belt check

Stop operation immediately and replace the belt when belt appear to be below．Further，ensure your operating environment and conditions satisfy the requirements specified for the product．
a．Tooth shape canvas is worn out．
Canvas fiber becomes fuzzy．Rubber is removed and the fiber becomes whitish．Lines of fibers become unclear．
b．Peeling off or wearing of the side of the belt
Belt corner becomes round and frayed thread sticks out．
c．Belt partially cut
Belt is partially cut．Foreign matter caught in teeth other than cut part causes flaw．
d．Vertical line of belt teeth
Flaw which is made when the belt runs on the flange．
e．Rubber back of the belt is softened and sticky．
f．Crack on the back of the belt

Electric Actuator Series LEL

RoHS

Guide Rod Slider

Step Motor（Servo／24 VDC）

Low－profile／Flat Height 48 mm

Profile reduced by side mounting of motor

LEFB25

LEL25

Max．stroke：1，000 mm Transfer speed：1，000 mm／s

Belt drive
With belt cover

Compatible with sliding bearing and ball bushing bearing

Programless type Series LECP1
－ 14 points positioning
－Control panel setting

Guide Rod Slider Size: 25

Simple construction. Guide type can be selected.
 Max. stroke: $1,000 \mathrm{~mm}$
 Transter speed: $1,000 \mathrm{~mm} / \mathrm{s}$

Guide type

- Sliding bearing

Work load: 3 kg (Horizontal)
Reduced noise (60 dB or less) Note)

- Ball bushing bearing

Work load: 5 kg (Horizontal)
Transfer speed: $1,000 \mathrm{~mm} / \mathrm{s}$
Note) When the maximum speed is $500 \mathrm{~mm} / \mathrm{s}$
(Measured by SMC)

Auto switch mountable

 (Made to Order)For checking the limit and intermediate signal
Applicable to the D-M9 \square and D-M9 \square W (2-color indication)

* The auto switches should be ordered separately. Refer to pages 123 and 124 for details.

2-color indication solid state auto switch Appropriate setting of the mounting position can be performed without mistakes.
A green light
\qquad ON O Red Green Red lights up at the optimum operating range.

Selection Procedure

Selection Example

Operating
conditions

Step 1
Check the work load-speed. <Speed-Work load graph> (Page 118) Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.
Selection example) The LEL25LT-500 is temporarily selected based on the graph shown on the right side.

<Speed-Work load graph> (LEL25L/Step motor)

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.

Cycle time:

T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$
-T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 1=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]$

- T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, please calculate the settling time with reference to the following value.

T4 = 0.3 [s]

Step 3 Check the guide moment.

Based on the above calculation result, the LEL25LT-500 is selected.

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{500-0.5 \cdot 300 \cdot(0.1+0.1)}{300} \\
& =1.57[\mathrm{~s}] \\
\mathrm{T} 4 & =0.3[\mathrm{~s}]
\end{aligned}
$$

Therefore, the cycle time can be obtained as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.1+1.57+0.1+0.3 \\
& =2.07[\mathrm{~s}]
\end{aligned}
$$

L : Stroke [mm]
...(Operating condition)
V : Speed [mm/s]
...(Operating condition)
a1: Acceleration [mm/s²]
...(Operating condition)
a2: Deceleration [$\mathrm{mm} / \mathrm{s}^{2}$]
..(Operating condition)
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is
operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until in position is completed

Series LEL

Speed-Work Load Graph (Guide)

LEL25M (Horizontal)

LEL25L (Horizontal)

Table Displacement (Reference Value) * Amount of displacement of the table when the load center of gravity is located at the

Table Displacement (Reference Value)

* Amount of displacement when the load is offset by "L" from the center of the table.

Electric Actuator／Guide Rod Slider Belt Drive siep Moior（senozvvoc） Series LEL

How to Order

（3）Equivalent lead

＊Refer to the applicable stroke table．

＊When［With lock］is selected，［With motor cover］cannot be selected．
7 Actuator cable length $[\mathrm{m}]$

Nil	Without cable	$\mathbf{8}$	8^{*}
$\mathbf{1}$	1.5	A	10^{*}
$\mathbf{3}$	3	B	15^{*}
$\mathbf{5}$	5	C	20^{*}

＊Produced upon receipt of order（Robotic cable only） Refer to the specifications Note 2）on page 120.
10 Controller mounting

Nil	Screw mounting
D	DIN rail mounting＊

＊DIN rail is not included．Order it separately．
8 Controller type＊

Nil	Without controller	
6N	LECP6	NPN
	6P	（Step data input type）

＊For details about controllers and compatible motors，refer to the compatible controllers below．
11 Made to Order

Nil	Standard product
X5	With magnet／switch rail

¢
$\frac{>0}{10}$
Шய

6 Actuator cable type＊

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable（Flexible cable）

The standard cable should be used on fixed parts．For using on moving parts，select the robotic cable．

Caution

＊Refer to the operation manual for using the products．Please download it via our website，http：／／www．smcworld．com

［CE－compliant products］

EMC compliance was tested by combining the electric actuator LEL series and the controller LEC series．
The EMC depends on the configuration of the customer＇s control panel and the relationship with other electrical equipment and wiring．Therefore conformity to the EMC directive cannot be certified for SMC components

Applicable Stroke Table－Standard／OProduced upon receipt of order | Model Stroke | $\mathbf{1 0 0}$ | $\mathbf{2 0 0}$ | $\mathbf{3 0 0}$ | $\mathbf{4 0 0}$ | $\mathbf{5 0 0}$ | $\mathbf{6 0 0}$ | $\mathbf{7 0 0}$ | $\mathbf{8 0 0}$ | $\mathbf{9 0 0}$ | 1000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LEL25 | \bigcirc | \bigcirc | \bullet | \bullet | \bullet | \ominus | \bigcirc | \bigcirc | \bigcirc | \bigcirc | ＊Consult with SMC as all non－standard and non－made－to－order strokes are produced as special orders．

The actuator and controller are provided as a set．
Confirm that the combination of the controller and the actuator is correct．
＜Check the following before use．＞
（1）Check the actuator label for model number．
This matches the controller．
（2）Check Parallel I／O configuration matches （NPN or PNP）．

（1）
incorporated into the customer＇s equipment under actual operating conditions．As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole． ［UL－compliant products］
When conformity to UL is required，the electric actuator and controller should be used with a UL1310 Class 2 power supply．

Compatible Controllers

Type	Step data input type	Programless type
Series	LECP6	LECP1
Features	Value（Step data）input Standard controller	Capable of setting up operation（step data） without using a PC or teaching box
Compatible motor	Step motor （Servo／24 VDC）	
Maximum number of step data	64 points	14 points
Power supply voltage	24 VDC	
Reference page	Page 386	Page 401

Specifications

Note 1) Strokes shown in () are produced upon receipt of order. Consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.
Note 2) Speed changes according to the work load. Check "Speed-Work Load Graph (Guide)" on page 118. The work load changes according to the stroke and work load mounting condition.
Check "Dynamic Allowable Moment" graph on page 117. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m .
Note 3) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both the stroke direction and a perpendicular direction to the stroke. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz , when the actuator was tested in both stroke direction and a perpendicular direction to the stroke. (The test was performed with the actuator in the initial state.)
Note 4) Allowable external resistance is the allowable resistance when flexible moving tube or similar is used.
Note 5) The power consumption (including the controller) is for when the actuator is operating.
Note 6) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during operation.
Note 7) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 8) With lock only
Note 9) For an actuator with lock, add the power consumption for the lock.

Actuator Product Weight

Stroke [mm]		(100)	(200)	300	400	500	600	(700)	(800)	(900)	(1000)
Product weight [kg]	LEL25M	2.13	2.47	2.82	3.17	3.52	3.87	4.21	4.56	4.91	5.26
	LEL25L	2.38	2.72	3.07	3.42	3.77	4.12	4.47	4.82	5.17	5.52
Additional weight with lock [kg]		0.26									
Additional weight with cover [kg]		0.04									

A－A（LEL25LT－\square ）

Component Parts

No．	Description	Material	Note
1	Table	Aluminum alloy	Anodized
2	Motor end plate	Aluminum alloy	Anodized
3	End plate	Aluminum alloy	Anodized
4	Motor mount	Aluminum die－cast	Painting
5	Pulley holder	Aluminum alloy	
6	Belt cover	Aluminum alloy	Anodized
7	Guide rod	Carbon steel	Hard chrome plated
8	Belt holder	Carbon steel	Chromating
9	Pulley shaft	Stainless steel	
10	Spacer	Aluminum alloy	
11	Belt stopper	Aluminum alloy	
12	Tension plate	Aluminum alloy	Anodized
13	Motor cover	Synthetic resin	＂With motor cover＂only
14	Grommet	Synthetic resin	＂With motor cover＂only
15	Motor pulley	Aluminum alloy	Anodized
16	End pulley	-	Anodized
17	Motor	-	
18	Belt	-	
19	Bushing	-	
	Ball bushing bearing	-	Chromating
20	Bearing	Carbon steel	
21	Bearing		
22	Hexagon bolt		

Motor option： With lock

LEF

Series LEL

Dimensions

LEL25 ${ }_{\text {L }}{ }^{\mathrm{M}}$ T

Note 1) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.

Model	L	L*	A	B	C	D	E
LEL25MT-100 \square - $\square \square \square \square \square$	272.5	280	210	106	63	3	64
LEL25MT-200 \square - $\square \square \square \square \square$	372.5	380	310	206			
LEL25MT-300 \square - $\square \square \square \square \square$	472.5	480	410	306			
LEL25MT-400 \square - $\square \square \square \square \square$	572.5	580	510	406			
LEL25MT-500 \square - $\square \square \square \square \square$	672.5	680	610	506			
LEL25MT-600 \square - $\square \square \square \square \square$	772.5	780	710	606			
LEL25MT-700 \square - $\square \square \square \square \square$	872.5	880	810	706			
LEL25MT-800 \square - $\square \square \square \square \square$	972.5	980	910	806			
LEL25MT-900 \square - $\square \square \square \square \square$	1072.5	1080	1010	906			
LEL25MT-1000 \square - $\square \square \square \square \square$	1172.5	1180	1110	1006			
LEL25LT-100 \square - $\square \square \square \square \square$	292.5	300	230	108	73	4	82
LEL25LT-200 \square - $\square \square \square \square \square$	392.5	400	330	208			
LEL25LT-300 \square - $\square \square \square \square \square$	492.5	500	430	308			
LEL25LT-400 \square - $\square \square \square \square \square$	592.5	600	530	408			
LEL25LT-500 \square - $\square \square \square \square \square$	692.5	700	630	508			
LEL25LT-600 \square - $\square \square \square \square \square$	792.5	800	730	608			
LEL25LT-700 \square - $\square \square \square \square \square$	892.5	900	830	708			
LEL25LT-800 \square - $\square \square \square \square \square$	992.5	1000	930	808			
LEL25LT-900 \square - $\square \square \square \square \square$	1092.5	1100	1030	908			
LEL25LT-1000 \square - $\square \square \square \square \square$	1192.5	1200	1130	1008			

* With motor cover

Solid State Auto Switch Direct Mounting Style D－M9N（V）／D－M9P（V）／D－M9B（V）RoHs

Auto Switch Specifications

Refer to SMC website for details about products conforming to the international standards．

Grommet

－2－wire load current is reduced（ 2.5 to 40 mA ）．
－Flexibility is 1.5 times greater than the conventional model（SMC comparison）．
－Using flexible cable as standard．

\triangle Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body．The auto switch may be damaged if a screw other than the one supplied is used．

Auto Switch Internal Circuit

PLC：Programmable Logic Controller						
D－M9 \square ，D－M9 \square V（With indicator light）						
Auto switch model	D－M9N	D－M9NV	D－M9P	D－M9PV	D－M9B	D－M9BV
Electrical entry	In－line	Perpendicular	In－line	Perpendicular	In－line	Perpendicular
Wiring type	3－wire				2－wire	
Output type	NPN		PNP		－	
Applicable load	IC circuit，Relay，PLC				24 VDC relay，PLC	
Power supply voltage	5，12， 24 VDC （ 4.5 to 28 V ）				－	
Current consumption	10 mA or less				－	
Load voltage	28 VDC or less		－		24 VDC（	to 28 VDC$)$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA （ 2 V or less at 40 mA ）				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED lights up when turned ON．					
Standards	CE marking，RoHS					
－Lead wires－Oilproof flexible heavy－duty vinyl cord：ø2．7 $\times 3.2$ ellipse， $0.15 \mathrm{~mm}^{2}, 2$ cores （D－M9B（V））， 3 cores（D－M9N（V）／D－M9P（V）） Note）Refer to Best Pneumatics No． 2 for solid state auto switch common specifications．						

Weight

Auto switch model		D－M9N（V）	D－M9P（V）	D－M9B（V）
Lead wire length (m)	0.5	8	8	7
	1	14	14	13
	3	41	41	38
	5	68	68	63

How to Order

Dimensions
［mm］
D－M9 \square

D－M9 $\square \mathbf{V}$

2-Color Indication Solid State Auto Switch Direct Mounting Style D-M9NW(V)/D-M9PW(V)/D-M9BW(V)

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard.
- The optimum operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Internal Circuit
 D-M9NW/M9NWV

D-M9PW/M9PWV

Auto Switch Specifications

PLC: Programmable Logic Controller						
D-M9 \square W, D-M9 \square WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range Red LED lights up. Optimum operating range Green LED lights up.					
Standards	CE marking, RoHS					
-Lead wires - Oilproof flexible heavy-duty vinyl cord: $\varnothing 2.7 \times 3.2$ ellipse, $0.15 \mathrm{~mm}^{2}, 2$ cores (D-M9BW(V)), 3 cores (D-M9NW(V), D-M9PW(V))						

Weight

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Lead wire length (m)	0.5	8	8	7
	1	14	14	13
	3	41	41	38
	5	68	68	63

How to Order

Dimensions
[mm]
D-M9 $\square \mathbf{W}$

Series LEL
 Electric Actuator／Guide Rod Slider Specific Product Precautions 1

Be sure to read before handling．Refer to page 469 for Safety Instructions and the Operation Manual for Electric Actuator Precautions．
 Please download it via our website，http：／／www．smcworld．com

Design

\triangle Caution

1．Do not apply a load in excess of the operating limit．
Select a suitable actuator by work load and allowable moment． If the product is used outside of the operating limit，the eccentric load applied to the guide will be excessive and have adverse effects such as creating play on the guide，degrading accuracy and shortening the life of the product．
2．Do not use the product in applications where excessive external force or impact force is applied to it．
This can cause failure．
3．Because of the guide mechanism type，vibration that comes from an external source may be introduced into the workpiece during operation．Do not use this product in a location where vibration is not allowed．

Handling

© Caution

1．Set the position determination width in the step data to at least 1.
Otherwise，completion signal of in position may not be output．
2．INP output signal
1）Positioning operation
When the product comes within the set range by step data ［In position］，the INP output signal will turn on． Initial value：Set to［1］or higher．

\triangle Caution

3．Never hit at the stroke end except during return to origin．
When incorrect instructions are inputted，such as using the product outside of the operating limit or operation outside of actual stroke through changes in the controller／driver setting and or origin position，the table may collide against the stroke end of the actuator．Please check these points before use．
If the table collides against the stroke end of the actuator，the guide，belt or internal stopper can be broken．This may lead to abnormal operation．

4．The moving force should be the initial value（ 100% ）． If the moving force is set below the initial value，it may cause an alarm．

5．The actual speed of this actuator is affected by the work load．
When selecting a product，check the catalog for the instructions regarding selection．
6．Do not apply a load，impact or resistance in addition to the transferred load during return to origin．
Additional force will cause the displacement of the origin position since it is based on detected motor torque．
7．Do not dent，scratch or cause other damage to the body and table mounting surfaces．
This may cause unevenness in the mounting surface，play in the guide or an increase in the sliding resistance．
8．Do not apply strong impact or an excessive moment while mounting a workpiece．
If an external force over the allowable moment is applied，it may cause play in the guide or an increase in the sliding resistance．
9．Keep the flatness of the mounting surface 0.2 mm or less．
Unevenness of a workpiece or base mounted on the body of the product may cause play in the guide and an increase in the sliding resistance．
10．When mounting the product，keep a 40 mm or longer diameter for bends in the cable．
11．Do not hit the table with the workpiece in the positioning operation and positioning range．
12．Hold by the end plates when moving the body．Do not hold the belt cover．

LEF

Electric Actuator/Guide Rod Slider Specific Product Precautions 2

Be sure to read before handling. Refer to page 469 for Safety Instructions and the Operation Manual for Electric Actuator Precautions. Please download it via our website, http://www.smcworld.com

© Caution

13. When mounting the product, use screws with adequate length and tighten them with adequate torque.
Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

Model	Bolt	$\varnothing \mathbf{A}$ $[\mathrm{mm}]$	\mathbf{L} $[\mathrm{mm}]$
LEL25	M6	6.6	35.5

Workpiece fixed

To prevent the workpiece fixing bolts from touching the body, use bolts that are 0.5 mm or shorter than the maximum screw-in depth. If long bolts are used, they can touch the body and cause a malfunction, etc.
14. Do not operate by fixing the table and moving the actuator body.
15. The belt drive actuator cannot be used vertically for applications.
16. Check the specifications for the minimum speed of each actuator.
Otherwise, unexpected malfunctions, such as knocking, may occur.
17. In the case of the belt drive actuator, vibration may occur during operation at speeds within the actuator specifications, this could be caused by the operating conditions. Change the speed setting to a speed that does not cause vibration.

Maintenance

Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check	Belt check
Inspection before daily operation	\bigcirc	-	-
Inspection every 6 months $/ 1000 \mathrm{~km} /$ 5 million cycles	\bigcirc	\bigcirc	\bigcirc

* Select whichever comes sooner.

- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts.
2. Loose or mechanical play in fixed parts or fixing screws.

- Items for belt check

Stop operation immediately and replace the belt when belt appear to be below. Further, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out.

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt

Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign matter caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky.
f. Crack on the back of the belt

Electric Actuators Series LEY
 $\mathrm{C} \in \mathrm{Gr} \mathrm{N}_{\mathrm{us}}$
 RoHS

Rod Type/Guide Rod Type

Step Motor (Servo/24 VDC)
 Rod Type Series LEY
 Long stroke:
 Max. $\mathbf{5 0 0} \mathbf{~ m m ~ (L e y 3 2 , ~ 4 0) ~}$

Servo Motor (24 vDC) Type

Mounting variations
-Direct mounting: 3 directions, Bracket mounting: 3 types -Either positioning or pushing control can be selected. Possible to hold the actuator with the rod pushing to a workpiece, etc.

Guide Rod Type Series LEYG

Size: 16, 25, 32, 40 -Page 162
Lateral end load: 5 times more

* Compared with rod type, size 25 and 100 stroke

Compatible with sliding bearing and ball bushing bearing.
Compatible with moment load and stopper (sliding bearing).

- Either positioning or pushing control can be selected. Possible to hold the actuator with the rod pushing to a workpiece, etc.

Guide rod type

- High output motor Dust/Drip Proof (IP65) Specification:-X5 (100/200/400 W)
- Improved high speed transfer ability -High acceleration/deceleration compatible (5,000 mm/s ${ }^{2}$)
-Pulse input/CC-Link/SSCNET III types
-With internal absolute encoder (For LECSB/C/S)

Note) LEY63 is applicable only to the in-line motor type

Rod type/
n-line motor type

Guide rod type/ In-line motor type

Step Motor (Servo/24 VDC) Servo Motor (24 VDC) Type

Rod Type Series LEY /Size: 16, 25, 32, 40

Control of intermediate positioning and pushing is possible. High precision with ball screws (Positioning repeatability: $\pm 0.02 \mathrm{~mm}$)

In-line motor type Height dimension shortened by up to 49\%

A Dimension

Size	In-line motor	Motor top mounting
$\mathbf{1 6}$	$\mathbf{3 5 . 5}$	67.5
$\mathbf{2 5}$	$\mathbf{4 6 . 5}$	92
$\mathbf{3 2 , 4 0}$	$\mathbf{6 1}$	118

AC Servo Motor Type

Rod Type Series LEY／Size：25，32， 63

－High output motor（100／200／400 W）
－Improved high speed transfer ability
－High acceleration／deceleration compatible（5，000 mm／s²）
－Pulse input／CC－Link direct input／SSCNET III types
－With internal absolute encoder
＊Incremental encoder can also be selected．

Rod type／In－line motor type

Added large bore size 63！

－Work load Horizontal 80 kg Vertical 72 kg
－High output motor： 400 w
－Max．speed： $1,000 \mathrm{~mm} / \mathrm{s}$
＊ 500 stroke
\bullet Max．pushing force：1，910（ N ）
－Dust／Drip proof specification （IP65）

Guide Rod Type Series LEYG /Size: 16, 25, 32, 40

Compact integrated guide rods

Lateral load resistance and high non-rotating accuracy
Compatible with sliding bearing and ball bushing bearing

- Sliding bearing

Suitable for lateral load applications such as a stopper where shock is applied

- Ball bushing bearing Smooth operation suitable for pusher and lifter

Improved rigidity

Lateral end load: 5 times more*

* Compared with rod type, size 25 and 100 stroke

Non-rotating accuracy improved by using two guide rods

Bore size (mm)	16	25	32	40
Sliding bearing	$\pm 0.06^{\circ}$	$\pm 0.05^{\circ}$		
Ball bushing bearing	$\pm 0.07^{\circ}$	$\pm 0.06^{\circ}$		

When the cylinder is retracted (initial value), the non-rotating accuracy without a load or deflection of the guide rods will be below the values shown in the table.

AC Servo Motor Type

Guide Rod Type Series LEYG /Size: 25, 32

For use of auto switches for the guide rod type LEYG series, refer to page 219.

DustiDrip Proof（IP65）Specification

enclosure：IP65

－Max．stroke： 500 mm＊

LEY－X5（Refer to page 203．）

LEY63D $\square \square-\square \mathbf{P}$	Size
（Refer to page 198．／Option）	63

Step Motor (Servo/24 VDC)

Servo Motor (24 VDC)

Rod Type Page 140
Series LEY

Dussidip Proof (IP605) Specaication Page 156
Series LEY-X5

Guide Rod Type Page 168
Series LEYG

Step Motor/Servo Motor Controller Page 377
Step Motor Driver
Series LECP6/LECA6 Series LEC-G Series LECP1
Series LECPA Series LECP1
Series LECPA

Selection Procedure

Positioning Control Selection Procedure

 Check the work load-speed. (Vertical transfer)
Step 2 Check the cycle time.

Selection Example

Operating conditions

-Workpiece mass: $4[\mathrm{~kg}] \quad$ •Speed: $100[\mathrm{~mm} / \mathrm{s}]$	
-Acceleration/Deceleration: 3,000[mm/s²]	
- Stroke: $200[\mathrm{~mm}]$	
-Workpiece mounting condition: Vertical upward	
downward transfer	

Check the work load-speed. <Speed-Vertical work load graph>
Select the target model based on the workpiece mass and speed with reference to the <Speed-Vertical work load graph>.

Selection example) The LEY16B is temporarily selected based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer. When selecting the target model, refer to page 142 for the horizontal work load in the

<Speed-Vertical work load graph>
(LEY16/Step motor)

Step 2
 Check the cycle time.

Calculate the cycle time using the following calculation method.

- Cycle time T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$
- T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4: Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, please calculate the settling time with reference to the following value.

$$
\mathrm{T} 4=0.2[\mathrm{~s}]
$$

Calculation example)
T1 to T4 can be calculated as follows.

L : Stroke [mm] ... (Operating condition)
V : Speed [mm/s] \cdots (Operating condition)
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
T1: Acceleration time [s] ... Time until reaching the set speed
T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop
T4: Settling time [s] ... Time until in position is completed
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=100 / 3000=0.033[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=100 / 3000=0.033[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{200-0.5 \cdot 100 \cdot(0.033+0.033)}{100}=1.97[\mathrm{~s}]$
$\mathrm{T} 4=0.2[\mathrm{~s}]$
Therefore, the cycle time can be obtained as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.033+1.967+0.033+0.2=2.233[\mathbf{s}]$

Pushing Control Selection Procedure

Selection Example

Operating conditions

| \bullet Mounting condition：Horizontal（pushing） | \bullet Duty ratio： $20[\%]$ |
| :--- | :--- | :--- |
| \bullet－Jig weight： $0.2[\mathrm{~kg}]$ | \bullet Speed： $100[\mathrm{~mm} / \mathrm{s}]$ |
| \bullet Pushing force： $60[\mathrm{~N}]$ | \bullet Stroke： $200[\mathrm{~mm}]$ |

Step 1

Check the duty ratio．
＜Conversion table of pushing force－duty ratio＞
Select the［Pushing force］from the duty ratio with reference to the ＜Conversion table of pushing force－duty ratio＞．
Selection example）
Based on the table below，
－Duty ratio： 20 ［\％］
Therefore，the set value of pushing force will be 70 ［\％］．
＜Conversion table of pushing force－duty ratio＞
（LEY16／Step motor）

Set value of pushing force［\％］	Duty ratio $(\%)$	Continuous pushing time（minute）
40 or less	100	-
50	70	12
70	20	1.3
85	15	0.8

＊［Set value of pushing force］is one of the step data input to the controller．
＊［Continuous pushing time］is the time that the actuator can continuously keep pushing．

Step 2 Check the pushing force．＜Force conversion graph＞

Select the target model based on the set value of pushing force and force with reference to the＜Force conversion graph＞．
Selection example）
Based on the graph shown on the right side，
－Set value of pushing force： 70 ［\％］
－Pushing force： 60 ［N］
Therefore，the LEY16B is temporarily selected．
Step 3 Check the lateral load on the rod end．
＜Graph of allowable lateral load on the rod end＞
Confirm the allowable lateral load on the rod end of the actuator：
LEY16 \square ，which has been selected temporarily with reference to the
＜Graph of allowable lateral load on the rod end＞．
Selection example）
Based on the graph shown on the right side，

- Jig weight： $0.2[\mathrm{~kg}] \approx 2[\mathrm{~N}]$
－Product stroke： 200 ［mm］
Therefore，the lateral load on the rod end is in the allowable range．

Based on the above calculation result，the LEY16B－200 is selected．

＜Force conversion graph＞Max．85\％
（LEY16／Step motor）
Note）Set values for the controller．

＜Graph of allowable lateral load on the rod end＞

Series LEY

Speed-Vertical Work Load Graph (Guide)

Step Motor (Servo/24 VDC)

LEY16

LEY25

LEY32

LEY40

Servo Motor (24 VDC)
LEY16

LEY25

Graph of Allowable Lateral Load on the Rod End (Guide)

[Stroke]

= [Product stroke] +
[Distance from the rod end to the center of gravity of the workpiece]

Force Conversion Graph（Guide）

Step Motor（Servo／24 VDC）

LEY16

Ambient temperature	Set value of pushing force［\％］	Duty ratio［\％］	Continuous pushing time［minute］
$\mathbf{2 5} \mathbf{5}^{\circ} \mathbf{C}$ or less	85 or less	100	-
^{\circ}\mathbf{C}}{}	40 or less	100	-
	50	70	12
	70	20	1.3
	85	15	0.8

LEY25

| Ambient temperature | Set value of pushing force［\％］ | Duty ratio［\％］ | Continuous pushing time［minute］］ |
| :--- | :--- | :--- | :--- | | | $40^{\circ} \mathrm{C}$ or less | 65 or less |
| :--- | :--- | :--- |

100
LEY32

Ambient temperature	Set value of pushing force［\％］	Duty ratio［\％］	Continuous pushing time［minute］
$\mathbf{2 5}{ }^{\circ} \mathbf{C}$ or less	85 or less	100	-
$\mathbf{4 0}^{\circ} \mathbf{C}$	65 or less	100	-
	85	50	15

LEY40

[^8]
Servo Motor（24 VDC）

LEY16

Ambient temperature	Set value of pushing force［\％］	Duty ratio［\％］	Continuous pushing time［minute］
$\mathbf{4 0 ^ { \circ }} \mathbf{C}$ or less	95 or less	100	-

LEY25

Ambient temperature	Set value of pushing force［\％］	Duty ratio［\％］	Continuous pushing time［minute］
$\mathbf{4 0} \mathbf{C}$ or less	95 or less	100	-

＜Pushing Force and Trigger Level Range＞Without Load

Model	Pushing speed ［ mm / s ］	Pushing force （Setting input value）	Model	Pushing speed ［ mm / s ］	Pushing force （Setting input value）
LEY16 \square	1 to 4	30% to 85%	LEY16 \square A	1 to 4	40\％to 95\％
	5 to 20	35% to 85%		5 to 20	60\％to 95\％
	21 to 50	60\％to 85\％		21 to 50	80\％to 95\％
LEY25 \square	1 to 4	20\％to 65\％	LEY25 \square A	1 to 4	40\％to 95\％
	5 to 20	35\％to 65\％		5 to 20	60\％to 95\％
	21 to 35	50\％to 65\％		21 to 35	80\％to 95\％
LEY32 \square	1 to 4	20\％to 85\％			
	5 to 20	35\％to 85\％			
	21 to 30	60\％to 85\％			
LEY40 \square	1 to 4	20\％to 65\％			
	5 to 20	35\％to 65\％			
	21 to 30	50\％to 65\％			

Note）For vertical loads（upward），set the pushing force to the maximum value shown below，and operate at the work load or less．

Model	LEY16口			LEY25 \square			LEY32 \square			LEY40			LEY16■A				LEY25■A		
Lead	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C	A	A	B	C
Work load［kg］	1	1.5	3	2.5	5	10	4.5	9	18	7	14	28	1	1.5	3	1.	1.2	2.5	5
Pushing force	85\％			65\％			85\％			65\％			95\％			95\％			

Non－rotating Accuracy of Rod

＊Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod．
This may cause deformation of the non－rotating guide，abnormal responses of the auto switch，play in the internal guide or an increase in the sliding resistance．

孚

Step Motor (Servo/24 VDC)

LEY25 \square

LEY32 \square

Servo Motor (24 VDC)

LEY25A \square

Graph of Allowable Lateral Load on the Rod End (Guide)

Force Conversion Graph

Step Motor（Servo／24 VDC）

LEY25

Ambient temperature	Set value of pushing force＊ ［\％］	Duty ratio $[\%]$	Continuous pushing time ［minute］
$\mathbf{4 0} \mathbf{C}$ or less	65 or less	100	-

LEY32

Ambient temperature	Set value of pushing force＊ ［\％］	Duty ratio $[\%]$	Continuous pushing time ［minute］
$\mathbf{2 5} \mathbf{}^{\circ} \mathbf{C}$ or less	85 or less	100	-
$\mathbf{4 0 ^ { \circ }} \mathbf{C}$	65 or less	100	-
	85	50	15

Servo Motor（24 VDC）

LEY25

Ambient temperature	Set value of pushing force＊ ［\％］	Duty ratio $[\%]$	Continuous pushing time ［minute］
$\mathbf{4 0} \mathbf{C}$ or less	95 or less	100	-

＜Pushing Force and Trigger Level Range＞Without Load

Model	Pushing speed ［mm／s］		Pushing force （Setting input value）			Model		Pushing speed ［mm／s］			（Suttio
LEY25	1 to 4		20\％to 65\％			LEY25 \square A			1 to 4		40
	5 to 20		35\％to 65\％						5 to 20		60
	21 to 35		50\％to 65\％						21 to		80
LEY32	1 to		20\％to 85\％								
	5 to 20		35\％to 85\％								
	21 to 30		60\％to 85\％								
Note）For vertical loads（upward），set the pushing force to the value shown below，and operate at the work load or less．											
Model		LEY25 \square			LEY32 \square			LEY25 \square A			
Lead		A	B	C	A	B	C	A	B	C	
Work load［kg］		2.5	5	10	4.5	9	18	1.2	2.5	5	
Pushing force			65\％		85\％			95\％			

岂

C

Electric Actuator/Rod Type

Series LEY LEY16, 25, 32, 40

How to Order

1 Size
16
25
32
40

2	Motor mounting position
Nil	Top mounting
R	Right side parallel
L	Left side parallel
D	In-line

5 Stroke [mm]	
$\mathbf{3 0}$	30
to	to
$\mathbf{5 0 0}$	500

* Refer to the applicable stroke table.

* When "With lock" or "With lock/motor cover" are selected for the top mounting and right/left side parallel types, the motor body will stick out of the end of the body for size 16 with strokes 30 or less. Check for interference with workpieces before selecting a model.

ACaution
[CE-compliant products]
(1) EMC compliance was tested by
combining the electric actuator
LEY series and the controller
LEC series.
The EMC depends on the
configuration of the customer's
control panel and the relationship
with other electrical equipment
and wiring. Therefore conformity
to the EMC directive cannot be
certified for SMC components
incorporated into the customer's
equipment under actual operating
conditions. As a result it is
necessary for the customer to
verify conformity to the EMC
directive for the machinery and
equipment as a whole.
(2) For the servo motor (24 VDC)
specification, EMC compliance
was tested by installing a noise
filter set (LEC-NFA). Refer to
page 394 for the noise filter set.
Refer to the LECA Operation
Manual for installation.
[UL-compliant products]
When conformity to UL is required,
the electric actuator and controller/
driver should be used with a UL1310
Class 2 power supply.

\triangle Caution

[CE-compliant products]
EMC compliance was tested by LEY 3 , the and LEC series.
The EMC depends on the oniguration of the custoris control panel and the relationship and wiring Therefore conformity to the EMC directive cannot be certified for SMC components ncorporated into the customer's equipment under actual operating as a result it is verify conformity to the EMC directive for the machinery and quipment as a whole.
(2) specification, EMC compliance filter set (LE page 394 for the noise filter set. Refer to the LECA Operation

When conformity to UL is required, driver should be used with a UL1310 Class 2 power supply.

* Consult with SMC for non-standard strokes as they are produced as special orders.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP)

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Mounting＊1

Symbol	Type	Motor mounting position	
		In－line	
Nil	Ends tapped（Standard）＊2	\bullet	\bullet
U	Body bottom tapped	\bullet	\bullet
L	Foot	\bullet	-
F	Rod flange＊2		\bullet
G	Head flange ${ }^{* 2}$	$\boldsymbol{`}^{* 4}$	-
D	Double clevis＊3	\bullet	-

＊1 Mounting bracket is shipped together，（but not assembled）．
＊2 For horizontal cantilever mounting with the rod flange，head flange and ends tapped， use the actuator within the following stroke range．
－LEY25： 200 or less －LEY32／40： 100 or less
＊3 For mounting with the double clevis，use the actuator within the following stroke range．
－LEY16： 100 or less
－LEY25： 200 or less
－LEY32／40： 200 or less
＊4 Head flange is not available for the LEY32／40．
9 Actuator cable type ${ }^{* 1}$

Nil	Without cable
S	Standard cable ${ }^{* 2}$
\mathbf{R}	Robotic cable（Flexible cable）

＊1 The standard cable should be used on fixed parts．For using on moving parts，select the robotic cable．
＊2 Only available for the motor type＂Step motor．＂
＊1 For details about controllers／driver and compatible motors，refer to the compatible controllers／driver below．
＊2 Only available for the motor type＂Step motor．＂
（11）Controller／Driver type＊1

Nil	Without controller／driver	
6N	LECP6／LECA6	NPN
6P	（Step data input type）	PNP
1N	LECP1＊2	NPN
1P	（Programless type）	PNP
AN	LECPA＊2	NPN
AP	（Pulse input type）	PNP

10 Actuator cable length［m］

Nil	Without cable
$\mathbf{1}$	1.5
3	3
$\mathbf{5}$	5
8	8^{*}
A	10^{*}
B	15^{*}
C	20^{*}

＊Produced upon receipt of order（Robotic cable only） Refer to the specifications Note 5）on page 142.
12 I／O cable length［m］${ }^{* 1}$

Nil	Without cable
1	1.5
3	$3^{* 2}$
5	$5^{* 2}$

＊1 When＂Without controller／driver＂is selected for controller／driver types，I／O cable cannot be selected．Refer to page 394 （For LECP6／ LECA6），page 407 （For LECP1）or page 414 （For LECPA）if I／O cable is required．
＊2 When＂Pulse input type＂is selected for controller／driver types，pulse input usable only with differential．Only 1.5 m cables usable with open collector．

＊1 DIN rail is not included．Order it separately．

Compatible Controllers／Driver

Type	Step data input type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECA6	LECP1	LECPA
Features	Value（Step data）input Standard controller		Capable of setting up operation（step data）without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor （Servo／24 VDC）	Servo motor （24 VDC）	Step motor （Servo／24 VDC）	
Maximum number of step data	64 points		14 points	－
Power supply voltage	24 VDC			
Reference page	Page 386	Page 386	Page 401	Page 408

l

Specifications

Step Motor（Servo／24 VDC）

Model				LEY16			LEY25			LEY32			LEY40		
Stroke［mm］${ }^{\text {Note 1）}}$				$\begin{gathered} 30,50,100,150 \\ 200,250,300 \end{gathered}$			$\begin{gathered} 30,50,100,150,200 \\ 250,300,350,400 \\ \hline \end{gathered}$			$30,50,100,150,200,250$$300,350,400,450,500$			$30,50,100,150,200,250$ $300,350,400,450,500$		
			（3000［mm／s $\left.{ }^{2}\right]$ ）	4	11	20	12	30	30	20	40	40	30	60	60
	Work load ［kg］Note 2）	Horizontal	$\left(2000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]\right)$	6	17	30	18	50	50	30	60	60	－	－	－
		Vertical	（3000［mm／s $\left.{ }^{2}\right]$ ）	2	4	8	8	16	30	11	22	43	13	27	53
	Pushing force［ N ］${ }^{\text {Note 3）4）5）}}$			14 to 38	27 to 74	51 to 141	63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707	132 to 283	266 to 553	562 to 1058
	Speed［mm／s］Note 5）			15 to 500	8 to 250	4 to 125	18 to 500	9 to 250	5 to 125	24 to 500	12 to 250	6 to 125	24 to 300	12 to 150	6 to 75
	Max．acceleration／deceleration［mm／s²］			3000											
	Pushing speed［mm／s］${ }^{\text {Note 6）}}$			50 or less			35 or less			30 or less			30 or less		
	Positioning repeatability［mm］			± 0.02											
	Screw lead［mm］			10	5	2.5	12	6	3	16	8	4	16	8	4
	Impact／Vibration resistance［m／s／2］${ }^{\text {Note } 7 \text { ）}}$			50／20											
	Actuation type			Ball screw＋Belt（LEY \square ）／Ball screw（LEY $\square \mathrm{D}$ ）											
	Guide type			Sliding bushing（Piston rod）											
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］			5 to 40											
	Operating humidity range［\％RH］			90 or less（No condensation）											
	Motor size			$\square 28$			$\square 42$			$\square 56.4$			$\square 56.4$		
	Motor type			Step motor（Servo／24 VDC）											
	Encoder			Incremental A／B phase（800 pulse／rotation）											
	Rated voltage［V］			24 VDC $\pm 10 \%$											
	Power consumption［W］Note 8）			23			40			50			50		
	Standby power consumption when operating［W］Wodeg）			16			15			48			48		
	Max．instantaneous power consumption［W］Ndet 10］			43			48			104			106		
－\square_{0}°	Type ${ }^{\text {Note 11）}}$			Non－magnetizing lock											
或	Holding force［N］			20	39	78	78	157	294	108	216	421	127	265	519
㐌家家	Power consumption［W］${ }^{\text {Note 12）}}$			2.9			5			5			5		
	Rated voltage［V］			24 VDC $\pm 10 \%$											

Note 1）Consult with SMC for non－standard strokes as they are produced as special orders．
Note 2）Horizontal：The maximum value of the work load．An external guide is necessary to support the load．The actual work load and transfer speed change according to the condition of the external guide．
Vertical：Speed changes according to the work load．Check＂Model Selection＂on page 134.
The values shown in（ ）are the acceleration／deceleration．
Set these values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less．
Note 3）Pushing force accuracy is $\pm 20 \%$（F．S．）．
Note 4）The pushing force values for LEY16 \square is 35% to 85% ，for LEY25 \square is 35% to 65% ，for LEY32 \square is 35% to 85% and for LEY40 \square is 35% to 65% ． The pushing force values change according to the duty ratio and pushing speed．Check＂Model Selection＂on page 135.
Note 5）The speed and force may change depending on the cable length，load and mounting conditions．Furthermore，if the cable length exceeds 5 m ，then it will decrease by up to 10% for each 5 m ．（At 15 m ：Reduced by up to 20% ）
Note 6）The allowable speed for pushing operation．When push conveying a workpiece，operate at the vertical work load or less．
Note 7）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．） Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 8）The power consumption（including the controller）is for when the actuator is operating．
Note 9）The standby power consumption when operating（including the controller）is for when the actuator is stopped in the set position during the operation．Except during the pushing operation
Note 10）The maximum instantaneous power consumption（including the controller）is for when the actuator is operating．This value can be used for the selection of the power supply．
Note 11）With lock only
Note 12）For an actuator with lock，add the power consumption for the lock．

Specifications

Servo Motor (24 VDC)

Model			LEY16A			LEY25A		
	Stroke [mm] Note 1)		$\begin{gathered} 30,50,100,150 \\ 200,250,300 \\ \hline \end{gathered}$			$\begin{gathered} 30,50,100,150,200 \\ 250,300,350,400 \\ \hline \end{gathered}$		
	Work load	Hoizatel ($3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$)	3	6	12	7	15	30
	[kg] ${ }^{\text {Note 2) }}$ V	Vericial ($\left.3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]\right)$	2	4	8	3	6	12
	Pushing for	force [N$]^{\text {Note 3) 4) }}$	16 to 30	30 to 58	57 to 111	18 to 35	37 to 72	66 to 130
	Speed [m	mm/s]	15 to 500	8 to 250	4 to 125	18 to 500	9 to 250	5 to 125
	Max. acceleratio	tion/deceleration [mm/s']	3000					
	Pushing sp	peed [mm/s] ${ }^{\text {Note } 5)}$	50 or less			35 or less		
	Positioning	repeatability [mm]	± 0.02					
	Screw le	ead [mm]	10	5	2.5	12	6	3
	ImpactVibration	on resistance [m/s $]^{\text {\|vita }}$]	50/20					
	Actuatio	n type	Ball screw + Belt (LEY \square)/Ball screw (LEY $\square \mathrm{D}$)					
	Guide ty	ype	Sliding bushing (Piston rod)					
	Operating tem	mperature range [$\left.{ }^{\circ} \mathrm{C}\right]$	5 to 40					
	Operating hu	humidity range [\%RH]	90 or less (No condensation)					
	Motor size		$\square 28$			$\square 42$		
	Motor ou	utput [W]	30			36		
	Motor ty	ype	Servo motor (24 VDC)					
	Encoder		Incremental A/B phase (800 pulse/rotation)/Z phase					
	Rated vo	oltage [V]	24 VDC $\pm 10 \%$					
	Power cons	sumption [W] ${ }^{\text {Note 7) }}$	40			86		
	Standey power conss		4 (Horizontal)/6 (Vertical)			4 (Horizontal)/12 (Vertical)		
	Max instantaneous	us power Consumplion [W] Wixg	59			96		
	Type Note	e 10)	Non-magnetizing lock					
旨	Holding	force [N]	20	39	78	78	157	294
年:	Power cons	sumption [W] Note 11)	2.9			5		
	Rated vo	oltage [V]	24 VDC $\pm 10 \%$					

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) Horizontal: The maximum value of the work load. An external guide is necessary to support the load. The actual work load and transfer speed change according to the condition of the external guide.
Vertical: Check "Model Selection" on page 134 for details. The values shown in () are the acceleration/deceleration. Set these values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less.
Note 3) Pushing force accuracy is $\pm 20 \%$ (F.S.).
Note 4) The pushing force values for LEY16A \square is 50% to 95% and for LEY25A \square is 50% to 95%. The pushing force values change according to the duty ratio and pushing speed. Check "Model Selection" on page 135.
Note 5) The allowable speed for pushing operation. When push conveying a workpiece, operate at the vertical work load or less.
Note 6) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 7) The power consumption (including the controller) is for when the actuator is operating.
Note 8) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation. Except during the pushing operation.
Note 9) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 10) With lock only
Note 11) For an actuator with lock, add the power consumption for the lock.

Weight

Weight: Motor Top/Parallel Type

Series		LEY16							LEY25									LEY32										
Stroke [mm]		30	50	100	150	200	250	300	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product weight [kg]	Step motor	0.58	0.62	0.73	0.87	0.98	1.09	1.20	1.18	1.25	1.42	1.68	1.86	2.03	2.21	2.38	2.56	2.09	2.20	2.49	2.77	3.17	3.46	3.74	4.03	4.32	4.60	4.89
	Servo motor	0.58	0.62	0.73	0.87	0.98	1.09	1.20	1.14	1.21	1.38	1.64	1.82	1.99	2.17	2.34	2.52	-	-	-	-	-	-	-	-	-	-	-
Series		LEY40																										
Stroke [mm]		30	50	100	150	200	250	300	350	400	450	500																
Product weight [kg]	Step motor	2.39	2.50	2.79	3.07	3.47	3.76	4.04	4.33	4.62	4.90	5.19																
	Servo motor	-	-	-	-	-	-	-	-	-	-	-																

Weight: In-line Motor Type

Series		LEY16D							LE			
Stroke [mm]		30	50	100	150	200	250	300	30	50	100	150
Product weight [kg]	Step motor	0.58	0.62	0.73	0.87	0.98	1.09	1.20	1.17	1.24	1.41	1.67
	Servo motor	0.58	0.62	0.73	0.87	0.98	1.09	1.20	1.13	1.20	1.37	1.63
Series		LEY40D										
Stroke [mm]		30	50	100	150	200	250	300	350	400	450	500
Product weight [kg]	Step motor	2.38	2.49	2.78	3.06	3.46	3.75	4.03	4.32	4.61	4.89	5.18
	Servo motor	-	-	-	-	-	-	-	-	-	-	-

Additional Weight

[kg]

Size		$\mathbf{1 6}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Lock	0.12	0.26	0.53	0.53	
Motor cover	0.02	0.03	0.04	0.05	
Lock/Motor cover	0.16	0.32	0.61	0.62	
Rod end male thread	Male thread	0.01	0.03	0.03	0.03
	Nut	0.01	0.02	0.02	0.02
Foot (2 sets including mounting bolt)	0.06	0.08	0.14	0.14	
Rod flange (including mounting bolt)	0.13	0.17	0.20	0.20	
Head flange (including mounting bolt)					
Double clevis (including pin, retaining ring and mounting bolt)	0.08	0.16	0.22	0.22	

Series LEY

Construction

Motor top mounting type: $\begin{array}{r}\text { LEY } \\ \begin{array}{r}16 \\ 32 \\ 40\end{array} \\ 40\end{array}$

Motor top/parallel type
With lock/motor cover

Construction

Component Parts

No．	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Ball screw（shaft）	Alloy steel	
3	Ball screw nut	Resin／Alloy steel	
4	Piston	Aluminum alloy	
5	Piston rod	Stainless steel	Hard chrome plated
6	Rod cover	Aluminum alloy	
7	Housing	Aluminum alloy	
8	Rotation stopper	POM	
9	Socket	Free cutting carbon steel	Nickel plated
10	Connected shaft	Free cutting carbon steel	Nickel plated
11	Bushing	Lead bronze cast	
12	Bumper	Urethane	
13	Bearing	-	
14	Return box	Aluminum die－cast	Trivalent chromated
15	Return plate	Aluminum die－cast	Trivalent chromated
16	Magnet	-	
17	Wear ring holder	Stainless steel	Stroke 101 mm or more
18	Wear ring	POM	Stroke 101 mm or more
19	Screw shaft pulley	Aluminum alloy	
20	Motor pulley	Aluminum alloy	
21	Belt	-	

No．	Description	Material	Note
$\mathbf{2 2}$	Bearing stopper	Aluminum alloy	
$\mathbf{2 3}$	Parallel pin	Stainless steel	
$\mathbf{2 4}$	Seal	NBR	
$\mathbf{2 5}$	Retaining ring	Steel for spring	Phosphate coated
$\mathbf{2 6}$	Motor	-	
$\mathbf{2 7}$	Motor cover	Synthetic resin	Only＂With motor cover＂
$\mathbf{2 8}$	Grommet	Synthetic resin	Only＂With motor cover＂
$\mathbf{2 9}$	Motor block	Aluminum alloy	Anodized
$\mathbf{3 0}$	Motor adapter	Aluminum alloy	Anodized／LEY16，25 only
$\mathbf{3 1}$	Hub	Aluminum alloy	
$\mathbf{3 2}$	Spider	NBR	
$\mathbf{3 3}$	Socket（Male thread）	Free cutting carbon steel	Nickel plated
$\mathbf{3 4}$	Nut	Alloy steel	
$\mathbf{3 5}$	Motor cover with lock	Aluminum alloy	Only＂With lock／motor cover＂
$\mathbf{3 6}$	Cover support	Aluminum alloy	Only＂With lock／motor cover＂

Replacement Parts（Top／Parallel only）／Belt

No．	Size	Order no．
21	$\mathbf{1 6}$	LE－D－2－1
	$\mathbf{2 5}$	LE－D－2－2
	$\mathbf{3 2 , 4 0}$	LE－D－2－3

Series LEY

Dimensions: Motor Top/Parallel

Note) When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden.

Size	Stroke range (mm)	Step motor	Servo motor	B	C	D	EH	EV	H	J	K	L	M	O1	R	S	T	U
16	10 to 100	166.3	167	92	10	16	34	34.3	M5 x 0.8	18	14	10.5	25.5	M4 x 0.7	7	35	35.5	0.5
16	101 to 300	186.3	187	112														
25	15 to 100	195.4	191.6	115.5	13	20	44	45.5	M8 x 1.25	24	17	14.5	34	M5 x 0.8	8	45	46.5	1.5
	101 to 400	220.4	216.6	140.5														
32	20 to 100	216.9	-	128	13	25	51	56.5	M8 $\times 1.25$	31	22	18.5	40	M6x 1	10	60	61	1
	101 to 500	246.9	-	158														
40	20 to 100	238.9	-	128	13	25	51	56.5	M8 $\times 1.25$	31	22	18.5	40	M6x 1	10	60	61	1
	101 to 500	268.9	-	158														

Series LEY

Dimensions

	$[\mathrm{mm}]$	
Size	\mathbf{T}_{2}	\mathbf{X}_{2}
$\mathbf{1 6}$	7.5	83
$\mathbf{2 5}$	7.5	88.5
$\mathbf{3 2}$	7.5	98.5
$\mathbf{4 0}$	7.5	120.5

Motor cover material: Synthetic resin

* Refer to page 152 for details about the rod end nut and mounting bracket.
Note) Refer to the "Handling" precautions on pages 180 and 181 when mounting end brackets such as knuckle joint or workpieces.

Size	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{H}_{\mathbf{1}}$	$\mathbf{L}_{\mathbf{1}}$	$\mathbf{L}_{\mathbf{2}}$	$\mathbf{M M}$
$\mathbf{1 6}$	13	12	5	24.5	14	$\mathrm{M} 8 \times 1.25$
$\mathbf{2 5}$	22	20.5	8	38	23.5	$\mathrm{M} 14 \times 1.5$
$\mathbf{3 2 , 4 0}$	22	20.5	8	42.0	23.5	$\mathrm{M} 14 \times 1.5$

* The Li measurement is when the unit is in the original position. At this position, 2 mm at the end.

Electric Actuator/Rod Type Series $L E Y$

Dimensions

$\begin{array}{lll} \hline \text { Motor top/parallel type } & 16 \\ \text { With lock/motor cover: LEY } \\ & \begin{array}{ll} 25 \\ 40 \\ \hline \end{array} \mathrm{C}-\square \mathrm{C} \end{array}$	

Size	\mathbf{T}_{2}	$\mathbf{X m m}_{\mathbf{2}}$
$\mathbf{1 6}$	7.5	124.5
$\mathbf{2 5}$	7.5	129
$\mathbf{3 2}$	7.5	141.5
$\mathbf{4 0}$	7.5	163.5

Size	Stroke range	A	T2	X2	L	CV
16	100st or less	210.5	7.5	108	35	43
	101st or more, 300st or less	230.5				
25	100st or less	239	7.5	109	46	54.4
	101st or more, 400st or less	264				
32	100st or less	263	7.5	116.5	60	68.5
	101st or more, 500st or less	293				
40	100st or less	285	7.5	138.5	60	68.5
	101st or more, 500st or less	315				

Series LEY

Dimensions

Outward mounting

Foot					Included parts - Foot - Body mounting bolt			
					[mm]			
Size	Stroke range (mm)	A	LS		LS 1	LL	LD	LG
16	10 to 100	106.1		76.7	16.1	5.4	6.6	2.8
	101 to 300	126.1		96.7				
25	15 to 100	136.6		98.8	19.8	8.4	6.6	3.5
	101 to 400	161.6		123.8				
32	20 to 100	155.7		114	19.2	11.3	6.6	4
40	101 to 500	185.7		144				
Size	Stroke range (mm)	LH	LT	LX	LY	LZ	X	Y
16	10 to 100	24	2.3	48	40.3	62	9.2	5.8
	101 to 300							
25	15 to 100	30	2.6	57	51.5	71	11.2	5.8
	101 to 400							
32	20 to 100	36	3.2	76	61.5	90	11.2	7
40	101 to 500							

Material: Carbon steel (Chromate treated)

* The A measurement is when the unit is in the original position.

At this position, 2 mm at the end.
Note) When the motor mounting is the right or left side parallel type, the head side foot should be mounted outwards.

Rod/Head Flange							
Size	FD	FT	FV	FX	FZ	$\mathbf{L L}$	\mathbf{M}
$\mathbf{1 6}$	6.6	8	39	48	60	2.5	-
$\mathbf{2 5}$	5.5	8	48	56	65	6.5	34
$\mathbf{3 2 , 4 0}$	5.5	8	54	62	72	10.5	40

Material: Carbon steel (Nickel plated)

Included parts

- Double clevis
- Body mounting bolt
- Clevis pin
- Retaining ring
* Refer to page 152 for details about the rod end nut and mounting bracket.

Double Clevis

Size	Stroke range (mm)	A		CL	CB	CD	CT
16	10 to 100	128		119	20	8	5
25	15 to 100	160.5		150.5	-	10	5
	101 to 200	185.5		175.5			
32	20 to 100	180.5		170.5	-	10	6
40	101 to 200	210.5		200.5			
Size	Stroke range (mm)	CU	CW	CX	CZ	L	RR
16	10 to 100	12	18	8	16	10.5	9
25	15 to 100	14	20	18	36	14.5	10
25	101 to 200		20	18	36	14.5	10
32	20 to 100	14					
40	101 to 200	14	22	18	36	18.5	10

[^9]* The A and CL measurements are when the unit is in the original position. At this position, 2 mm at the end.

Series LEY
 Accessory Mounting Brackets

Accessory Brackets/Support Brackets

Single Knuckle Joint

* If a knuckle joint is used, select the body option [end male thread].

Material: Carbon steel Surface treatment: Nickel plated

I-G04

Material: Cast iron Surface treatment: Nickel plated

[mm]										
Part no.	Applicable size	A	A_{1}	E_{1}	L1	MM	R_{1}	\mathbf{U}_{1}	NDH10	NX
I-G02	16	34	8.5	$\square 16$	25	M8 $\times 1.25$	10.3	11.5	$8^{+0.058}$	$8^{-0.4}$
I-G04	25, 32, 40	42	14	ø22	30	M14 1.5	12	14	$10_{0}^{+0.058}$	$18_{-0.5}^{0.3}$
I-G05	63	56	18	ø28	40	M18 1.5	16	20	$14_{0}^{+0.070}$	$22_{-0.5}^{-0.3}$

Knuckle Pin (Common with double clevis pin)

Material: Carbon steel [mm]

Part no.	Applicable size	Dd9	L1	L2	d	m	t	Retaining ring
IY-G02	16	$8_{-0.076}^{-0.040}$	21	16.2	7.6	1.5	0.9	Type C retaining ing 8
IY-G04	25, 32, 40	$10_{-0.076}^{-0.040}$	41.6	36.2	9.6	1.55	1.15	Type C retaining ting 10
IY-G05	63	$14_{-0.093}^{-0.050}$	50.6	44.2	13.4	2.05	1.15	Type C retaining ting 14

Mounting Brackets/Part No.

Applicable size	Foot	Flange	Double clevis
$\mathbf{1 6}$	LEY-L016	LEY-F016	LEY-D016
$\mathbf{2 5}$	LEY-L025	LEY-F025	LEY-D025
$\mathbf{3 2 , 4 0}$	LEY-L032	LEY-F032	LEY-D032
$\mathbf{6 3}$	-	LEY-F063	-

* When ordering foot brackets, order 2 pieces per actuator.
* Parts belonging to each bracket are as follows.

Foot: Body mounting bolt
Flange: Body mounting bolt
Double clevis: Clevis pin, Type C retaining ring for axis, Body mounting bolt

Double Knuckle Joint

Y-G02

Material: Carbon steel
Surface treatment: Nickel plated

Y-G04

Material: Cast iron
Surface treatment: Nickel plated

* Knuckle pin and retaining ring are included.							[mm]
Part no.	Applicable size	A	A_{1}	E_{1}	L1	MM	R1
Y-G02	16	34	8.5	$\square 16$	25	M8 $\times 1.25$	10.3
Y-G04	25, 32, 40	42	16	ø22	30	M14 $\times 1.5$	12
Y-G05	63	56	20	$ø 28$	40	M18 $\times 1.5$	16
Part no.	Applicable size	U_{1}	NDh10	NX	NZ	L	icable art no.
Y-G02	16	11.5	$8^{+0.058}$	$8_{+0.2}^{+0.4}$	16	21	G02
Y-G04	25, 32, 40	14	$10_{0}^{+0.058}$	$18_{+0.3}^{+0.5}$	36	41.6	G04
Y-G05	63	20	$14^{+0.070}$	$22_{+0.3}^{+0.5}$	44	50.6	G05

Rod End Nut

Material: Carbon steel (Nickel plated)

Part no.	Applicable size	\mathbf{d}	\mathbf{H}	\mathbf{B}	\mathbf{C}
NT-02	$\mathbf{1 6}$	$\mathrm{M} 8 \times 1.25$	5	13	15.0
NT-04	$\mathbf{2 5 , 3 2 , 4 0}$	$\mathrm{M} 14 \times 1.5$	8	22	25.4
NT-05	$\mathbf{6 3}$	$\mathrm{M} 18 \times 1.5$	11	27	31.2

Simple Joint Brackets * The joint is not included in type A and type B mounting brackets. Therefore, it must be ordered separately.

Joint and Mounting Bracket (Type A/B)/Part No.

Allowable Eccentricity
Applicable size $\mathbf{2 5}$ $\mathbf{3 2}$ $\mathbf{4 0}$ Eccenticity tolerance ± 1 Backlash 0.5

- The joint is not included in type A and type B mounting brackets. Therefore, it must be ordered separately. Example)

Order no. LEY-U025 - Type A mounting bracket........................03

Joint and Mounting Bracket (Type A/B)/Part No.

Floating Joints (Refer to Best Pneumatics No. 2 for details.)
-For Male Thread/JC
(Light weight type)

- With the aluminum case
-For Male Thread/JA

-For Female Thread/JB

Solid State Auto Switch Direct Mounting Style

D-M9N(V)/D-M9P(V)/D-M9B(V)
Refer to SMC website for details about
Auto Switch Specifications international standards.

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is $\mathbf{1 . 5}$ times greater than the conventional model (SMC comparison).
- Using flexible cable as standard.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

PLC: Programmable Logic Controller						
D-M9 \square, D-M9 \square V (With indicator light)						
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10	to 28 VDC)
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED lights up when turned ON.					
Standards	CE marking, RoHS					

- Lead wires - Oilproof flexible heavy-duty vinyl cord: ø2.7 $\times 3.2$ ellipse, $0.15 \mathrm{~mm}^{2}, 2$ cores (D-M9B(V)), 3 cores (D-M9N(V)/D-M9P(V))
Note) Refer to Best Pneumatics No. 2 for solid state auto switch common specifications.

Weight

[g]

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length (m)	0.5	8	8	7
	1	14	14	13
	3	41	41	38
	5	68	68	63

How to Order

Dimensions
D-M9 \square

D-M9 $\square \mathbf{V}$

2-Color Indication Solid State Auto Switch Direct Mounting Style D-M9NW(V)/D-M9PW(V)/D-M9BW(V)

Refer to SMC website for details about products conforming to the international standards.

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard.
- The optimum operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Internal Circuit D-M9NW/M9NWV

D-M9PW/M9PWV

Indicator light/Indication method

Auto Switch Specifications

PLC: Programmable Logic Controller						
D-M9 \square W, D-M9 \square WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, $24 \mathrm{VDC} \mathrm{(4.5} \mathrm{to} 28 \mathrm{~V}$)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range Red LED lights up.Optimum operating range Green LED lights up.					
Standards	CE marking, RoHS					
\bullet Lead wires - Oilproof flexible heavy-duty vinyl cord: $\varnothing 2.7 \times 3.2$ ellipse, $0.15 \mathrm{~mm}^{2}, 2$ cores (D-M9BW(V)), 3 cores (D-M9NW(V), D-M9PW(V)) Note) Refer to Best Pneumatics No. 2 for solid state auto switch common specifications.						

Weight

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Lead wire length (m)	0.5	8	8	7
	1	14	14	13
	3	41	41	38
	5	68	68	63

How to Order

Dimensions
[mm]
D-M9 $\square \mathbf{W}$

D-M9 $\square W V$

Electric Actuator/Rod Type

Step Motor (Servo/24 VDC)

Servo Motor (24 VDC)
Series LEY-X5
($\in \mathrm{cNs}_{\mathrm{si}}$

Size: 25,32 ,

2 Motor mounting position

Nil	Top mounting
D	In-line

Stroke [mm]	
$\mathbf{3 0}$	30
to	to
$\mathbf{5 0 0}$	500

6 Motor option

Nil	Without option
B	With lock

(3) Motor type				
Symbol	Type	Size		$\begin{array}{\|c\|} \hline \text { Compatible } \\ \text { controllers/driver } \end{array}$
		25	32	
Nil	Step motor (Servo/24 VDC)	\bullet	\bullet	LECP6 LECP1 LECPA
A	Servo motor (24 VDC)	\bullet	-	LECA6

4) Lead [mm]

Symbol	LEY25	LEY32
A	12	16
B	6	8
C	3	4

* Refer to the applicable stroke table.
7 Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

Actuator cable type

R
Robotic cable (Flexible cable)

* Cable is shipped assembled.
10 Actuator cable length [m]

$\mathbf{1}$	1.5	A	10
$\mathbf{3}$	3	B	15
$\mathbf{5}$	5	\mathbf{C}	20
$\mathbf{8}$	8		

(11) Controller/Driver type

Nil	Without controller/driver	
6N	LECP6/LECA6	NPN
6P	(Step data input type)	PNP
1N*	LECP1 (Programless type)	NPN
1P*		PNP
AN*	LECPA (Pulse input type)	NPN
AP*		PNP

* Only available for the motor type "Step motor".

13 Controller/Driver mounting

Nil	Screw mounting
D	

Nil	Screw mounting
D	DIN rail mounting*

* DIN rail is not included. Order it separately.

Mounting* ${ }^{*}$

Symbol	Type	Motor mounting position	
		Top mounting	In-line
Nil	Ends tapped (Standard)	\bullet	\bullet
\mathbf{U}	Body bottom tapped	\bullet	\bullet
\mathbf{L}	Foot	\bullet	-
F	Rod flange	\bullet	\bullet
\mathbf{G}	Head flange $^{* 2}$	$\bullet^{* 3}$	-

*1 Mounting bracket is shipped together, (but not assembled).
*2 For horizontal cantilever mounting with the rod flange, head flange and ends tapped, use the actuator within the following stroke range. -LEY25: 200 or less •LEY32: 100 or less *3 Head flange is not available for the LEY32.
$12 \mathrm{I} / \mathrm{O}$ cable length [m] ${ }^{* 1}$

Nil	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	$3^{* 2}$
$\mathbf{5}$	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 394 (For LECP6/ LECA6), page 407 (For LECP1) or page 414 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.

Applicable stroke table

-Standard

Model Stroke	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{3 5 0}$	$\mathbf{4 0 0}$	$\mathbf{4 5 0}$	$\mathbf{5 0 0}$	Manufacturable stroke range $[\mathrm{mm}]$
LEY25	\bullet	-	-	15 to 400								
LEY32	\bullet	20 to 500										

* Consult with SMC for non-standard strokes as they are produced as special orders.

\triangle Caution

[CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEY series and the controller LEC series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the servo motor (24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 394 for the noise filter set. Refer to the LECA Operation Manual for installation. [UL-compliant products]
When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

* For auto switches, refer to page 161.
* "-X5" is not added to an actuator model with a controller/driver part number suffix.
Example) "LEY25DB-100" for the
LEY25DB-100BMU-R16N1D-X5

The actuator and controller/driver are sold as a package. (Controller/Driver \rightarrow Page 377) Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^10]
Specifications

Step Motor (Servo/24 VDC)

Model				LEY25			LEY32		
	Stroke [mm] ${ }^{\text {Note 1) }}$			$\begin{gathered} 30,50,100,150,200 \\ 250,300,350,400 \end{gathered}$			$\begin{gathered} 30,50,100,150,200 \\ 250,300,350,400,450,500 \end{gathered}$		
	Work load [kg] Note 2)	Horizontal	(3000 [$\left.\mathrm{mm} / \mathrm{s}^{2}\right]$)	12	30	30	20	40	40
			(2000 [$\left.\mathrm{mm} / \mathrm{s}^{2}\right]$)	18	50	50	30	60	60
		Vertical	(3000 [$\left.\mathrm{mm} / \mathrm{s}^{2}\right]$)	7	15	29	10	21	42
	Pushing force [N] ${ }^{\text {Note 3) }}$ Note 4) Note 5)			63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707
	Speed [mm/s] ${ }^{\text {Note 5) }}$			18 to 400	9 to 200	5 to 100	24 to 400	12 to 200	6 to 100
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			3,000					
	Pushing speed [mm/s] ${ }^{\text {Note 6) }}$			35 or less			30 or less		
	Positioning repeatability [mm]			± 0.02					
	Screw lead [mm]			12	6	3	16	8	4
	Impact/Vibration resistance [m/s ${ }^{\mathbf{2}}{ }^{\text {] Note 7) }}$			50/20					
	Actuation type			Ball screw + Belt (LEY \square) Ball screw (LEY $\square \mathrm{D}$)					
	Guide type			Sliding bushing (Piston rod)					
	Enclosure			IP65					
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40					
	Operating humidity range [\%RH]			90 or less (No condensation)					
	Motor size			$\square 42$			$\square 56.4$		
兴	Motor type			Step motor (Servo/24 VDC)					
:	Encoder			Incremental A/B phase (800 pulse/rotation)					
$\stackrel{\ddot{0}}{0} \mid$	Rated voltage [V]			24 VDC $\pm 10 \%$					
$\begin{aligned} & \bar{\sigma} \\ & 0.0 \end{aligned}$	Power consumption [W] Note 8)			40			50		
등	Standby power consumption when operating [W] ${ }^{\text {Note 9) }}$			15			48		
	Max. instantaneous power consumption [W] ${ }^{\text {Note 10) }}$			48			104		
	Type Note 11)			Non-magnetizing lock					
	Holding force [N]			78	157	294	108	216	421
	Power consumption [W] ${ }^{\text {Note 12) }}$			5			5		
	Rated voltage [V]			24 VDC $\pm 10 \%$					

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) Horizontal: The maximum value of the work load. An external guide is necessary to support the load. The actual work load and transfer speed change according to the condition of the external guide.
Vertical: Speed changes according to the work load. Check "Model Selection" on page 138.
The values shown in () are the acceleration/deceleration. Set these values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less.
Note 3) Pushing force accuracy is $\pm 20 \%$ (F.S.).
Note 4) The pushing force values for LEY25 \square is 35% to 65% and for LEY32 \square is 35% to 85%. The pushing force values change according to the duty ratio and pushing speed. Check "Model Selection" on page 139.
Note 5) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
Note 6) The allowable speed for pushing operation. When push conveying a workpiece, operate at the vertical work load or less.
Note 7) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 8) The power consumption (including the controller) is for when the actuator is operating.
Note 9) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation. Except during the pushing operation.
Note 10) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 11) With lock only
Note 12) For an actuator with lock, add the power consumption for the lock.

Series LEY-X5

Dust/Drip Proof (IP65) Specirication

Specifications

Model				LEY25A		
Actuator specifications	Stroke [mm] ${ }^{\text {Note 1) }}$			$\begin{gathered} 30,50,100,150,200 \\ 250,300,350,400 \end{gathered}$		
	Work load [kg] Note 2)	Horizontal	($3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$)	7	15	30
		Vertical	(3000 [mm/s $\left.{ }^{2}\right]$)	2	5	11
	Pushing force [N] Note 3) Note 4)			18 to 35	37 to 72	66 to 130
	Speed [mm/s]			18 to 400	9 to 200	5 to 100
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			3,000		
	Pushing speed [mm/s] ${ }^{\text {Note 5) }}$			35 or less		
	Positioning repeatability [mm]			± 0.02		
	Screw lead [mm]			12	6	3
	Impact/Vibration resistance [m/s $\left.{ }^{\mathbf{2}}\right]^{\text {Note 6) }}$			50/20		
	Actuation type			$\begin{gathered} \text { Ball screw + Belt (LEY } \square \text {) } \\ \text { Ball screw (LEY } \square \mathrm{D}) \\ \hline \end{gathered}$		
	Guide type			Sliding bushing (Piston rod)		
	Enclosure			IP65		
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40		
	Operating humidity range [\%RH]			90 or less (No condensation)		
	Motor size			$\square 42$		
	Motor type			Servo motor (24 VDC)		
	Encoder			Incremental A/B phase (800 pulse/rotation)/Z phase		
	Rated voltage [V]			24 VDC $\pm 10 \%$		
	Power consumption [W] Note 7)			86		
	Standby power consumption when operating [W] ${ }^{\text {Note }} 8$)			4 (Horizontal)/12 (Vertical)		
	Max. instantaneous power consumption [W] ${ }^{\text {Note 9) }}$			96		
	Type Note 10)			Non-magnetizing lock		
	Holding force [N]			78	157	294
	Power consumption [W] ${ }^{\text {Note 11) }}$			5		
	Rated voltage [V]			24 VDC $\pm 10 \%$		

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) Horizontal: The maximum value of the work load. An external guide is necessary to support the load. The actual work load and transfer speed change according to the condition of the external guide.
Vertical: Speed changes according to the work load. Check "Model Selection" on page 138. The values shown in () are the acceleration/deceleration. Set these values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less.
Note 3) Pushing force accuracy is $\pm 20 \%$ (F.S.).
Note 4) The pushing force values for LEY25A \square is 50% to 95%. The pushing force values change according to the duty ratio and pushing speed. Check "Model Selection" on page 139.
Note 5) The allowable speed for pushing operation. When push conveying a workpiece, operate at the vertical work load or less.
Note 6) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 7) The power consumption (including the controller) is for when the actuator is operating.
Note 8) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation with the maximum work load. Except during the pushing operation.
Note 9) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.

