

ZX

ZR

ZM

ZH

ZU

ZL

ZY

ZQ

ZF

ZΡ

ZCU

AMJ

Misc.

Vacuum Pad

Series **ZP**

ø2 to ø8: Stroke 6, 10, 15, 25 mm ø10 to ø32: Stroke 10, 20, 30, 40, 50 mm With buffer Without buffer Type ø40, ø50: Stroke 10, 20, 30, 50 mm VAC VAC Vacuum entry port | Mounting Vacuum entry port | Mounting Buffer 13-11-27 Female VAC Female thread Male body thread (Common) thread Barb Buffer Barb fitting fitting body Vertical Female One-touch (Common) vacuum entry One-touch Buffer thread fitting fitting body 13-11-28 to 13-11-43 One-touch Male One-touch fitting fitting ZPR thread One-touch Buffer Lateral vacuum VAC fitting body **▼VAC** entry with One-touch Female fitting **One-touch fitting** thread 13-11-44 to 13-11-57 Barb Male fitting thread Barb fitting Buffer Rarh Lateral vacuum fitting VAC body entry with Barb Female **▼VAC Barb fitting** fitting thread

Pad form (Compatible with all models)

Flat (U) Flat with ribs (C) Deep (D) Bellows (B) Thin flat (UT) Thin with ribs (CT) Pad diameter 2 x 4 | 3.5 x 7 | 4 x 10 ø10 ø13 ø20 ø2 ø4 ø16 ø25 ø32 ø40 ø50 ø6 ø8 • Flat • Flat with ribs • • • • • Deep • Bellows • • • • • Thin flat Thin flat with ribs

Pad diameter (ø2 to ø125)

ø2 to ø125 (Option: ø150 to ø250)

Pad material

NBR (Black), Silicon rubber (White), Urethane rubber (Brown), Fluoro rubber (Black with green mark), Conductive NBR (Black with one white mark), Conductive silicon rubber (Black with two white marks)

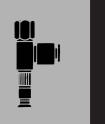
Pad selection

Refer to technical data on pages 13-1-10 to 13-1-19 for the calculation of lift force and response time.

Made to Order

1. Elliptic pad 2. Large size pad

Pad Material and Characteristics


☼: Little or no influence ○: Can be used depending on conditions X: Not suitable

Non-rotating

Characteristics Material	Durometer HS (±5°)	Operating temperature range (°C)	Oil resistance gasoline	Oil resistance benzol	Base resistance	Acid resistance	Weatherability	Ozone resistance	Abrasion resistance	Waterproof	Solvent resistance (Benzene, toluene)
NBR	50°	0 to 120	0	X	0	0	X	X	0	0	Х
Silicon rubber	40°	-30 to 200	Х	Х	0	Х	0	0	Х	0	Х
Urethane rubber	60°	0 to 60	0	X	×	×	0	0	0	X	Х
Fluoro rubber	60°	0 to 250	0	0	Х	0	0	0	0	0	0
Conductive NBR	50°	0 to 100	0	Х	0	Х	0	Х	0	0	Х
Conductive silicon rubber	50°	-10 to 200	Х	Х	0	Х	0	0	Х	0	X

^{*} The above table covers only general characteristics of subject rubber materials. Pad materials used by SMC pass the JIS standards; however the actual performance depends on operating conditions.

Vacuum Pad: Lateral Vacuum Entry with One-touch Fitting Without Buffer

Series ZPR

Specifications

<u> </u>	····out								
		Direction		Lateral					
>		Connection	One-touch fitting						
Vacuum entry	Appricable tube dia.	2 x 4, 3.5 x 7, 4 x 10 Thin section series (Ø10 to Ø16) Ø2 to Ø8	ø4, ø6 tube						
acı	ppri	ø10 to ø16	Q	ø4, ø6 tube					
>	A ±	ø20 to ø32	ø4, ø6, ø8 tube						
		ø40 to ø50	Q	ø6, ø8 tube					
		Connection	Male thread	Female thread					
Mounting	Thread dia.	2 x 4, 3.5 x 7, 4 x 10 Thin section series (Ø10 to Ø16) Ø2 to Ø8	M5 x 0.8, M6 x 1	M4 x 0.7, M5 x 0.8					
Θ	ea	ø10 to ø16	M5 x 0.8, M6 x 1	M5 x 0.8, M6 x 1					
_	토	ø20 to ø32	M6 x 1, M8 x 1	M5 x 0.8, M6 x 1, M8 x 1.25					
		ø40 to ø50	M6 x 1, M8 x 1						

Pad Type

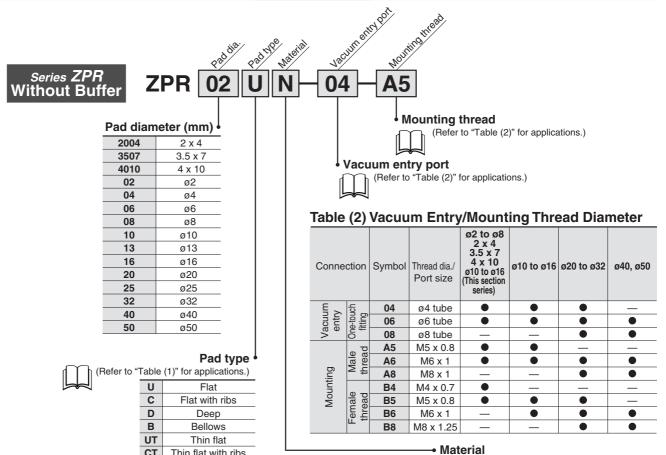
Pad form	Flat	Flat with ribs	Deep	Bellows	Thin flat/Thin flat with ribs						
Pad diameter (mm)	2, 4, 6, 8, 2 x 4, 3.5 x 7, 4 x 10, 10, 13, 16, 20 25, 32, 40, 50	10, 13, 16, 20, 25, 32, 40, 50	10, 16, 25, 40	6, 8, 10, 13, 16, 20, 25, 32, 40, 50	10, 13, 16						
Material (Color)	\ //	NBR (Black), Silicon rubber (White), Urethane rubber (Brown), Fluoro rubber (Black with green mark) Conductive NBR (Black with one white mark), Conductive NBR (Black with two white marks)									
Durometer	NBR (50°), Silicon rubber (40°), Urenthane rubber/Fluoro rubber (60°) Conductive NBR (50°), Conductive silicon rubber (50°)										

Weight/Male Thread (Female thread)

(a)	
(9)	

Pad form		FI	at		Fla	at with ri	bs		Deep			Bello	ws	
Model Connection	M4	M5	M6	M8	M5	М6	M8	M5	М6	M8	M4	M5	M6	M8
ZPR02 to 08 2004, 3507, 4010 Thin section series 10 to 16	— (19)	26 (20)	27 (—)	_	_	_	_	_	_	_	(19) (Except ø2, ø4	26(20) (Except ø2, ø4)	27(—) (Except ø2, ø4	_
ZPR10								29 (23)	30 (22)	_				
ZPR13	_	29 (23)	31 (21)	_	29 (23)	31 (22)	_	_	_	_	_	29 (23)	31 (22)	_
ZPR16								31 (23)	31 (22)	_				
ZPR20								_	_	_				
ZPR25	_	— (51)	57 (50)	61 (48)	— (51)	57 (50)	61 (48)	— (51)	65 (50)	68 (48)	_	— (51)	57 (50)	61 (48)
ZPR32								_	_	_				
ZPR40	_	_	64 (56)	67 (54)	_	64 (56)	67 (54)	_	65 (57)	68 (55)	_	_	64 (56)	67 (54)
ZPR50	_	_	66 (58)	69 (56)	_	67 (59)	70 (57)	_	_	_			66 (58)	69 (56)

^{):} Figures for female thread connections.


P. 13-11-65 to 13-11-68

Vacuum Pad: Lateral Vacuum Entry with One-touch Fitting without Buffer Series ZPR

Model

	Deal alle			Pad	form			Vacuum	Mou	nting	
Model	Pad dia. (ømm)	Flat (U)	Flat with ribs (C)	Deep (D)	Bellows (B)	Thin flat (UT)	Thin flat with ribs (CT)	entry port (One-touch fitting)	Male thread	Female thread	
ZPR2004	2 x 4										
ZPR3507	3.5 x 7										
ZPR4010	4 x 10		_	_	_	-	_	•	•	•	
ZPR02	2							ø4, ø6	M5 x 0.8	M4 x 0.7	
ZPR04	4		_	_	_	_	_	tube	M6 x 1	M5 x 0.8	
ZPR06	6	•	_	_	•	l —	_				
ZPR08	8	•	_	_	•	_	_				
ZPR10	10	•	•	_	_	•	•	•	•	•	
ZPR13	13	•	•	_	_	•	•	ø4, ø6	M5 x 0.8	M5 x 0.8	
ZPR16	16	•	•	_	_	•	•	tube	M6 x 1	M6 x 1	
ZPR20	20		•	_	•	—	_	•	•	M5 x 0.8	
ZPR25	25	•	•	•	•	_	_	ø4, ø6, ø8	M6 x 1	M6 x 0.1	
ZPR32	32	•	•	_	•	_	_	tube	M8 x 1	M8 x 1.25	
ZPR40	40	•	•	•	•	_	_	ø6, ø8	M6 x 1	M6 x 1	
ZPR50	50	•	•	_	•	_	_	tube	M8 x 1	M8 x 1.25	

How to Order

Table (1) Pad Diameter/Pad Type

` '															
Dia. (mm)	2 x 4	3.5 x 7	4 x 10	2	4	6	8	10	13	16	20	25	32	40	50
Flat	•	•	•		•	•	•	•	•	•	•	•	•	•	
Flat with ribs	_	_	_	_	_	_	_	•	•	•	•	•	•	•	•
Deep	_	_	_	_	_	_	_	•	_	•	_	•	_	•	
Bellows	_	_	_	_	_	•	•	•	•	•	•	•	•	•	•
Thin flat	_	_						•	•	•					
Thin flat with ribs	_	_	_	_	_	_	_	•	•	•	_	—	_	_	_

CT

Thin flat with ribs

NBR

Silicon rubber

Urethane rubber

N

S

U

of order.

ZR

ZX

ZM

ZH

ZU

ZL

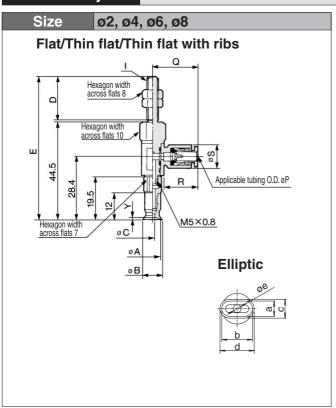
ΖY

ZQ

ZF

ZP

ZCU


AMJ

Misc.

F Fluoro rubber GN ³ Conductive NBR (ø2 to ø16) Conductive silicon rubber (ø2 to ø16) * ø20 and larger are manufactured upon a receipt

 Connection
 One-touch fitting
 Pad Form
 Flat/Flat with ribs/Deep/Thin flat/ Thin flat with ribs/Elliptic

 Vacuum Entry Port
 Lateral
 Mounting
 Male thread

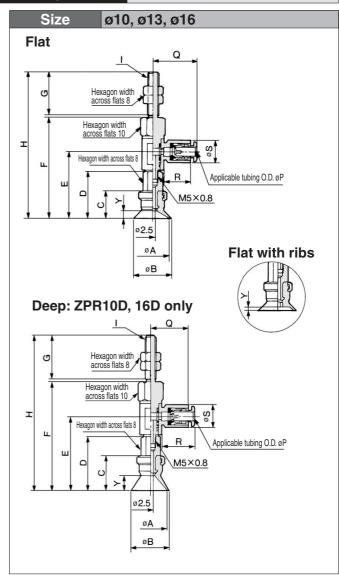
Flat

Model	øΑ	øΒ	øС	I: M5	x 0.8	I: M	6 x 1	v
Wodel	ØA	ØB	ØC.	D	E	D	E	Y
ZPR02U	2	2.6	1.2				70.5	
ZPR04U	4	4.8	1.6	20	65.5	25		0.8
ZPR06U	6	7	2.5	20	65.5	25		
ZPR08U	8	9	2.5					1

Applicable Tubing

Applicable tubing O. D.	øΡ	Q	R	øS
ø4	4	20.6	15.6	10.4
ø6	6	21.6	16.6	12.8

Elliptic


Model	a b		С	d	øe	Υ
ZPR2004U	2	4	2.6	4.6	1.2	0.3
ZPR3507U	3.5	7	4.3	7.8	1.8	0.5
ZPR4010U	4	10	5	11	2	0.8

^{*} Dimensions of D, E, are the same.

Thin Flat/Thin Flat with Ribs

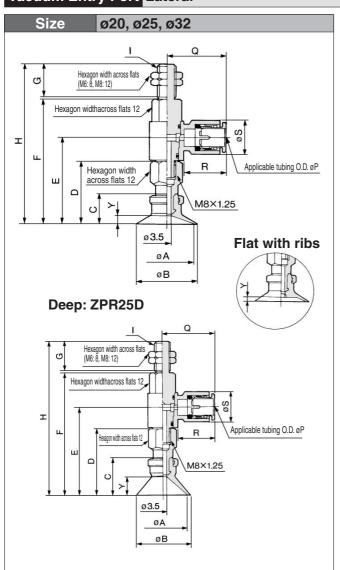
Model	Α	В	Υ
ZPR10UT	10	11	1
ZPR13UT	13	14	1.5
ZPR16UT	16	17	1.5
ZPR10CT	10	11	0.8
ZPR13CT	13	14	4
ZPR16CT	16	17	<u> </u>

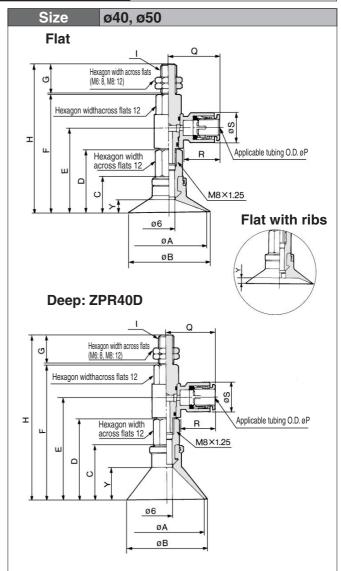
 $[\]ast$ Dimensions of D, E, are the same.