Note 11) For an actuator with lock, add the power consumption for the lock.

Weight

Weight: Motor Top Mounting Type

	Model	LEY25									LEY32										
Stroke [m	mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product	Step motor	1.45	1.52	1.69	1.95	2.13	2.30	2.48	2.65	2.83	2.48	2.59	2.88	3.35	3.64	3.91	4.21	4.49	4.76	5.04	5.32
weight [kg]	Servo motor	1.41	1.48	1.65	1.91	2.09	2.26	2.44	2.61	2.79	-	-	-	-	-	-	-	-	-	-	-

Weight: In-line Motor Type

	Model	LEY25D									LEY32D										
Stroke [mm]		30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product	Step motor	1.46	1.53	1.70	1.96	2.14	2.31	2.49	2.66	2.84	2.49	2.60	2.89	3.36	3.65	3.92	4.22	4.50	4.77	5.05	5.33
weight [kg]	Servo motor	1.42	1.49	1.66	1.92	2.10	2.27	2.45	2.62	2.80	-	-	-	-	-	-	-	-	-	-	-

Additional Weight

Size		$\mathbf{2 5}$	$\mathbf{3 2}$
Lock	0.33	0.63	
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot (2 sets including mounting bolt)	0.08	0.14	
Rod flange (including mounting bolt)	0.17	0.20	
Head flange (including mounting bolt)			

Construction
Motor top mounting type： $\operatorname{LEY}_{32}^{25}$

Component Parts

No．	Description	Material	Note	No．	Description	Material	Note
1	Body	Aluminum alloy	Anodized	21	Belt	－	
2	Ball screw（shaft）	Alloy steel		22	Bearing stopper	Aluminum alloy	
3	Ball screw nut	Resin／Alloy steel		23	Parallel pin	Stainless steel	
4	Piston	Aluminum alloy		24	Scraper	Nylon	
5	Piston rod	Stainless steel	Hard chrome plated	25	Retaining ring	Steel for spring	Nickel plated
6	Rod cover	Aluminum alloy		26	Motor	－	
7	Housing	Aluminum alloy		27	Lube－retainer	Felt	
8	Rotation stopper	POM		28	O－ring	NBR	
9	Socket	Free cutting carbon steel	Nickel plated	29	Gasket	NBR	
10	Connected shaft	Free cutting carbon steel	Nickel plated	30	Motor adapter	Aluminum alloy	Anodized
11	Bushing	Lead bronze cast		31	Motor cover	Aluminum alloy	Anodized
12	Bumper	Urethane		32	Seal connector	－	
13	Bearing	－		33	End cover	Aluminum alloy	Anodized
14	Return box	Aluminum die－cast	Trivalent chromated	34	Hub	Aluminum alloy	
15	Return plate	Aluminum die－cast	Trivalent chromated	35	Spider	NBR	
16	Magnet	－		36	Motor block	Aluminum alloy	Anodized
17	Wear ring holder	Stainless steel	Stroke 101 mm or more	37	Motor adapter	Aluminum alloy	LEY25 only
18	Wear ring	POM	Stroke 101 mm or more	38	Socket（Male thread）	Free cutting carbon steel	Nickel plated
19	Screw shaft pulley	Aluminum alloy		39	Nut	Alloy steel	
20	Motor pulley	Aluminum alloy					

Replacement Parts（Top mounting only）／Belt		
No．	Size	Order no．
$\mathbf{2 1}$	$\mathbf{2 5}$	LE－D－2－2
	$\mathbf{3 2}$	LE－D－2－3

Replacement Parts／Grease Pack	
Applied portion	
Order no．	
Piston rod	
GR－S－010 $(10 \mathrm{~g})$ GR－S－020 $(20 \mathrm{~g})$	

岂

Series LEY-X5

DustiDip Proof (IP65) Speciication

Dimensions

Motor top mounting type

Size	Stroke range (mm)	A	B	C	D	EH	EV	FH	FV	GH	GV	H	J	K	L	M	O1	
25	15 to 100	130.5	116	13	20	44	45.5	57.6	56.8	65.6	139.5	M8 $\times 1.25$	24	17	14.5	34	M5 x 0.8	
	101 to 400	155.5	14															
32	20 to 100	148.5	130	13	25	51	56.5	69.6	78.6	75.6	173.5	M8 x 1.25	31	22	18.5	40	M6x 1.0	
	101 to 500	178.5	160															
Size	Strokerange (mm)	R	OA	OB	PA	PB	Q	S	T	U	PC	W		X			Y	
												Without lock	With lock	Without lock		lock		
25	15 to 100	8	37	38	15.6	9.3	28	46	92	1	14.8	123	173	145	195		51	
	101 to 400																	
32	20 to 100	10	37	38	15.6	9.3	28	60	118	1	15.3	123	173	150	200		61	
	101 to 500																	

In-line motor type

Note 1) Range within which the rod can move when it returns to origin. Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.
Note 5) The vent hole is the port for releasing to atmosphere. Do not apply pressure to this hole. Attach tubing to the vent hole and place the end of the tubing so it is not exposed to dust or water.

[^11]
Water Resistant 2－Color Indication Solid State Auto Switch：Direct Mounting Style D－M9NA（V）／D－M9PA（V）／D－M9BA（V）（ $\boldsymbol{\in}$ RoHs

Grommet

－Water（coolant）resistant type
－2－wire load current is reduced（ 2.5 to 40 mA ）．
－The optimum operating range can be determined by the color of the light． （Red \rightarrow Green \leftarrow Red）
－Using flexible cable as standard．

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body．The auto switch may be damaged if a screw other than the one supplied is used．

Auto Switch Internal Circuit
D－M9NA／M9NAV

D－M9PA／M9PAV

D－M9BA／M9BAV

Indicator light／Indication method

Auto Switch Specifications

PLC：Programmable Logic Controller						
D－M9 \square A，D－M9 \square AV（With indicator light）						
Auto switch model	D－M9NA	D－M9NAV	D－M9PA	D－M9PAV	D－M9BA	D－M9BAV
Electrical entry	In－line	Perpendicular	In－line	Perpendicular	In－line	Perpendicular
Wiring type	3－wire				2－wire	
Output type	NPN		PNP		－	
Applicable load	IC circuit，Relay，PLC				24 VDC relay，PLC	
Power supply voltage	5，12， 24 VDC （ 4.5 to 28 V ）				－	
Current consumption	10 mA or less				－	
Load voltage	28 VDC	or less			24 VDC（10	to $28 \mathrm{VDC)}$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA （ 2 V or less at 40 mA ）				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range ．．．．．．．．．．．．．．．．．．．．．．Red LED lights up．Optimum operating range $\ldots .$. Green LED lights up．					
Standards	CE marking，RoHS					

Dimensions
［mm］
D－M9■A

D－M9 \square AV

Moment Load Graph

Selection conditions

Mounting position	Vertical	Horizontal	
Max. speed [mm/s]	"Speed-Vertical Work Load Graph"	200 or less	Over 200
Graph (Sliding bearing type)	(1), (2)	(5), (6)*	-
Graph (Ball bushing bearing type)	(3), (4)	(7), (8)	(9), (10)

* For the sliding bearing type, the speed is restricted with a horizontal/moment load.

Vertical Mounting, Sliding Bearing

* The limit of vertical load mass varies depending on "lead" and "speed". Check "Speed-Vertical Work Load Graph" on page 164.

Vertical Mounting, Ball Bushing Bearing

[^12]

Moment Load Graph
Horizontal Mounting, Sliding Bearing

* Set the speed to less than or equal to the values shown below.

Motor type	LEYG \square M $\square \mathbf{A}$	LEYG \square M $\square \mathbf{B}$	LEYG \square M $\square \mathbf{C}$
Step motor (Servo/24 VDC)	$200 \mathrm{~mm} / \mathrm{s}$	$125 \mathrm{~mm} / \mathrm{s}$	$75 \mathrm{~mm} / \mathrm{s}$
Servo motor (24 VDC)	$200 \mathrm{~mm} / \mathrm{s}$	$200 \mathrm{~mm} / \mathrm{s}$	$125 \mathrm{~mm} / \mathrm{s}$

* For the specifications below, operate the system at the "load mass" shown in the graph $\times 80 \%$.
- LEYG25MAA/Servo motor (24 VDC), Lead 12

Horizontal Mounting, Ball Bushing Bearing

(7) $L=\mathbf{5 0} \mathbf{~ m m}$ Max. speed $\mathbf{=} \mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(9) $L=\mathbf{5 0} \mathbf{~ m m}$ Max. speed = Over 200 mm/s

(10) $L=100$ mm Max. speed $=$ Over 200 mm/s

Operating Range when Used as Stopper

LEYG $\square \mathrm{M}$ (Sliding bearing)

© Caution

Handling Precautions
Note 1) When used as a stopper, select a model with 30 stroke or less.
Note 2) LEYGDL (ball bushing bearing) cannot be used as a stopper.
Note 3) Workpiece collision in series with guide rod cannot be permitted (Fig. a). Note 4) The body should not be mounted on the end. It must be mounted on the top or bottom (Fig. b).

Fig. b

Series LEYG

Speed-Vertical Work Load Graph (Guide)

Step Motor (Servo/24 VDC)

LEYG16 ${ }_{\mathrm{L}}^{\mathrm{M}} \square$

LEYG25 ${ }_{\text {L }}$ [

LEYG32 ${ }_{\mathrm{L}} \square$

LEYG40 ${ }_{\mathrm{L}} \square$

Servo Motor (24 VDC)

LEYG16 ${ }_{\mathrm{L}}^{\mathrm{M}} \mathrm{A} \square$

LEYG25 ${ }_{\mathrm{L}}^{\mathrm{M}} \mathrm{A} \square$

Force Conversion Graph (Guide)

LEYG25 ${ }_{\mathrm{L}} \square$

Ambient temperature	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]]

| $40^{\circ} \mathrm{C}$ or less | 65 or less |
| :--- | :--- | :--- |

100
LEYG32 ${ }_{\mathrm{L}}^{\mathrm{L}} \square$

Ambient temperature	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]
$\mathbf{2 5} 5^{\circ} \mathbf{C}$ or less	85 or less	100	-
$\mathbf{4 0} \mathbf{C}$	65 or less	100	-
	85	50	15

LEYG40 ${ }_{\mathrm{L}}^{\mathrm{M}} \square$

| Ambient temperature | Set value of pushing force [\%] | Duty ratio [\%] | Continuous pushing time [minute] |
| :--- | :--- | :--- | :--- | | $40^{\circ} \mathrm{C}$ or less $\quad 65$ or less |
| :--- | :--- |

0

* Set values for the controller.

Servo Motor (24 VDC)

LEYG16 ${ }_{\mathrm{L}}^{\mathrm{M}} \mathrm{D} \square$

Ambient temperature	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]
$\mathbf{4 0} 0^{\circ} \mathrm{C}$ or less	95 or less	100	-

LEYG25 ${ }_{\mathrm{L}}^{\mathrm{M}} \mathrm{A} \square$

Ambient temperature	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute] $]$
$\mathbf{4 0 ^ { \circ }} \mathbf{C}$ or less	95 or less	100	-

<Pushing Force and Trigger Level Range> Without Load

Model	Pushing speed [mm/s]	Pushing force (Setting input value)	Model	Pushing speed [mm / s]	Pushing force (Setting input value)
LEYG16L-	1 to 4	30\% to 85\%	LEYG16 ${ }_{\text {L }} \square \square$	1 to 4	40\% to 95\%
	5 to 20	35\% to 85\%		5 to 20	60\% to 95\%
	21 to 50	60\% to 85\%		21 to 50	80\% to 95%
LEYG25L \square	1 to 4	20\% to 65\%	LEYG25 ${ }^{\text {² }} \square \mathrm{A}$	1 to 4	40\% to 95\%
	5 to 20	35% to 65%		5 to 20	60\% to 95\%
	21 to 35	50\% to 65\%		21 to 35	80\% to 95%
LEYG32L \square	1 to 4	20\% to 85\%			
	5 to 20	35\% to 85\%			
	21 to 30	60\% to 85\%			
LEYG40 ${ }_{\text {L }} \square$	1 to 4	20\% to 65\%			
	5 to 20	35\% to 65\%			
	21 to 30	50\% to 65\%			

Note) For vertical loads (upward), set the pushing force to the maximum value shown below, and operate at the work load or less.

Model	LEYG16[] ${ }^{\text {[}}$			LEYG25[] \square			LEYG32L]			LEYG40[]\|								
Lead	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C
Work load [kg]	0.5	1	2.5	1.5	4	9	2.5	7	16	5	12	26	0.5	1	2.5	0.5	. 5	4
Pushing force	85\%			65\%			85\%			65\%			95\%			95\%		

Series LEYG

Allowable Rotational Torque of Plate

Model	Stroke $[\mathrm{mm}]$				
	30	50	100	200	300
LEYG16M	0.70	0.57	1.05	0.56	-
LEYG16L	0.82	1.48	0.97	0.57	-
LEYG25M	1.56	1.29	3.50	2.18	1.36
LEYG25L	1.52	3.57	2.47	2.05	1.44
LEYG32M	2.55	2.09	5.39	3.26	1.88
LEYG32L	2.80	5.76	4.05	3.23	2.32
LEYG40M	2.55	2.09	5.39	3.26	1.88
LEYG40L	2.80	5.76	4.05	3.23	2.32

Non-rotating Accuracy of Plate

Size	Non-rotating accuracy θ	
	LEYG $\square \mathbf{M}$	LEYG $\square \mathbf{L}$
$\mathbf{1 6}$	0.06°	0.07°
$\mathbf{2 5}$		
$\mathbf{3 2}$	0.05°	0.06°
$\mathbf{4 0}$		

出

Electric Actuator/Guide Rod Type

Series LEYG LEYG16, 25, 32, 40

 RoHS

How to Order

2 Bearing type
\mathbf{M}
\mathbf{L}
Sliding bearing

* When [M: Sliding bearing] is selected, the maximum speed of lead [A] is $400 \mathrm{~mm} / \mathrm{s}$ (at no-load, horizontal mounting). The speed is also restricted with a horizontal/moment load. Refer to "Model Selection" on page 162.

Motor type

Symbol	Type	Size			Compatible nentrolers/driver
	LEYG16	LEYG25	LEYG32/40		LECP6 LECP1 LECPA
A	Step motor (Servo/24 VDC)	\bullet	\bullet	\bullet	Servo motor (24 VDC)
\bullet	\bullet	\bullet	-	LECA6	

3 Motor mounting position
Nil
D

(5) Lead [mm]

Symbol	LEYG16	LEYG25	LEYG32/40
A	10	12	16
B	5	6	8
C	2.5	3	4

7 Motor option*

Nil	Without option
C	With motor cover
B	With lock
W	With lock/motor cover

* When "With lock" or "With lock/motor cover" are selected for the top mounting and right/left side parallel types, the motor body will stick out of the end of the body for size 16 with strokes 30 or less.
Check for interference with workpieces before selecting a model.

6 Stroke $[\mathrm{mm}]$	
30	30
to	to
300	300

* Refer to the applicable stroke table.

8 Guide option

Nil	Without option
F	With grease retaining function

* Only available for size 25 and 32 sliding bearings. (Refer to "Construction" on page 173.)

\triangle Caution

[CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEYG series and the controller LEC series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the servo motor (24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 394 for the noise filter set. Refer to the LECA Operation Manual for installation.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.
$\left.\begin{array}{l}\text { * Applicable stroke table } \\ \begin{array}{|c|c|c|c|c|c|c|c|}\hline \text { Stroke } \\ {[\mathrm{mm}]}\end{array} \\ \mathbf{3 0}\end{array} \mathbf{5 0} \mathbf{1 0 0} \mathbf{1 5 0} \mathbf{2 0 0} \mathbf{2 5 0} \mathbf{3 0 0} \begin{array}{c}\text { Manufacturable } \\ \text { Modtroke range }[\mathrm{mm}]\end{array}\right)$

* Consult with SMC for non-standard strokes as they are produced as special orders.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^13]

12 I／O cable length［m］＊${ }^{* 1}$

$\mathbf{N i l}$	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	$3^{* 2}$
$\mathbf{5}$	$5^{* 2}$

＊1 If＂Without controller／driver＂is selected for controller／driver types，I／O cable cannot be selected．Refer to page 394 （For LECP6／ LECA6），page 407 （For LECP1）or page 414 （For LECPA）if I／O cable is required．
＊2 When＂Pulse input type＂is selected for controller／driver types，pulse input usable only with differential．Only 1.5 m cables usable with open collector．
10 Actuator cable length［m］

Nil	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	8^{*}
A	10^{*}
B	15^{*}
C	20^{*}

＊Produced upon receipt of order（Robotic cable only） Refer to the specifications Note 5）on page 170.
（13）Controller／Driver mounting
Controller／Driver type＊1

11 Controller／Driver type＊1		
Nil	Without controller／driver	
6N	LECP6／LECA6 （Step data input type）	NPN
6P		PNP
1N	LECP1＊2 （Programless type）	NPN
1P		PNP
AN	LECPA＊2（Pulse input type）	NPN
AP		PNP

＊1 For details about controllers／driver and compatible motors，refer to the compatible controllers／driver below．
＊2 Only available for the motor type＂Step motor＂．

Nil	Screw mounting
\mathbf{D}	DIN rail mounting＊

＊DIN rail is not included．Order it separately．

Use of auto switches for the guide rod type LEYG series
Insert the auto switch from the front side with rod（plate）sticking out．
－For the parts hidden behind the guide attachment（Rod stick out side），the auto switch cannot be fixed． ．Consult with SMC when using auto switch on the rod stick out side．

Compatible Controllers／Driver

Type	Step data input type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECA6	LECP1	LECPA
Features	Value（Step Standar	data）input controller	Capable of setting up operation（step data）without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor （Servo／24 VDC）	Servo moto （24 VDC）	Step motor （Servo／24 VDC）	
Maximum number of step data	64 points		14 points	－
Power supply voltage	24 VDC			
Reference page	Page 386	Page 386	Page 401	Page 408

Specifications

Step Motor (Servo/24 VDC)

Model				LEYG16 ${ }_{\text {L }}$			LEYG25 ${ }_{\text {L }}$			LEYG32 ${ }_{\text {L }}$			LEYG40 ${ }_{\text {L }}$		
	Stroke [mm] ${ }^{\text {Note 1) }}$			30, 50, 100, 150, 200			30, 50, 100, 150, 200, 250, 300			30, 50, 100, 150, 200, 250, 300			30, 50, 100, 150, 200, 250, 300		
	Work load [kg] Note 2)	Horizontal	AccelerationNDeceleration at $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	4	11	20	12	30	30	20	40	40	30	60	60
			Acceleration/Decceleration at 2000 [$\left.\mathrm{mm} / \mathrm{s}^{2}\right]$	6	17	30	18	50	50	30	60	60	-	-	-
		Vertical	Acceleration/Deceleration at 3000 [$\left.\mathrm{mm} / \mathrm{s}^{2}\right]$	1.5	3.5	7.5	7	15	29	9	20	41	11	25	51
	Pushing force [N] ${ }^{\text {Note 3) 4) 5) }}$			14 to 38	27 to 74	51 to 141	63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707	132 to 283	266 to 553	562 to 1058
	Speed [mm/s] ${ }^{\text {Note 5) }}$			15 to 500	8 to 250	4 to 125	18 to 500	9 to 250	5 to 125	24 to 500	12 to 250	6 to 125	24 to 300	12 to 150	6 to 75
	Max. acceleration/deceleration [mm/s²]			3000											
	Pushing speed [mm/s] ${ }^{\text {Note 6) }}$			50 or less			35 or less			30 or less			30 or less		
	Positioning repeatability [mm]			± 0.02											
	Screw lead [mm]			10	5	2.5	12	6	3	16	8	4	16	8	4
	Impact/Vibration resistance [$\left.\mathrm{m} / \mathrm{s}^{2}\right]^{\text {Note }}$ 7)			50/20											
	Actuation type			Ball screw + Belt (LEYG $\square \square$), Ball screw (LEYG $\square \square \mathrm{D}$)											
	Guide type			Sliding bearing (LEYG \square M), Ball bushing bearing (LEYG $\square \mathrm{L}$)											
	Operating temp. range [${ }^{\circ} \mathrm{C}$]			5 to 40											
	Operating humidity range [\%RH]			90 or less (No condensation)											
	Motor size			$\square 28$			$\square 42$			$\square 56.4$			$\square 56.4$		
	Motor type			Step motor (Servo/24 VDC)											
	Encoder			Incremental A/B phase (800 pulse/rotation)											
	Rated voltage [V]			24 VDC $\pm 10 \%$											
	Power consumption [W] Note 8)			23			40			50			50		
	Standby power consumption when operating [W] wateg			16			15			48			48		
	Max. instantaneous power consumption [W] Note ${ }^{\text {01) }}$			43			48			104			106		
$\stackrel{\square}{\circ}$	Type Note 11)			Non-magnetizing lock											
或	Holding force [N]			20	39	78	78	157	294	108	216	421	127	265	519
篂:	Power consumption [W] Note 12)			2.9			5			5			5		
	Rated voltage [V]			24 VDC $\pm 10 \%$											

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) Horizontal: The maximum value of the work load for the positioning operation. The work load is the same as the vertical work load during pushing operation. An external guide is necessary to support the load. The actual work load and transfer speed change according to the condition of the external guide.
Vertical: Speed changes according to the work load. Check "Model Selection" on page 164.
Set the acceleration/deceleration values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less.
Note 3) Pushing force accuracy is $\pm 20 \%$ (F.S.).
Note 4) The pushing force values for LEYG16 $\square \square$ is 35% to 85%, for LEYG25 $\square \square$ is 35% to 65%, for LEYG32 $\square \square$ is 35% to 85% and for LEYG40 $\square \square$ is 35% to 65%. The pushing force values change according to the duty ratio and pushing speed. Check "Model Selection" on page 165.
Note 5) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%) When [M: Sliding bearing] is selected, the maximum speed of lead [A] is $400 \mathrm{~mm} / \mathrm{s}$ (at no-load, horizontal mounting). The speed is also restricted with a horizontal/moment load. Refer to "Model Selection" on page 162.
Note 6) The allowable speed for the pushing operation.
Note 7) Impact resistance: No malfunction occurred when it was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 8) The power consumption (including the controller) is for when the actuator is operating.
Note 9) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation. Except during the pushing operation.
Note 10) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 11) With lock only
Note 12) For an actuator with lock, add the power consumption for the lock.

Specifications

Servo Motor（24 VDC）

Model				LEYG16 ${ }_{\text {L }}$ A			LEYG25 ${ }_{\text {L }}$ A		
	Stroke［mm］${ }^{\text {Note 1）}}$			30，50，100，150， 200			30，50，100，150，200，250， 300		
	Work load ［kg］${ }^{\text {Note 2）}}$	Hrizorital	$\begin{gathered} \text { Acceleration/Deceleration } \\ \text { at } 3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right] \end{gathered}$	3	6	12	7	15	30
		Vertical	Acceleration／Deceleration at 3000 ［ $\left.\mathrm{mm} / \mathrm{s}^{2}\right]$	1.5	3.5	7.5	2	5	11
	Pushing force［N］Note 3）4）			16 to 30	30 to 58	57 to 111	18 to 35	37 to 72	66 to 130
	Speed［mm／s］			15 to 500	8 to 250	4 to 125	18 to 500	9 to 250	5 to 125
	Max．acceleration／deceleration［mm／s $\left.{ }^{2}\right]$			3000					
	Pushing speed［mm／s］${ }^{\text {Note } 5)}$			50 or less			35 or less		
	Positioning repeatability［mm］			± 0.02					
	Screw lead［mm］			10	5	2.5	12	6	3
	ImpactVibration resistance［m／s $\left.{ }^{2}\right]^{\text {Nate } 6)}$			50／20					
	Actuation type			Ball screw＋Belt（LEYG $\square \square$ ），Ball screw（LEYG $\square \square \mathrm{D}$ ）					
	Guide type			Sliding bearing（LEYG $\square \mathrm{M}$ ），Ball bushing bearing（LEYG $\square \mathrm{L}$ ）					
	Operating temp．range［ ${ }^{\circ} \mathrm{C}$ ］			5 to 40					
	Operating humidity range［\％RH］			90 or less（No condensation）					
	Motor size			$\square 28$			$\square 42$		
	Motor output［W］			30			36		
	Motor type			Servo motor（24 VDC）					
	Encoder			Incremental A／B（800 pulse／rotation）／Z phase					
	Rated voltage［V］			24 VDC $\pm 10 \%$					
	Power consumption［W］${ }^{\text {Note 7）}}$			40			86		
	Standby power consumplion when operating［W］Wext］			4 （Horizontal）／6（Vertical）			4 （Horizontal）／12（Vertical）		
	Max．instantaneous power consumption［W］Wotg）			59			96		
	Type ${ }^{\text {Note 10）}}$			Non－magnetizing lock					
	Holding force［N］			20	39	78	78	157	294
	Power consumption［W］${ }^{\text {Note 11）}}$			2.9			5		
	Rated voltage［V］			24 VDC $\pm 10 \%$					

Note 1）Consult with SMC for non－standard strokes as they are produced as special orders．
Note 2）Horizontal：The maximum value of the work load for the positioning operation．The work load is the same as the vertical work load during pushing operation．An external guide is necessary to support the load．The actual work load and transfer speed change according to the condition of the external guide
Vertical：Check＂Model Selection＂on page 164 for details． Set the acceleration／deceleration values to be 3000 ［ $\mathrm{mm} / \mathrm{s}^{2}$ ］or less．
Note 3）Pushing force accuracy is $\pm 20 \%$（F．S．）．
Note 4）The pushing force values for LEYG16 $\square A \square$ is 50% to 95% and for LEYG25 $\square \mathrm{A} \square$ is 50% to 95% ．The pushing force values change according to the duty ratio and pushing speed．Check＂Model Selection＂on page 165.
Note 5）The allowable speed for the pushing operation．
Note 6）Impact resistance：No malfunction occurred when it was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 7）The power consumption（including the controller）is for when the actuator is operating．
Note 8）The standby power consumption when operating （including the controller）is for when the actuator is stopped in the set position during the operation．Except during the pushing operation．
Note 9）The maximum instantaneous power consumption （including the controller）is for when the actuator is operating．This value can be used for the selection of the power supply．
Note 10）With lock only
Note 11）For an actuator with lock，add the power consumption for the lock．

Weight

Weight：Motor Top Mounting Type

Model		LEYG16M					LEYG25M							LEYG32M						
Stroke［mm］		30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight［kg］	Step motor	0.83	0.97	1.20	1.49	1.66	1.67	1.86	2.18	2.60	2.94	3.28	3.54	2.91	3.17	3.72	4.28	4.95	5.44	5.88
	Servo motor	0.83	0.97	1.20	1.49	1.66	1.63	1.82	2.14	2.56	2.90	3.24	3.50	－	－	－	－	－	－	－
Model		LEYG16L					LEYG25L							LEYG32L						
Stroke［mm］		30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight［kg］	Step motor	0.84	0.97	1.14	1.43	1.58	1.68	1.89	2.13	2.56	2.82	3.14	3.38	2.91	3.18	3.57	4.12	4.66	5.17	5.56
	Servo motor	0.84	0.97	1.14	1.43	1.58	1.64	1.85	2.09	2.52	2.78	3.10	3.34	－	－	－	－	－	－	－
Model		LEYG40M							LEYG40L											
Stroke［mm］		30	50	100	150	200	250	300	30	50	100	150	200	250	300					
Product weight［kg］	Step motor	3.21	3.47	4.02	4.58	5.25	5.74	6.18	3.21	3.48	3.87	4.42	4.96	5.47	5.86					
	Servo motor	－	－	－	－	－	－	－	－	－	－	－	－	－	－					

Weight：In－line Motor Type

Model		LEYG16M					LEYG25M							LEYG32M						
Stroke［mm］		30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight［kg］	Step motor	0.83	0.97	1.20	1.49	1.66	1.66	1.85	2.17	2.59	2.93	3.27	3.53	2.90	3.16	3.71	4.27	4.94	5.43	5.87
	Servo motor	0.83	0.97	1.20	1.49	1.66	1.62	1.81	2.13	2.55	2.89	3.23	3.49	－	－	－	－	－	－	－
Model		LEYG16L					LEYG25L							LEYG32L						
Stroke［mm］		30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight［kg］	Step motor	0.84	0.97	1.14	1.43	1.58	1.67	1.88	2.12	2.55	2.81	3.13	3.37	2.90	3.17	3.56	4.11	4.65	5.16	5.55
	Servo motor	0.84	0.97	1.14	1.43	1.58	1.63	1.84	2.08	2.51	2.77	3.09	3.33	－	－	－	－	－	－	－
Model		LEYG40M							LEYG40L											
Stroke［mm］		30	50	100	150	200	250	300	30	50	100	150	200	250	300					
Product weight［kg］	Step motor	3.20	3.46	4.01	4.57	5.24	5.73	6.17	3.20	3.47	3.86	4.41	4.95	5.46	5.85					
	Servo motor	－	－	－	－	－	－	－	－	－	－	－	－	－	－					

Additional Weight

Additional Weight				
Size	$\mathbf{1 6}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Lock	0.12	0.26	0.53	0.53
Motor cover	0.02	0.03	0.04	0.05
Lock／Motor cover	0.16	0.32	0.61	0.62

Series LEYG

Construction

Motor top mounting type

Motor top/parallel type With lock/motor cover

In-line motor type

In-line motor type

With lock/motor cover

LEYG $\square M$

$L^{2} E Y G_{30}^{165} \mathrm{M}: 50$ st or less

LEYG ${ }_{40}^{165}{ }_{40}^{25}$ M: Over 50st

When grease retaining function selected LEYG ${ }_{30}^{25} M \square \square{ }_{\mathrm{C}}^{\mathrm{A}} \mathrm{C}-\square \square \mathrm{F}$: 50 st or less

LEYG ${ }_{40}^{25}{ }_{40}^{25} \square \square{ }_{\mathrm{C}}^{\mathrm{A}}-\square \square \mathrm{F}$: Over 50st

Note) Felt material is inserted to retain grease at the sliding part of the sliding bearing. This lengthens the life of the sliding part, but does not guarantee it permanently.

LEYG \square L

LEYG16L: 30st or less

LEYG ${ }_{40}^{25} \mathrm{~L}$: 100 st or less

LEYG16L: Over 30st, 100st or less

LEYG ${ }_{32}^{165}{ }_{40}^{16}$ L: Over 100st

Component Parts

No.	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Ball screw (shaft)	Alloy steel	
3	Ball screw nut	Resin/Alloy steel	
4	Piston	Aluminum alloy	
5	Piston rod	Stainless steel	Hard chrome plated
6	Rod cover	Aluminum alloy	
7	Housing	Aluminum alloy	
8	Rotation stopper	POM	
9	Socket	Free cutting carbon steel	Nickel plated
10	Connected shaft	Free cutting carbon steel	Nickel plated
11	Bushing	Lead bronze cast	
12	Bumper	Urethane	
13	Bearing	-	
14	Return box	Aluminum die-cast	Trivalent chromated
15	Return plate	Aluminum die-cast	Trivalent chromated
16	Magnet	-	
17	Wear ring holder	Stainless steel	Stroke 101 mm or more
18	Wear ring	POM	Stroke 101 mm or more
19	Screw shaft pulley	Aluminum alloy	
20	Motor pulley	Aluminum alloy	
21	Belt	-	
22	Bearing stopper	Aluminum alloy	
23	Parallel pin	Stainless steel	

No.	Description	Material	Note
24	Seal	NBR	
25	Retaining ring	Steel for spring	Phosphate coated
26	Motor	-	
27	Motor cover	Synthetic resin	Only "With motor cover"
28	Grommet	Synthetic resin	Only "With motor cover"
29	Guide attachment	Aluminum alloy	Anodized
30	Guide rod	Carbon steel	
31	Plate	Aluminum alloy	Anodized
32	Plate mounting bolt	Carbon steel	Nickel plated
33	Guide bolt	Carbon steel	Nickel plated
34	Sliding bearing	-	
35	Lube-retainer	Felt	
36	Holder	Resin	
37	Retaining ring	Steel for spring	Phosphate coated
38	Ball bushing	-	
39	Spacer	Aluminum alloy	Chromated
40	Motor block	Aluminum alloy	Anodized
41	Motor adapter	Aluminum alloy	Anodized/LEY16, 25 only
42	Hub	Aluminum alloy	
43	Spider	NBR	
44	Motor cover with lock	Aluminum alloy	Only "With lock/motor cover"
45	Cover support	Aluminum alloy	Only "With lock/motor cover"

LEF

ㄹ

山

LEYG $\square \mathrm{L}$ (Ball bushing bearing)
Standard stroke: 50, 100, 200

Size	Stroke range	L	DB
16	90st or less	75	8
	91st or more, 200st or less	105	
25	114st or less	91	10
	115st or more, 190st or less	115	
	191st or more, 300st or less	133	
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	114st or less	97.5	13
	115st or more, 190st or less	116.5	
	191st or more, 300st or less	134	

øXA H9 depth XA $4 \times$ OA thread depth OB

$2 \times \mathrm{NA}$ thread depth NC

LEYG $\square \mathrm{M}$, LEYG \square L Common

Size	Stroke range	A	B	C	DA	EA	EB	EH	EV	FA	FB	FC	G	GA	H	J	K	M	NA	NB	NC
16	39st or less			37	16	35	69	83	41.3	8	10.5	8.5	4.3	31.8	74.5	24.8	23	25.5	M4 $\times 0.7$	7	5.5
	40st or more, 100st or less	109	90.5	52																	
	101st or more, 200st or less	129	110.5	82																	
25	39st or less	141.5	116	50	20	46	85	103	52.5	11	14.5	12.5	5.4	40.3	99	30.8	29	34	M5 $\times 0.8$	8	6.5
	40st or more, 100st or less		141	67.5																	
	125st or more, 200st or less	166.5		84.5																	
	2015 t or more, 300st or less			102																	
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	39st or less	160.5	130	55	25	60	101	123	64	12	18.5	16.5	5.4	50.3	125.5	38.3	30	40	M6 x 1.0	10	8.5
	40st or more, 100st or less	190.5	160	68																	
	125st or more, 200st or less			85																	
	2015 t or more, 300st or less			102																	
Size	Stroke range	OA	OB	P	Q	S	T	U	V	Step	motor	Servo	motor	WA	WB	WC	X	XA	XB	Y	Z
16	39st or less	M5 x 0.8	10	65	15	25	79	6.8	28	80.3	61.8	81	62.5	25	19		44	3	4	22.5	6.5
	40st or more, 100st or less													40	26.5	55					
	101st or more, 200st or less													70	41.5	75					
25	39st or less	M6 1.0	12	80	18	30	95	6.8	42	85.4	63.4	81.6	59.6	35	26	70	54	4	5	26.5	8.5
	40st or more, 100st or less													50	33.5						
	1215st or mor more, 124st orless													70	43.5	95					
	2015 t or more, 300st or less													85	51						
32	39stor less	M6x 1.0	12	95	28	40	117	7.3	56.4	95.4	68.4	-	-	40	28.5		64	5	6	34	8.5
	40st or more, 100st or less															75					
	101st or more, 124st or less														33.5	105					
	125st or more, 200st or less													70	43.5						
	2015 or more, 300st or less													85	51						
40	39st or less	M6x 1.0	12	95	28	40	117	7.3	56.4	117.4	90.4	-	-	40	28.5	75	64	5	6	34	8.5
	40st or more, 100st or less													50	33.5						
	125st or more, 200st or less													70	43.5	105					
	2015 t or more, 300st or less													85	51						

LEYG \square (Sliding bearing) Standard stroke: $\mathbf{3 0 , 5 0 , 1 0 0}$

Size	Stroke range	L	DB
16	64st or less	51.5	10
	65stor more, 90st or less	74.5	
	91st or more, 200st or less	105	
25	59st or less	67.5	12
	60st or more, 185st or less	100.5	
	186st or more, 300st or less	138	
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	54st or less	74	16
	55st or more, 180st or less	107	
	181st or more, 300st or less	144	

LEYG $\square \mathrm{L}$ (Ball bushing bearing) Standard stroke: 50, 100, 200

Size	Stroke range	L	DB
16	90st or less	75	8
	91st or more, 200st or less	105	
25	114st or less	91	10
	115st or more, 190st or less	115	
	191st or more, 300st or less	133	
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	114st or less	97.5	13
	115st or more, 190st or less	116.5	
	191st or more, 300st or less	134	

LEYG \square M, LEYG \square L Common

Size	Stroke range	$\frac{\text { Step motor } \text { Servo motor }}{\text { A }}$			B	C	DA	EA	EB	EH	EV	FA	FB	FC	G	GA	H	J	K	NA	NC
16	39st or less	174.3		175		37	16	35	69	83	41.3	8	10.5	8.5	4.3	31.8	42.5	24.8	23	M4 $\times 0.7$	5.5
	40st or more, 100st or less				92	52															
	101st or more, 200st or less	194.3		195	112	82															
25	39st or less	206.4		202.6	115.5	50	20	45	85	103	52.5	11	14.5	12.5	5.4	40.3	53.5	30.8	29	M5 $\times 0.8$	6.5
	40st or more, 100st or less					67.5															
	125st or more, 200st or less	231.4		227.6	140.5	84.5															
	201st or more, 300st or less					102															
32	39st or less	228.9		-	128	55	25	60	101	123	64	12	18.5	16.5	5.4	50.3	68.5	38.3	30	M6x 1.0	8.5
	40st or more, 100st or less	258.9		-	158	68															
	125st or more, 200st or less					85															
	201st or more, 300st or less					102															
40	39st or less	250.9		-	128	55	25	60	101	123	64	12	18.5	16.5	5.4	50.3	68.5	38.3	30	M6x 1.0	8.5
	40st or more, 100st or less	280.9		-	158	68															
	101 st or more, 124st or less					85															
	2015 or more, 300st or less					102															
Size	Stroke range	OA	OB	P	Q	S	T	U	V	Step mot	$\begin{aligned} & \hline \text { tor Sen } \\ & \text { VB } \end{aligned}$	vo motor	WA	WB	WC	X	XA	XB	YD	Z	
16	39st or less	M5 $\times 0.8$	10	65	15	25	79	6.8	28	61.8	62.5		25	19	55	44	3	4	24	6.5	
	40st or more, 100st or less												40	26.5							
	101st or more, 200st or less												70	41.5	75						
25	39st or less	M6 1.0	12	80	18	30	95	6.8	42	63.4		59.6	35	26	70	54	4	5	26	8.5	
	40st or more, 100st or less												50	33.5							
	101st or more, 124st or less 125st or more, 200st or less												70		95						
	201st or more, 300st or less												85	51							
32	39storless	M6 $\times 1.0$	12	95	28	40	117	7.3	56.4	68.4	-		40	28.5		64	5	6	32		
	40st or more, 100st or less													33.5	75					8.5	
	101st or more, 124 st or less														105						
	125st or more, 200st or less												70	43.5 51							
	$201 s t$ or more, 300st or less												85	51							
40	30s est or less	M6 $\times 1.0$	12	95	28	40	117	7.3	56.4	90.4	-		40	28.5	75	64	5	6	32	8.5	
	40st or more, 100st or less												50	33.5							
	125st or more, 200st or less												70	43.5	105						
	2015 or more, 300st or less												85	51							

Series LEYG

Dimensions

Motor top mounting type ${ }_{16}$
With motor cover: LEYG $_{32}^{16} \square \square B^{A}-\square C$

	$[\mathrm{mm}]$	
Size	\mathbf{T}_{2}	\mathbf{X}_{2}
$\mathbf{1 6}$	7.5	83
$\mathbf{2 5}$	7.5	88.5
$\mathbf{3 2}$	7.5	98.5
$\mathbf{4 0}$	7.5	120.5

Motor cover material:
Synthetic resin

Dimensions

Size	\mathbf{T}_{2}	$\mathbf{X m m}_{\mathbf{2}}$
$\mathbf{1 6}$	7.5	124.5
$\mathbf{2 5}$	7.5	129
$\mathbf{3 2}$	7.5	141.5
$\mathbf{4 0}$	7.5	163.5

Size	Stroke range	A	T2	X2	L	H	CV
16	100st or less	218.5	7.5	108	35	49.8	43
	101st or more, 300st or less	238.5					
25	100st or less	250	7.5	109	46	61.3	54.4
	101st or more, 300st or less	275					
32	100st or less	275	7.5	116.5	60	75.8	68.5
	101st or more, 300st or less	305					
40	100st or less	297	7.5	138.5	60	75.8	68.5
	101st or more, 300st or less	327					

LEF

Series LEYG

Support Block

- Guide for support block application

When the stroke exceeds 100 mm and the lateral load is applied, the body will be bent based on the load. Mounting the support block is recommended. (Please order it separately from the models shown below.)

Support Block Model

LEYG-S016

- Size

$\mathbf{0 1 6}$	For size 16
$\mathbf{0 2 5}$	For size 25
$\mathbf{0 3 2}$	For size 32, 40

\triangle Caution

Do not install the body using only a support block.
The support block should be used only for support.

Size	Model	Stroke range	EB	G	GA	OA	OB	ST	WC	X
16	LEYG-S016	100st or less	69	4.3	31.8	M5 x 0.8	10	16	55	44
		101st or more, 200st or less							75	
25	LEYG-S025	100st or less	85	5.4	40.3	M6 x 1.0	12	20	70	54
		101st or more, 300st or less							95	
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	LEYG-S032	100st or less	101	5.4	50.3	M6 x 1.0	12	22	75	64
		101st or more, 300st or less							105	

* Two body mounting bolts are included with the support block.

Series LEY/LEYG
Electric Actuators/

Be sure to read before handling. Refer to page 469 for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smcworld.com

Design/Selection

\triangle Warning

1. Do not apply a load in excess of the operating limit.

Select a suitable actuator by work load and allowable lateral load on the rod end. If the product is used outside of the operating limit, the eccentric load applied to the piston rod will be excessive and have adverse effects such as creating play on the sliding parts of the piston rod, degrading accuracy and shortening the life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
This can cause failure.
3. When used as a stopper, select the LEYG series "Sliding bearing".
4. When used as a stopper, fix the main body with a guide attachment ("Top mounting" or "Bottom mounting").
If the end of the actuator is used to fix the main body (end mounting), the excessive load acts on the actuator, which adversely affects the operation and life of the product.

Handling

\triangle Caution

1. INP output signal

1) Positioning operation

When the product comes within the set range by step data [In position], the INP output signal will turn on.
Initial value: Set to $[0.50]$ or higher.
2) Pushing operation

When the effective force exceeds step data [Trigger LV], the INP output signal will turn on.
Use the product within the specified range of [Pushing force] and [Trigger LV].
a) To ensure that the actuator pushes the workpiece with the set [Pushing force], it is recommended that the [Trigger LV] be set to the same value as the [Pushing force].
b) When the [Pushing force] and [Trigger LV] are set less than the specified range, the INP output signal will turn on from the pushing start position.

Handling					
A caution					
<Pushing Force and Trigger Level Range> Without load/With lateral load on rod end					
Model	Pushing speed [mm / s]	Pushing force (Setting input value)	Model	Pushing speed [mm / s]	Pushing force (Setting input value)
LEY $\square 16 \square$	1 to 4	30\% to 85\%	LEY $\square 16 \square A$	1 to 4	40\% to 95\%
	5 to 20	35\% to 85\%		5 to 20	60\% to 95\%
	21 to 50	60\% to 85\%		21 to 50	80\% to 95\%
LEY $\square 25 \square$	1 to 4	20\% to 65\%	LEY $\square 25 \square A$	1 to 4	40\% to 95\%
	5 to 20	35\% to 65\%		5 to 20	60\% to 95\%
	21 to 35	50\% to 65\%		21 to 35	80\% to 95\%
LEY $\square 32 \square$	1 to 4	20\% to 85\%			
	5 to 20	35\% to 85\%			
	21 to 30	60\% to 85\%			
LEY $\square 40 \square$	1 to 4	20\% to 65\%			
	5 to 20	35\% to 65\%			
	21 to 30	50\% to 65\%			

* For vertical loads (upward), set the pushing force to the maximum value shown below, and operate at the work load or less.

Model	LEY16 \square			LEY25 \square			LEY32 \square			LEY40 \square		
Lead	A	B	C	A	B	C	A	B	C	A	B	C
Work load $[\mathrm{kg}]$	1	1.5	3	2.5	5	10	4.5	9	18	7	14	28
Pushing force	85%				65%				85%			
65%												

Model	LEY16 $\square \mathbf{A}$			LEY25 $\square \mathbf{A}$				
Lead	A	B	C	A	B	C		
Work load $[\mathrm{kg}]$	1	1.5	3	1.2	2.5	5		
Pushing force	95%				95%			

Model	LEYG16 ${ }_{\text {L }} \square$			LEYG25 ${ }_{\text {L }} \square$			LEYG32 ${ }_{L}^{\text {M }}$ -			LEYG40 ${ }_{\text {L }} \square$		
Lead	A	B	C	A	B	C	A	B	C	A	B	C
Work load [kg]	0.5	1	2.5	1.5	4	9	2.5	7	16	5	12	26
Pushing force	85\%			65\%			85\%			65\%		

Model	LEYG16M \square A			LEYG2M $\square \mathbf{A}$			
Lead	A	B	C	A	B	C	
Work load $[\mathrm{kg}]$	0.5	1	2.5	0.5	1.5	4	
Pushing force	95%			95%			

2. When the pushing operation is used, be sure to set to [Pushing operation].
Also, do not hit the workpiece in positioning operation or in the range of positioning operation. It may malfunction.
3. Use the product within the specified pushing speed range for the pushing operation.
It may lead to damage and malfunction.
4. The moving force should be the initial value (LEY16 $\square / 25 \square / 32 \square / 40 \square$: 100\%, LEY16A \square : 150\%, LEY25A \square : 200\%).
If the moving force is set below the initial value, it may cause an alarm.
5. The actual speed of this actuator is affected by the load.
Check the model selection section of the catalog.
6. Do not apply a load, impact or resistance in addition to the transferred load during return to origin.
Additional force will cause the displacement of the origin position since it is based on detected motor torque.

Series LEY/LEYG
Electric Actuators/

Handling

\triangle Caution

7. In pushing operation, set the product to a position of at least 2 mm away from a workpiece. (This position is referred to as a pushing start position.)
The following alarms may be generated and operation may become unstable.
a. "Posn failed" alarm is generated.

The product cannot reach a pushing start position due to variation in the target position.
b. "Pushing ALM" alarm is generated.

The product is pushed back from a pushing start position after starting to push.
8. Do not scratch or dent the sliding parts of the piston rod, by striking or attaching objects.
The piston rod and guide rod are manufactured to precise tolerances, even a slight deformation may cause malfunction.
9. When an external guide is used, connect it in such a way that no impact or load is applied to it.
Use a freely moving connector (such as a floating joint).
10. Do not operate by fixing the piston rod and moving the actuator body.
Excessive load will be applied to the piston rod, leading to damage to the actuator and reduced the life of the product.
11. Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod.
This may cause deformation of the non-rotating guide, abnormal responses of the auto switch, play in the internal guide or an increase in the sliding resistance.
Refer to the table below for the approximate values of the allowable range of rotational torque.

Allowable rotational torque (N.m) or less	LEY16 $\square \square$	LEY25 $\square \square$	LEY32/40 $\square \square$

When screwing in a bracket or nut to the end of the piston rod, hold the flats of the rod end with a wrench (the piston rod should be fully retracted). Do not apply tightening torque to the non-rotating mechanism.

12. When rotational torque is applied to the end of the plate, use it within the allowable range. [Series LEYG] This may cause deformation of the guide rod and bushing, play in the guide or an increase in the sliding resistance.
13. For the pushing operation, use the product within the duty ratio range below.
The duty ratio is a ratio at the time that can keep being pushed.

- Step motor (Servo/24 VDC)

LEY16

| $\begin{array}{c}\text { Pushing } \\ \text { force [\%] }\end{array}$ | $\begin{array}{c}\text { Ambient temperature: } 25^{\circ} \mathrm{C} \text { or less } \\$\end{array} $\begin{array}{c}\text { Duty ratio } \\ \text { [\%] }\end{array}$ | $\begin{array}{c}\text { Continuous pushing } \\ \text { time [minute] }\end{array}$ | $\begin{array}{c}\text { Ambient temperature: } 40^{\circ} \mathrm{C} \\ \hline\end{array}$ | $\begin{array}{c}\text { Duty ratio } \\ \text { [\%] }\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Continuous pushing

time [minute]\end{array}\right]\)

LEY25 \square

Pushing force [\%]	Ambient temperature: $25^{\circ} \mathrm{C}$ or lessAmbient temperature: $40^{\circ} \mathrm{C}$ Duty ratio [\%]	Continuous pushing time [minute]	Duty ratio [\%]	Continuous pushing time [minute]
	100	-	100	-

LEY32 $\square / 40 \square$

Pushing force [\%]	Ambient temperature: $25^{\circ} \mathrm{C}$ or less		Ambient temperature: $40^{\circ} \mathrm{C}$	
	Duty ratio [\%]	Continuous pushing time [minute]	Duty ratio [\%]	Continuous pushing time [minute]
65 or less	100	-	100	-
85			50	15

- Servo motor (24 VDC)

LEY16A \square

$\left.$| Pushing
 force [\%] | Ambient temperature: $25^{\circ} \mathrm{C}$ or less | Ambient temperature: $40^{\circ} \mathrm{C}$ | | Duty ratio
 [\%] |
| :---: | :---: | :---: | :---: | :---: | | Continuous pushing |
| :---: |
| time [minute] |$~$| Duty ratio |
| :---: |
| [\%] |\quad| Continuous pushing |
| :---: |
| time [minute] | \right\rvert\,

LEY25A \square

Pushing force [\%]	Ambient temperature: $25^{\circ} \mathrm{C}$ or less	Ambient temperature: $40^{\circ} \mathrm{C}$ Duty ratio [\%]		Continuous pushing time [minute]
	100	-	Duty ratio [\%]	Continuous pushing time [minute]

14. When mounting the product, keep a 40 mm or longer diameter for bends in the cable.

15. When mounting a bolt, workpiece or jig, hold the flats of the piston rod end with a wrench so that the piston rod does not rotate. The bolt should be tightened within the specified torque range.
This may cause abnormal responses of the auto switch, play in the internal guide or an increase in the sliding resistance.

Series LEY／LEYG
Electric Actuators／

Be sure to read before handling．Refer to page 469 for Safety Instructions and the Operation Manual for Electric Actuator Precautions．
Please download it via our website，http：／／www．smcworld．com

Handling

\triangle Caution

16．When mounting the product and／or a workpiece， tighten the mounting screws within the specified torque range．

Tightening the screws with a higher torque than recommended may cause a malfunction，whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position．

＜Series LEY＞

Workpiece fixed／Rod end female thread

Workpiece fixed／Rod end male thread（When＂Rod end male thread＂is selected．）
 screw－in depth

Model	Thread size	Max．tightening torque（ $\mathrm{N} \cdot \mathrm{m}$ ）	Effective thread length（mm）	End socket width across flats（mm）
LEY16	M8×1．25	12.5	12	14
LEY25	M14 $\times 1.5$	65.0	20.5	17
LEY32／40	M14 $\times 1.5$	65.0	20.5	22
Model	Rod end nut		$\begin{array}{\|c\|} \hline \text { End bradet } \\ \hline \text { screverindeph (mm) } \\ \hline \end{array}$	
	Wisht arossstas（mm）	Length（mm）		
LEY16	13	5	5 or more	
LEY25	22	8	8 or more	
LEY32／40	22	8	8 or more	

Body fixed／Body bottom tapped style（When＂Body bottom tapped＂is selected．）

Model	Bolt	Max．tightening torque $(\mathrm{N} \cdot \mathrm{m})$	Max．screw－in depth (mm)
LEY16	$\mathrm{M} 4 \times 0.7$	1.5	5.5
LEY25	$\mathrm{M} 5 \times 0.8$	3.0	6.5
LEY32／40	$\mathrm{M} 6 \times 1.0$	5.2	8.8

Body fixed／Rod side／Head side tapped style

＜Series LEYG＞

Workpiece fixed／Plate tapped style

Body fixed／Top mounting

Model	Bolt	Max．tightening torque $(\mathrm{N} \cdot \mathrm{m})$	Length： L (mm)
LEYG16 $_{\mathrm{L}}^{\mathrm{M}}$	$\mathrm{M} 4 \times 0.7$	1.5	32
LEYG25 $^{\mathrm{M}}$	$\mathrm{M} 5 \times 0.8$	3.0	40.5
LEYG $_{40 \mathrm{~L}}^{32 \mathrm{~L}}$	$\mathrm{M} 5 \times 0.8$	3.0	50.5

Body fixed／Bottom mounting

Model	Bolt	Max．tightening torque（N．m）	Max．screw－in depth（mm）
LEYG16L	$\mathrm{M} 5 \times 0.8$	3.0	10
LEYG25M	M6 $\times 1.0$	5.2	12
LEYG $_{40 \mathrm{~L}}^{32 \mathrm{~L}}$	$\mathrm{M} 6 \times 1.0$	5.2	12

Body fixed／Head side tapped style

Model	Bolt	Max．tightening torque $(\mathrm{N} \cdot \mathrm{m})$	Max．screw－in depth (mm)
LEYG16 M	$\mathrm{M} 4 \times 0.7$	1.5	7
LEYG25 M	$\mathrm{M} 5 \times 0.8$	3.0	8
LEYG $_{40 \mathrm{~L}}^{32 \mathrm{~L}}$	$\mathrm{M} 6 \times 1.0$	5.2	10

17．Keep the flatness of the mounting surface within the following ranges when mounting the actuator body and workpiece．
Unevenness of a workpiece or base mounted on the body of the product may cause an increase in the sliding resistance．

Model	Mounting position	Flatness
LEY \square	Body／Body bottom	0.1 mm or less
LEYG \square	Top mounting／Bottom mounting	$\begin{aligned} & 0.05 \mathrm{~mm} \\ & \text { or less } \end{aligned}$
	Workpiece／Plate mounting	$\begin{aligned} & 0.05 \mathrm{~mm} \\ & \text { or less } \end{aligned}$

18．When using auto switch with the guide rod type LEYG series，the following limits will be in effect． Please select the product while paying attention to this．
－Insert the auto switch from the front side with rod（plate） sticking out．
－The auto switches with perpendicular electrical entry cannot be used．
－For the parts hidden behind the guide attachment（Rod stick out side），the auto switch cannot be fixed．
－Consult with SMC when using auto switch on the rod stick out side．

- First Characteristics:

Degrees of protection against solid foreign objects

$\mathbf{0}$	Non-protected
$\mathbf{1}$	Protected against solid foreign objects of $50 \mathrm{mmø}$ and greater
$\mathbf{2}$	Protected against solid foreign objects of 12 mm and greater
$\mathbf{3}$	Protected against solid foreign objects of $2.5 \mathrm{~mm} \varnothing$ and greater
$\mathbf{4}$	Protected against solid foreign objects of 1.0 mm and greater
$\mathbf{5}$	Dust-protected
$\mathbf{6}$	Dust-tight

- Second Characteristics:

Degrees of protection against water

$\mathbf{0}$	Non-protected	-
$\mathbf{1}$	Protected against vertically falling water drops	Dripproof type 1
$\mathbf{2}$	Protected against vertically falling water drops when enclosure tilted up to 15	Dripproof type 2
$\mathbf{3}$	Protected against rainfall when enclosure tilted up to 60°	Rainproof type
$\mathbf{4}$	Protected against splashing water	Splashproof type
$\mathbf{5}$	Protected against water jets	Water-jet- proof type
$\mathbf{6}$	Protected against powerful water jets	Powerful water- jet-proof type
$\mathbf{7}$	Protected against the effects of temporary immersion in water	Immersible type
$\mathbf{8}$	Protected against the effects of continuous immersion in water	Submersible type

Example) IP65: Dusttight, Low jetproof type
"Low jetproof type" means that no water intrudes inside an equipment that could hinder from operating normally by means of applying water for 3 minutes in the prescribed manner. Take appropriate protection measures, since a device is not usable in an environment where a droplet of water is splashed constantly.

Maintenance

© Warning

1. Ensure that the power supply is stopped and the workpiece is removed before starting maintenance work or replacement of the product.

- Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Belt check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months/ $250 \mathrm{~km} / 5$ million cycles*	\bigcirc	\bigcirc

* Select whichever comes sooner.
- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Belt replacement (Guide)

It is recommended that the belt be replaced after being in service for 2 years, or before reaching the following distance.

Model	Distance	Model	Distance	Model	Distance
LEY16 $\square \mathbf{A}$	$2,000 \mathrm{~km}$	LEY25 $\square \mathbf{A}$	$2,500 \mathrm{~km}$	LEY32A	$4,000 \mathrm{~km}$
LEY16 \square B	$1,000 \mathrm{~km}$	LEY25 \square B	$1,200 \mathrm{~km}$	LEY32B	$2,000 \mathrm{~km}$
LEY16 $\square \mathbf{C}$	500 km	LEY25 $\square \mathbf{C}$	600 km	LEY32C	$1,000 \mathrm{~km}$

Model	Distance
LEY40A	$4,000 \mathrm{~km}$
LEY40B	$2,000 \mathrm{~km}$
LEY40C	$1,000 \mathrm{~km}$

- Items for belt check

Stop operation immediately and replace the belt when belt appear to be below. Further, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt

Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign matter caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky
f. Crack on the back of the belt

AC Servo Motor

Selection Procedure

Positioning Control Selection Procedure

Check the work load-speed.
(Vertical transfer)

Step 2 Check the cycle time.

Selection Example

Operating conditions
-Workpiece mass: $16[\mathrm{~kg}] \quad \bullet$ Speed: $300[\mathrm{~mm} / \mathrm{s}]$

| - Acceleration/Deceleration: $5,000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ |
| :--- | :--- |

- Stroke: $300[\mathrm{~mm}]$
-Workpiece mounting condition: Vertical upward

Check the work load-speed. <Speed-Vertical work load graph>
Select the target model based on the workpiece mass and speed with reference to the <Speed-Vertical work load graph>.

Selection example) The LEY25 $\square \mathbf{B}$ is temporarily selected based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer. When selecting the target model, refer to pages 192, 199 and 204 for the horizontal work

<Speed-Vertical work load graph>
(LEY25 \square) load in the specifications, and page 219 for the precautions.
The regeneration option may be necessary. Refer to pages 186, 187 and 189 for "Required Conditions for Regeneration Option".
Check the cycle time.
Calculate the cycle time using the following calculation method.
- Cycle time T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$
-T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, please calculate the settling time with reference to the following value.

$$
\mathrm{T} 4=0.05[\mathrm{~s}]
$$

Calculation example)
T 1 to T 4 can be calculated as follows.

L : Stroke [mm] ... (Operating condition)
V : Speed [mm/s] ... (Operating condition)
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
T1: Acceleration time [s] ... Time until reaching the set speed
T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop
T4: Settling time [s] ... Time until in position is completed
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=300 / 5000=0.06[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=300 / 5000=0.06[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{300-0.5 \cdot 300 \cdot(0.06+0.06)}{300}=0.94[\mathrm{~s}]$
T4 $=0.05$ [s]
Therefore, the cycle time can be obtained as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.06+0.94+0.06+0.05=1.11[\mathbf{s}]$

Selection Procedure

Pushing Control Selection Procedure

Selection Example

Operating conditions

Step 1 Check the pushing force．＜Force conversion graph＞
Select the target model based on the torque limit／command value and pushing force with reference to the＜Force conversion graph＞．
Selection example）
Based on the graph shown on the right side，
－Torque limit／Command value： 24 ［\％］
－Pushing force： 200 ［N］
Therefore，the LEY25B is temporarily selected．

Step 2
Check the lateral load on the rod end．
＜Graph of allowable lateral load on the rod end＞
Confirm the allowable lateral load on the rod end of the actuator： LEY25B，which has been selected temporarily with reference to the ＜Graph of allowable lateral load on the rod end＞．
Selection example）
Based on the graph shown on the right side，
\bullet－Jig weight： $0.2[\mathrm{~kg}] \approx 2[\mathrm{~N}]$
－Product stroke： 200 ［mm］
Therefore，the lateral load on the rod end is in the allowable range．

Based on the above calculation result，the LEY25B－300 is selected．

＜Force conversion graph＞
（LEY25 \square ）

＜Graph of allowable lateral load on the rod end＞

Size

Speed-Vertical Work Load Graph/Required Conditions for "Regeneration Option"

LEY25 \square (Motor mounting position: Top/Parallel, In-line)

LEY32 \square (Motor mounting position: Top/Parallel)

Required conditions for "Regeneration option"

* Regeneration option required when using product above "Regeneration" line in graph. (Order separately)
"Regeneration Option" Models

Size	Model
LEY25 \square	LEC-MR-RB-032
LEY32 \square	LEC-MR-RB-032

LEY32D (Motor mounting position: In-line)

Speed－Horizontal Work Load Graph／Required Conditions for＂Regeneration Option＂

LEY25 \square（Motor mounting position：Top／Parallel，In－line）

Required conditions for＂Regeneration option＂
＊Regeneration option required when using product above＂Regeneration＂line in graph．（Order separately）
＂Regeneration Option＂Models

Size	Model
LEY25 \square	LEC－MR－RB－032
LEY32 \square	LEC－MR－RB－032

LEY32 \square（Motor mounting position：Top／Parallel）

LEY32D（Motor mounting position：In－line）

Allowable Stroke Speed

Model	AC servo motor	Lead		Stroke［mm］										
		Symbol	［mm］	30	50	100	150	200	250	300	350	400	450	500
LEY25 \square $\binom{$ Motor mounting position：}{ Top／Parallel，In－line }	$\begin{gathered} 100 \mathrm{~W} \\ \square 40 \end{gathered}$	A	12	900							600		－	－
		B	6	450							300		－	－
		C	3	225							15		－	－
		（Motor rotation speed）		（4500 rpm）							（3000	rpm）	－	－
LEY32$\left[\begin{array}{c} \text { Motor mounting position: } \\ \text { Top/Parallel } \end{array}\right]$	$\begin{gathered} 200 \mathrm{~W} \\ \square 60 \end{gathered}$	A	20	1200									800	
		B	10	600									400	
		C	5	300									200	
		（Motor rotation speed）		（3600 rpm）									（2400 rpm）	
LEY32D	$\begin{gathered} 200 \mathrm{~W} \\ \square 60 \end{gathered}$	A	16	1000									640	
（Motor mounting position：］		B	8	500									320	
In－line		C	4	250									160	
		（Motor rotation speed）		（3750 rpm）									（2400 rpm）	

Series LEY/LEY-X5

Size

Force Conversion Graph (Guide)

LEY25 \square (Motor mounting position: Top/Parallel, In-line)

LEY32 \square (Motor mounting position: Top/Parallel)

LEY32D \square (Motor mounting position: In-line)

*1 When limiting torque with incremental encoder, parameter No. PC12/the value of the internal torque command should be set 30% or less.
*2 When limiting torque with absolute encoder, parameter No. PC13/the value of the maximum output command for analog torque should be set 30% or less.

Graph of Allowable Lateral Load on the Rod End (Guide)

[Stroke] = [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

Speed-Work Load Graph/Required Conditions for "Regeneration Option"

Horizontal transfer
LEY63 \square

Required conditions for "Regeneration option"

* Regeneration option required when using product above "Regeneration" line in graph. (Order separately)
"Regeneration Option" Models

Size	Model
LEY63 \square	LEC-MR-RB-12

Allowable Stroke Speed

Force Conversion Graph

LEY63 \square (Motor mounting position: In-line)

*1 The values in () are for a closely-mounted driver.
*2 When limiting torque with incremental encoder, parameter No. PC12/the value of the internal torque command should be set 50% or less.
*3 When limiting torque with absolute encoder, parameter No. PC13/the value of the maximum output command for analog torque should be set 50% or less.

Graph of Allowable Lateral Load on the Rod End

[Stroke] $=$ [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

Electric Actuator/Rod Type

AC Servo Motor

Series LEY

How to Order

2 Motor mounting position

Nil	Top mounting
R	Right side parallel
L	Left side parallel
D	In-line

3 Motor type*1

Symbol	Type	Output $[W]$	Actuator size	Compatible drivers*2
S2	AC servo motor (Incremental encoder)	100	25	LECSA■-S1
S3	AC servo motor (Incremental encoder)	200	32	LECSA \square-S3
S6	AC servo motor (Absolute encoder)	100	25	LECSB■-S5 LECSCD-S5 LECSS -S5
S7	AC servo motor (Absolute encoder)	200	32	LECSB■-S7 LECSC■-S7 LECSS■-S7

*1: For motor type S2 and S6, the compatible driver part number suffixes are S1 and S5 respectively.
*2: For details about the driver, refer to page 419.
4 Lead [mm]

Symbol	LEY25	LEY32* *
A	12	$16(20)$
B	6	$8(10)$
C	3	$4(5)$

* The values shown in () are the lead for size 32 top mounting, right/left side parallel types. (Equivalent lead which includes the pulley ratio [1.25:1])

Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

5 Stroke [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{5 0 0}$	500

* Refer to the table below for details.

6 Motor option

Nil	Without option
B	With lock*

* When "With lock" is selected for the top mounting and right/left side parallel types, the motor body will stick out of the end of the body for size 25 with strokes 30 or less. Check for interference with workpieces before selecting a model.

8 Mounting ${ }^{* 1}$

Symbol	Type	Motor mounting position
		TopiParallel
In-line		
Nil	Ends tapped (Standard)*2	\bullet
U	Body bottom tapped	\bullet
L	Foot	\bullet
F	Rod flange*2	\bullet
G	Head flange*2	$\ominus^{* 4}$
D	Double clevis*3	-

*1 Mounting bracket is shipped together, (but not assembled).
*2 For horizontal cantilever mounting with the rod flange, head flange and ends tapped, use the actuator within the following stroke range.
-LEY25: 200 or less •LEY32: 100 or less
*3 For mounting with the double clevis, use the actuator within the following stroke range.
-LEY25: 200 or less •LEY32: 200 or less
*4 Head flange is not available for the LEY32.

* Applicable stroke table ©Standard												
Model Stroke (mm)	30	50	100	150	200	250	300	350	400	450	500	Manufacturable stroke range
LEY25	\bullet	-	\bullet	-	-	-	-	-	-	-	-	15 to 400
LEY32	\bullet	-	\bullet	-	\bullet	-	\bullet	\bullet	-	-	\bullet	20 to 500

[^14]Note) Consult with SMC for non-standard strokes as they are produced as special orders.