Flat/Flat with Ribs

Model	øΑ	۸Đ	С	D	_	F F		I: M5 x 0.8		3 x 1	Υ	
Model	ØA.	طھ			_	•	G	Н	G	Н	Flat	Flat with ribs
ZPR10 _C	10	12	12	21	29.9	46		67		72	3	1.7
ZPR13 ^U C	13	15					20	07	25	12	٥	1.8
ZPR16 _C	16	18	12.5	21.5	30.4	46.5		67.5		72.5	3.5	1.2

Deep


Model	øA øB		øВ С		=	FF	I: M5 x 0.8		1: M6	v	
Woder	ØA.	95		D	_		G	Н	G	Н	'
ZPR10D	10	12	15	24	32.9	49	20	70	O.E.	75	6
ZPR16D	16	18	16	25	33.9	50	20	71	25	76	7


Applicable Tubing

Applicable tubing O.D.	øΡ	Q	R	øS
ø4	4	20.6	15.6	10.4
ø6	6	21.6	16.6	12.8

Vacuum Pad: Lateral Vacuum Entry with One-touch Fitting without Buffer Series ZPR

Flat/Flat with Ribs

Model	øΑ	øΒ	С	D	Е	_	1: M6	3 x 1	I: Ma	3 x 1		Υ
	ØA				_	•	G	Н	G	Н	Flat	Flat with ribs
ZPR20 _C	20	23	1.4	29	39.8	57.6		83.5	15	70.5	4	1.7
ZPR25 _C ^U	25	28	14	29			25			73.5		1.8
ZPR32 ^U C	32	35	14.5	29.5	40.3	58.1		84		74	4.5	2.3

Deep

NAI - I	Model øA			D	E	F	I: M6 x 1		I: M	V	
Model		øΒ	С				G	Н	G	Н	Y
ZPR25D	25	28	20	35	48.5	63.6	25	89.5	15	79.5	10

Applicable Tubing

		,		
Applicable tubing O.D.	øΡ	Q	R	øS
ø4	4	23.3	15.8	10.4
ø6	6	24.3	16.8	12.8
ø8	8	26.2	18.7	15.2

Flat/Flat with Ribs

Model	øA øB	~D	øB C	D	Ε	F	_	1: M6	3 x 1	1: M8	3 x 1		Υ
Model		80				•	G	Н	G	Н	Flat	Flat with ribs	
ZPR40°C	40	43	18.5	32	42.8	60.6	25	86.5	15	76.5	6.5	3.3	
ZPR50°C	50	53	19.5	33	43.8	61.6	25	87.5	15	77.5	7.5	3.8	

Deep

Model	αA	øΒ	_	n	E	_	1: M6	3 x 1	1: M8	3 x 1	v
Model	ØA	1 00			_	'	G	Н	G	Н	1
ZPR40D	40	43	29	42.5	53.3	71.1	25	97	15	87	17

Applicable Tubing

Applicable tubing O.D.	øΡ	Q	R	øS
ø6	6	24.3	16.8	12.8
ø8	8	26.2	18.7	15.2

ZX

ZR

ZM

ZH

ZU

ZL

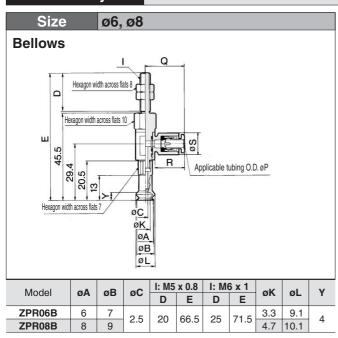
ZY

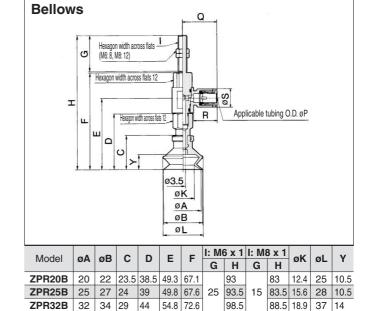
ZQ

ZF

ZΡ

ZCU

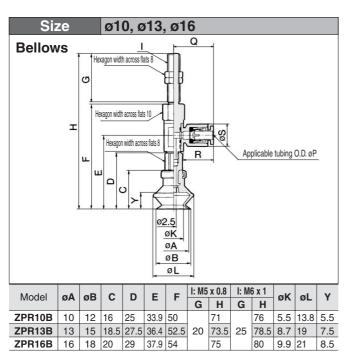

AMJ

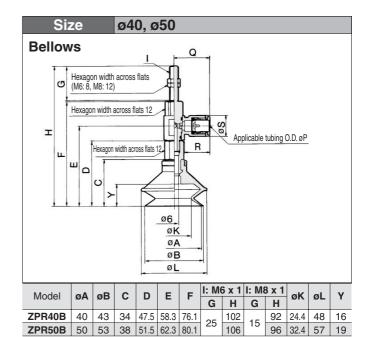

Misc.

 Connection
 One-touch fitting
 Pad Form
 Bellows

 Vacuum Entry Port
 Lateral
 Mounting
 Male thread

Size


ø20, ø25, ø32


Applicable Tubing

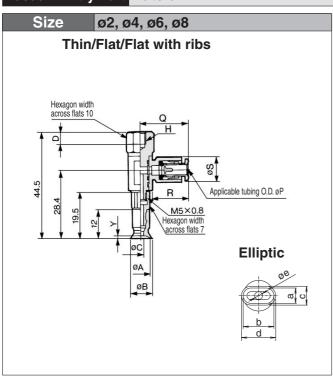
Applicable tubing O.D.	øΡ	Q	R	øS
ø4	4	20.6	15.6	10.4
ø6	6	21.6	16.6	12.8

Applicable Tubing

Applicable tubing O.D.	øΡ	Q	R	øS
ø4	4	23.3	15.8	10.4
ø6	6	24.3	16.8	12.8
98	8	26.2	18.7	15.2

Applicable Tubing

Applicable tubing O.D.	øΡ	Q	R	øS
ø4	4	20.6	15.6	10.4
ø6	6	21.6	16.6	12.8


Applicable Tubing

Applicable tubing O.D.	øΡ	Q	R	øS
ø6	6	24.3	16.8	12.8
ø8	8	26.2	18.7	15.2

Vacuum Pad: Lateral Vacuum Entry with One-touch Fitting without Buffer Series ZPR

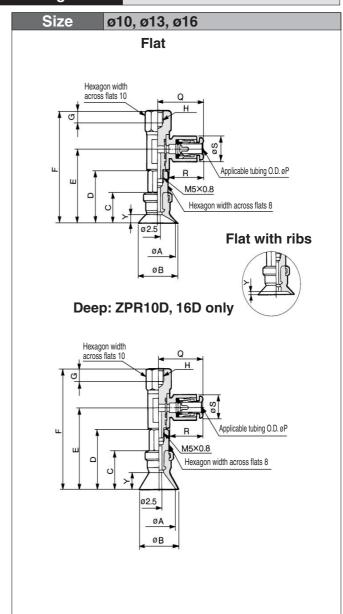
 Connection
 One-touch fitting
 Pad Form
 Flat/Flat with ribs/Deep/Thin/ Thin with ribs/Elliptic

 Vacuum Entry Port
 Lateral
 Mounting
 Female thread

Flat

Model	øΑ	øΒ	øС	H: M4 x 0.7	H: M5 x 0.8	v
Model	ØA	ØB	ØC	D	D	ı
ZPR02U	2	2.6	1.2			
ZPR04U	4	4.8	1.6	4	_	0.8
ZPR06U	6	7	2.5	4	5	
ZPR08U	8	9	2.5			1

Applicable Tubing


Applicable tubing O.D.	øΡ	Q	R	øS
ø4	4	20.6	15.6	10.4
ø6	6	21.6	16.6	12.8

Model	а	b	С	d	øe	Υ
ZPR2004U	2	4	2.6	4.6	1.2	0.3
ZPR3507U	3.5	7	4.3	7.8	1.8	0.5
ZPR4010U	4	10	5	11	2	0.8

* Dimensions of D are the same.

Model	Α	В	С	Υ	
ZPR10UT	10	11		1	
ZPR13UT	13	14		1.5	
ZPR16UT	16	17	2.5	1.5	
ZPR10CT	10	11	2.5	0.8	
ZPR13CT	13	14		1	
ZPR16CT	16	17		<u> </u>	

^{*} Dimensions of D are the same.

Flat/Flat with Ribs

Model	øΑ	۸Đ	С	D	Е	_	H: M5 x 0.8	H: M6 x 1		Υ
Model	ØA	96				Г	G	G	Flat	Flat with ribs
ZPR10 _C	10	12	12	21	29.9	46			0	1.7
ZPR13 _C	13	15	12	21	29.9	40	5	6	3	1.8
ZPR16 _C	16	18	12.5	21.5	30.4	46.5			3.5	1.2

Deep

Model	øΑ	øΒ	С	D	E	F	H: M5 x 0.8	H: M6 x 1	Υ
ZPR10D	10	12	15	24	32.9	49	E 6		6
ZPR16D	16	18	16	25	33.9	50] 3	0	7

Applicable Tubing

Applicable tubing O.D.	øΡ	Q	R	øS
ø4	4	20.6	15.6	10.4
ø6	6	21.6	16.6	12.8

SMC

ZX

ZR

ZM

ZH

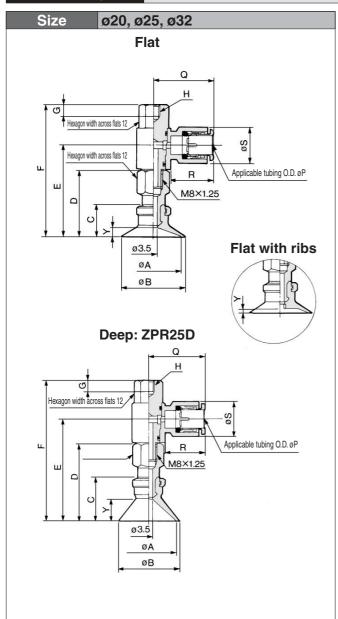
ZU

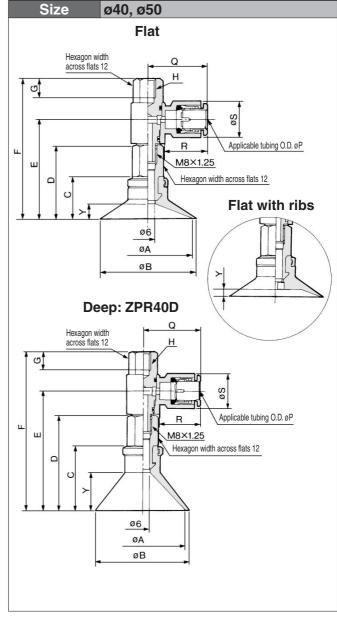
ZL

ZY

ZQ

ZF


ZP


ZCU

AMJ

Misc.

Connection	One-touch fitting	Pad Form	Flat/Flat with ribs/Deep
Vacuum Entry Port	Lateral	Mounting	Female thread

Flat/Flat with Ribs

Model	øΑ	۸D	_	D	Е	_	H: M5 x 0.8	H: M6 x 1	H: M8 x 1.25		Υ
Model	ØA	ØB		, D	_		G	G	G	Flat	Flat with ribs
ZPR20C	20	23	1.4	29	20.0	57.6				4	1.7
ZPR25 _C ^U	25	28	14	29	39.0	57.0	5	6	8	4	1.8
ZPR32 ^U C	32	35	14.5	29.5	40.3	58.1				4.5	2.3

Deep

	Model	~^	øΒ	С	_ n			H: M5 x 0.8	H: M6 x 1	H: M8 x 1.25	v
	Model	ØA.	A 00			-		G	G	G	T
Ī	ZPR25D	25	28	20	35	45.8	63.6	5	6	8	10

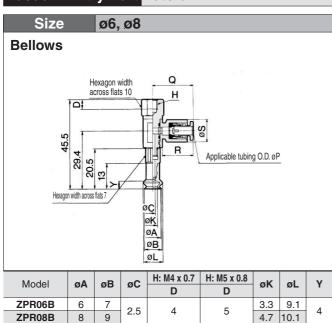
Applicable Tubing

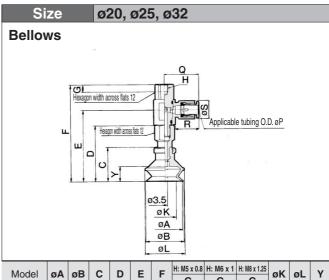
Applicable tubing O.D.	øΡ	Q	R	øS
ø4	4	23.3	15.8	10.4
ø6	6	24.3	16.8	12.8
ø8	8	26.2	18.7	15.2

Flat/Flat with Ribs

Model	øΑ	øΒ	С	D	F	_	H: M6 x 1	H: M8 x 1.25		Υ
Model	ØA	96		D	_	F	G	G	Flat	Flat with ribs
ZPR40C	40	43	18.5	32	42.8	60.6	- 6	8	6.5	3.3
ZPR50C	50	53	19.5	33	43.8	61.6			7.5	3.8

Deep


	Model	øΑ	øΒ	С	D	_	F	H: M6 x 1	H: M8 x 1.25	v
	wodei	ØA	ØB			_		G	G	1
	ZPR40D	40	43	29	42.5	53.3	71.1	6	8	17


Applicable Tubing

Applicable tubing O.D.	øΡ	Q	R	øS
ø6	6	24.3	16.8	12.8
ø8	8	26.2	18.7	15.2

Vacuum Pad: Lateral Vacuum Entry with One-touch Fitting without Buffer Series ZPR

ZX

ZR

ZM

ZH

ZU

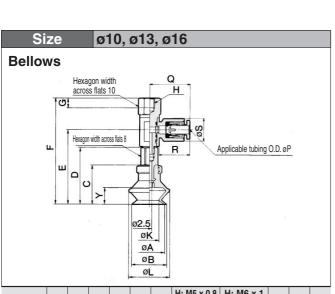
ZL

ZY

ZQ

ZF

ZP


ZCU

AMJ

Misc.

G G G **ZPR20B** 20 22 23.5 38.5 49.3 67.1 12.4 25 10.5 4.7 10.1 **ZPR25B** 25 27 24 39 49.8 67.6 6 8 15.6 28 10.5 **ZPR32B** 32 34 29 44 54.8 72.6 18.9 37 14 Applicable Tubing **Applicable Tubing** Applicable tubing O.D. øΡ øS Q R

Applicable tubing O.D.	øΡ	Q	R	øS
ø4	4	23.3	15.8	10.4
ø6	6	24.3	16.8	12.8
ø8	8	26.2	18.7	15.2

15.6

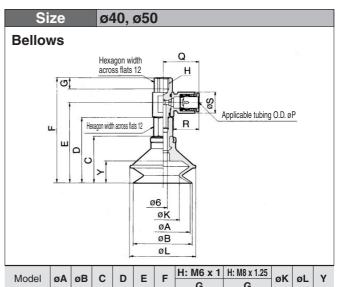
16.6

20.6

21.6

6

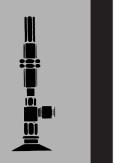
ø6


10.4

12.8

	 													
Model	øΑ	øΒ	С	D	Е	F	H: M5 x 0.8	H: M6 x 1	øK	øL	Υ			
Model				, D			G	G	ØK	ØL				
ZPR10B	10	12	16	25	33.9	50		6	5.5	13.8	5.5			
ZPR13B	13	15	18.5	27.5	36.4	52.5	5		8.7	19	7.5			
ZPR16B	16	18	20	29	37.9	54			9.9	21	8.5			

Applicable Tubing


Applicable tubing O.D.	øΡ	Q	R	øS
ø4	4	20.6	15.6	10.4
ø6	6	21.6	16.6	12.8

							G	l G			
ZPR40B	40	43	34	47.5	58.3	76.1	•	8	24.4	48	16
ZPR50B	50	53	38	51.5	62.3	80.1	6		32.4	57	19

Applicable Tubing

Applicable tubing O.D.	øΡ	Q	R	øS
ø6	6	24.3	16.8	12.8
ø8	8	26.2	18.7	15.2

Vacuum Pad: Lateral Vacuum Entry with One-touch Fitting With Buffer

Series ZPR

Specifications

		Direction	Lateral
		Connection	Air sunction filter
≥			All sunction filter
Vacuum entry	Applicable tube dia.	2 x 4, 3.5 x 7, 4 x 10 Thin section series (ø10 to ø16) ø2 to ø8	ø4, ø6 tube
acı	plic be	ø10 to ø16	ø4, ø6 tube
>	Ap tu	ø20 to ø32	ø4, ø6, ø8 tube
		ø40, ø50	ø6, ø8 tube
Mounting	Thread dia.	2 x 4, 3.5 x 7, 4 x 10 Thin section series (ø10 to ø16) ø2 to ø8	M8 x 1 Male thread
on	ea	ø10 to ø16	M10 x 1 Male thread
Š	Thr	ø20 to ø32	M10 x 1 Male thread
	•	ø40, ø50	M14 x 1 Male thread
		Buffer type	Rotating (J)/Non-rotating (K)
			For ø2 to ø8 — 6, 10, 15, 25 mm
		Buffer stroke	For ø10 to ø32 — 10, 20, 30, 40, 50 mm
			For ø40, ø50 — 10, 20, 30, 50 mm

Pad Type

Pad form	Flat	Flat with ribs	Deep	Bellows	Thin flat/Thin flat with ribs			
Pad dia. (mm)	2, 4, 6, 8, 2 x 4, 3.5 x 7, 4 x 10, 10, 13, 16, 20, 25, 32, 40, 50	10, 13, 16, 20, 25, 32, 40, 50	10, 16, 25, 40	6, 8, 10, 13, 16, 20, 25, 32, 40, 50	10, 13, 16			
Material	NBR (Black), Silicon rubber (White), Urethane rubber (Brown), Fluoro rubber (Black with green mark) Conductive NBR (Black with one white mark), Conductive silicon rubber (Black with two white marks)							
(Color)	Conductive NBR (BI	ack with one white ma	rk), Conductinve s	silicon rubber (Blac	k with two white marks)			
Durometer	Durometer NBR (50°), Silicon rubber (40°), Urenthane rubber/Fluoro rubber (60°) Conductive NBR (50°), Conductive silicon rubber (50°)							

Spring Reactive Force

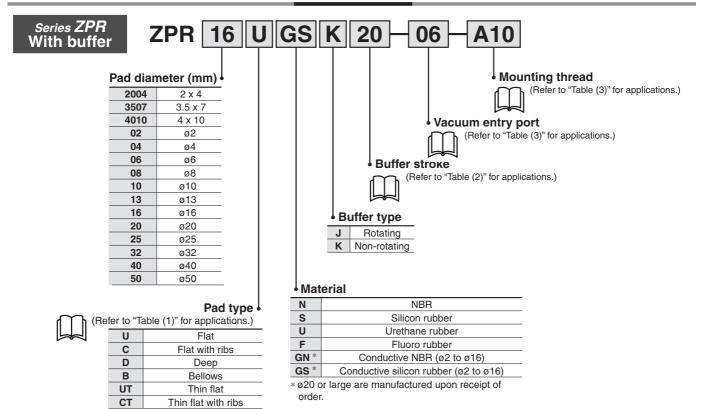
Dia. (mm)	0 stroke	Stroke end
ø2 to ø8	0.8 N	1.2 N
ø10 to ø32	1.0 N	3.0 N
ø40, ø50	2.0 N	5.0 N

^{*} Refer to Ø2 to Ø8 for Thin flat, Thin flat with ribs and Elipse type.

Weight

weig	Veignt (g)										
Stroke	Pad form	Flat	Flat/Flat with ribs			Deep			Bellows		
(mm)	Vacuum entry port	04	06	08	04	06	08	04	06	08	
6	2004, 3507, 4010 ZPR02 to 08 Thin section flat series (10 to 16)	38	39	-	_	_	_	38	39	_	
10	ZPR10 to 16	39	40	_	39	40	_	40	41	_	
10	ZPR ₂₅ ²⁰	54	55	56	55	56	57	57	58	59	
	ZPR32	56	57	58			_	61	62	63	
10	ZPR40	_	126	127	_	128	129	_	138	139	
10	ZPR50	_	132	133	_	_	_	_	145	146	

Weight by Stroke


weight	weight by Stroke (9)											
Stroke Model (mm)		15	20	25	30	40	50					
ZPR02 to 08	+7	+8	—	+9	_	_						
ZPR10 to 25	_	_	+12	_	+14	+26	+28					
ZPR40 to 50	_	_	_	_		_	+30					

P. 13-11-65 to 13-11-68

Vacuum Pad: Lateral Vacuum Entry with One-touch Fitting with Buffer Series ZPR

How to Order

Table (1) Pad Diameter/Pad Type

Type Dia. (mm)	2 x 4	3.5 x 7	4 x 10	2	4	6	8	10	13	16	20	25	32	40	50
Flat	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Flat with ribs	—	_	_	_	_	_	_	•	•	•	•	•	•	•	•
Deep	_	_	_	_	_	_	_	•	_	•	_	•	_	•	
Bellows	_	_	_	_	_	•		•	•		•	•		•	
Thin flat		_	_	_		_	_	•	•	•		_	_		
Thin flat with ribs	—	_	_	_	_	_	_	•	•		_	_	_	_	-

Table (2) Pad Diameter/Stroke

1 abio (2) i a	u D.u		,,, 0	0														
Dia. (mm) Stroke(mm)	2 x 4	3.5 x 7	4 x 10	2	4	6	8	Thin 1	hin fla flat wit 13	t/ h ribs 16	10	13	16	20	25	32	40	50
6	•	•	•	•	•	•	•	•	•	•	—	_	_	_	_	_	_	
10	•	•	•	•	•	•		•	•	•	•	•	•	•	•		•	•
15	•	•	•	•	•	•	•	•	•	•	_	_	_	_	_	_	_	_
20	_	—	—	_	_	_	_	_	_	_	•	•	•	•	•	•	•	
25	•	•	•	•	•	•	•	•	•	•	_	_	_	_	_	_	_	_
30	_	_	_	_	_	_	_	_	_	_	•	•	•	•	•		•	•
40	_	_	_	_	_	_	_	_	_	_	•	•	•	•	•			_
50	_	—	—	_	_	_	_	_	_	_	•	•	•	•	•		•	

Table (3) Vacuum Entry/Mounting Thread Diameter

		` '		•			
		Symbol	Thread dia./ Port size	ø2 to ø8 2 x 4, 3.5 x 7.4 x 10 ø10 to ø16 (This section series)	ø10 to ø16	ø20 to ø32	ø40, ø50
ulty	One-touch fitting	04	ø4 tube	•	•	•	_
Vacuum entry	ne-tour fitting	06	ø6 tube	•	•	•	•
Vaci	o T	80	ø8 tube	_	_	•	•
Mounting	, o	A8	M8 x 1	•	_	_	_
m	Male thread	A10	M10 x 1	_	•	•	_
≗	≥ ₹	A14	M14 x 1	_	_	_	•

ZX

ZR

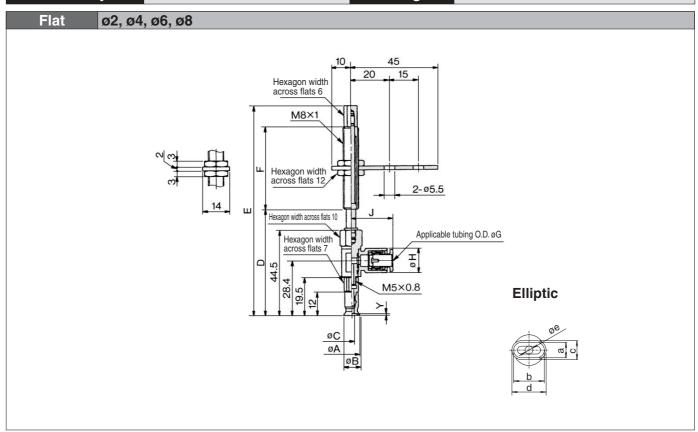
ZM ZH

ZU

ZL

ZY

ZQ


ZF

ZΡ

ZCU AMJ

Misc.

Connection	One-touch fitting	Pad Form	Flat/Thin flat/Thin flat with ribs/Elliptic
Vacuum Entry Port	Lateral	Mounting	Male thread

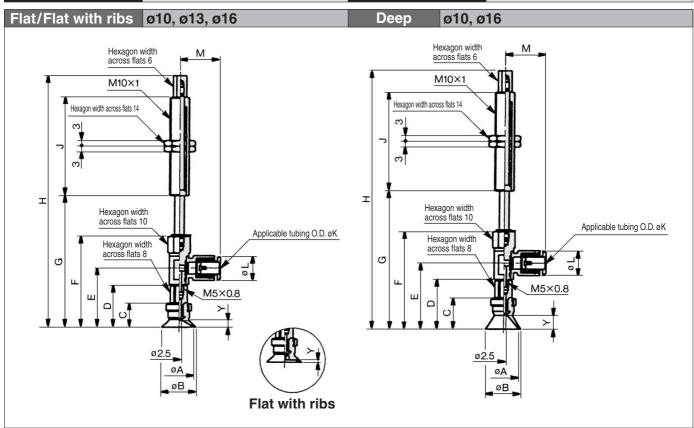
Flat

Model	Α	В	С	Υ
ZPR02U	2	2.6	1.2	
ZPR04U□□□□-0□-A8	4	4.8	1.6	8.0
ZPR06U□□□□-0□-A8	6	7	2.5	
ZPR08U□□□□-0□-A8	8	9	2.5	1

Elliptic

Model	а	b	С	d	øe	Υ
ZPR2004U	2	4	2.6	4.6	1.2	0.3
ZPR3507U	3.5	7	4.3	7.8	1.8	0.5
ZPR4010U	4	10	5	11	2	0.8

Thin Flat/Thin Flat with Ribs


Model	Α	В	С	Υ
ZPR10UT	10	11		1
ZPR13UT	13	14		1.5
ZPR16UT	16	17	2.5	1.5
ZPR10CT	10	11	2.5	0.8
ZPR13CT	13	14		1
ZPR16CT	16	17		'

Dimensions by Stroke

Model	DE		F	G:	ø4	G: ø6		
Model	ט	_	•	Н	J	Н	J	
ZPR 6-0 - A8	52.5	78.5	15	10.4				
ZPR□□□□10-0□-A8	55.5	109.5				12.8		
ZPR□□□□□15-0□-A8	60.5	114.5	43		20.6		21.6	
ZPR□□□□□25-0□-A8	70.5	124.5						

Vacuum Pad: Lateral Vacuum Entry with One-touch Fitting with Buffer Series ZPR

Connection	One-touch fitting	Pad Form	Flat/Flat with ribs/Deep
Vacuum Entry Port	Lateral	Mounting	Male thread

Flat/Flat with Ribs

Model	Α	В	С	D	_	_		Υ	
Model	A	В	C	U	_	Г	Flat	Flat with ribs	
ZPR10 U	10	12	12	21	29.9	16	3	1.7	
ZPR13 UCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	13	15	12	21	29.9	40	٥	1.8	
ZPR16 U	16	18	12.5	21.5	30.4	46.5	3.5	1.2	