Motor mounting position：Top／Parallel
Motor mounting position：In－line

岂

（11）Driver type＊		
\bigcirc	Compatible drivers	Power supply volage（V）
Nil	Without driver	－
A1	LECSA1－SD	100 to 120
A2	LECSA2－S■	200 to 230
B1	LECSB1－Sロ	100 to 120
B2	LECSB2－Sロ	200 to 230
C1	LECSC1－SD	100 to 120
C2	LECSC2－S■	200 to 230
S1	LECSS1－Sロ	100 to 120
S2	LECSS2－Sロ	200 to 230

＊When the driver type is selected，the cable is included．Select cable type and cable length． Example）
S2S2：Standard cable（2 m）＋Driver（LECSS2）
S2 ：Standard cable（2 m）
Nil ：Without cable and driver

Series LEY

Size 25, 32

Specifications

Model				LEY25S ${ }_{6}^{2}$ (Top/Parallel)/LEY25DS ${ }_{6}^{2}$ (n -line)			LEY32S ${ }_{7}^{3}$ (Top/Parallel)			LEY32DS ${ }_{7}^{3}$ (In-line)		
Stroke [mm] ${ }^{\text {Note 1) }}$				$\begin{gathered} 30,50,100,150,200,250, \\ 300,350,400 \end{gathered}$			$\begin{gathered} 30,50,100,150,200,250, \\ 300,350,400,450,500 \\ \hline \end{gathered}$			$\begin{gathered} 30,50,100,150,200,250, \\ 300,350,400,450,500 \end{gathered}$		
	Work load [kg]		Horizontal ${ }^{\text {Nde } 2 \text { 2 }}$	18	50	50	30	60	60	30	60	60
			Vertical	8	16	30	9	19	37	12	24	46
	Pushing force [N] Note 3) (Set value: 15 to 30\%)			65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max. ${ }^{\text {Note } 41}$	Stroke range	Up to 300	900	450	225	1200	600	300	1000	500	250
	speed		305 to 400	600	300	150						
	[mm / s]		405 to 500	-	-	-	800	400	200	640	320	160
	Pushing speed [$\mathrm{mm} / \mathrm{s}^{2}$] ${ }^{\text {Note }}$)			35 or less			30 or less			30 or less		
	Max. acceleration/deceleration [mm/s²]			5,000			5,000					
	Positioning repeatability [mm]			± 0.02			± 0.02					
	Lead [mm] (including pulley ratio)			12	6	3	20	10	5	16	8	4
	Impact/Vibration resistance [$\left.\mathrm{m} / \mathrm{s}^{2}\right]^{\text {Note }}$ 6)			50/20			50/20					
	Actuation type			Ball screw + Belt (LEYロ)/Ball screw (LEYCD)			Ball screw + Belt [1.25:1]			Ball screw		
	Guide type			Sliding bushing (Piston rod)			Sliding bushing (Piston rod)					
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40			5 to 40					
	Operating humidity range [\%RH]			90 or less (No condensation)			90 or less (No condensation)					
	Required conditions for Notie 7) "Regeneration option" [kg]		Horizontal	8 or more	31 or more	Not required	15 or more	Not required	Not required	23 or more	Not required	Not required
			Vertical	3 or more	2 or more	2 or more	6 or more	7 or more	11 or more	6 or more	7 or more	12 or more
	Motor output/Size			$100 \mathrm{~W} / \square 40$			200 W/ $\square 60$					
	Motor type			AC servo motor (100/200 VAC)			AC servo motor (100/200 VAC)					
	Encoder			Motor type S2, S3: Incremental 17-bit encoder (Resolution: $131072 \mathrm{p} / \mathrm{rev}$) Motor type S6, S7: Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$)								
	Power consumption [W] ${ }^{\text {Note } 8)}$		Horizontal	45			65			65		
			Vertical		145		175			175		
	Standby power consumption when operating [W] ${ }^{\text {Notie } 9 \text {) }}$		Horizontal	2				2			2	
			Vertical		8			8			8	
	Max. instantaneous power consumption [W] WWeis			445			724			724		
	Type ${ }^{\text {Note 11) }}$			Non-magnetizing lock								
	Holding force [N]			131	255	485	157	308	588	197	385	736
	Power consumption [W] at $20^{\circ} \mathrm{C}$ Note 12$)$			6.3			7.9			7.9		
				$24 \mathrm{VDC}_{-10 \%}$								

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) The maximum value of the horizontal work load. An extemal guide is necessary to support the load. The actual work load changes according to the condition of the external guide. Please confirm using actual device.
Note 3) The force setting range (set values for the driver) for the pushing operation with the torque control mode, etc. Set it with reference to "Force Conversion Graph" on page 188.
Note 4) The allowable speed changes according to the stroke.
Note 5) The allowable collision speed for the pushing operation with the torque control mode, etc.
Note 6) Impact resistance: No maltunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the intial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in
the initial state.)
Note 7) The work load conditions which require "Regeneration option" when operating at the maximum speed (Duty ratio: 100%). Order the regeneration option separately. For details and order numbers, refer to "Required Conditions for Regeneration Option" on pages 186 and 187.
Note 8) The power consumption (including the driver) is for when the actuator is operating.
Note 9) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
Note 10) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating. Note 11) Only when motor option "With lock" is selected.
Note 12) For an actuator with lock, add the power consumption for the lock.

Weight

Product Weight

	Series	LEY25S \square (Motor mounting position: Top/Parallel)									LEY32S \square (Motor mounting position: Top/Parallel)										
	Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
\%	Incremental encoder	1.31	1.38	1.55	1.81	1.99	2.16	2.34	2.51	2.69	2.42	2.53	2.82	3.29	3.57	3.85	4.14	4.42	4.70	4.98	5.26
을	Absolute encod	1.37	1.44	1.6	1.8	2.05	2.2	2.4	2.5	2.7	2.3	2.47	2.76	3.23	3.51	3.79	4.0	4.36	4.64	2	5.20
	Series	LEY25DS \square (Motor mounting position: In-line)									LEY32DS \square (Motor mounting position: In-line)										
	Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
	Incremental encoder	1.34	1.41	1.58	1.8	2.02	2.19	2.37	2.54	2.72	2.44	2.55	2.84	3.31	3.59	3.87	4.16	4.44	4.72	5.00	5.28
	Absolute encoder	1.40	1.47	1.64	1.90	2.08	2.25	2.43	2.60	2.78	2.38	2.49	2.78	3.25	3.53	3.81	4.10	4.38	4.66	4.94	5.22

Additional Weight

Size		$\mathbf{2 5}$	$\mathbf{3 2}$
Lock	Incremental encoder	0.20	0.40
	Absolute encoder	0.30	0.66
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot (2 sets including mounting bolt)	0.08	0.14	
Rod flange (including mounting bolt)		0.17	0.20
Head flange (including mounting bolt)			
Double clevis (including pin, retaining ring and mounting bolt)		0.16	0.22

Construction
Motor top mounting type：LEY ${ }_{32}^{25}$

In－line motor type： LEY $_{32}{ }^{\mathbf{2 5}} \mathbf{D}$

No．	Description	Material	Note
$\mathbf{2 0}$	Motor pulley	Aluminum alloy	
$\mathbf{2 1}$	Belt	-	
$\mathbf{2 2}$	Bearing stopper	Aluminum alloy	
$\mathbf{2 3}$	Parallel pin	Stainless steel	
$\mathbf{2 4}$	Seal	NBR	
$\mathbf{2 5}$	Retaining ring	Steel for spring	Phosphate coated
$\mathbf{2 6}$	Motor adapter	Aluminum alloy	Coating
$\mathbf{2 7}$	Motor	-	
$\mathbf{2 8}$	Motor block	Aluminum alloy	Coating
$\mathbf{2 9}$	Hub	Aluminum alloy	
$\mathbf{3 0}$	Spider	Urethane	
$\mathbf{3 1}$	Socket（Male thread）	Free cutting carbon steel	Nickel plated
$\mathbf{3 2}$	Nut	Alloy steel	Zinc chromated

Replacement Parts（Top／Parallel only）／Belt

No．	Size	Order no．
21	$\mathbf{2 5}$	LE－D－2－2
	32	LE－D－2－4

出

Series LEY

Size 25, 32

Dimensions: Motor Top/Parallel

Note 1) Range within which the rod can move. Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod.
Note 2) The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

Size	Stroke range (mm)	A	B	C	D	EH	EV	H	J	K	L	M	O_{1}	R	S
25	15 to 100	130.5	116	13	20	44	45.5	M8 $\times 1.25$	24	17	14.5	34	M5 x 0.8	8	46
	105 to 400	155.5	141												
32	20 to 100	148.5	130	13	25	51	56.5	M8 $\times 1.25$	31	22	18.5	40	M6 x 1.0	10	60
	105 to 500	178.5	160												

Size	Stroke range (mm)	T	U	Y	V	Incremental encoder						Absolute encoder					
						Without lock			With lock			Without lock			With lock		
						W	X	Z	W	X	Z	W	X	Z	W	X	Z
25	15 to 100	92	1	26.5	40	87	120	14.1	123.9	156.9	15.8	82.4	115.4	14.1	123.5	156.5	15.8
	105 to 400																
32	20 to 100	118	1	34	60	88.2	128.2	17.1	116.8	156.8	17.1	76.6	116.6	17.1	116.1	156.1	17.1
	105 to 500																

Motor left side parallel type: $\operatorname{LEY}_{32}{ }^{25} \mathrm{~L}$

Motor right side parallel type: $\operatorname{LEY}_{32}^{25} R$

Size	\mathbf{S}_{1}	\mathbf{T}_{2}	\mathbf{U}
$\mathbf{2 5}$	47	91	1
$\mathbf{3 2}$	61	117	$\mathbf{1}$

Note) When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden.

Note 1）Range within which the rod can move．
Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod． Note 2）The direction of rod end width across flats（ $\square \mathrm{K}$ ）differs depending on the products．

Size	Stroke range （mm）	C	D	EH	EV	H	J	K	L	M	O1	R	S	T	U
25	15 to 100	13	20	44	45.5	M8 $\times 1.25$	24	17	14.5	34	M5 x 0.8	8	45	46.5	1.5
	105 to 400														
32	20 to 100	13	25	51	56.5	M8 $\times 1.25$	31	22	18.5	40	M6 x 1.0	10	60	61	1
	105 to 500														

Size	Stroke range （ mm ）	B	V	Incremental encoder						Absolute encoder					
				Without lock			With lock			Without lock			With lock		
				A	W	Z	A	W	Z	A	W	Z	A	W	Z
25	15 to 100	136.5	40	238	87	14.6	274.9	123.9	16.3	233.4	82.4	14.6	274.5	123.5	16.3
25	105 to 400	161.5		263			299.9			258.4			299.5		
32	20 to 100	156	60	262.7	88.2	17.1	291.3	116.8	17.1	251.1	76.6	17.1	290.6	116.1	17.1
	105 to 500	186		292.7			321.3			281.1			320.6		

＊Refer to page 152 for details about the rod end nut and mounting bracket．
Note）Refer to the＂Handling＂precautions on page 220 when mounting end brackets such as knuckle joint or work pieces．

Size	\mathbf{B}_{1}	\mathbf{C}_{1}	\mathbf{H}_{1}	\mathbf{L}_{1}	\mathbf{L}_{2}	$\mathbf{M M}$
$\mathbf{2 5}$	22	20.5	8	38	23.5	$\mathrm{M} 14 \times 1.5$
$\mathbf{3 2}$	22	20.5	8	42.0	23.5	$\mathrm{M} 14 \times 1.5$

＊The L_{1} measurement is when the unit is in the original position．At this position， 2 mm at the end．

Series LEY

Size 25, 32

Dimensions

Body Bottom Tapped

Size	Stroke range (mm)	L	MA	MB	MC	MD	MH	ML
25	15 to 39	14.5	20	46	24	32	29	50
	40 to 100				42	41		
	101 to 124							75
	125 to 200				59	49.5		
	201 to 400				76	58		
32	20 to 39	18.5	25	55	22	36	30	50
	40 to 100							
	101 to 124							
	125 to 200				53	51.5		80
	201 to 500				70	60		

Body bottom tapped

Outward mounting

[mm]														
Size	Stroke range (mm)	A	LS	LS 1	LL	LD	LG	LH	LT	LX	LY	LZ	X	Y
25	15 to 100	136.6	99	19.8	8.4	6.6	3.5	30	2.6	57	51.5	71	11.2	5.8
	101 to 400	161.6	124											
32	20 to 100	155.7	114	19.2	11.3	6.6	4	36	3.2	76	61.5	90	11.2	7
	101 to 500	185.7	144											

Material: Carbon steel (Chromate treated)

* The A measurement is when the unit is in the Z phase first detecting position. At this position, 2 mm at the end.
Note) When the motor mounting is the right or left side parallel type, the head side foot should be mounted outwards.

Dimensions

Rod flange： $\operatorname{LEY}_{32}{ }^{25} \stackrel{A}{\square}-\square \square \square \mathrm{F}$

＊Refer to page 152 for details about the rod end nut and mounting bracket．
Double Clevis［mm］

Size	Stroke range （ mm ）	A		CL		CD	CT
25	15 to 100	160.5		150.5		10	5
	101 to 200	185.5		175.5			
32	20 to 100	180.5		170.5		10	6
	101 to 200	210.5		200.5			
Size	Stroke range （ mm ）	CU	CW	CX	CZ	L	RR
25	15 to 100	14	20	18	36	14.5	10
	101 to 200						
32	20 to 100	14	22	18	36	18.5	10
	101 to 200						

Material：Cast iron（Coating）
＊The A and CL measurements are when the unit is in the Z phase first detecting position．At this position， 2 mm at the end．

Rod／Head Flange							
Size	FD	FT	FV	FX	FZ	LL	M
$\mathbf{2 5}$	5.5	8	48	56	65	6.5	34
$\mathbf{3 2}$	5.5	8	54	62	72	10.5	40

Material：Carbon steel（Nickel plated）

Electric Actuator/Rod Type

AC Servo Motor

Series LEY
 E 63 size 63 Dust/Drip Proof (IP65) Speciication
 (Select options)

How to Order

2 Motor mounting position	
D	In-line

3 Motor type

Symbol	Type	Output $[W]$	Actuator size	Compatible drivers
S4	AC servo motor (Incremental encoder)	400	63	LECSA2-S4
S8	AC servo motor (Absolute encoder)	400	63	LECSB2-S8 LECSC2-S8 LECSS2-S8

4 Lead [mm]

Symbol	LEY63
A	20
B	10
C	5

(5) Stroke [mm]

100	100
to	to
800	800

8 Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

Dust/Drip proof

Nil	IP5x (Dust proof specification)
\mathbf{P}	IP65 (Dust/Drip proof specification)/With vent hole tap

* When using the dust/drip proof (IP65), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water.
* The fitting and tubing should be provided separately by the customer. Select [Applicable tubing O.D.: $\varnothing 4$ or more, Connection thread: Rc1/8].

9 Mounting*1

Symbol	Type	Motor mounting position
		In-line
$\mathbf{N i l}$	Ends tapped (Standard)*2	\bullet
\mathbf{U}	Body bottom tapped	\bullet
\mathbf{F}	Rod flange*2	\bullet

*1 Mounting bracket is shipped together, (but not assembled).
*2 For horizontal cantilever mounting with the rod flange and ends tapped, use the actuator within the following stroke range. - LEY63: 100 or less

2 Driver type*

	Compatible drivers	Power supply voltage
Nil	Without driver	
A2	LECSA2/Pulse input (Incremental encoder)	200 V to 230 V
B2	LECSB2/Pulse input (Absolute encoder)	200 V to 230 V
C2	LECSC2/CC-Link (Absolute encoder)	200 V to 230 V
S2	LECSS2/SSCNET II (Absolute encoder)	200 V to 230 V

* When the driver type is selected, the cable is included. Select cable type and cable length.
Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver
* Applicable stroke table

11 Cable length ${ }^{*}[\mathrm{~m}]$
Nil Without cable 2 2 5 5 \mathbf{A} 10

* The length of the encoder, motor and lock cables are the same.

Model	Stroke (mm)	100	200	300	400	500	600	700	800
LEY63	\bullet	50 to 800							

[^15]198

Specifications

Model				LEY63DS ${ }_{8}^{4} \square$		
Actuator specifications	Stroke [mm] Note 1)			100, 200, 300, 400, 500, 600, 700, 800		
	Work load [kg]		Horizontal Note 2)	40	70	80
			Vertical	19	38	72
	Pushing force [N$] /$ Set value ${ }^{\text {Note }}$ 3): 15 to 50% Note 4)			156 to 521	304 to 1,012	573 to 1,910
	Note 5) Max. speed [mm/s]	Stroke range	Up to 500	1000	500	250
			505 to 600	800	400	200
			605 to 700	600	300	150
			705 to 800	500	250	125
	Pushing speed [mm/s] ${ }^{\text {Note 6) }}$			30 or less		
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			5,000		
	Positioning repeatability [mm]			± 0.02		
	Screw lead [mm] (including pulley ratio)			20	10	5
	Impact/Vibration resistance [m/s ${ }^{2}$] ${ }^{\text {Note 7) }}$			50/20		
	Actuation type			Ball screw		
	Guide type			Sliding bushing (Piston rod)		
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40		
	Operating humidity range [\%RH]			90 or less (No condensation)		
	Required conditions for Note 8) "Regeneration option" [kg]		Horizontal	Not required	Not required	Not required
			Vertical	2 or more	5 or more	12 or more
0 1	Motor output/Size			$400 \mathrm{~W} / \square 60$		
	Motor type			AC servo motor (200 VAC)		
	Encoder			Motor type S4: Incremental 17-bit encoder (Resolution: $131072 \mathrm{p} / \mathrm{rev}$) Motor type S8: Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$)		
	Power consumption [W] ${ }^{\text {Note } 9)}$		Horizontal	210		
			Vertical		230	
	Standby power consumption when operating [W] Note 10)		Horizontal	2		
			Vertical		18	
	Max. instantaneous power consumption [W] Note 11)			1275		
\bigcirc	Type Note 12)			Non-magnetizing lock		
	Holding force [N]			313	607	1,146
	Power consumption [W] at $\mathbf{2 0}{ }^{\circ} \mathrm{C}$ Note 13)			7.9		
	Rated voltage [V]			24 VDC ${ }_{-10 \%}^{\text {- }}$		

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) The maximum value of the horizontal work load. An external guide is necessary to support the load. The actual work load changes according to the condition of the external guide. Please confirm using actual device.
Note 3) Set values for the driver.
Note 4) The force setting range (set values for the driver) for the pushing operation with the torque control mode, etc. The pushing force and duty ratio change according to the set value. Set it with reference to "Force Conversion Graph" on page 189.
Note 5) The allowable speed changes according to the stroke.
Note 6) The allowable collision speed for the pushing operation with the torque control mode, etc.
Note 7) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 8) The work load conditions which require "Regeneration option" when operating at the maximum speed (Duty ratio: 100\%).
Note 9) The power consumption (including the driver) is for when the actuator is operating.
Note 10) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
Note 11) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
Note 12) Only when motor option "With lock" is selected.
Note 13) For an actuator with lock, add the power consumption for the lock.

Weight

Product Weight

Series		LEY63DS $\square \square$							
Stroke [mm]		100	200	300	400	500	600	700	800
$\stackrel{0}{2}$	Incremental encoder	5.6	6.7	8.4	9.6	10.7	12.4	13.5	14.7
$\begin{aligned} & \mathbf{0} \\ & \mathbf{0} \\ & \mathbf{\Sigma} \end{aligned}$	Absolute encoder	5.7	6.8	8.5	9.7	10.8	12.5	13.6	14.8

Additional Weight

Size		$\mathbf{6 3}$
Lock	Incremental encoder	0.4
	Absolute encoder	0.6
Rod end male thread	Male thread	0.12
	Nut	0.04
Rod flange (including mounting bolt)		0.51

Size

Construction

In-line motor type: LEY63

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw shaft	Alloy steel	
$\mathbf{3}$	Ball screw nut	Resin/Alloy steel	
$\mathbf{4}$	Piston	Aluminum alloy	
$\mathbf{5}$	Piston rod	Stainless steel	Hard chrome plated
$\mathbf{6}$	Rod cover	Aluminum alloy	
$\mathbf{7}$	Bearing holder	Aluminum alloy	
$\mathbf{8}$	Socket	Free cutting carbon steel	Nickel plated
$\mathbf{9}$	Wear ring	Resin	
$\mathbf{1 0}$	Wear ring holder	Stainless steel	
$\mathbf{1 1}$	Magnet	-	
$\mathbf{1 2}$	Rotation stopper	Resin	
$\mathbf{1 3}$	Motor block	Aluminum alloy	Coating

No.	Description	Material	Note
$\mathbf{1 4}$	Motor adapter	Aluminum alloy	Coating
15	Spacer A	Stainless steel	
$\mathbf{1 6}$	Hub	Aluminum alloy	
$\mathbf{1 7}$	Spider	Urethane	
$\mathbf{1 8}$	Bushing	Lead bronze cast	
$\mathbf{1 9}$	Seal	NBR	
$\mathbf{2 0}$	Bearing	-	
$\mathbf{2 1}$	Lock nut	Alloy steel	Hard chrome plated
$\mathbf{2 2}$	Retaining ring	Steel for spring	Phosphate coated
$\mathbf{2 3}$	Motor	-	
$\mathbf{2 4}$	Socket (Male thread)	Free cutting carbon steel	Nickel plated
25	Nut	Alloy steel	Trivalent chromated

(Select options)

Dimensions: In-line Motor

LEY63D \square

Note 1) Range within which the rod can move. Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod.
Note 2) The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

Size	Stroke range [mm]	C	D	EH	EV	H	J	K	L	M	O1	R	S	T	U
63	Up to 200	21	40	76	82	M16 $\times 2$	44	36	37.4	60	M8 $\times 1.25$	16	78	83	5
	205 to 500														
	505 to 800														
Size	Stroke range [mm]	B	V	Incremental encoder						Absolute encoder					
				Without lock			With lock			Without lock			With lock		
				A	W	Z	A	W	Z	A	W	Z	A	W	Z
	Up to 200	190.7	60	338.3	110.2	8.1	366.9	138.8	8.1	326.6	98.5	8.1	366.1	138	8.1
63	205 to 500	225.7		373.3			401.9			361.6			401.1		
	505 to 800	260.7		408.3			436.9			396.6			436.1		

End male thread: LEY63 $\square \square \square-\square \square \mathbf{M}$

* The measurement 76.4 is when the unit is in the encoder Z phase detecting position. At this position, 4 mm at the end.

IP65 (Dust/Drip proof specification): LEY63D $\square \square-\square \mathbf{P}$

* When using the dust/drip proof (IP65), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by the customer.
Select [Applicable tubing O.D.: ø4 or more, Connection thread: Rc1/8].

Size 63 DustiDrip Proof (IP65) Specification
(Select options)
Dimensions: In-line Motor

Body bottom tapped: LEY63 $\square \square \square-\square \square$ U

Size	Stroke range [mm]	L	MA	MC	MD	MH	ML	MO	MR	XA	XB
63	50 to 74	37.4	38	24	50	44	65	M8 $\times 1.25$	10	6	7
	75 to 124			45	60.5						
	125 to 200			58	67						
	201 to 500						100				
	501 to 800			86	81		135				

Rod flange: LEY63 $\square \square \square-\square \square F$

Included parts

- Flange
- Body mounting bolt

[^16]
Electric Actuator/Rod Type

AC Servo Motor

Series LEY-X5

LEY25, 32 ,

* For auto switches, refer to page 161.

[^17]
Series LEY－X5

Dust／Drip Proof（IP65）Specification

Specifications

Model				LEY25S ${ }_{6}^{2} /$ LEY25DS $_{6}^{2}$			LEY32S ${ }_{7}^{3}$（Top mounting）			LEY32DS ${ }_{7}^{3}$（ In－line）		
Stroke［mm］${ }^{\text {Note 1）}}$				$\begin{gathered} 30,50,100,150,200 \\ 250,300,350,400 \\ \hline \end{gathered}$			$30,50,100,150,200,250$$300,350,400,450,500$			$30,50,100,150,200,250$$300,350,400,450,500$		
	Work load［kg］	Horizontal Note 2）		18	50	50	30	60	60	30	60	60
		Vertical		8	16	30	9	19	37	12	24	46
	Pushing force［N］Note 3） （Set value： 15 to 30\％）			65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max．speed ［mm／s］	Stroke range	Up to 300	900	450	225	1200	600	300	1000	500	250
			305 to 400	600	300	150						
			405 to 500	－	－	－	800	400	200	640	320	160
	Pushing speed［mm／s］${ }^{\text {Note 5）}}$			35 or less			30 or less			30 or less		
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］			5，000			5，000					
	Positioning repeatability［mm］			± 0.02			± 0.02					
	Lead［mm］			12	6	3	$20^{\text {Note 6）}}$	$10^{\text {Note 6）}}$	5 Note 6）	16	8	4
	Impact／Vibration resistance［m／s ${ }^{2}$ ］ Note 7）			50／20			50／20					
	Actuation type			Ball screw＋Belt／Ball screw			Ball screw＋Belt			Ball screw		
	Guide type			Sliding bushing（Piston rod）			Sliding bushing（Piston rod）					
	Enclosure			IP65								
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］			5 to 40			5 to 40					
	Operating humidity range［\％RH］			90 or less（No condensation）			90 or less（No condensation）					
	Required conditions for Note 8） ＂Regeneration option＂［kg］		Horizontal	8 or more	31 or more	Not required	15 or more	Not required	Not required	23 or more	Not required	Not required
			Vertical	3 or more	2 or more	2 or more	6 or more	7 or more	11 or more	6 or more	7 or more	12 or more
	Motor output／Size			$100 \mathrm{~W} / \square 40$			$200 \mathrm{~W} / \square 60$					
	Motor type			AC servo motor（100／200 VAC）			AC servo motor（100／200 VAC）					
	Encoder			Motor type S2，S3：Incremental 17－bit encoder（Resolution： $131072 \mathrm{p} / \mathrm{rev}$ ） Motor type S6，S7：Absolute／incremental dual 18－bit encoder（Resolution： 262144 p／rev）								
	Power consumption［W］Note 9）		Horizontal	45			65			65		
			Vertical	145			175			175		
	Standby power consumption when operating［W］Note 10）		Horizontal	2			2			2		
			Vertical	8			8			8		
	Max．instantaneous power consumption［W］Note 11）			445			724			724		
	Type Note 12）			Non－magnetizing lock								
或管	Holding force	［ N$]$		131	255	485	157	308	588	197	385	736
㐌：	Power consumption［W］at $\mathbf{2 0}{ }^{\circ} \mathrm{C}$ Note 13）			6.3			7.9			7.9		
	Rated voltage［V］			24 VDC ${ }_{-10 \%}^{0}$								

Note 1）Consult with SMC for non－standard strokes as they are produced as special orders．
Note 2）The maximum value of the horizontal work load．An external guide is necessary to support the load．The actual work load changes according to the condition of the external guide．Please confirm using actual device．
Note 3）The force setting range（set values for the driver）for the pushing operation with the torque control mode，etc．Set it with reference to＂Force Conversion Graph＂on page 188.
Note 4）The allowable speed changes according to the stroke．
Note 5）The allowable collision speed for the pushing operation with the torque control mode，etc．
Note 6）Equivalent lead which includes the pulley ratio［1．25：1］
Note 7）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．

Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 8）The work load conditions which require＂Regeneration option＂when operating at the maximum speed（Duty ratio：100\％）．Order the regeneration option separately．For details and order numbers，refer to＂Required Conditions for Regeneration Option＂on pages 186 and 187.
Note 9）The power consumption（including the driver）is for when the actuator is operating．
Note 10）The standby power consumption when operating（including the driver）is for when the actuator is stopped in the set position during the operation．
Note 11）The maximum instantaneous power consumption（including the driver）is for when the actuator is operating．
Note 12）Only when motor option＂With lock＂is selected．
Note 13）For an actuator with lock，add the power consumption for the lock．

Weight

Product Weight

SeriesStroke $[\mathrm{mm}]$		LEY25S \square（Motor mounting position：Top mounting）									LEY32S \square（Motor mounting position：Top mounting）										
		30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
	Incremental encoder	1.31	1.38	1.55	1.81	1.99	2.16	2.34	2.51	2.69	2.42	2.53	2.82	3.29	3.57	3.85	4.1	4.42	4.70	4.98	5.26
	Absolute encoder	1.37	1.44	1.61	1.87	2.05	2.22	2.40	2.57	2.75	2.36	2.47	2.76	3.23	3.51	3.7	4.08	4.36	4.6	4.92	5.20
Stroke［mm］		LEY25DS \square（Motor mounting position：In－line）									LEY32DS \square（Motor mounting position：In－line）										
		30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
	Incremental encoder	1.34	1.41	1.58	1.84	2.02	2.19	2.37	2.54	2.72	2.44	2.55	2.84	3.31	3.59	3.87	4.16	4.44	4.72	5.00	5.28
	Absolute encoder	1.40	1.47	1.64	1.90	2.08	2.25	2.43	2.60	2.78	2.38	2.49	2.78	3.25	3.53	3.81	4.10	4.38	4.66	4.94	5.22

Additional Weight

Size		$\mathbf{2 5}$	$\mathbf{3 2}$
Lock	Incremental encoder	0.20	0.40
	Absolute encoder	0.30	0.66
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot（2 sets including mounting bolt）	0.08	0.14	
Rod flange（including mounting bolt）		0.17	0.20
Head flange（including mounting bolt）			

Construction

Motor top mounting type: LEY $_{32}^{25}$

In-line motor type: $\operatorname{LEY}_{32}^{25} \mathrm{D}$

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw (shaft)	Alloy steel	
$\mathbf{3}$	Ball screw nut	Resin/Alloy steel	
$\mathbf{4}$	Piston	Aluminum alloy	
$\mathbf{5}$	Piston rod	Stainless steel	Hard chrome plated
$\mathbf{6}$	Rod cover	Aluminum alloy	
$\mathbf{7}$	Housing	Aluminum alloy	
$\mathbf{8}$	Rotation stopper	POM	
$\mathbf{9}$	Socket	Free cutting carbon steel	Nickel plated
$\mathbf{1 0}$	Connected shaft	Free cutting carbon steel	Nickel plated
$\mathbf{1 1}$	Bushing	Lead bronze cast	
$\mathbf{1 2}$	Bumper	Urethane	
$\mathbf{1 3}$	Bearing	-	
$\mathbf{1 4}$	Return box	Aluminum die-cast	Coating
$\mathbf{1 5}$	Return plate	Aluminum die-cast	Coating
$\mathbf{1 6}$	Magnet	-	
$\mathbf{1 7}$	Wear ring holder	Stainless steel	Stroke 101 mm or more
$\mathbf{1 8}$	Wear ring	POM	Stroke 101 mm or more

No.	Description	Material	Note
$\mathbf{1 9}$	Screw shaft pulley	Aluminum alloy	
$\mathbf{2 0}$	Motor pulley	Aluminum alloy	
$\mathbf{2 1}$	Belt	-	
$\mathbf{2 2}$	Bearing stopper	Aluminum alloy	
$\mathbf{2 3}$	Parallel pin	Stainless steel	
$\mathbf{2 4}$	Scraper	Nylon	
$\mathbf{2 5}$	Retaining ring	Steel for spring	Nickel plated
$\mathbf{2 6}$	Motor adapter	Aluminum alloy	Coating
$\mathbf{2 7}$	Motor	-	
$\mathbf{2 8}$	Lube-retainer	Felt	
$\mathbf{2 9}$	O-ring	NBR	
$\mathbf{3 0}$	Gasket	NBR	
$\mathbf{3 1}$	O-ring	NBR	
$\mathbf{3 2}$	Motor block	Aluminum alloy	Coating
$\mathbf{3 3}$	Hub	Aluminum alloy	
$\mathbf{3 4}$	Spider	Urethane	
$\mathbf{3 5}$	Socket (Male thread)	Free cutting carbon steel	Nickel plated
$\mathbf{3 6}$	Nut	Alloy steel	Zinc chromated

Replacement Parts (Top mounting only)/Belt

No.	Size	Order no.
21	$\mathbf{2 5}$	LE-D-2-2
	$\mathbf{3 2}$	LE-D-2-4

Replacement Parts/Grease Pack

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$ GR-S-020 $(20 \mathrm{~g})$

* Apply grease on the piston rod periodically.

Grease should be applied at 1 million cycles or 200 km , whichever comes sooner.

Series LEY-X5

DustiDip Proof (PP65) Speciication

Dimensions

Motor top mounting type: $\operatorname{LEY}_{32}^{25}$

Size	Stroke range (mm)	A	B	C	D	EH	EV	H		J	K	L	M	O1		R	PA	PB	V
25	15 to 100	130.5	116	13	20	44	45.5	M8 x 1.25		24	17	14.5	34	M5 x 0.8		8	15.6	9.3	40
25	101 to 400	155.5	141																
32	20 to 100	148.5	130	13	25	51	56.5	M8 $\times 1.25$		31	22	18.5	40	M6 x 1.0		10	15.6	9.3	60
	101 to 500	178.5	160																
Size	Stroke range (mm)	S	T	U	PC	Incremental encoder						Absolute encoder						Y	
							hout lo			Vith loc			hout lo			ith loc			
						W	X	Z	W	X	Z	W	X	Z	W	X	Z		
25	15 to 100	46	92	1	14.8	87	120	14.1	123.9	156.9	15.8	82.4	115.4	14.1	123.5	156.5	15.8	51	
	101 to 400																		
32	20 to 100	60	118	1	15.3	88.2	128.2	17.1	116.8	156.8	17.1	76.6	116.6	17.1	116.1	156.1	17.1	61	
	101 to 500													17.1	116.1		17.1	-1	

In-line motor type: $\operatorname{LEY}_{32}^{25} \mathbf{D}$

Size	Stroke range (mm)	Incremental encoder						Absolute encoder						B	C	D	EH	EV		
		Without lock			With lock			Without lock			With lock									
		A	W	Z	A	W	Z	A	W	Z	A	W	Z							
25	15 to 100	238	87	14.6	274.9	123.9	16.3	233.4	82.4	14.6	274.5	123.5	16.3	136.5	13	20	44	45.5		
	101 to 400	263			299.9			258.4			299.5			161.5						
32	20 to 100	262.7	88.2	17.1	291.3	116.8	17.1	251.1	76.6	17.1	290.6	116.1	17.1	156	13	25	51	56.5		
	101 to 500	292.7			321.3			281.1			320.6			186						
Size	Stroke range (mm)	H		J	K	L	M	O1		R	PA	PB	V	S	T	U	PC	Y		
25	15 to 100	M8 x 1.25		24	17	14.5	34	M5 x 0.8		8	15.6	9.3	40	45	46.5	1.5	15.3	71.5		
	101 to 400																			
32	20 to 100	M8 $\times 1.25$		31	22	18.5	40	M6 x 1.0		10	15.6	9.3	60	60	61	1	15.3	87		
	101 to 500																			

[^18]
出

Electric Actuator/Guide Rod Type AC Servo Motor Series LEYG
Model Selection

Moment Load Graph

Selection conditions

Mounting position	Vertical	Horizontal	
Max. speed [mm/s]	"Speed-Vertical Work Load Graph"	200 or less	Over 200
Graph (Sliding bearing type)	(1), (2)	(5), (6)*	(7), (8)
Graph (Ball bushing bearing type)	(3), (4)	(9), (10)	(11), (12)

* For the sliding bearing type, the speed is restricted with a horizontal/moment load.

Vertical Mounting, Sliding Bearing

* The limit of vertical load mass varies depending on "lead" and "speed".

Check "Speed-Vertical Work Load Graph" on page 210.
Vertical Mounting, Ball Bushing Bearing

[^19]
Moment Load Graph

Horizontal Mounting, Sliding Bearing

(6) $L=\mathbf{1 0 0 ~ m m ~ M a x . ~ s p e e d ~}=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(8) $L=100 \mathbf{~ m m}$ Max. speed $=$ Over $\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$

(10) $L=100 \mathrm{~mm}$ Max. speed $=200 \mathrm{~mm} / \mathrm{s}$ or less

(12) $L=100 \mathrm{~mm}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

Operating Range when Used as Stopper

$\underline{L E Y G} \square \mathbf{M}$ (Sliding bearing)

\triangle Caution

Handling Precautions
Note 1) When used as a stopper, select a model with 30 stroke or less.
Note 2) LEYG $\square \mathrm{L}$ (ball bushing bearing) cannot be used as a stopper.
Note 3) Workpiece collision in series with guide rod cannot be permitted (Fig. a).
Note 4) The body should not be mounted on the end. It must be mounted on the top or bottom (Fig. b).

Series LEYG

Speed-Vertical Work Load Graph/Required Conditions for "Regeneration Option"

LEYG25 \square (Motor mounting position: Top mounting/ln-line)

LEYG32 \square (Motor mounting position: Top mounting)

Required conditions for "Regeneration option"

* Regeneration option required when using product above "Regeneration" line in graph. (Order separately)
"Regeneration Option" Models

Size	Model
LEYG25 \square	LEC-MR-RB-032
LEYG32 \square	LEC-MR-RB-032

LEYG32D (Motor mounting position: In-line)

Speed-Horizontal Work Load Graph/Required Conditions for "Regeneration Option"

LEYG25 \square (Motor mounting position: Top mounting/ln-line)

LEYG32 \square (Motor mounting position: Top mounting)

Required conditions for "Regeneration option"

* Regeneration option required when using product above "Regeneration" line in graph. (Order separately)
"Regeneration Option" Models

Size	Model
LEYG25 \square	LEC-MR-RB-032
LEYG32 \square	LEC-MR-RB-032

LEYG32D (Motor mounting position: In-line)

Force Conversion Graph

LEYG25 \square（Motor mounting position：Top mounting／ln－line）

LEYG32 \square（Motor mounting position：Top mounting）

LEYG32D（Motor mounting position：In－line）

＊1 When limiting torque with incremental encoder，parameter No．PC12／the value of the internal torque command should be set 30% or less．
＊2 When limiting torque with absolute encoder，parameter No．PC13／the value of the maximum output command for analog torque should be set 30% or less．

Electric Actuator/Guide Rod Type

AC Servo Motor

Series LEYG LEYG25, 32

How to Order

2) Bearing type

\mathbf{M}	Sliding bearing
\mathbf{L}	Ball bushing bearing

(4) Motor type*1

Symbol	Type	Output [W]	Actuator size	Compatible drivers*2
S2	AC servo motor (Incremental encoder)	100	25	LECSA \square-S1
S3	AC servo motor (Incremental encoder)	200	32	LECSA \square-S3
S6	AC servo motor (Absolute encoder)	100	25	LECSB \square-S5 LECSC -S5 LECSS -S5
S7	AC servo motor (Absolute encoder)	200	32	LECSB \square-S7 LECSC■-S7 LECSS \square-S7

*1: For motor type S2 and S6, the compatible driver part number suffixes are S1 and S5 respectively.
*2: For details about the driver, refer to page 419.

Lead [mm]

Symbol	LEYG25	LEYG32*
A	12	$16(20)$
B	6	$8(10)$
C	3	$4(5)$

* The values shown in () are the lead for size 32 top mounting types. (Equivalent lead which includes the pulley ratio [1.25:1])

8 Guide option

Nil	Without option
F	With grease retaining function

* Only available for size 25 and 32 sliding bearings. (Refer to "Construction" on page 215.)

6 Stroke [mm]
30 30 to to 300 300

* Refer to the table below for details.

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

* The motor and encoder cables are included. (The lock cable is also included when the motor with lock option is selected.)
* Standard cable entry direction is
- Top mounting: (A) Axis side
- In-line: (B) Counter axis side
(Refer to page 435 for details.)
7 Motor option

Nil	Without option
\mathbf{B}	With lock

(10) Cable length* $[\mathrm{m}$]

Nil	Without cable
$\mathbf{2}$	2
$\mathbf{5}$	5
\mathbf{A}	10

* The length of the encoder, motor and lock cables are the same.

* Applicable stroke table								- Standard
Model Stroke (mm)	30	50	100	150	200	250	300	Manufacturable stroke range
LEYG25	\bigcirc	\bigcirc	-	-	-	\bigcirc	-	15 to 300
LEYG32	\bigcirc	20 to 300						

Note) Consult with SMC for non-standard strokes as they are produced as special orders.

出

| 11 Driver type＊ |
| :--- | Compatible drivers 2 Power supply voltage（V）

$12 \mathrm{I} / \mathrm{O}$ connector

NiI	Without connector
H	With connector

＊When the driver type is selected，the cable is included．
Select cable type and cable length．
Example）
S2S2：Standard cable（2 m）＋Driver（LECSS2）
S2 ：Standard cable（2 m）
Nil ：Without cable and driver

Use of auto switches for the guide rod type LEYG series
－Insert the auto switch from the front side with rod（plate）sticking out．
－For the parts hidden behind the guide attachment（Rod stick out side），the auto switch cannot be fixed．

Compatible Drivers

| | Pulse input type
 （Positioning type | Pulse input type | CC－Link direct
 input type |
| :--- | :--- | :--- | :--- | :--- |
| Driver type | | | |

Series LEYG

Specifications

Model			LEYG25 $\square \mathbf{S}_{6}^{2}$（Top mounting）LEYG25 $\square \mathbf{D S}_{6}^{2}$（In－line）			LEYG32 $\square \mathrm{S}_{7}^{3}$（Top mounting）			LEYG32 \square DS ${ }_{7}^{3}$（In－line）		
Stroke［mm］${ }^{\text {Note 1）}}$			$\begin{gathered} 30,50,100,150, \\ 200,250,300 \end{gathered}$			$\begin{gathered} 30,50,100,200, \\ 250,300 \end{gathered}$			$\begin{gathered} 30,50,100,200, \\ 250,300 \end{gathered}$		
		Horizontal ${ }^{\text {Nde 2 } 21}$	18	50	50	30	60	60	30	60	60
	Work load［kg］	Vertical	7	15	29	7	17	35	10	22	44
	Pushing force［ N$]^{\text {Note }} 3$ ） （Set value： 15 to 30% ）		65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max．speed［mm／s］		900	450	225	1200	600	300	1000	500	250
	Pushing speed［ $\left.\mathrm{mm} / \mathrm{s}^{2}\right]^{\text {Note }}$ 4）		35 or less			30 or less			30 or less		
	Max．acceleration／deceleration［ $\left.\mathrm{mm} / \mathrm{s}^{2}\right]$		5，000			5，000					
	Positioning repeatability［mm］		± 0.02			± 0.02					
	Lead［mm］（including pulley ratio）		12	6	3	20	10	5	16	8	4
	ImpactVibration resistance［m／ $\left.\mathrm{s}^{2}\right]^{\text {Note }}$ ）		50／20			50／20					
	Actuation type		Ball screw＋Belt［1：1］／Ball screw			Ball screw＋Belt［1：1．25］			Ball screw		
	Guide type		Sliding bearing（LEYG \square M），Ball bushing bearing（LEYG $\square \mathrm{L}$ ）								
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40			5 to 40					
	Operating humidity range［\％RH］		90 or less（No condensation）			90 or less（No condensation）					
	Required conditions for ${ }^{\text {Noiei }}$ ）	Horizontal	8 or more	31 or more	Not required	15 or more	Not required	Not required	23 or more	Not required	Not required
	＂Regeneration option＂［kg］	Vertical	2 or more	1 or more	1 or more	4 or more	5 or more	9 or more	4 or more	5 or more	9 or more
	Motor output／Size		$100 \mathrm{~W} / \square 40$			$200 \mathrm{~W} / \square 60$					
응	Motor type		AC servo motor（100／200 VAC）			AC servo motor（100／200 VAC）					
	Encoder		Motor type S2，S3：Incremental 17－bit encoder（Resolution： $131072 \mathrm{p} / \mathrm{rev}$ ） Motor type S6，S7：Absolute 18－bit encoder（Resolution： $262144 \mathrm{p} / \mathrm{rev}$ ）								
\％	$\begin{aligned} & \text { Power } \\ & \text { consumption [W] Note 7) } \end{aligned}$	Horizontal	45			65			65		
¢		Vertical	145			175			175		
边	Standby power consumption when operating［W］$]^{\text {Note } 8)}$	Horizontal	2			2			2		
－		Vertical				8			8		
¢	Max．instantaneous power consumption（W）［dote）		445				724			724	
－	Type Note 10）		Non－magnetizing lock			Non－magnetizing lock					
	Holding force［ N ］		131	255	485	157	308	588	197	385	736
产：	解 Power consumption at $20^{\circ} \mathrm{C}$［W］${ }^{\text {Note } 11)}$ $\stackrel{\circ}{\circ}$ Rated voltage［V］		6.3			7.9			7.9		

Note 1）Consult with SMC for non－standard strokes as they are produced as special orders．
Note 2）The maximum value of the horizontal work load．An external guide is necessary to support the load．The actual work load changes according to the condition of the external guide．Please confirm using actual device．
Note 3）The force setting range（set values for the driver）for the pushing operation with the torque control mode，etc．Set it with reference to＂Force Conversion Graph＂on page 211.
Note 4）The allowable collision speed for the pushing operation with the torque control mode，etc．
Note 5）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．） Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）

Note 6）The work load conditions which require＂Regeneration option＂when operating at the maximum speed（Duty ratio： 100% ）．Order the regeneration option separately．For details and order numbers，refer to＂Required Conditions for Regeneration Option＂on page 210.
Note 7）The power consumption（including the driver）is for when the actuator is operating
Note 8）The standby power consumption when operating（including the driver）is for when the actuator is stopped in the set position during operation．
Note 9）The maximum instantaneous power consumption（including the driver）is for when the actuator is operating． Note 10）Only when motor option＂With lock＂is selected．
Note 11）For an actuator with lock，add the power consumption for the lock．

Weight

Weight：Top Mounting Type

	Series	LEYG25M							LEYG32M						
	Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
흥	Incremental encoder	1.80	1.99	2.31	2.73	3.07	3.41	3.67	3.24	3.50	4.05	4.80	5.35	5.83	6.28
을	Absolute encoder	1.86	2.05	2.37	2.79	3.13	3.47	3.73	3.18	3.44	3.99	4.74	5.29	5.77	6.22
	Series	LEYG25L							LEYG32L						
	Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
흥	Incremental encoder	1.81	2.02	2.26	2.69	2.95	3.27	3.51	3.24	3.51	3.9	4.64	5.06	5.56	5.96
을	Absolute encoder	1.87	2.08	2.32	2.75	3.01	3.33	3.57	3.18	3.45	3.84	4.58	5.00	5.50	5.90

Weight：In－line Motor Type

SeriesStroke $[\mathrm{mm}]$		LEYG25MD							LEYG32MD						
		30	50	100	150	200	250	300	30	50	100	150	200	250	300
	Incremental encoder	1.83	2.02	2.34	2.76	3.10	3.44	3.70	3.26	3.52	4.07	4.82	5.37	5.85	6.30
	Absolute encoder	1.89	2.08	2.40	2.82	3.16	3.50	3.76	3.20	3.46	4.01	4.76	5.31	5.79	6.24
	Series	LEYG25LD							LEYG32LD						
	Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{0} \stackrel{0}{2} \\ \sum_{2}^{\circ} \\ \hline \end{array}$	Incremental encoder	1.84	2.05	2.29	2.72	2.98	3.30	3.54	3.26	3.53	3.92	4.66	5.08	5.58	5.98
	Absolute encoder	1.90	2.11	2.35	2.78	3.04	3.36	3.60	3.20	3.47	3.86	4.60	5.02	5.52	5.92

Additional Weight

Size		$\mathbf{2 5}$	［kg］
Lock	Incremental encoder	0.20	0.40
	Absolute encoder	0.30	0.66

Construction

LEYG \square M

LEYG \square

LEYG25/32M: 50st or less

LEYG25/32M: Over 50st

When grease retaining function selected LEYG25/32M: 50st or less

LEYG25/32L: 100st or less

LEYG25/32L: Over 100st

(41)

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw shaft	Alloy steel	
$\mathbf{3}$	Ball screw nut	-	
$\mathbf{4}$	Piston	Aluminum alloy	
$\mathbf{5}$	Piston rod	Stainless steel	Hard chrome plated
$\mathbf{6}$	Rod cover	Aluminum alloy	
$\mathbf{7}$	Housing	Aluminum alloy	
$\mathbf{8}$	Rotation stopper	POM	
$\mathbf{9}$	Socket	Free cutting carbon steel	Nickel plated
$\mathbf{1 0}$	Connected shaft	Free cutting carbon steel	Nickel plated
$\mathbf{1 1}$	Bushing	Lead bronze cast	
$\mathbf{1 2}$	Bumper	Urethane	
$\mathbf{1 3}$	Bearing	-	
$\mathbf{1 4}$	Return box	Aluminum die-cast	Trivalent chromated
$\mathbf{1 5}$	Return plate	Aluminum die-cast	Trivalent chromated
$\mathbf{1 6}$	Magnet	-	
$\mathbf{1 7}$	Wear ring holder	Stainless steel	Stroke 101 mm or more
$\mathbf{1 8}$	Wear ring	POM	Stroke 101 mm or more
$\mathbf{1 9}$	Screw shaft pulley	Aluminum alloy	
$\mathbf{2 0}$	Motor pulley	Aluminum alloy	
$\mathbf{2 1}$	Belt	-	

Support Block

Size	Order no.
$\mathbf{2 5}$	LEYG-S025
* Two body mounting bolts are included	
with the support block.	

No.	Description	Material	Note
$\mathbf{2 2}$	Bearing stopper	Aluminum alloy	
$\mathbf{2 3}$	Parallel pin	Stainless steel	
$\mathbf{2 4}$	Seal	NBR	
$\mathbf{2 5}$	Retaining ring	Steel for spring	Phosphate coated
$\mathbf{2 6}$	Motor adapter	Aluminum alloy	Anodized
$\mathbf{2 7}$	Motor	-	
$\mathbf{2 8}$	Motor block	Aluminum alloy	Anodized
$\mathbf{2 9}$	Hub	Aluminum alloy	
$\mathbf{3 0}$	Spider	Urethane	Spider
$\mathbf{3 1}$	Guide attachment	Aluminum alloy	Anodized
$\mathbf{3 2}$	Guide rod	Carbon steel	
$\mathbf{3 3}$	Plate	Aluminum alloy	Anodized
$\mathbf{3 4}$	Plate mounting bolt	Carbon steel	Nickel plated
$\mathbf{3 5}$	Guide bolt	Carbon steel	Nickel plated
$\mathbf{3 6}$	Sliding bearing	-	
$\mathbf{3 7}$	Felt	Felt	
$\mathbf{3 8}$	Holder	Resin	
$\mathbf{3 9}$	Retaining ring	Steel for spring	Phosphate coated
$\mathbf{4 0}$	Ball bushing	-	
$\mathbf{4 1}$	Spacer	Aluminum alloy	Chromated

Replacement Parts /Belt

Size	Order no.
25	LE-D-2-2
32	LE-D-2-4

Series LEYG

Dimensions: Top Mounting

LEYG $\square \mathbf{M}$ (Sliding bearing)			[mm]
Size	Stroke range (mm)	\mathbf{L}	DB
$\mathbf{2 5}$	Up to 59	67.5	
	60 to 185	100.5	12
	186 to 300	138	
$\mathbf{3 2}$	Up to 59	74	
	60 to 185	107	16
	$\mathbf{1 8 6}$ to 300	144	

LEYG \square M, LEYG \square L Common

Size	Stroke range (mm)		A	B	C	DA		A	EB	EH	EV	FA	FB	FC	G	GA	H	J	K	M	NA	NB	NC	
25	Up to	39	141.5	116	50	20	46		85	103	52.5	11	14.5	12.5	5.4	40.3	99	30.8	29	34	M5 $\times 0.8$	8	6.5	
	40 to	100			67.5																			
	101 to	124	166.5	141																				
	125 to	200			84.5																			
	201 to	300			102																			
32	Up to	39	160.5	130	55	25	60		101	123	64	12	18.5	16.5	5.4	50.3	126	38.3	30	40	M6 x 1.0	10	8.5	
	40 to	100			68																			
	101 to	124	190.5	160																				
	125 to	200			85																			
	201 to	300			102																			
Size	Stroke (m	range)	OA	OB	P	Q		S	T	\mathbf{U}	V	WA	WB	WC	X	XA	XB	Y	Z					
	Up to	39	M6 $\times 1.0$	12	80	18	30		95	6.8	40	35	26	70	54	4	5	26.5	8.5					
	40 to	100							50			33.5												
25	101 to	124							50			33.5	95											
	125 to	200							70			43.5												
	201 to	300							85			51												
32	Up to	39	M6 x 1.0	12	95	28	40			117	7.3	60	40	28.5	75	64	5	6	34	8.5				
	40 to	100							50				33.5											
	101 to	124												105										
	125 to	200							70				43.5											
	201 to	300							85				51											
Size	Incremental encoder							Absolute encoder																
	Without lock			With lock				Without lock				With lock												
	VA	VB	VC	VA	VB		V			VA	VB	VC	VA	VB		C								
25	120	87	14.1	156.9	123.9		5.8			115.4	82.4	14.1	156.5	123.5										
32	128.2	88.2	17.1	156.8	116.8		7.1			116.6	76.6	17.1	156.1	116.1		. 1								
216																								

Dimensions: In-line Motor

Series LEYG

Support Block

- Guide for support block application

When the stroke exceeds 100 mm and the lateral load is applied, the body will be bent based on the load. Mounting the support block is recommended. (Please order it separately from the models shown below.)

Support Block Model

LEYG-S025

- Size

$\mathbf{0 2 5}$	For size 25
$\mathbf{0 3 2}$	For size 32

\triangle Caution

Do not install the body using only a support block.
The support block should be used only for support.

Size	Model	Stroke range	EB	G	GA	OA	OB	ST	WC	X
25	LEYG-S025	100st or less	85	5.4	40.3	M6 x 1.0	12	20	70	54
		101st or more, 300st or less							95	
32	LEYG-S032	100st or less	101	5.4	50.3	M6x 1.0	12	22	75	64
		101st or more, 300st or less							105	

[^20]Series LEY／LEYG
Electric Actuators／

Design／Selection

\triangle Warning

1．Do not apply a load in excess of the operating limit．
Select a suitable actuator by work load and allowable lateral load on the rod end．If the product is used outside of the operating limit，the eccentric load applied to the piston rod will be excessive and have adverse effects such as creating play on the sliding parts of the piston rod，degrading accuracy and shortening the life of the product．
2．Do not use the product in applications where excessive external force or impact force is applied to it．
This can cause failure．
3．Do not use as a stopper．

Handling

\triangle Caution

1．When the pushing operation is used，be sure to set to＂Torque control mode＂，and use within the specified pushing speed range for each series．
Do not allow the piston rod to hit the workpiece and end of the stroke in the＂Position control mode＂，＂Speed control mode＂or ＂Positioning mode＂．The lead screw，bearing and internal stopper may be damaged and lead to malfunction．
2．When operating with＂Torque control mode＂，the value of the internal torque command（LECSA）or the maximum output command for analog torque （LECSB）should be set $\mathbf{3 0 \%}$ or less．
It may lead to damage and malfunction．
3．The forward／reverse torque limit is set to 100%（ 3 times the motor rated torque）as default．
This value is the maximum torque（the limit value）in the ＂Position control mode＂，＂Speed control mode＂or＂Positioning mode＂．When the product is operated with a smaller value than the default，acceleration when driving can decrease．Set the value after confirming the actual device to be used．
4．The maximum speed of this actuator is affected by the product stroke．
Check the model selection section of the catalog．
5．Do not apply a load，impact or resistance in addition to the transferred load during return to origin．
Additional force will cause the displacement of the origin position．
6．Do not scratch or dent the sliding parts of the piston rod，by striking or attaching objects．
The piston rod and guide rod are manufactured to precise tolerances，even a slight deformation may cause malfunction．
7．When an external guide is used，connect it in such a way that no impact or load is applied to it．
Use a freely moving connector（such as a floating joint）．
8．Do not operate by fixing the piston rod and moving the actuator body．
Excessive load will be applied to the piston rod，leading to damage to the actuator and reduced the life of the product．

Handling

\triangle Caution

9．When an actuator is operated with one end fixed and the other free（ends tapped（standard），flange type），a bending moment may act on the actuator due to vibration generated at the stroke end，which can damage the actuator．In such a case，install a mounting bracket to suppress the vibration of the actuator body or reduce the speed so that the actuator does not vibrate．
Also，use a mounting bracket when moving the actuator body or when a long stroke actuator is mounted horizontally and fixed at one end．
10．Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod．
This may cause deformation of the non－rotating guide， abnormal responses of the auto switch，play in the internal guide or an increase in the sliding resistance．
Refer to the table below for the approximate values of the allowable range of rotational torque．

Allowable rotational torque $[\mathrm{N} \cdot \mathrm{m}$ ］or less	LEY25 \square	LEY32

When screwing in a bracket or nut to the end of the piston rod，hold the flats of the rod end with a wrench（the piston rod should be fully retracted）．Do not apply tightening torque to the non－rotating mechanism．

11．When using auto switch with the guide rod type LEYG series，the following limits will be in effect．Please select the product while paying attention to this．
－Insert the auto switch from the front side with rod（plate） sticking out．
－The auto switches with perpendicular electrical entry cannot be used．
－For the parts hidden behind the guide attachment（Rod stick out side），the auto switch cannot be fixed．
－Consult with SMC when using auto switch on the rod stick out side．
Enclosure
 Second characteristic numeral
－First Characteristics：
Degrees of protection against solid foreign objects

$\mathbf{0}$	Non－protected
$\mathbf{1}$	Pren

1 Protected against solid foreign objects of $50 \mathrm{~mm} \varnothing$ and greater
$\mathbf{2}$ Protected against solid foreign objects of $12 \mathrm{~mm} \varnothing$ and greater
3 Protected against solid foreign objects of 2.5 mm mand greater

4	Protected against solid foreign objects of $1.0 \mathrm{~mm} \sigma$ and greater

5 Dust－protected

5	Dust－protec
$\mathbf{6}$	Dust－tight

Series LEY/LEYG
Electric Actuators/

Be sure to read before handling. Refer to page 469 for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smcworld.com

Enclosure

- Second Characteristics:

Degrees of protection against water

$\mathbf{0}$	Non-protected	-
$\mathbf{1}$	Protected against vertically falling water drops	Dripproof type 1
$\mathbf{2}$	Protected against vertically falling water drops when enclosure tilted up to 15°	Dripproof type 2
$\mathbf{3}$	Protected against rainfall when enclosure tilted up to 60	
$\mathbf{4}$	Rainproof type	
$\mathbf{5}$	Protected against splashing water	Splashproof type
$\mathbf{6}$	Protected against powerful water jets	Water-jet- proof type
$\mathbf{7}$	Protected against the effects of temporary immersion in water	Powerful water- jeproof type
$\mathbf{8}$	Protected against the effects of continuous immersion in water	Submersible type

Example) IP65: Dusttight, Low jetproof type
"Low jetproof type" means that no water intrudes inside an equipment that could hinder from operating normally by means of applying water for 3 minutes in the prescribed manner. Take appropriate protection measures, since a device is not usable in an environment where a droplet of water is splashed constantly.

Mounting

\triangle Caution

1. When mounting workpieces or jigs to the piston rod end, hold the flats of the piston rod end with a wrench so that the piston rod does not rotate. The bolt should be tightened within the specified torque range.
This may cause abnormal responses of the auto switch, play in the internal guide or an increase in the sliding resistance.
2. When mounting the product and/or a workpiece, tighten the mounting screws within the specified torque range.
Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

Workpiece fixed/Rod end female thread

Model	Bolt	Max. tightening torque $(\mathrm{N} \cdot \mathrm{m})$	Max. screw-in depth (mm)	End socket widh across flats (mm)
LEY25	M8 $\times 1.25$	12.5	13	17
LEY32	M8 $\times 1.25$	12.5	13	22

Workpiece fixed/Rod end male thread (When "Rod end male thread" is selected.)

Mounting

\triangle Caution

Body fixed/Body bottom tapped style (When "Body bottom tapped" is selected.)

Body fixed/Rod side/Head side tapped style

3. Keep the flatness of the mounting surface within the following ranges when mounting the actuator body and workpiece.
Unevenness of a workpiece or base mounted on the body of the product may cause an increase in the sliding resistance.

Model	Mounting position		Flatness
LEY \square	Body/Body bottom		

Maintenance

© Warning

1. Ensure that the power supply is stopped and the workpiece is removed before starting maintenance work or replacement of the product.

- Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Belt check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months $/ 250 \mathrm{~km} / 5$ million cycles*	O	\bigcirc

* Select whichever comes sooner.
- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for belt check

Stop operation immediately and replace the belt when belt appear to be below. Further, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign matter caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky
f. Crack on the back of the belt

Electric Slide Tables $\mathrm{C} \in \mathrm{F}_{\mathrm{ox}} \mathrm{Y}_{\text {vis }}$ Series LES／LESH
 RoHS

Step Motor（Servo／24 VDC）Servo Motor（24 VDC）

－Reduced cycle time
\bullet Positioning repeatability：$\pm 0.05 \mathrm{~mm}$
\bullet Max．pushing force： 180 N Max．acceleration／deceleration： $5,000 \mathrm{~mm} / \mathrm{s}^{2}$ Max．speed： $\mathbf{4 0 0 \text { mm／s }}$

Basic type／R type
Series LESH \square R

Symmetrical type／L type Series LESH \square L

In－line motor type／D type
Series LESH \square D

$>$ Step data input type Series LECP6／LECA6
－ 64 points positioning
－Input using controller setting kit or teaching box

- Programless type Series LECP1
－ 14 points positioning －Control panel setting

- Pulse input type Series LECPA

Electric Slide Tables

Compact Type Series LES

Vertical work load

Increased by up to b0\%*	Model	Vertical work load (kg)
	LES16	3.0
* By reducing weight of the moving parts * Compared with the LESH16	LESH16	2.0

\section*{Light weight
 Reduced by up to 29\%
 | Model | Weight (kg) |
| :---: | :---: |
| LES16D-100 | $\mathbf{1 . 2 0}$ |
| LESH16D-100 | $\mathbf{1 . 7 0}$ |
 Reduction amount
 Reduced by 0.50 kg}

Max. pushing force: 180 N
Positioning repeatability: $\pm 0.05 \mathrm{~mm}$

- Possible to reduce cycle time Max. acceleration/deceleration: $5,000 \mathrm{~mm} / \mathrm{s}^{2}$ Max. speed: $\mathbf{4 0 0 ~ m m / s}$
- 2 types of motors selectable/Step motor (Servo/24 VDC), Servo motor (24 VDC)

In-line motor type/D type
Series LES \square D

High Rigidity Type Series LESH

High rigidity Deflection: $\mathbf{0 . 0 1 6 ~ m m * * L E S H 1 6 - 5 0 ~ L o a d : ~} 25 \mathrm{~N}$

Integration of the guide rail and the table

Uses a circulating linear guide.

Integration of the guide rail and the table

Compact, Space-saving
For LESH8 R/L, 50 mm stroke

Reduced by 61% in volume*

* Compared with the LESH16-50/LXSH-50
* For R/L type

Motor integrated into the body Built-in motor

2 types of motors selectable

- Step motor (Servo/24 VDC) Ideal for transfer of high load at a low speed and pushing operation - Servo motor (24 VDC)

Stable at high speed and silent operation

Speed

Application Examples

Positioning of pallets on a conveyer

Z motion for pick and place

Symmetrical Type/L Type

The locations of the table and cable are opposite those of the basic type (R type), expanding design applications.

In-line Motor Type/D Type

Width dimension shortened by up to 45%

R type

出

3

U
部

Electric Slide Table/Compact Type Series LES
 Model Selection 1

Step Motor (Servo/24 VDC)

Selection Procedure For the high rigidity type LESH series, refer to page 250.

Step 3 Check the allowable moment.

Selection Example

Step 1
Check the work load-speed. <Speed-Work load graph> (Page 227)
Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.
Selection example) The LES16 $\square \mathbf{J}$-50 is temporarily selected based on the graph shown on the right side.

Step 2 Check the cycle time.

It is possible to obtain an approximate cycle time by using method 1, but if a more detailed cycle time is required, use method 2.

Method 1: Check the cycle time graph. (Page 228)
Method 2: Calculation <Speed-Work load graph> (Page 227)
Calculate the cycle time using the following calculation method.
Cycle time:
T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

- T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

- T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4: Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, please calculate the settling time with reference to the following value.

$$
\mathrm{T} 4=0.15[\mathrm{~s}]
$$

Step 3 Check the allowable moment. <Static allowable moment> (Page 228) <Dynamic allowable moment> (Page 229) Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Operating conditions

\bullet Workpiece mass: 1 [kg] •Workpiece mounting

- Speed: 220 [mm/s]
- Mounting orientation: Vertical
- Stroke: 50 [mm]
- Acceleration/Deceleration: $5,000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$
- Cycle time: 0.5 seconds

LES16 \square /Step Motor Vertical

<Speed-Work load graph>
LES16 $\square /$ Step Motor

<Cycle time>
LES16/Pitching

 <Dynamic allowable moment>

Step Motor (Servo/24 VDC)

* The following graph shows the values when moving force is 100%.

LES8 \square

LES16 \square

LES25 \square

Servo Motor (24 VDC)

* The following graph shows the values when moving force is 250%.

LES16 \square A

Vertical

Series LES

Cycle Time (Guide)

Operating Conditions

Acceleration/Deceleration: $5,000 \mathrm{~mm} / \mathrm{s}^{2}$
In position: 0.5

Static Allowable Moment

Model		LES8	LES16	LES25
Pitching	$[\mathrm{N} \cdot \mathrm{m}]$	2	4.8	14.1
Yawing	$[\mathrm{N} \cdot \mathrm{m}]$	2	4.8	14.1
Rolling	$[\mathrm{N} \cdot \mathrm{m}]$	0.8	1.8	4.8

Note 1) This graph shows the amount of allowable overhang when the center of gravity of the workpiece overhangs in one direction. When the center of gravity of the workpiece overhangs in two directions, refer to the Electric Actuator Selection Software for confirmation.
Dynamic Allowable Moment

Acceleration/Deceleration - $5,000 \mathrm{~mm} / \mathrm{s}^{2}$

	Load overhanging direction $\mathrm{m}:$ Work load $[\mathrm{kg}]$ Me : Dynamic allowable moment $[\mathrm{N} \cdot \mathrm{m}]$ L : Overhang to the work load center of gravity [mm		- Model			
			LES8	LES16	LES25	
	$\stackrel{\square}{\text { Mop }}$					出
	$\operatorname{mop}_{\mathrm{m}}^{\mathrm{L}} \square$					
						-
	$\operatorname{mer}\left(\varrho_{\mathrm{m}}^{14 .} \square\right.$					先
	$(\underset{\mathrm{m}}{\mathrm{o}})_{\mathrm{mer}}$					3
						$\frac{\text { 3 }}{\frac{9}{4}}$

Selection Example

Operating
conditions

$$
\begin{array}{ll}
\text { - Pushing force: } 90[\mathrm{~N}] & \text {-Mounting orientation: Vertical upward } \\
\text {-Workpiece mass: } 1[\mathrm{~kg}] & \text {-Pushing time + Operation (A): } 1.5 \text { seconds } \\
\text { - Speed: } 100[\mathrm{~mm} / \mathrm{s}] & \text {-All cycle time (B): } 6 \text { seconds } \\
\text {-Stroke: } 100[\mathrm{~mm}] &
\end{array}
$$

Check the required force.
Calculate the approximate required force for pushing operation.
Selection example) •Pushing force: $90[\mathrm{~N}]$
-Workpiece mass: 1 [kg]
Therefore, the approximate required force can be obtained as $90+10=100[\mathrm{~N}]$.
Select the target model based on the approximate required force with reference to the specifications (Pages 236 and 237). Selection example) Based on the specifications,
-Approximate required force: 100 [N]

- Speed: 100 [mm/s]

Therefore, the LES25 \square is temporarily selected.
Then, calculate the required force for pushing operation. If the mounting position is vertical upward, add the actuator table weight.
Selection example) Based on the <Table weight>,
-LES25 \square table weight: 0.5 [kg] Therefore, the required force can be obtained as $100+5=105[\mathrm{~N}]$.

Step 2 Check the set value of pushing force.

<Set value of pushing force-Force graph> (Page 231)
Select the target model based on the required force with reference to the <Set value of pushing force-Force graph>, and confirm the set value of pushing force.
Selection example) Based on the graph shown on the right side,

- Required force: 105 [N]

Therefore, the LES25 $\square \mathbf{K}$ is temporarily selected.
This set value of pushing force is 40 [\%].

Step 3

Check the duty ratio.
Confirm the allowable duty ratio based on the set value of pushing force with reference to the <Allowable duty ratio>. Selection example) Based on the <Allowable duty ratio>,

- Set value of pushing force: 40 [\%]

Therefore, the allowable duty ratio can be obtained as 30 [\%].
Calculate the duty ratio for operating conditions, and confirm it does not exceed the allowable duty ratio.
Selection example) \bullet Pushing time + Operation (A): 1.5 seconds - All cycle time (B): 6 seconds Therefore, the duty ratio can be obtained as $1.5 / 6 \times 100=25$ [\%], and this is the allowable range.

Based on the above calculation result, the LES25 \square K-100 is selected. For allowable moment, the selection procedure is the same as the positioning control.

Table Weight

Model	Stroke $[\mathrm{mm}]$						
	30	50	75	100	125	150	
LES8	0.06	0.08	0.10	-	-	-	
LES16	0.10	0.13	0.18	0.20	-	-	
LES25	0.25	0.30	0.36	0.50	0.55	0.59	

* If the mounting position is vertical upward, add the table weight.

LES25 $\square /$ Step Motor

<Set value of pushing force-Force graph>

Allowable Duty Ratio

Step Motor (Servo/24 VDC)

Set value of pushing force (\%)	Duty ratio (\%)	Continuous pushing time (minute)
30	-	-
50 or less	30 or less	5 or less
70 or less	20 or less	3 or less

Servo Motor (24 VDC)

Set value of pushing force $(\%)$	Duty ratio (\%)	Continuous pushing time (minute)
50	-	-
75 or less	30 or less	5 or less
100 or less	20 or less	3 or less

* The pushing force of the LES8 \square A is up to 75%.

Set Value of Pushing Force－Force Gragh

Step Motor（Servo／24 VDC）

LES8 \square

LES16 \square

LES25 \square

Servo Motor（24 VDC）

LES8 \square A

LES16 \square A

LES25 ${ }^{\text {R }}$ A

＊Set values for the controller．

Series LES

Table Accuracy

Model	LES8	LES16	LES25
B side parallelism to A side	0.4 mm		
B side traveling parallelism to A side	Refer to Graph 1.		
C side perpendicularity to A side	0.2 mm		
M dimension tolerance	$\pm 0.3 \mathrm{~mm}$		
W dimension tolerance	$\pm 0.2 \mathrm{~mm}$		

Graph 1 B side traveling parallelism to A side

Pitching moment

Table displacement due to pitch moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out．

LES8

LES16

LES25

Yawing moment

Table displacement due to yaw moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out．

LES8

LES16

LES25

Rolling moment

Table displacement due to roll moment load Table displacement of section A when loads are applied to the section F with the slide table retracted．

先

Electric Slide Table/Compact Type

Step Motor (Servo/24 VDC) Servo Motor (24 VDC)

Series LES
 LES8, 16, 25

(2) Motor mounting position

Lead [mm]

Symbol	LES8	LES16	LES25
\mathbf{J}	8	10	16
\mathbf{K}	4	5	8

(5) Stroke [mm]

Stroke Model	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 5 0}$
LES8	\bullet^{*}	\bullet^{*}	\bullet	-	-	-
LES16	\bullet^{*}	\bullet^{*}	\bullet	\bullet	-	-
LES25	\bullet^{*}	\bullet	\bullet	\bullet	\bullet	\bullet

* R/L type with lock is not available.

Motor option

Nil	Without option
B	With lock

(7) Body option

Nil	Without option
\mathbf{S}	Dustproof specification*

* For R/L type (IP5X equivalent), a scraper is mounted on the rod cover, and gaskets are mounted on both the end covers. For D type, a scraper is mounted on the rod cover.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

Motor type

Symbol	Type	Compatible controllers/ driver
Nil	Step motor (Servo/24 VDC)	LECP6 LECP1 LECPA
A	Servo motor* (24 VDC)	LECA6

* LES25DA is not available.

\triangle Caution

[CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LES series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the servo motor (24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA).
Refer to page 394 for the noise filter set. Refer to the LECA Operation Manual for installation.