Dimensions by Stroke

Model	ø10,	ø13	Ø.	J	
iviodei	G	Н	G	Н	J
ZPRUUCUUU10-0U-A10	57	91	57.5	91.5	23
ZPR	67	129	67.5	129.5	51
ZPRUUCUUU30-0U-A10	77	139	77.5	139.5	51
ZPR	87	175	87.5	175.5	77
ZPR - C - C - S - C - C - C - C - C - C - C	97	185	97.5	185.5	

Deep

Model	Α	В	С	D	E	F	Υ
ZPR10D	10	12	15	24	32.9	49	6
ZPR16D	16	18	16	25	33.9	50	7

Dimensions by Stroke

Model	Ø.	10	Ø		
Model	G	Н	G	Н	J
ZPR D D D O -A10	60	83	61	84	23
ZPR□□D□□□20-0□-A10	70	132	71	133	51
ZPR□□D□□□30-0□-A10	80	142	81	143	51
ZPR□□D□□□40-0□-A10	90	178	91	179	77
ZPR□□D□□□50-0□-A10	100	188	101	189	

One-touch Fitting

Model	K	L	M
ZPR	4	10.4	20.6
ZPR	6	12.8	21.6

SMC

ZM

ZX

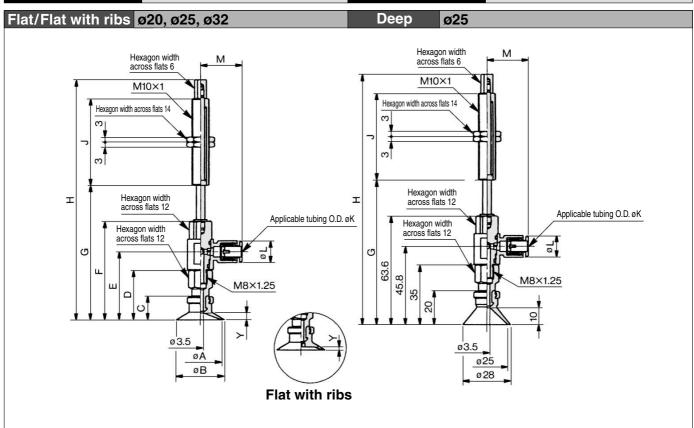
ZR

ZH

ZU ZL

ZY

ZQ


ZF

ZP

ZCU

AMJ Misc.

Connection	One-touch fitting	Pad Form	Flat/Flat with ribs/Deep
Vacuum Entry Port	Lateral	Mounting	Male thread

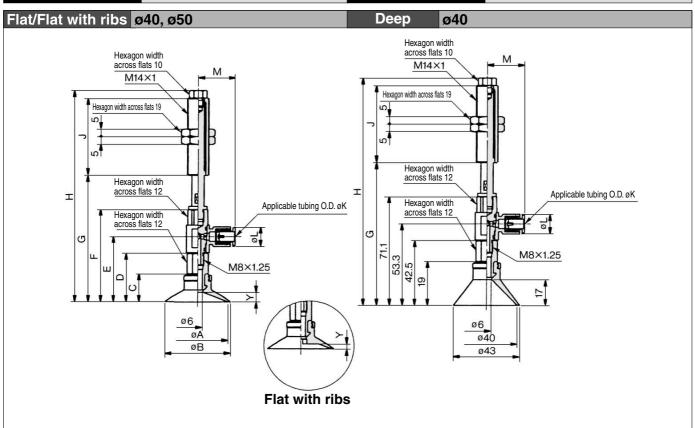
Flat/Flat with Ribs

Model	Α	В	С	D	_	_		Υ
Model	^			"		-	Flat	Flat with ribs
ZPR20 U DDDD-0D-A10	20	23	14	29	39.8	E7 6	4	1.7
ZPR25 C DDDDD-0D-A10	25	28		29		57.0		1.8
ZPR32 0 0 0 0 -0 -A10	32	35	14.5	29.5	40.3	58.1	4.5	2.3

Dimensions by Stroke

Model	ø20,	ø25	ø		
Model	G	Н	G	Н	J
ZPR UC	68.6	102.6	69.1	103.1	23
ZPR □ U □ □ □ 20-0 □ - A 10	78.6	140.6	79.1	141.1	51
ZPR UC C C C C C C C C C C C C C C C C C C	88.6	150.6	89.1	151.1	51
ZPR UC	98.6	186.6	99.1	187.1	77
ZPR UC C C C C C C C C C C C C C C C C C C	108.6	196.6	109.6	197.1	

Deep


Model	G	Н	J
ZPR25D□□□10-0□-A10	74.6	108.6	23
ZPR25D□□□20-0□-A10	84.6	146.6	51
ZPR25D□□□30-0□-A10	94.6	156.6	51
ZPR25D□□□40-0□-A10	104.6	192.6	77
ZPR25D□□□50-0□-A10	114.6	202.6	77

One-touch Fitting

Model	K	L	М
ZPR	4	10.4	23.3
ZPR	6	12.8	24.3
ZPR	8	15.2	26.2

Vacuum Pad: Lateral Vacuum Entry with One-touch Fitting with Buffer Series ZPR

Connection	One-touch fitting	Pad Form	Flat/Flat with ribs/Deep
Vacuum Entry Port	Lateral	Mounting	Male thread

Flat/Flat with Ribs

Model	^	В	_	D	_	_		Υ
Wodel	A	В			~ ^D ^E '	=	Г	Flat
ZPR40CUUUUU-0UA14	40	43	18.5	32	42.8	60.6	6.5	3.3
ZPR50C	50	53	19.5	33	43.8	61.6	7.5	3.8

Dimensions by Stroke

Model	Ø	40	ø	J	
Wodei	G	Н	G	Н	J
ZPR CCCCCCCCCA14	72.6	140.6	73.6	141.6	
ZPR CCCCCCCCCA14	82.6	137.6	83.6	138.6	50
ZPR CC C C C C C C C C C C C C C C C C C	92.6	147.6	93.6	148.6	
ZPR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	112.6	192.6	113.6	193.6	75

Deep

Model	G	Н	J
ZPR40D□□□10-0□-A14	83.1	151.1	
ZPR40D□□□20-0□-A14	93.1	148.1	50
ZPR40D□□□30-0□-A14	103.1	158.1	
ZPR40D□□□50-0□-A14	123.1	203.1	75

One-touch Fitting

Model	K	L	М
ZPR	6	12.8	24.3
ZPR	8	15.2	26.2

SMC

13-11-41

ZX

ZR

ZM

ZH

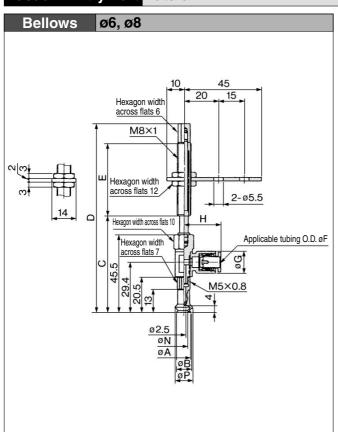
ZU

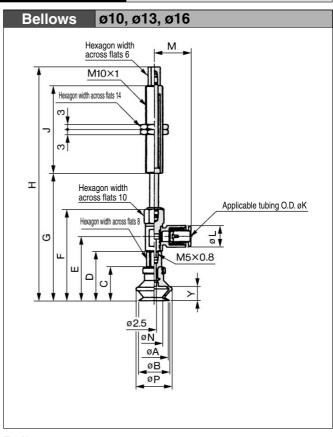
ZL

ZY

ZQ

ZF


ZΡ


ZCU

AMJ

Misc.

ConnectionOne-touch fittingPad FormBellowsVacuum Entry PortLateralMountingMale thread

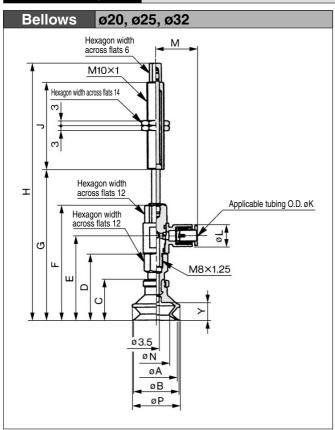
Bellows

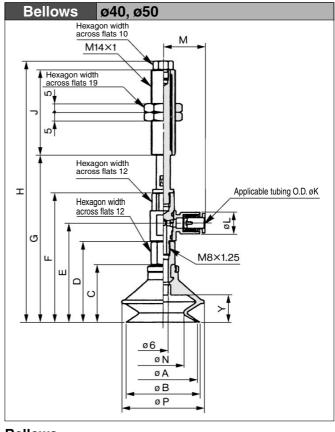
Model	Α	В	N	Р
ZPR06B	6	7	3.3	9.1
ZPR08B	8	9	4.7	10.1

Dimensions by Stroke

Model	С	D	Е	F:	ø4	F: ø6	
Wodel			J 5		Н	G	Н
ZPR□□B□□□ 6-0□-A8	53.5	79.5	15				
ZPR□□B□□□10-0□-A8	56.5	110.5		40.4		12.8	04.0
ZPR□□B□□□15-0□-A8	61.5	115.5	43	10.4	20.6		21.6
ZPR□□B□□□25-0□-A8	71.5	125.5					

Bellows


Model	Α	В	С	D	E	F	N	Р	Υ
ZPR10B	10	12	16	25	33.9	50	5.5	13.8	5.5
ZPR13B	13	15	18.5	27.5	36.4	52.5	8.7	19	7.5
ZPR16B	16	18	20	29	37.9	54	9.9	21	8.5


Dimensions by Stroke

Model	ø.	10	ø.	13	ø16		J	K: ø4		K: ø6	
Wodel		Н	G	н	G	Н	J	L	М	L	М
ZPR B 10-0 -A10	61	95	63.5	97.5	65	99	23				
ZPR B	71	133	73.5	135.5	75	137	51	10.4		12.8	21.6
ZPR B	81	143	83.5	145.5	85	147	51		20.6		
ZPR B	91	179	93.5	181.5	95	183	77				
ZPR□□B□□□50-0□-A10	101	189	103.5	191.5	105	193	11				

Vacuum Pad: Lateral Vacuum Entry with One-touch Fitting with Buffer Series ZPR

ZX

ZR

ZM

ZH

ZU

ZL

ZY

ZQ

ZF

ZΡ

ZCU

AMJ

Misc.

Bellows

Model		В	С	D	Е	F	N	Р	Υ
ZPR20B	20	22	23.5	38.5	49.3	67.1	12.4	25	10.5
ZPR25B	25	27	24	39	49.8	67.6	15.6	28	10.5
ZPR32B	32	34	29	44	54.8	72.6	18.9	37	14

Dimensions by Stroke

Model		20	øź	25	ø:	ø32		K:	K: ø4		K: ø6		ø8
Model	G	Н	G	Н	G	Н		L	М	L	М	L	М
ZPR□□B□□□10-0□-A10	78.1	112.1	78.6	112.6	83.6	117.6	23						
ZPR□□B□□□20-0□-A10	88.1	150.1	88.6	150.6	93.6	155.6	51						
ZPR□□B□□□30-0□-A10	98.1	160.1	98.6	160.6	103.6	165.6		10.4	23.3	12.8	24.3	15.2	26.2
ZPR□□B□□□40-0□-A10	108.1	196.1	108.6	196.6	113.6	201.6	77						
ZPR□□B□□□50-0□-A10	118.1	206.1	118.6	206.6	123.6	211.6	11						

Bellows

Model		В	С	D	E	F	N	P	Υ
ZPR40B	40	43	34	47.5	58.3	76.1	24.4	48	16
ZPR50B	50	53	38	51.5	62.3	80.1	32.4	57	19

Dimensions by Stroke

Model		40	ø!	50		K:	ø6	K: ø8	
		Н	G	Н		L	М	L	М
ZPR□□B□□□10-0□-A14	88.1	156.1	92.1	160.1					
ZPR□□B□□□20-0□-A14	98.1	153.1	102.1	157.1	50	10.0	040	15.2	00.0
ZPR□□B□□□30-0□-A14	108.1	163.1	112.1	167.1		12.0	24.3		20.2
ZPR□□B□□□50-0□-A14	128.1	208.1	132.1	212.1	75	75			

Vacuum Pad: Ball Joint Type Series ZPT/ZPR

Pad Diameter: ø10, ø13, ø16, ø20, ø25, ø32, ø40, ø50

Series ZPT: Vertical Vacuum Entry Type Series ZPR: Lateral Vacuum Entry Type One-touch Fitting

ZU

ZX

ZR

ZM

ZH

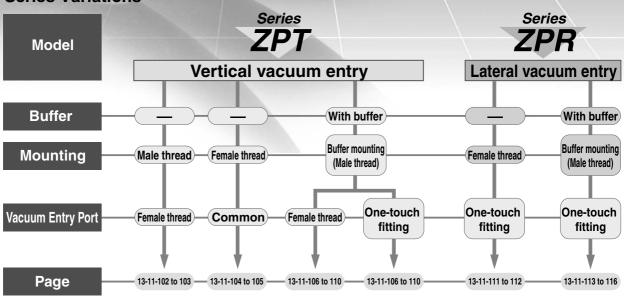
ZL ZY

ZQ

ZF

ZP ZCU

AMJ


Misc.

Vacuum Pad: Ball Joint Type

Series ZPT/ZPR

Pad diameter: ø10, ø13, ø16, ø20, ø25, ø32, ø40, ø50 Pad material: NBR, Silicon rubber, Urethane rubber, Fluoro rubber, Conductive NBR, Conductive silicon rubber

Series Variations

10 mm 20 mm 30 mm

40 mm

50 mm

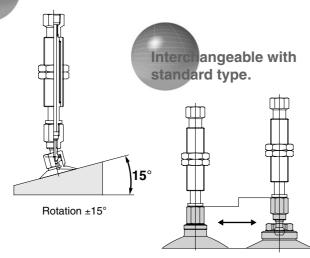
ø10

•

•

•

ø13


•

•

•

ø16

Adsorption is possible even on a slanted surface.

Exchangeable at the adapter

Pad Material and Characteristics

 \bigcirc : Little or no influence \bigcirc : Can be used depending on conditions. X: Not suitable

Buffer stroke

ø20

•

•

ø25

•

•

ø32

ullet

•

ø40

•

•

ø50

ullet

Characteristics Material	Durometer HS (±5°)	Operating temperature range (°C)	Oil resistance gasoline	Oil resistance benzol	Base resistance	Acid resistance	Weatherability	Ozone resistance	Abrasion resistance	Waterproof	Solvent resistance (Benzene, toluene)
NBR	50°	0 to 120	0	Х	0	0	0	Χ	0	0	Х
Silicon rubber	40°	-30 to 200	х	Х	0	Х	0	0	X	0	Х
Urethane rubber	60°	0 to 60	0	Х	Х	Х	0	0	0	Х	Х
Fluoro rubber	60°	0 to 250	0	0	Х	\bigcirc	0		0	0	0
Conductive NBR	50°	0 to 100	0	Х	0	Х	0	Χ	0	0	Х
Conductive silicon rubber	50°	-10 to 200	Х	Х	0	Х	0	0	Х	0	Х

The above table covers only general characteristics of subject rubber materials.

Pad material used by SMC pass the nominal JIS material standards; however, actual performance depends on operating conditions.

⚠ Precautions

Be sure to read before handling. Refer to pages 13-15-3 to 13-15-4 for Safety Instructions and Common Precautions on the products mentioned in this catalog, and refer to page 13-1-5 for Precautions on every series.

Caution on Design

🗥 Warning

1. In case where the workpieces are heavy or dangerous objects, etc., take measures to address a possible loss of adsorption force (installation of drop prevention guide, etc.).

In the case of transportation by vacuum adsorption using vacuum pads, adsorption force is lost when there is a drop in vacuum

Furthermore, since vacuum pressure can also deteriorate due to wear and cracking of pads, and vacuum leakage from piping, etc., be certain to perform maintenance on vacuum equipment.

Selection

⚠ Caution

The pad materials which can be used differ depending upon the operating environment.

An appropriate pad material should be selected.

Furthermore, since vacuum pads are manufactured for use with industrial products, they should not come into direct contact with medicines or food products, etc.

2. Depending upon the weight and shape of the workpieces, the diameter, quantity and shape of pads suitable for use will vary.

Use the pad lifting force table for reference.

Also, the pads to be selected will differ based upon conditions other than the above, such as the condition of the workpiece surface (presence or absence of oil or water), the workpiece material and its gas permeability. Confirmation is necessary by actually performing vacuum adsorption on the subject workpieces.

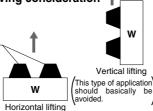
3. Use a buffer for adsorption on fragile workpieces.

The cushioning performed by the buffer is also necessary when there is variation in the height of workpieces. When it is desired to perform further positioning of pads and workpieces, a detent buffer can be

4. The life of the buffer will be reduced if lateral force is applied to the buffer shaft.

Note that sometimes a load is applied to the buffer by a piping tube (pulling or pressing, etc. in a lateral direction).

5. Do not apply an impact or large force to a pad when adsorbing a workpiece.

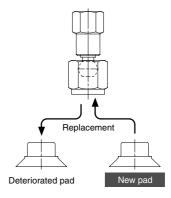

This will cause deformation, cracking and wear of the pad to be accelerated. The stiffening ribs, etc. should touch lightly, while staying within the pad skirt's deformation range. Positioning should be performed accurately. Especially in the case of small diameter pads.

6. When transporting in an upward direction, factors such as acceleration, wind pressure and impact force must be considered in addition to the workpiece weight.

Use caution particularly when lifting items such as glass plates and circuit boards, because a large force will be applied by wind pressure. When a workpiece which is oriented vertically is transported horizontally, large forces are applied by acceleration when movement is started and stopped. Further, in cases where the pad and workpiece can slip easily, accelerations and decelerations of horizontal movement should be kept low.

7. When transporting flat shaped workpieces that have large surface areas using multiple pads, care must be taken in arranging the pads, giving consideration to balance of the workpieces.

8. Use caution since the workpiece could Pad rotate during transfer. Use of more than one pad for each workpiece is recommended.

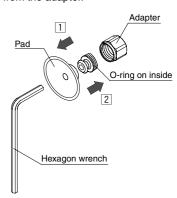

Maintenance

⚠ Caution

1. Perform pad maintenance regularly.

Since pads are essentially rubber, deterioration is unavoidable. The rate of deterioration depends upon factors such as conditions of use, environment and temperature. Regular maintenance should be performed. If any damage, splitting, cracking or abrasion has occured in a pad which appears to be harmful, replace it immediately.

Also, take care not to damage the outside of the pad.

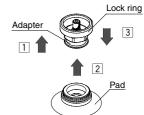

How to Assemble/Disassemble

⚠ Caution

Pad diameter: Ø10 to Ø32

1. Insert a hexagon wrench from the bottom of the pad, loosen the screw and remove the old pad from the adapter.

2. Place a new pad on the adapter, and after confirming that the O-ring is in place, retighten the screw with the hexagon wrench.



Pad diameter: Ø40, Ø50

1. Pull the lock ring upward, and after lifting it to the adapter, remove the old pad by pulling it downward.

2. When holding the lock ring in the raised position, place a new pad onto the adapter.

3. Confirm that the pad is securely in place, and then return the lock ring to its original position.

ZX ZR

ZM

ZH

ZU

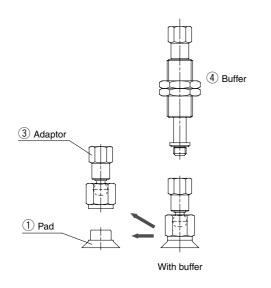
ZQ

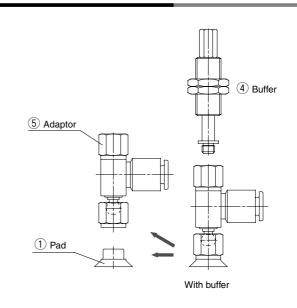
ZCU

AMJ

Misc.

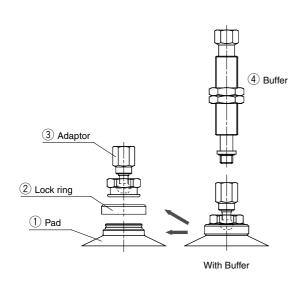
Series ZPT/ZPR

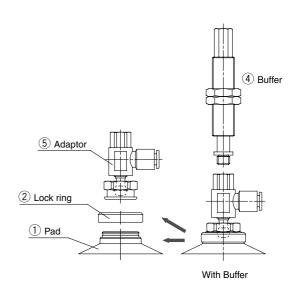

Component Parts


Series ZPT

Pad Diameter: ø10 to ø32

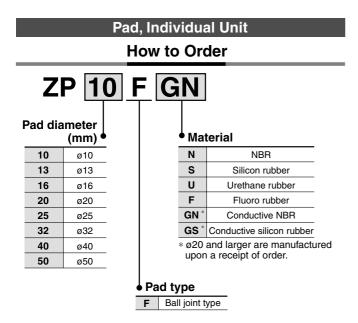
Series ZPR


Pad Diameter: ø10 to ø32



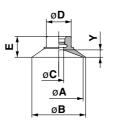
Pad Diameter: ø40, ø50

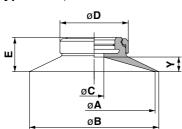
Pad Diameter: ø40, ø50


Compornent Parts

• • • • • • • • • • • • • • • • • • • •											
No.	Description	Material	Note								
1	Pad	NBR, Silicon rubber, Urethane rubber, Fluoro rubber, Conductive NBR, Conductive silicon rubber									
2	Lock ring	Aluminum									
3	Adapter	Brass, Stainless steel	Electroless nickel plated								
4	Buffer	Brass	Electroless nickel plated								
(5)	Adapter	Brass, Stainless steel, PBT	Electroless nickel plated								

Series ZPT/ZPR


Replacement Parts


Note) Pads are exclusively ball joint type and are not interchangeable with other pads.

Dimensions

Ball joint type: ø10 to 32

Ball joint type: ø40, ø50

						(mm)
Model	Α	В	С	D	Е	Y
ZP10F□□	10	12			6.5	1.5
ZP13F□□	13	15	3	8.2	7	2
ZP16F□□	16	18			/	
ZP20F□□	20	22			0.5	
ZP25F□□	25	28	4	10.2	8.5	3
ZP32F□□	32	35			9	
ZP40F□□	40	43	10	00	13	5
ZP50F□□	50	53	8	28	14	6

Lock Ring, Individual Unit How to Order ZPL F For ball joint type (ø40, ø50) Mounting Nut Dimensions

d

ZX

ZR

ZM

ZH

ZU

ZL

ZY

ZQ

ZF

ZΡ

ZCU

AMJ

Misc.

Model d Н В С SNJ-015A M10 x 1 14 16.2 SN-015A M14 x 1 19 21.9 SNJ-010A M8 x 1 12 13.9

SMC

Vacuum Pad: Ball Joint Type Lateral Vacuum Entry Without Buffer/Female Thread Series ZPR

ZPR 10 F GS - 06 - B5

Pad diameter (mm)

10 ø10
13 ø13
16 ø16
20 ø20
25 ø25
32 ø32
40 ø40
50 ø50

F Ball joint type

Material •

N	NBR						
S	Silicon rubber						
U	Urethane rubber						
F	Fluoro rubber						
GN *	Conductive NBR						
GS *	GS * Conductive silicon rubber						

^{*} Ø20 and larger are manufactured upon a receipt of order.

How to Order

Mounting thread diameter/ Female thread ZX

ZR

ZM

ZH

ZU

ZL

ZY

ZQ

ZF

ZΡ

ZCU

AMJ

Misc.

(Refer to "Table (1)" for applications.)

Vacuum entry port

(Refer to "Table (1)" for applications.)

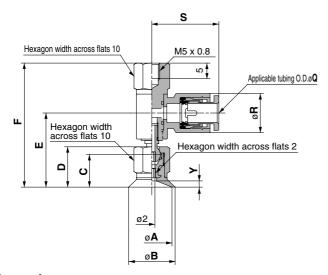
Table (1) Vacuum Entry/Mounting Thread Diameter

			Mounting thread diameter		
Pad dia. (mm)			ø20 to ø50		
Connection Thread dia./ Port size Symbol		M5 x 0.8	M5 x 0.8	M8 x 1.25	
		B5	B5	B8	
One-touch fitting Ø8 tube Ø8 tube		•	_	_	
ø6 tube	06	•	•	•	
ø8 tube	08	_	•	•	
	Thread dia. Port size Ø4 tube Ø6 tube	Thread dia./ Port size Symbol Ø4 tube 04 Ø6 tube 06	dia. (mm)	dia. (mm) Ø10 to Ø16 Ø20 to Ø16 Thread dia./ M5 x 0.8 M5 x 0.8 Port size Symbol B5 B5 Ø4 tube 04 — — Ø6 tube 06 — —	

Note) Pads are exclusively ball joint type and are not interchangeable with other pads.

Specifications

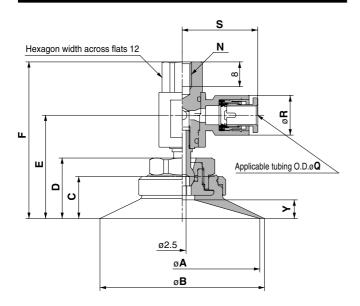
Vacuum entry direction		Lateral		
Connection		Mounting	Vacuum entry port	
Connection		Female thread	One-touch fitting	
	ø10 to ø16	M5 x 0.8	ø4 tube	
	91010910	IVIO X U.O	ø6 tube	
Deal die (m.m.)		M5 x 0.8	ø6 tube	
Pad dia. (mm)		O.U X CIVI	ø8 tube	
	ø20 to ø50	M8 x 1.25	ø6 tube	
		IVIO X 1.23	ø8 tube	
Ball joint rotation		±15°		


Weight

(g) Vacuum entry (One-touch fitting) Pad dia. Mounting female thread (mm) ø4 tube ø6 tube ø8 tube ø10 to ø16 $M5 \times 0.8$ 18 19 M5 x 0.8 22 23 ø20 to ø32 M8 x 1.25 21 22 M5 x 0.8 58 60 ø40, ø50 M8 x 1.25 57

Pad Type

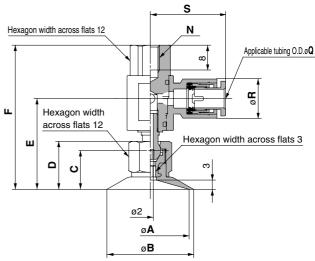
Pad form		Ball joint type						
Pad diameter (mm)		ø10, ø13, ø16, ø20, ø25, ø32, ø40, ø50						
Material	NBR	Silicon rubber	Urethane rubber	Fluoro rubber	Conductive NBR	Conductive silicon rubber		
Color	Black	White	Brown	Black with green mark	Black with 1 white mark	Black with 2 white mark		
Durometer	50°	40°	60°	60°	50°	50°		


$\mathsf{ZPR}_{16}^{10}\mathsf{F}\square\square$ -0 \square -B5 (Without buffer/Female thread)

Dimensions (mm) Υ Model D В C Ε F ZPR10F□□-0□-B5 10 12 10 12.5 23.4 39.5 1.5 ZPR13F□□-0□-B5 13 15 2 10.5 13 23.9 40 ZPR16F□□-0□-B5 18

| Dimensions by | Tubing Diameter | (mm) | Pad diameter | Q: 4 | Q: 6 | (mm) | R | S | R | S | (mm) | (mm) | E | S | S | (mm) | (mm) | (mm) | E | S | S | (mm) | (m