[UL-compliant products]

When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

岂

프

（10）Actuator cable length［m］
（10）Actuator cable length［m］

Nil	Without cable		
$\mathbf{1}$	1.5		
$\mathbf{3}$	3		
$\mathbf{5}$	5		
$\mathbf{8}$	8^{*}		
A	10^{*}		
B	15^{*}		
C	20^{*}		＊Produced upon receipt of order（Robotic cable only）
:---			
Refer to the specifications Note 3 ）on page 236.			

＊Produced upon receipt of order（Robotic cable only） Refer to the specifications Note 3）on page 236.

（13）Controller／Driver mounting

Nil	Screw mounting
\mathbf{D}	DIN rail mounting

＊DIN rail is not included．Order it separately． Refer to page 387 for details．
9 Actuator cable type＊1

Nil	Without cable
\mathbf{S}	Standard cable＊2
\mathbf{R}	Robotic cable（Flexible cable）

＊1 The standard cable should be used on fixed parts．For using on moving parts，select the robotic cable．
＊2 Only available for the motor type＂Step motor．＂
＊1 When＂Without controller／driver＂is selected for controller／driver types，I／O cable cannot be selected．Refer to page 394 （For LECP6／ LECA6），page 407 （For LECP1）or page 414 （For LECPA）if I／O cable is required． ＊2 When＂Pulse input type＂is selected for When＂Pulse input type＂is selected for
controller／driver types，pulse input usable only with differential．Only 1.5 m cables usable with open collector．
12 I／O cable length［m］＊＊

Nil	Without cable
$\mathbf{1}$	1.5
3	$3^{* 2}$
5	$5^{* 2}$

Compatible Controllers／Driver

Specifications

Step Motor（Servo／24 VDC）

Model			LES8 \square		LES16 \square		LES25 \square	
	Stroke［mm］		30，50， 75		30，50，75， 100		30，50，75，100，125， 150	
	Work load［kg］${ }^{\text {Note 1）}}$	Horizontal	1		3		5	
		Vertical	0.5	0.25	3	1.5	5	2.5
	Pushing force 30 to 70%［ $]^{\text {Note 2）3）}}$		6 to 15	4 to 10	23.5 to 55	15 to 35	77 to 180	43 to 100
	Speed［mm／s］${ }^{\text {Note 1）3）}}$		10 to 200	20 to 400	10 to 200	20 to 400	10 to 200	20 to 400
	Pushing speed［mm／s］		10 to 20	20	10 to 20	20	10 to 20	20
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］		5，000					
	Positioning repeatability［mm］		± 0.05					
	Screw lead［mm］		4	8	5	10	8	16
	Impact／Vibration resistance［m／s ${ }^{2}$ ］Note 4）		50／20					
	Actuation type		Slide screw＋Belt（R／L type），Slide screw（D type）					
	Guide type		Linear guide（Circulating type）					
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40					
	Operating humidity range［\％RH］		90 or less（No condensation）					
	Motor size		$\square 20$		$\square 28$		$\square 42$	
	Motor type		Step motor（Servo／24 VDC）					
	Encoder		Incremental A／B phase（800 pulse／rotation）					
	Rated voltage［V］		24 VDC $\pm 10 \%$					
	Power consumption［W］${ }^{\text {Note 5）}}$		18		69		45	
	Standby power consumption when operating［W］${ }^{\text {Woide } 6]}$		7		15		13	
	Max．instantaneous power consumption［W］${ }^{\text {Nate 7］}}$		35		69		67	
－			Non－magnetizing lock					
或第	Holding force［N］Note 8）		24	2.5	300	48	500	77
咎：	Power consumption［W］${ }^{\text {Note 9）}}$（ ${ }^{\text {Nate })}$		4		3.6		5	
			24 VDC $\pm 10 \%$					

Note 1）Speed changes according to the work load．Check＂Speed－Work Load Graph（Guide）＂on page 227.
Note 2）Pushing force accuracy is $\pm 20 \%$（F．S．）．
Note 3）The speed and force may change depending on the cable length，load and mounting conditions．Furthermore，if the cable length exceeds 5 m ，then it will decrease by up to 10% for each 5 m ．（At 15 m ：Reduced by up to 20% ）
Note 4）Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．） Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 5）The power consumption（including the controller）is for when the actuator is operating．
Note 6）The standby power consumption when operating（including the controller）is for when the actuator is stopped in the set position during the operation．Except during the pushing operation．
Note 7）The maximum instantaneous power consumption（including the controller）is for when the actuator is operating．This value can be used for the selection of the power supply．
Note 8）With lock only
Note 9）For an actuator with lock，add the power consumption for the lock．

Specifications

Servo Motor (24 VDC)

Model			LES8 \square A		LES16 \square A		LES25 ${ }_{\text {R }}^{\text {A }}$ Note 1)	
(Stroke [mm]		30, 50, 75		30, 50, 75, 100		30, 50, 75, 100, 125, 150	
	Work load [kg]	Horizontal	1		3		5	
		Vertical	1	0.5	3	1.5	4	2
	Pushing force $\mathbf{5 0}$ to $\mathbf{1 0 0 \%}$ [N] ${ }^{\text {Note 2) }}$		7.5 to 11	5 to 7.5	17.5 to 35	10 to 20	18 to 36	12 to 24
	Speed [mm/s]		10 to 200	20 to 400	10 to 200	20 to 400	10 to 200	20 to 400
	Pushing speed [mm/s]		10 to 20	20	10 to 20	20	10 to 20	20
	Max. acceleration/deceleration [mm/s ${ }^{2}$]		5,000					
	Positioning repeatability [mm]		± 0.05					
	Screw lead [mm]		4	8	5	10	8	16
	Impact/Vibration resistance [$\left.\mathrm{m} / \mathrm{s}^{2}\right]^{\text {Note } 3)}$		50/20					
	Actuation type		Slide screw + Belt (R/L type), Slide screw (D type)					
	Guide type		Linear guide (Circulating type)					
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40					
	Operating humidity range [\%RH]		90 or less (No condensation)					
	Motor size		$\square 20$		$\square 28$		$\square 42$	
	Motor output [W]		10		30		36	
	Motor type		Servo motor (24 VDC)					
	Encoder (Angular displacement sensor)		Incremental A/B/Z phase (800 pulse/rotation)					
	Rated voltage [V]		24 VDC $\pm 10 \%$					
	Power consumption [W] ${ }^{\text {Note 4) }}$		42		68		97	
	Standby power consumption when operating [W] ${ }^{\text {Notes) }}$		8 (Horizontal)/19 (Vertical)		9 (Horizontal)/23 (Vertical)		16 (Horizontal)/32 (Vertical)	
	Max. instantaneous power consumption [W] ${ }^{\text {Note 6] }}$		71		102		111	
$\stackrel{\square}{5}$	Type		Non-magnetizing lock					
	Holding force [N]		24	2.5	300	48	500	77
衰:	Power consumption [W] ${ }^{\text {Note 8) }}$		4		3.6		5	
$\frac{5}{0}$	Rated voltage [V]		24 VDC $\pm 10 \%$					

Note 1) LES25DA is not available
Note 2) The pushing force values for LES8 \square A is 50 to 75%. Pushing force accuracy is $\pm 20 \%$ (F.S.).
Note 3) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 4) The power consumption (including the controller) is for when the actuator is operating.
Note 5) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation. Except during the pushing operation.
Note 6) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 7) With lock only
Note 8) For an actuator with lock, add the power consumption for the lock.

Weight

Step Motor (Servo/24 VDC), Servo Motor (24 VDC) Common
[kg]

		Without lock						With lock					
Stroke [mm]		30	50	75	100	125	150	30	50	75	100	125	150
Model	LES8 ${ }_{\text {R }}(\mathrm{A})$	0.45	0.54	0.59	-	-	-	-	-	0.66	-	-	-
	LES16 ${ }_{\text {L }}(\mathrm{A})$	0.91	1.00	1.16	1.24	-	-	-	-	1.29	1.37	-	-
	LES25 ${ }_{\text {L }}(\mathrm{A})$	1.81	2.07	2.41	3.21	3.44	3.68	-	2.34	2.68	3.48	3.71	3.95
	LES8D(A)	0.40	0.52	0.58	-	-	-	0.47	0.59	0.65	-	-	-
	LES16D(A)	0.77	0.90	1.11	1.20	-	-	0.90	1.03	1.25	1.33	-	-
	LES25D	1.82	2.05	2.35	3.07	3.27	3.47	2.08	2.31	2.61	3.33	3.53	3.74

Series LES

Construction: Basic Type/R Type, Symmetrical Type/L Type

A-A

Component Parts

No.	Description	Material	Note
1	Motor	-	-
2	Body	Aluminum alloy	Anodized
3	Table	Stainless steel	Heat treatment + Electroless nickel plated
4	Guide block	Stainless steel	Heat treatment
5	Lead screw	Stainless steel	Heat treatment + Specially treated
6	End plate	Aluminum alloy	Anodized
7	Pulley cover	Synthetic resin	-
8	End cover	Synthetic resin	-
9	Rod	Stainless steel	-
		Structural steel	Electroless nickel plated
10	Bearing stopper	Brass	Electroless nickel plated (LES25R/L \square only)
11	Motor plate	Structural steel	-
12	Socket	Structural steel	Electroless nickel plated
13	Lead screw pulley	Aluminum alloy	-
14	Motor pulley	Aluminum alloy	-
15	Spacer	Stainless steel	LES25R/L \square only
16	Origin stopper	Structural steel	Electroless nickel plated
17	Bearing	-	-
18	Belt	-	-
19	Grommet	Synthetic resin	-
20	Cap	SI	-
21	Sim ring	Structural steel	-

No.	Description	Material	Note
$\mathbf{2 2}$	Stopper	Structural steel	-
$\mathbf{2 3}$	Bushing	-	Dustproof specification only
$\mathbf{2 4}$	Pulley gasket	NBR	Dustproof specification only
$\mathbf{2 5}$	End gasket	NBR	Dustproof specification only
$\mathbf{2 6}$	Scraper	NBR	Dustproof specification only
$\mathbf{2 7}$	Cover	Synthetic resin	-
$\mathbf{2 8}$	Return guide	Synthetic resin	-
$\mathbf{2 9}$	Cover support	Stainless steel	-
$\mathbf{3 0}$	Steel ball	Special steel	-
$\mathbf{3 1}$	Lock	-	With lock only

Replacement Parts/Belt

Size	Order no.	Note
LES8 \square	LE-D-1-1	Without manual override screw
LES16 \square	LE-D-1-2	-
LES25 \square	LE-D-1-3	-
LES25 \square A	LE-D-1-4	-
LES8 \square	LE-D-1-5	With manual override screw

Replacement Parts/Grease Pack

Applied portion	Order no.
Guide unit	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

Construction: In-line Motor Type/D Type

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Motor	-	-
$\mathbf{2}$	Body	Aluminum alloy	Anodized
$\mathbf{3}$	Table	Stainless steel	Heattreament + Electroess ickelplated
$\mathbf{4}$	Guide block	Stainless steel	Heat treatment
$\mathbf{5}$	Lead screw	Stainless steel	Heat treatment + Specially treated
$\mathbf{6}$	End plate	Aluminum alloy	Anodized
$\mathbf{7}$	Motor flange	Aluminum alloy	Anodized
$\mathbf{8}$	Stopper	Structural steel	-
$\mathbf{9}$	Motor cover	Aluminum alloy	Anodized
$\mathbf{1 0}$	End cover	Aluminum alloy	Anodized
$\mathbf{1 1}$	Motor end cover	Aluminum alloy	Anodized
$\mathbf{1 2}$	Rod	Stainless steel	-
		Structural steel	Electroless nickel plated
$\mathbf{1 3}$	Bearing stopper	Brass	Electroless nickel plated
			(LES25D \square only)
$\mathbf{1 4}$	Socket	Structural steel	Electroless nickel plated
$\mathbf{1 5}$	Hub (Lead screw side)	Aluminum alloy	-
$\mathbf{1 6}$	Hub (Motor side)	Aluminum alloy	-
$\mathbf{1 7}$	Spacer	Stainless steel	LES25D \square only
$\mathbf{1 8}$	Grommet	NBR	-
$\mathbf{1 9}$	Spider	NBR	-
$\mathbf{2 0}$	Cover	Synthetic resin	-

No.	Description	Material	Note
$\mathbf{2 1}$	Return guide	Synthetic resin	-
$\mathbf{2 2}$	Cover support	Stainless steel	-
$\mathbf{2 3}$	Steel ball	Special steel	-
$\mathbf{2 4}$	Bearing	-	-
$\mathbf{2 5}$	Sim ring	Structural steel	-
$\mathbf{2 6}$	Masking tape	-	-
$\mathbf{2 7}$	Bushing	-	Dustproof specification only
$\mathbf{2 8}$	Scraper	NBR	Dustproof specification only
29	Lock	-	With lock only
$\mathbf{3 0}$	Side holder	Aluminum alloy	Anodized

Optional Parts/Side Holder

Model	Order no.
LES8D	LE-D-3-1
LES16D	LE-D-3-2
LES25D	LE-D-3-3

Series LES

Dimensions: Basic Type/R Type
LES8R

With lock

Note 1) Range within which the table can move when it returns to origin.
Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

Connector		
Motor cable	Step motor	Servo motor
	$\xrightarrow{20}$	$\xrightarrow{24}$
Lock cable	(聞) ${ }^{\circ}$	(䦭)
	15	15

Dimensions

Dimensions (mm)							
Model	L	D	E	F	G	H	J
LES8R $\square \square$-30 $\square-\square \square \square \square \square$	94.5	26	88.7	62.5	2	27	27
LES8R $\square \square-50 \square-\square \square \square \square \square$	137.5	46	131.7	105.5	3	29	58
LES8R $\square \square$-75 $\square \square-\square \square \square \square \square$	162.5	50	156.7	130.5	4	30	60

Dimensions：Basic Type／R Type

LES16R

With lock

Note 1）Range within which the table can move when it returns to origin． Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table．
Note 2）Position after return to origin．
Note 3）［ ］for when the direction of return to origin has changed．
Note 4）If workpiece fixing bolts are too long，they can touch the guide block and cause a malfunction，etc． Use bolts that are between the maximum and minimum screw－in depths in length．

	Connector	
Motor cable	Step motor	Servo motor
	$\xrightarrow{20}$	$\xrightarrow{24}$
Lock cable	雨	（1）${ }_{\text {Hip }}$
	15	15

Dimensions

Dimensions								（mm）
Model	L	C	D	E	F	G	H	J
LES16R $\square \square$－30 $\square-\square \square \square \square \square$	108.5	4	38	102.3	78	2	40	40
LES16R $\square \square-50 \square-\square \square \square \square \square$	136.5	6	34	130.3	106	2	78	78
LES16R $\square \square$－75 $\square \square-\square \square \square \square \square$	180.5	8	36	174.3	150	4	36	72
LES16R $\square \square$－100 $\square \square$－$\square \square \square \square \square$	205.5	10	36	199.3	175	5	36	108

Series LES

Dimensions: Basic Type/R Type
LES25R

With lock

Note 1) Range within which the table can move when it returns to origin.
Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

Dimensions

Connector		
	Step motor	Servo motor
Motor cable		
Lock cable		

Mm)								
Model	L	C	D	E	F	G	H	J
LES25R $\square \square$-30 $\square \square \square \square \square \square$	144.5	4	48	133.5	105	2	46	46
LES25R $\square \square-50 \square \square-\square \square \square \square \square$	170.5	6	42	159.5	131	2	84	84
LES25R $\square \square-75 \square \square-\square \square \square \square \square$	204.5	6	55	193.5	165	2	112	112
LES25R $\square \square$-100 $\square \square-\square \square \square \square \square$	277.5	8	50	266.5	238	4	56	112
LES25R $\square \square$-125 $\square \square-\square \square \square \square \square$	302.5	8	55	291.5	263	4	59	118
LES25R $\square \square$-150 $\square \square-\square \square \square \square \square$	327.5	8	62	316.5	288	4	62	124

Dimensions：Symmetrical Type／L Type

LES8L

Note 1）Range within which the table can move when it returns to origin． Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table．
Note 2）Position after return to origin．
Note 3）［ ］for when the direction of return to origin has changed．
Note 4）If workpiece fixing bolts are too long，they can touch the guide block and cause a malfunction，etc． Use bolts that are between the maximum and minimum screw－in depths in length．

Connector		
	Step motor	Servo motor
Motor cable	$\stackrel{4}{4}$	
	$\xrightarrow{20}$	$\xrightarrow{24}$
Lock cable	開	（匈）
	15	15

Dimensions

Dimensions							
Model	L	D	E	F	G	H	J
LES8L $\square \square-30 \square-\square \square \square \square \square$	94.5	26	88.7	62.5	2	27	27
LES8L $\square \square-50 \square-\square \square \square \square \square$	137.5	46	131.7	105.5	3	29	58
LES8L $\square \square$－75 $\square \square-\square \square \square \square \square$	162.5	50	156.7	130.5	4	30	60

Series LES

Dimensions: Symmetrical Type/L Type
LES16L

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

	Connector	
Motor cable	Step motor	Servo motor
	N_{4}^{4}	
	$\xrightarrow{20}$	$\xrightarrow{24}$
Lock cable	雨萍	(1)
	15	15

Dimensions

Model	L	C	D	E	F	G	H	J
LES16L $\square \square-30 \square-\square \square \square \square \square$	108.5	4	38	102.3	78	2	40	40
LES16L $\square \square-50 \square-\square \square \square \square \square$	136.5	6	34	130.3	106	2	78	78
LES16L $\square \square-75 \square \square-\square \square \square \square \square$	180.5	8	36	174.3	150	4	36	72
LES16L $\square \square-100 \square \square-\square \square \square \square \square$	205.5	10	36	199.3	175	5	36	108
244								

Dimensions: Symmetrical Type/L Type
LES25L
Note 1) Range within which the table can move when it returns to origin.
Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.
Dimensions

Model	L	C	D	E	F	G	H	J
LES25L $\square \square$-30 $\square-\square \square \square \square \square$	144.5	4	48	133.5	105	2	46	46
LES25L $\square \square-50 \square \square-\square \square \square \square \square$	170.5	6	42	159.5	131	2	84	84
LES25L $\square \square-75 \square \square-\square \square \square \square \square$	204.5	6	55	193.5	165	2	112	112
LES25L $\square \square-100 \square \square-\square \square \square \square \square$	277.5	8	50	266.5	238	4	56	112
LES25L $\square \square-125 \square \square-\square \square \square \square \square$	302.5	8	55	291.5	263	4	59	118
LES25L $\square \square$-150 $\square \square-\square \square \square \square \square$	327.5	8	62	316.5	288	4	62	124

Connector		
	Step motor	Servo motor
Motor cable		
	$\xrightarrow{20}$	$\xrightarrow{24}$
Lock cable		(闍)
	15	15

Series LES

Dimensions: In-line Motor Type/D Type

A-A

Note 1) Range within which the table can move when it returns to origin.
Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) The distance between the motor end cover and the manual override screw is up to 16 mm . The motor end cover hole size is $\varnothing 5.5$.
Note 5) The table is lower than the motor cover. Make sure it does not interfere with the workpiece.
Note 6) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc.
Use bolts that are between the maximum and minimum screw-in depths in length.
Dimensions

Model	(L)	B	D	E	F	G	J	K
LES8D $\square \square$-30 $\square \square-\square \square \square \square \square$	171.5	26	6	88.5	44.5	2	-	81
LES8D $\square \square$-30B $\square \square-\square \square \square \square \square$	225							
LES8D $\square \square$-50 $\square \square-\square \square \square \square \square$	214.5	46	6	131.5	64.5	4	23	124
LES8D $\square \square$-50B $\square \square-\square \square \square \square \square \square$	268							
LES8D $\square \square$-75 $\square \square-\square \square \square \square \square$	239.5	50	6	156.5	64.5	4	48	149
LES8D $\square \square-75 \mathrm{~B} \square \square-\square \square \square \square \square$	293							

Dimensions: In-line Motor Type/D Type

A-A

* 2 sections (30,50, 75 st)

* 3 sections (100 st)

Series LES

Dimensions: In-line Motor Type/D Type

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table. Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) The distance between the motor end cover and the manual override screw is up to 4 mm . The motor end cover hole size is $ø 5.5$.
Note 5) The table is lower than the motor cover.
Note 6) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

Dimensions

(mm)								
Model	(L)	B	D	E	F	G	J	K
LES25D \square-30 $\square \square-\square \square \square \square \square$	214	48	4	133.5	81	4	19	121.5
LES25D \square-30B $\square \square-\square \square \square \square \square$	254.5							
LES25D \square-50 $\square \square-\square \square \square \square \square$	240	42	6	159.5	87	4	39	147.5
LES25D \square-50B $\square \square-\square \square \square \square \square$	280.5							
LES25D \square-75 $\square \square-\square \square \square \square \square$	274	55	6	193.5	96	4	64	181.5
LES25D \square-75B $\square \square-\square \square \square \square \square$	314.5							
LES25D \square-100 $\square \square-\square \square \square \square \square$	347	50	8	266.5	144	4	89	254.5
LES25D \square-100B $\square \square-\square \square \square \square \square$	387.5							
LES25D \square-125 $\square \square-\square \square \square \square \square$	372	55	8	291.5	144	6	57	279.5
LES25D \square-125B $\square \square-\square \square \square \square \square$	412.5							
LES25D \square-150 $\square \square-\square \square \square \square \square$	397	62	8	316.5	144	6	69.5	304.5
LES25D \square-150B $\square \square-\square \square \square \square \square$	437.5							

Side Holder

(mm)

Part no. Note)	A	B	D	E	F	G	Applicable model
LE-D-3-1	45	57.6	6.7	4.5	20	33	LES8D
LE-D-3-2	60	74	8.3	5.5	25	40	LES16D
LE-D-3-3	81	99	12	6.6	30	49	LES25D

Note) Model numbers for 1 side holder.

出

3

む
兑

Selection Procedure For the compact type LES series, refer to page 226.

Step 1 Check the work load-speed. Step 2 Check the cycle time.

Step 3 Check the allowable moment.

Selection Example

Step 1
Check the work load-speed. <Speed-Work load graph> (Page 251) Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.
Selection example) The LESH16 \square J-50 is temporarily selected based on the graph shown on the right side.

Step 2 Check the cycle time.

It is possible to obtain an approximate cycle time by using method 1 , but if a more detailed cycle time is required, use method 2.

* Although it is possible to make a suitable selection by using method 1 , this calculation is based on a maximum load condition. Therefore, if a more detailed selection for each load is required, use method 2.

Method 1: Check the cycle time graph. (Page 252)
Method 2: Calculation <Speed-Work load graph> (Page 251)
Calculate the cycle time using the
Calculation example)
following calculation method.
Cycle time:
T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4$ [s]

- T1: Acceleration time and T3:

Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

- T2: Constant speed time can be found from the following equation.
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{s}]$
- T4: Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, please calculate the settling time with reference to the following value.
$\mathrm{T} 4=0.15[\mathrm{~s}]$
Step 3 Check the allowable moment. <Static allowable moment> (Page 252) <Dynamic allowable moment> (Page 253) Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Operating conditions

\bullet Workpiece mass: 1 [kg] •Workpiece mounting - Speed: 220 [mm/s] condition:

- Mounting orientation: Vertical
- Stroke: 50 [mm]
- Acceleration/Deceleration: $5,000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$
- Cycle time: 0.5 seconds

LESH16 $\square /$ Step Motor Vertical

<Speed-Work load graph>

LESH16 $\square /$ Step Motor

<Cycle time>
LESH16/Pitching

Speed-Work Load Graph (Guide)

Step Motor (Servo/24 VDC)

* The following graph shows the values when moving force is 100%.

LESH8 \square

LESH16 \square

LESH25 \square

Servo Motor (24 VDC)

* The following graph shows the values when moving force is 250%.

LESH8 \square A

LESH16 \square A
Horizontal

Vertical

LESH25 ${ }^{\text {R }}$ A

Horizontal

Vertical

Series LESH

Cycle Time (Guide)

Operating Conditions

Acceleration/Deceleration: $5,000 \mathrm{~mm} / \mathrm{s}^{2}$
In position: 0.5

Static Allowable Moment

Model		LESH8		LESH16			LESH25		
Stroke	$[\mathrm{mm}]$	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$	
Pitching	$[\mathrm{N} \cdot \mathrm{m}]$	11							
Yawing	$[\mathrm{N} \cdot \mathrm{m}]$	11			43	77	112	155	
Rolling	$[\mathrm{N} \cdot \mathrm{m}]$	12		48		146	177	152	

	Load overhanging direction m ：Work load［kg］ Me：Dynamic allowable moment［ $\mathrm{N} \cdot \mathrm{m}$ ］ L：Overhang to the work load center of gravity［mm］		Model				
			LESH8	LESH16		LESH25	
					 rk load m［kg］		 Work load m［kg］
					 rk load \mathbf{m}［kg］		
					 rk load \mathbf{m}［kg］		

Selection Procedure For the compact type LES series, refer to page 230.

Selection Example
Operating
conditions

$$
\begin{array}{ll}
\text { - Pushing force: } 90[\mathrm{~N}] & \text {-Mounting orientation: Vertical upward } \\
\text {-Workpiece mass: } 1[\mathrm{~kg}] & \text {-Pushing time + Operation (A): } 1.5 \text { seconds } \\
\text { - Speed: } 100[\mathrm{~mm} / \mathrm{s}] & \text {-All cycle time (B): } 6 \text { seconds } \\
\text {-Stroke: } 100[\mathrm{~mm}] &
\end{array}
$$

Check the required force.
Calculate the approximate required force for pushing operation.
Selection example) •Pushing force: 90 [N]
-Workpiece mass: 1 [kg]
Therefore, the approximate required force can be obtained as $90+10=100[\mathrm{~N}]$.
Select the target model based on the approximate required force with reference to the specifications (Pages 260 and 261). Selection example) Based on the specifications,

- Approximate required force: 100 [N]
- Speed: 100 [mm/s]

Therefore, the LESH25 \square is temporarily selected.
Then, calculate the required force for pushing operation. If the mounting position is vertical upward, add the actuator table weight.
Selection example) Based on the <Table weight>,
-LESH25 \square table weight: 1.3 [kg] Therefore, the required force can be obtained as $100+13=113[\mathrm{~N}]$.

Step 2 Check the set value of pushing force.

<Set value of pushing force-Force graph> (Page 255)
Select the target model based on the required force with reference to the <Set value of pushing force-Force graph>, and confirm the set value of pushing force.
Selection example) Based on the graph shown on the right side,

- Required force: 113 [N]

Therefore, the LESH25 $\square \mathbf{K}$ is temporarily selected.
This set value of pushing force is 40 [\%].

Step 3

Check the duty ratio.

Confirm the allowable duty ratio based on the set value of pushing force with reference to the <Allowable duty ratio>. Selection example) Based on the <Allowable duty ratio>, - Set value of pushing force: 40 [\%] Therefore, the allowable duty ratio can be obtained as 30 [\%].
Calculate the duty ratio for operating conditions, and confirm it does not exceed the allowable duty ratio.
Selection example) •Pushing time + Operation (A): 1.5 seconds -All cycle time (B): 6 seconds
Therefore, the duty ratio can be obtained as $1.5 / 6 \times 100=25$ [\%], and this is the allowable range.

Based on the above calculation result, the LESH25 $\square \mathrm{K}-100$ is selected. For allowable moment, the selection procedure is the same as the positioning control.

Table Weight

Model	Stroke $[\mathrm{mm}]$			
	50	75	100	150
LESH8	0.2	0.3	-	-
LESH16	0.4	-	0.7	-
LESH25	0.9	-	1.3	1.7

* If the mounting position is vertical upward, add the table weight.

LESH25 $\square /$ Step Motor

<Set value of pushing force-Force graph>

Allowable Duty Ratio

Step Motor (Servo/24 VDC)

Set value of pushing force (\%)	Duty ratio (\%)	Continuous pushing time (minute)
30	-	-
50 or less	30 or less	5 or less
70 or less	20 or less	3 or less

Servo Motor (24 VDC)

Set value of pushing force (\%)	Duty ratio (\%)	Continuous pushing time (minute)
50	-	-
75 or less	30 or less	5 or less
100 or less	20 or less	3 or less

* The pushing force of the LESH8 $\square \mathrm{A}$ is up to 75%.

Set Value of Pushing Force－Force Graph

Step Motor（Servo／24 VDC）

LESH8 \square

LESH16 \square

LESH25 \square

Servo Motor（24 VDC）

LESH8 \square A

LESH16 \square A

LESH25 ${ }^{\text {R }}$ A

Series LESH

Table Accuracy

Model	LESH8	LESH16	LESH25
B side parallelism to A side $[\mathrm{mm}]$	Refer to Table 1.		
B side traveling parallelism to A side $[\mathrm{mm}]$	Refer to Graph 1.		
C side perpendicularity to A side $[\mathrm{mm}]$	0.05	0.05	0.05
M dimension tolerance $[\mathrm{mm}]$	± 0.3		
W dimension tolerance $[\mathrm{mm}]$	± 0.2		
Radial clearance $[\mu \mathrm{m}]$	-4 to 0	-10 to 0	-14 to 0

Table 1 B side parallelism to A side

Model	Stroke $[\mathrm{mm}]$			
	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$
LESH8	0.055	0.065	-	-
LESH16	0.05	-	0.08	-
LESH25	0.06	-	0.08	0.125

Graph $1 \mathbf{B}$ side traveling parallelism to \mathbf{A} side

Table Deflection (Reference Value)

Table displacement due to pitch moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LESH8

LESH16

LESH25

Table displacement due to yaw moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LESH8

LESH16

LESH25

Table displacement due to roll moment load Table displacement of section A when loads are applied to the section F with the slide table

出

LESH16
Lr $=120 \mathrm{~mm}$

LESH25
$\mathbf{L r}=200 \mathrm{~mm}$

Electric Slide Table/High Rigidity Type

Step Motor (Servo/24 VDC) Servo Motor (24 VDC)

 LESH8, 16, 25How to Order

4 Lead [mm]

Symbol	LESH8	LESH16	LESH25
\mathbf{J}	8	10	16
K	4	5	8

* R/L type with lock is not available.

Motor option

Nil	Without option
B	With lock

Body option

Nil	Without option
\mathbf{S}	Dustproof specification*

* For R/L type (IP5X equivalent), a scraper is mounted on the rod cover, and gaskets are mounted on both the end covers. For D type, a scraper is mounted on the rod cover.

* LESH25DA is not available.

\triangle Caution

[CE-compliant products]
(1) EMC compliance was tested by combining the electric actuator LES series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the servo motor (24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA).
Refer to page 394 for the noise filter set. Refer to the LECA Operation Manual for installation.

[UL-compliant products]

When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^21]

Basic type (R type)

Symmetrical type (L type)

In-line motor type (D type)

8 Mounting*

Symbol	Mounting	R type L type	D type
Nil	Without side holder	\bullet	\bullet
\mathbf{H}	With side holder (4 pcs.)	-	\bullet

* Refer to page 273 for details.

11 Controller/Driver type*1

Nil	Without controller/driver	
6N	LECP6/LECA6	NPN
6P	(Step data input type)	PNP
1N	LECP1*2 (Programless type)	NPN
1P		PNP
AN	LECPA*2 (Pulse input type)	NPN
AP		PNP

*1 Refer to page 377 for the detailed specifications of the controller/driver.
*2 Only available for the motor type "Step motor."

9 Actuator cable type*1

Nil	Without cable
\mathbf{S}	Standard cable*2
\mathbf{R}	Robotic cable (Flexible cable)

*1 The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.
*2 Only available for the motor type "Step motor."
12) I/O cable length [m]* ${ }^{*}$

Nil	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	$3^{* 2}$
$\mathbf{5}$	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 394 (For LECP6/ LECA6), page 407 (For LECP1) or page 414 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.

10 Actuator cable length [m]
Nil Without cable $\mathbf{1}$ 1.5 $\mathbf{3}$ 3 $\mathbf{5}$ 5 $\mathbf{8}$ 8^{*} A 10^{*} B 15^{*} C $20^{*}$${ }^{*}$ Produced upon receipt of order (Robotic cable only)

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 3) on page 260.
(13) Controller/Driver mounting

Nil	Screw mounting
\mathbf{D}	DIN rail mounting*

* DIN rail is not included. Order it separately. Refer to page 387 for details.

Series LESH

Specifications

Step Motor (Servo/24 VDC)

Model			LESH8 \square		LESH16 \square		LESH25 \square	
	Stroke [mm]		50, 75		50, 100		50, 100, 150	
	Work load [kg] Note 1) 3)	Horizontal	2	1	6	4	9	6
		Vertical	0.5	0.25	2	1	4	2
	Pushing force [N] 30\% to 70\% Note 2) 3)		6 to 15	4 to 10	23.5 to 55	15 to 35	77 to 180	43 to 100
	Speed [mm/s] Note 1) 3)		10 to 200	20 to 400	10 to 200	20 to 400	10 to 150	20 to 400
	Pushing speed [mm/s]		10 to 20	20	10 to 20	20	10 to 20	20
	Max. acceleration/deceleration [mm/s ${ }^{2}$]		5,000					
	Positioning repeatability [mm]		± 0.05					
	Screw lead [mm]		4	8	5	10	8	16
	Impact/Vibration resistance [$\left.\mathrm{m} / \mathrm{s}^{2}\right]$ Note 4)		50/20					
	Actuation type		Slide screw + Belt (R/L type), Slide screw (D type)					
	Guide type		Linear guide (Circulating type)					
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40					
	Operating humidity range [\%RH]		90 or less (No condensation)					
	Motor size		$\square 20$		$\square 28$		$\square 42$	
	Motor type		Step motor (Servo/24 VDC)					
	Encoder		Incremental A/B phase (800 pulse/rotation)					
	Rated voltage [V]		24 VDC $\pm 10 \%$					
	Power consumption [W] Note 5)		20		43		67	
	Standby power consumption when operating [W] [ote6)		7		15		13	
	Max. instantaneous power consumption [W] Note 7)		35		60		74	
-	Type		Non-magnetizing lock					
-	Holding force [N]		24	2.5	300	48	500	77
	Power consumption [W] Note 9) Rated voltage [V]		4		3.6		5	
			24 VDC $\pm 10 \%$					

Note 1) Speed changes according to the work load. Check "Speed-Work Load Graph (Guide)" on page 251.
Note 2) Pushing force accuracy is $\pm 20 \%$ (F.S.).
Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
Note 4) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 5) The power consumption (including the controller) is for when the actuator is operating.
Note 6) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation. Except during the pushing operation.
Note 7) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 8) With lock only
Note 9) For an actuator with lock, add the power consumption for the lock.

Specifications

Servo Motor（24 VDC）

Model			LESH8 \square A		LESH16 \square A		LESH25 ${ }_{\text {R }} \mathrm{A}^{\text {Note 1）}}$	
	Stroke［mm］		50， 75		50， 100		50，100， 150	
	Work load［kg］	Horizontal	2	1	5	2.5	6	4
		Vertical	0.5	0.25	2	1	2.5	1.5
	Pushing force 50 to 100%［ $]^{\text {Note 2）}}$		7.5 to 11	5 to 7.5	17.5 to 35	10 to 20	18 to 36	12 to 24
	Speed［mm／s］		10 to 200	20 to 400	10 to 200	20 to 400	10 to 150	20 to 400
	Pushing speed［mm／s］${ }^{\text {Note 2）}}$		10 to 20	20	10 to 20	20	10 to 20	20
	Max．acceleration／deceleration［ $\left.\mathrm{mm} / \mathrm{s}^{2}\right]$		5，000					
	Positioning repeatability［mm］		± 0.05					
	Screw lead［mm］		4	8	5	10	8	16
	Impact／Vibration resistance［ $\left.\mathrm{m} / \mathrm{s}^{2}\right]^{\text {Note 3）}}$		50／20					
	Actuation type		Slide screw＋Belt（R／L type），Slide screw（D type）					
	Guide type		Linear guide（Circulating type）					
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40					
	Operating humidity range［\％RH］		90 or less（No condensation）					
$\stackrel{\square}{\square}$	Motor size		$\square 20$		$\square 28$		$\square 42$	
읓	Motor output［W］		10		30		36	
¢	Motor type		Servo motor（24 VDC）					
－	Encoder		Incremental A／B／Z phase（800 pulse／rotation）					
$\frac{\square}{6}$	Rated voltage［V］		24 VDC $\pm 10 \%$					
－	Power consumption［W］${ }^{\text {Note 4）}}$		58		84		144	
U	Standby power consumption when operating［W］Nois 5）		4 （Horizontal）／7（Vertical）		2 （Horizontal）／15（Vertical）		4 （Horizontal）／43（Vertical）	
Ш	Max．instantaneous power consumption［W］${ }^{\text {Note 6］}}$		84		124		158	
\％	Type		Non－magnetizing lock					
	Holding force［N］${ }^{\text {Note 7）}}$		24	2.5	300	48	500	77
年家：			3.5		2.9		5	
－			24 VDC $\pm 10 \%$					

Note 1）LESH25DA is not available．
Note 2）The pushing force values for LESH8 \square A is 50% to 75% ．Pushing force accuracy is $\pm 20 \%$（F．S．）．
Note 3）Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 4）The power consumption（including the controller）is for when the actuator is operating．
Note 5）The standby power consumption when operating（including the controller）is for when the actuator is stopped in the set position during the operation．Except during the pushing operation．
Note 6）The maximum instantaneous power consumption（including the controller）is for when the actuator is operating．This value can be used for the selection of the power supply．
Note 7）With lock only
Note 8）For an actuator with lock，add the power consumption for the lock．

Weight

Step Motor（Servo／24 VDC），Servo Motor（24 VDC）Common

Model		Basic type／R type，Symmetrical type／L type							In－line motor type／D type						
		LESH8 ${ }_{\text {R }}^{\text {R }}$（A）		LESH16 ${ }_{\text {R }}(\mathrm{A})$		LESH25 ${ }_{\text {L }}(\mathrm{A})$			LESH8D（A）		LESH16D（A）		LESH25D		
Stroke［mm］		50	75	50	100	50	100	150	50	75	50	100	50	100	150
Product	Without lock	0.55	0.70	1.15	1.60	2.50	3.30	4.26	0.57	0.70	1.25	1.70	2.52	3.27	3.60
weight［kg］	With lock	－	0.76	－	1.71	2.84	3.64	4.60	0.63	0.76	1.36	1.81	2.86	3.61	3.94

Construction: Basic Type/R Type, Symmetrical Type/L Type

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Motor	-	-
$\mathbf{2}$	Body	Aluminum alloy	Anodized
$\mathbf{3}$	Table	Stainless steel	Heat treatment + Electroless nickel plated
$\mathbf{4}$	Guide block	Stainless steel	Heat treatment
$\mathbf{5}$	Lead screw	Stainless steel	Heat treatment + Specially treated
$\mathbf{6}$	End plate	Aluminum alloy	Anodized
$\mathbf{7}$	Pulley cover	Synthetic resin	-
$\mathbf{8}$	End cover	Synthetic resin	-
$\mathbf{9}$	Rod	Stainless steel	-
$\mathbf{1 0}$	Bearing stopper	Structural steel	Electroless nickel plated
		Brass	Electroess nickel plated (LESH25RlLonly)
$\mathbf{1 1}$	Motor plate	Structural steel	
$\mathbf{1 2}$	Lock nut	Structural steel	Chromate treated
$\mathbf{1 3}$	Socket	Structural steel	Electroless nickel plated
$\mathbf{1 4}$	Lead screw pulley	Aluminum alloy	-
$\mathbf{1 5}$	Motor pulley	Aluminum alloy	-
$\mathbf{1 6}$	Spacer	Stainless steel	LESH25R/L \square only
$\mathbf{1 7}$	Origin stopper	Structural steel	Electroless nickel plated
$\mathbf{1 8}$	Bearing	-	-
$\mathbf{1 9}$	Belt	-	-
$\mathbf{2 0}$	Grommet	Synthetic resin	-
$\mathbf{2 1}$	Sim ring	Structural steel	-
262			

No.	Description	Material	Note
$\mathbf{2 2}$	Bushing	-	Dustproof specification only
$\mathbf{2 3}$	Pulley gasket	NBR	Dustproof specification only
$\mathbf{2 4}$	End gasket	NBR	Dustproof specification only
$\mathbf{2 5}$	Scraper	NBR	Dustproof specification only/Rod
$\mathbf{2 6}$	Cover	Synthetic resin	-
$\mathbf{2 7}$	Return guide	Synthetic resin	-
$\mathbf{2 8}$	Scraper	Stainless steel + NBR	Linear guide
$\mathbf{2 9}$	Steel ball	Special steel	-
$\mathbf{3 0}$	Lock	-	With lock only

Replacement Parts/Belt

Model	Order no.
LESH8 \square	LE-D-1-1
LESH16 \square	LE-D-1-2
LESH25 \square	LE-D-1-3
LESH25 \square A	LE-D-1-4

Replacement Parts/Grease Pack

Applied portion	Order no.
Guide unit	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

Construction: In-line Motor Type/D Type

Shipped together

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Motor	-	-
$\mathbf{2}$	Body	Aluminum alloy	Anodized
$\mathbf{3}$	Table	Stainless steel	Heattreament + Electroless nickel pated
$\mathbf{4}$	Guide block	Stainless steel	Heat treatment
$\mathbf{5}$	Lead screw	Stainless steel	Heat treatment + Specially treated
$\mathbf{6}$	End plate	Aluminum alloy	Anodized
$\mathbf{7}$	Motor flange	Aluminum alloy	Anodized
$\mathbf{8}$	Motor cover	Aluminum alloy	Anodized
$\mathbf{9}$	End cover	Aluminum alloy	Anodized
$\mathbf{1 0}$	Motor end cover	Aluminum alloy	Anodized
$\mathbf{1 1}$	Rod	Stainless steel	-
		Structural steel	Electroless nickel plated
$\mathbf{1 2}$	Bearing stopper	Brass	Electroless nickel plated
		Structural steel	Electroless nickel plated
$\mathbf{1 3}$	Socket	LESH25D only)	
$\mathbf{1 4}$	Hub (Lead screw side)	Aluminum alloy	-
$\mathbf{1 5}$	Hub (Motor side)	Aluminum alloy	-
$\mathbf{1 6}$	Spacer	Stainless steel	LESH25D \square only
$\mathbf{1 7}$	Grommet	NBR	-
$\mathbf{1 8}$	Spider	NBR	-
$\mathbf{1 9}$	Cover	Synthetic resin	-
$\mathbf{2 0}$	Return guide	Synthetic resin	-
$\mathbf{2 1}$	Scraper	Stainless steel + NBR	Linear guide

No.	Description	Material	Note
22	Steel ball	Special steel	-
23	Bearing	-	-
24	Sim ring	Structural steel	-
25	Masking tape	-	-
26	Scraper	NBR	Dustproof specification onlyl Rod
27	Lock	-	With lock only
28	Side holder	Aluminum alloy	Anodized

Optional Parts/Side Holder	
Model	Order no.
LESH8D	LE-D-3-1
LESH16D	LE-D-3-2
LESH25D	LE-D-3-3

Replacement Parts/Grease Pack

Applied portion	Order no.
Guide unit	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

Series LESH

Dimensions: Basic Type/R Type
LESH8R

A-A
$\mathbf{G} \times \mathrm{M} 4 \times 0.7$ thread depth 8

$[\mathrm{mm}]$								
Model	C	F	G	J	K	M	N	
LESH8R $\square \square-50 \square \square-\square \square \square \square \square$	46	29	3	58	111	125.5	95.5	
LESH8R $\square \square-75 \square \square-\square \square \square \square \square$	50	30	4	60	137	151.5	121.5	

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

Dimensions：Basic Type／R Type
LESH16R

Note 1）Range within which the table can move when it returns to origin．Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table．
Note 2）Position after return to origin．
Note 3）［ ］for when the direction of return to origin has changed．
Note 4）If workpiece fixing bolts are too long，they can touch the guide block and cause a malfunction，etc． Use bolts that are between the maximum and minimum screw－in depths in length．

Series LESH

Dimensions: Basic Type/R Type

LESH25R

$[\mathrm{mm}]$								
Model	C	D	F	G	J	K	M	N
LESH25R $\square \square-50 \square \square-\square \square \square \square \square$	75	4	80	2	80	143	168	132
LESH25R $\square \square-100 \square \square-\square \square \square \square \square$	48	8	44	4	88	207	232	196
LESH25R $\square \square-150 \square \square-\square \square \square \square \square$	65	8	66	4	132	285	310	274

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc.
Use bolts that are between the maximum and minimum screw-in depths in length.

Dimensions：Symmetrical Type／L Type

LESH8L

Model	C	F	G	J	K	M	N
LESH8L $\square \square-50 \square \square-\square \square \square \square \square$	46	29	3	58	111	125.5	95.5
LESH8L $\square \square-75 \square \square-\square \square \square \square \square$	50	30	4	60	137	151.5	121.5

Note 1）Range within which the table can move when it returns to origin．Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table．
Note 2）Position after return to origin．
Note 3）［ ］for when the direction of return to origin has changed．
Note 4）If workpiece fixing bolts are too long，they can touch the guide block and cause a malfunction，etc． Use bolts that are between the maximum and minimum screw－in depths in length．

Series LESH

Dimensions: Symmetrical Type/L Type

LESH16L

A-A
G \times M6 $\times 1$ thread depth 12

Model	C	D	F	G	J	K	M	N	
LESH16L $\square \square-50 \square \square-\square \square \square \square \square$	40	6	45	2	45	116.5	135.5	106	
LESH16L $\square \square-100 \square \square-\square \square \square \square \square$	44	8	44	4	88	191.5	210.5	181	

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

Dimensions: Symmetrical Type/L Type
LESH25L

							[mm]	
Model	C	D	F	G	J	K	M	N
LESH25L $\square \square-50 \square \square-\square \square \square \square \square$	75	4	80	2	80	143	168	132
LESH25L $\square \square$-100 $\square \square-\square \square \square \square \square$	48	8	44	4	88	207	232	196
LESH25L $\square \square$-150 $\square \square-\square \square \square \square \square$	65	8	66	4	132	285	310	274

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed
Note 4) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

Series LESH

Dimensions: In-line Motor Type/D Type
LESH8D

A-A

Model	L	B	E	F	J	K
LESH8D $\square \square$-50 $\square \square-\square \square \square \square \square$	201.5	46	111	54.5	19.5	110.5
LESH8D $\square \square$-50B $\square \square-\square \square \square \square \square$	255					
LESH8D $\square \square$-75 $\square \square-\square \square \square \square \square$	227.5	50	137	55.5	44.5	136.5
LESH8D $\square \square$-75B $\square \square-\square \square \square \square \square$	281					

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) The distance between the motor end cover and the manual override screw is up to 16 mm . The motor end cover hole size is $ø 5.5$.
Note 5) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

Dimensions: In-line Motor Type/D Type
LESH16D

dustproof specification

	Connector	
	Step motor	Servo motor
Motor cable	$\xrightarrow[4]{4 H_{4}^{4}}$	
Lock cable	$\frac{(1)}{15}$	

Model	L	B	D	E	F	J	K
LESH16D $\square \square$-50 $\square \square-\square \square \square \square \square$	219.5	40	6	116.5	65	39.5	122
LESH16D $\square \square-50 \mathrm{~B} \square \square-\square \square \square \square \square$	283						
LESH16D $\square \square$-100 $\square \square-\square \square \square \square \square$	288.5	44	8	191.5	85	88.5	191
LESH16D $\square \square$-100B $\square \square-\square \square \square \square \square$	352						

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) The distance between the motor end cover and the manual override screw is up to 17 mm . The motor end cover hole size is $ø 5.5$.

Note 5) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

Series LESH

Dimensions: In-line Motor Type/D Type

A-A

* 2 sections (50,100 st)
* 3 sections (150 st)

Connector	
	Step motor
Motor cable	$\xrightarrow[\rightarrow c \mid c]{\substack{\text { min } \\ 20}}$
Lock cable	

For dustproof specification

Model	L	B	D	E	F	G	J	K
LESH25D \square-50 $\square \square-\square \square \square \square \square$	237.5	75	4	143	84	4	40.5	144.5
LESH25D \square-50B $\square \square$ - $\square \square \square \square \square$	278							
LESH25D \square-100 $\square \square-\square \square \square \square \square$	299.5	48	8					
LESH25D \square-100B $\square \square-\square \square \square \square \square$	340			207	98.5		88	206.5
LESH25D \square-150 $\square \square$ - $\square \square \square \square \square$	377.5	65		285	126.5	6	69	284.5
LESH25D \square-150B $\square \square-\square \square \square \square \square$	418							

[^22] table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin
Note 3) [] for when the direction of return to origin has changed.
Note 4) The distance between the motor end cover and the manual override screw is up to 4 mm . The motor end cover hole size is $\varnothing 5.5$.
Note 5) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

Side Holder（In－line Motor Type／D Type）

\quad［mm］							
Part no．Note）	A	B	D	E	F	G	Applicable model
LE－D－3－1	45	57.6	6.7	4.5	20	33	LESH8D
LE－D－3－2	60	74	8.3	5.5	25	40	LESH16D
LE－D－3－3	81	99	12	6.6	30	49	LESH25D
Note）Model numbers for 1 side holder．							

岂
 岂

Note）Model numbers for 1 side holder．

Series LES/LESH Electric Slide Tables/ Specific Product Precautions 1
Be sure to read before handling. Refer to page 469 for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smcworld.com
Design

\triangle Caution

1. Do not apply a load in excess of the operating limit.

Select a suitable actuator by work load and allowable moment. If the product is used outside of the operating limit, the eccentric load applied to the guide will be excessive and have adverse effects such as creating play on the guide, degrading accuracy and shortening the life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
This can cause failure.

Handling

\triangle Caution

1. INP output signal

1) Positioning operation

When the product comes within the set range by step data [In position], the INP output signal will turn on.
Initial value: Set to [0.50] or higher.
2) Pushing operation

When the effective force exceeds step data [Trigger LV], the INP output signal will turn on. Use the product within the specified range of [Pushing force] and [Trigger LV].
To ensure that the actuator pushes the workpiece with the set [Pushing force], it is recommended that the [Trigger LV] be set to the same value as the [Pushing force].
2. When the pushing operation is used, be sure to set to [Pushing operation]. Never hit at the stroke end except during return to origin.
When incorrect instructions are inputted, such as using the product outside of the operating limit or operation outside of actual stroke through changes in the controller/driver setting and or origin position, the table may collide against the stroke end of the actuator. Please check these points before use. If the table collides against the stroke end of the actuator, the guide, belt or internal stopper can be broken. This may lead to abnormal operation.

Handle the actuator with care when it is used in the vertical direction as the workpiece will fall freely from its own weight.
3. Use the product with the following moving force.

- Step motor (Servo/24 VDC): 100\%
- Servo motor (24 VDC) : 250\%

If the moving force is set below the above values, it may cause an alarm.

Handling

\triangle Caution

4. The actual speed of this actuator is affected by the load.
Check the model selection section of the catalog.
5. Do not apply a load, impact or resistance in addition to the transferred load during return to origin.
Additional force will cause the displacement of the origin position since it is based on detected motor torque.
6. The table and guide block are made of special stainless steel, but can rust in an environment where droplets of water adhere to it.
7. Do not dent, scratch or cause other damage to the body, table and end plate mounting surfaces.
This may cause unevenness in the mounting surface, play in the guide or an increase in the sliding resistance.
8. Do not dent, scratch or cause other damage to the surface over which the rail and guide will move.
This may cause play or an increase in the sliding resistance.
9. Do not apply strong impact or an excessive moment while mounting a workpiece.
If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.
10. Keep the flatness of mounting surface 0.02 mm or less.
Unevenness of a workpiece or base mounted on the body of the product may cause play on the guide and increased sliding resistance. Do not deform the mounting surface by mounting with workpieces tucked in.
11. Do not drive the main body with the table fixed.
12. When mounting the product, for R / L type fixed cable, keep the following dimension or more for bends in the cable. For D type, keep a 40 mm or longer diameter for bends in the cable.

Series LES／LESH Electric Slide Tables／ Specific Product Precautions 2

Be sure to read before handling．Refer to page 469 for Safety Instructions and the Operation Manual for Electric Actuator Precautions．
Please download it via our website，http：／／www．smcworld．com

Handling

\triangle Caution

13．When mounting the product，use screws with adequate length and tighten them to the maximum torque or less．

Tightening the screws with a higher torque than recommended may cause a malfunction， whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position．

Body fixed／ Side mounting （Body tapped）	Model	Bolt	｜hax figleting topup（Nmm）	L（Max．scereindopeph mm）
	LES $\square 8 \mathrm{R} / \mathrm{L}$	M4 $\times 0.7$	1.5	8
	LES $\square 8 \mathrm{D}$			
	LES16R／L	M5 x 0.8	3	10
	LES16D			
	LESH16	M6 x 1	5.2	12
	LES25R／L			
	LES25D			
	LESH25	M8 x 1.25	10	16
Body fixed／ Side mounting （Through－hole）	Model	Bolt	｜Wax intering torue（ W m）	L（mm
	LES8R／L	M3 $\times 0.5$	0.63	23.5
	LESH8R／L	M3 $\times 0.5$	0.63	25.5
	LES $\square 8 \mathrm{D}$			18.2
	LES16R／L	M4 x 0.7	1.5	33.5
	LES16D			25.2
	LESH16R／L	M5 $\times 0.8$	3	35.5
	LESH16D	M5 $\times 0.8$	3	25.5
	LES25R／L			49
	LES25D			39.8
	LESH25R／L	M6 x 1	5.2	50.5
	LESH25D			39.5
Workpiece fixed／ Front mounting L	Model	Bolt	｜Wax．figtering topup（NMm）	L （mm）
	LES8R／L			6
	LESH8R／L	M3 $\times 0.5$	0.63	5.5
	LES 88D $^{\text {d }}$	M4 x 0.7	1.5	8
	LES16R／L			
	LES16D	M5 x 0.8	3	
	LESH16口			
	LES25R／L	M6 x 1	5.2	12
	LESH25R／L			10
	LES 25 D			14

To prevent the workpiece fixing bolts from penetrating the end plate，use bolts that are 0.5 mm or shorter than the maximum screw－in depth．If long bolts are used，they can touch the end plate and cause a malfunction，etc．

Workpiece fixed／ Top mounting	Model	Bolt	Max．tightening torque（N．m）	L（Min．to Max． screw－in depth mm ）
	LES8 \square	13 $\times 0.5$		2.1 to 4.1
	LESH8 ${ }^{\text {a }}$	M3 $\times 0.5$	0.63	5 （Max．）
	LES16口	M 4×0.7	1.5	2.7 to 5.7
\bigcirc－（®）	LESH16	M5 x 0.8	3	6.5 （Max．）
－-8	LES25 ${ }^{\text {－}}$			3.3 to 7.3
	LESH25	M6x 1	5.2	8 （Max．）

To prevent the workpiece fixing bolts from touching the guide block，use bolts that are the maximum screw－in depth or less．If long bolts are used， they can touch the guide block and cause a malfunction，etc．

Body fixed／Side mounting（Side holder）

Model	Bolt	Max．tightening torque $(\mathrm{N} \cdot \mathrm{m})$	$\mathbf{L}(\mathrm{mm})$
LESH8D	$\mathrm{M} 4 \times 0.7$	1.5	6.7
LESH16D	$\mathrm{M} 5 \times 0.8$	3	8.3
LESH25D	$\mathrm{M} 6 \times 1$	5.2	12

When using the side holders to install the actuator，be sure to use the positioning pin．It can be displaced when vibration or excessive external force is applied．

14．In pushing operation，set the product to a position of at least 0.5 mm away from a workpiece．（This position is referred to as a pushing start position．）
If the product is set to the same position as a workpiece，the following alarms may be generated and operation may become unstable．
a．＂Posn failed＂alarm is generated．
The product cannot reach a pushing start position due to variation in the width of workpieces．
b．＂Pushing ALM＂alarm is generated．
The product is pushed back from a pushing start position after starting to push．

15．When external force is applied to the table，it is necessary to reduce the work load for the sizing．
When a cable duct or flexible moving tube is attached to the actuator，the sliding resistance of the table increases and may lead to operational failure of the product．

16．When using the side holders to install the actuator， use within the following dimension range．
Otherwise，installation balance will deteriorate and cause loosening．

17．For the LES $\square \square D$ ，do not grasp or peel off a masking tape on the bottom of the body．
The masking tape may peel off and foreign matter may get inside the actuator．

18．For the LES $\square \square D$ ，a gap will form between the motor flange and table when the table moves（marked with the arrow below）．Be careful not to put hands or fingers in a gap．

出

Series LES/LESH Electric Slide Tables/
Handling

\triangle Caution

19. When mounting the body with through-holes in the following mounting orientations, make sure to use two side holders as shown in the figures.
Otherwise, installation balance will deteriorate and cause loosening.

Wall mounting

Vertical mounting

20. Install the body as shown below with the \bigcirc.

Since the product support becomes unstable, it may cause a malfunction, noise or an increase in the deflection.

21. Even with the same product number, the table of some products can be moved by hand and the table of some products cannot be moved by hand. However, there is no abnormality with these products. (Without lock)
This difference is caused because there is a little variation with the positive efficiency (when the table is moved by the motor) and there is a large variation with the reverse-efficiency (when the table is moved manually) due to the product characteristics. There is hardly any difference among products when they are operated by the motor.

Handling

\triangle Caution

22. For $L E S \square \square_{\mathrm{L}}^{\mathrm{R}}$, remove the cap and operate the manual override screw with a hexagon wrench.

Maintenance

\triangle Warning

1. Ensure that the power supply is stopped before starting maintenance work or replacement of the product.
2. For lubrication, wear protective glasses.
3. Perform maintenance according to the following requirements.

- Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Belt check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months*	-	\bigcirc
Inspection every 250 km*	-	\bigcirc
Inspection every 5 million cycles*	-	\bigcirc

* Select whichever comes sooner.
- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for belt check (R/L type only)

Stop operation immediately and replace the belt when belt appear to be below.
a. Tooth shape canvas is worn out.

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt

Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign matter caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky.
f. Crack on the back of the belt

It is recommended that the belt be replaced after being in service for 2 years, or before reaching the following distance.

Electric Actuators Series LEPY／LEPS

Miniature Rod Type／Miniature Slide Table Type

Step Motor（Servo／24 VDC）

Compact and lightweight
 －Maximum pushing force： 50 N
 －Positioning repeatability：$\pm 0.05 \mathrm{~mm}$
 －Possible to set position，speed and force． （64 points）

Slide Table Type Series LEPS
Size：6， 10 －Page 289

Step Motor（Servo／24 VDC）Controller／Driver

－Step data input type Series LECP6
－ 64 points positioning
－Input using controller setting kit or teaching box
－Programless type Series LECP1
－ 14 points positioning
－Control panel setting

厅SMC

Electric Actuators Miniature Rod Type

Compact and lightweight

Rod Type Series LEPY

Weigh) $\underset{(\text { LEPYGD-25) }}{240} \mathbf{4} 0 \mathbf{g}$

Motor type can be selected to suit the application.
(Size 10 only)

- High pushing force type/basic type
- Compact and lightweight motor type

Manual override screw For rod/table operation.
Adjustment operation possible when power OFF

Slide Table Type Series LEPS

Can be mounted close together.

Body mounting through-hole

Application Examples

Variations

Type	Size	Screw lead	Pushing force [N]		Max. work load [kg] (Horizontal)		Max. work load [kg] (Vertical)		Max. speed [mm/s] (Horizontal)		Stroke [mm]
			Basic	Compact	Basic	Compact	Basic	Compact	Basic	Compact	
Rod type Series LEPY	6	4	14 to 20	-	1.0	-	0.5	-	150	-	$\begin{aligned} & 25 \\ & 50 \\ & 75 \end{aligned}$
		8	7 to 10	-	0.75	-	0.25	-	300	-	
	10	5	25 to 50	24 to 40	2.0	2.0	1.5	1.5	200	200	
		10	12.5 to 25	12 to 20	1.5	1.5	1.0	1.0	350	350	
Slide table type Series LEPS	6	4	14 to 20	-	1.0	-	0.5	-	150	-	$\begin{aligned} & 25 \\ & 50 \end{aligned}$
		8	7 to 10	-	0.75	-	0.25	-	300	-	
	10	5	25 to 50	24 to 40	2.0	2.0	1.5	1.5	200	200	
		10	12.5 to 25	12 to 20	1.5	1.5	1.0	1.0	350	350	

Mounting Variations

Mounting from various directions

Axial mounting＊Rod type only（Body tapped）

Selection Procedure

Positioning Control Selection Procedure

Check the work load-speed. (Vertical transfer)

Step 2 Check the cycle time.

Selection Example

Operating

conditions
-Workpiece mass: 0.2 [kg]

- Speed: 200 [mm/s]
-Acceleration/Deceleration: 3,000 [mm/s²]
- Stroke: 40 [mm]
-Workpiece mounting condition: Vertical upward downward transfer

Step 1
Check the work load-speed. <Speed-Work load graph>
Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.
Selection example) The LEPY6J is temporarily selected based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer. When selecting the target model, refer to page 286 for the horizontal work load in the specifications, and page 299 for the precautions.

<Speed-Work load graph>
(LEPY6/Step motor)

Check the cycle time.
Calculate the cycle time using the following calculation method.

- Cycle time T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation.
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{s}]$
-T4: Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, please calculate the settling time with reference to the following value.
$\mathrm{T} 4=0.2[\mathrm{~s}]$
Calculation example)
T1 to T4 can be calculated as follows.

L : Stroke [mm] ... (Operating condition)
V : Speed [mm/s] \cdots (Operating condition)
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
T1: Acceleration time [s] ... Time until reaching the set speed
T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop
T4: Settling time [s] ... Time until in position is completed
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=200 / 3000=0.067[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=200 / 3000=0.067[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{40-0.5 \cdot 200 \cdot(0.067+0.067)}{200}=0.133[\mathrm{~s}]$
$\mathrm{T} 4=0.2[\mathrm{~s}]$
Therefore, the cycle time can be obtained as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.067+0.133+0.067+0.2=0.467[\mathbf{s}]$

Selection Procedure

Pushing Control Selection Procedure

Selection Example

Operating conditions

Check the duty ratio.

<Conversion table of pushing force-duty ratio>
Select the [Pushing force] from the duty ratio with reference to the <Conversion table of pushing force-duty ratio>.
Selection example)
Based on the table below,
-Duty ratio: 70 [\%]
Therefore, the set value of pushing force will be 80 [\%].
<Conversion table of pushing force-duty ratio>
(LEPY10L)

Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]
70 or less	100	-
80	70	10
100	50	5

<Set value of pushing force-Force graph> (LEPY10L)

Based on the above calculation result, the LEPY10LK-50 is selected.

Series LEPY

Speed-Work Load Graph (Guide)

LEPY6 (Basic)

Horizontal

Vertical

LEPY10(L) (Basic/Compact)

Horizontal

Vertical

Set Value of Pushing Force-Force Graph (Guide)

LEPY6 (Basic)

Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]
70	100	-
80	70	10
100	50	5

LEPY10 (Basic)

Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]
60 or less	100	-
70	30	3
100	15	1

LEPY10L (Compact)

* Set values for the controller.

Allowable Lateral Load on the Rod End

Model	Allowable lateral load on the rod end [N]
LEPY6 (Basic)	0.50
LEPY10 (Basic)	1.0
LEPY10L (Compact)	1.0

Electric Actuator Miniature Rod Type emmen Series LEPY C€ .N. LEPY6, 10

How to Order

2 Motor size

Symbol	Motor size	Applicable size
Nil	Basic	6,10
\mathbf{L}	Compact	10

3 Lead screw type [mm]

Symbol	Screw lead	
	LEPY6	LEPY10
K	4	5
\mathbf{J}	8	10

4 \mathbf{c} Stroke [mm]	
Symbol	Stroke
$\mathbf{2 5}$	25
$\mathbf{5 0}$	50
$\mathbf{7 5}$	75

Motor cable mounting direction

6 Actuator cable type*

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

* The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LEP series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^23]
Electric Actuator／Miniature Rod Type Series LEPY

亗

（7）Actuator cable length［m］

Nil	Without cable	$\mathbf{8}$	8^{*}
$\mathbf{1}$	1.5	\mathbf{A}	10^{*}
$\mathbf{3}$	3	B	15^{*}
$\mathbf{5}$	5	\mathbf{C}	20^{*}

＊Produced upon receipt of order（Robotic cable only） Refer to the specifications Note 6）on page 286.

9 I／O cable length［m］＊1

Nil	Without cable
1	1.5
3	$3^{* 2}$
5	$5^{* 2}$

＊1 When＂Without controller／driver＂is selected for controller／driver types，I／O cable cannot be selected．Refer to page 394 （For LECP6）， page 407 （For LECP1）or page 414 （For LECPA）if I／O cable is required．
＊2 When＂Pulse input type＂is selected for controller／driver types，pulse input usable only with differential．Only 1.5 m cables usable with open collector．
8 Controller／Driver type＊

Nil	Without controller／driver	
6N	LECP6	NPN
6P	（Step data input type）	PNP
1N	LECP1	NPN
1P	（Programless type）	PNP
AN	LECPA	NPN
AP	（Pulse input type）	PNP

＊For details about controllers／driver and compatible motors，refer to the compatible controllers／driver below．

10 Controller／Driver mounting

Nil	Screw mounting
\mathbf{D}	DIN rail mounting＊

＊DIN rail is not included．Order it separately． （Refer to page 387．）

Compatible Controllers／Driver

Type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECP1	LECPA
Features	Value（Step data）input Standard controller	Capable of setting up operation（step data） without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor （Servo／24 VDC）	Step motor （Servo／24 VDC）	
Maximum number of step data	64 points	14 points	－
Power supply voltage	24 VDC		
Reference page	Page 386	Page 401	Page 408

Specifications

Weight

Model		LEPY6		
Stroke [mm]	25	50	75	
Product weight [kg]	Basic	0.24	0.29	0.34

Model		LEPY10		
Stroke [mm]	25	50	75	
Product weight [kg]	Basic	0.47	0.55	0.65
	Compact	0.41	0.49	0.59

Model				LEPY6		LEPY10	
Actuator specifications	Stroke [mm]			25, 50, 75			
	Screw lead [mm]			4	8	5	10
	Pushing force [N$]^{\text {Note 1) }}$		Basic	14 to 20	7 to 10	25 to 50	12.5 to 25
			Compact	-	-	24 to 40	12 to 20
	Work load [kg] Note 2) Note 3)	Horizontal	Basic	1.0	0.75	2.0	1.5
			Compact	-	-	2.0	1.5
		Vertical	Basic	0.5	0.25	1.5	1.0
			Compact	-	-	1.5	1.0
	Speed [mm/s] ${ }^{\text {Note 3) Note 6) }}$	Horizontal	Basic	10 to 150	20 to 300 Note 4)	10 to 200	20 to 350 Note 4)
			Compact	-	-	10 to 200	20 to 350 Note 4)
		Vertical	Basic	10 to 150	20 to 300 Note 4)	10 to 150	20 to 300 Note 4)
			Compact	-	-	10 to 150	20 to 300 Note 4)
	Pushing speed [mm/s] Note 5)			10	20	10	20
	Acceleration/Deceleration [mm/s ${ }^{2}$]			3,000			
	Positioning repeatability [mm]			± 0.05			
	Backlash [mm]			± 0.1			
	Impact/Vibration resistance [m/s ${ }^{2}$] Note 7)			50/20			
	Actuation type			Slide screw			
	Guide type			Sliding bushing			
	Max. operating frequency [c.p.m]			60			
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40			
	Operating humidity range [\%RH]			90 or less (No condensation)			
	Motor size			$\square 20$		$\square 28$	
	Motor type			Step motor (Servo/24 VDC)			
	Encoder			Incremental A/B phase (800 pulse/rotation)			
	Rated voltage [V]			24 VDC $\pm 10 \%$			
	Power consumption [W] Note 8)		Basic	12		28	
			Compact	-		22	
	Standby power consumption when operating [W] Note 9)		Basic	11		22	
			Compact		-	16	
	Max. instantaneous power consumption [W] Note 10)		Basic	22		55	
			Compact	-		45	

Note 1) Pushing force accuracy is LEPY6: $\pm 30 \%$ (F.S.), LEPY10: $\pm 25 \%$ (F.S.).
Refer to page 301 for the detailed setting range and precautions.
The pushing force and the duty ratio change according to the set value. Check "Set Value of Pushing Force-Force Graph (Guide)" on page 283 and [14] on page 301.
Note 2) The maximum value of the work load for the positioning operation. An external guide is necessary to support the load. The actual work load and transfer speed change according to the condition of the external guide.
Note 3) Speed changes according to the work load. Check "Speed-Work Load Graph (Guide)" on page 282.
Note 4) When the stroke is 25 mm , the maximum speed will be $250 \mathrm{~mm} / \mathrm{sec}$.
Note 5) Set to the pushing force when pushing.
Note 6) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20\%)
Note 7) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 8) The power consumption (including the controller) is for when the actuator is operating.
Note 9) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during operation. Except during the pushing operation.
Note 10) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.

Construction

Component Parts

No.	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Screw shaft	Stainless steel	Heat treatment + Specially treated
3	Screw nut	Stainless steel	Heat treament + Specially treated
4	Rod	Stainless steel	
5	Spider	NBR	
6	Hub	Aluminum alloy	
7	Socket	Free cutting carbon steel	Nickel plated
8	Bearing stopper	Size 6: Aluminum alloy Size 10: Carbon steel	
9	Motor plate	Aluminum alloy	Anodized
10	Guide ring	Aluminum alloy	Size 10 only
11	Bearing	-	
12	Bushing	Oil impregnated sintered copper alloy	
13	Soft wiper	-	
14	Step motor (Servo/24 VDC)	-	

Dimensions
LEPY6

Note 1）Range within which the rod can move when it returns to origin．
Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod．
Note 2）Position after return to origin．
Note 3）［ ］for when the direction of return to origin has changed．
Note 4）Do not apply rotational torque to the rod end．
Note 5）The direction of rod end width across flats（ $\square 10$ ）differs depending on the products．

Dimensions

Dimensions									
Model	L1	L2	A	B	C	D	E	F	G
LEPY6 $\square-25 \square$	125.6	135.6	15	21	23	28	15	28	36
LEPY6 $\square-50 \square$	156.6	166.6	22	45	30	52	22	52	60
LEPY6 $\square-75 \square$	188.6	198.6	29	70	37	77	29	77	85

Series LEPY

Dimensions

LEPY10

Note 1) Range within which the rod can move when it returns to origin.
Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) Do not apply rotational torque to the rod end.
Note 5) The direction of rod end width across flats (ロ12) differs depending on the products.
Dimensions

Dimensions										[mm
Model	L1	L2	A	B	C	D	E	F	G	J
LEPY10 \square-25 \square	138	150	61.8	20	22	30	29	20	29	39
LEPY10■-50■	163	175		24	43	34	50	24	50	60
LEPY10 \square-75 \square	198	210		30	72	40	79	30	79	89
LEPY10L \square-25 \square	124	136	47.8	20	22	30	29	20	29	39
LEPY10L \square-50 \square	149	161		24	43	34	50	24	50	60
LEPY10L \square-75 \square	184	196		30	72	40	79	30	79	89

Electric Actuator/Miniature Slide Table Type

Selection Procedure
Positioning Control Selection Procedure
\qquad

Selection Example

Operating
conditions
-Workpiece mass: 0.25 [kg]

Check the work load-speed. <Speed-Work load graph>
Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.
Selection example) The LEPS6J is temporarily selected based on the graph shown on the right side.

- Speed: 200 [mm/s]
- Acceleration/Deceleration: 3,000 [mm/s ${ }^{2}$]
- Stroke: 20 [mm]
-Workpiece mounting condition: Horizontal transfer

Series LEPS

Selection Procedure

Pushing Control Selection Procedure

* The duty ratio is a ratio at the time that can keep being pushed.

Selection Example

Operating conditions

Step 1

Check the duty ratio.

<Conversion table of pushing force-duty ratio>
Select the [Pushing force] from the duty ratio with reference to the <Conversion table of pushing force-duty ratio>.
Selection example)
Based on the table below,
-Duty ratio: 70 [\%]
Therefore, the set value of pushing force will be 80 [\%].
<Conversion table of pushing force-duty ratio>

(LEPS10L)

Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]
70 or less	100	-
80	70	10
100	50	5

$$
\text { Duty ratio = A/B x } 100 \text { [\%] }
$$

* [Set value of pushing force] is one of the step data input to the controller.
* [Continuous pushing time] is the time that the actuator can continuously keep pushing.

Step 2 Check the pushing force. <Set value of pushing force-Force graph>
Select the target model based on the set value of pushing force and
force with reference to the <Set value of pushing force-Force graph>.
Selection example)
Based on the graph shown on the right side,

- Set value of pushing force: 75 [\%]
-Pushing force: 30 [N]
Therefore, the LEPS10LK is temporarily selected.

<Set value of pushing force-Force graph> (LEPS10L)

Step 3 Check the guide allowable moment.

Based on the above calculation result, the LEPS10LK-50 is selected.

Speed-Work Load Graph (Guide)

LEPS6 (Basic)

Horizontal

Vertical

Set Value of Pushing Force-Force Graph (Guide)

Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]
60 or less	100	-
70	30	3
100	15	1

LEPS10L (Compact)

Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]
70 or less	100	-
80	70	10
100	50	5

Dynamic Allowable Moment

* This graph shows the amount of allowable overhang when the center of gravity of the workpiece overhangs in one direction. When the center of gravity of the workpiece overhangs in two directions, refer to the Electric Actuator Selection Software for confirmation. http://www.smcworld.com

Note) This graph shows the amount of allowable overhang when the center of gravity of the workpiece overhangs in one direction.

Static Allowable Moment

Model	Allowable moment（N－m）		
	Pitch moment	Yaw moment	Roll moment
	$\mathbf{M p}$	$\mathbf{M y}$	$\mathbf{M r}$
LEPS6	1.07	1.07	2.51
LEPS10	2.55	2.55	5.47

Traveling Parallelism

Traveling parallelism	Stroke（mm）	
	25	50
	0.05 mm or less	0.1 mm or less

Table Deflection（Reference Value）

＊These values are initial guideline values．

Table displacement due to pitch moment load（marked with the arrow）

Table displacement due to yaw moment load（marked with the arrow）

Table displacement due to roll moment load（marked with A）

Distance L［mm］

Model	LEPS6		LEPS10	
Stroke $[\mathrm{mm}]$	25	50	25	50
Distance $\mathrm{L}[\mathrm{mm}]$	53.0	77.0	59.5	82.0

LEPS6

LEPS6

LEPS6

LEPS10

LEPS10

LEPS10

Electric Actuator Miniature Slide Table Type Series LEPS C ϵ.N. LEPS6, 10
 RoHS

How to Order

1 Size

$\mathbf{6}$
$\mathbf{1 0}$
:---:
Symbol
Nil
\mathbf{L}

3) Lead screw type [mm]

Symbol	Screw lead	
	LEPS6	LEPS10
K	4	5
\mathbf{J}	8	10

Stroke [mm]	
Symbol	Stroke
$\mathbf{2 5}$	25
$\mathbf{5 0}$	50

Motor cable mounting direction

Nil	Top entry	Entry on the left side	
\mathbf{U}	Bottom entry		

6 Actuator cable type*

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

* The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LEP series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

7 Actuator cable length [m]

Nil	Without cable	$\mathbf{8}$	8^{*}
$\mathbf{1}$	1.5	\mathbf{A}	10^{*}
$\mathbf{3}$	3	B	15^{*}
$\mathbf{5}$	5	\mathbf{C}	20^{*}

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 6) on page 296.

9 I/O cable length [m]*1

Nil	Without cable
1	1.5
3	$3^{* 2}$
5	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 394 (For LECP6), page 407 (For LECP1) or page 414 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.

	/Driver type*	
Nil	Without controller/driver	
6N	LECP6 (Step data input type)	NPN
6P		PNP
1N	LECP1 (Programless type)	NPN
1P		PNP
AN	LECPA(Pulse input type)	NPN
AP		PNP

* For details about controllers/driver and compatible motors, refer to the compatible controllers/driver below.

\section*{10 Controller/Driver mounting
 | Nil | Screw mounting |
| :---: | :---: |
| D | DIN rail mounting* |}

* DIN rail is not included. Order it separately. (Refer to page 387.)

Compatible Controllers/Driver

Type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECP1	LECPA
Features	Value (Step data) input Standard controller	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Step motor (Servo/24 VDC)	
Maximum number of step data	64 points	14 points	-
Power supply voltage	24 VDC		
Reference page	Page 386	Page 401	Page 408

Specifications

Weight

Model		LEPS6			
Stroke [mm]	25	50			
Product weight [kg]	Basic	0.29	0.35		
Model LEPS10 Stroke [mm] 25 50 Product weight [kg] Basic 0.56 Compact 0.50					0.59
:---					

Model				LEPS6		LEPS10	
	Stroke [mm]			25,50			
	Screw lead [mm]			4	8	5	10
	Pushing force $[\mathrm{N}]^{\text {Note 1) }}$		Basic	14 to 20	7 to 10	25 to 50	12.5 to 25
			Compact	-	-	24 to 40	12 to 20
	Work load [kg] Note 2) Note 3)	Horizontal	Basic	1.0	0.75	2.0	1.5
			Compact	-	-	2.0	1.5
		Vertical	Basic	0.5	0.25	1.5	1.0
			Compact	-	-	1.5	1.0
	Speed [mm/s] Note 3) Note 6)	Horizontal	Basic	10 to 150	20 to 300 Note 4)	10 to 200	20 to 350 Note 4)
			Compact	-	-	10 to 200	20 to 350 Note 4)
		Vertical	Basic	10 to 150	20 to 300 Note 4)	10 to 150	20 to 300 Note 4)
			Compact	-	-	10 to 150	20 to 300 Note 4)
	Pushing speed [mm/s] Note 5) Note 6)			10	20	10	20
	Acceleration/Deceleration [mm/s ${ }^{2}$]			3,000			
	Positioning repeatability [mm]			± 0.05			
	Backlash [mm]			± 0.1			
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{\text {Note } 7 \text { 7 }}$			50/20			
	Actuation type			Slide screw			
	Guide type			Linear guide			
	Max. operating frequency [c.p.m]			60			
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40			
	Operating humidity range [\%RH]			90 or less (No condensation)			
-	Motor size			$\square 20$		$\square 28$	
	Motor type			Step motor (Servo/24 VDC)			
	Encoder (Angular displacement sensor)			Incremental A/B phase (800 pulse/rotation)			
	Rated voltage [V]			24 VDC $\pm 10 \%$			
	Power consumption [W] Note 8)		Basic	12		28	
			Compact	-		22	
	Standby power consumption when operating [W] Note 9)		Basic		11	22	
			Compact		-		16
	Max. instantaneous power consumption [W] Note 10)		Basic		22		55
			Compact		-		45

Note 1) Pushing force accuracy is LEPS6: $\pm 30 \%$ (F.S.), LEPS10: $\pm 25 \%$ (F.S.).
Refer to page 301 for the detailed setting range and precautions. The pushing force and the duty ratio change according to the set value. Check "Set Value of Pushing Force-Force Graph (Guide)" on page 291 and [14] on page 301.
Note 2) The maximum value of the work load for the positioning operation. Check "Dynamic Allowable Moment" graph for the allowable moment of the guide on page 292.
Note 3) Speed changes according to the work load. Check "Speed-Work Load Graph (Guide)" on page 291.
Note 4) When the stroke is 25 mm , the maximum speed will be $250 \mathrm{~mm} / \mathrm{sec}$.
Note 5) Set to the pushing force when pushing.
Note 6) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
Note 7) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 8) The power consumption (including the controller) is for when the actuator is operating
Note 9) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during operation. Except during the pushing operation.
Note 10) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.

Construction

Component Parts

No.	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Screw shaft	Stainless steel	Heat treatment + Specially treated
3	Screw nut	Stainless steel	Heat treatment + Specillly treated
4	Table	Aluminum alloy	Anodized
5	Linear guide	-	
6	Rod	Stainless steel	
7	Spider	NBR	
8	Hub	Aluminum alloy	
9	Socket	Free cutting carbon steel	Nickel plated
10	Bearing stopper	Size 6: Aluminum alloy Size 10: Carbon steel	
11	Motor plate	Aluminum alloy	Anodized
12	Guide ring	Aluminum alloy	Size 10 only
13	Bearing	-	
14	Bushing	Oil impregnated sintered copper alloy	
15	Soft wiper	-	
16	Step motor (Servo/24 VDC)	-	

Dimensions
LEPS6

Note 1）Range within which the table can move when it returns to origin．
Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table． Note 2）Position after return to origin．
Note 3）［ ］for when the direction of return to origin has changed．
Dimensions

Model	L1	L2	L3	A	B	C	D	E	F	G	J
LEPS6 $\square-25 ~$											
LEPS6 $\square-50 \square$	127.1	138.6	11.5	16.5	21	24.5	28	16.5	28	36	76.4

Series LEPS

Dimensions

LEPS10

Note 1) Range within which the table can move when it returns to origin.
Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table. Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.

Dimensions

Series LEPY/LEPS Specific Product Precautions 1

\triangle
Be sure to read before handling. Refer to page 469 for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smcworld.com

Design/Selection

\triangle Warning

1. Do not apply a load in excess of the operating limit.

Select a suitable actuator by work load and allowable lateral load on the rod end. If the product is used outside of the operating limit, the eccentric load applied to the rod will be excessive and have adverse effects such as creating play on the sliding parts of the rod, degrading accuracy and shortening the life of the product.
2. Do not use the product in applications where excessive external force (including vibration) or impact force is applied to it.
Do not apply impact and vibration outside of the specifications; it may lead to a malfunction.
3. If gravity acts on the workpiece due to vertical mounting, it may drop due to its own weight depending on the conditions when the product is not energized (SVON signal is OFF) or stopped (EMG is not energized).
4. Power failure may result in a decrease in the pushing force; ensure that safety measures are in place to prevent injury to the operator or damage to the equipment.
When the product is used for clamping, the clamping force could be decreased due to power failure, potentially creating a hazardous situation in which the workpiece is released.
5. This product cannot be used as a stopper.

Excessive load acts on the actuator, which adversely affects the operation and the life of the product.

Mounting

\triangle Warning

1. Do not drop or hit the actuator to avoid scratching and denting the mounting surfaces.
Even slight deformation can cause the deterioration of accuracy and operation failure.
2. When mounting workpieces or jigs to the rod end, hold the flats of the rod end with a wrench so that the rod does not rotate (Rod type only).
When attaching a bolt or workpiece to the end of the rod, hold the flats of the rod end with a wrench (the rod should be fully retracted). Do not apply tightening torque to the rod non-rotating mechanism. The rod is manufactured to precise tolerances, so even a slight deformation may cause a malfunction and damage.

Mounting

© Warning

3. When mounting a bolt, workpiece or jig to the rod end, the bolt should be tightened with a torque within the specified range (Rod type only).
Tightening to a torque higher than the specified value may cause a malfunction due to deformation of the component, whilst under-tightening can cause displacement of the mounting position or in extreme conditions detaching of the workpiece. If the bolt is screwed in more than the maximum depth, the lead screw will be damaged, leading to operation failure.

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $[\mathrm{mm}]$	Rod end width across flats $[\mathrm{mm}]$
LEPY6	$\mathrm{M} 4 \times 0.7$	1.4	7	10
LEPY10	$\mathrm{M} 5 \times 0.8$	3.0	9	12

4. The angular position of the rod end flats cannot be changed because the rod has a non-rotating mechanism inside (Rod type only).
The angular position of the rod end flats is not specified; it depends on the actuator type.
The rod rotates slightly due to the clearance of the non-rotating mechanism: Install the bolt or workpiece with consideration to the rotation.
5. When attaching the workpiece to the table, hold the table and tighten the bolts with a torque within the specified range (Slide table type only).
The table is supported by a linear guide, do not apply impact or moment when mounting the work load.
If the bolts are screwed to more than the maximum screw-in depth, it may lead to a malfunction due to damage of the linear guide or body.

Top mounting

Model	Bolt	Max tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth [mm]
LEPS6	$\mathrm{M} 4 \times 0.7$	1.4	6
LEPS10	$\mathrm{M} 4 \times 0.7$	1.4	6

Front mounting

LEF

Mounting

\triangle Warning

6. When mounting the product, tighten the mounting screws within the specified torque range.
Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

Side mounting (Body mounting through-hole)

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$
LEPY6	$\mathrm{M} 3 \times 0.5$	0.9
LEPS6		
LEPY10	$\mathrm{M} 4 \times 0.7$	1.4
LEPS10		

Side mounting (Body tapped)

Model	Bolt	Max. tightening torque [$\mathrm{N} \cdot \mathrm{m}$]	Max. screw-in depth [mm]
LEPY6	M4 x 0.7	1.4	7
LEPS6			
LEPY10	M5 x 0.8	3.0	9
LEPS10			

Bottom mounting (Body tapped)

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $[\mathrm{mm}]$
LEPY6	$\mathrm{M} 4 \times 0.7$	1.4	5
LEPS6		3.0	9
LEPY10	$\mathrm{M} 5 \times 0.8$		
LEPS10			

Rod side mounting (Rod type only)

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $[\mathrm{mm}]$
LEPY6	$\mathrm{M} 4 \times 0.7$	1.4	7
LEPY10	$\mathrm{M} 5 \times 0.8$	3.0	9

7. When it is necessary to operate the product by the manual override screw, check the position of the manual override and leave necessary space.
Do not apply excessive torque to the manual override screw. This may lead to damage and malfunction.
8. When an external guide is used, connect it in such a way that no impact or load is applied to it.
This may cause a malfunction due to an increase in sliding resistance, or use a freely moving connector (such as a floating joint).

Handling

\triangle Caution

1. When the pushing operation is used, be sure to set to [Pushing operation].
Also, do not hit the workpiece in positioning operation or in the range of positioning operation.

It may damage and malfunction. If the operation is interrupted or stopped during the cycle: When the pushing operation command is output immediately after restarting the operation, the direction of movement depends on the position of restart.
2. Use the product within the specified pushing speed range for the pushing operation.
It may lead to damage and malfunction.

Model	Lead	Pushing speed $[\mathrm{mm} / \mathrm{sec}]$
LEPY6	4	10
LEPS6	8	20
LEPY10	5	10
LEPS10	10	20

3. For the pushing operation, ensure that the force is applied in the direction of the rod axis.
4. The moving force should be the initial value.

If the moving force is set below the initial value, it may cause an alarm.

Model	Motor size	Moving force [\%]
LEPY6	Basic	150
LEPY10	Basic	150
	Compact	

5. The actual speed of this actuator is affected by the load.
Check the model selection section of the catalog.
6. Do not scratch or dent the sliding parts of the rod, by striking or attaching objects.
The rod is manufactured to precise tolerances, even a slight deformation may cause malfunction.
7. Avoid using the electric actuator in such a way that rotational torque would be applied to the rod.
It may cause deformation of the non-rotating sliding part, leading to clearance in the internal guide or an increase in the sliding resistance. Refer to the table below for the approximate values of the allowable range of rotational torque.

Allowable rotational torque $[\mathrm{N} \cdot \mathrm{m}]$ or less	LEPY6 \square	LEPY10 \square

Series LEPY/LEPS

Be sure to read before handling. Refer to page 469 for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smcworld.com

Handling

\triangle Caution

8. Do not operate by fixing the rod and moving the actuator body.
Excessive load will be applied to the rod, leading to damage to the actuator and reduced the life of the product.
9. Return to origin
1) Do not apply a load, impact or resistance in addition to the transferred load during return to origin.
Additional force will cause the displacement of the origin position since it is based on detected motor torque.
2) When the return to origin is set with <Basic parameter> [Origin offset], it is necessary to change the current position of the product. Recheck the value of step data.
3) It is recommended to set the directions of return to origin and pushing in the same direction in order to enhance the measurement accuracy during pushing operation.
10. There is no backlash effect in pushing operation.

The return to origin is done by the pushing operation.
The position can be displaced by the effect of the backlash during the positioning operation.
Take the backlash into consideration when setting the position.
<Backlash>
<Backiash>

Model	Backlash [mm]
LEPY6	± 0.1
LEPS6	± 0.1
LEPY 10	± 0.1
LEPS10	± 0.1

11. Do not hit at the stroke end except during return to origin.
This may damage the inner parts.
12. INP output signal
1) Positioning operation

When the product comes within the set range by step data [In position], the INP output signal will turn on.
Initial value: Set to [0.50] or higher.
2) Pushing operation

When the effective pushing force exceeds the step data [Trigger LV], the INP output signal will turn on.
When [Pushing force] setting and [Trigger LV] are set less than [Pushing force], use the product within the specified range of [Pushing force] and [Trigger LV].
a) To ensure that the actuator pushes the workpiece with the set [Pushing force], it is recommended that the [Trigger LV] be set to the same value as the [Pushing force].
b) If the [Trigger LV] is set lower than the [operation pushing force (current pushing force) for the pushing operation], the pushing force will exceed the trigger LV from the pushing start position and the INP output signal will turn on before pushing the workpiece. Increase the pushing force, or change the work load so that the current pushing force becomes smaller than the trigger LV.
<Pushing force and trigger LV range>

Model	Motor size	Set value of pushing force [\%]
LEPY6 LEPS6	Basic	70 to 100
LEPY10 LEPS10	Basic	50 to 100
	Compact	60 to 100

13. In pushing operation, set the product to a position of at least 0.5 mm away from a workpiece. (This position is referred to as a pushing start position.)
The following alarms may be generated and operation may become unstable.
a. "Posn failed" alarm is generated.

The product cannot reach a pushing start position due to variation in the width of workpieces.
b. "Pushing ALM" alarm is generated.

The product is pushed back from a pushing start position after starting to push.
c. "Deviation over flow" alarm is generated.

Displacement exceeding the specified value is generated at the pushing start position.
14. For the pushing operation, use the product within the duty ratio range below.
The duty ratio is a ratio at the time that can keep being pushed.

Model	Motor size	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]
LEPY6	Basic	70	100	-
		80	70	10
		100	50	5

Model	Motor size	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]
LEPY10	Basic	60 or less	100	-
		30	3	
LEPS10		100	15	1

Model	Motor size	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]
LEPY10 LEPS10	Compact	70 or less	100	-
		80	70	10
	100	50	5	

15. When mounting the product, keep a 40 mm or longer diameter for bends in the motor cable.

Maintenance

© Warning

1. Ensure that the power supply is stopped and the workpiece is removed before starting maintenance work or replacement of the product.

出

Electric Rotary Table Series LER

Basic type［mm］

Model	H
LER10	42
LER30	53
LER50	68

High precision type［mm］

Model	H
LERH10	49
LERH30	62
LERH50	78

－Shock－less／High speed actuation
Max．speed： $420^{\circ} / \mathrm{sec}(7.33 \mathrm{rad} / \mathrm{sec})$
Max．acceleration／deceleration：3，000 $/ \mathrm{sec}^{2}\left(52.36 \mathrm{rad} / \mathrm{sec}^{2}\right)$
Positioning repeatability：$\pm 0.05^{\circ}$
Repeatability at the end：$\pm 0.01^{\circ}$（Pushing control／With external stopper）

o Rotation angle

$320^{\circ}\left(310^{\circ}\right), 180^{\circ}, 90^{\circ}$
The value indicated in brackets shows the value for the LER10．Possible to set speed，accelerationdecceleration，and position．Max． 64 points
Energy－saving product

Size	Rotating torque［ $\mathrm{N} \cdot \mathrm{m}$ ］		Max．speed［／／s］		Positioning repeatability［］		Page
	Basic	High torque	Basic	High torule	Basic	High torque	
10	0.22	0.32	420	280	$\begin{gathered} \pm 0.05 \\ \text { (End: } \pm 0.01)^{*} \end{gathered}$		－Page 306
30	0.8	1.2					
50	6.6	10					

Automatic 40\％power reduction after the table has stopped．

Step data input type
Series LECP6
－ 64 points positioning
－Input using controller setting kit or teaching box

Programless type
Series LECP1
－ 14 points positioning
－Control panel setting

Pulse input type Series LECPA

Rotation angle

$320^{\circ}\left(310^{\circ}\right), 180^{\circ}, 90^{\circ}$
The value indicated in brackets shows the value for the LER10.

High torque

Output is $\mathbf{3 0}$ times with special worm gear. Special worm gear with reduced backlash is used.
Maximum rotation torque can be selected.
Belt deceleration ratio can be selected.

Manual override screw (Both sides)

Model	Basic	High torque
LER10	0.22	0.32
LER30	0.8	1.2
LER50	6.6	10.0

Possible to rotate the table with power OFF by manual override.

Easy Mounting of Workpieces

Easy Mounting of the Main Body

Application Examples

Rotation transfer after gripping in combination with a gripper

Vertical transfer：No change in speed due to load fluctuation

Selection Procedure

Operating
conditions

Step1
Moment of inertia-Angular acceleration/deceleration

(1) Calculation of moment of inertia
(2) Moment of inertia-Check the angular acceleration/deceleration Select the target model based on the moment of inertia and angular acceleration and deceleration with reference to the (Moment of Inertia -Angular Acceleration/Deceleration graph).

Formula
 $\mathrm{I}=\mathrm{mx}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) / 12+\mathrm{mx} \mathrm{H}$
 Selection example

$\mathrm{I}=2.0 \times\left(0.15^{2}+0.08^{2}\right) / 12+2.0 \times 0.04^{2}$ $=0.00802 \mathrm{~kg} \cdot \mathrm{~m}^{2}$

Step2 Necessary torque

(1) Load type
- Static load: Ts
- Resistance load: Tf
- Inertial load: Ta

(2) Check the effective torque Confirm whether it is possible to control the speed based on the effective torque corresponding with the angular speed with reference to the (Effective Torque-Angular Speed graph).

Formula

Effective torque \geq Ts
Effective torque \geq Tf $\times 1.5$
Effective torque \geq Ta $\times 1.5$

Selection example

Inertial load: Ta
Ta $\times 1.5=\mathrm{I} \times \dot{\omega} \times 2 \pi / 360 \times 1.5$

$$
\begin{aligned}
& =0.00802 \times 1,000 \times 0.0175 \times 1.5 \\
& =0.21 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Step3 Allowable load

(1) Check the allowable load
- Radial load
- Thrust load
- Moment

Formula

Allowable thrust load $\geq \mathrm{m} \times 9.8$
Allowable moment $\geq \mathrm{mx} 9.8 \times \mathrm{H}$

Selection example

- Thrust load
$2.0 \times 9.8=19.6 \mathrm{~N}$ < Allowable load OK
- Allowable moment
$2.0 \times 9.8 \times 0.04$
$=0.784 \mathrm{~N} \cdot \mathrm{~m}$ < Allowable moment OK

Step4 Rotation time

Formula

Angular acceleration time $T 1=\omega / \omega \dot{1}$
Angular deceleration time $\mathrm{T} 3=\omega / \dot{\omega} 2$
Constant speed time T2 $=\{\theta-0.5 \times \omega \times(T 1+\mathrm{T} 3)\} / \omega$
Settling time $\quad \mathrm{T} 4=0.2(\mathrm{sec})$
Cycle time $\quad \mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4$

Selection example

- Angular acceleration time $\mathrm{T} 1=420 / 1,000=0.42 \mathrm{sec}$
- Angular deceleration time $\mathrm{T} 3=420 / 1,000=0.42 \mathrm{sec}$
- Constant speed time
$\mathrm{T} 2=\{180-0.5 \times 420 \times(0.42+0.42)\} / 420$ $=0.009 \mathrm{sec}$
- Cycle time \quad T $=$ T1 + T2 + T3 + T4
$=0.42+0.009+0.42+0.2$
$=1.049(\mathrm{sec})$

Formulas for Moment of Inertia (Calculation of moment of inertia I) I: Moment of inertia ($\mathbf{k g} \cdot \mathrm{m}^{2}$) m: Load mass (kg)

5. Thin rectangular plate (cuboid)
Position of the rotation shaft: Passes through the center of gravity of the plate and perpendicular to the plate. (The same applies to thicker cuboids.)

9. When a load is mounted on the end of the lever

2. Thin bar

Position of rotation shaft:
Passes through the center of gravity of the bar.
3. Thin rectangular plate (cuboid)
Position of rotation shaft: Passes
through the center of gravity of a plate.

4. Thin rectangular plate (cuboid)
Position of rotation shaft: Perpendicular to the plate and passes through one end. (The same applies to thicker cuboids.)

$$
I=m_{1} \cdot \frac{4 a_{1}^{2}+b^{2}}{12}
$$

$$
+m_{2} \cdot \frac{4 a_{2}^{2}+b^{2}}{12}
$$

6. Cylindrical shape
(including a thin disk)
Position of rotation shaft: Center axis
$\mathrm{I}=\mathrm{m} \cdot \frac{\mathrm{a}^{2}}{12}$
7. Sphere

Position of rotation shaft:
Diameter

10. Gear transmission

1. Find the moment of inertia I_{B} for the rotation of shaft (B).
2. Then, replace the moment of inertia I_{B} around the shaft (A) by I_{A},

$$
I_{A}=\left(\frac{\mathbf{a}}{\mathbf{b}}\right)^{2} \cdot I_{B}
$$

Load Type

- Resistance load: Gravity or friction force is applied to rotating direction. Ex. 1) Rotation shaft is horizontal (lateral), and the rotation center and the center of gravity of the load are not concentric.
Ex. 2) Load moves by sliding on the floor.
* The total of resistance load and inertial load is the necessary torque. $\mathbf{T}=(\mathbf{T f}+\mathbf{T a}) \times 1.5$
- Not resistance load: Neither gravity or friction force is applied to rotating direction.

Ex. 1) Rotation shaft is vertical (up and down).
Ex. 2) Rotation shaft is horizontal (lateral), and rotation center and the center of gravity of the load are concentric.

* Necessary torque is inertial load only. $\mathbf{T}=\mathbf{T a} \mathbf{x} 1.5$

Moment of Inertia-Angular Acceleration/Deceleration
LER10

LER30

LER50

Effective Torque-Angular Speed
LER10

LER30

LER50

Allowable Load

Table Displacement（Reference Value）

－Displacement at point A when a load is applied to point A 100 mm away from the rotation center．

LER $\square 10$

LER $\square 50$

LER $\square \mathbf{3 0}$

Deflection Accuracy：Displacement at $18 \mathbf{0}^{\circ}$ Rotation（Guide）

				$[\mathrm{mm}]$
Measured part	LER（Basic type）	LERH（High precision type）		
Deflection on the top of the table	0.1	0.03		
Deflection on the external surface of the table	0.1	0.03		

Electric Rotary Table

Step Motor (Servo/24 VDC)

Series LER LER10, 30, 50

How to Order

Motor cable entry

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LER series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

3 Max. rotating torque [$\mathrm{N} \cdot \mathrm{m}$]				
Symbol	Type	LER10	LER30	LER50
K	High torque	0.32	1.2	10
J	Basic	0.22	0.8	6.6

6 Actuator cable type*

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

* The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.

8 Controller/Driver type*1

Nil	Without controller/driver	
6N	LECP6	NPN
6P	(Step data input type)	PNP
1N	LECP1	NPN
1P	(Programless type)	PNP
AN	LECPA	NPN
AP	(Pulse input type)	PNP

*1 For details about controllers/driver and compatible motors, refer to the compatible controllers/driver below.
(4) Rotation angle [${ }^{\circ}$]

Symbol	LER10	LER30	LER50
Nil	310	320	
$\mathbf{2}$	External stopper: 180		
$\mathbf{3}$	External stopper: 90		

7 Actuator cable length [m]

Nil	Without cable	$\mathbf{8}$	8^{*}
$\mathbf{1}$	1.5	\mathbf{A}	10^{*}
$\mathbf{3}$	3	\mathbf{B}	15^{*}
$\mathbf{5}$	5	\mathbf{C}	20^{*}

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 3) on page 311.
(9) I/O cable length [m]**

Nil	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	$3^{* 2}$
$\mathbf{5}$	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 394 (For LECP6), page 407 (For LECP1) or page 414 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.
10 Controller/Driver mounting

Nil	Screw mounting
\mathbf{D}	DIN rail mounting*

* DIN rail is not included. Order it separately. (Refer to page 387.)

Compatible Controllers/Driver

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECP1	LECPA
Features	Value (Step data) input Standard controller	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Step motor (Servo/24 VDC)	
Mxxinum number of step data	64 points	14 points	-
Power supply voltage	24 VDC		
Reference page	Page 386	Page 401	Page 408

Specifications

Note 1）Pushing force accuracy is LER10：$\pm 30 \%$（F．S．），LER30： $\pm 25 \%$（F．S．），LER50：$\pm 20 \%$（F．S．）．
Note 2）The angular acceleration，angular deceleration and angular speed may fluctuate due to variations in the inertia moment．
Refer to page 308 ＂Moment of Inertia－Angular Acceleration／ Deceleration，Effective Torque－Angular Speed＂graphs for confirmation．
Note 3）The speed and force may change depending on the cable length，load and mounting conditions．Furthermore，if the cable length exceeds 5 m ，then it will decrease by up to 10% for each 5 m ．（At 15 m ：Reduced by up to 20% ）
Note 4）Impact resistance：No malfunction occurred when the slide table was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 5）The power consumption（including the controller）is for when the actuator is operating．
Note 6）The standby power consumption when operating （including the controller）is for when the actuator is stopped in the set position during operation．
Note 7）The maximum instantaneous power consumption （including the controller）is for when the actuator is operating．This value can be used for the selection of the power supply．

Step Motor（Servo／24 VDC）

Model				LER $\square 10 \mathrm{~K}$	LERप10J	LER $\square 30 \mathrm{~K}$	LER $\square 30 \mathrm{~J}$	LER $\square 50 \mathrm{~K}$	LER】50J
	Rotation angle［ ${ }^{\circ}$ ］			310		320			
	Gear ratio［ ${ }^{\circ}$ ］			8	12	8	12	7.5	12
	Max．rotating torque［ $\mathrm{N} \cdot \mathrm{m}$ ］			0.32	0.22	1.2	0.8	10	6.6
	Max．pushing torque［ $\mathrm{N} \cdot \mathrm{m}]^{\text {Note 1）}}$ ）			0.16	0.11	0.6	0.4	5	3.3
	Max．moment of inertia［kg．m²］${ }^{\text {Note } 2)}$			0.0040	0.0018	0.027	0.012	0.10	0.04
	Angular speed［ $/$／sec］${ }^{\text {Note 2）3）}}$			20 to 280	30 to 420	20 to 280	30 to 420	20 to 280	30 to 420
	Pushing speed［ ${ }^{\circ} / \mathrm{sec}$ ］			20	30	20	30	20	30
	Max．angular accelerationdeceleration［／sec］］${ }^{\text {Wxeze］}}$			3，000					
	Backlash［ ${ }^{\circ}$ ］			± 0.3					
	Positioning repeatability［ ${ }^{\circ}$ ］			± 0.05					
	ImpactVibration resistance［m／s ${ }^{2}$ ］Note 4）			150／30					
	Actuation type			Special worm gear＋Belt drive					
	Max．operating frequency［c．p．m］			60					
	Operating temp．range［ ${ }^{\circ} \mathrm{C}$ ］			5 to 40					
	Operating humidity range［\％RH］			90 or less（No condensation）					
	Weight［kg］		Basic type	0.49		1.1		2.2	
			｜l｜	0.52		1.2		2.4	
	Rotation angle ［ ${ }^{\circ}$ ］		$\begin{aligned} & -2 / \\ & \text { arm (1 pc.) } \end{aligned}$	180					
			$\begin{array}{\|l\|} \hline-3 / \\ \operatorname{arm}(2 \text { pcs.) } \end{array}$	90					
	Repeatability at the end［ ${ }^{\circ}$ ］／ with external stopper			± 0.01					
	External stopper setting range［ ${ }^{\circ}$ ］			± 2					
	Weight ［kg］	－2／external	Basic type	0.55		1.2		2.5	
		arm（1 pc．）	High precision type	0.61		1.4		2.7	
		－3／external	Basic type	0.57		1.2		2.6	
		arm（1 pc．）	High precision type	0.63		1.4		2.8	
$\stackrel{\square}{\square}$	Motor size			$\square 20$		$\square 28$		$\square 42$	
	Motor type			Step motor（Servo／24 VDC）					
，	Encoder			Incremental A／B phase（800 pulse／rotation）					
O	Power supply［V］			24 VDC $\pm 10 \%$					
0	Power consumption［W］Note 5）			11		22		34	
는	Standby power consumptionwhen operating［ W ］${ }^{\text {Note } 6 \text { ）}}$			7		12		13	
－	Max．instantaneous power consumption［W］Note 7）			14		42		57	

Table Rotation Angle Range

External stopper： $\mathbf{1 8 0}^{\circ}$
External stopper： 90°

Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table．
Note 2）Position after return to origin．
Note 3）［ ］for when the direction of return to origin has changed．

Series LER

Construction

Basic type

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
2	Side plate A	Aluminum alloy	Anodized
3	Side plate B	Aluminum alloy	Anodized
4	Worm screw	Stainless steel	Heat treated + Specially treated
5	Worm wheel	Stainless steel	Heat treated + Specially treated
6	Bearing cover	Aluminum alloy	Anodized
7	Table	Aluminum alloy	
8	Joint	Stainless steel	
9	Bearing holder	Aluminum alloy	
10	Bearing stopper	Aluminum alloy	
11	Origin bolt	Carbon steel	
12	Pulley A	Aluminum alloy	
13	Pulley B	Aluminum alloy	
14	Grommet	NBR	
15	Motor plate	Carbon steel	
16	Basic type	Deep groove ball bearing Special ball	-
	High		
precision type	bearing		
17	Deep groove ball bearing	-	
18	Deep groove ball bearing	-	
19	Deep groove ball bearing	-	
20	Belt	-	
21	Step motor (Servo/24 VDC)	-	

External stopper type

High precision type

Component Parts

No.	Description	Material	Note
$\mathbf{2 2}$	Table	Aluminum alloy	Anodized
$\mathbf{2 3}$	Arm	Carbon steel	Heat treated + Electroless nickel treated
$\mathbf{2 4}$	Holder	Aluminum alloy	Anodized
$\mathbf{2 5}$	Adjuster bolt	Carbon steel	Heat treated + Chromate treated

Dimensions

LER $\square 10 \square$ (Rotation angle: 310°)

Dimensions		$[\mathrm{mm}]$
Model	H1	H2
LER10	10	3.5
LERH10	17	10.5

LER $\square \mathbf{1 0 - 2}$ (Rotation angle: $\mathbf{1 8 0}^{\circ}$)
LER \square 10-3 (Rotation angle: $9 \mathbf{0 0}^{\circ}$)

$$
1
$$

Series LER

Dimensions

LER $\square 30 \square$ (Rotation angle: 320°)

Dimensions
LER $\square 50 \square$ (Rotation angle: 320°)

LER $\square 50-2$ (Rotation angle: $\mathbf{1 8 0}^{\circ}$)

Dimensions		$[\mathrm{mm}]$
Model	H1	H2
LER50	16	5.5
LERH50	26	15.5

Dimensions			
Model	H1	H2	H3
LER50	16	5.5	15.5
LERH50	26	15.5	25.5

Series LER
Electric Rotary Table/ Specific Product Precautions 1
Be sure to read before handling. Refer to page 469 for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smcworld.com

Design/Selection

. Warning

1. If the operating conditions involve load fluctuations, ascending/descending movements, or changes in the frictional resistance, ensure that safety measures are in place to prevent injury to the operator or damage to the equipment.
Failure to provide such measures could accelerate the operation speed, which may be hazardous to humans, machinery, and other equipment.
2. Power failure may result in a decrease in the pushing force; ensure that safety measures are in place to prevent injury to the operator or damage to the equipment.
When the product is used for clamping, the clamping force could be decreased due to power failure, potentially creating a hazardous situation in which the workpiece is released.

\triangle Caution

1. If the operating speed is set too fast and the moment of inertia is too large, the product could be damaged.
Set appropriate product operating conditions in accordance with the model selection procedure.
2. If more precise repeatability of the rotation angle is required, use the product with an external stopper, with repeatability of $\pm 0.01^{\circ}$ (180° and 90° with adjustment of $\pm 2^{\circ}$) or by directly stopping the workpiece using an external object utilizing the pushing operation.
3. When using the electric rotary table with an external stopper, or by directly stopping the load externally, ensure that the [Pushing operation] is utilized.
Also, ensure that the workpiece is not impacted externally during the positioning operation or in the range of positioning operation.

Mounting

\triangle Warning

1. Do not drop or hit the electric rotary table to avoid scratching and denting the mounting surfaces.
Even slight deformation can cause the deterioration of accuracy and operation failure.
2. When mounting the load, tighten the mounting screws within the specified torque range.
Tightening the screws with a higher torque than recommended may cause malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position.

Mounting the workpiece to the electric rotary table
The load should be mounted with the torque and thread length specified in the following table by screwing the bolts into the mounting female threads. If long threads are used, they can interfere with the body and cause a malfunction, etc.

Model	Bolt	Thread length $[\mathrm{mm}]$	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$
LER $\square \mathbf{1 0}$	$\mathrm{M} 4 \times 0.7$	6	1.4
LER $\square \mathbf{3 0}$	$\mathrm{M} 5 \times 0.8$	8	3.0
LER $\square \mathbf{5 0}$	$\mathrm{M} 6 \times 1$	10	5.0

Mounting

\triangle Warning

3. When mounting the electric rotary table, tighten the mounting screws within the specified torque range. Tightening the screws with a higher torque than recommended may cause malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position.

Through-hole mounting

Body tapped mounting
Body mounting/Bottom

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $[\mathrm{mm}]$
LER $\square \mathbf{1 0}$	$\mathrm{M} 6 \times 1$	5.0	12
LER $\square \mathbf{3 0}$	$\mathrm{M} 8 \times 1.25$	12.0	16
LER $\square \mathbf{5 0}$	$\mathrm{M} 10 \times 1.5$	25.0	20

4. The mounting face has holes and slots for positioning. Use them for accurate positioning of the electric rotary table if required.
5. If it is necessary to operate the electric rotary table when it is not energized, use the manual override screws.
When it is necessary to operate the product by the manual override screws, check the position of the manual override screws of the product, and leave necessary space. Do not apply excessive torque to the manual override screws. This may lead to damage and malfunction.

\triangle Caution

1．When an external guide is used，connect it in such a way that no impact or load is applied to it．
Use a free moving connector（such as a coupling）．
2．INP output signal
1）Positioning operation
When the product comes within the set range by step data［In position］，the INP output signal will turn on．
Initial value：Set to［0．50］or higher．
2）Pushing operation
When the effective force exceeds the［Trigger LV］value （including thrust during operation），the INP output signal will turn on．
The［Trigger LV］should be set between 40% and［Pushing force］．
a）To ensure that the clamping and external stop is achieved by ［Pushing force］，it is recommended that the［Trigger LV］be set to the same value as the［Pushing force］．
b）When the［Pushing force］and［Trigger LV］are set less than the specified range，the INP output signal will turn on from the pushing start position．
3．When the workpiece is to be stopped by the electric rotary actuator with an external stopper or directly by an external object，utilize the＂pushing operation＂．Do not stop the table with an external stopper or external object by using in the range of the＂positioning opera－ tion mode＂．
If the product is used in the positioning operation mode，there may be galling or other problems when the product／workpiece comes into contact with the external stopper or external object．
4．When the table is stopped by the pushing operation mode（stopping／clamping），set the product to a position of at least 1° away from the workpiece．（This position is referred to as the pushing start position．）
If the pushing operations start position（stopping or clamping）is set to the same position as the external stop position，the following alarms may be generated and operation may become unstable．
a．＂Posn failed＂alarm is generated．
It is not possible to reach the pushing operation start position within the target time．
b．＂Pushing ALM＂alarm is generated．
The product is pushed back from a pushing start position after starting to push．
c．＂Deviation over flow＂alarm is generated．
Displacement exceeding the specified value is generated at the pushing start position．

5．There is no backlash effect when the product is stopped externally by pushing operation．
For the return to origin，the origin position is set by the pushing operation．
6．For the specification with an external stopper，an angle adjustment bolt is provided as standard．
The rotation angle adjustment range is $\pm 2^{\circ}$ from the angle rotation end．
If the angle adjustment range is exceeded，the rotation angle may change due to insufficient strength of the external stopper．
One revolution of the adjustment bolt is approximately equal to 1° of rotation．
7．When mounting the product，keep a 40 mm or longer diameter for bends in the motor cable．

\triangle Danger

1．The high precision type bearing is assembled by pressing into position．It is not possible to disas－ semble it．

Electric Grippers Series LEH

Step Motor (Servo/24 VDC)

- With drop prevention function
(Self-lock mechanism is provided for all series.)
Gripping force of the workpieces is maintained when stopped or restarted. The workpieces can be removed with manual override.
Compact body sizes and long stroke variations
Gripping force equivalent to the widely used air grippers is available.
- Possible to set position, speed and force. (64 points)
- Energy-saving product

Power consumption reduced by self-lock mechanism.

- With gripping check function

Identify workpieces with different dimensions/detect mounting and removal of the workpieces.

Z Type (2 fingers) >Page 324

Compact and light, various gripping forces
Series LEHZ

Size	Stroke/ both sides $[\mathrm{mm}]$	Gripping force $[\mathrm{N}]$	
	Basic	Compact	
$\mathbf{1 0}$	4	6 to 14	2 to 6
$\mathbf{1 6}$	6		3 to 8
$\mathbf{2 0}$	10	16 to 40	11 to 28
$\mathbf{2 5}$	14		
$\mathbf{3 2}$	22	52 to 130	-
$\mathbf{4 0}$	30	84 to 210	-

F Type (2 fingers) >Page 350

Can hold various types of workpieces with a long stroke.

$\left.\begin{array}{l}\text { Series } \mathbf{L E H F} \\ \hline \text { Size }\end{array} \begin{array}{c}\text { Stroke/ } \\ \text { both sides } \\ {[\mathrm{mm}]}\end{array} \begin{array}{c}\text { Gripping force } \\ {[\mathrm{N}]}\end{array}\right]$

Step Motor (Servo/24 VDC)
Controller/Driver

Programless type Series LECP1

- 14 points positioning
- Control panel setting

ZJ Type (2 fingers) >Page 338
With dust cover (Equivalent to IP50) 3 types of cover material (Finger portion only)

	Series LEHZJ			
	Size	Sroke/ both sides [mm]	Gripping force [N$]$	
			Basic	Compact
	10	4	6 to 14	3 to 6
	16	6		4 to 8
	20	10	16 to 40	11 to 28
	25	14		

S Type (3 fingers) >Page 363

Can hold round workpieces.
Series LEHS

Electric Gripper 2-Finger Type

Series LEHZ/Size: 10, 16, 20, 25, 32, 40
Series LEHZJ/Size: 10, 16, 20, 25
Series LEHF/Size: 10, 20, 32, 40

-Compact and lightweight Various gripping forces

Weight: 165 g (EHzz10)

Sealed-construction dust cover (Equivalent to IP50)

- Prevents machining chips, dust, etc., from getting inside - Prevents spattering of grease, etc.

-3 types of cover material (Finger portion only)

- Chloroprene rubber (black): Standard
- Fluororubber (black): Option
- Silicone rubber (white): Option

Side tapped mounting

Through-hole in opening/ closing direction

Flat fingers

Series LEHS/Size: 10, 20, 32, 40

Can hold various types of workpieces with a long stroke.

-Can hold round workpieces.

LER

<Mounting Variations>

Series LEHZ/LEHZJ

A When using the thread on the side of the body

on using the thread on the mounting plate

C When using the thread on the back of the body

Series LEHF

A When using the thread on the body

Series LEHS

A When using the thread on the mounting plate

When using the thread on the mounting plate

When using the thread on the back of the body

B When using the thread on the back of the body

Motor cable mounting direction can be selected.

Series LEHZ/LEHZJ

Application Examples

Electric Gripper 2-Finger Type
 Step Motor (Servo/24 VDC) Series LEHZ
 Model Selection

Selection Procedure

Step 1 Check the gripping force.

Check the
Conditions.
:---:
required gripping force.
gripping force graph.
:---:
pushing speed.

Example

Workpiece mass: 0.1 kg

Guidelines for the selection of the gripper

 with respect to workpiece mass- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 10 to 20 times Note) the workpiece weight, or more.
Note) For details, refer to the calculation of required gripping force.
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered.
Example) When it is desired to set the gripping force at 20 times or more above the workpiece weight.
Required gripping force
$=0.1 \mathrm{~kg} \times 20 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 19.6 \mathrm{~N}$ or more
Pushing force: 70\%
Pushing force is one of the values of step data that is input into the controller.
Gripping point distance: 30 mm

LEHZ20

When the LEHZ20 is selected.

- A gripping force of 27 N is obtained from the intersection point of gripping point distance $L=30$ mm and pushing force of 70%.
- Gripping force is 27.6 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 20 times or more.

LEHZ20

- Pushing speed is satisfied at the point where 70% of the pushing force and $30 \mathrm{~mm} / \mathrm{sec}$ of the pushing speed cross.

Note) Confirm the pushing speed range from the determined pushing force [\%].
<Reference> Coefficient of friction μ (depends on the operating environment, contact pressure, etc.)

Coefficient of friction μ	Attachment - Material of workpieces (guideline)

Coeficient of friction μ	Attachment - Material of workpieces (guideline)
0.1	Metal (surface roughness Rz3.2 or less)
0.2	Metal
0.2 or more	Rubber, Resin, etc.

Note) - Even in cases where the coefficient of friction is greater than $\mu=0.2$, for reasons of safety, select a gripping force which is at least 10 to 20 times greater than the workpiece weight, as recommended by SMC.

- If high acceleration or impact forces are encountered during motion, a further margin should be considered.

Selection Procedure

Step 1 Check the gripping force：Series LEHZ
－Indication of gripping force
The gripping force shown in the graphs below is expressed as ＂F＂，which is the gripping force of one finger，when both fingers and attachments are in full contact with the workpiece as shown in the figure below．

External Gripping State

LEHZ16

－Set the workpiece gripping point＂ L ＂so that it is within the range
shown in the figure below．

Compact $\begin{aligned} & \text {＊Pushing force is one of the values of } \\ & \text { step data that is input into the controller．}\end{aligned}$

LEHZ10L

LEHZ16L

Series LEHZ

Selection Procedure
Step 1 Check the gripping force: Series LEHZ

LEHZ25

LEHZ32

LEHZ40

Pushing force is one of the values of step data that is input into the controller.
Compact
LEHZ20L

LEHZ25L

Selection of Pushing Speed

- Set the [Pushing force] and the [Trigger LV] within the range shown in the figure below.

Basic

Compact

Step 2 Check the gripping point and overhang：Series LEHZ

－Decide the gripping position of the workpiece so that the amount of overhang＂ H ＂stays within the range shown in the figure below．
－If the gripping position is out of the limit，it may shorten the life of the electric gripper．

＊Pushing force is one of the values of

LEHZ16

LEHZ20

Internal Gripping State

＊Pushing force is one of the values of step data that is input into the controller．
Compact

LEHZ10L

LEHZ16L

LEHZ20L

Series LEHZ

Selection Procedure

Step 2 Check the gripping point and overhang: Series LEHZ

* Pushing force is one of the values of step data that is input into the controller.

LEHZ25

* Pushing force is one of the values of Compact step data that is input into the controller.

LEHZ25L

LEHZ32

LEHZ40

Step 3 Check the external force on fingers：Series LEHZ

Fv：Allowable vertical load

Mp：Pitch moment

My：Yaw moment

Mr：Roll moment

岂

Electric Gripper 2-Finger Type

Step Motor (Servo/24 VDC)

Series LEHZ LEHZ10, 16, 20, 25, 32, 40
 RoHS

How to Order

1 Size
10
16
20
25
32
40

2 Motor size	
Nil	Basic
\mathbf{L} Note)	Compact

Note) Size: 10, 16, 20, 25 only
5 Stroke [mm]

Stroke/both sides	Size
$\mathbf{4}$	10
$\mathbf{6}$	16
$\mathbf{1 0}$	20
$\mathbf{1 4}$	25
$\mathbf{2 2}$	32
$\mathbf{3 0}$	40

6) Finger options

Nil	Basic (Tapped in opening/closing direction)
\mathbf{A}	Side tapped mounting
\mathbf{B}	Through-hole in opening/closing direction
\mathbf{C}	Flat fingers

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LEH series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

Finger options

The actuator and controller/driver are sold as a package.
Confirm that the combination of the controller/driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^24]
Electric Gripper 2－Finger Type Series $L E H Z$

8 Actuator cable type＊

Nil	Without cable
S	Standard cable
R	Robotic cable（Flexible cable）

＊The standard cable should be used on fixed parts．For using on moving parts，select the robotic cable．

11 I／O cable length［m］${ }^{* 1}$

$\mathbf{N i l}$	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	$3^{* 2}$
$\mathbf{5}$	$5^{* 2}$

＊1 When＂Without controller／driver＂is selected for controller／driver types，I／O cable cannot be selected．Refer to page 394 （For LECP6）， page 407 （For LECP1）or page 414 （For LECPA）if I／O cable is required．
＊2 When＂Pulse input type＂is selected for controller／driver types，pulse input usable only with differential．Only 1.5 m cables usable with open collector．
93c｜

Actuator cable length $[\mathrm{m}]$	
Nil	Without cable
$\mathbf{1}$	1.5
3	3
$\mathbf{5}$	5
8	8^{*}
A	10^{*}
B	15^{*}
C	20^{*}

＊Produced upon receipt of order（Robotic cable only） Refer to the specifications Note 3）on page 332.

（12）Controller／Driver mounting

Nil	Screw mounting
\mathbf{D}	DIN rail mounting＊

＊DIN rail is not included．Order it separately． （Refer to page 387．）

10 Controller／Driver type＊

Nil	Without controller／driver	
6N	LECP6	NPN
	LPP	
	（Step data input type）	PNP
1N	LECP1	NPN
1P	（Programless type）	PNP
AN	LECPA	NPN
AP	（Pulse input type）	PNP

＊For details about controllers／driver and compatible motors，refer to the compatible controllers／driver below．

Specifications

Model			LEHZ10	LEHZ16	LEHZ20	LEHZ25	LEHZ32	LEHZ40
	Opening/closing stroke (Both sides)		4	6	10	14	22	30
	Gripping force [N] Note 1) Note 3)	Basic	6 to 14		16 to 40		52 to 130	84 to 210
		Compact	2 to 6	3 to 8	11 to 28		-	-
	Opening and closing speed/ Pushing speed [mm/s] Note 2) Note 3)		5 to 80/5 to 50		5 to 100/5 to 50		5 to 120/5 to 50	
	Drive method		Slide screw + Slide cam					
	Finger guide type		Linear guide (No circulation)					
	Repeatability [mm] Note 4)		± 0.02					
	Repeated length measurement accuracy [mm] Note 5)		± 0.05					
	Finger backlash/ both sides [mm] Note 6)		0.5 or less				1.0 or less	
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{\text {Note 7) }}$		150/30					
	Max. operating frequency [C.P.M]		60					
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40					
	Operating humidity range [\%RH]		90 or less (No condensation)					
	Weight [g]	Basic	165	220	430	585	1120	1760
		Compact	135	190	365	520	-	-
Electric specifications	Motor size		$\square 20$		$\square 28$		$\square 42$	
	Motor type		Step motor (Servo/24 VDC)					
	Encoder		Incremental A/B phase (800 pulse/rotation)					
	Rated voltage [V]		24 VDC $\pm 10 \%$					
	Power consumption/ Standby power consumption when operating [W] Note 8	Basic	11/7		28/15		34/13	36/13
		Compact	8/7		22/12		-	-
	Max. instantaneous power consumption [W] Note 9)	Basic	19		51		57	61
		Compact	14		42		-	-

Note 1) Gripping force should be from 10 to 20 times the workpiece weight. Moving force should be 150% when releasing the workpiece. Gripping force accuracy should be $\pm 30 \%$ (F.S.) for LEHZ10/16, $\pm 25 \%$ (F.S.) for LEHZ20/25 and $\pm 20 \%$ (F.S.) workpiece. Gn
Note 2) Pushing speed should be set within the range during pushing (gripping) operation. Otherwise, it may cause malfunction. The opening/closing speed and pushing speed are for both fingers. The speed for one finger is half this value
Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
Note 4) Repeatability means the variation of the gripping position (workpiece position) when the gripping operation is repeatedly performed by the same sequence for the same workpiece.
Note 5) Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is Repeated length measurement accu
repeatedly held in the same position.
Note 6) There will be no influence of backlash during pushing (gripping) operation. Make the stroke longer for the amount of backlash when opening
Note 7) Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Note 8) The power consumption (including the controller) is for when the gripper is operating.
The standby power consumption when operating is for when the gripper is stopped in the set position during operation, The standby power consumption when operating is
Note 9) The maximum instantaneous power consumption (including the controller) is for when the gripper is operating. This value can be used for the selection of the power supply.

How to Mount

a) When using the thread on the side of the body

b) When using the thread on the mounting plate

c) When using the thread on the back of the body

Construction

Series LEHZ

No．	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Motor plate	Aluminum alloy	Anodized
3	Guide ring	Aluminum alloy	
4	Slide nut	Stainless steel	Heat treatment＋Special treatment
$\mathbf{5}$	Slide bolt	Stainless steel	Heat treatment＋Special treatment
$\mathbf{6}$	Needle roller	High carbon chromium bearing steel	
$\mathbf{7}$	Needle roller	High carbon chromium bearing steel	
$\mathbf{8}$	Finger assembly	-	
9	Lever	Special stainless steel	
$\mathbf{1 0}$	Step motor（Servo／24 VDC）	-	

Replacement Parts（8）Finger Assembly

	Basic（Nil）	Side tapped mounting（A）	Through－hole in opening／ closing direction（B）	Flat fingers（C）
Size				
10	MHZ－A1002	MHZ－A1002－1	MHZ－A1002－2	MHZ－A1002－3
16	MHZ－A1602	MHZ－A1602－1	MHZ－A1602－2	MHZ－A1602－3
20	MHZ－A2002	MHZ－A2002－1	MHZ－A2002－2	MHZ－A2002－3
25	MHZ－A2502	MHZ－A2502－1	MHZ－A2502－2	MHZ－A2502－3
32	MHZ－A3202	MHZ－A3202－1	MHZ－A3202－2	MHZ－A3202－3
40	MHZ－A4002	MHZ－A4002－1	MHZ－A4002－2	MHZ－A4002－3

Series LEHZ

Dimensions

LEHZ10(L)K2-4

	$[\mathrm{mm}]$	
Model	L	$(\mathrm{L} 1)$
LEHZ10K2-4 \square	103.8	(59.7)
LEHZ10LK2-4 \square	87.2	(43.1)

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces
LEHZ16(L)K2-6 and facilities around the fingers.

Dimensions
LEHZ2O（L）K2－10

Note）Range within which the fingers can move when it returns to origin．Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers．

LEHZ25（L）K2－14

Range within which the fingers can move when it returns to origin．Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers．

Series LEHZ

Dimensions

LEHZ32K2-22

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

LEHZ4OK2-30

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

Series LEHZ

Finger Options

Side Tapped Mounting（A）

［mm］

	［mm］			
Model	A	B	C	MM
LEHZ10（L）K2－4A \square	3	5.7	2	M2．5 $\times 0.45$
LEHZ16（L）K2－6A \square	4	7	2.5	M3 $\times 0.5$
LEHZ20（L）K2－10A \square	5	9	4	M 4×0.7
LEHZ25（L）K2－14A \square	6	12	5	M 5×0.8
LEHZ32K2－22A \square	7	14	6	M6 $\square 1$
LEHZ40K2－30A \square	9	17	7	M8 $\times 1.25$

Through－hole in Opening／Closing Direction（B）

Flat Fingers（C）

［mm］

Model	A	B	C	D	F	G		J	K	MM	L	W	Weight （g）
						When opened	When closed						
LEHZ10K2－4C \square	2.45	6	5.2	10.9	2	$5.4{ }_{-0.2}^{0}$	$1.4{ }_{-0.2}^{0}$	4.45	$2 \mathrm{H} 9{ }_{0}^{+0.025}$	M2．5 $\times 0.45$	5	$5{ }_{-0.05}^{0}$	165
LEHZ10LK2－4C \square													135
LEHZ16K2－6C \square	3.05	8	8.3	14.1	2.5	$7.4{ }_{-0.2}^{0}$	$1.4{ }_{-0.2}^{0}$	5.8	$2.5 \mathrm{H} 9^{+0.025}$	M3 $\times 0.5$	6	$8{ }_{-0.05}^{0}$	220
LEHZ16LK2－6C \square													190
LEHZ20K2－10C \square	3.95	10	10.5	17.9	3	$11.6{ }_{-0.2}^{0}$	$1.6{ }_{-0.2}^{0}$	7.45	$3 \mathrm{H} 9{ }_{0}^{+0.025}$	M4 x 0.7	8	$10_{-0.05}^{0}$	430
LEHZ20LK2－10C \square													365
LEHZ25K2－14C \square	4.9	12	13.1	21.8	4	$16{ }_{-0.2}^{0}$	$2{ }_{-0.2}^{0}$	8.9	$4 \mathrm{H} 9{ }_{0}^{+0.030}$	M5 x 0.8	10	$12{ }_{-0.05}^{0}$	575
LEHZ25LK2－14C \square													510
LEHZ32K2－22C \square	7.3	20	18	34.6	5	25－0．2	$3{ }_{-0.2}^{0}$	14.8	$5 \mathrm{H} 9{ }_{0}^{+0.030}$	M6x 1	12	$15_{-0.05}^{0}$	1145
LEHZ40K2－30C \square	8.7	24	22	41.4	6	$33_{-0.2}^{0}$	$3_{-0.2}^{0}$	17.7	$6 \mathrm{H} 9{ }_{0}^{+0.030}$	M8 $\times 1.25$	16	$18{ }_{-0.05}^{0}$	1820

LER

Selection Procedure

Check the gripping force. Step 2 Check the gripping point and overhang. Step 3

Check the external force on fingers.

Step 1 Check the of gripping force.

Check the
conditions.
:---:
required gripping force.
:---:
gripping force graph.
:---:
pushing speed.

Example

Workpiece mass: 0.1 kg

Guidelines for the selection of the gripper

 with respect to workpiece mass- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 10 to 20 times Note) the workpiece weight, or more.
Note) For details, refer to the calculation of required gripping force.
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered.
Example) When it is desired to set the gripping force at 20 times or more above the workpiece weight.

Required gripping force

$=0.1 \mathrm{~kg} \times 20 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 19.6 \mathrm{~N}$ or more

LEHZJ20

When the LEHZJ20 is selected.

- A gripping force of 27 N is obtained from the intersection point of gripping point distance $L=30$ mm and pushing force of 70%.
- Gripping force is 27.6 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 20 times or more.

LEHZJ20

- Pushing speed is satisfied at the point where 70% of the pushing force and $30 \mathrm{~mm} / \mathrm{sec}$ of the pushing speed cross.

Note) Confirm the pushing speed range from the determined pushing force [\%].
<Reference>Coefficient of friction μ (depends on the operating environment, contact pressure, etc.)

Coefficient of friction μ	Attachment - Material of workpieces (guideline)
0.1	Metal (surface roughness Rz3.2 or less)
0.2	Metal
0.2 or more	Rubber, Resin, etc.

Note) - Even in cases where the coefficient of friction is greater than $\mu=0.2$, for reasons of safety, select a gripping force which is at least 10 to 20 times greater than the workpiece weight, as recommended by SMC.

- If high acceleration or impact forces are encountered during motion, a further margin should be considered.

Selection Procedure

Step 1 Check the gripping force: Series LEHZJ

- Indication of gripping force

The gripping force shown in the graphs below is expressed as " F ", which is the gripping force of one finger, when both fingers and attachments are in full contact with the workpiece as shown in the figure below.

External Gripping State

LEHZJ16

- Set the workpiece gripping point "L" so that it is within the range shown in the figure below.

Compact $\begin{aligned} & \text { * Pushing force is one of the values of } \\ & \text { step data that is input into the controller. }\end{aligned}$

LEHZJ10L

LEHZJ16L

Selection Procedure
Step 1 Check the gripping force: Series LEHZJ

LEHZJ20

LEHZJ25

* Pushing force is one of the values of step data that is input into the controller.

LEHZJ20L

LEHZJ25L

Selection of Pushing Speed

- Set the [Pushing force] and [Trigger level] within the range shown in the figure below.

Basic

Compact

LEHZJ10L, LEHZJ16L

LEHZJ20L, LEHZJ25L

Step 2 Check the gripping point and overhang：Series LEHZJ
－Decide the gripping position of the workpiece so that the amount of overhang＂ H ＂stays within the range shown in the figure below．
－If the gripping position is out of the limit，it may shorten the life of the electric gripper．

＊Pushing force is one of the values of Basic step data that is input into the controller．

LEHZJ10

LEHZJ16

LEHZJ20

Internal Gripping State

＊Pushing force is one of the values of step data that is input into the controller．
Compact
LEHZJ10L

LEHZJ16L

LEHZJ20L

Series LEHZJ

Selection Procedure
Step 2 Check the gripping point and overhang: Series LEHZJ

* Pushing force is one of the values of step data that is input into the controller.

LEHZJ25

* Pushing force is one of the values of step data that is input into the controller.

LEHZJ25L

Step 3 Check the external force on fingers：Series LEHZJ

Fv：Allowable vertical load

Mp：Pitch moment

My：Yaw moment

Mr：Roll moment

山

凹

Electric Gripper 2-Finger Type/With Dust Cover

Step Motor (Servo/24 VDC)

Series LEHZJ $\subset \in$..N. LEHZJ10, 16, 20, 25

How to Order

7 Dust cover type

NiI	Chloroprene rubber (CR)
K	Fluororubber (FKM)
S	Silicone rubber (Si)

[^25]
The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^26]
Electric Gripper 2－Finger Type／With Dust Cover Series LEHZJ

| Nil | |
| :---: | :---: | Without cable

＊The standard cable should be used on fixed parts．For using on moving parts，select the robotic cable．

12 I／O cable length［m］${ }^{* 1}$

$\mathbf{N i l}$	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	$3^{* 2}$
$\mathbf{5}$	$5^{* 2}$

＊1 When＂Without controller／driver＂is selected for controller／driver types，I／O cable cannot be selected．Refer to page 394 （For LECP6）， page 407 （For LECP1）or page 414 （For LECPA）if I／O cable is required．
＊2 When＂Pulse input type＂is selected for controller／driver types，pulse input usable only with differential．Only 1.5 m cables usable with open collector．
10 Actuator cable length $[\mathrm{m}]$

Nil	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	8^{*}
A	10^{*}
B	15^{*}
C	20^{*}

＊Produced upon receipt of order（Robotic cable only） Refer to the specifications Note 3）on page 346.

13 Controller／Driver mounting

Nil	Screw mounting
D	DIN rail mounting＊

＊DIN rail is not included．Order it separately． （Refer to page 387．）

11 Controller／Driver type＊

Nil	Without controller／driver	
6N	LECP6	NPN
6P	（Step data input type）	PNP
1N	LECP1	NPN
1P	（Programless type）	PNP
AN	LECPA	NPN
AP	（Pulse input type）	PNP

＊For details about controllers／driver and compatible motors，refer to the compatible compatible motors，refe

Compatible Controllers／Driver

	Step data

Type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECP1	LECPA
Features	Value（Step data）input Standard controller	Capable of setting up operation（step data） without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor （Servo／24 VDC）	Step motor （Servo／24 VDC）	
Maximum number of step data	64 points	14 points	－
Power supply voltage	24 VDC		
Reference page	Page 386	Page 401	Page 408

Specifications

Model			LEHZJ10	LEHZJ16	LEHZJ20	LEHZJ25
	Opening/closing stroke (Both sides)		4	6	10	14
	Gripping force [N] Note 1) Note 3)	Basic	6 to 14		16 to 40	
		Compact	3 to 6	4 to 8		
			5 to 80/5 to 50		5 to 100/5 to 50	
	Drive method		Slide screw + Slide cam			
	Finger guide type		Linear guide (No circulation)			
	Repeatability [mm] Note 4)		± 0.02			
	Repeated length measurement accuracy [mm] ${ }^{\text {Notis] }}$		± 0.05			
	Finger backlash/ both sides [mm] Note 6)		0.5 or less			
	Impact/Vibration resistance [$\left.\mathrm{m} / \mathrm{s}^{2}\right]^{\text {Note } 7 \text {) }}$		150/30			
	Max. operating frequency [C.P.M]		60			
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40			
	Operating humidity range [\%RH]		90 or less (No condensation)			
	Weight [g]	Basic	170	230	440	610
		Compact	140	200	375	545
Electric specifications	Motor size		$\square 20$		$\square 28$	
	Motor type		Step motor (Servo/24 VDC)			
	Encoder		Incremental A/B phase (800 pulse/rotation)			
	Rated voltage [V]		24 VDC $\pm 10 \%$			
	Power consumption/ Standby power consumption when operating [W] Note 8)	Basic	11/7		28/15	
		Compact	8/7		22/12	
	Max. instantaneous power consumption [W] Note 9)	Basic	19		51	
		Compact	14		42	

Note 1) Gripping force should be from 10 to 20 times the workpiece weight. Moving force should be 150% when releasing the workpiece. Gripping force accuracy should be $\pm 30 \%$ (F.S.) for LEHZJ10/16 and $\pm 25 \%$ (F.S.) for LEHZJ20/25.
Note 2) Pushing speed should be set within the range during pushing (gripping) operation. Otherwise, it may cause malfunction. The opening/closing speed and pushing speed are for both fingers. The speed for one finger is half this value.
Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
Note 4) Repeatability means the variation of the gripping position (workpiece position) when the gripping operation is repeatedly performed by the same sequence for the same workpiece.
Note 5) Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position.
Note 6) There will be no influence of backlash during pushing (gripping) operation. Make the stroke longer for the amount of backlash when opening. Note 7) Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Note 8) The power consumption (including the controller) is for when the gripper is operating
The standby power consumption when operating is for when the gripper is stopped in the set position during operation, including the energy saving mode when gripping.
Note 9) The maximum instantaneous power consumption (including the controller) is for when the gripper is operating. This value can be used for the selection of the power supply.

How to Mount

a) When using the thread on the side of the body

b) When using the thread on the mounting plate

c) When using the thread on the back of the body

Electric Gripper 2－Finger Type／With Dust Cover Series LEHZJ

Construction

Series LEHZJ

Series LEHZJ

Dimensions

LEHZJ10(L)K2-4

$[\mathrm{mm}]$		
Model	L	$\mathbf{(\mathbf { L } 1)}$
LEHZJ10K2-4 \square	109.8	(62.7)
LEHZJ10LK2-4 \square	93.2	(46.1)

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.
(Finger operating range: 11 to 16$)^{\text {Note) }}$

LEHZJ16(L)K2-6

$[\mathrm{mm}]$		
Model	\mathbf{L}	$(\mathrm{L} 1)$
LEHZJ16K2-6 \square	118.6	(62.7)
LEHZJ16LK2-6	102	(46.1)

Electric Gripper 2-Finger Type/With Dust Cover Series LEHZJ

Dimensions

LEHZJ20(L)K2-10

	$[\mathrm{mm}]$	
Model	\mathbf{L}	$(\mathbf{L} \mathbf{1})$
LEHZJ2OK2-10 \square	135.7	(64.8)
LEHZJ2OLK2-10 \square	121.7	(50.8)

LEHZJ25(L)K2-14

		$[\mathrm{mm}]$
Model	\mathbf{L}	$\mathbf{(L 1} \mathbf{1}$
LEHZJ25K2-14 \square	146.7	(64.8)
LEHZJ25LK2-14 \square	132.7	(50.8)

Electric Gripper 2-Finger Type
 Step Motor (Senol24 VDC) Series LEHF
 Model Selection

Selection Procedure

Check the gripping force. Step 2

Check the gripping point and overhang.

Check the external force on fingers.