ZPR₅₀⁴⁰F□□-0□-B8 (Without buffer/Female thread)

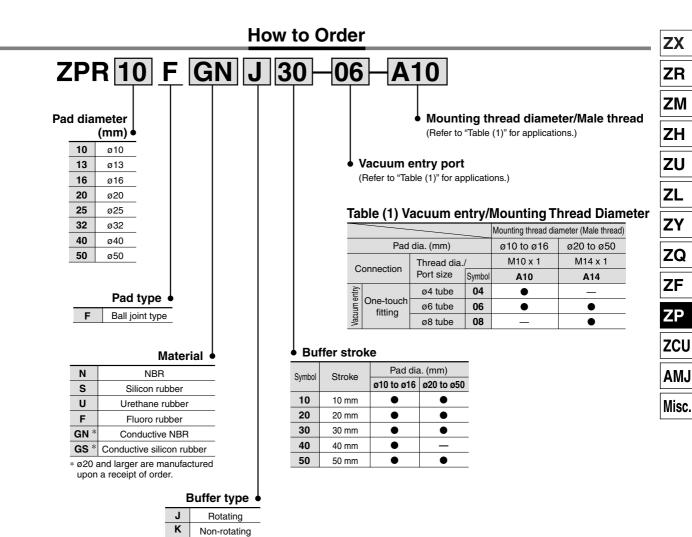


Dimensions (mm)								(mm)
Model	Α	В	С	D	Е	F	N	Υ
ZPR40F□□-0□-B8	40	43	12.5	18.5	32.3	49.5	M0 4 05	5
ZPR50F□□-0□-B8	50	53	13.5	19.5	33.3	50.5	M8 x 1.25	6

Dimensions by Tubing Diamete

i ubing L		(mm)			
Pad diameter	Q	: 6	Q: 8		
(mm)	R	S	R	S	
ø40, ø50	12.8	24.3	15.2	26.2	

$\mathsf{ZPR}_{32}^{25}\mathsf{F}\square\square\text{-}\mathsf{0}\square\text{-}\mathsf{B}_8^5$ (Without buffer/Female thread)


Dimensions							(mm)
Model	Α	В	С	D	Е	F	N
ZPR20F□□-0□-B5	-00	-00					M5 x 0.8
ZPR20F□□-0□-B8	20	22	40.5	15.5	29.3	46.5	M8 x 1.25
ZPR25F□□-0□-B5	0.5	28	12.5				M5 x 0.8
ZPR25F□□-0□-B8	25						M8 x 1.25
ZPR32F□□-0□-B5	00	0.5	5 13	16	29.8	47	M5 x 0.8
ZPR32F□□-0□-B8	32	2 35					M8 x 1.25

Dimensions by **Tubing Diameter**

Tubing Diameter (m					
Pad diameter	Q:	: 6	Q:	: 8	
(mm)	R	S	R	S	
ø20 to ø32	12.8	24.3	15.2	26.2	

Vacuum Pad: Ball Joint Type Lateral Vacuum Entry With Buffer

Series ZPR

Buffer Spring Reactive Force

Pad dia. (mm)	0 stroke	Stroke end
ø10 to ø16	1.0 N	3.0 N
ø20 to ø50	2.0 N	5.0 N

Note) Pads are exclusively ball joint type and are not interchangeable with other pads.

Pad Type

Pad form	Ball joint type						
Pad dia. (mm)		ø10, ø13, ø16, ø20, ø25, ø32, ø40, ø50					
Material	NBR	Silicon rubber	Urethane rubber	Fluoro rubber	Conductive NBR	Conductive silicon rubber	
Color	Black	White	Brown	Black with green mark	Black with 1 white mark	Black with 2 white mark	
Durometer	50°	40°	60°	60°	50°	50°	

Specifications

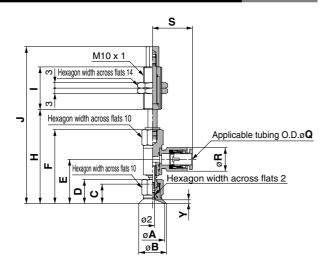
Vacuum entry di	Vacuum entry direction		eral	
Connection		Mounting	Vacuum entry port	
		Male thread	One-touch fitting	
	-1010	M10 v 1	ø4 tube	
Dad dia (mm)	ø10 to ø16	M10 x 1	ø6 tube	
Pad dia. (mm)		M14 x 1	ø6 tube	
ø20	ø20 to ø50	IVI 14 X I	ø8 tube	
Ball joint rotation		±15°		

Buffer Type

Pad dia. (mm)	ø10 t	o ø16	ø20 to ø50		
Mounting	M10) x 1	M14 x 1		
Stroke (mm)	10, 20, 30, 40, 50		10, 20, 30, 50		
Spring reactive	0 stroke	1.0 N	0 stroke	2.0 N	
force	Stroke end	3.0 N	Stroke end	5.0 N	
Non-rotating specification	With no non-rotating (J), With non-rotating (K)				

Weight

		Vacuum entry port			
Pad dia. (mm)	One-touch fitting				
	ø4 tube ø6 tube		ø8 tubing		
ø10 to ø16	34	35	_		
ø20 to ø32	_	38	39		
ø40, ø50	_	134	136		


(g)

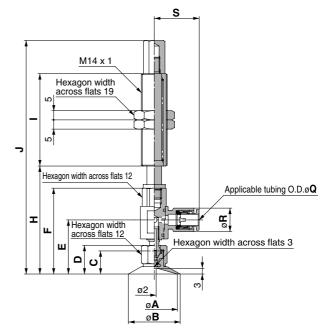
Weight by Stroke

				(g)
Dod die (man)		Stroke	(mm)	
Pad dia. (mm)	20	30	40	50
ø10 to ø16	+10.5	+12.5	+22.5	+24
ø20 to ø50	+37.5	+40	_	+66.5

Vacuum Pad: Ball Joint Type Lateral Vacuum Entry with Buffer Series ZPR

$\mathsf{ZPR}_{16}^{13}\mathsf{F}\square\square_{\mathsf{K}}^{\mathsf{J}}\mathsf{10-0}\square\mathsf{-A10}$ (With buffer)

Dimensions: 10 mm Stroke


Difficitions.			, ci Or	·C					(111111
Model	Α	В	С	D	Е	F	Н	ı	J
ZPR10F = = 10-0 = -A10	10	12	10	12.5	23.4	39.5	50.5		84.5
ZPR13F = = 10-0 = -A10	13	15	10.5	10	00.0	40		23	0.5
ZPR16F = = 10-0 = -A10	16	18	10.5	13	23.9	40	51		85

(mm)											
Model	Q	: 4	Q	٧							
Wodei	R	S	R	S	1						
ZPR10F = = 10-0 = -A10					1.5						
ZPR13F□□□10-0□-A10	10.4	20.6	12.8	21.6	_						
ZPR16F□□□10-0□-A10					2						

Additional Dimensions by Stroke (mm)

,			`
Stroke	Н	ı	J
20	+10	. 00	+38
30	+20	+28	+48
40	+30	+54	+84
50	+40		+94

ZPR²⁰₃₂F□□¹_K10-0□-A14 (With buffer)

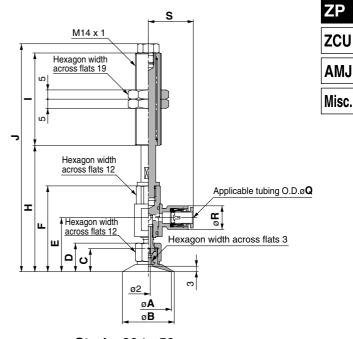
ZX

ZR

ZM

ZH

ZU

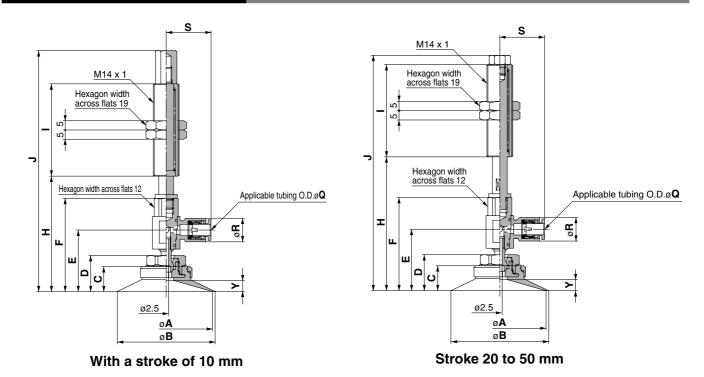

ZL

ZY

ZQ

ZF

With a stroke of 10 mm


Stroke 20 to 50 mm

Dimensions: 10 mm Stroke (mm)											
Model	Α	В	С	D	Е	F	Н	ı	J		
ZPR20F□□□10-0□-A14	20	22	10.5	15.5	20.2	46.5	58.5		100 5		
ZPR25F□□□10-0□-A14	25	28	12.5	15.5	29.3	40.5	56.5	50	126.5		
ZPR32F□□□10-0□-A14	32	35	13	16	29.8	47	59		127		

				(mm)		
Model	Q:	6	Q: 8			
Model	R	S	R	S		
ZPR20F□□□10-0□-A14						
ZPR25F□□□10-0□-A14	12.8	24.3	15.2	26.2		
ZPR32F□□□10-0□-A14						

Additiona by Stroke		nens	ions (mm)
Stroke	Н	ı	J
20	+10	±0	-3
30	+20	±U	+7
50	+40	+25	+52

$\mathsf{ZPR}_{50}^{40}\mathsf{F}\square\square\overset{\mathsf{J}}{\kappa}0\text{-}0\square\text{-A14}$ (With buffer)

Dimensions:	10 mm	Stroke
-------------	-------	--------

Difference (min														(111111)		
	Model	۸	Р	_	_	_	_	н			Q:	: 6	Q: 8		v	
	Model	A	ם		ט	_	Г		•	J	R	S	R	S	Y	
	ZPR40F □□□10-0□-A14	40	43	12.5	18.5	32.3	49.5	61.5		129.5	100	04.0	45.0	00.0	5	
	ZPR50F = 10-0 - A14	50	53	13.5	19.5	33.3	50.5	62.5	50	130.5	12.8	24.3	15.2	26.2	6	

Additional Dimensions

by Stro	ke		(mm)
Stroke	Н	ı	J
20	+10		-3
30	+20	±0	+7
50	+40	+25	+52

Vacuum Pad

New

More shapes and sizes of pads. Applicable for various types of work pieces

Vacuum Pad Series ZP2/ZP

Pad Diameter List

: Series ZP2 O: Series ZP

Pad type	Symbol	Page of			_					_		_						
	.,	ZP2	8.0	1.1	2	3	3.5	4	5	6	7	8	9	10	11	13	14	
Ų	U	P. 1	_	_	0			Note)	_	0	_	0	_	0	_	0	_	
	MU	P. 2	_	_	•	_	•	•	•	•	_	•	_	•	_	_	_	
Flat	EU	P. 5	_	_	•	_		•	_	•	_	•	_	_	_	_	_	
	AU	P. 8	_	_	•	•	-	•	_	•	_	•	_	_	_	_	_	
Flat with rib	С	P. 1	_	_	_	_	_	_	_	•	•	•	_	0	_	0	_	
Thin flat (pad)	UT	P. 1 P. 10	_	_	_	_	-	_	•	•	_	_	_	0	•	0	•	
Thin flat with rib	СТ	_	_	_	_	_	-	_	_	_	_	_	_	0	_	0	_	
1	В	P. 1	_	_	_	_	-	_	_	Note)		Note)	_	0	_	0	_	
	J	P. 13	_	_	_	_	_	_	_	•	_	_	•	•	_	_	•	
Bellows (pad)	МВ	P. 14	_	_	_	_	_	•	_	•	_	•	_	•	_	_	_	
	ZJ	P. 16	_	_	•	_		•	•	•	_	_	_	_	_	_	_	
Deep 	D	_	_	_	_	_	_	_	_	_	_	_	_	0	_	_	_	
Nozzle pad	AN	P. 9	•		_	_	_	_	_	_	_	_		_	_	_	_	
Flat pad	МТ	P. 11	_	_	_	_		_	_	_	_	_	_		_		_	
Oval pad	w	P. 17	_	_	_	_	3.5 x 7	4 x 10 4 x 20 4 x 30	5 x 10 5 x 20 5 x 30	6 x 10 6 x 20 6 x 30	_	8 x 20 8 x 30	_	_	_	_	_	
	U	_			2 x 4		3.5 x 7	4 x 10		_		_						
	Н	P. 33	_	_	_	_		_		_	_	_			_		_	
Heavy-duty pad	нт	P. 33		_									_				_	
inday-duty pad	НВ	P. 35	_	_	_			_	_	_	_	_	_	_	_		_	
9	HW	P. 36	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Mark-free pad	U	P. 27	_	_	_	_	_	•	_	•	_	•	_	•	_	_	_	
* Related pad	Н	P. 28	_	_	_	_		_		_	_	_	_	_	_	_	_	
Sponge pad	S	P. 30	_	_	_	_	_	•	_	•	_	•	_	•	_	_	_	
Resin attachment	K	P. 29	_	_	_	_	_	_	_		_	•	_		_	•	_	
Pad with ball spline buffer	U	P. 24	_	_	•	_	_	•	_	•	_	•	_	_	_	_	_	
Heavy-duty	Н	P. 37	_	_	_	_	_	_	_	_	_	_	_	_	_		_	
ball joint pad	НВ	P. 43	_	_	_				_		_	_	_	_	_		_	

* Cyclone pad (Non-contact pad) Made to Order -----P. 25

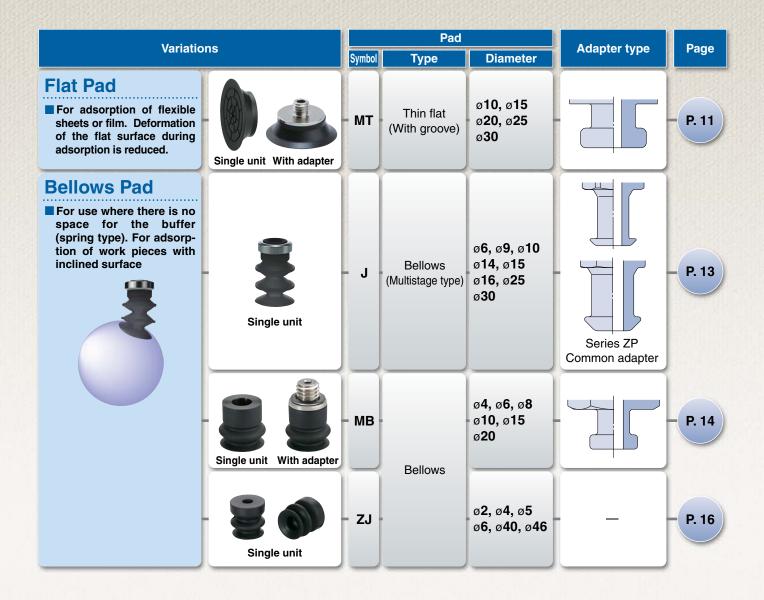
Note) The ZP2 series is blast type.