Step 1 Check the gripping force.
Check the
conditions.

Example

Workpiece mass: 0.1 kg

Calculate the required gripping force.

Select the model from

 gripping force graph.Select the pushing speed.

Guidelines for the selection of the gripper with respect to workpiece mass

- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 10 to 20 times Note) the workpiece weight, or more.
Note) For details, refer to the model selection illustration.
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered.
Example) When it is desired to set the gripping force at 20 times or more above the workpiece weight.
Required gripping force
$=0.1 \mathrm{~kg} \times 20 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 19.6 \mathrm{~N}$ or more

LEHF20

When the LEHF20 is selected.

- A gripping force of 26 N is obtained from the intersection point of gripping point distance $L=30$ mm and pushing force of 100%.
- Gripping force is 26.5 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 20 times or more.

LEHF20

- Pushing speed is satisfied at the point where 100% of the pushing force and $20 \mathrm{~mm} / \mathrm{sec}$ of the pushing speed cross.

Note) Confirm the pushing speed range from the determined pushing force [\%].

Calculation of required gripping force

When gripping a workpiece as in the figure to the left, and with the following definitions,

F : Gripping force (N)
μ : Coefficient of friction between the attachments and the workpiece
m : Workpiece mass (kg)
g: Gravitational acceleration ($=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
mg : Workpiece weight (N)
the conditions under which the workpiece will not drop are
$\underline{2} \times \mu \mathrm{F}>\mathrm{mg}$
$\overline{\overline{4}}$ and therefore, $\mathbf{F}>\frac{\mathrm{mg}}{2 \times \mu}$
With "a" representing the margin, " F " is determined by the following formula:

$$
\mathbf{F}=\frac{\mathrm{mg}}{2 \times \mu} \times \mathbf{a}
$$

"Gripping force at least 10 to 20 times the workpiece weight"

- The "10 to 20 times or more of the workpiece weight" recommended by SMC is calculated with a margin of "a" $=4$, which allows for impacts that occur during normal transportation, etc.

<Reference> Coefficient of friction μ (depends on the
operating environment, contact pressure, etc.)

Coefficient of friction μ	Attachment - Material of workpieces (guideline)
0.1	Metal (surface roughness Rz3.2 or less)
0.2	Metal
0.2 or more	Rubber, Resin, etc.

Note) - Even in cases where the coefficient of friction is greater than $\mu=0.2$, for reasons of safety, select a gripping force which is at least 10 to 20 times greater than the workpiece weight, as recommended by SMC.

- If high acceleration or impact forces are encountered during motion, a further margin should be considered.

Selection Procedure

Step 1 Check the gripping force: Series LEHF

- Indication of gripping force

Gripping force shown in the graphs below is expressed as " F ", which is the gripping force of one finger, when both fingers and attachments are in full contact with the workpiece as shown in the figure below.

- Set the workpiece gripping point "L" so that it is within the range shown in the figure below.

LEHF10

LEHF20

LEHF32

External Gripping State

Internal Gripping State

Selection of Pushing Speed

- Set the [Pushing force] and the [Trigger LV] within the range shown in the figure below.

[^27]
Series LEHF

Selection Procedure

Step 2 Check the gripping point and overhang: Series LEHF

- Decide the gripping position of the workpiece so that the amount of overhang " H " stays within the range shown in the figure below.
- If the gripping position is out of the limit, it may shorten the life of the electric gripper.

External Gripping State

LEHF10

LEHF32

Internal Gripping State

LEHF20

LEHF40

* Pushing force is one of the values of step data that is input into the controller.

Step 3 Check the external force on fingers: Series LEHF

Fv: Allowable vertical load

Mp: Pitch moment

My: Yaw moment

Mr: Roll moment

山

픽

山

Electric Gripper 2-Finger Type

Step Motor (Servo/24 VDC)

Series LEHF LEHF10, 20, 32, 40

How to Order

10
20
32
40

Lead
K

2-finger type
4) Stroke [mm]

Stroke/both sides		Size	
Basic	Long stroke		
$\mathbf{1 6}$	$\mathbf{3 2}$	10	
$\mathbf{2 4}$	$\mathbf{4 8}$	20	
$\mathbf{3 2}$	$\mathbf{6 4}$	32	
$\mathbf{4 0}$	$\mathbf{8 0}$	40	

5 Motor cable entry

[^28]
The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^29]
Electric Gripper 2-Finger Type Series LEHF

6 Actuator cable type*

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

* The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.
(9) I/O cable length [m] ${ }^{* 1}$

Nil	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	$3^{* 2}$
$\mathbf{5}$	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 394 (For LECP6), page 407 (For LECP1) or page 414 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.

| 7 Actuator cable length [m] |
| :---: | :---: |
| Nil Without cable
 1 1.5
 3 3
 5 5
 8 8^{*}
 A 10^{*}
 B 15^{*}
 C 20^{*} |

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 3) on page 356.

10 Controller/Driver mounting

Nil	Screw mounting
D	DIN rail mounting*

* DIN rail is not included. Order it separately. (Refer to page 387.)

8 Controller/Driver type*

Nil	Without controller/driver	
6N	LECP6	NPN
6P	(Step data input type)	PNP
1N	LECP1 (Programless type)	NPN
1P		PNP
AN	LECPA (Pulse input type)	NPN
AP		PNP

* For details about controllers/driver and compatible motors, refer to the compatible compatible motors, refe

Compatible Controllers/Driver

Type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECP1	LECPA
Features	Value (Step data) input Standard controller	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Step motor (Servo/24 VDC)	
Maximum number of step data	64 points	14 points	-
Power supply voltage	24 VDC		
Reference page	Page 386	Page 401	Page 408

Specifications

Model			LEHF10	LEHF20	LEHF32	LEHF40
	Opening/closing stroke (Both sides)	Basic	16	24	32	40
		Long stroke	32	48	64	80
	Gripping force [N] Note 1) Note 3)		3 to 7	11 to 28	48 to 120	72 to 180
	Opening and closing speed/Pushing speed [mm/s] ${ }^{\text {Note2 }}$ / Note3)		5 to 80/5 to 20	5 to 100/5 to 30		
	Drive method		Slide screw + Belt			
	Finger guide type		Linear guide (No circulation)			
	Repeatability [mm] ${ }^{\text {Note 4) }}$		± 0.05			
	Repeated length measurement accuracy [mm] ${ }^{\text {Note 5) }}$		± 0.05			
	Finger backlash/both sides [mm] Note 6)		1.0 or less			
	Impact/Vibration resistance [m/s ${ }^{2}$] Note 7)		150/30			
	Max. operating frequency [C.P.M]		60			
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40			
	Operating humidity range [\%RH]		90 or less (No condensation)			
	Weight [g]	Basic	340	610	1625	1980
		Long stroke	370	750	1970	2500
产	Motor size		$\square 20$	$\square 28$	$\square 42$	
	Motor type		Step motor (Servo/24 VDC)			
	Encoder		Incremental A/B phase (800 pulse/rotation)			
	Rated voltage [V]		24 VDC $\pm 10 \%$			
	Power consumptionStandby power consumption when operating [V] Wweeb]		11/7	28/15	34/13	36/13
	Max. instantaneous power consumption [W] ${ }^{\text {Note 9) }}$		19	51	57	61

Note 1) Gripping force should be from 10 to 20 times the workpiece weight. Moving force should be 150% when releasing the workpiece. Gripping force accuracy should be $\pm 30 \%$ (F.S.) for LEHF10, $\pm 25 \%$ (F.S.) for LEHF20 and $\pm 20 \%$ (F.S.) for LEHF32/40.
Note 2) Pushing speed should be set within the range during pushing (gripping) operation. Otherwise, it may cause malfunction. The opening/closing speed and pushing speed are for both fingers. The speed for one finger is half this value.
Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
Note 4) Repeatability means the variation of the gripping position (workpiece position) when the gripping operation is repeatedly performed by the same sequence for the same workpiece.
Note 5) Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position.
Note 6) There will be no influence of backlash during pushing (gripping) operation. Make the stroke longer for the amount of backlash when opening.
Note 7) Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Note 8) The power consumption (including the controller) is for when the gripper is operating.
The standby power consumption when operating is for when the gripper is stopped in the set position during operation, including the energy saving mode when gripping

How to Mount
Note 9) The maximum instantaneous power consumption (including the controller) is for when the gripper is operating. This value can be used for the selection of the power supply.
a) When using the thread on the body

b) When using the thread on the mounting plate
c) When using the thread on the back of the body

Construction

Series LEHF

No．	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
2	Side plate A	Aluminum alloy	Anodized
3	Side plate B	Aluminum alloy	Anodized
4	Slide shaft	Stainless steel	Heat treatment＋Special treatment
5	Slide bushing	Stainless steel	
6	Slide nut	Stainless steel	Heat treatment＋Special treatment
7	Slide nut	Stainless steel	Heat treatment＋Special treatment
8	Fixed plate	Stainless steel	
9	Motor plate	Carbon steel	
10	Pulley A	Aluminum alloy	
11	Pulley B	Aluminum alloy	
12	Bearing stopper	Aluminum alloy	
13	Rubber bushing	NBR	
14	Bearing	-	
15	Belt	-	
16	Flange	-	
$\mathbf{1 7}$	Finger assembly	-	
$\mathbf{1 8}$	Step motor（Servo／24 VDC）		

Series LEHF

Dimensions
LEHF10K2-16: Basic

LEHF10K2-32: Long Stroke

Dimensions

LEHF20K2－48：Long Stroke

Series LEHF

Dimensions

LEHF32K2-64: Long Stroke

Dimensions
LEHF40K2-40: Basic

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

LEHF40K2-80: Long Stroke

Electric Gripper 3-Finger Type
 Step Motor (Servo/24 VDC) Series LEHS
 Model Selection

Selection Procedure

Step Check the gripping force.

Check the

conditions. \begin{tabular}{c}
Calculate the

required gripping force.

Select the model from

gripping force graph.
\end{tabular}\quad pushing speed.

Example

Workpiece mass: 0.1 kg

Guidelines for the selection of the gripper with respect to workpiece mass

- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 7 to 13 times Note) the workpiece weight, or more.
Note) For details, refer to the calculation of required gripping force.
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered.
Example) When it is desired to set the gripping force at 13 times or more above the workpiece weight.
Required gripping force
$=0.1 \mathrm{~kg} \times 13 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 12.7 \mathrm{~N}$ or more
Pushing force: 70\%

Gripping point distance: 30 mm

Pushing speed: $30 \mathrm{~mm} / \mathrm{sec}$

Calculation of required gripping force

When gripping a workpiece as in the figure to the left, and with the following definitions, F : Gripping force (N)
μ : Coefficient of friction between the attachments and the workpiece
m : Workpiece mass (kg)
g : Gravitational acceleration ($=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
mg : Workpiece weight (N)
the conditions under which the workpiece will not drop are
$\underline{3} \times \mu \mathrm{F}>\mathrm{mg}$
——Number of fingers
and therefore, $\mathbf{F}>\frac{\mathrm{mg}}{3 \times \mu}$
With "a" representing the margin,
" F " is determined by the following formula:

$$
\mathbf{F}=\frac{\mathrm{mg}}{3 \times \mu} \times \mathbf{a}
$$

"Gripping force at least 7 to 13 times the workpiece weight"

- The " 7 to 13 times or more of the workpiece weight" recommended by SMC is calculated with a margin of "a" $=4$, which allows for impacts that occur during normal transportation, etc.

When $\mu=0.2$	When $\mu=0.1$
$\mathbf{F}=\frac{\mathrm{mg}}{3 \times 0.2} \times 4=6.7 \times \mathrm{mg}$	$\mathbf{F}=\frac{\mathrm{mg}}{3 \times 0.1} \times 4=13.3 \times \mathrm{mg}$
$\mathbf{7 \times \text { Workpiece weight }}$	$13 \times$ Workpiece weight

When the LEHS20 is selected.

- A gripping force of 14 N is obtained from the intersection point of gripping point distance $L=30$ mm and pushing force of 70%.
- Gripping force is 14 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 13 times or more.

- Pushing speed is satisfied at the point where 70% of the pushing force and $30 \mathrm{~mm} / \mathrm{sec}$ of the pushing speed cross.

Note) Confirm the pushing speed range from the determined pushing force [\%].
<Reference> Coefficient of friction μ (depends on the operating environment, contact pressure, etc.)

Coefficient of friction μ	Attachment - Material of workpieces (guideline)
0.1	Metal (surface roughness Rz3.2 or less)
0.2	Metal
0.2 or more	Rubber, Resin, etc.

Note) • Even in cases where the coefficient of friction is greater than $\mu=0.2$, for reasons of safety, select a gripping force which is at least 7 to 13 times greater than the workpiece weight, as recommended by SMC.

- If high acceleration or impact forces are encountered during motion, a further margin should be considered.

Series LEHS

Selection Procedure

Step Check the gripping force: Series LEHS

- Indication of gripping force

The gripping force shown in the graphs on page 365 is expressed as " F ", which is the gripping force of one finger, when three fingers and attachments are in full contact with the workpiece as shown in the figure below.

External Gripping State

L: Gripping point

- Set the workpiece gripping point "L" so that it is within the range shown in the figure below.

Internal Gripping State

F: Gripping force

F: Gripping force

Step Check the gripping force：Series LEHS

LEHS20

LEHS32

LEHS40

Compact

LEHS20L

Selection of Pushing Speed

－Set the［Pushing force］and the［Trigger LV］within the range shown in the figure below．

Basic

Electric Gripper 3-Finger Type

Step Motor (Servo/24 VDC)

Series LEHS LEHS10, 20, 32, 40
 RoHS

How to Order

1 Size
10
20
32
40

Note) Size: 10, 20 only
(5) Stroke [mm]

Stroke/diameter	Size
$\mathbf{4}$	10
$\mathbf{6}$	20
$\mathbf{8}$	32
$\mathbf{1 2}$	40

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LEH series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Actuator cable type*

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

* The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.

$10 \mathrm{I} / \mathrm{O}$ cable length [m]**

NiI	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	$3^{* 2}$
$\mathbf{5}$	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 394 (For LECP6), page 407 (For LECP1) or page 414 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.

| 8 Actuator cable length [m] |
| :---: | :---: |
| Nil Without cable
 $\mathbf{1}$ 1.5
 3 3
 $\mathbf{5}$ 5
 $\mathbf{8}$ 8^{*}
 A 10^{*}
 B 15^{*}
 C 20^{*} |

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 3) on page 368.

\section*{(11) Controller/Driver mounting
 | Nil | Screw mounting |
| :---: | :---: |
| \mathbf{D} | DIN rail mounting* |}

* DIN rail is not included. Order it separately.
(Refer to page 387.)

9 Controller/Driver type*

Nil	Without controller/driver	
6N	LECP6	NPN
6P	(Step data input type)	PNP
1N	LECP1	NPN
1P	(Programless type)	PNP
AN	LECPA	NPN
AP	(Pulse input type)	PNP

* For details about controllers/driver and compatible motors, refer to the compatible compatible motors, refe

Compatible Controllers/Driver

Type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECP1	LECPA
Features	Value (Step data) input Standard controller	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Step motor (Servo/24 VDC)	
Maximum number of step data	64 points	14 points	-
Power supply voltage	24 VDC		
Reference page	Page 386	Page 401	Page 408

Series LEHS

Specifications

Model			LEHS10	LEHS20	LEHS32	LEHS40
	Opening/closing stroke (diameter)		4	6	8	12
	Gripping force [N] Note 1) Note 3)	Basic	2.2 to 5.5	9 to 22	36 to 90	52 to 130
		Compact	1.4 to 3.5	7 to 17	-	-
	Opening and closing speed/ Pushing speed [mm/s] Note 2) Note 3)		$\begin{aligned} & 5 \text { to } 70 / \\ & 5 \text { to } 50 \end{aligned}$	$\begin{aligned} & 5 \text { to } 80 / \\ & 5 \text { to } 50 \end{aligned}$	$\begin{gathered} 5 \text { to } 100 / \\ 5 \text { to } 50 \\ \hline \end{gathered}$	$\begin{gathered} 5 \text { to } 120 / \\ 5 \text { to } 50 \\ \hline \end{gathered}$
	Drive method		Slide screw + Wedge cam			
	Repeatability [mm] ${ }^{\text {Note 4) }}$		± 0.02			
	Repeated length measurement accuracy [mm] Note 5)		± 0.05			
	Finger backlash/dia. [mm] ${ }^{\text {Note 6) }}$		0.5 or less			
	ImpactVibration resistance [m/s ${ }^{2}$] ${ }^{\text {Note 7) }}$		150/30			
	Max. operating frequency [C.P.M]		60			
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40			
	Operating humidity range [\%RH]		90 or less (No condensation)			
	Weight [g]	Basic	185	410	975	1265
		Compact	150	345	-	-
Electric specifications	Motor size		$\square 20$	$\square 28$	$\square 42$	
	Motor type		Step motor (Servo/24 VDC)			
	Encoder		Incremental A/B phase (800 pulse/rotation)			
	Rated voltage [V]		24 VDC $\pm 10 \%$			
	Power consumption/ Standby power consumption whenoperating [W] Note 8) operating [W] Note 8)	Basic	11/7	28/15	34/13	36/13
		Compact	8/7	22/12	-	-
	Max. instantaneous power consumption [W] Note 9)	Basic	19	51	57	61
		Compact	14	42	-	-

Note 1) Gripping force should be from 7 to 13 times the workpiece weight. Moving force should be 150% when releasing the workpiece. Gripping force accuracy should be $\pm 30 \%$ (F.S.) for LEHS10, $\pm 25 \%$ (F.S.) for LEHS20 and $\pm 20 \%$ (F.S.) for LEHS $32 / 40$.
Note 2) Pushing speed should be set within the range during pushing (gripping) operation. Otherwise, it may cause malfunction. The opening/closing speed and pushing speed are for both fingers. The speed for one finger is half this value.
Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
Note 4) Repeatability means the variation of the gripping position (workpiece position) when the gripping operation is repeatedly performed by the same sequence for the same workpiece.
Note 5) Repeated length measurement accuracy means dispersion (value on the controller monitor) when the Repeated length measurement accuracy means
workpiece is repeatedly held in the same position.
Note 6) There will be no influence of backlash during pushing (gripping) operation. Make the stroke longer for the amount of backlash when opening.
Note 7) Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Note 8) The power consumption (including the controller) is for when the gripper is operating.
The standby power consumption when operating is for when the gripper is stopped in the set position during operation, including the energy saving mode when gripping.
Note 9) The maximum instantaneous power consumption (including the controller) is for when the gripper is operating This value can be used for the selection of the power supply.

How to Mount

a) Mounting A type
(when using the thread on the mounting plate)

Positioning pin
b) Mounting B type
(when using the thread on the back of the body)

Positioning pin

Mounting
direction

Component Parts

No．	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Motor plate	Aluminum alloy	Anodized
$\mathbf{3}$	Guide ring	Aluminum alloy	
$\mathbf{4}$	Slide cam	Stainless steel	Heat treatment＋Special treatment
$\mathbf{5}$	Slide bolt	Stainless steel	Heat treatment＋Special treatment
$\mathbf{6}$	Finger	Carbon steel	Heat treatment＋Special treatment
$\mathbf{7}$	End plate	Stainless steel	
$\mathbf{8}$	Step motor（Servo／24 VDC）		

Series LEHS

Dimensions

LEHS10(L)K3-4

$[\mathrm{mm}]$		
Model	\mathbf{L}	$\left(\mathrm{L}_{1}\right)$
LEHS10K3-4	89.1	(59.6)
LEHS10LK3-4	72.6	(43.1)

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

LEHS20(L)K3-6

	$[\mathrm{mm}]$	
Model	\mathbf{L}	$(\mathrm{L} 1)$
LEHS20K3-6	98.8	(61.8)
LEHS20LK3-6	84.8	(47.8)

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

Motor cable entry: Motor cable entry:
Entry on the right side

Dimensions

LEHS32K3-8

\triangle Warning

1. Keep the specified gripping point.

If the specified gripping range is exceeded, excessive moment is applied to the sliding part of the finger, which may have an adverse affect on the life of the product.

L: Gripping point
H: Overhang

2. Design the attachment to be lightweight and short.

A long and heavy attachment will increase inertia force when the product is opened or closed, which causes play on the finger. Even if the gripping point of the attachment is within a specified range, design it to be short and lightweight as possible.
For a long or large workpiece, select a model of a larger size or use two or more grippers together.
3. Provide a runoff space for attachment when a workpiece is extremely thin or small.
Without a runoff space, the product cannot perform stable gripping, and the displacement of a workpiece or gripping failure can result.

4. Select the model that allows for gripping force in relation to the workpiece weight, as appropriate.
The selection of inappropriate model can cause dropping of a workpiece. Gripping force should be from 10 to 20 times (LEHZ, LEHF) or 7 to 13 times (LEHS) of the workpiece weight.
Gripping Force Accuracy

LEHZ(J)10(L)	LEHZ(J)16(L)	LEHZ(J)20(L)	LEHZ(J)25(L)	LEHZ32		LEHZ40
$\pm 30 \% ~(F . S) ~$.	$\pm 25 \% ~(F . S) ~$.	$\pm 20 \%$ (F.S.)				
LEHF10	LEHF20	LEHF32	LEHF40			
$\pm 30 \% ~(F . S) ~$.	$\pm 25 \%$ (F.S.)	$\pm 20 \%$ (F.S.)				
LEHS10(L)	LEHS20(L)	LEHS32	LEHS40			
$\pm 30 \%$ (F.S.)	$\pm 25 \%$ (F.S.)	$\pm 20 \%$ (F.S.)				

5. Do not use the product in applications where excessive external force (including vibration) or impact force is applied to it.
It may lead to breakage or galling, which causes operation failure. Do not apply impact and vibration outside of the specifications.
6. Select the model that allows for opening and closing width relative to a workpiece.
The selection of an inappropriate model will cause gripping at unexpected positions due to variable opening and closing width of the product and the diameter of a workpiece the product can handle. It is also necessary to make a larger stroke to overcome backlash created when the product will open after gripping.

Mounting

\triangle Warning

1. Do not drop or hit the gripper to avoid scratching and denting the mounting surfaces.
Even slight deformation can cause the deterioration of accuracy and operation failure.
2. When mounting the attachment, tighten the mounting screws within the specified torque range.
Tightening the screws with a higher torque than recommended may cause malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

Mounting of Attachment to Finger

The attachment should be mounted at the torque specified in the following table by screwing the bolt into the finger mounting female thread and hole.

<Series LEHZ>

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$
LEHZ(J)10(L)	$\mathrm{M} 2.5 \times 0.45$	0.3
LEHZ(J)16(L)	$\mathrm{M} 3 \times 0.5$	0.9
LEHZ(J)20(L)	$\mathrm{M} 4 \times 0.7$	1.4
LEHZ(J)25(L)	$\mathrm{M} 5 \times 0.8$	3.0
LEHZ32	$\mathrm{M} 6 \times 1$	5.0
LEHZ40	$\mathrm{M} 8 \times 1.25$	12.0

<Series LEHF>

Model	Bolt	Max. tightening torque [$\mathrm{N} \cdot \mathrm{m}$]
LEHF10	$\mathrm{M} 2.5 \times 0.45$	0.3
LEHF20	$\mathrm{M} 3 \times 0.5$	0.9
LEHF32	$\mathrm{M} 4 \times 0.7$	1.4
LEHF40	$\mathrm{M} 4 \times 0.7$	1.4

<Series LEHS>

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}$]
LEHS10(L)	$\mathrm{M} 3 \times 0.5$	0.9
LEHS20(L)	$\mathrm{M} 3 \times 0.5$	0.9
LEHS32	$\mathrm{M} 4 \times 0.7$	1.4
LEHS40	$\mathrm{M} 5 \times 0.8$	3.0

Series LEH
Electric Grippers／

Mounting

Mounting of Electric Gripper，Series LEHZ／LEHZJ
When using the thread on the side of the body

When using the thread on the mounting plate

Model	Bolt	Max． tightening torque $[\mathrm{N} \cdot \mathrm{m}]$
LEHZ（J）10（L）	$\mathrm{M} 3 \times 0.5$	0.9
LEHZ（J）16（L）	$\mathrm{M} 3 \times 0.5$	0.9
LEHZ（J）20（L）	$\mathrm{M} 4 \times 0.7$	1.4
LEHZ（J）25（L）	$\mathrm{M} 5 \times 0.8$	3.0
LEHZ32	$\mathrm{M} 5 \times 0.8$	3.0
LEHZ40	$\mathrm{M} 6 \times 1$	5.0

When using the thread on the back of the body

Model	Bolt	Max． tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max． screw－in depth $\mathrm{L}[\mathrm{mm}]$	
	LEHZ（J）10（L）	$\mathrm{M} 4 \times 0.7$	1.4	6
LEHZ（J）16（L）	$\mathrm{M} 4 \times 0.7$	1.4	6	
LEHZ（J）20（L）	$\mathrm{M} 5 \times 0.8$	3.0	8	
LEHZ（J）25（L）	$\mathrm{M} 6 \times 1$	5.0	10	
	LEHZ32	$\mathrm{M} 6 \times 1$	5.0	10
LEHZ40	$\mathrm{M} 8 \times 1.25$	12.0	14	

Mounting of Electric Gripper，Series LEHF
When using the thread on the body
Finger

Model	Bolt	Max． tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max． screw－in depth $\mathrm{L}[\mathrm{mm}]$
LEHF10	$\mathrm{M} 4 \times 0.7$	1.4	7
LEHF20	$\mathrm{M} 5 \times 0.8$	3.0	8
LEHF32	$\mathrm{M} 6 \times 1$	5.0	10
LEHF40	$\mathrm{M} 6 \times 1$	5.0	10

When using the thread on the mounting plate

Model	Bolt	Max． tightening torque $[\mathrm{N} \cdot \mathrm{m}]$
LEHF10	$\mathrm{M} 4 \times 0.7$	1.4
LEHF20	$\mathrm{M} 5 \times 0.8$	3.0
LEHF32	$\mathrm{M} 6 \times 1$	5.0
LEHF40	$\mathrm{M} 6 \times 1$	5.0

When using the thread on the back of the body

Model	Bolt	Max． tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max． screw－in depth $\mathrm{L}[\mathrm{mm}]$
LEHF10	$\mathrm{M} 5 \times 0.8$	3.0	10
LEHF20	$\mathrm{M} 6 \times 1$	5.0	12
LEHF32	$\mathrm{M} \times 1.25$	12.0	16
LEHF40	$\mathrm{M} 8 \times 1.25$	12.0	16

When using the thread on the mounting plate

When using the thread on the back of the body

		Max． Model tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max． screw－in depth $\mathrm{L}[\mathrm{mm}]$	
	LEHS10（L）	$\mathrm{M} 4 \times 0.7$	1.4	6
LEHS20（L）	$\mathrm{M} 6 \times 1$	5.0	10	
	LEHS32	$\mathrm{M} 8 \times 1.25$	12.0	14
LEHS40	$\mathrm{M} 8 \times 1.25$	12.0	14	

Mounting

\triangle Warning

3. When mounting the electric gripper, tighten the mounting screws within the specified torque range.
Tightening the screws with a higher torque than recommended may cause malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.
4. When fixing the attachment to the finger, avoid applying excessive torque to the finger.
Play or deteriorated accuracy can result.
5. The mounting face has holes and slots for positioning. Use them for accurate positioning of the electric gripper if required.
6. When a workpiece is to be removed when it is not energized, open or close the finger manually or remove the attachment beforehand.
When it is necessary to operate the product by the manual override screws, check the position of the manual override screws of the product, and leave necessary space. Do not apply excessive torque to the manual override screws. This may lead to damage and malfunction.
7. When gripping a workpiece, keep a gap in the horizontal direction to prevent the load from concentrating on one finger, to allow for workpiece misalignment.
For the same purpose, when moving a workpiece for alignment by the product, minimize the friction resistance created by the movement of the workpiece. The finger can be displaced, play or breakage.
8. Perform adjustment and confirmation to ensure there is no external force applied to the finger.
If the finger is subject to repetitive lateral load or impact load, it can cause play or breakage and the lead screw can get stuck, which results in operation failure. Allow a clearance to prevent the workpiece or the attachment from hitting gripper product at the end of the stroke.
1) Stroke end when fingers are open

2) Stroke end when gripper is moving

3) When turning over

9. Adjust the gripping point so that an excessive force will not be applied to the fingers when inserting a workpiece. In particular, during a trial run, operate the product manually or at a low speed and check that the safety is assured without impact.

Handling

\triangle Caution

1. The parameters of the stroke and the opening/closing speed are for both fingers.
The stroke and the opening/closing speed for one finger is half a set parameter.
2. When gripping a workpiece by the product, be sure to set to the pushing operation.
Also, do not hit the workpiece to the finger and attachment in positioning operation or in the range of positioning operation. Otherwise, the lead screw can get caught and cause operation failure. However, if the workpiece cannot be gripped in pushing operation (such as a plastically deformed workpiece, rubber component, etc.), you can grip it in positioning operation with consideration to the elastic force of the workpiece. In this case, keep the driving speed for impact specified in item 3 on page 375.
When the operation is interrupted by a stop or temporary stop, and a pushing operation instruction is output just after operation is restarted, the operating direction will vary depending on the start position.

Handling

© Caution

3．Keep the following driving speed range for pushing operation．
－LEHZ／LEHZJ： 5 to $50 \mathrm{~mm} / \mathrm{s}$－LEHF10： 5 to $20 \mathrm{~mm} / \mathrm{s}$

Operation at the speed outside of the range can get the lead screw caught and cause operation failure
4．There is no backlash effect in pushing operation．
The return to origin is done by pushing operation．
The finger position can be displaced by the effect of the backlash during the positioning operation．
Take the backlash into consideration when setting the position．
5．Do not change the setting of energy saving mode．
When pushing（gripping）operation is continued，the heat generated by the motor can cause operation failure．
This is due to the self－lock mechanism in the lead screw，which makes the product keep the gripping force．To save the energy in this situation where the product is to be standby or continue to grip for extended periods of time，the product will be controlled to reduce current consumption（to 40% automatically after it has gripped a workpiece once）． If there is the reduction of gripping force seen in the product after a workpiece has been gripped and deformed over certain amount of time，contact SMC separately．
6．INP output signal
1）Positioning operation
When the product comes within the set range by step data［In position］，the INP output signal will turn on．
Initial value：Set to［0．50］or higher．
2）Pushing operation
When the effective force exceeds step data［Trigger LV］，the INP output signal will turn on．
Use the product within the specified range of［Pushing force］ and［Trigger LV］．
a）To ensure that the gripper holds the workpiece with the set ［Pushing force］，it is recommended that the［Trigger LV］be set to the same value as the［Pushing force］．
b）When the［Pushing force］and［Trigger LV］are set less than the specified range，the INP output signal will turn on from the pushing start position．
＜INP output signal in the controller version＞
－SV0．8 or more
Although the product automatically switches to the energy saving mode（reduced current）after pushing operation is completed，the INP output signal remains ON．
－SV0．7 or less
a．When［Trigger LV］is set to 40%（when the value is the same as the energy saving mode）
Although the product automatically switches to the energy saving mode（reduced current）after pushing operation is completed，the INP output signal remains ON．
b．When［Trigger LV］is set higher than $\mathbf{4 0 \%}$
The product is turned on after pushing operation is completed， but INP output signal will turn off when current consumption is reduced automatically in energy saving mode．
7．When releasing a workpiece，set the moving force to 150\％．
If the torque is too small when a workpiece is gripped in pushing operation，the product can have galling and become unable to release the workpiece．
8．If the finger has galling due to operational setting error，etc．，open and close the finger manually．
When it is necessary to operate the product by the manual override screws，check the position of the manual override screws of the product，and leave necessary space．Do not apply excessive torque to the manual override screws．This may lead to damage and malfunction．

9．Self－lock mechanism

The product keeps a gripping force due to the self－lock mechanism in the lead screw．Also，it will not operate in opposite direction even when external force is applied during gripping a workpiece．
＜Type of Stops，Cautions＞
1）All the power supplies to the controller are shut off．
When the power supply is turned on to restart operation，the controller will be initialized，and the product can drop a workpiece due to a motor magnetic pole detective operation．（It means that there is finger motions of partial strokes by the phase detection of motor after power supply is turned on．） Remove the workpiece before restarting operation．
2）＂EMG（stop）＂of the CN1 of the controller is shut off． When using the stop switch on the teaching box； It is not necessary to remove a workpiece beforehand because a motor magnetic pole detective operation will not occur when the power supply is turned on to restart operation．An alarm can take place when operation is restarted from stop．
3）＂M24V（motor driving power supply）＂of the CN1 of the controller is shut off．
It is not necessary to remove a workpiece beforehand because a motor magnetic pole detective operation will not occur when the power supply is turned on to restart operation．
An alarm can take place when stop is activated during operation or operation is restarted from stop．

10．Return to origin

1）It is recommended to set the directions of return to origin and workpiece gripping to the same direction．
If they are set opposite，there can be backlash，which worsens the measurement accuracy significantly．
2）If the direction of return to origin is set to CW（Internal gripping）； If the return to origin is performed with the product only，there can be significant deviation between different actuators．Use a workpiece to set return to origin．
3）If the return to origin is performed by using a workpiece； The stroke（operation range）will be shortened．Recheck the value of step data．
4）If basic parameters（Origin offset）are used；
When the return to origin is set with［Origin offset］，it is necessary to change the current position of the product． Recheck the value of step data．
11．In pushing（gripping）operation，set the product to a po－ sition of at least 0.5 mm away from a workpiece．（This position is referred to as a pushing start position．）
If the product is set to the same position as a workpiece，the following alarms may be generated and operation may become unstable．
a．＂Posn failed＂alarm is generated．
The product cannot reach a pushing start position due to variation in the width of workpieces．
b．＂Pushing ALM＂alarm is generated．
The product is pushed back from a pushing start position after starting to push．
12．When mounting the product，keep a 40 mm or longer diameter for bends in the motor cable．
13．Finite orbit type guide is used in the actuator finger part．By using this，when there are inertial force which cause by movements or rotation to the actuator，steel ball will move to one side and this will cause a large re－ sistance and degrade the accuracy．When there are in－ ertial force which cause by movements or rotation to the actuator，operate the finger to full stroke．
Especially in long stroke type，the accuracy of finger may degrade．

Series LEH

Electric Grippers/
 Specific Product Precautions 5

Be sure to read before handling. Refer to page 469 for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smcworld.com
Maintenance

1. When the product is to be removed, check it has not
been gripping a workpiece.
There is a risk of dropping the workpiece.

Controller/Driver

Step Data Input Type

Page 386

Step Data Input Type Series LECP6/LECA6

Simple Setting to Use Straight Away Easy Mode for Simple Setting

If you want to use it right away, select "Easy Mode."

<When a PC is used> Controller setting software

- Step data setting, test operation, move jog and move for the constant rate can be set and operated on one screen.
<When a TB (teaching box) is used>
- Simple screen without scrolling promotes ease of setting and operating.
-Pick up an icon from the first screen to select a function.
- Set up the step data and check the monitor on the second screen.

Teaching box screen

Data can be set with position and speed. (Other conditions are already set.)

Example of checking the operation status

Operation status can be checked.

Step	Axis 1
Step No.	0
Posn Speed 50.00 mm $200 \mathrm{~mm} / \mathrm{s}$	

Gateway Unit series LEC-G

-Unit linking the LECP6/LECA6 series and Fieldbus network

- Two methods of operation

Step data input: Operate using preset step data in the controller.
Numerical data input: The actuator operates using values such as position and speed from the PLC.

ONormal Mode for Detailed Setting

Select normal mode when detailed setting is required．
－Step data can be set in detail．
－Parameters can be set．
－Signals and terminal status can be monitored．
－JOG and constant rate movement，return to origin，test operation and testing of forced output can be performed．

＜When a PC is used＞ Controller setting software

－Step data setting，parameter setting，monitor，teaching， etc．，are indicated in different windows．

＜When a TB（teaching box）is used＞
－Multiple step data can be stored in the teaching box，and transferred to the controller．
－Continuous test operation by up to 5 step data．

Teaching box screen

－Each function（step data setting， test，monitor，etc．）can be selected from the main menu．

The actuator and controller are provided as a set．（They can be ordered separately．）
Confirm that the combination of the controller and the actuator is correct．
＜Check the following before use．＞
（1）Check the actuator label for model number．This matches the controller．
（2）Check Parallel I／O configuration matches（NPN or PNP）．

Programless Type series LECP1

No programming

Capable of setting up an electric actuator operation without using a PC or teaching box
(1) Setting position number

Setting a registered number for the stop position
Maximum 14 points

2 Setting a stop position
Moving the actuator to a stop position using FORWARD and REVERSE buttons

Step motor (Servo/24 VDC) LECP1

Speed/Acceleration 16-level adjustment

Pulse Input Type series LECPA

-A driver that uses pulse signals to allow positioning at any position. The actuator can be controlled from the customers' positioning unit.

-Return-to-origin command signal

Enables automatic return-to-origin action.

-With force limit function (Pushing force/Gripping force operation available)

Pushing force/Positioning operation possible by switching signals.

Series LECP6/LECA6/LECP1/LECPA

Function

Item	Step data input type LECP6/LECA6	Programless type LECP1	Pulse input type LECPA
Step data and parameter setting	- Input from controller setting software (PC) - Input from teaching box	- Select using controller operation buttons	- Input from controller setting software (PC) - Input from teaching box
Step data "position" setting	- Input the numerical value from controller setting software (PC) or teaching box - Input the numerical value - Direct teaching - JOG teaching	- Direct teaching - JOG teaching	- No "position" setting required Position and speed set by pulse signal
Number of step data	64 points	14 points	-
Operation command (/VO signal)	Step No. [IN $\left.{ }^{*}\right]$ input \Rightarrow [DRIVE] input	Step No. [IN^{*}] input only	Pulse signal
Completion signal	[INP] output	[OUT*] output	[INP] output

Setting Items

TB: Teaching box PC: Controller setting software

	Item	Contents	Easy mode		Normal mode	Step data input type LECP6/LECA6	Pulse input type LECPA	Programless type LECP1*
			TB	PC	TB/PC			
Step data setting (Excerpt)	Movement MOD	Selection of "absolute position" and "relative position"	\triangle	-	-	Set at ABS/INC	No setting required	Fixed value (ABS)
	Speed	Transfer speed	-	-	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}$		Select from 16-level
	Position	[Position]: Target position [Pushing]: Pushing start position	-	-	\bigcirc	Set in units of 0.01 mm		Direct teaching JOG teaching
	Acceleration/Deceleration	Acceleration/deceleration during movement	-	-	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$		Select from 16-level
	Pushing force	Rate of force during pushing operation	\bigcirc	-	\bigcirc	Set in units of 1\%	Set in units of 1\%	Select from 3-tevel (weak, medium, strong)
	Trigger LV	Target force during pushing operation	\triangle	\bigcirc	-	Set in units of 1\%	Set in units of 1\%	No setingrequired (same vave as pussing force)
	Pushing speed	Speed during pushing operation	\triangle	\bigcirc	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	No setting required
	Moving force	Force during positioning operation	\triangle	\bigcirc	-	Set to 100\%	Setto (Different values for each actuato)\%	
	Area output	Conditions for area output signal to turn ON	\triangle	\bigcirc	-	Set in units of 0.01 mm	Set in units of 0.01 mm	
	In position	[Position]: Width to the target position [Pushing]: How much it moves during pushing	\triangle	-	-	Set to 0.5 mm or more (Units: 0.01 mm)	Set to (Different values for each actuator) or more (Units: 0.01 mm)	
Parameter setting (Excerpt)	Stroke (+)	+ side limit of position	\times	\times	-	Set in units of 0.01 mm	Set in units of 0.01 mm	
	Stroke (-)	- side limit of position	\times	\times	-	Set in units of 0.01 mm	Set in units of 0.01 mm	
	ORIG direction	Direction of the return to origin can be set.	\times	\times	-	Compatible	Compatible	Compatible
	ORIG speed	Speed during return to origin	\times	\times	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	
	ORIG ACC	Acceleration during return to origin	\times	\times	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	seting requir
Test	JOG		-	-	\bigcirc	Continuous operation at the set speed can be tested while the switch is being pressed.	Continuous operation at the set speed can be tested while the switch is being pressed.	Hold down MANUAL button (®()) for uniform sending (speed is specified value)
	MOVE		\times	-	\bigcirc	Operation at the set distance and speed from the current position can be tested.	Operation at the set distance and speed from the current position can be tested.	Press MANUAL button ((\wedge)) once for sizing operation (speed, sizing amount are specified values)
	Return to ORIG		-	-	-	Compatible	Compatible	Compatible
	Test drive	Operation of the specified step data	-	-	(Continuous operation)	Compatible	Not compatible	Compatible
	Forced output	ONOFF of the output terminal can be tested.	\times	\times	-	Compatible	Compatible	Not compatible
Monitor	DRV mon	Current position, speed, force and the specified step data can be monitored.	-	-	-	Compatible	Compatible	
	In/Out mon	Current ON/OFF status of the input and output terminal can be monitored.	\times	\times	-	Compatible	Compatible	
ALM	Status	Alarm currently being generated can be confirmed.	-	-	-	Compatible	Compatible	Compatible (display alarm group)
	ALM Log record	Alarm generated in the past can be confirmed.	\times	\times	-	Compatible	Compatible	Not compatible
File	Save/Load	Step data and parameter can be saved, forwarded and deleted.	\times	\times	\bigcirc	Compatible	Compatible	
Other	Language	Can be changed to Japanese or English.	-	-	-	Compatible	Compatible	

\triangle : Can be set from TB Ver. 2.** (The version information is displayed on the initial screen)

* Programless type LECP1 cannot be used with the teaching box and controller setting kit.
 and Touch Operator Interface cannot be connected.

Note) When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

- Actuator cable* Pages 392, 406

Controller type	Standard cable	Robotic cable
LECP6 (Step data input type)	LE-CP- \square-S	LE-CP- \square
LECA6 (Step data input type)	-	LE-CA- \square
LECP1 (Programless type)	LE-CP- \square-S	LE-CP- \square

The * mark: Can be included in the "How to Order" for the actuator.

-Teaching box Page 396

(With 3 m cable)
Part no.: LEC-T1-3JG \square

Option

-Controller setting kit Page 395

Controller setting kit
(Communication cable, conversion unit and USB cable are included.)
Part no.: LEC-W2

Note) Cannot be used with the programless type (LECP1).

System Construction/Fieldbus Network

PLC (Provided by customer)

Power supply for gateway unit 24 VDC ${ }^{\text {Note 1) }}$

LEC-CG1-■

Gateway (GW) unit Page 398
Applicable Fieldbus protocols
CC-Link Ver. 2.0
DeviceNet ${ }^{\text {TM }}$
PROFIBUS DP EtherNet//PTM

Option

- Controller setting software Page 395 (Communication cable and USB cable are included.) Part no.: LEC-W2

PC
(A-miniB type) (Provided by customer)

-Teaching box Page 396
(With 3 m cable)
Part no.: LEC-T1-3JG \square

Applicable Fieldbus protocols	Max, number of comeatable controllers
CC-Link Ver. 2.0	$\mathbf{1 2}$
DeviceNet ${ }^{\text {TM }}$	$\mathbf{8}$
PROFIBUS DP	5
EtherNet/IPTM	12

Compatible controllers

Step motor controller (Servo/24 VDC)	Series LECP6
Servo motor controller (24 VDC)	Series LECA6

Note 1) Connect the 0 V terminals for both the controller input power supply and gateway unit power supply.
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply. Series LECP6

\triangle Caution

[CE-compliant products]
(1) EMC compliance was tested by combining the electric actuator LE series and the controller LEC series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the LECA6 series (servo motor controller), EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 394 for the noise filter set. Refer to the LECA Operation Manual for installation.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Confirm that the combination of the controller and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Specifications

Basic Specifications

Item	LECP6	LECA6
Compatible motor	Step motor (Servo/24 VDC)	Servo motor (24 VDC)
Power supply Note 1)	Power voltage: 24 VDC $\pm 10 \%$ Current consumption: 3 A (Peak 5 A) ${ }^{\text {Note } 2)}$ [Including motor drive power, control power, stop, lock release]	Power voltage: $24 \mathrm{VDC} \pm 10 \%$ Current consumption: 3 A (Peak 10 A) Note 2) [Including motor drive power, control power, stop, lock release]
Parallel input	11 inputs (Photo-coupler isolation)	
Parallel output	13 outputs (Photo-coupler isolation)	
Compatible encoder	Incremental A/B phase (800 pulse/rotation)	Incremental A/B/Z phase (800 pulse/rotation)
Serial communication	RS485 (Modbus protocol compliant)	
Memory	EEPROM	
LED indicator	LED (Green/Red) one of each	
Lock control	Forced-lock release terminal Note 3)	
Cable length [m]	I/O cable: 5 or less, Actuator cable: 20 or less	
Cooling system	Natural air cooling	
Operating temperature range [$[\mathrm{C}]$	0 to 40 (No freezing)	
Operating humidity range [\%RH]	90 or less (No condensation)	
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-10 to 60 (No freezing)	
Storage humidity range [\%RH]	90 or less (No condensation)	
Insulation resistance [M2]	Between the housing and SG terminal 50 (500 VDC)	
Weight [g]	150 (Screw mounting) 170 (DIN rail mounting)	

Note 1) Do not use the power supply of "inrush current prevention type" for the controller power supply. When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.
Note 2) The power consumption changes depending on the actuator model. Refer to the specifications of actuator for more details.
Note 3) Applicable to non-magnetizing lock.

Controller（Step Data Input Type）／Step Motor（Servo／24 vDC）Series LECP6
 Controller（Step Data Input Type）／Servo Motor（24 vDC）Series LECA6

How to Mount

亗

Series LECP6
Series LECA6

Dimensions

a) Screw mounting (LEC $\square 6 \square \square-\square$)

b) DIN rail mounting (LEC $\square 6 \square \square D-\square$)

Controller (Step Data Input Type)/Step Motor (Servo/24 vDC) Series LECP6
 Controller (Step Data Input Type)/Servo Motor (24 vDC) Series LECA6

Wiring Example 1

CN1 Power Supply Connector Terminal for LECA6 (PHOENIX CONTACT FK-MC0.5/7-ST-2.5)

Terminal name	Function	Details
OV	Common supply (-)	M 24V terminal/C 24V terminal/EMG terminal/BK RLS terminal are common (-).
M 24V	Motor power supply (+)	Motor power supply (+) supplied to the controller
C 24V	Control power supply (+)	Control power supply (+) supplied to the controller
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock
RG +	Regenerative output 1	Regenerative output terminals for external connection
RG-	Regenerative output 2	(Not necessary to connect them in the combination with the LE series standard specifications.)

Wiring Example 2

Power supply plug for LECP6
 * When you connect a PLC, etc., to the CN5 parallel I/O connector, please use the I/O cable (LEC-CN5- \square). * The wiring should be changed depending on the type of the parallel I/O (NPN or PNP).

Parallel I/O Connector: CN5

Wiring diagram

LEC $\square 6 \mathrm{~N} \square \square-\square$ (NPN)

		Power supply 24 VDC for $1 / \mathrm{O}$ signal	
CN5			
COM+	A1		1
COM-	A2		
INO	A3		
IN1	A4		
IN2	A5		
IN3	A6		
IN4	A7		
IN5	A8		
SETUP	A9		
HOLD	A10		
DRIVE	A11		
RESET	A12		
SVON	A13		
OUTO	B1	Load	
OUT1	B2	Load	
OUT2	B3	Load	
OUT3	B4	Load	
OUT4	B5	Load	
OUT5	B6	Load	
BUSY	B7	Load	
AREA	B8	Load	
SETON	B9	Load	
INP	B10	Load	
SVRE	B11	Load	
*ESTOP	B12	Load	
*ALARM	B13	Load	

Input Signal

Name	Details
COM +	Connects the power supply 24 V for input/output signal
COM-	Connects the power supply 0 V for input/output signal
IN0 to IN5	Step data specified Bit No. (Input is instructed in the combination of IN0 to 5.)
SETUP	Instruction to return to origin
HOLD	Operation is temporarily stopped
DRIVE	Instruction to drive
RESET	Alarm reset and operation interruption
SVON	Servo ON instruction

LEC $\square \mathbf{6 P \square \square - \square (P N P) ~}$

[^30]
Step Data Setting

1. Step data setting for positioning

In this setting, the actuator moves toward and stops at the target position.
The following diagram shows the setting items and operation. The setting items and set values for this operation are stated below.

Step Data (Positioning)		© : Need to be set. O : Need to be adjusted as required. -: Setting is not required.
Necessity	Item	Details
©	Movement MOD	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
©	Speed	Transfer speed to the target position
©	Position	Target position
\bigcirc	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set.
\bigcirc	Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
©	Pushing force	Set 0 . (If values 1 to 100 are set, the operation will be changed to the pushing operation.)
-	Trigger LV	Setting is not required.
-	Pushing speed	Setting is not required.
\bigcirc	Moving force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
\bigcirc	In position	Condition that turns on the INP output signal. When the actuator enters the range of [in position], the INP output signal turns on. (It is unnecessary to change this from the initial value.) When it is necessary to output the arrival signal before the operation is completed, make the value larger.

2. Step data setting for pushing

The actuator moves toward the pushing start position, and when it reaches that position, it starts pushing with the set force or less.
The following diagram shows the setting items and operation. The setting items and set values for this operation are stated below.

Step Data (Pushing)		Need to be set. Need to be adjusted as required.
Necessity	Item	Details
©	Movement MOD	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
©	Speed	Transfer speed to the pushing start position
()	Position	Pushing start position
\bigcirc	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set.
\bigcirc	Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
©	Pushing force	Pushing force ratio is defined. The setting range differs depending on the electric actuator type. Refer to the operation manual for the electric actuator.
(0)	Trigger LV	Condition that turns on the INP output signal. The INP output signal turns on when the generated force exceeds the value. Trigger level should be the pushing force or less.
\bigcirc	Pushing speed	Pushing speed during pushing. When the speed is set fast, the electric actuator and workpieces might be damaged due to the impact when they hit the end, so this set value should be smaller. Refer to the operation manual for the electric actuator.
\bigcirc	Moving force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
©	In position	Transfer distance during pushing. If the transferred distance exceeds the setting, it stops even if it is not pushing. If the transfer distance is exceeded, the INP output signal will not turn on.

Controller (Step Data Input Type)/Step Motor (Servo/24 vDC) Series LECP6
 Controller (Step Data Input Type)/Servo Motor (24 vDC) Series LECA6

Signal Timing

Return to Origin

* "OUT" is output when "DRIVE" is changed from ON to OFF.
(When power supply is applied, "DRIVE" or "RESET" is turned ON or
"*ESTOP" is turned OFF, all of the "OUT" outputs are OFF.)

HOLD

* When the actuator is in the positioning range in the pushing operation, it does not stop even if HOLD signal is input.

[^31]Series LECP6
Series LECA6

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

LE - CP - 1	
Cable length (L) [m]	
1	1.5
3	3
5	5
8	8*
A	10*
B	15*
C	20*

* Produced upon receipt of order (Robotic cable only) With lock and sensor

Cable type

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

(* Produced upon receipt of order)

Controller（Step Data Input Type）／Step Motor（Servo／24 vDC）Series LECP6
 Controller（Step Data Input Type）／Servo Motor（24 vDC）Series LECA6

［Robotic cable for servo motor（24 VDC）］

LE－CA－ $\mathbf{1}$
Cable length（L）$[\mathrm{m}]$
$\mathbf{1}$
$\mathbf{3}$
$\mathbf{5}$
$\mathbf{8}$
\mathbf{A}
\mathbf{B}
\mathbf{C}

＊Produced upon receipt of order

LE－CA－\square

Controller side

Connection of shield material
［Robotic cable with lock and sensor for servo motor（24 VDC）］
LE－CA－ $\mathbf{1}$
Cable length（L）［m］

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	8^{*}
A	10^{*}
B	15^{*}
C	20^{*}

＊Produced upon receipt of order With lock and sensor

Signal	Connector A1 terminal no．		Cable color	Connector C terminal no．
U	1		Red	1
V	2		White	2
W	3		Black	3
Signal	Connector A2 terminal no．	Shield	Cable color	Connector D terminal no．
Vcc	B－1	，	Brown	12
GND	A－1		Black	13
$\overline{\mathrm{A}}$	B－2	－	Red	7
A	A－2	$\bigcirc \times \sim$－	Black	6
\bar{B}	B－3		Orange	9
B	A－3	$1 \times$－	Black	8
$\overline{\mathrm{Z}}$	B－4		Yellow	11
Z	A－4		Black	10
		Connection of shield material	－	3
Signal	terminal no．	Connection of shield material	－	
Lock（＋）	B－1	，	Red	4
Lock（－）	A－1		Black	5
Sensor（＋）${ }^{\text {Note）}}$	B－3		Brown	1
Sensor（－）${ }^{\text {Note）}}$	A－3		Black	2

LE－CA－\square－B

Option: I/O Cable

Controller side
PLC side

* Conductor size: AWG28

Connector pin no.	Insulation color	Dot mark	Dot color
A1	Light brown	$\boxed{ }$	Black
A2	Light brown	$\boxed{ }$	Red
A3	Yellow	$\boxed{ }$	Black
A4	Yellow	$\boxed{ }$	Red
A5	Light green	$\boxed{ }$	Black
A6	Light green	$\boxed{ }$	Red
A7	Gray	$\boxed{ }$	Black
A8	Gray	$\boxed{ }$	Red
A9	White	$\boxed{ }$	Black
A10	White	$\boxed{ }$	Red
A11	Light brown	$\boxed{\square}$	Black
A12	Light brown	$\boxed{\square}$	Red
A13	Yellow	$\boxed{\square}$	Black

Connector pin no.	Insulation color	Dot mark	Dot color
B1	Yellow	■ ■	Red
B2	Light green	■ ■	Black
B3	Light green	■ ■	Red
B4	Gray	■ ■	Black
B5	Gray	■ ■	Red
B6	White	$\square \square$	Black
B7	White	■ ■	Red
B8	Light brown	■■■	Black
B9	Light brown	■■■	Red
B10	Yellow	■■■	Black
B11	Yellow	■■■	Red
B12	Light green	■■■	Black
B13	Light green	■■■	Red
-	Shield		

Option: Noise Filter Set for Servo Motor (24 VDC)

LEC - NFA

Contents of the set: 2 noise filters (Manufactured by WURTH ELEKTRONIK: 74271222)

[^32]

How to Order

 (Japanese and English are available) (Japanese and English are available.)

Contents
(1) Controller setting software (CD-ROM)
(2) Communication cable

Compatible Controllers/Driver

Step motor controller (Servo/24 VDC)	Series LECP6
Servo motor controller (24 VDC)	Series LECA6
Step motor driver (Pulse input type)	Series LECPA

Hardware Requirements

OS	IBM PC/AT compatible machine running Windows ${ }^{\circledR}$ XP (32-bit), Windows ${ }^{\circledR} 7$ (32-bit and 64-bit).
Communication interface	USB 1.1 or USB 2.0 ports
Display	XGA (1024 $\times 768$) or more

USB cable
(Cable between the PC and the conversion unit)

* Windows ${ }^{\circledR}$ and Windows ${ }^{\circledR 7}$ are registered trademarks of Microsoft Corporation in the United States.
* Refer to SMC website for version update information, http://www.smcworld.com

Screen Example

Easy mode screen example

Easy operation and simple setting

- Allowing to set and display actuator step data such as position, speed, force, etc.
- Setting of step data and testing of the drive can be performed on the same page.
- Can be used to jog and move at a constant rate.

Normal mode screen example

Detailed setting

- Step data can be set in detail.
- Signals and terminal status can be monitored.
- Parameters can be set.
- JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.

Teaching Box/LEC-T1

How to Order

Standard functions

- Chinese character display
- Stop switch is provided.

Option

- Enable switch is provided.

* The displayed language can be changed to English or Japanese.

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range ${ }^{\circ} \mathrm{C}$]	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight [g]	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Easy Mode

Function	Details
Step data	- Setting of step data
Jog	- Jog operation - Return to origin
Test	- 1 step operation - Return to origin
Monitor	- Display of axis and step data no. - Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis (Ver. 1.**) - Displayed language setting (Ver. 2.**) - Setting of easy/normal mode - Setting step data and selection of items from easy mode monitor

Menu Operations Flowchart

Menu	Data
Data	Step data no.
Monitor	Setting of two items selected below
Jog	Ver. 1.**:
Test	Position, Speed, Force, Acceleration, Deceleration
ALM	Ver. 2.**:
TB setting	Position, Speed, Pushing force, Acceleration, Deceleration, Movement MOD,

Monitor Display of step no. Display of two items selected below (Position, Speed, Force)
JogReturn to origin Jog operation
Test
1 step operation
ALM
Active alarm display Alarm reset
TB setting Reconnect (Ver. 1.**) Japanese/English (Ver. 2.**) Easy/Normal Set item

Normal Mode

Function	Details
Step data	- Step data setting
Parameter	- Parameters setting
Test	- Jog operation/Constant rate movement - Return to origin - Test drive (Specify a maximum of 5 step data and operate.) - Forced output (Forced signal output, Forced terminal output)
Monitor	- Drive monitor - Output signal monitor - Input signal monitor - Output terminal monitor - Input terminal monitor
ALM	- Active alarm display (Alarm reset) - Alarm log record display
File	- Data saving Save the step data and parameters of the controller which is being used for communication (it is possible to save four files, with one set of step data and parameters defined as one file). - Load to controller Loads the data which is saved in the teaching box to the controller which is being used for communication. - Delete the saved data. - File protection (Ver. 2.**)
TB setting	- Display setting (Easy/Normal mode) - Language setting (Japanese/English) - Backlight setting - LCD contrast setting - Beep sound setting - Max. connection axis - Distance unit (mm/inch)
Reconnect	- Reconnection of axis

Menu Operations Flowchart

Dimensions

No.	Description	Function
$\mathbf{1}$	LCD	A screen of liquid crystal display (with backlight)
$\mathbf{2}$	Ring	A ring for hanging the teaching box
$\mathbf{3}$	Stop switch	When switch is pushed in, the switch locks and stops. The lock is released when it is turned to the right.
$\mathbf{4}$	Stop switch guard	A guard for the stop switch
$\mathbf{5}$	Enable switch (Option)	Prevents unintentional operation (unexpected operation) of the jog test function. Other functions such as data change are not covered.
$\mathbf{6}$	Key switch	Switch for each input
$\mathbf{7}$	Cable	Length: 3 meters
$\mathbf{8}$	Connector	A connector connected to CN4 of the controller

Gateway Unit
 Series LEC-G

\triangle Caution

[CE-compliant products] EMC compliance was tested by combining the electric actuator LE series and the controller LEC series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products] When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Note) DIN rail is not included. Order it separately.

Branch connector LEC-CGD
 Branch connector
 Terminating resistor LEC - CGR

Specifications

Model			LEC-G	GMJ2 \square	LEC-GDN1 \square	LEC-GPR1 \square	LEC-GEN1 \square
Communication specifications	Applicable system	Fieldbus		-Link	DeviceNet ${ }^{\text {TM }}$	PROFIBUS DP	EtherNet/IP ${ }^{\text {TM }}$
		Version Note 1)		r. 2.0	Release 2.0	V1	Release 1.0
	Communication speed [bps]		$\begin{array}{r} 156 \mathrm{k} / 62 \\ \mathrm{I} \\ \hline \mathrm{M} \end{array}$	$\begin{aligned} & 25 \mathrm{k} / 2.5 \mathrm{M} \\ & \mathrm{M} / 10 \mathrm{M} \end{aligned}$	125 k/250 k/500 k	$9.6 \mathrm{k} / 19.2 \mathrm{k} / 45.45 \mathrm{k} /$ $93.75 \mathrm{k} / 187.5 \mathrm{k} / 500 \mathrm{k} /$ $1.5 \mathrm{M} / 3 \mathrm{M} / 6 \mathrm{M} / 12 \mathrm{M}$	$10 \mathrm{M} / 100 \mathrm{M}$
	Configuration file ${ }^{\text {Note } 2)}$			-	EDS file	GSD file	EDS file
	1/O occupation area		4 stations occupied (8 times setting)	Input 896 points 108 words Output 896 points 108 words	Input 200 bytes Output 200 bytes	Input 57 words Output 57 words	Input 256 bytes Output 256 bytes
	Power supply for communication Power supply voltage [V] ${ }^{\text {wle } 6]}$ Internal current consumplion [mA] Col			-	11 to 25 VDC	-	-
				-	100	-	-
	Communication connector specifications		Connector	(Accessory)	Connector (Accessory)	D-sub	RJ45
	Terminating	resistor	Not in	cluded	Not included	Not included	Not included
Power supply voltage [V] ${ }^{\text {Note 6) }}$			24 VDC $\pm 10 \%$				
Current consumption [mA]	Not connected to teaching box		200				
	Connected to teaching box		300				
EMG output terminal			30 VDC 1 A				
Controller specifications	Applicable controllers		Series LECP6, Series LECA6				
	Communication speed [bps] ${ }^{\text {Note 3) }}$		115.2 k/230.4 k				
	Max. number of connectable controllers ${ }^{\text {Note } 4)}$			12	8 Note 5)	5	12
Accessories			Power supply connector, communication connector			Power supply connector	
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 40 (No freezing)				
Operating humidity range [\%RH]			90 or less (No condensation)				
Storage temperature range [${ }^{\mathrm{C}}$]]			-10 to 60 (No freezing)				
Storage humidity range [\%RH]			90 or less (No condensation)				
Weight [g]			200 (Screw mounting), 220 (DIN rail mounting)				

Note 1) Please note that the version is subject to change.
Note 2) Each file can be downloaded from the SMC website, http://www.smcworld.com
Note 3) When using a teaching box (LEC-T1- \square), set the communication speed to 115.2 kbps.
Note 4) A communication response time for 1 controller is approximately 30 ms .
Refer to "Communication Response Time Guideline" for response times when several controllers are connected.
Note 5) For step data input, up to 12 controllers connectable.
Note 6) When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Gateway Unit Series LEC-G

Communication Response Time Guideline

Response time between gateway unit and controllers depends on the number of controllers connected to the gateway unit. For response time, refer to the graph below.

 Fieldbus network delay time is not included.

Dimensions

Screw mounting (LEC-G $\square \square \square$)

Applicable Fieldbus protocol: CC-Link Ver. 2.0

Applicable Fieldbus protocol: PROFIBUS DP

Series LEC-G

Dimensions

DIN rail mounting (LEC-G $\square \square \square D)$

Applicable Fieldbus protocol: CC-Link Ver. 2.0

Applicable Fieldbus protocol: PROFIBUS DP

Applicable Fieldbus protocol: DeviceNet ${ }^{\text {TM }}$

Applicable Fieldbus protocol: EtherNet/IPTM

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

Compatible actuators
 LEF
 LEL LEY LEP LER
 Programless Controller
 Series LECP1

($\boldsymbol{\epsilon} \mathrm{cH}_{\mathrm{us}}$

How to Order

The controller is sold as single unit after the compatible actuator is set.
Confirm that the combination of the controller and the actuator is correct.

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Specifications

Basic Specifications

Item	LECP1
Compatible motor	Step motor (Servo/24 VDC)
Power supply Note 1)	Power supply voltage: 24 VDC $\pm 10 \%$, Max. current consumption: 3 A (Peak 5A) Note 2) [Including the motor drive power, control power supply, stop, lock release]
Parallel input	6 inputs (Photo-coupler isolation)
Parallel output	6 outputs (Photo-coupler isolation)
Stop points	14 points (Position number 1 to 14(E))
Compatible encoder	Incremental A/B phase (800 pulse/rotation)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
7-segment LED display Note 3)	1 digit, 7 -segment display (Red) Figures are expressed in hexadecimal ("10" to "15" in decimal number are expressed as "A" to "F")
Lock control	Forced-lock release terminal Note 4)
Cable length [m]	I/O cable: 5 or less, Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M 2]	Between the housing and SG terminal: 50 (500 VDC)
Weight [g]	130 (Screw mounting), 150 (DIN rail mounting)

Note 1) Do not use the power supply of "inrush current prevention type" for the controller input power supply. When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.
Note 2) The power consumption changes depending on the actuator model. Refer to the each actuator's operation manual etc. for details.
Note 3) " 10 " to " 15 " in decimal number are displayed as follows in the 7 -segment LED.

Controller Details

No.	Display	Description	Details
(1)	PWR	Power supply LED	Power supply ON/Servo ON: Green turns on Power supply ON/Servo OFF: Green flashes
(2)	ALM	Alarm LED	With alarm : Red turns on Parameter setting : Red flashes
(3)	-	Cover	Change and protection of the mode switch (Close the cover after changing switch)
(4)	-	FG	Frame ground (Tighten the bolt with the nut when mounting the controller. Connect the ground wire.)
(5)	-	Mode switch	Switch the mode between manual and auto.
(6)	-	7-segment LED	Stop position, the value set by (8) and alarm information are displayed.
(7)	SET	Set button	Decide the settings or drive operation in Manual mode.
(8)	-	Position selecting switch	Assign the position to drive (1 to 14), and the origin position (15).
(9)	NUAL	Manual forward button	Perform forward jog and inching.
(10)		Manual reverse button	Perform reverse jog and inching.
(11)	SPEED	Forward speed switch	16 forward speeds are available.
(12)	D	Reverse speed switch	16 reverse speeds are available.
(13)	ACCEL	Forward acceleration switch	16 forward acceleration steps are available.
(14)	ACCEL	Reverse acceleration switch	16 reverse acceleration steps are available.
(15)	CN1	Power supply connector	Connect the power supply cable.
(16)	CN2	Motor connector	Connect the motor connector.
(17)	CN3	Encoder connector	Connect the encoder connector.
(18)	CN4	I/O connector	Connect I/O cable.

How to Mount

Controller mounting shown below.

1. Mounting screw (LECP1 $\square \square-\square$)
(Installation with two M4 screws)

2. Grounding

Tighten the bolt with the nut when mounting the ground wire as shown below.

Note) When size 25 or more of the LE series are used, the space between the controllers should be 10 mm or more.

\triangle Caution

- M4 screws, cable with crimping terminal and tooth lock washer are not included. Be sure to carry out grounding earth in order to ensure the noise tolerance.
- Use a watchmaker's screwdriver of the size shown below when changing position switch (8) and the set value of the speed/acceleration switch (11) to (14).

Size

End width \quad L: 2.0 to $2.4[\mathrm{~mm}]$
End thickness W: 0.5 to $0.6[\mathrm{~mm}]$

Magnified view of the end of the screwdriver

Dimensions

Screw mounting（LEC $\square 1 \square \square-\square$ ）

DIN rail mounting（LEC $\square 1 \square \square D-\square$ ）

Series LECP1

Wiring Example 1

Power Supply Connector: CN1
 * When you connect a CN1 power supply connector, please use the power supply cable (LEC-CK1-1).
 * Power supply cable (LEC-CK1-1) is an accessory.

CN1 Power Supply Connector Terminal for LECP1

Teminal name	Cable colrr	Function	Details
0V	Blue	Common supply (-)	M 24V terminal/C 24V terminal/BK RLS terminal are common (-).
M 24V	White	Motor power supply (+)	Motor power supply (+) supplied to the controller
C 24V	Brown	Control power supply (+)	Control power supply (+) supplied to the controller
BK RLS	Black	Lock release (+)	Input (+) for releasing the lock

Power supply cable for LECP1 (LEC-CK1-1)

Wiring Example 2

Parallel I/O Connector: CN4 * When you connect a PLC, etc., to the CN4 parallel I/O connector, please use the I/O cable (LEC-CK4-व).

		Power supply 24 VDC for I/O signal
CN4		
COM+	1	- $1 \mapsto$
COM-	2	
OUT0	3	Load
OUT1	4	Load
OUT2	5	Load
OUT3	6	Load
BUSY	7	Load
ALARM	8	Load
INO	9	
IN1	10	
IN2	11	
IN3	12	
RESET	13	
STOP	14	

Input Signal

Name	Details			
COM+	Connects the power supply 24 V for input/output signal			
COM-	Connects the power supply 0 V for input/output signal			
IN0 to IN3	- Instruction to drive (input as a combination of INO to IN3) - Instruction to return to origin (INO to IN3 all ON simultaneously) Example - (instruction to drive for position no. 5)			
	IN3	IN2	IN1	INO
	OFF	ON	OFF	ON
RESET	Alarm reset and operation interruption During operation: deceleration stop from position at which signal is input (servo ON maintained) While alarm is active: alarm reset			
STOP	Instruction to stop (after maximum deceleration stop, servo OFF)			

Input Signal [INO - IN3] Position Number Chart
O: OFF © ON

Position number	IN3	IN2	IN1	IN0
1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	\bigcirc	-	\bigcirc	\bigcirc
7	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10 (A)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11 (B)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12 (C)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13 (D)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14 (E)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Return to origin	\bigcirc	\bigcirc	\bigcirc	\bigcirc

IPNP

CN4		Power supply 24 VDC	
			r //O signal
COM +	1		\vdash
COM-	2		
OUTO	3	Load	
OUT1	4	Load	
OUT2	5	Load	
OUT3	6	Load	
BUSY	7	Load	
ALARM	8	Load	
ino	9		
IN1	10		
IN2	11		
IN3	12		
RESET	13		
STOP	14		

Output Signal

Name	Details			
	Turns on when the positioning or pushing is completed. (Output is instructed in the combination of OUT0 to 3.) Example - (operation complete for position no. 3)			
OUT0 to OUT3	OUT3 OUT2 OUT1 OUT0			
OFF	OFF	ON	ON	
BUSY	Outputs when the actuator is moving			
*ALARM Note)	Not output when alarm is active or servo OFF			

Note) Signal of negative-logic circuit (N.C.)