Products other than above

Vacuum pad for transferring disks

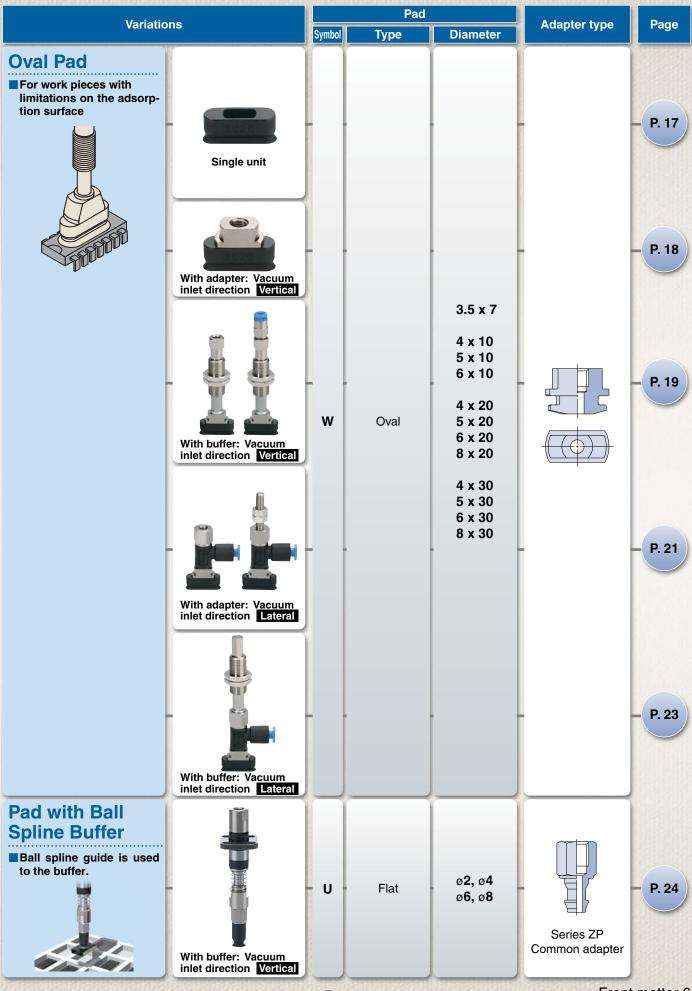
-----P. 59 Vacuum pad for fixing panel -----P. 60 Vacuum saving valve

* 〇: Refer to SMC website or pages 1117 to 1235 in Best Pneumatics No. 4 for details of the ZP series.


SMC vacuum pad Search

Catalog		0																eter	diame	Pad	
of ZP	ZP2	Symbol	340	300	250	150	125	100	80	63	50	46	40	32	30	25	20	18	16	15	
	P. 1	U	_	_	_	_	_	_	_	_	0	_	0	0	_	0	0	_	0	_	
_	P. 2	MU	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	•	
_	P. 5	EU	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	•	
_	P. 8	AU	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	
	P. 1	С	_	_	_		_	_	_	_	0	_	0	0	_	0	0	_	0	_	
-	P. 1 P. 10	UT	_	_	_	_	_	_	_	_	_	_	_	_	_	_	•	•	0	_	
	_	СТ	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0	_	
	P. 1	В		_	_		_	_	_	_	0	_	0	0	_	0	0	_	0	_	
-	P. 13	J			_			_		_		_	_		•	•		_	•		
	P. 14	МВ	_		_		_	_	_	_	_	_	_	_	_	_	•	_	_	•	
_	P. 16	ZJ	_	_	_		_	_	_	_	_		•	_	_	_	_	_	_	_	
	_	D	_	_	_		_	_	_	_	_	_	0	_	_	0	_	_	0	_	
	P. 9	AN			_			_		_	_	_	_	_	_	_		_		_	
_	P. 11	МТ	_		_		_	_	_	_	_	_	_	_	•	•		_	_		
_																					
	P. 17	W	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
0	_	U																			
0	P. 33	Н	•		_		0	0	0	0	0	_	0	•		_	_	_	_	_	
	P. 33	НТ	_	_	•		_	_	_	_	_	_	_	_	_	_		_	_	_	
	P. 35	НВ	_	_	_		0	0	0	0	0	_	0	•	_	_	_	_	_	_	
	P. 36	HW	_	_	_	_	_	_	_	_	_	_	_	_	30 x 50	_	_	_	_		
	P. 27	U	_		_		_	_	_	_	•	_	•	•	_	•	_	_		_	
	P. 28	Н	_			_		•	•	•	•	_	•	_	_	_	_	_	_		
	P. 30	S	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	•	
_	P. 29	K	_	_	_	_	_	_	_	_	_	_	_	•	_	•	•	_	•	-	
	P. 24	U	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
	P. 37	Н			_	_		•	•	•	•	_	•	_	_	_	_	_	_	_	
	P. 43	НВ	_	_	_	_	•	•	•	•	•	_	•	_	_	_	_	_	_	_	
				L								L			L				1		

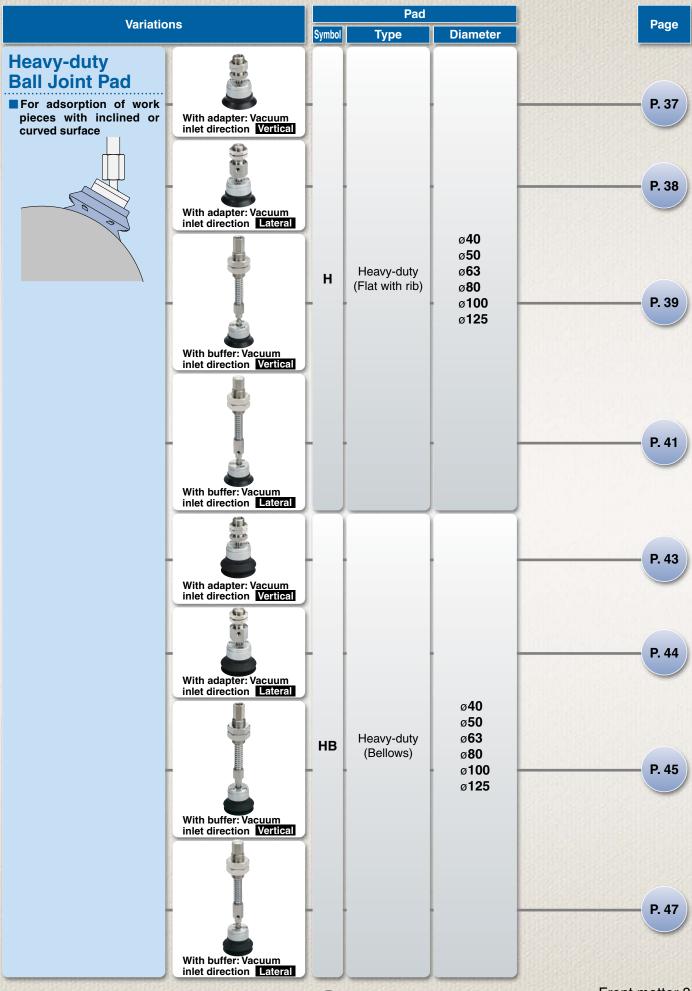
Series Variations


Series Variations	SHEEMING		Pad			
Variations		Symbol Type Diameter		Adapter type	Page	
Flat For adsorption of general work pieces For adsorption of work pieces with flat and not deformed surface Flat with rib For a workpiece which is likely to deform or for releasing a workpiece certainly Thin flat For a workpiece which is likely to deform Bellows For adsorption of work pieces with inclined surface	Single unit	U	Flat	ø 3 , ø 4		P. 1
	Single unit	С	Flat with rib	ø 6 , ø 7 , ø 8		- P. 1
	Single unit	- UT	Thin flat	ø 5 , ø 6	Series ZP Common adapter	- P. 1
	Single unit	- в	Bellows	ø 6 , ø 8		- P. 1
Short-type Pad Space-saving in the height direction	Single unit With adapter	- MU		ø2, ø3.5, ø4 ø5, ø6, ø8 ø10, ø15		P. 2
	Single unit With adapter	- EU	Flat	ø2, ø4, ø6 ø8, ø15		P. 5
	Single unit	- AU		ø2, ø3, ø4 ø6, ø8		P. 8
Nozzle Pad For adsorption of small components such as IC chips	Single unit With adapter	AN	Nozzle	ø 0.8 , ø1.1		P. 9
Thin Flat Pad For adsorption of soft work pieces such as thin sheets or vinyl. Wrinkling or deformation during adsorption is reduced.	Single unit	UT	Thin flat (Skirt)	ø5, ø6, ø11 ø14, ø18 ø20	Series ZP Common adapter	P. 10

Series Variations

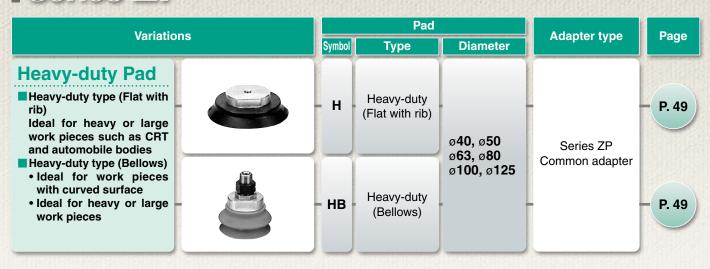
Series Variations	S					
Variations		Pad Symbol Type Diameter		Adapter type	Page	
Blast-type Pad Blast treatment to create finely uneven surface for adsorption. Work pieces can be removed easily.	Single unit	U	Flat	ø 4		- P. 1
	Single unit	С	Flat with rib	ø 6 , ∅ 8		- P. 1
	Single unit	- в	Bellows	ø 6 , ø 8		P. 1
	Single unit	- J	Bellows (Multistage type)	ø10, ø15 ø25, ø30	Series ZP Common adapter	P. 13
	Single unit With adapter	- MU	Flat	ø2, ø3.5, ø4 ø5, ø6, ø8 ø10, ø15		P. 2
	Single unit With adapter	- EU	Flat	ø 2 , ø 4 , ø 6		P. 5
	Single unit With adapter	- МТ	Thin flat (With groove)	ø10, ø15 ø20, ø25 ø30		P. 11
	Single unit With adapter	МВ	Bellows	ø4, ø6, ø8 ø10, ø15 ø20		P. 14

Series Variations

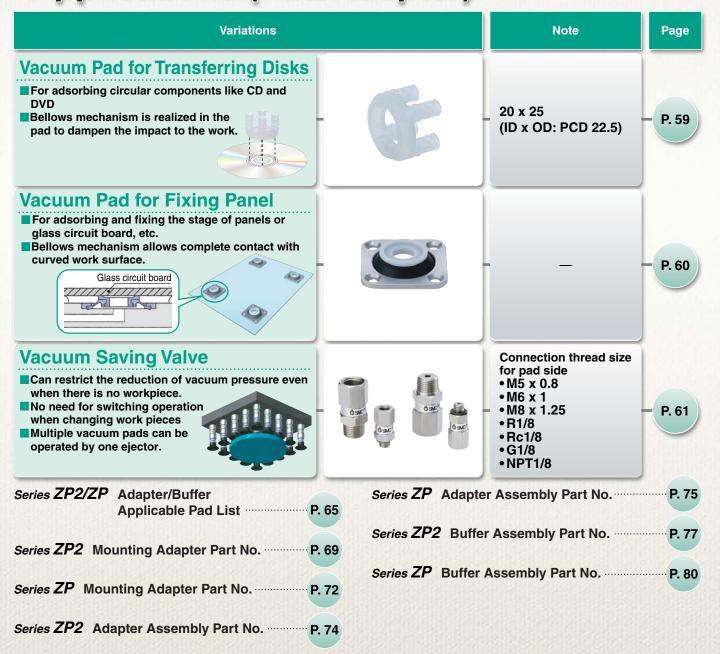

SMC

Front matter 6

Series Variations


Variations		Pad			Adapter type	Page
		Symbol Type Diamete		Diameter	r Adapter type	Page
Mark-free Pad For use where adsorption marks must not be left on work pieces. Standard pad Clear trace of the pad	Single unit	U	Flat	ø4, ø6, ø8 ø10, ø16 ø25, ø32 ø40, ø50	Series ZP Common adapter	P. 27
Mark-free pad No trace on the object Mark-free NBR pad Stuck fluororesin pad Related Pad Made to Order Cyclone Pad (Non-contact	A1001-84-8	- н	Heavy-duty (Flat with rib)	ø40, ø50 ø63, ø80 ø100, ø125	_	P. 28
Resin Attachment Mark-free. Prevents sticking of the rubber and the workpiece. Attachment	Single unit With pad		Bellows	ø6, ø8 ø10, ø13 ø16, ø20 ø25, ø32	Series ZP Common adapter	P. 29
Sponge Pad For adsorption of work pieces with bumps	Single unit With adapter	s	Sponge	ø4, ø6 ø8, ø10 ø15		P. 30
Heavy-duty Pad For heavy or large work pieces		Н	Heavy-duty (Flat with rib)	ø32, ø300 ø340		P. 33
		нт	Heavy-duty (Thin flat with rib)	ø150, ø 2 50		- P. 33
		нв	Heavy-duty (Bellows)	ø32, ø150	_	P. 35
		HW	Heavy-duty (Oval)	30 x 50		P. 36