Output Signal [OUTO - OUT3] Position Number Chart O: OFF ©: ON

Position number	OUT3	OUT2	OUT1	OUT0
1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	-	\bigcirc	\bigcirc	\bigcirc
9	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10 (A)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11 (B)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12 (C)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13 (D)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14 (E)	-	\bigcirc	\bigcirc	\bigcirc
Return to origin	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Signal Timing
（1）Return to Origin

（4）Stop by the STOP Signal

（5）Alarm Reset

＊＂＊ALARM＂is expressed as negative－logic circuit．

Series LECP1

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

LE - CP - $\mathbf{1}$
Cable length (L) $[\mathrm{m}]$
$\mathbf{1}$
$\mathbf{3}$
$\mathbf{5}$
$\mathbf{8}$
A
B
\mathbf{C}

* Produced upon receipt of order (Robotic cable only) With lock and sensor

Cable type

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

(* Produced upon receipt of order)

Signal	Connector A terminal no.		Cable color	Connector C terminal no.
A	B-1		Brown	2
$\overline{\mathrm{A}}$	A-1		Red	1
B	B-2		Orange	6
\bar{B}	A-2		Yellow	5
COM-A/COM	B-3		Green	3
COM-B/-	A-3	S---- Shield	Blue	4
			Cable color	Connector D terminal no.
Vcc	B-4		Brown	12
GND	A-4		Black	13
$\overline{\mathrm{A}}$	B-5		Red	7
A	A-5		Black	6
\bar{B}	B-6		Orange	9
B	A-6	'I--------1',	Black	8
Signal	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Connector B } \\ \text { terminal no. } \end{array} \\ \hline \end{array}$		-	3
			-	
Lock (+)	B-1	-	Red	4
Lock (-)	A-1		Black	5
Sensor (+) Note)	B-3		Brown	1
Sensor (-) Note)	A-3		Blue	2

Options
［Power supply cable］
LEC－CK1－1

Temminal name	Covered color	Function
OV	Blue	Common supply（ - ）
M 24V	White	Motor power supply（ + ）
C 24V	Brown	Control power supply（ + ）
BK RLS	Black	Lock release（＋）

＊Conductor size：AWG20

［I／O cable］

Terminal no．	Insulation color	Dot mark	Dot color	Function
1	Light brown	\square	Black	COM＋
2	Light brown	■	Red	COM－
3	Yellow	\square	Black	OUTO
4	Yellow	\square	Red	OUT1
5	Light green	■	Black	OUT2
6	Light green	\square	Red	OUT3
7	Gray	\square	Black	BUSY
8	Gray	\square	Red	ALARM
9	White	\square	Black	INO
10	White	\square	Red	IN1
11	Light brown	$\square \square$	Black	IN2
12	Light brown	■ ■	Red	IN3
13	Yellow	■ ■	Black	RESET
14	Yellow	■ ■	Red	STOP

＊Conductor size：AWG26

[^33]
\triangle Caution

[CE-compliant products]
(1) EMC compliance was tested by combining the electric actuator LE series and the LECPA series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the LECPA series (step motor driver), EMC compliance was tested by installing a noise filter set (LEC-NFA).
Refer to page 414 for the noise filter set. Refer to the LECPA Operation Manual for installation. [UL-compliant products]
When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

* When controller equipped type is selected when ordering the LE series, you do not need to order this driver.

The driver is sold as single unit after the compatible actuator is set.

Confirm that the combination of the driver and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number.

This matches the driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Specifications

Item	LECPA
Compatible motor	Step motor (Servo/24 VDC)
Power supply Note 1)	Power voltage: 24 VDC $\pm 10 \%$ Maximum current consumption: 3 A (Peak 5 A) Note 2) [Including motor drive power, control power, stop, lock release]
Parallel input	5 inputs (Except photo-coupler isolation, pulse input terminal, COM terminal)
Parallel output	9 outputs (Photo-coupler isolation)
Pulse signal input	Maximum frequency: 60 kpps (Open collector), 200 kpps (Differential) Input method: 1 pulse mode (Pulse input in direction), 2 pulse mode (Pulse input in differing directions)
Compatible encoder	Incremental A/B phase (Encoder resolution: 800 pulse/rotation)
Serial communication	RS485 (Modbus protocol compliant)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
Lock control	Forced-lock release terminal Note 3)
Cable length [m]	I/O cable: 1.5 or less (Open collector), 5 or less (Differential) Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M 2]	Between the housing and SG terminal: 50 (500 VDC)
Weight [g]	120 (Screw mounting), 140 (DIN rail mounting)

Note 1) Do not use the power supply of "inrush current prevention type" for the driver power supply. When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.
Note 2) The power consumption changes depending on the actuator model. Refer to the specifications of actuator for more details.
Note 3) Applicable to non-magnetizing lock.

How to Mount

Note）The space between the drivers should be 10 mm or more．

DIN rail

AXT100－DR－\square

＊For \square ，enter a number from the＂No．＂line in the table below．
Refer to the dimensions on page 410 for the mounting dimensions．

L Dimension［mm］

No．	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No．	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

DIN rail mounting adapter

LEC－2－D0（with 2 mounting screws）

This should be used when the DIN rail mounting adapter is mounted onto the screw mounting type driver afterwards．

Series LECPA

Dimensions

a) Screw mounting (LECPA $\square \square-\square$)

Wiring Example 1

Power Supply Connector: CN1 * Power supply plug is an accessory.
CN1 Power Supply Connector Terminal for LECPA (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
0 V	Common supply (-)	M 24V terminal/C 24V terminal/EMG terminal/BK RLS terminal are common (-).
M 24V	Motor power supply (+)	Motor power supply (+) supplied to the driver
C 24V	Control power supply (+)	Control power supply (+) supplied to the driver
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock

Power supply plug for LECPA

Wiring Example 2
Parallel I/O Connector: CN5 * When you connect a PLC, etc., to the CN5 parallel I/O connector, please use the I/O cable (LEC-CL5-D).
Parallel I/O Connector: CN5 * The wiring should be changed depending on the type of the parallel I/O (NPN or PNP).

LECPAN $\square \square-\square$ (NPN)

CN5			Power supply 24 VDC $\pm 10 \%$	
Terminal name	Function	Pin no.		
COM +	24 V	1		
COM-	0 V	2		
NP+	Pulse signal	3		
NP-	Pulse signal	4		
PP+	Pulse signal	5	Note 1)	
PP-	Pulse signal	6		
SETUP	Input	7		
RESET	Input	8		
SVON	Input	9		
CLR	Input	10		
TL	Input	11		
TLOUT	Output	12	Load	
WAREA	Output	13	Load	
BUSY	Output	14	Load	
SETON	Output	15	Load	
INP	Output	16	Load	
SVRE	Output	17	Load	
*ESTOP Note 2)	Output	18	Load	
*ALARM ${ }^{\text {Nde } 21}$	Output	19	Load	
AREA	Output	20	Load	
	FG	$\begin{array}{\|c\|} \hline \text { Round terminal } \\ 0.5-5 \\ \hline \end{array}$		

Note 1) For pulse signal wiring method, refer to "Pulse Signal Wiring Details". Note 2) Output when the power supply of the driver is ON. (N.C.)

Input Signal

Name	Details
COM +	Connects the power supply 24 V for input/output signal
COM-	Connects the power supply 0 V for input/output signal
SETUP	Instruction to return to origin
RESET	Alarm reset
SVON	Servo ON instruction
CLR	Deviation reset
TL	Instruction to pushing operation

LECPAP $\square \square-\square$ (PNP)

Output Signal

Name	Details
BUSY	Outputs when the actuator is operating
SETON	Outputs when returning to origin
INP	Outputs when target position is reached
SVRE	Outputs when servo is on
*ESTOP Note 3)	Not output when EMG stop is instructed
*ALARM ${ }^{\text {Note 3) }}$	Not output when alarm is generated
AREA	Outputs within the area output setting range
WAREA	Outputs within W-AREA output setting range
TLOUT	Outputs during pushing operation

Note 3) Signal of negative-logic circuit ON (N.C.)

Pulse Signal Wiring Details

Note) Connect the current limit resistor R in series to correspond to the pulse signal voltage.

Pulse signal power supply voltage	Current limit resistor R specifications
24 VDC $\pm 10 \%$	$3.3 \mathrm{k} \Omega \pm 5 \%$ (0.5 W or more)
5 VDC $\pm 5 \%$	$390 \Omega \pm 5 \%$ (0.1 W or more)

Series LECPA

Signal Timing

Return to Origin

* "*ALARM" and "*ESTOP" are expressed as negative-logic circuit.

Positioning Operation

Pushing Operation

Note) If pushing operation is stopped when there is no pulse
deviation, the moving part of the actuator may pulsate.

Alarm Reset

[^34]

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

LE - CP - $\mathbf{1}$
Cable length (L) $[\mathrm{m}]$
$\mathbf{1}$
$\mathbf{3}$
$\mathbf{5}$
$\mathbf{8}$
A
B
\mathbf{C}
\mathbf{C}

LE-CP- ${ }_{5}^{1} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

* Produced upon receipt of order (Robotic cable only)

Cable type

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE-CP- ${ }_{A}^{8} \mathrm{~B} / C a b l e ~ l e n g t h: ~ 8 \mathrm{~m}, 10 \mathrm{~m}, 15 \mathrm{~m}, \mathbf{2 0} \mathrm{~m}$
(* Produced upon receipt of order)
Driver side

Signal	Connector A terminal no.		Cable color	Connector C terminal no.
A	B-1		Brown	2
$\overline{\mathrm{A}}$	A-1		Red	1
B	B-2		Orange	6
\bar{B}	A-2		Yellow	5
COM-A/COM	B-3		Green	3
COM-B/-	A-3		Blue	4
,		Shield	Cable color	Connector D terminal no.
Vcc	B-4	-	Brown	12
GND	A-4		Black	13
$\overline{\mathrm{A}}$	B-5		Red	7
A	A-5		Black	6
$\overline{\mathrm{B}}$	B-6		Orange	9
B	A-6	,	Black	8
			-	3

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

LE-CP - $\mathbf{1}$
Cable length $(\mathrm{L})[\mathrm{m}]$
$\mathbf{1}$
$\mathbf{3}$
$\mathbf{5}$
$\mathbf{8}$
A
B
\mathbf{C}

* Produced upon receipt of order (Robotic cable only) With lock and sensor

Cable type

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE-CP- ${ }_{5}^{13} / C a b l e ~ l e n g t h: ~ 1.5 ~ m, ~ 3 ~ m, ~ 5 ~ m ~$

LE-CP- ${ }_{A}^{8} \mathrm{C} /$ /Cable length: $\mathbf{8 m} \mathbf{m}, \mathbf{1 0 ~ m , 1 5 m , 2 0 ~ m}$
(* Produced upon receipt of order)

Options

[I/O cable]

* Pulse input usable only with differential. Only 1.5 m cables usable with open collector.

[Noise filter set]

Step Motor Driver (Pulse Input Type)

LEC-NFA

Contents of the set: 2 noise filters
(Manufactured by WURTH ELEKTRONIK: 74271222)

[^35]| Pin
 no. | Insulation
 color | Dot
 mark | Dot
 color |
| :---: | :---: | :---: | :---: |
| 1 | Light brown | ■ | Black |
| 2 | Light brown | ■ | Red |
| 3 | Yellow | ■ | Black |
| 4 | Yellow | ■ | Red |
| 5 | Light green | ■ | Black |
| 6 | Light green | ■ | Red |
| 7 | Gray | ■ | Black |
| 8 | Gray | ■ | Red |
| 9 | White | ■ | Black |
| 10 | White | ■ | Red |
| 11 | Light brown | ■ | Black |

Pin no.	Insulation color	Dot mark	Dot color
12	Light brown	■	Red
13	Yellow	■	Black
14	Yellow	■!	Red
15	Light green	■	Black
16	Light green	■	Red
17	Gray	■	Black
18	Gray	■	Red
19	White	■	Black
20	White	■	Red
$\begin{array}{\|c} \hline \text { Round termina } \\ 0.5-5 \\ \hline \end{array}$	Green		

[Current limit resistor]

This optional resistor (LEC-PA-R- \square) is used when the pulse signal output of the positioning unit is open collector output.

LEC-PA-R-ㅁ
 Current limit resistor ${ }^{\circ}$

Symbol	Resistance	Pulse signal power supply voltage
$\mathbf{3 3 2}$	$3.3 \mathrm{k} \Omega \pm 5 \%$	$24 \mathrm{VDC} \pm 10 \%$
$\mathbf{3 9 1}$	$390 \Omega \pm 5 \%$	$5 \mathrm{VDC} \pm 5 \%$

* Select a current limit resistor that corresponds to the pulse signal power supply voltage.
* For the LEC-PA-R- \square, two pieces are shipped as a set.

How to Order

(Japanese and English are available.)

Contents
(1) Controller setting software (CD-ROM)
(2) Communication cable

USB cable
(Cable between the PC and the conversion unit)
Compatible Controllers/Driver

Step motor controller (Servo/24 VDC)	Series LECP6
Servo motor controller (24 VDC)	Series LECA6
Step motor driver (Pulse input type)	Series LECPA
Hardware Requirements	

OS	IBM PC/AT compatible machine running Windows ${ }^{\circledR}$ XP (32-bit), Windows ${ }^{\circledR} 7$ (32-bit and 64-bit).
Communication interface	USB 1.1 or USB 2.0 ports
Display	XGA (1024 $\times 768$) or more

* Windows ${ }^{\circledR}$ and Windows ${ }^{\circledR} 7$ are registered trademarks of Microsoft Corporation in the United States.
* Refer to SMC website for version update information, http://www.smcworld.com

Screen Example

Easy mode screen example

Easy operation and simple setting

- Allowing to set and display actuator step data such as position, speed, force, etc.
- Setting of step data and testing of the drive can be performed on the same page.
- Can be used to jog and move at a constant rate.

Normal mode screen example

Detailed setting

- Step data can be set in detail.
- Signals and terminal status can be monitored.
- Parameters can be set.
- JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.

SSMC

Series LEC

Teaching Box/LEC-T1
RoHS

How to Order

Standard functions

- Chinese character display
- Stop switch is provided.

Option

- Enable switch is provided.

* The displayed language can be changed to English or Japanese.

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range [${ }^{\circ}$ C]	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight [g]	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

Easy Mode

Function	Details
Step data	- Setting of step data
Jog	- Jog operation - Return to origin
Test	- 1 step operation Note 1) - Return to origin
Monitor	- Display of axis and step data no. - Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis (Ver. 1.**) - Displayed language setting (Ver. 2.**) - Setting of easy/normal mode - Setting step data and selection of items from easy mode monitor

Menu Operations Flowchart

Normal Mode

Function	Details
Step data	- Step data setting
Parameter	- Parameters setting
Test	- Jog operation/Constant rate movement - Return to origin - Test drive Note 1) (Specify a maximum of 5 step data and operate.) - Forced output (Forced signal output, Forced terminal output) Note 2)
Monitor	- Drive monitor - Output signal monitor Note 2) - Input signal monitor Note 2) - Output terminal monitor - Input terminal monitor
ALM	- Active alarm display (Alarm reset) - Alarm log record display
File	- Data saving Save the step data and parameters of the driver which is being used for communication (it is possible to save four files, with one set of step data and parameters defined as one file). - Load to driver Loads the data which is saved in the teaching box to the driver which is being used for communication. - Delete the saved data. - File protection (Ver. 2.**)
TB setting	- Display setting (Easy/Normal mode) - Language setting (Japanese/English) - Backlight setting - LCD contrast setting - Beep sound setting - Max. connection axis - Distance unit (mm/inch)
Reconnect	- Reconnection of axis

Menu Operations Flowchart

Menu
Step data
Parameter
Monitor
Test
ALM
File
TB setting
Reconnect

CC－Link Direct Input Type

Absolute Type Series LECSC

Pulse Input Type

SSCNET III Type

Absolute Type Series LECSS

AC Servo Motor Driver

Series LECS \square list

Note 1) For positioning type, setting needs to be changed to use with maximum set values.
Setup software (MR Configurator) LEC-MR-SETUP221 is required.
Note 2) Available when the Mitsubishi motion controller is used for the master equipment.

Servo adjustment using auto gain tuning

Auto resonant filter function

－Control the difference between command value and actual action

Auto damping control function

－Automatically suppress low frequency machine vibrations（up to 100 Hz ）

With display setting function

 number and the occupied station count．

System Construction

Absolute encoder compatible Series LECSS (SSCNET III type)
Provided by customer

Power supply
Single phase 100 to 120 VAC $(50 / 60 \mathrm{~Hz})$
200 to 230 VAC $(50 / 60 \mathrm{~Hz})$
Three phase 200 to 230 VAC $(50 / 60 \mathrm{~Hz})$

AC Servo Motor Driver Series LECS \square

Series LECSA (Pulse input type/Positioning type)

- Up to 7 positioning points by point table
- Input type: Pulse input
- Control encoder: Incremental 17-bit encoder (Resolution: 131072 pulse/rev)
- Parallel input: 6 inputs output: 4 outputs

Series LECSB (Pulse input type)

- Input type: Pulse input
- Control encoder: Absolute 18-bit encoder (Resolution: 262144 pulse/rev)
-Parallel input: 10 inputs
output: 6 outputs

Series LECSC (CC-Link direct input type)

- Position data/speed data setting and operation start/stop CC-Link - Positioning by up to 255 point tables (when 2 stations occupied)
- Up to 32 drivers connectable (when 2 stations occupied) with CC-Link communication
- Applicable Fieldbus protocol: CC-Link (Ver. 1.10, max. communication speed: 10 Mbps)
- Control encoder: Absolute 18-bit encoder (Resolution: 262144 pulse/rev)

Series LECSS (SSCNET III type)

- Compatible with Mitsubishi Electric's servo system controller network
- Reduced wiring and SSCNET III optical cable for one-touch connection
- SSCNET III optical cable provides enhanced noise resistance
- Up to 16 drivers connectable with SSCNET III communication
- Applicable Fieldbus protocol: SSCNET III
(High-speed optical communication, max. one-way communication speed: 100 Mbps)
- Control encoder: Absolute 18-bit encoder (Resolution: 262144 pulse/rev)

AC Servo Motor Driver

Incremental Type

Series LECSA

（Pulse Input Type／Positioning Type）
RoHS
Compatible actuators
Absolute Type
LEF LEJ LEY Series LECSB／LECSC／LECSS
（Pulse Input Type）（CC－Link Direct Input Type）（SSCNET III Type）

Dimensions

LECSA \square

Connector name	Description
CN1	I／O signal connector
CN2	Encoder connector
CN3	USB communication connector
CNP1	Main circuit power supply connector
CNP2	Control circuit power supply connector

Connector name	Description
CN1	I／O signal connector
CN2	Encoder connector
CN3	RS－422 communication connector
CN4	Battery connector
CN5	USB communication connector
CN6	Analog monitor connector
CNP1	Main circuit power supply connector
CNP2	Control circuit power supply connector
CNP3	Servo motor power connector

Dimensions

LECSC \square

* Battery included.

LECSS \square

Connector name	Description
CN1A	Front axis connector for SSCNET III optical cable
CN1B	Rear axis connector for SSCNET III optical cable
CN2	Encoder connector
CN3	I/O signal connector
CN4	Battery connector
CN5	USB communication connector
CNP1	Main circuit power supply connector
CNP2	Control circuit power supply connector
CNP3	Servo motor power connector

[^36]Specifications

Series LECSA

Model	LECSA1－S1	LECSA1－S3	LECSA2－S1	LECSA2－S3	LECSA2－S4
Compatible motor capacity［W］	100	200	100	200	400
Compatible encoder	Incremental 17－bit encoder （Resolution： $131072 \mathrm{p} / \mathrm{rev}$ ）				
Main \quad Power voltage［V］	Single phase 100 to 120 VAC（50／60 Hz）		Single phase 200 to 230 VAC（50／60 Hz）		
power Allowable voltage fluctuation［V］	Single phase 85 to 132 VAC		Single phase 170 to 253 VAC		
supply Rated current［A］	3.0	5.0	1.5	2.4	4.5
Control ${ }^{\text {C }}$ Control power supply voltage［V］	24 VDC				
power Allowable voltage fluctuation［V］	21.6 to 26．4 VDC				
supply ${ }^{\text {a }}$（ Rated current［A］	0.5				
Parallel input	6 inputs				
Parallel output	4 outputs				
Max．input pulse frequency［pps］	1 M （for differential receiver）， 200 k （for open collector）				
In－position range setting［pulse］	0 to ± 65535（Command pulse unit）				
Function Error excessive	± 3 rotations				
Function ${ }^{\text {a }}$ Torque limit	Parameter setting				
Communication	USB communication				
Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］	0 to 55 （No freezing）				
Operating humidity range［\％RH］	90 or less（No condensation）				
Storage temperature range［ ${ }^{\circ} \mathrm{C}$ ］	－20 to 65 （No freezing）				
Storage humidity range［\％RH］	90 or less（No condensation）				
Insulation resistance［M M ］	Between the housing and SG： 10 （500 VDC）				
Weight［g］	600				700

Series LECSB

Model		LECSB1－S5	LECSB1－S7	LECSB2－S5	LECSB2－S7	LECSB2－S8
Compatible motor capacity［W］		100	200	100	200	400
Compatible encoder		Absolute 18－bit encoder （Resolution： 262144 p／rev）				
Main power supply	Power voltage［V］	Single phase 100 to 120 VAC（ $50 / 60 \mathrm{~Hz}$ ）		Three phase 200 to 230 VAC $(50 / 60 \mathrm{~Hz})$ Single phase 200 to 230 VAC（ $50 / 60 \mathrm{~Hz}$ ）		
	Allowable voltage fluctuation［V］	Single phase 85 to 132 VAC		Three phase 170 to 253 VAC Single phase 170 to 253 VAC		
	Rated current［A］	3.0	5.0	0.9	1.5	2.6
Control power supply	Control power supply voltage［V］	Single phase 100 to 120 VAC（ $50 / 60 \mathrm{~Hz}$ ）		Three phase 200 to 230 VAC（ $50 / 60 \mathrm{~Hz}$ ）		
	Allowable voltage fluctuation［V］	Single phase 85 to 132 VAC		Single phase 170 to 253 VAC		
	Rated current［A］	0.4		0.2		
Parallel input		10 inputs				
Parallel output		6 outputs				
Max．input pulse frequency［pps］		1 M （for differential receiver）， 200 k （for open collector）				
Function	In－position range setting［pulse］	0 to ± 10000（Command pulse unit）				
	Error excessive	± 3 rotations				
	Torque limit	Parameter setting or external analog input setting（0 to 10 VDC）				
	Communication	USB communication，RS422 communication＊1				
Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		0 to 55 （No freezing）				
Operating humidity range［\％RH］		90 or less（No condensation）				
Storage temperature range［ ${ }^{\circ} \mathrm{C}$ ］		-20 to 65 （No freezing）				
Storage humidity range［\％RH］		90 or less（No condensation）				
Insulation resistance［M 2 ］		Between the housing and SG： 10 （500 VDC）				
Weight［g］		800				1000

＊1 USB communication and RS422 communication cannot be performed at the same time．

Specifications

Series LECSC

Model			LECSC1-S5	LECSC1-S7	LECSC2-S5	LECSC2-S7	LECSC2-S8
Compatible motor capacity [W]			100	200	100	200	400
Compatible encoder			Absolute 18-bit encoder (Resolution: 262144 p/rev)				
Main power supply	Power voltage [V]		Single phase 100 to 120 VAC ($50 / 60 \mathrm{~Hz}$)		Three phase 200 to 230 VAC $(50 / 60 \mathrm{~Hz})$ Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]		Single phase 85 to 132 VAC		Three phase 170 to 253 VAC, Single phase 170 to 253 VAC		
	Rated current [A]		3.0	5.0	0.9	1.5	2.6
	Control power supply voltage [V]		Single phase 100 to 120 VAC ($50 / 60 \mathrm{~Hz}$)		Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]		Single phase 85 to 132 VAC		Single phase 170 to 253 VAC		
	Rated curren	t [A]	0.4		0.2		
Communication specifications	Applicable Fieldbus protocol (Version)		CC-Link communication (Ver. 1.10)				
	Connection cable		CC-Link Ver. 1.10 compliant cable (Shielded 3-core twisted pair cable)*1				
	Remote station number		1 to 64				
	Cable length	Communication speed [bps]	16 k	625 k	2.5 M	5 M	10 M
		Maximum overall cable length [m]	1200	900	400	160	100
		Cable length between stations [m]	0.2 or more				
	I/O occupation area (Inputs/Outputs)		1 station occupied (Remote I/O 32 points/32 points)/(Remote register 4 words/4 words) 2 stations occupied (Remote I/O 64 points/ 64 points)/(Remote register 8 words/8 words)				
	Number of connectable drivers		Up to 42 (when 1 station is occupied by 1 driver), Up to 32 (when 2 stations are occupied by 1 driver), when there are only remote device stations.				
Command method	Remote register input		Available with CC-Link communication (2 stations occupied)				
	Point table No. input		Available with CC-Link communication, RS-422 communication CC-Link communication (1 station occupied): 31 points CC-Link communication (2 stations occupied): 255 points RS-422 communication: 255 points				
	Indexer positioning input		Available with CC-Link communication CC-Link communication (1 station occupied): 31 points CC-Link communication (2 stations occupied): 255 points				
Communication function			USB communication, RS-422 communication*2				
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 55 (No freezing)				
Operating humidity range [\%RH]			90 or less (No condensation)				
Storage temperature range [${ }^{\circ} \mathrm{C}$]			-20 to 65 (No freezing)				
Storage humidity range [\%RH]			90 or less (No condensation)				
Insulation resistance [M ${ }^{\text {] }}$			Between the housing and SG: 10 (500 VDC)				
Weight [g]			800				1000

*1 If the system comprises of both CC-Link Ver. 1.00 and Ver. 1.10 compliant cables, Ver. 1.00 specifications are applied to the cable extensions and the cable length between stations. *2 USB communication and RS422 communication cannot be performed at the same time.

Series LECSS

Model		LECSS1-S5	LECSS1-S7	LECSS2-S5	LECSS2-S7	LECSS2-S8
Compatible motor capacity [W]		100	200	100	200	400
Compatible encoder		Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$)				
Main power supply	Power voltage [V]	Single phase 100 to 120 VAC ($50 / 60 \mathrm{~Hz}$)		Three phase 200 to 230 VAC $(50 / 60 \mathrm{~Hz}$) Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]	Single phase 85 to 132 VAC		Three phase 170 to 253 VAC, Single phase 170 to 253 VAC		
	Rated current [A]	3.0	5.0	0.9	1.5	2.6
Control power supply	Control power supply voltage [V]	Single phase 100 to 120 VAC$(50 / 60 \mathrm{~Hz})$		$\begin{gathered} \text { Single phase } 200 \text { to } 230 \text { VAC } \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$		
	Allowable voltage fluctuation [V]	Single phase 85 to 132 VAC		Single phase 170 to 253 VAC		
	Rated current [A]	0.4		0.2		
Applicable Fieldbus protocol		SSCNET III (High-speed optical communication)				
Communication function		USB communication				
Operating temperature range [${ }^{\circ} \mathrm{C}$]		0 to 55 (No freezing)				
Operating humidity range [\%RH]		90 or less (No condensation)				
Storage temperature range [${ }^{\circ} \mathrm{C}$]		-20 to 65 (No freezing)				
Storage humidity range [\%RH]		90 or less (No condensation)				
Insulation resistance [M 2]		Between the housing and SG: 10 (500 VDC)				
Weight [g]		800				1000

Power Supply Wiring Example：LECSA

LECSA $\square-\square$

Main Circuit Power Supply Connector：CNP1＊Accessory

Terminal name	Function	Details
$\stackrel{\perp}{\square}$	Protective earth（PE）	Should be grounded by connecting the servo motor＇s earth terminal and the control panel＇s protective earth（PE）．
L1	Main circuit power supply	Connect the main circuit power supply． LECSA1：Single phase 100 to 120 VAC， $50 / 60 \mathrm{~Hz}$ LECSA2：Single phase 200 to 230 VAC， $50 / 60 \mathrm{~Hz}$
L2		
P	Regeneration option	Terminal to connect regeneration option LECSA \square－S1：Not connected at time of shipping． LECSA \square－S3，S4：Connected at time of shipping． ＊If regeneration option is required for＂Model Selection＂， connect to this terminal．
C		
U	Servo motor power（U）	Connect to motor cable（U，V，W）．
V	Servo motor power（V）	
W	Servo motor power（W）	

Control Circuit Power Supply Connector：CNP2		
Temmina nane	Function	Details
24 V	Control circuit power supply（24 V）	24 V side of the control circuit power supply（24 VDC） supplied to the driver
ov	Control circuit power supply（0 V）	0 V side of the control circuit power supply（24 VDC） supplied to the driver

Power Supply Wiring Example: LECSB, LECSC, LECSS

For single phase 200 VAC

For three phase 200 VAC

Note) For single phase 200 to 230 VAC, power supply should be connected to L1 and L2 terminals, with nothing connected to L3.
Main Circuit Power Supply Connector: CNP1 *Accessory

Temina name	Function	Details	
L1	Main circuit power supply	Connect the main circuit power supply. LECSB1/LECSC1/LECSS1: Single phase 100 to 120 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L1,L2 LECSB2/LECSC2/LECSS2: Single phase 200 to 230 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L1,L2 Three phase 200 to 230 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: $\mathrm{L} 1, \mathrm{~L}, \mathrm{~L} 3$	
L2			
L3			
N	Do not connect.		
P1	Connect between P_{1} and P_{2}. (Connected at time of shipping.)		
P2			

Control Circuit Power Supply Connector: CNP2 * Accessory

Temina name	Function	Details
P	Regeneration option	Connect between P and D. (Connected at time of shipping.) * If regeneration option is required for "Model Selection", connect to this terminal.
C		
L11	Control circuit power supply	Connect the control circuit power supply. LECSB1/LECSC1/LECSS1: Single phase 100 to 120 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L11,L21 LECSB2/LECSC2/LECSS2: Single phase 200 to 230 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L11,L21 Three phase 200 to 230 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L11,L21
L21		

Motor Connector: CNP3

* Accessory

Teminal name	Function	
U	Servo motor power (U)	Details
V	Servo motor power (V)	
W	Servo motor power (W)	

Control Signal Wiring Example: LECSA

This wiring example shows connection with a PLC (FX3U-पロMT/ES) manufactured by Mitsubishi Electric as when used in position control mode. Refer to the LECSA operation manual and any technical literature or operation manuals for your PLC and positioning unit before connecting to another PLC or positioning unit.

Note 1) For preventing electric shock, be sure to connect the driver circuit power supply connector (CNP1)'s protective earth (PE) terminal (marked Θ) to the control panel's protective earth (PE).
Note 2) For interface use, supply 24 VDC $\pm 10 \% 200 \mathrm{~mA}$ using an external source. 200 mA is the value when all l/O command signals are used and reducing the number of inputs/outputs can decrease current capacity. Refer to "Operation Manual" for required current for interface.
Note 3) The failure (ALM) is ON during normal conditions. When it is OFF (alarm occurs), stop the sequencer signal using the sequence program.
Note 4) The same name signals are connected inside the driver.
Note 5) For command pulse input with an open collector method. When a positioning unit loaded with a differential line driver method is used, it is 10 m or less.

Control Signal Wiring Example: LECSB

This wiring example shows connection with a positioning unit (QD75D) manufactured by Mitsubishi Electric as when used in position control mode. Refer to the LECSB operation manual and any technical literature or operation manuals for your PLC and positioning unit before connecting to another PLC or positioning unit.

Note 1) For preventing electric shock, be sure to connect the driver's protective earth (PE) terminal (marked Θ) to the control panel's protective earth (PE). Note 2) For interface use, supply $24 \mathrm{VDC} \pm 10 \% 300 \mathrm{~mA}$ using an external source.
Note 3) The failure (ALM) is ON during normal conditions. When it is OFF (alarm occurs), stop the sequencer signal using the sequence program.
Note 4) The same name signals are connected inside the driver.
Note 5) For command pulse input with a differential line driver method. For open collector method, it is 2 m or less.

ac Servo Motor Driver Series LECS \square

Control Signal Wiring Example：LECSC

Note 1）For preventing electric shock，be sure to connect the driver＇s protective earth（PE）terminal（marked \oplus ）to the control panel＇s protective earth（PE）． Note 2）For interface use，supply $24 \mathrm{VDC} \pm 10 \% 150 \mathrm{~mA}$ using an external source．
Note 3）The failure（ALM）is ON during normal conditions．When it is OFF（alarm occurs），stop the sequencer signal using the sequence program．

Control Signal Wiring Example: LECSS

Note 6) Connections from Axis 2 onward are omitted.
Note 7) Up to 16 axes can be set.
Note 8) Be sure to place a cap on unused CN1A/CN1B.

Options

Motor cable, Lock cable, Encoder cable (LECS \square common)

LE-CSM- $\square \square$: Motor cable

Cable type

\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable

Cable length (L) [m]

2	2
5	5
\mathbf{A}	10

- Direction of connector

LE-CSB- $\square \square$: Lock cable

LE-CSE- $\square \square$: Encoder cable

* LE-CSM-S $\square \square$ is MR-PWS1CBL \square M-A \square-L manufactured by Mitsubishi Electric. LE-CSB-S $\square \square$ is MR-BKS1CBL \square M-A $\square-L$ manufactured by Mitsubishi Electric. LE-CSE-S $\square \square$ is MR-J3ENCBL \square M-A \square-L manufactured by Mitsubishi Electric. LE-CSM-R $\square \square$ is MR-PWS1CBL $\square M-A \square-H$ manufactured by Mitsubishi Electric. LE-CSB-R $\square \square$ is MR-BKS1CBL \square M-A \square-H manufactured by Mitsubishi Electric. LE-CSE-R $\square \square$ is MR-J3ENCBL \square M-A \square-H manufactured by Mitsubishi Electric.

[^37]SSCNET III optical cable

Regeneration option (LECS \square common)

$\mathbf{0 3 2}$	Allowable regenerative power 30 W
$\mathbf{1 2}$	Allowable regenerative power 100 W

* Confirm regeneration option to be used in "Model Selection".

Dimensions [mm]

Model	LA	LB	LC	LD
LEC-MR-RB-032	30	119	99	1.6
LEC-MR-RB-12	40	169	149	2

Options

Setup software (MR Configurator ${ }^{\text {TM }}$) (LECSA, LECSB, LECSC, LECSS common)

-Display language

Nil	Japanese version
E	English version

* MRZJW3-SETUP221 manufactured by Mitsubishi Electric.

Refer to Mitsubishi Electric's website for operating environment and version update information. MR Configurator ${ }^{T M}$ is a registered trademark or trademark of Mitsubishi Electric.
Adjustment, waveform display, diagnostics, parameter read/write, and test operation can be performed upon a PC.
Compatible PC
When using setup software (MR Configurator ${ }^{T M}$), use an IBM PC/AT compatible PC that meets the following operating conditions.

Hardware Requirements

Equipment		Setup software (MR Configurator ${ }^{\text {TM }}$) LEC-MR-SETUP221
PC Note 1) 2) 3) 4)	OS	Windows ${ }^{\circledR} 98$, Windows ${ }^{\circledR}$ Me, Windows ${ }^{\circledR} 2000$ Professional, Windows ${ }^{\circledR}$ XP Professional / Home Edition, Windows Vista ${ }^{\circledR}$ Home Basic / Home Premium / Business / Ultimate / Enterprise Windows ${ }^{\circledR 7}$ Starter / Home Premium / Professional / Ultimate / Enterprise
	Available HD space	130 MB or more
	Communication interface	Use USB port
Display		Resolution 1024×768 or more Must be capable of high color (16-bit) display. The connectable with the above PC
Keyboard		The connectable with the above PC
Mouse		The connectable with the above PC
Printer		The connectable with the above PC
USB cable		LEC-MR-J3USB Note 5)

Note 1) Before using a PC for setting LECSA point table method/program method or LECSC point table No. input, upgrade to version C5 (Japanese version)
/version C4 (English version). Refer to Mitsubishi Electric's website for version upgrade information.
Note 2) Windows, Windows Vista, Windows 7 are registered trademarks of Microsoft Corporation in the United States and/or other countries.
Note 3) This software may not run correctly depending on the PC that you are using.
Note 4) Not compatible with 64 -bit Windows ${ }^{\circledR}$ XP, 64 -bit Windows Vista ${ }^{\circledR}$ and 64 -bit Windows ${ }^{\circledR} 7$.
Note 5) Order USB cable separately.

USB cable (3 m)

LEC-MR-J3USB

* MR-J3USB manufactured by Mitsubishi Electric.

Cable for connecting PC and driver when using the setup software (MR Configurator ${ }^{\text {TM }}$).
Do not use any cable other than this cable.

Battery (only for LECSB, LECSC or LECSS)
LEC-MR-J3BAT

* MR-J3BAT manufactured by Mitsubishi Electric.

Battery for replacement.
Absolute position data is maintained by installing the battery to the driver.

Design／Selection

\triangle Warning

1．Use the specified voltage．
If the applied voltage is higher than the specified voltage， malfunction and damage to the driver may result．If the applied voltage is lower than the specified voltage，there is a possibility that the load cannot be moved due to internal voltage drop．Check the operating voltage prior to start．Also，confirm that the operating voltage does not drop below the specified voltage during operation．
2．Do not use the products outside the specifications．
Otherwise，fire，malfunction or damage to the driver／actuator can result．Check the specifications prior to use．
3．Install an emergency stop circuit．
Install an emergency stop outside the enclosure in easy reach to the operator so that the operator can stop the system operation immediately and intercept the power supply．
4．To prevent danger and damage due to a breakdown or malfunction of these products，which may occur at a certain probability，a backup system should be arranged in advance by using a multiple－layered structure or by making a fail－safe equipment design，etc．
5．If there is a risk of fire or personal injury due to abnormal heat generation，sparking，smoke generated by the product，etc．，cut off the power supply from this product and the system immediately．

Handling

© Warning

1．Never touch the inside of the driver and its peripheral devices．
Otherwise，electric shock or failure can result．
2．Do not operate or set up this equipment with wet hands． Otherwise，electric shock can result．
3．Do not use a product that is damaged or missing any components．
Electric shock，fire or injury can result．
4．Use only the specified combination between the electric actuator and driver．
Otherwise，it may cause damage to the driver or to the other equipment．
5．Be careful not to touch，get caught or hit by the workpiece while the actuator is moving．
An injury can result．
6．Do not connect the power supply or power up the product until it is confirmed that the workpiece can be moved safely within the area that can be reached by the workpiece．
Otherwise，the movement of the workpiece may cause an accident．
7．Do not touch the product when it is energized and for some time after the power has been disconnected，as it is very hot．
Otherwise，it may cause burns due to the high temperature．
8．Check the voltage using a tester at least 5 minutes after power－off when performing installation，wiring and maintenance．
Otherwise，electric shock，fire or injury can result．

Handling

\triangle Warning

9．Static electricity may cause a malfunction or damage the driver．Do not touch the driver while power is supplied to it．
Take sufficient safety measures to eliminate static electricity when it is necessary to touch the driver for maintenance．
10．Do not use the products in an area where they could be exposed to dust，metallic powder，machining chips or splashes of water，oil or chemicals．
Otherwise，a failure or malfunction can result．
11．Do not use the products in a magnetic field．
Otherwise，a malfunction or failure can result．
12．Do not use the products in an environment where flammable，explosive or corrosive gases，liquids or other substances are present．
Otherwise，fire，explosion or corrosion can result．
13．Avoid heat radiation from strong heat sources，such as direct sunlight or a hot furnace．
Otherwise，it will cause a failure to the driver or its peripheral devices．
14．Do not use the products in an environment with cyclic temperature changes．
Otherwise，it will cause a failure to the driver or its peripheral devices．
15．Do not use the products in an environment where surges are generated．
Devices（solenoid type lifters，high frequency induction furnaces， motors，etc．）that generate a large amount of surge around the product may lead to deterioration or damage to the internal circuits of the products．Avoid supplies of surge generation and crossed lines．
16．Do not install these products in a place subject to vibration and impact．
Otherwise，a malfunction or failure can result．
17．When a surge generating load such as a relay or solenoid valve is directly driven，use a product that incorporates a surge absorption element．

Mounting

© Warning

1．Install the driver and its peripheral devices on fireproof material．
Direct installation on or near flammable material may cause fire．
2．Do not install these products in a place subject to vibration and impact．
Otherwise，a malfunction or failure can result．
3．The driver should be mounted on a vertical wall in a vertical direction．
Also，do not cover the driver＇s suction／exhaust ports．
4．Install the driver and its peripheral devices on a flat surface．
If the mounting surface is not flat or uneven，excessive force may be applied to the housing and other parts resulting in a malfunction．

Series LECS \square Specific Product Precautions 2

\triangle
Be sure to read before handling. Refer to page 469 for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smcworld.com

Power Supply

\triangle Caution

1. Use a power supply with low noise between lines and between power and ground.
In cases where noise is high, use an isolation transformer.
2. Take appropriate measures to prevent surges from lightning. Ground the surge absorber for lightning separately from the grounding of the driver and its peripheral devices.

Wiring

Warning

1. The driver will be damaged if a commercial power supply $(100 \mathrm{~V} / 200 \mathrm{~V})$ is added to the driver's servo motor power (U, V, W). Be sure to check wiring such as wiring mistakes when the power supply is turned on.
2. Connect the ends of the U, V, W wires from the motor cable correctly to the phases (U, V, W) of the servo motor power. If these wires do not match up, it is unable to control the servo motor.

Grounding

© Warning

1. For grounding actuator, connect the copper wire of the actuator to the driver's protective earth (PE) terminal and connect the copper wire of the driver to the earth via the control panel's protective earth (PE) terminal.
Do not connect them directly to the control panel's protective earth (PE) terminal.

2. In the unlikely event that malfunction is caused by the ground, it may be disconnected.

Maintenance

\triangle Warning

1. Perform maintenance checks periodically.

Confirm wiring and screws are not loose.
Loose screws or wires may cause unexpected malfunction.
2. Conduct an appropriate functional inspection and test after completed maintenance.
In case of any abnormalities (if the actuator does not move or the equipment does not operate properly, etc.), stop the operation of the system.
Otherwise, unexpected malfunction may occur and safety cannot be assured.
Conduct a test of the emergency stop to confirm the safety of the equipment.
3. Do not disassemble, modify or repair the driver or its peripheral devices.
4. Do not put anything conductive or flammable inside the driver.
Otherwise, fire can result.
5. Do not conduct an insulation resistance test or insulation withstand voltage test.
6. Reserve sufficient space for maintenance.

Design the system so that it allows required space for maintenance.

Card Motor Series LAT3

 (The transportation, pushing and length measurement systems have been miniaturized through the use of a linear motor.

Maximum pushing force 6 N

Pushing a miniature load

3 functions in 1 unit

- Easy programming (Cycle time entry) dust input
3 parameters: Positioning time, Taiget position, Load mass.

Maximum operating frequency

500 cpm

Rejection of non-conforming products, etc.

Compact and lightweight

Model	W (mm)	L (mm)	H (mm)	Weight (c)
LAT3■-10	50	60	9	130
LAT3■-20		90		190
LAT3■-30		120		250

Workpiece Mounting

The table is provided with dowel pin holes for locating the workpiece as standard equipment.

Two dowel pin holes
Workpiece mounting for locating the workpiece
(Tapped holes)

Cable Mounting

 The cable connector does not protrude above the actuator.

Body Mounting

2 body mounting options

Bottom mounting (Tapped holes)

Top mounting (Through hole)

Two dowel pin holes
for locating the actuator body

Series Variations

Model	Stroke	$\begin{gathered} \text { Sensor } \\ \text { (Optical linear encoder) } \end{gathered}$	Linear motor	Linear guide	Pushing	Positioning repeatability	Pushing measurement	Maximum load mass		Maximum speed
		Resolution	Type	Type	$\begin{aligned} & \text { Maximum } \\ & \text { Instantaneous thrust } \end{aligned}$	Accuracy	Accuracy	Horizontal	Vertical	
LAT3F	10	$1.25 \mu \mathrm{~m}$	Moving magnetic type linear motor	Linear guide with circulating balls	5.2 N	$\pm 5 \mu \mathrm{~m}$	$\pm 10 \mu \mathrm{~m}$	500 g	100 g	$400 \mathrm{~mm} / \mathrm{s}$
	20	$30 \mu \mathrm{~m}$			6 N	$\pm 90 \mu \mathrm{~m}$	$\pm 100 \mu \mathrm{~m}$			
LAT3	30				5.5 N				50 g	

Start-up time is reduced greatly with a system that is ready-to-use and easy to set up.

The functions described below makes the start-up quick and easy.

OParallel input/output status check function
The status of the parallel input signals can be checked, or the parallel output signals can be activated manually using a PC.

The table moves to a position close to the target position, decelerates to low speed and starts pushing after the table has come in contact with the workpiece.

Function for measuring and differentiation of workpieces

The size of the workpiece can be measured based on the table stopping position by driving the table until it comes into contact with the workpiece. The workpieces can be differentiated or checked for quality using parallel output signals that correspond to preset table position ranges.
Furthermore, using the multi-counter (optional accessory: refer to page 459) makes it possible to display the table
 position and output up to 31 preset points.

Operating conditions

List the operating conditions with consideration to the mounting orientation and shape of the workpiece.

2
Select an actuator temporarily.
Select a model temporarily based on the required positioning repeatability and stroke.

Check the load mass and load factor.
Find the allowable load mass Wmax [g] from the graph.
*Confirm that the applied load mass W [g] does not exceed the allowable load mass.

From Table 1, find the correction values for the distances to the moment center. Calculate the static moment M $[\mathrm{N} \cdot \mathrm{m}]$.
From Table 3, find the allowable moment Mmax [$\mathrm{N} \cdot \mathrm{m}$]. Calculate the load factor α_{n} for the static moments.
*Confirm that the total sum of the guide load factors for the static moments does not exceed 1.

Table 2 From Table 2, temporarily select the LAT3-20, which satisfies the positioning repeatability $100 \mu \mathrm{~m}$ and the minimum stroke that satisfies the stroke St $=15$

Model	LAT3-10	LAT3F-10	LAT3-20	LAT3F-20	LAT3-30	LAT3F-30
Stroke $[\mathrm{mm}]$	10		20		30	
Positioning repeatability $[\mu \mathrm{m}]$	± 90	± 5	± 90	± 5	± 90	± 5

Wmax Fig. 2

$\mathrm{W} \leq \mathrm{W}$ max

An Table 1
$\mathrm{M}=\mathrm{W} / 1000 \cdot 9.8(\mathrm{Ln}+\mathrm{An}) / 1000$
Mmax Table 3
$\alpha=M / M \max$
$\Sigma \alpha p+\alpha y+\alpha r \leq 1$

From Fig. 2: $\theta=0$, find $W \max =500$
As $\mathrm{W}=200<\mathrm{Wmax}=500$, the selected model can be used.

From Table 1, A1 $=32.5$

Pitch moment

$$
M p=200 / 1000 \times 9.8(-10+32.5) / 1000
$$

$$
=0.044
$$

From Table 3, Mpmax $=0.3$

$$
\alpha p=0.044 / 0.3=0.15
$$

Roll moment

$$
\text { Mr }=200 / 1000 \times 9.8 \times 35 / 1000
$$

$$
=0.069
$$

From Table 3, Mrmax $=0.2$
$\alpha r=0.069 / 0.2$ $=0.35$
$\Sigma \alpha_{n}=0.15+0.35$
$=0.5 \leq 1$, thus, the selected model can be used.

Check the positioning time.

Find the shortest positioning time Tmin [ms] from the graph.
*Confirm that the positioning time $T p$ [ms] is longer than the shortest positioning time.

Tmin Fig. 3

$T p \geq$ Tmin

From Fig. 3: $\mathrm{St}=15$ and $\mathrm{W}=200$, find $\mathrm{Tmin}=130$
As $T p=200 \geq T \min =130$, the selected model can be used.

Selection Procedure for Pushing Operation

 Selection Procedure Formula／DataSelection Example

Operating conditions

List the operating conditions with consideration to the mounting orientation and shape of the workpiece．
＊When operating the product in a vertical direction， consider the effect of the table weight on the Card Motor（See Table 2）and the weight of the workpiece to find out the pushing force of the Card Motor．

Select an actuator temporarily．

Select a model temporarily based on the required measuring accuracy and stroke．

Check the load mass and moment．
Find the allowable load mass Wmax［g］from the graph．
＊Confirm that the applied load mass W［g］ does not exceed the allowable load mass．
From Table 1，find the correction values for the distances to the moment center．Calculate the static moment $\mathrm{M}[\mathrm{N} . \mathrm{m}]$ ．
From Table 3，find the allowable moment Mmax［ $\mathrm{N} \cdot \mathrm{m}$ ］．Calculate the load factor α_{n} for the static moments．
＊Confirm that the total sum of the guide load factors for the static moments does not exceed 1 ．
－Stroke St［mm］
－Load mass W［g］
－Mounting orientation
－Mounting angle $\theta\left[{ }^{\circ}\right]$
－Amount of overhang（L1，L2，L3）［mm］Fig． 1
－Correction values for the distances to the moment center An［mm］

Fig． 1 Table 1
－Measuring accuracy［ $\mu \mathrm{m}$ ］
－Positioning time Tp［ms］
－Pushing force $\mathrm{F}[\mathrm{N}]$
－Pushing position［mm］
－Pushing direction
－Positioning time＋Pushing time Ta［s］
－Cycle time Tb［s］

Table 2

Model	LAT3－10	LAT3F－10	LAT3－20	LAT3F－20	LAT3－30	LAT3F－30
Stroke $[\mathrm{mm}]$	10		20		30	
Measuring accuracy $[\mathrm{mm}]$	30	1.25	30	1.25	30	1.25

From Table 2，temporarily select the LAT3F－10， which satisfies the measuring accuracy $10 \mu \mathrm{~m}$ and the minimum stroke that satisfies the stroke $\mathrm{St}=8$

As $\mathrm{W}=50<\mathrm{Wmax}=500$ ，the selected model can be used．

From Table 1， $\mathrm{A}_{1}=22.5$

From Table 3，Mpmax $=0.2$

$$
\begin{aligned}
\alpha p & =0.026 / 0.2 \\
& =0.13
\end{aligned}
$$

$\Sigma \alpha_{n}=0.13 \leq 1$ ，thus，the selected model can be used．

4

Check the positioning time．

Find the shortest positioning time Tmin［ms］from the graph． ＊Confirm that the positioning time Tp［ms］is longer than the minimum positioning time．

Tmin Fig． 3

$T p \geq$ Tmin
Check the pushing force．
Calculate the duty ratio［\％］．
Find the allowable thrust setting value from the graph．
From Fig．5，find the allowable pushing force Fmax［N］ generated at the required pushing position and for the allowable thrust setting value． Confirm that the pushing force $F[N]$ does not exceed the allowable pushing force．

Duty ratio $=\mathrm{Ta} / \mathrm{Tb} \times 100$ Fig． 4

$\mathrm{F} \leq \mathrm{Fmax}$

From Fig．3： $\mathrm{St}=8$ and $\mathrm{W}=50$ ，find $\mathrm{Tmin}=100$ As $T p=150 \geq T \min =100$ ，the selected model can be used．

Duty ratio $=4 / 10 \times 100=40 \%$
From Fig．4：LAT3 $\square-10$ and 40% duty ratio， find the allowable thrust setting value $=4.2$

[^38]As $F=4 \leq F \max =4.5$ ，the selected model can be used．

Series LAT3

Model Selection 2

Selection

\triangle Caution

1. The temperature increase of the Card Motor varies depending on the duty ratio and the heat dissipation properties of the base it is mounted onto. If the temperature of the Card Motor becomes high, reduce the duty ratio by increasing the cycle time, or improve the heat transfer properties of the mounting base and the surroundings.
2. The pushing force generated by the Card Motor varies in relation to the thrust setting value depending on the pushing position and the pushing direction. Refer to Fig. 5 for details.

Mounting orientation	Mp: Pitching	My: Yawing	Mr: Rolling
Horizontal			
Vertical			-

Table 1Correction Value for the Distances to the Moment Center: An [mm]

Model	A $_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$
LAT3 \square-10	22.5	2.2
LAT3 \square-20	32.5	2.2
LAT3 \square-30	42.5	2.2

Fig. 2 Allowable Load Mass: Wmax [g]

Fig. 3Shortest Positioning Time: Tmin [ms] (These are only reference values.)

LAT3- \square

Operating conditions

Model: LAT3- \square
Mounting orientation: Horizontal/Vertical
Step data input version: Cycle time entry method (Triangular movement profile)

LAT3F- \square

Operating conditions

Model: LAT3F- \square
Mounting orientation: Horizontal/Vertical
Step data input version: Cycle time entry method (Triangular movement profie)

Fig. 4Allowable Thrust Setting Value

Fig． 5 Pushing force： $\mathrm{F}[\mathrm{N}]$ characteristics（Reference）

LAT3■－10

Pushing direction toward the connector
\checkmark Pushing force

LAT3 \square－ 10

Operating conditions
Mounting orientation：Horizontal table mounting Thrust setting value：Minimum，continuous， instantaneous maximum of
each model．
LAT3■－20

Operating conditions
Mounting orientation：Horizontal table mounting Thrust setting value：Minimum，continuous， instantaneous maximum of each model．
LAT3 \square－20

Table Displacement（Reference）
Displacement through the entire stroke when a load is applied to the point indicated by the arrow

Table displacement due to pitch moment load

LAT3 $\square-10,-20,-30$

Table displacement due to yaw moment load

LAT3 \square－10，－20，－30

Table start position：Retracted end（Connector side） Pushing direction：Away from the connector Pushing position：Positioning distance from the connector side，retracted end

Table start position：Extended end（Opposite side of the connector） Pushing force direction：Toward the connector Pushing position：Positioning distance from the connector side，retracted end
LAT3■－30

Table displacement due to roll moment load

LAT3 \square－10，－20，－30

岂

Table 3Allowable Moment：Mmax［N．m］

Model	Pitch moment／Yaw moment Mpmax，Mymax	Roll moment Mrmax
LAT3 $\square-10$	0.2	0.2
LAT3 $\square-20$	0.3	0.2
LAT3 $\square-30$	0.4	0.2

Model	LAT3－10	LAT3F－10	LAT3－20	LAT3F－20	LAT3－30	LAT3F－30
Stroke［mm］	10		20		30	
Positioning repeatability［ $\mu \mathrm{m}$ ］	± 90	± 5	± 90	± 5	± 90	± 5
Measuring accuracy［ $\mu \mathrm{m}$ ］	30	1.25	30	1.25	30	1.25
Table weight［g］	50		70		90	

Card Motor
 Series LAT3

Note 1) Refer to page 448 for detailed specifications of the controller.
Note 2) If "Without controller" has been selected, the I/O cable is also not included.
Therefore it is not possible to select the I/O cable for this option.
If the I/O cable is required, please order separately. (Refer to page 458, "[I/O cable]" for details.)
Note 3) The DIN rail is not included. If the DIN rail is required, please order separately. (Refer to page 449, "DIN rail" and "DIN rail mounting adapter" for details.)

Specifications

Card Motor Controller Series LATC4 C 6 tars

Note 1) The actuator cable, the counter cable and the controller setting cable are not supplied with the controller. Refer to pages 458 and 459 for options. Note 2) The DIN rail is not included. If the DIN rail is required, please order separately. (Refer to page 449.)

Specifications

Item	LATC4
Setting method	Step data input type
Compatible actuator	Card Motor series LAT3
Number of axis	1 axis
Power supply ${ }^{\text {Note } 1)}$	Power supply voltage: $24 \mathrm{VDC} \pm 10 \%$, Current consumption: Rated 2 A (Peak 3 A) ${ }^{\text {Note 2) }}$, Power consumption: 48 W (Maximum 72 W$)^{\text {Note } 2)}$
Control system	Closed loop
Movement modes	Positioning operation, Pushing operation
Number of step data	15 (Absolute or relative)
Parallel input	6 inputs (Optically isolated)
Parallel output	4 outputs (Optically isolated, open collector output)
Step data	15 points
Position display output ${ }^{\text {Note } 3)}$	A-phase and B-phase pulse signals, RESET signal (NPN open collector output)
LED indicator	2 LED's (Green and Red)
Cooling method	Natural air-cooling
Operating temperature range	5 to $40^{\circ} \mathrm{C}$ (No condensation)
Operating humidity range	35 to 85\% (No condensation)
Insulation resistance	Between case and FG: $50 \mathrm{M} \Omega$ (500 VDC)
Weight ${ }^{\text {Note 4) }}$	Screw mounting: 130 g , DIN rail mounting: 150 g
Controller setting software for PC ${ }^{\text {Note } 5)}$	LATC-W1

Note 1) Do not use a power supply of "inrush current limited" type for the controller.
Note 2) Rated current: Current consumption when continuous thrust is generated. Peak current: Current consumption when maximum instantaneous thrust is generated.
Note 3) Specification for the connection of the separately sold multi-counter (CEU5).
Note 4) Cables are not included.
Note 5) This setting software is not supplied with the controller. Order it separately (Refer to page 459 for details).

How to Mount

a）Screw mounting（LATC4－$\square \square$ ） （Installation with two M4 screws）

b）DIN rail mounting（LATC4－$\square \square$ D） （Installation with the DIN rail）

DIN rail

AXT100－DR－\square

＊For \square ，enter a number from the＂No．＂line in the table below． Refer to the dimensions on page 450 for the mounting dimensions．

L Dimension

No．	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No．	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

DIN rail mounting adapter

LEC－D0（with 2 mounting screws）

The DIN rail mounting adapter can be retrofitted onto a screw mounting type controller．

Series LATC4

Dimensions

a) Screw mounting (LATC4- $\square \square$)

b) DIN rail mounting (LATC4- $\square \square$ D)

Note) When two or more controllers are used, the space between the controllers should be 10 mm or more.

Wiring Example

Power Supply Connector: CN1

*The power supply plug is an accessory (supplied with the controller).
Use an AWG20 ($0.5 \mathrm{~mm}^{2}$) cable for connecting the power supply plug
Power Supply Connector Terminal ${ }^{\text {to a }} 24$ VDC power supply.

Terminal name	Function	Details
DC1 (-)	Power supply (-)	The negative (-) power supply terminal to the controller. Power (-) is also supplied to the Card Motor via the internal circuit of the controller and actuator cable.
DC1 (+)	Power supply (+)	The positive (+) power supply terminal to the controller. Power (+) is also supplied to the Card Motor via the internal circuit of the controller and actuator cable.

*The counter plug is an accessory
(supplied with the controller). (supplied with the controller). Use the counter cable (LATH3- \square)
for connecting the counter to the counter plug.
Counter Connector Terminal

Name	Details	Cable color
PhaseB	Connect to the phase B wire of the counter cable.	White
PhaseA	Connect to the phase A wire of the counter cable.	Red
GND	Connect to the GND wire of the counter cable.	Light gray
RESET	Connect to the Reset wire of the counter cable.	Yellow
FG	Connect to the FG wire of the counter cable.	Green

Parallel I/O Connector: CN5
*Use the I/O cable (LATH2- \square) to connect a PLC, etc., to the CN5 parallel I/O connector.
*The wiring is specific to the type of parallel I/O (NPN or PNP). Please refer to the wiring diagrams below for correct wiring of NPN and PNP type controllers.

©NPN output circuit

(INO

Input Signal

Name	Details
COM	Connect a 24 VDC power supply for the input signals. (Polarity is reversible)
IN0 to IN3	Selection of step data number specified by a Bit No. (combinations of INO to IN3)
DRIVE	Command to drive the motor
SVON	Command to turn the servo motor ON
NC	Not connected

■PNP output circuit

OUT0 and OUT1
Output Signal

Name	Details
DC2 (+)	Connect the 24 V power supply teminal ior the output signas.
DC2 (-)	Connect the OV Power supply temina tor the oupus signas.
BUSY	ON when the actuator is moving Note 1)
ALARM	OFF when an alarm has been generated Note 2)
$\begin{aligned} & \text { OUT0 } \\ & \text { OUT1 } \end{aligned}$	Select an output function among BUSY, INP, INFP, INF, AREA A and AREA B. ${ }^{\text {Note } 3)}$
NC	Not connected

Note 1) Other output functions can also be assigned to the BUSY output.
Note 2) This output signal turns ON when power is supplied to the controller, but turns OFF in alarm condition (N.C.).
Note 3) INP is set as a default for OUTO, and INF for OUT1.
optional output functions ${ }^{\text {Note }}$

Name	Details
BUSY	ON when the actuator is moving Note 1)
INP	ON vihen the table is within the "NPP" Output range of the current 'Target Position'
INFP	ON when the table is within the positioning repeatability range of the accuator for the current 'Target Position"
INF	ON when the pushing force is within the "Threshold Force Value".
AREA A, AREA B	ON when the table is within the set "Area Ranges".

Note) One output function can be selected for each OUTO and OUT1.

Step Data Setting Methods and Movement Profiles

There are two methods for setting the step data in the Card Motor controller as described below.

Speed entry method

To operate the table based on the target position and positioning time, or to operate it at high frequency. The speed, acceleration and deceleration are calculated automatically after the target position and positioning time have been set.
To operate the table at a constant speed.
The table moves to the set target position based on the set speed, acceleration and deceleration.

Cycle Time Entry Method (Positioning Operation)

Setting items: Target position [mm] Positioning time [s] Load mass [g]

Calculate the positioning distance $\mathrm{S}[\mathrm{mm}]$ between the start position and the target position. The table will move to the target position based on the set positioning time tp [s] according to a triangular movement profile as shown in the diagram on the right.

* It is not necessary to enter the speed, acceleration and deceleration since they are calculated automatically by the Card Motor Controller Setting Software.

The positioning time should be set longer than the shortest positioning time shown in Fig. 3 on page 444 with consideration to the load mass during the operation. If there is overshoot or vibration, set the positioning time longer.

Speed Entry Method (Positioning Operation)

Setting items: Target position [mm] Speed [mm/s] Acceleration [mm/s $\left.{ }^{2}\right]$ Deceleration [mm/s $\left.\mathrm{s}^{2}\right]$ Load mass [g]

Calculate the positioning distance S [mm] between the start position and the target position. The table will move to the target position based on the set speed $\mathrm{Vc}[\mathrm{mm} / \mathrm{s}]$, acceleration Aa [$\mathrm{mm} / \mathrm{s}^{2}$] and deceleration $\mathrm{Ad}\left[\mathrm{mm} / \mathrm{s}^{2}\right.$] according to a trapezoidal movement profile as shown in the diagram on the right.

Refer to the equations below for how to calculate the acceleration, constant velocity and deceleration times and distances.
Acceleration time: $\mathbf{t a}=\mathrm{Vc} / \mathrm{Aa}$ [s]
Deceleration time: td = Vc / Ad [s]
Acceleration distance: $\mathrm{Sa}=0.5 \times \mathrm{Aa} \times \mathrm{ta}^{2}[\mathrm{~mm}]$
Deceleration distance: $\mathrm{Sd}=0.5 \times \mathrm{Ad} \times \mathrm{td}^{2}$ [mm]
Distance with constant velocity: Sc=S-Sa-Sd [mm]
Time with constant velocity: tc = Sc/Vc[s]
Positioning time: $\mathbf{t p}=\mathbf{t a}+\mathbf{t c}+\mathbf{t d}$ [s]
(Add settling time to the positioning time to obtain the real cycle time.)
*The settling time varies depending on the positioning distance and load mass. 0.15 seconds can be used as a reference value.

The acceleration and deceleration should be smaller than the maximum acceleration/deceleration with consideration to the load mass during the operation as specified in the diagram on the right.

\triangle Caution

If the acceleration/deceleration is low, the table may not reach the set speed due to a triangular movement profile.

Cycle Time Entry

The controller automatically calculates the speed, acceleration and deceleration after the user has entered how many seconds it should take for the Card Motor table to move to the target position. Therefore, there is no need to enter the speed, acceleration and deceleration.

Cycle Time Entry Method

Step (1) Basic settings

Set each item described below and register it to the controller by clicking [Setup].
(A) [Card Motor Product Number]: Enter the product number of the connected Card Motor.

B [Method to Return to Origin]: Select origin method and position.
© [Card Motor Mounting Orientation]: Select horizontal or vertical.
© [Step Data Input Version]: Select cycle time entry method

Step (2) Setting of the operating conditions -Selection of operation type-

ESelect the [Step Data Setup] tab.
© Select "Operation" type.
Position For transporting a workpiece to a specific position
Pushing For applying force to a workpiece or for measuring the size of a workpiece

<Positioning operation>
Items to enter

© Target position [mm]	Distance from the origin position (or current position) to the target position
$\boldsymbol{(})$ Positioning time [s]	Time required to move to the target position
Select the approximate weight of jigs or	

<Pushing operation>

Items to enter
$\begin{array}{lll}\boldsymbol{G} \text { Target position [mm] } \\ \boldsymbol{\Theta} \text { Positioning time [s] } \\ \boldsymbol{(1) L o a d ~ m a s s ~ [g] ~} & +\boldsymbol{0} \text { Thrust setting value } \\ \text { Force to be applied }\end{array}$

After the operating conditions have been set,
® Click the [Download] button to complete the settings.

Series LATC4

Operation Modes

The Card Motor controller has two operation modes as described below.

Position For transporting a workpiece to a specific position

Pushing For applying force to a workpiece or for measuring the size of a workpiece.

Positioning Operation

Cycle Time Entry Method: The acceleration and deceleration are automatically calculated based on the set positioning time, and the table moves according to a triangular movement profile (1) and stops at the set target position (2).
Speed Entry Method: The table moves based on the set acceleration, speed and deceleration according to a trapezoidal movement profile (1) and stops at the target position (2).

Movement profile for the Cycle Time Entry Method (Triangular)

Movement profile for the Speed Entry Method (Trapezoidal)

Pushing Operation

Cycle Time Entry Method: The acceleration and deceleration are automatically calculated based on the set positioning time, and the table moves according to a triangular movement profile close to the target position (1), and continues to move at low speed (6 mm / s) until it comes into contact with the workpiece (2). After the table has come into contact with the workpiece the Card Motor presses the workpiece (3).
Speed Entry Method: The table moves based on the set acceleration, speed and deceleration according to a trapezoidal movement profile close to the target position (1), and continues to move at low speed ($6 \mathrm{~mm} / \mathrm{s}$) until it comes into contact with the workpiece (2). After the table has come into contact with the workpiece the Card Motor presses the workpiece (3).

Movement profile for the Cycle Time Entry Method (Triangular)

Movement profile for the Speed Entry Method (Trapezoidal)

[^39]Length measurement, differentiation and quality judgement of workpieces is possible using the multicounter (optional accessory: refer to page 459) and the AREA outputs of the controller.

Length Measurement

The amount of table movement is detected by the sensor (encoder) built into the Card Motor for measuring the size of workpieces.

Workpiece Quality Judgement and Differentiation

The area output range preset in the controller is compared with the table position, and the AREA output signals are activated by the controller when the table is within the set range. These signals are used for quality judgement and differentiation of workpieces.

[^40]
Series LATC4

Return to Origin

The Card Motor uses an incremental type sensor (linear encoder) to detect the position of the table. Therefore it is necessary to return the table to the origin position after the power has been turned on. There are three [Return to Origin] methods as stated below. In any of the methods, the origin position (0) will be set at the connector side. When the table is moved away from the connector toward the opposite side, after the [Return to Origin] has been performed, the new position of the table is added in the controller (incremental positive direction).

```
(1)Retracted end
    position
(Connector side)
```


(2) Extended end position

3Sensor origin

The default origin position is set to the connector side [Retracted End Position].
The table is moved toward the connector side, returns 0.3 mm and the origin position (0) is set at 0.3 mm away from the mechanical end stop of the table at the connector side.
After [Return to Origin] is completed, the table stops at the origin position.
An external jig is used to stop the table of the Card Motor when the [Return to Origin] is performed. The table is moved to the opposite side of the connector, returns 0.3 mm and the origin position is set at 0.3 mm away from the mechanical end stop of the table at the opposite side of the connector. After [Return to Origin] is completed, the table stops at the maximum stroke end (\mathbf{A}).

This method is used to achieve high positioning repeatability accuracy of the origin position. Only the LAT3F- \square, which is equipped with a origin position signal (Z-pulse) in the sensor, can be used with this method. The origin position is set based on the Z-pulse from the integrated sensor (linear encoder). The table is moved to the Z-pulse of the integrated sensor, and the origin position of the table is set at a certain distance (\mathbf{J}) away from the Z-pulse when the [Return to Origin] is performed.
After [Return to Origin] is completed, the table stops at the sensor origin signal position.

If the table is returned to the origin position by the mechanical end stopper installed in the Card Motor, the origin position will be set to the position shown below.

[^41]Signal Timing

＊＂ALARM＂is expressed as negative－logic circuit．

AREA Signal

Table position	AREA B（Position 2） AREA B（Position 1） AREA A（Position 2） AREA A（Position 1）	
Output	AREA A AREA B	

[^42]
\triangle Caution

－Use a 2 msec interval or more between input signals，and maintain the signal state for at least 2 msec ．
－Turn ON the SVON signal first after that the ALARM signal has turned ON after power has been supplied to the controller．
If the SVON signal is already ON，the operation will not start for safety reasons． －Keep the DRIVE signal turned ON until the next operation instruc－
tion is given except when stopped during operation．
－When the DRIVE signal is turned OFF during pushing operation，the pushing operation is completed and this position is retained．

出

＊＂ALARM＂is expressed as negative－logic circuit．

Series LATC4

Options
[Actuator cable]
LATH1 - $\mathbf{1}$
Cable length (L)

$\mathbf{1}$	1 m
$\mathbf{3}$	3 m
$\mathbf{5}$	5 m

[I/O cable]
LATH2-1
Cable length (L)

$\mathbf{1}$	1 m
$\mathbf{3}$	3 m
$\mathbf{5}$	5 m

* Conductor size: AWG28

Parallel I/O Plu Terminal no. Function		Terminal List	
		Terminal no.	Function
A1	COM	B1	DC2 (+)
A2	IN 0	B2	DC2 (-)
A3	IN 1	B3	BUSY
A4	IN 2	B4	ALARM
A5	IN 3	B5	OUT 0
A6	DRIVE	B6	OUT 1
A7	SVON	B7	NC
A8	NC	B8	NC
A9	NC	B9	NC
A10	NC	B10	NC

[Counter cable]

LATH3 - 1
Cable length (L)

$\mathbf{1}$	1 m
$\mathbf{3}$	3 m
$\mathbf{5}$	5 m

Wiring Diagram

*1: Ғ indicates a twisted pair cable.

[Multi-counter]

This counter displays the table position of the Card Motor and performs preset outputs according to the program (preset data and output form, etc.) when measuring. The RS-232C can be used to send the table position to a PLC or PC or to set the Multi-counter.

CEU5

External output

Nil	RS-232C
B	RS-232C + BCD

Output transistor type

Nil	NPN open collector output
\mathbf{P}	PNP open collector output

Specifications

Model	CEU5 $\square \square-\square$				
Mounting method	Surface mounting (Fixed by DIN rail or screw)	$	$	Operation mode	Operating mode, Data setting mode, Function setting mode
:---:	:---:				
Display type	LCD with backlight				
Number of digits	6 digits				
Counting speed	100 kHz				
Insulation resistance	Between case and AC line: $500 \mathrm{VDC}, 50 \mathrm{M} \Omega$ or more				
Ambient temperature	0 to $+50^{\circ} \mathrm{C}$ (No freezing)				
Ambient humidity	35 to $85 \% \mathrm{RH}$ (No condensation)				
Weight	350 g or less				

*For details, refer to the Multi-counter catalog and operation manual that can be downloaded from the SMC website, http://www.smcworld.com

[Controller setting kit]

Contents
(1)Controller setting software (CD-ROM)
(2) Controller setting cable
(Communication cable, Conversion unit, USB cable)

Hardware Requirements

PC with WindowsXP or Windows7 and USB1.1 or USB2.0 port.
*Windows ${ }^{\oplus}$, Windows ${ }^{\oplus}$ XP and Windows ${ }^{\oplus} 7$ are registered trademarks of Microsoft Corporation.

Function

OStatus display for parallel input signals and manual output of parallel output signals

OEntering of driven actuator

OSetting of the step data operating conditions
OJog, constant speed and distance movements and test operation
OMonitoring of operation status (parallel input/output signals, position, speed and thrust)

Design/Selection

. Warning

1. Consider possible movements of the actuator in the event of an emergency stop, alarm or power failure.
If power is not supplied to the product due to an emergency stop or if the SVON signal is turned OFF, in the event of an alarm (when temperature of the Card Motor exceeds $70^{\circ} \mathrm{C}$) or at power failure, the table will not be held in place and may be moved by external forces. Design the Card Motor application so that people and equipment will not be injured or damaged by the table movement.

© Caution

1. Do not apply a load outside the specifications.

The Card Motor should be fitted for the application based on the maximum work load and allowable moments. If the product is used outside the specifications, the excess load applied to the guide will lead to play in the guide, decrease in accuracy and the life span of the product will be shortened.
2. Do not use the product in applications where excessive external force or impact is applied to it.
Otherwise, a failure or malfunction can result.
3. The Card Motor is equipped with a stopper to prevent the table from coming off and to be resistant to light impacts generated by returning to origin or during transportation.
Thus, excessive external force or impact may damage the product, so please install a separate external stopper if the operating conditions require.

4. Strong magnet

The Card Motor contains a strong rare earth magnet, whose magnetic field may affect the workpiece. Mount the workpiece away from the Card Motor far enough to prevent the magnetic field from affecting the workpiece.
5. In pushing operation, use thrust setting values within the allowable limits.
Otherwise, it may cause overheating of the workpiece or the mounting surface.
6. The flatness of the mounting surface of the table and rail must be 0.02 mm or less.
Unevenness of a workpiece the Card Motor is mounted to or of the base the Card Motor is mounted onto, can cause play in the guide and an increase in the sliding resistance.
7. SMC products are not intended for use as instruments for legal metrology.
Measurement instruments that SMC manufactures or sells have not been qualified by type approval tests relevant to the metrology (measurement) laws of each country. Therefore, SMC products cannot be used for business or certification ordained by the metrology (measurement) laws of each country.

Handling

Warning

1. Do not touch the product when it is energized or for a few minutes after it has been de-energized.
The surface temperature of the Card Motor can increase up to approximately $70^{\circ} \mathrm{C}$ depending on the operating conditions. Energizing alone may also cause the temperature to increase. Do not touch the Card Motor during operation or when energized to prevent burns or other injuries.

\triangle Caution

1. Strong magnet

The Card Motor contains a strong rare earth magnet. If a magnetic card is brought close to the Card Motor, the card data may get distorted or lost. Do not bring items, which are sensitive to or affected by magnetism close to the product.
2. Do not operate the Card Motor continuously with an allowable set thrust or more at $\mathbf{1 0 0 \%}$ of duty ratio.
The Card Motor may overheat due to the heat generated by the Card Motor itself, and a temperature error or malfunction may occur.
3. Do not hit the stroke ends during operation, except during return to origin and in pushing operation.
Otherwise, a failure can result.
4. For pushing operations, set the target position at least 1 mm away from the position where the pushing tool comes into contact with the workpiece.
Otherwise, the table may hit the workpiece at a speed exceeding the specified pushing speed.
5. The table and the guide rail are made of special stainless steel, but can rust in an environment where droplets of water adhere to it.
6. Do not dent, scratch or cause other damage to the steel ball rolling surface of the table and the rail.
Otherwise, it will result in play or increased sliding friction.
7. Positioning accuracy, thrust and measurement accuracy may vary after the Card Motor or the work load have been mounted, depending on the mounting conditions and environment.
Calibrate them according to the actual application.
8. Consider mounting a bumper on the pushing surface.

If impact to the Card Motor should be avoided during pushing operation, we recommend an elastic bumper is attached on the pushing surface.

Installation

\triangle Caution

1. Strong magnet

The Card Motor contains a strong rare earth magnet. If magnetized workpieces, tools and metallic parts are brought in the vicinity of the Card Motor, they will be attracted, which could cause injury to operators and damage equipment. Take special care when handling and operating the product.
2. Mount the Card Motor on a base with good cooling performance, for example a metal plate.
If the cooling performance is not good enough, the temperature of the Card Motor will increase and a failure can result.
3. Do not apply strong impact or an excessive moment to the Card Motor while mounting a workpiece.
If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.
4. Do not dent, scratch or cause other damage to the table and rail mounting surfaces.
This may cause unevenness in the mounting surface, play in the guide or an increase in the sliding resistance.
5. When mounting the Card Motor, use stainless steel screws with appropriate length and tighten with recommended tightening torque.
If the maximum screw-in depth is exceeded, it may damage the internal components. Using a tightening torque higher than the specified torque may cause a malfunction, and using a lower tightening torque may displace the workpiece or cause it to drop off.

1) Body mounting/Body tapped

Bolt (Stainless steel)	M3 $\times 0.5$
Max. recommended torque $[\mathrm{N} \cdot \mathrm{m}]$	0.63
L1 (Max. screw-in depth) $[\mathrm{mm}]$	4.6
L2 (Plate thickness) [mm]	2.1

2) Body mounting/Through hole

Bolt (Stainless steel)	M2.5 $\times 0.45$
Max. recommended torque $[\mathrm{N} \cdot \mathrm{m}]$	0.36
L3 (Max. screw-in depth) $[\mathrm{mm}]$	2.5
L4 (Plate thickness) $[\mathrm{mm}]$	2.1

3) Workpiece mounting/Top mounting

Bolt (Stainless steel)	M3 $\times 0.5$
Max. recommended torque $[\mathrm{N} \cdot \mathrm{m}]$	0.63
L5 (Max. screw-in depth) $[\mathrm{mm}]$	2.5

6. When connecting the cables, avoid applying any stress to the connector from the cable side.
If an external force or vibration is applied to the connector, a failure can result. Do not bend the cable for approximately 20 mm from the connector and fix this part of the cable with a cable fixture.
Grounding

Warning

1. Always ground the Card Motor.
2. Use a dedicated grounding.

Use a D-class grounding. (Ground resistance 100Ω or less)
3. The grounding point should be as close as possible to the actuator, and the ground wires as short as possible.

\triangle Caution

1. Do not use the products in an area where they could be exposed to dust, metallic powder, machining chips or splashes of water, oil or chemicals.
Otherwise, a failure or malfunction can result.
2. Do not use the products in a magnetic field.

Otherwise, the ambient magnetic field may affect the motor and a malfunction or failure can result.
3. Do not expose the product to a strong light sources, such as direct sunlight.
The Card Motor uses an optical sensor to detect the position, so if it is exposed to a strong light source such as direct sunlight, a malfunction could result. In such a case, install a light shielding plate such as a cover to shield the sensor from light.
4. Do not use the products in an environment where flammable, explosive or corrosive gases, liquids or other substances are present.
Otherwise, fire, explosion or corrosion can result.
5. Avoid heat radiation from strong heat sources, such as direct sunlight or a hot furnace.
Otherwise, the product can overheat and a failure can result.
6. Do not use the products in an environment with cyclic temperature changes.
Otherwise, a failure can result.
7. Use the products within the operating temperature and humidity range.

Maintenance

\triangle Caution

1. Perform regular maintenance and inspections.

Confirm that there is no twisting of wires, play in the table or large sliding friction. This may result in a malfunction.
2. Conduct an appropriate functional inspection and test after completed maintenance.
In case of any abnormalities (if the actuator does not move or the equipment does not operate properly, etc.), stop the operation of the system. Otherwise, unexpected malfunction may occur and safety cannot be assured. Conduct a test of the emergency stop to confirm the safety of the equipment.
3. Do not disassemble, modify or repair the product.
4. Maintenance space

Allow sufficient space for maintenance and inspection.

LEF

a

Controller and Peripheral Devices/ Specific Product Precautions 1

Be sure to read before handling. Refer to page 469 for Safety Instructions. For Electric Actuator Precautions, refer to pages 470 to 475 and Operation Manual. Please download it via our website, http://www.smcworld.com

Design/Selection

© Warning

1. Use the specified voltage.

If the applied voltage is higher than the specified voltage, malfunction and damage to the controller may result. If the applied voltage is lower than the specified voltage, there is a possibility that the load cannot be moved due to internal voltage drop. Check the operating voltage prior to start. Also, confirm that the operating voltage does not drop below the specified voltage during operation. If the current is too low, the Card Motor may not be able to generate the maximum force or cause a malfunction.
2. Do not use the products outside the specifications.

Otherwise, fire, malfunction or damage to the product can result. Check the specifications prior to use.
3. Install an emergency stop circuit.

Install an emergency stop outside the enclosure in easy reach to the operator so that the operator can stop the system operation immediately and intercept the power supply.
4. To prevent danger and damage due to a breakdown or malfunction of these products, which may occur at a certain probability, a backup system should be arranged in advance by using a multiple-layered structure or by making a fail-safe equipment design, etc.
5. If there is a risk of fire or personal injury due to abnormal heat generation, sparking, smoke generated by the product, etc., cut off the power supply from this product and the system immediately.

Handling

\triangle Warning

1. Never touch the inside of the controller and its peripheral devices.
Otherwise, electric shock or failure can result.
2. Do not operate or set up this equipment with wet hands.
Otherwise, electric shock can result.
3. Do not use a product that is damaged or missing any components
Electric shock, fire or injury can result.
4. Do not connect the controller to other devices than the Card Motor.
Otherwise, it may cause damage to the controller or to the other equipment.
5. Be careful not to touch, get caught or hit by the workpiece while the Card Motor is moving.
An injury can result.
6. Do not connect the power supply or power up the product until it is confirmed that the workpiece can be moved safely within the area that can be reached by the workpiece.
Otherwise, the movement of the workpiece may cause an accident.
7. Do not touch the product when it is energized and for some time after the power has been disconnected, as it is very hot.
Otherwise, it may cause burns due to the high temperature.
8. Check the voltage using a tester at least 5 minutes after power-off when performing installation, wiring and maintenance.
Otherwise, electric shock, fire or injury can result
9. Static electricity may cause a malfunction or damage the controller. Do not touch the controller while power is supplied to it.
Take sufficient safety measures to eliminate static electricity when it is necessary to touch the controller for maintenance.

Handling

\triangle Caution

1. When the Multi-counter is not used, attach the counter plug to the counter connector of the controller.
If foreign matter such as metal fragments enters the counter connector, short-circuit may occur.
2. Be sure to perform return to origin prior to start. If the origin position is not set, the product will not operate even if the step data is performed.
3. The positioning time entered and set in the controller setting software is just a target value. It cannot be guaranteed.
The operation may not have been completed even if the set positioning time has passed. In such a case, the BUSY and INP digital output signals can be used to detect when the operation has been completed.
4. Set the "Load Mass" value in the controller setting software according to the approximate weight of jigs or workpieces mounted on the Card Motor.
If the "Load Mass" value in the controller setting software and the weight of the work load are different, the product may vibrate or the positioning accuracy may be reduced.
5. When the load mounted on the Card Motor is small (such as 100 g or less) and the Card Motor has stopped at a target position, depending on the operating conditions the Card Motor may continuously hunt for the target position (vibrate) within the positioning accuracy range.
Please contact an SMC sales representative for how to improve it
6. BUSY signal

The BUSY signal turns ON when the Card Motor begins to operate, and it turns OFF when the operating speed reaches $2 \mathrm{~mm} / \mathrm{s}$ or less However, when the Card Motor operates at a slower speed than 5 mm / s, the BUSY signal may not turn ON at all.
7. INP output signal (OUTO)

Both in positioning operation and pushing operation, the INP signal will turn ON when the table has reached within the INP output range of the target position.
In pushing operation, if the table exceeds the target position and moves outside the INP output range, the INP signal will turn OFF again.
Output range of the INP signal (OUTO)

Model	Output range (mm)
LAT3F- \square	± 0.05
LAT3- \square	± 0.3

Mounting

Warning

1. Install the controller and its peripheral devices on fireproof material.
Direct installation on or near flammable material may cause fire.
2. Do not install these products in a place subject to vibration and impact.
Otherwise, a malfunction or failure can result.
3. Do not mount the controller and its peripheral devices on the same base together with a large-sized electromagnetic contactor or no-fuse breaker that generate vibration. Mount them on different base plates, or keep the controller and its peripheral devices away from such vibration supplies.
Otherwise, a malfunction can result.
4. Install the controller and its peripheral devices on a flat surface. If the mounting surface is not flat or uneven, excessive force may be applied to the housing and other parts resulting in a malfunction.

Power Supply

Warning

1. Use a power supply with low noise between lines and between power and ground.
In cases where noise is high, use an isolation transformer.
2. The power supplies should be separated between the controller power and the I/O signal power, and both power supplies must not be of "inrush current limited" type.
If the power supply is of "inrush current limited" type, a voltage drop may occur during the acceleration or deceleration of the actuator.

Series LAT3

Be sure to read before handling. Refer to page 469 for Safety Instructions. For Electric Actuator Precautions, refer to pages 470 to 475 and Operation Manual. Please download it via our website, http://www.smcworld.com

Power Supply
 Warning

3. Take appropriate measures to prevent surges from lightning. Ground the surge absorber for lightning separately from the grounding of the controller and its peripheral devices.
4. Use the UL-certified products listed below as direct current power supplies.
(1) Limited voltage current circuit in accordance with UL 508.

A circuit in which power is supplied by secondary coil of an insulated transformer that meets the following conditions

- Maximum voltage (No load): 30 Vrms (42.4 V peak) or less

Maximum current: (1) 8 A or less (including short circuit)

(2) Limited by a circuit protector (such as a fuse) with the following ratings | Voltage without load (V peak) | Maximum current rating |
| :--- | :--- |

0 to $20[\mathrm{~V}]$	5.0
Over 20 [V] up to $30[\mathrm{~V}]$	$\frac{100}{}$
	Peak voltage

(2) Circuit (of class 2) which is of maximum 30 Vrms (42.4 V peak) or less, with UL 1310 class 2 power supply unit or UL 1585 class 2 transformer.

Grounding

\triangle Warning

1. Make sure the product is grounded to ensure the noise tolerance of the controller.
Otherwise, it may cause a malfunction, damage, electric shock or fire. Do not share the earth with devices or equipment that generates a strong electromagnetic noise.
2. Use a dedicated grounding.

Use a D-class grounding. (Ground resistance 100Ω or less)
3. The grounding point should be as close as possible to the controller, and the ground wires as short as possible.
4. In the unlikely event that malfunction is caused by the ground, it may be disconnected.

Wiring

\triangle Warning

1. Preparation for wiring

Turn the power supply off before wiring or plugging and unplugging of connectors. Mount a protective cover on the terminal block after the wires have been connected.
2. Do not route the digital I/O signal and power cables together.
Malfunctions stemming from noise may occur if the signal line and output lines are routed together.
3. Confirm proper wiring before turning the power on. Incorrect wiring will lead to malfunction or may damage the controller or its peripheral devices. Confirm that there is no mis-wiring before turning the power on.
4. Reserve enough space for the routing of the cables

If the cables are forced into unreasonable positions, it may damage the cables and connectors, which may lead to misconnection and result in a malfunction. Avoid bending the cables in sharp angles close to the connectors or where they enter the product. Fix the cable as close as possible to the connectors so that mechanical stress cannot be applied to the connectors.

Operating Environment

\triangle Caution

1. Do not use the products in an area where they could be exposed to dust, metallic powder, machining chips or splashes of water, oil or chemicals.
Otherwise, a failure or malfunction can result.
2. Do not use the products in a magnetic field.

Otherwise, a malfunction or failure can result.
3. Do not use the products in an environment where flammable, explosive or corrosive gases, liquids or other substances are present.
Otherwise, fire, explosion or corrosion can result.
4. Avoid heat radiation from strong heat sources, such as direct sunlight or a hot furnace.
Otherwise, it will cause a failure to the controller or its peripheral devices.
5. Do not use the products in an environment with cyclic temperature changes.
Otherwise, it will cause a failure to the controller or its peripheral devices.
6. Do not use the products in an environment where surges are generated.
Devices (solenoid type lifters, high frequency induction furnaces, motors, etc.) that generate a large amount of surge around the product may lead to deterioration or damage to the internal circuits of the products. Avoid supplies of surge generation and crossed lines.
7. The Card Motor and the controller are not immune to lightning strikes.
8. Do not install these products in a place subject to vibration and impact.
Otherwise, a malfunction or failure can result.
Maintenance

\triangle Warning

1. Perform maintenance checks periodically.

Confirm wiring and screws are not loose. Loose screws or wires may cause unexpected malfunction.
2. Conduct an appropriate functional inspection and test after completed maintenance.
In case of any abnormalities (if the actuator does not move or the equipment does not operate properly, etc.), stop the operation of the system. Otherwise, unexpected malfunction may occur and safety cannot be assured. Conduct a test of the emergency stop to confirm the safety of the equipment.
3. Do not disassemble, modify or repair the controller or its peripheral devices.
4. Do not put anything conductive or flammable inside the controller.
Otherwise, fire can result.
5. Do not conduct an insulation resistance test or insulation withstand voltage test.

\triangle Caution

1. Reserve sufficient space for maintenance.

Design the system so that it allows required space for maintenance.

Glossary of Terms

Absolute Encoder

An encoder with a function to detect the absolute position so that it does not have to return to origin whenever it is powered on.

- Absolute Position

A position against the reference point (origin). The antonym is "incremental position."

- Absolute Positioning Repeatability

Difference between the coordinate value and the actual value when positioning at any point indicated by the coordinate value.

- AC Servo Motor

A servo motor rotated by an alternating current in the fixed winding. It does not have a brush and a commutator which are weaknesses of DC servo motors.

Address

An absolute position given in an absolute coordinate system.

Addressing

A method of transferring indications to actuators. One is absolute addressing (absolute coordinate system), the other is incremental addressing (relative coordinate system, indicating the distance of transfer).

- Alarm Signal

An signal sent when something wrong (trouble) has happened in the device.

- A-phase (Signal) Output, B-phase (Signal) Output Whether the axis rotation is clockwise or counterclockwise is judged with difference of A and B phases by outputting incremental figure as shown below. The A-phase precedes the B-phase in case of a clockwise rotation (CW).

Note) The 360° is an electrical angle, not a mechanical angle.

■ Automatic Operation

An operation activated by a start signal from an external device (PLC etc.)

B

Backlash

There is a gap between the screw axis and ball bearing or nut. Therefore, the nut does not move even after the screw axis begins to shift until the gap distance is traveled. This mechanical allowance along the direction of the slider movement is called "backlash".

BCD (Binary Coded Decimal)

One of measures to deal with decimal numbers in computers. A one-digit decimal number (0 to 9) is represented by a four-digit binary number.

■ CCW (Counter Clock Wise)
Counterclockwise motor rotation from the view point of the axis.

■ Closed-loop Method

A control method in which the information of position and speed from the encoder is to be fed back to the controller.

■ Coupling

Shaft coupling. A mechanical component to connect shafts. In the case of electric actuators, coupling is used to connect the motor and the screw playing the role like a floating joint.

■ cpm

Cycle per minute.

■ Critical Speed

The speed of a slider (ball screw rotations) which causes resonance of a ball screw. The physical limit of available speed.

■ CW (Clock Wise)

Clockwise motor rotation from the viewpoint of the axis.

- Cycle Time

Time required to complete one process.

D

- Deviation

Difference from the reference value. In the servo mechanism, it means the difference between the targeted value and the current value.

- Driver

The circuit device to make a motor rotate. A controller and PLC are required to operate it. There exist several drivers (names).

- Duty

Duty means "operating rate" in the machine industry. The time in which the actuator is moving during one cycle time.

E

■ Earth (Ground)
To connect casings of devices and/or electronics' reference potential wirings etc. to the reference potential point in order to eliminate noises and electric shocks, etc. Or it can mean the reference potential point itself.

■ EEPROM (Electrically Erasable PROM)

A kind of nonvolatile memories which can be written on or erased. Sustainable of data even after power is cut off.

Emergency Stop Circuit

A circuit which enables the device to stop ether manually or automatically in case the device is in a dangerous state.

Encoder

A device to detect the number and direction of rotations by shedding light on a rotating disk with slits and sensing on and off states of the light. (The device converts the rotations into pulses.) The controller detects the position and speed of the slider according to the signals from the encoder.

Feedback Control

The representative method of automatic control. A device is controlled by comparing the current state measured and the targeted value, then eliminating the difference.

G

Gain

The ratio of an input and an output (gain). The value is used to adjust reactions (responses) or deviations when a controller controls a servo motor. In servo motors, the ratio works as a parameter to decide responses or stability of movement. There are speed loop gain and position loop gain etc. Generally, to make servo gain higher causes better response and less bias. But when it is too high, vibration (resonance phenomenon) occurs.

- Gantry

A gantry with $X-Y$ axes and a guide to support the Y axis so that the axis can carry a heavy load.

Ground

Refer to "Earth".

H

Hunting

The state in which the movement becomes vibrative near the targeted value.

I

- I/O

Input/Output. An interface to be used to exchange information (signals) with an outside device or devices.

- In-position Signal (INP Signal)

A signal sent when positioning is completed. This signal is to be put out in a allowable range set up against a targeted position.

Incremental Encoder

An encoder capable of detecting the relative position. Implementation of the return to origin action is needed whenever it is powered on, as this type of encoder can detect only relative positions.

Incremental Position

A position from any point settled. The antonym is "absolute position."

- Inertia

A property of matter by which it continues in its existing state (against an inertial system) unless that state is changed by an external force.

■ IP** (International Protection)

Degrees of protection against the intrusion of external solid bodies or liquids, defined by IEC-60529. The first asterisk after "IP" is for numbers 1 to 6 representing degrees of protection against solid bodies such as fingers or dust. The second asterisk is for 1 to 8 against penetration of water.

J

■ Jog Operation

Action of making slight moves intermittently of a motor etc. for positioning of a device or other purposes.

L

■ Lead

Lead for the lead screw means the distance the screw travels when the motor makes one rotation (and the screw makes one rotation accordingly).

■ Linear Encoder

An encoder to detect the linear distance. It is used to detect the position of a linear motor etc. There are the optical type and the magnetic type among others.

- Linear Motor

An motor which makes an linear movement.

■ Load Factor

The ratio of the load against the rated output of the motor.

m

- Maximum Instantaneous Torque

The torque a servo motor can generate for a moment.

- Mechanical End

The position where the slider of an actuator stops mechanically. Mechanical stopper (ex. urethane rubber).

- Moment

The force that makes an object rotate.

- Moment of Inertia

The degree of resistance in rotation.

N

■ Noise Filter

A device to prevent noise to leak or intrude into the power supply, signals, etc.

0

Open Collector Output

A method without load resistance in a voltage output circuit. Signals are sent by sinking the load current. This circuit can switch on/off the load current regardless of whether the load is connected to any V potential, and is widely used for switching external loads such as relays or lights, etc.

Open-loop Method (Control)

One of control methods in which only indications are made without feedbacks. The stepping motor is a representative example. The controller cannot correct the error when a step-out (signal error) occurs. Because the command value and the actual value are not compared.

Origin

The reference point for actuator movements. The actuator memorizes its own position as counts of pulses from the origin.

Origin Precision

Variability of the positions when the return to origin is implemented repeatedly. (If the origin position gets out of its place, every position gets out of its place accordingly.)

Overload

The state in which more than allowable load is applied in a mobile portion of a machine or an electric/electronic circuit.

Parameter

Values to set movements etc. Setting values to specify driving methods to be memorized by controllers or to specify the specifications of actuators connected.

- Photo Coupler

An electronic device to transfer electric signals converted into light. It is not easily affected by noise because the input and output are isolated electrically.

PLC

Programmable Logic Controller. Also called "sequencer." A controller programmable to control production facilities/devices.

- Positioning Repeatability

Variability of stopping position precision when positioning at the same point repeatedly.

PTP Control

Control for a movement from point to point. (Point To Point Control)

- Pushing Return to Origin

A defining method of the origin position by pushing the stopper (end). The return to origin can be made without using the origin sensor.

R

- Rated Force

The force of an actuator which can be generated continuously.

- Rated Rotation

The rotation of an actuator which can be kept continuously.

Rated Torque

The torque of an actuator which can be generated continuously.

- Regenerative Energy

The energy that a motor generates when it rotates. When the rotation speed is reduced the energy returns to the motor driver (controller). This energy is called regenerative energy.

Regenerative Resistor

A resistor to discharge regenerative current.

Resolution

The minimum unit of physical quantity that a measurement device (an encoder etc.) can deal with.

- Return to Origin

The homing movement detecting the origin position.

- Robotic Cable

Cables to be used for movable portions. Resistance is excellent against bending, rubbing, twisting, etc.

■ Rotary Encoder

An encoder to detect rotation angle. It is used to find the position of a servo motor etc. There are the optical type and the magnetic type among others.

■ RS-232C

One of standards for serial telecommunications defined by Electronic Industries Alliance (EIA).

■ RS-422

One of standards for serial telecommunications defined by Electronic Industries Alliance (EIA).

s

SCARA
Selective Compliance Assembly Robot Arm.
A robot arm that has compliance in the horizontal direction and high stiffness in the vertical direction.

- Sequence Control

A control method in which every step of control is advanced one by one according to the already-indicated orders or procedures.

- Servo Free (Servo Off)

The state in which the power supply for the motor is cut off. The slider can be moved freely.

■ Servo Lock (Servo On)

The state in which the power supply for the motor is switched on. The servo mechanism maintains its position even though an external force is applied as long as the position command remains unchanged.

- Servo Motor

A general term to describe motors used in the servo mechanism. Usually the motor has high response characteristic with a position finder such as an encoder and follows a targeted value by using the feedback control. The position control, speed control and thrust control, etc. are possible.

■ Servo Off

The uncontrolled state in a servo mechanism.

- Servo On

The controlled state in a servo mechanism.

- Settling Time

Time elapsed after a speed command becomes zero until the actuator stops in positioning operation.

- Shielded Wire

A cable with its core wire covered by electrostatic shieldaluminum tape, braided wire, etc. Not easily affected by noise.

- Soft Limit

To limit the operating range to the software.

- S-shaped Curve Driving Method

A method in which acceleration is reduced at the beginning and end of the accelerating range, and increased in the middle. Reducing the impact of acceleration and deceleration, this method is effective when smooth movement is required.

Step Motor

A motor which does angular positioning proportional to input pulse signals by using an open-loop control (or a motor activated by synchronization to the frequency of the current). Relatively easy to control movements.

T

Teaching

A way of making a program memorize movements and positions, etc.

Trapezoidal Control (Trapezoidal Driving Method)

A driving method in which acceleration and deceleration are fixed with a constant speed range in between. This method is called the trapezoidal driving method. Because the time and speed relationship of a movement becomes trapezoid in a graph. It is usually used in common positioning.
Types of Screws
There are several types of screws to convert motor rotation into linear movement.

		Features
Ball Screw	Grinding	Ground screws are superior in precision but expensive in cost.
	Rolling	Rolled screws are capable of being mass-produced.
	Less expensive, but low precision and short product life. Not suitable for high-speed operations.	

■ Work Load

Mass of a workpiece which can be transferred by an actuator's table/rod.

z

Z-phase
A phase (signal) to detect a reference point of incremental encoders. It is used to find the origin when the return to origin is being implemented. Detecting the Z-phase signal as a reference point during the return to origin action is called the "Z-phase search".

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.
\triangle Warning:
Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.
Danger : $\begin{aligned} & \text { Danger indicates a hazard with a high level of risk } \\ & \text { which, if not avoided, will result in death or serious }\end{aligned}$ injury.

\triangle Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications. Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.
2. Only personnel with appropriate training should operate machinery and equipment.
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
10. An application which could have negative effects on people, property, or animals requiring special safety analysis.
11. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.
*1) ISO 4414: Pneumatic fluid power - General rules relating to systems
ISO 4413: Hydraulic fluid power - General rules relating to systems.
IEC 60204-1: Safety of machinery - Electrical equipment of machines. (Part 1: General requirements)
ISO 10218-1: Manipulating industrial robots - Safety.
etc.

\triangle Caution

1. The product is provided for use in manufacturing industries.

The product herein described is basically provided for peaceful use in manufacturing industries.
If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary.
If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".
Read and accept them before using the product.

Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first. ${ }^{* 2 \text {) }}$
Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided. This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
*2) Vacuum pads are excluded from this 1 year warranty.
A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

Electric Actuators Precautions 1
Be sure to read before handling.

Wiring/Cables

\triangle Warning

1. Adjustment, installation, or wiring changes should be conducted after power supply to the product is turned off.
Electrical shock, malfunction and damaged can result.
2. Never disassemble the cable. Use only specified cables.
3. Never connect or disconnect the cable or connector with power on.

\triangle Caution

1. Wiring should be done correctly.

For each terminal, voltages other than stipulated in the operation manual should not be applied.
2. Connect the connector securely.

Check for correct connector wiring and polarity.
3. Treat the noise securely.

If the noise is at the same wavelength as the signal lines, it will lead to malfunction. As a countermeasure, separate the high and low electrical lines and shorten the length of wiring, etc.
4. Do not connect power or high voltage cables in the same wiring path as the unit.
The product can malfunction due to noise and surge voltage interference in the signal line from the power and high voltage cables.
Separate the wiring of the controller and its peripheral device from that of power and high voltage cables.
5. Be careful that cables are not caught by actuator movement.
6. Operate with cables such that they are not easily moved. Avoid bending cables at sharp angles where they enter the product.
7. Avoid twisting, folding, rotating or applying an external force to the cable.
Risk of electric shock, wire breakage, contact failure and loss of control for the product can occur.
8. Do not move cables connected to the actuator.

The motor and lock cables are not robotic cables and can be broken when moved. Therefore, fix the cables and the connectors (part " A " in figure below) in place during set up.

9. Select "Robotic cable (Flexible cable)" when repeated bending of the actuator cable is required. Also, do not put cables into a flexible moving tube with a radius smaller than the specified value ($\mathbf{5 0} \mathbf{~ m m}$ or longer).
Risk of electric shock, wire breakage, contact failure and loss of control for the product can occur if "Standard cables" are used for repeated bending.

\triangle Caution

10. Verify wiring insulation.

Insulation failure (interference with other circuits, poor insulation between terminals, etc.) could introduce excessive voltage or current to the controller or its peripheral devices and damage them.
11. The speed and force may change depending on the cable length, load and mounting conditions.
Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)

[Transportation]

\triangle Caution

1. Do not carry or swing the product by the cable.

Design/Selection

© Warning

1. Be sure to read the operation manual (this manual and the one for the controller: LEC series).
Handling or usage/operation other than that specified in the operation manual may lead to breakage and operation failure of the product.
Any damage attributed to the use beyond the specifications is not guaranteed.
2. There is a possibility of dangerous sudden action by the product if sliding parts of machinery are twisted due to external forces etc.
In such cases, human injury may occur, such as by catching hands or feet in the machinery, or damage to the machinery itself may occur. Design the machinery should be designed to avoid such dangers.
3. A protective cover is recommended to minimize the risk of personal injury.
If a driven object and moving parts of the product are in close proximity, personal injury may occur. Design the system to avoid contact with the human body.
4. Securely tighten all stationary parts and connected parts so that they will not become loose.
When the product operates with high frequency or is installed where there is a lot of vibration, ensure that all parts remain secure.
5. Consider a possible loss of power source.

Take measures to prevent injury and equipment damage even in the case of a power source failure.
6. Consider emergency stops.

Design so that human injury and/or damage to machinery and equipment will not be caused when machinery is stopped by a safety device under abnormal conditions such as a power outage or a manual emergency stop.
7. Consider the action whole system.

Design the system so that human injury or equipment damage will not occur upon restart of operation of whole system.
8. Disassembly and modification is prohibited.

Do not modify or reconstruct (including additional machining) the product. An injury or failure can result. Electric Actuators Precautions 2

Be sure to read before handling.

Design/Selection

\triangle Warning

9. Do not use the stop signal, "EMG" of the controller and stop switch on the teaching box as the emergency stop of system.
The stop signal, "EMG" of controller and the stop switch on the teaching box are for decelerating and stopping the actuator.
Design the system with an emergency stop circuit which is applied relevant safety standard separately.
10. When using it vertically for applications, it is necessary to build in a safety device.
The table may fall due to the weight of workpiece. The safety device should not interfere with normal operation of the machine.

\triangle Caution

1. Operate within the limits of the maximum usable stoke. The product will be damaged if it is used with the stroke which is over the maximum stroke. Refer to the specifications of the product.
2. When the product repeatedly cycles with partial strokes, operate it at a full stroke at least once a day or every 1000 strokes.
Otherwise, lubrication can run out.
3. Do not use the product in applications where excessive external force or impact force is applied to it.
The product can be damaged. The components including the motor are manufactured to precise tolerances. So that even a slight deformation may cause a malfunction or seizure.
4. During operation (positioning operation or pushing operation), it cannot be returned to the origin position.
5. Refer to Auto Switches Precautions (Best Pneumatics No. 2) when an auto switch is built in and used.
6. When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

Mounting

\triangle Warning

1. Keep the manual in a safe place future reference.

The product should be mounted and operated after thoroughly reading the operation manual and understanding its contents.
2. Observe the tightening torque for screws.

Tighten the screws to the recommended torque for mounting the product.
3. Do not make any alterations to the product.

Alterations made to the product may lead to a loss of durability and damage to the product, which can lead to human injury and damage to other equipment and machinery.
4. Connect the rod axis and the load and the direction of the movement being sure to match it.
It causes to cause the complication in the lead screw, to be worn out, and to damage it when not matching.
5. When an external guide is used, connect the moving parts of the actuator and the load in such a way that there is no interference at any point within the stroke.
Do not scratch or dent the sliding parts of the product tube or piston rod etc., by striking or grasping them with other objects. The components are manufactured to precise tolerances. So that even a slight deformation may cause a malfunction or seizure.

Mounting

\triangle Warning

6. Prevent the seizure of rotating parts (pins, etc.) by applying grease.
7. Do not use the product until you verify that the equipment can operate properly.
After mounting or repair, connect the power supply to the product and perform appropriate functional inspections to check it is mounted properly.
8. When one side is fixed

When an actuator is operated at high speed with one end fixed and the other free (basic, flange or direct mount types), a bending moment may act on the actuator due to vibration generated at the stroke end, which can damage the actuator. In such a case, install a mounting bracket to suppress the vibration of the actuator body or reduce the speed so that the actuator does not vibrate. Also, use a mounting bracket when moving the actuator body or when a long stroke actuator is mounted horizontally and fixed at one end.
9. Do not apply strong impact or an excessive moment while mounting the product or a workpiece.
If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.
10. Maintenance space

Reserve sufficient space for maintenance.

Handling

© Warning

1. Do not touch the motor in operation.

The surface temperature of the motor can increase to approx. $90^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ due to operating conditions. This temperature increase may also be caused by energizing alone. As it may cause burns, do not touch the motor when in operation.
2. If abnormal heating, smoking or fire, etc., occurs in the product, immediately shut off the power supply.
3. Stop operation at once if there are abnormal noises or vibrations.
Abnormal noises or vibrations may mean that the product is not properly mounted, and if allowed to continue in this state, damage to the equipment may occur.
4. Never touch the rotating part of the motor while in operation.
5. When installing, adjusting, inspecting or performing maintenance on the product, controller and related equipment, be sure to shut off the power supply to them. Then, lock it so that no one other than the person working can turn the power on, or implement measures such as a safety plug.
6. In the case of the actuator that has a servo motor (24 VDC), the motor phase detection step is done by inputting the servo on signal just after the controller power is turned on. The motor phase detection step moves the table/rod for the distance of the one screw-lead as the maximum.
(The motor rotates in the reverse direction if the table hits an obstacle such as the end stop damper.) Take the motor phase detection step into consideration for the installation and operation of this actuator.

\triangle Caution

1. Keep the controller and the actuator combined as delivered for use.
The actuator is set in parameters for shipment. If it is combined with a different parameter, failure can result.

Electric Actuators Precautions 3

Be sure to read before handling.

Handling

\triangle Caution

2. Conduct the following inspection before operation.
a) Confirm that the power supply line or each signal line is not broken.
b) Confirm that the power supply line or each signal line is not loosened.
c) Confirm that the electric actuator/cylinder/controller/driver is not mounted loosely.
d) Confirm that the electric actuator/cylinder/controller/driver is operated correctly.
e) Confirm the function of the emergency stop of the total system.
3. In case several persons are doing the job, determine the procedure, signs, measures against abnormality and restarting measures in advance. Then, let the person who is not doing the job, supervise that job.
4. The product can operate at a different speed from the set speed depending on load and resistance.
When selecting a product, check the catalog for the instructions regarding selection and specifications.
5. Do not apply a load, impact or resistance in addition to the transferred load during return to origin.
The product is made return to origin by pushing force, which causes the displacement of origin position.
6. Do not remove the name plate.
7. Operation test should be done by low speed. Start operation by predefined speed after confirming there is no trouble.

[Grounding]

© Warning

1. Be certain to ground the actuator.
2. Dedicated grounding should be used.

Grounding should be to a D-class ground. (Ground resistance of 100Ω or less.)
3. Grounding should be performed near the actuator to shorten the grounding distance.

[Unpackaging]
 \triangle Caution

1. Check the received product is as ordered.

If the different product is installed from the one ordered, injury or damage can result.

Operating Environment

\triangle Warning

[^43]
Operating Environment

. Warning

2. Do not use in an environment where the product is directly exposed to liquid, such as cutting oils.
If cutting oils, coolant or oil mist adheres to the product, failure or increased sliding resistance can result.
3. Install a protective cover when the product is used in an environment directly exposed to foreign matters such as dust, cutting chips and spatter.
Looseness or increased sliding resistance can result.
4. Shade the sunlight in the place where the product is applied with direct sunshine.
5. In locations near heat sources, block off them.

When there is a heat source surrounding the product, the radiated heat from the heat source can increase the temperature of the product beyond the operating temperature range. Protect it with a cover, etc.
6. Grease oil can be decreased due to external environment and operating conditions, and it deteriorates lubrication performance to shorten the life of the product.

[Storage]

. Warning

1. Do not store the product in a place in direct contact with rain or water drops or is exposed to harmful gas or liquid.
2. Store in an area that is shaded from direct sunlight and has a temperature and humidity within the specified range ($-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ and 35 to 85% no condensation or freezing).
3. Do not apply vibration and impact to the product during storage.

Maintenance

© Warning

1. Do not disassemble or repair the product.

Fire or electric shock can result.
2. Before modifying or checking the wiring, the voltage should be checked with a tester 5 minutes after the power supply is turned off.
Electrical shock can result.

\triangle Caution

1. Perform maintenance work according to the procedures indicated in the operation manual.
Improper handling can cause an injury, damage or malfunction of equipment and machinery.
2. Removal of equipment

When equipment is removed, first confirm that measures are in place to prevent dropping or runaway of driven objects, etc., and then proceed after cutting off the electric power. When starting up again, proceed with caution after confirming that conditions are safe.

[Lubrication]

\triangle Caution

1. The product has been lubricated for life at manufacturer, and does not require any further lubrication.
When lubrication is applied, special grease must be used. Please read the maintenance manual of each actuator.

Electric Actuators Precautions 4

Be sure to read before handling.

Actuator with Lock

. Warning

1. Do not use the lock as a safety brake or a control that requires a locking force.
The lock used for the product with lock is designed to prevent dropping of workpiece.
2. For vertical mounting, use the product with lock.

If the product is not equipped with lock, the product will move and drop the workpiece when the power is removed. Please ensure that your safe equipment designs include measures against falling workpieces.
3. "Drop prevention" means preventing a workpiece from dropping due to its weight when the product operation is stopped and the power supply is turned off.
4. Do not apply an impact load or strong vibration while the lock is activated.
If an external impact load or strong vibration is applied to the product, the lock will lose it's holding force and damage to the sliding part of the lock or shortening of lifespan can result. The same situations will happen when the lock slips due to a force over the holding force, as this accelerates the wear to the lock.
5. Do not apply liquid or oil and grease to the lock or its surrounding.
When liquid or oil and grease is applied to the sliding part of the lock, its holding force will reduce significantly.
6. Take measures against drops and check that safety is assured before mounting, adjustment and inspection of the product.
If the lock is released with the product mounted vertically, a work piece can drop due to its weight.
7. When the actuator is operated manually (when SVRE output signal is off), supply 24 VDC to the [BK RLS] terminal of the power supply connector.
If the product is operated without releasing the lock, wearing of the lock sliding surface will be accelerated, causing reduction in the holding force and the life of the locking mechanism.
8. Do not supply 24 VDC power supply constantly to the [BK RLS (Lock release)] terminal.
Stop supplying 24 VDC power supply to the [BK RLS (Lock release) terminal during normal operation. If power is supplied to the [BK RLS] terminal continuously, the lock will be released, and workpieces may be dropped at stop (EMG).

Controller/Driver and Peripheral Devices

Design/Selection

\triangle Warning

1. Be sure to apply the specified voltage.

Otherwise, malfunction and breakage may be caused. If the applied voltage is lower than the specified, it is possible that the load cannot be moved due to an internal voltage drop of the controller.
Please check the operating voltage before use.
2. Do not operate the product beyond the specifications.

Otherwise, a fire, malfunction or actuator damage can result.
Please check the specifications before use.
3. Install an emergency stop circuit.

Please install an emergency stop outside of the enclosure so that it can stop the system operation immediately and intercept the power supply.
4. In order to prevent damage due to the breakdown and the malfunction of the controller and its peripheral devices, a backup system should be established previously by giving a multiple-layered structure or a failsafe design to the equipment, etc.
5. If a danger against the personnel is expected due to an abnormal heat generation, smoking, ignition, etc., of the controller and its peripheral devices, cut off the power supply for the product and the system immediately.

Handling

\triangle Warning

1. Do not touch the inside of the controller and its peripheral devices.
It may cause an electric shock or damage to the controller.
2. Do not perform the operation or setting of the product with wet hands.
It may cause an electric shock.
3. Product with damage or the one lacking of any components should not be used.
It may cause an electric shock, fire, or injury.
4. Use only the specified combination between the electric actuator and controller.
It may cause damage to the actuator or the controller.
5. Be careful not to be caught or hit by the workpiece while the actuator is moving.
It may cause an injury.
6. Do not connect the power supply or power on the product before confirming the area to which the workpiece moves is safe.
The movement of the workpiece may cause an accident.
7. Do not touch the product when it is energized and for some time after power has been disconnected, as it is very hot.
It may lead to a burn due to the high temperature.
8. Check the voltage using a tester for more than 5 minutes after power-off in case of installation, wiring and maintenance.
It may cause an electric shock, fire, or injury.

Handling

\triangle Warning

9. Static electricity may cause malfunction or break the controller. Do not touch the controller while power is supplied.
When touching the controller for maintenance, take sufficient measures to eliminate static electricity.
10. Do not use the product in an area where dust, powder dust, water, chemicals or oil is in the air.
It will cause failure or malfunction.
11. Do not use the product in an area where a magnetic field is generated.
It will cause failure or malfunction.
12. Do not install the product in the environment of flammable gas, explosive gas and corrosive gas.
It could lead to fire, explosion and corrosion.
13. Radiant heat from strong heat supplies such as a furnace, direct sunlight, etc., should not be applied to the product.
It will cause failure of the controller or its peripheral devices.
14. Do not use the product in an environment subject to a temperature cycle.
It will cause failure of the controller or its peripheral devices.
15. Do not use the product in a place where surges are generated.
When there are units that generate a large amount of surge around the product (e.g., solenoid type lifters, high frequency induction furnaces, motors, etc.), this may cause deterioration or damage to the product's internal circuit. Avoid supplies of surge generation and crossed lines.
16. Do not install the product in an environment under the effect of vibrations and impacts.
It will cause failure or malfunction.
17. When a surge generating load such as a relay or solenoid valve is directly driven, use a product that incorporates a surge absorption element.
18. The power supplies should be separated between the driver power and the I/O signal power and both power supplies must not be of "inrush-current limited" type. If the power supply is of "inrush-current limited" type, a voltage drop may occur during the acceleration or deceleration of the actuator.

Controller/Driver and Peripheral Devices

Installation

\triangle Warning

1. Install the controller and its peripheral devices on a fire-proof material.
A direct installation on or near a flammable material may cause fire.
2. Do not install the product in a place subject to vibrations and impacts.
It will cause failure or malfunction.
3. Do not mount the controller and its peripheral devices together with a large-sized electromagnetic contactor or no-fuse breaker, which generates vibration, on the same panel. Mount them on different panels, or keep the controller and its peripheral devices away from such a vibration supply.
4. Install the controller and its peripheral devices on a flat surface.
If the mounting surface is distorted or not flat, an unacceptable force may be added to the housing, etc., to cause troubles.
5. Take measure so that the operating temperature of the driver and its peripheral devices are within the range of the specifications. Also, the driver should be installed with 50 mm or larger spaces between each side of it and the other structures or components.
It may cause a malfunction of the driver and its peripheral devices and a fire.

Power Supply

\triangle Caution

1. Use a power supply that has low noise between lines and between power and ground.
In cases where noise is high, an isolation transformer should be used.
2. To prevent surges from lightning, an appropriate measure should be taken. Ground the surge absorber for lightning separately from the grounding of the controller and its peripheral devices.

Grounding

\triangle Warning

1. Be sure to carry out grounding in order to ensure the noise tolerance.
2. Dedicated grounding should be used.

Grounding should be to a D-class ground. (Ground resistance of 100Ω or less)
3. Grounding should be performed near the controller and its peripheral devices to shorten the grounding distance.
4. In the unlikely event that malfunction is caused by the ground, it may be disconnected.

Wiring

© Warning

1. Do not apply any excessive force to cables by repeated bending, tensioning or placing a heavy object on the cables.
It may cause an electric shock, fire, or breaking of wire.
2. Connect wires and cables correctly.

Incorrect wiring could break the driver or its peripheral devices depending on the seriousness.
3. Do not connect wires while the power is supplied.

It can break the driver or its peripheral devices could be damaged to cause a malfunction.
4. Do not carry the product by holding its cables.

It may cause an injury or damage to the product.
5. Do not connect power or high voltage cables in the same wiring path as the unit.
The product can malfunction due to noise and surge voltage interference in the signal line from the power and high voltage cables.
Separate the wiring of the driver and its peripheral device from that of power and high voltage cables.
6. Verify wiring insulation.

Insulation failure (interference with other circuits, poor insulation between terminals, etc.) could introduce excessive voltage or current to the driver or its peripheral devices and damage them.

Maintenance

\triangle Warning

1. Perform a maintenance check periodically.

Confirm wiring and screws are not loose.
Loose screws or wires may cause unintentional malfunction.
2. Conduct an appropriate functional inspection after completing the maintenance.
At times where the equipment or machinery does not operate properly, conduct an emergency stop of the system. Otherwise, an unexpected malfunction may occur and it will become impossible to secure the safety. Conduct a test of the emergency stop in order to confirm the safety of the equipment.
3. Do not disassemble, modify or repair the controller and its peripheral devices.
4. Do not put anything conductive or flammable inside of the controller.
It may cause a fire.
5. Do not conduct an insulation resistance test and withstand voltage test on the product.
6. Ensure sufficient space for maintenance activities.

Design the system that allows required space for maintenance.

Europe/Africa

Germany SMC Pneumatik GmbH

Boschring 13-15, 63329 Egelsbach, Germany
Phone: (0) 6103/402-0 Fax: (0) 6103/402-139

Switzerland SMC Pneumatik AG

Dorfstrasse 7, Postfach, 8484 Weisslingen, Switzerland
Phone: 052/396 3131 Fax: 052/396 3191
U.K. SMC Pneumatics (U.K.) Ltd.

Vincent Avenue, Crownhill, Milton Keynes, Buckinghamshire MK8 0AN, United Kingdom
Phone: 0845-121-5122 Fax: 01908555064
France SMC Pneumatique SA
1, Boulevard de Strasbourg, Parc Gustave Eiffel
Bussy Saint Georges F-77607 Marne La Vallee Cedex 3, France
Phone: (0)1-6476 1000 Fax: (0)1-6476 1010
Spain/Portugal SMC España S.A.
Zuazobidea 14, 01015 Vitoria, Spain
Phone: 945-184 100/902-255 255 Fax: 945-184 510
Italy SMC Italia S.p.A.
Via Garibaldi 62, I-20061Carugate, (Milano), Italy
Phone: (0)2-9271.1 Fax: (0)2-9271360
Greece SMC Hellas E.P.E.
Anagenniseos 7-9-P.C. 14342 N.Philadelphia, Athens, Greece
Phone: 2102717265 Fax: 2102717766
Ireland SMC Pneumatics (Ireland) Ltd.
2002 Citywest Business Campus, Naas Road, Saggart, Co. Dublin, Ireland Phone: (0)1-403 9000 Fax: (0)1-464-0500
Netherlands SMC Pneumatics B.V.
De Ruyterkade 120, NL-1011 AB Amsterdam, the Netherlands
Phone: (0)20-5318888 Fax: (0)20-5318880
Belgium SMC Pneumatics N.V./S.A.
Nijverheidsstraat 20, B-2160 Wommelgem, Belgium
Phone: (0)3-355-1464 Fax: (0)3-355-1466
Denmark SMC Pneumatik A/S
Egeskovvej 1, DK-8700 Horsens, Denmark
Phone: 70252900 Fax: 70252901
Austria SMC Pneumatik GmbH (Austria)
Girakstrasse 8, AT-2100 Korneuburg, Austria
Phone: 226262280 Fax: 226262285
Czech Republic SMC Industrial Automation CZ s.r.o.
Hudcova 78a, CZ-61200 Brno, Czech Republic
Phone: 541424611 Fax: 541218034
Hungary SMC Hungary Ipari Automatizálási Kft.
Torbyágy u. 19, HU-2045 Törökbálint, Hungary
Phone: 23511390 Fax: 23511391
Poland SMC Industrial Automation Polska Sp. zo.o.
ul. Konstruktorska 11A, PL-02-673 Warszawa, Poland
Phone: 222119600 Fax: 222119617
Slovakia SMC Priemyselná Automatizácia Spol s.r.o.
Fantranská 1223, Teplicka nad vahom, 01301, Slovakia
Phone: 41-321321-1 Fax: 41-321321-0
Slovenia SMC Industrijska Avtomatika d.o.o.
Mirnska cesta 7, SLO-8210 Trebnje, Slovenia
Phone: 73885412 Fax: 73885435
Bulgaria SMC Industrial Automation Bulgaria EOOD
Business Park Sofia, Building 8-6th floor, BG-1715 Sofia, Bulgaria
Phone: 29744492 Fax: 29744519
Croatia SMC Industrijska Automatika d.o.o.
Zagrebačka Avenija 104,10 000 Zagreb
Phone: 13707288
Bosnia-Herzegovina <Distributor>
A.M. Pneumatik d.o.o.

Ul. Goli Brijeg br. 64, BA-75000 Tuzla, Bosnia and Herzegovina Phone: 35282181 Fax: 35282181
Serbia <Distributor> Best Pneumatics d.o.o.
Ilije Garasanina 5, 11000 Beograd, Serbia
Phone: 113221758 Fax: 113227571

Ukraine <Distributor> PNEUMOTEC Corp.

Vyshgorodskaya str., 23A, r.2, UA-04074, Kiev, Ukraine
Phone: 444606177 Fax: 444606177
Albania <Sales partner> SMC Industrijska Avtomatika d.o.o.
Mirnska cesta 7, SLO-8210 Trebnje, Slovenia
Phone: +386 73885412 Fax: +386 73885435
Macedonia <Sales partner> SMC Industrial Automation Bulgaria EOOD
Business Park Sofia, Building 8-6th floor, BG-1715 Sofia, Bulgaria
Phone: +359 29744492 Fax: +359 29744519
Finland SMC Pneumatics Finland Oy
PL72, Tiistinniityntie 4, SF-02031 Espoo, Finland
Phone: 207513513 Fax: 207513595
Norway SMC Pneumatics Norway AS
Vollsveien 13 C, Granfos Næringspark N-1366 Lysaker, Norway
Phone: 67129020 Fax: 67129021
Sweden SMC Pneumatics Sweden AB
Ekhagsvägen 29-31, SE-141 71 Segeltorp, Sweden
Phone: 86031200 Fax: 86031290
Estonia SMC Pneumatics Estonia Oü
Laki 12, EE-10621 Tallinn, Estonia
Phone: 6510370 Fax: 6510371
Latvia SMC Pneumatics Latvia SIA
Dzelzavas str. 120g, Riga, LV-1021, Latvia
Phone: 7817700 Fax: 7817701
Lithuania UAB "SMC Pneumatics"
Oslo g. 1, LT-04123 Vilnius, Lithuania
Phone: 52648126 Fax: 52648126
Romania SMC Romania S.r.I.
Str Frunzei 29, Sector 2, Bucharest, Romania
Phone: 213205111 Fax: 213261489
Russia SMC Pneumatik LLC.
Business center, building 3, 15 Kondratjevskij prospect,
St.Petersburg, Russia, 195197
Phone: (812) 718-5445 Fax: (812) 718-5449
Kazakhstan LLP "SMC Kazakhstan"
Office 509, 18, Tsiolkovskij str. Astana, Rep. of Kazakhstan
Phone: (7172) 541-407
Turkey SMC Pnömatik Sanayi Ticaret ve Servis A.Ş.
Gülbahar Caddesi, Aydın Plaza, No: 9/4
Güneşli - 34212 , Istanbul
Phone: 212-489-0440 Fax: 212-489-0437

Morocco <Distributor> Soraflex

111 rue Michel de l'Hospital Roches Noires Casablanca Morocco
Phone: (522) 240-613 Fax: (522) 400-722
Tunisia <Distributor> Byms
9 rue de Plastic ZI Sidi Rezig BP 1762033 Megrine Tunisia
Phone: (71) 428-272 Fax: (71) 427-758
Algeria <Distributor> Djamilex
219 Avenue de la Liberation 72000 Le Mans France
Phone: + 33243774728 Fax: + 33243770134

Egypt <Distributor>

Saadani Trading \& Industrial Services
94 Ismail El Fangari Str., Nasr City, Cairo, Egypt
Phone: (22)4029662 Fax: (22)4025669
Nigeria <Distributor> Faraday Engineering Company Ltd.
24 Obafemi Awolowo Way, Bonfei Plaza, Second Floor,
Ikeja Lagos State, Nigeria
Phone: (01)4967615 Fax: (01)4967615
South Africa <Distributor>
Hyflo Southern Africa (Pty.) Ltd.
50 Neptune Street, Paarden Eiland 7405, Cape Town, South Africa Phone: (21)511-7021 Fax: (21)511-4456
Kenya <Distributor> Flow Controls Ltd.
Off Lusaka Road, Pemba Street
Nairobi, Kenya
Phone: +254-555-808 Fax: +254-551-880

Asia/Oceania

China <Beijing/Shanghai> SMC(China)Co.,Ltd.
A2, XingSheng Street, BDA, Beijing, 100176 P.R. China
Phone: (010) 67885566 Fax: (010) 67881837
China <Guangzhou> SMC Pneumatics (Guangzhou) Ltd.
2, Dongming Road 3, Science Park Guangzhou Hi-Tech Industrial
Development Zone, Guangzhou, P.R.China
Phone: (020) 28397668 Fax: (020) 28397669
Hong Kong <Hong Kong/South China> SMC Pneumatics(Hong Kong)Ltd
29/F, Clifford Centre, 778-784 Cheung Sha Wan Road,
Kowloon, Hong Kong,China
Phone: 2744-0121 Fax: 2785-1314
Taiwan SMC Pneumatics(Taiwan)Co.,Ltd.
No.16, Lane 205, Nansan Rd., Sec.2, Luzhu-hsiang,
Taoyuan-hsien, Taiwan
Phone: (03) 322-3443 Fax: (03) 322-3387
South Korea SMC Pneumatics Korea Co., Ltd.
18-3 Yeouido-dong, Scout B/D 8F, Yeongdeungpo-gu,
Seoul, 150-914, Korea
Phone: (02) 3219-0700 Fax: (02) 3219-0702
Singapore SMC Pneumatics (S.E.A.)Pte.Ltd. (Sales subsidiary)
33, Tuas Avenue 8, Singapore 639251
Phone: 6861-0888 Fax: 6861-1889
Malaysia SMC Pneumatics(S.E.A.)Sdn.Bhd.
Lot 36, Jalan Delima 1/1, Subang Hi-Tech Industrial Park,
Batu Tiga, 40000 Shah Alam, Selangor, Malaysia
Phone: (03) 56350590 Fax: (03) 56350602
Thailand SMC (Thailand) Ltd.
134/6 Moo 5, Tiwanon Road, Bangkadi Amphur, Muang,
Patumthani 12000, Thailand
Phone: (02) 963-7099 Fax: (02) 501-2937
Philippines Shoketsu SMC Corporation
Building 7, Don Mariano Lim Industrial Complex,
Alabang-Zapote Road, Almanza, Las Piñas City, Philippines 1740
Phone: (02) 809-0565 Fax: (02) 809-0586
India SMC Pneumatics(India)Pvt.Ltd.
A-4, Sector-88, Noida-201 305 India
Phone: 0120-4780222, 0120-2449222 Fax: 0120-2558933
Israel <Distributor> Baccara Geva A.C.S. Ltd.
Kvutzat Geva 1891500, Israel
Phone: 04-653-5960 Fax: 04-653-1445
Indonesia <Distributor> PT. Sinar Mutiara Cemerlang
Jalan Hayam Wuruk Komplek Glodok Jaya No. 27-28
Jakarta 11180, Indonesia
Phone: (021) 6122888 Fax: (021) 6498765
Vietnam SMC Pneumatics (VN) Co., Ltd
45-47, Street No. 2, Block 5, An Phu Ward,
District 2 Ho Chi Minh City, Vietnam
Phone: (0) 8-6281-1110 Fax: (0) 8-6281-1120
Pakistan <Distributor> Jubilee Corporation
First Floor Mercantile Centre Newnham Road,
Near Boulton Market P.O. Box 6165 Karachi 74000, Pakistan
Phone: (021) 2439070 Fax: (021) 2414589
Sri Lanka <Distributor> Electro-Serv(Pvt.)Ltd.
124, Nawala Road, Narahenpita, Colombo 5, Sri Lanka
Phone: (011) 258-1104 Fax: (011) 250-1691
ran <Distributor> Abzarchian Co. Ltd.
Nos. 18, 19 \& 20, Bastan Passage,
Imam Khomeini st., 1114663578, Tehran, Iran
Phone: (021) 66715215 Fax: (021) 66716054
U.A.E <Distributor> Machinery People Trading Co.L.L.C. P.O. Box 50567 Dubai, UAE

Phone: (04) 2952991 Fax: (04) 2952195
Kuwait <Distributor> Esco Kuwait Equip \& Petroleum App. Est. 44400, Al Raqum Building, Tunis Street Hawally, Kuwait, 32058 Phone: 22643710 Fax: 22643709
Saudi Arabia <Distributor> Assaggaff Trading Est.
Apartment No. 3 \& 4, 2nd Floor, Gharnatah Center, Prince Majed Road/
Gharnatah Road Crossing, Al. Azizia District, Jeddar, Saudi Arabia Phone: (2) 6761574, (2) 6731857 Fax: (2) 6708173

Bahrain <Distributor>

Mohammed Jalal \& Sons W.L.L. Technical \& Automative Services
239, Sh. Salman Highway, P.O. Box 747, Bahrain, A. Gulf
Phone: 17252606 Fax: 17254638
Syria <Distributor> Miak Corporation
Marjeh Sq. Abi Firas Al-Hamadani St.1, P.O. Box 30550 Damascus, Syria
Phone: 11-2246171 Fax: 11-44686606
Jordan <Distributor> Atafawok Trading Est.
P.O.Box 921797 Amman 11192, Jordan

Phone: (06) 5926325 Fax: (06) 5926325
Bangladesh <Distributor> Chemie International
B-20/28 Babor Road (Gr.Floor) Mohammadpur,
Dhaka - 1207 Bangladesh
Phone: 9132538 Fax: 9131512
Qatar <Distributor> INTECHS WLL
Office Suite 5, Ahli Bank Building, Azeezia Street,
Salwa Road, P.O.Box 37956, Doha, Qatar
Phone: 44516557 Fax: 4430025
Australia SMC Pneumatics(Australia)Pty.Ltd.
14-18 Hudson Avenue, Castle Hill, Sydney,
New South Wales 2154, Australia
Phone: (02) 93548222 Fax: (02) 93548252
New Zealand SMC Pneumatics(N.Z.)Ltd.
5 Pacific Rise Mt Wellington Auckland 1060,
New Zealand (P.O. Box 62-226, Sylvia Park, Aukland, 1644)
Phone: (09) 573-7007 Fax: (09) 573-7002

Americas

U.S.A. / Canada SMC Corporation of America

10100 SMC Blvd. Noblesville IN 46060, U.S.A.
Phone: 317-899-4440 Fax: 317-899-0819
Mexico SMC Corporation(Mexico), S.A. de C.V.
Carr. Silao-Trejo K.M. 2.5 S/N Predio San Jose del Durazno
C.P. 36100 , Silao, Gto. Mexico

Phone: 472-72-2-55-00 Fax: 472-72-2-59-44, 472-72-2-59-46
Brazil SMC Pneumaticos do Brasil Ltda.
Av. Piraporinha, 777 Barro Planalto, Sao Bernardo do Campo Sao Paulo, Brazil ZIP : 09891-001
Phone: 11-4082-0777 Fax: 11-4082-0685
Chile SMC Pneumatics (Chile) S.A.
Av. La Montana, \#1115 P. Norte km.
16,5 Parque Industrial Valle Grande, Lampa, Santiago, Chile
Phone: (0) 2-270-86-00 Fax: (0) 2-270-86-01
Colombia SMC Colombia Sucursal de SMC Chile S.A
Avenida Ciudad de Quito No.77-78, Bogotá, Colombia
Phone: (57) 1-745-5002 Fax: (57) 1-329-0184
Argentina SMC Argentina S.A.
Teodoro Garcia 3880 (C1427ECH) Buenos Aires - Argentina Phone/Fax: 011-4555-5762

Bolivia SMC Pneumatics Bolivia S.r.I.
Av. Canal Cotoca \# 2635 (entre Calle 9 y 10) Santa Cruz, Bolivia
Phone: (0) 3-3649957 Fax: (0) 3-3649959
Venezuela SMC Neumatica Venezuela S.A.
Ave. Michelena Zona Industrial Edificio Canaima Local 4
Valencia-Edo Carabobo, Venezuela
Phone: 241-8345617 Fax: 241-8348258
Peru <Distributor> IMPECO Automatizacion Industrial S.A.C.
Av. Canevaro No. 752, Lince, Lima, PERU
Phone: 1-4716002, 1-4716336 Fax: 1-4710935
Ecuador <Distributor> ASSISTECH CIA. LTDA.
sla Fernandina N43-108 y Rio Coca Quito, Ecuador
Phone: 2-6003690, 2-6003691, 2-6003692 Fax: 2-2444216

Edition B * Added a "Rated Load" table and "Dynamic Allowable Moment" graphs to the LEF series, Made to Order/Support guide (-X139).

* Added a motor option "With lock/motor cover" to the LEY/LEYG series. * Added a manual override screw to the LES series.

For Electric Actuators

Series LE For Step/Servo Motor

Controller/Driver
Page 377 Series LEC \square

Series LE For AC Servo Motor

Driver

Page 419
Series LECS \square

For Card Motor
Controller Series LATC4

[^0]: *1 The nominal size based on force (equivalent to the air cylinder) during operation with ball screws.

[^1]: Note 1) This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table.

[^2]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^3]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^4]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^5]: 13. Do not operate by fixing the table and moving the actuator body.
[^6]: * Select whichever comes sooner.

[^7]: *1 Consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.
 *2 The belt drive actuator cannot be used vertically for applications.

[^8]: | Ambient temperature | Set value of pushing force［\％］ | Duty ratio［\％］ | Continuous pushing time［minute］］ |
 | :--- | :--- | :--- | :--- | | $40^{\circ} \mathrm{C}$ or less | 65 or less |
 | :--- | :--- |

 ＊Set values for the controller

[^9]: Material: Cast iron (Coating)

[^10]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^11]: For the rod end male thread, refer to page 148.
 For the mounting bracket dimensions, refer to page 152.

[^12]: * The limit of vertical load mass varies depending on "lead" and "speed". Check "Speed-Vertical Work Load Graph" on page 164.

[^13]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^14]: For auto switches, refer
 to pages 154 and 155.

[^15]: Note) Consult with SMC for non-standard strokes as they are produced as special orders.

[^16]: Material: Carbon steel (Nickel plated)

[^17]: * Consult with SMC for non-standard strokes as they are produced as special orders.

[^18]: Note 1) Range within which the rod can move. Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod. Note 2) The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.
 Note 3) The vent hole is the port for releasing to atmosphere. Do not apply pressure to this hole.
 Attach tubing to the vent hole and place the end of the tubing so it is not exposed to dust or water.
 For the rod end male thread, refer to page 195.
 For the mounting bracket dimensions, refer to page 152.

[^19]: * The limit of vertical load mass varies depending on "lead" and "speed". Check "Speed-Vertical Work Load Graph" on page 210.

[^20]: Two body mounting bolts are included with the support block.

[^21]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^22]: Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the

[^23]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^24]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^25]: \triangle Caution
 [CE-compliant products]
 EMC compliance was tested by combining the electric actuator LEH series and the controller LEC series.
 The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole. [UL-compliant products]
 When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

[^26]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^27]: * Pushing force is one of the values of step data that is input into the controller.

[^28]: \triangle Caution
 [CE-compliant products]
 EMC compliance was tested by combining the electric actuator LEH series and the controller LEC series.
 The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole. [UL-compliant products]
 When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

[^29]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^30]: Note) Signal of negative-logic circuit (N.C.)

[^31]: * "*ALARM" is expressed as negative-logic circuit.

[^32]: * Refer to the LECA6 series Operation Manual for installation.

[^33]: ＊Parallel I／O signal is valid in auto mode．While the test function operates at manual mode，only the output is valid．

[^34]: * "*ALARM" is expressed as negative-logic circuit.

[^35]: * Refer to the LECPA series Operation Manual for installation.

[^36]: * Battery included.

[^37]: * LE-CSNA: 10126-3000PE (connector)/10326-52F0-008 (shell kit) manufactured by 3 M or equivalent item.
 LE-CSNB: 10150-3000PE (connector)/10350-52F0-008 (shell kit) manufactured by 3 M or equivalent item.
 LE-CSNS: 10120-3000PE (connector)/10320-52F0-008 (shell kit) manufactured by 3 M or equivalent item.
 * Conductor size: AWG24

[^38]: From Fig．5：LAT3 \square－10，pushing direction away from the connector at pushing position 4 mm，find Fmax $=4.5$

[^39]: \triangle Caution
 For pushing operations, set the target position at least 1 mm away from the position where the table or the pushing tool comes into contact with the workpiece. Otherwise, the table may hit the workpiece at a speed exceeding the specified $6 \mathrm{~mm} / \mathrm{s}$ pushing speed, which could damage the workpiece and Card Motor.
 The pushing force varies from the thrust setting value depending on the operating environment, pushing direction and table position. The thrust setting value is a nominal value. Please calibrate the thrust setting value according to the application requirements.

[^40]: It is possible to output up to 31 preset points using the multi-counter (optional accessory: refer to page 459).

[^41]: \triangle Caution

 - The origin position varies depending on the return to origin position method. Please adjust according to the specific equipment used with this product.
 If the return to origin position is performed using an external jig or workpiece to stop the table, the origin position may be set outside of the travel range. Do not set the target position of the step data outside of the Card Motor movable range. It may damage the workpieces and the Card Motor.

[^42]: ＊Select the AREA signal for the parallel output（OUT0 or OUT1）．

[^43]: 1. Avoid use in the following environments.
 a. Areas with large amounts of dust or cutting chips that could enter the product.
 b. Areas where the ambient temperature exceeds the specified range. (Refer to the specifications.)
 c. Areas where the ambient humidity exceeds the specified range. (Refer to the specifications.)
 d. Areas with corrosive gas, flammable gas, sea water, water and steam that could adhere to the product.
 e. Areas where strong magnetic or electric fields are generated.
 f. Areas where direct vibration or impact shock is applied to the product.
 g . Areas where there is large amounts of dust or is exposed to water/oil droplets.
 h. Areas that are exposed to direct sunlight (ultraviolet rays).