Series Variations



SMC

Series ZP

Applications (Pad/Adapter)

Vacuum Equipment Model Selection

CONTENTS

1 Features of Vacuum Adsorption

Front matter 11

2 Vacuum Pad Selection

Front matter 11

- Vacuum Pad Selection Procedures
- Points for Selecting Vacuum Pads
 - A. Theoretical Lifting Force
 - B. Shear Force and Moment Applied to Vacuum Pad
- Lifting Force and Vacuum Pad Diameter
 - 1. Theoretical Lifting Force
- Vacuum Pad Type
- Vacuum Pad Material
- Rubber Material and Properties
- Color and Identification
- Buffer Attachment
- Pad Selection by Work Type
- Vacuum Pad Durability

3 Selection of Vacuum Ejector and Vacuum Switching Valve Front matter 17

Calculating Vacuum Ejector and Switching Valve Size with the Formula

4 Leakage Volume during Work Adsorption

Front matter 17

- Leakage volume from Conductance of Work
- Leakage volume from Adsorption Test

5 Adsorption Response Time

Front matter 18

- Relationship between Vacuum Pressure and Response Time after Supply Valve (Switching Valve) is Operated
- Calculating Adsorption Response Time with the Formula
- Adsorption Response Time from the Selection Graph

6 Precautions on Vacuum Equipment Selection and SMC's Proposal Front matter 20

- Safety Measures
- Precautions on Vacuum Equipment Selection
- Vacuum Ejector or Pump and Number of Vacuum Pads
- Vacuum Ejector Selection and Handling Precautions
- Supply Pressure of Vacuum Ejector
- Timing for Vacuum Generation and Suction Verification
 - A. Timing for Vacuum Generation
 - B. Suction Verification
 - C. Set Pressure for Vacuum Pressure Switch
- Dust Handling of Vacuum Equipment

7 Vacuum Equipment Selection Example

Front matter 24

Transfer of Semiconductor Chips

8 Data Front matter 25

- Selection Graph
- Glossary of Terms
- Countermeasures for Vacuum Adsorption System Problems (Troubleshooting)
- Non-conformance Examples
- Time of Replacement of Vacuum Pad

1 Features of Vacuum Adsorption

Vacuum adsorption system as a method to hold a workpiece has the following features.

- Easy construction
- Compatible with any place where adsorption is possible.
- No need for accurate positioning
- · Compatible with soft and easily-deformed work pieces

However, special care is required in the following conditions.

- Workpiece may drop under certain conditions since it is transferred being adsorbed.
- Liquid or foreign matter around the workpiece may be sucked into the equipment.
- Large adsorption area is necessary to get large gripping force.
- Vacuum pad (rubber) may deteriorate.

Fully understand the features above and select the equipment that suits your operating conditions.

2 Vacuum Pad Selection

Vacuum Pad Selection Procedures

- 1) Fully taking into account the balance of a workpiece, identify the adsorption positioning, number of pads and applicable pad diameter (or pad area).
- 2) Find the theoretical lifting force from the identified adsorption area (pad area x number of pads) and vacuum pressure, and then find the lifting force considering actual lifting and safety factor of transfer condition.
- 3) Determine a pad diameter (or pad area) that is sufficient to ensure the lifting force is greater than the workpiece mass.
- 4) Determine the pad type and materials, and the necessity of buffer based on the operating environment, and the workpiece shape and materials.

The above shows selection procedures for general vacuum pads; thus, they will not be applicable for all pads. Customers are required to conduct a test on their own and to select applicable adsorption conditions and pads based on the test results.

Points for Selecting Vacuum Pads

A. Theoretical Lifting Force

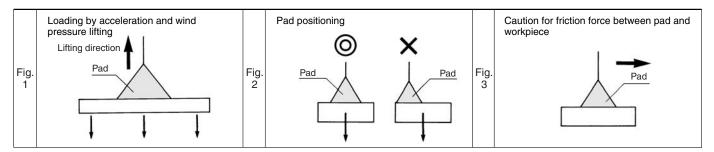
- The theoretical lifting force is determined by vacuum pressure and contact area of the vacuum pad.
- Since the theoretical lifting force is the value measured at the static state, the safety factor responding to the actual operating conditions must be estimated in the actual operation.
- It is not necessarily true that higher vacuum pressure is better. Extremely high vacuum pressure may cause problems.
 - When the vacuum pressure is unnecessarily high, pads are likely to be worn out quickly and cracked, which makes the pad service life shorter.
 - Doubling the vacuum pressure makes the theoretical lifting force double, while to doubling the pad diameter makes the theoretical lifting force quadruple.
 - When the vacuum pressure (set pressure) is high, it makes not only response time longer, but also the necessary energy to generate a vacuum larger.

Example) Theoretical lifting force = Pressure x Area

2	ti	m	e	S

Pad diameter	Area (cm²)	Vacuum pressure [40-kPa]	Vacuum pressure [80-kPa]
ø20	3.14	Theoretical lifting force 12.56 N	Theoretical lifting force 25.11 N
ø40	12.56	Theoretical lifting force 50.23 N	Theoretical lifting force 100.45 N

4 times

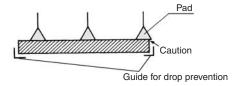

B. Shear Force and Moment Applied to Vacuum Pad

- Vacuum pads are not resistant to shear force (parallel force with adsorption surface) and moment.
- · Minimize the moment applied to the vacuum pad with the position of the workpiece center of gravity in mind.
- The acceleration rate of the movement must be as small as possible, and make sure to take into consideration the wind pressure and impact. If measures to slow down the acceleration rate are introduced, safety to prevent the workpiece from dropping will improve.
- Avoid lifting the workpiece by adsorbing the vertical side with a vacuum pad (vertical lifting) if possible. When it is unavoidable, a sufficient safety factor must be secured.

Lifting Force, Moment, Horizontal Force

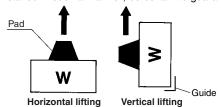
To lift a workpiece vertically, make sure to take into consideration the acceleration rate, wind pressure, impact, etc., in addition to the mass of the workpiece. (Refer to Fig. 1)

Because the pads are susceptible to moments, mount the pad so as not to allow the workpiece to create a moment. (Refer to Fig. 2) When a workpiece that is suspended horizontally is moved laterally, the workpiece could shift depending on the extent of the acceleration rate or the size of the friction coefficient between the pad and the workpiece. Therefore, the acceleration rate of the lateral movement must be minimized. (Refer to Fig. 3)



Balance of Pad and Work

Make sure that the pad's suction surface is not larger than the surface of the workpiece to prevent vacuum leakage and unstable picking.


If multiple pads are used for transferring a flat object with a large surface area, properly allocate the pads to maintain balance. Also make sure that the pads are aligned properly to prevent them from becoming disengaged along the edges.

Provide an auxiliary device (example: a guide for preventing the workpieces from dropping) as necessary.

Mounting Position

As a rule, the unit must be installed horizontally. Although a diagonal or a vertical installation should be avoided whenever possible, if the unit must be installed in such a manner, be certain to guarantee guide and absolute safety.

Lifting Force and Vacuum Pad Diameter

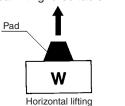
1. Theoretical Lifting Force

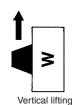
- Set the vacuum pressure below the pressure that has been stabilized after adsorption.
- However, when a workpiece is permeable or has a rough surface, note that the vacuum pressure drops since the workpiece takes air in. In such a case, carry out an adsorption test for confirmation.
- The vacuum pressure when using an ejector is approximately -60 kPa as a guide.

The theoretical lifting force of a pad can be found by calculation or from the theoretical lifting force table.

Calculation -

 $W = P \times S \times 0.1 \times \frac{1}{t}$


W: Lifting force (N)


P: Vacuum pressure (kPa)

S: Pad area (cm²)

t : Safety factor Horizontal lifting: 4 or more

Vertical lifting: 8 or more

This type of application should basically be avoided.

(N)

57

50

32.2

19.6

88

78

Theoretical Lifting Force -

The theoretical lifting force (not including the safety factor) is found from the pad diameter and vacuum pressure. The required lifting force is then found by dividing the theoretical lifting force by the safety factor \mathbf{t} .

Lifting force = Theoretical lifting force ÷ t

(1) Theoretical Lifting Force (Theoretical lifting force = P x S x 0.1)

0.57

0.50

Pad Diameter (ø2 to ø50)

Pad diam	eter (mm)	ø 2	ø 4	ø 6	ø 8	ø10	ø13	ø 16	ø 20	ø 25	ø 32	ø 40	ø 50
Pad area	a S (cm²)	0.03	0.13	0.28	0.50	0.79	1.33	2.01	3.14	4.91	8.04	12.6	19.6
	-85	0.27	1.07	2.40	4.27	6.67	11.3	17.1	26.7	41.7	68.3	107	167
	-80	0.25	1.00	2.26	4.02	6.28	10.6	16.1	25.1	39.3	64.3	101	157
	-75	0.24	0.94	2.12	3.77	5.89	10.0	15.1	23.6	36.8	60.3	95	147
Vacuum	-70	0.22	0.88	1.98	3.52	5.50	9.3	14.1	22.0	34.3	56.3	88	137
pressure	-65	0.20	0.82	1.84	3.27	5.10	8.6	13.1	20.4	31.9	52.2	82	127
(kPa)	-60	0.19	0.75	1.70	3.01	4.71	8.0	12.1	18.8	29.4	48.2	76	118
()	-55	0.17	0.69	1.55	2.76	4.32	7.3	11.1	17.3	27.0	44.2	69	108
	-50	0.16	0.63	1.41	2.51	3.93	6.7	10.0	15.7	24.5	40.2	63	98

3.53

3.14

6.0

5.3

9.0

8.0

14.1

12.6

Pad Diameter (ø63 to ø340)

-45

-40

0.14

0.13

Pad Diameter (Ø63 to Ø340)										
Pad diam	eter (mm)	ø 63	ø 80	ø 100	ø 125	ø150	ø 250	ø 300	ø 340	
Pad area	a S (cm²)	31.2	50.2	78.5	122.7	176.6	490.6	706.5	907.5	
	-85	265	427	667	1043	1501	4170	6005	7714	
	-80	250	402	628	982	1413	3925	5652	7260	
	-75	234	377	589	920	1325	3680	5299	6806	
Vacuum	-70	218	351	550	859	1236	3434	4946	6353	
pressure	-65	203	326	510	798	1148	3189	4592	5899	
(kPa)	-60	187	301	471	736	1060	2944	4239	5445	
(5.)	-55	172	276	432	675	971	2698	3886	4991	
	-50	156	251	393	614	883	2453	3533	4538	
	-45	140	226	353	552	795	2208	3179	4084	
	-40	125	201	314	491	706	1962	2826	3630	

1.27

1.13 2.01

2.26

Oval Pad (2 x 4 to 8 x 30)

Ovai Pad (2	2 X 4 10 8 2	x 30)												(N)
Pad siz	e (mm)	2 x 4	3.5 x 7	4 x 10	5 x 10	6 x 10	4 x 20	5 x 20	6 x 20	8 x 20	4 x 30	5 x 30	6 x 30	8 x 30
Pad area	a S (cm ²)	0.07	0.21	0.36	0.44	0.52	0.76	0.94	1.12	1.46	1.16	1.44	1.72	2.26
	-85	0.60	1.79	3.06	3.74	4.42	6.46	7.99	9.52	12.41	9.86	12.24	14.62	19.21
	-80	0.56	1.68	2.88	3.52	4.16	6.08	7.52	8.96	11.68	9.28	11.52	13.76	18.08
	-75	0.53	1.58	2.70	3.30	3.90	5.70	7.05	8.40	10.95	8.70	10.80	12.90	16.95
Vacuum	-70	0.49	1.47	2.52	3.08	3.64	5.32	6.58	7.84	10.22	8.12	10.08	12.04	15.82
pressure	-65	0.46	1.37	2.34	2.86	3.38	4.94	6.11	7.28	9.49	7.54	9.36	11.18	14.69
(kPa)	-60	0.42	1.26	2.16	2.64	3.12	4.56	5.64	6.72	8.76	6.96	8.64	10.32	13.56
(-,	-55	0.39	1.16	1.98	2.42	2.86	4.18	5.17	6.16	8.03	6.38	7.92	9.46	12.43
	-50	0.35	1.05	1.80	2.20	2.60	3.80	4.70	5.60	7.30	5.80	7.20	8.60	11.30
	-45	0.32	0.95	1.62	1.98	2.34	3.42	4.23	5.04	6.57	5.22	6.48	7.74	10.17
	-40	0.28	0.84	1.44	1.76	2.08	3.04	3.76	4.48	5.84	4.64	5.76	6.88	9.04

Vacuum Pad Type

• Vacuum pads are available in flat, deep, bellows, thin flat, with rib, and oval types, etc. Select the optimal shape in accordance with the workpiece and operating environment. Please contact SMC for shapes not included in this catalog.

Pad Type

Pad s	shape	Application
Flat	H	To be used when adsorption surface of work is flat and not deformed.
Flat with rib		To be used when work is likely to deform or in the case of releasing work certainly.
Deep	X	To be used when work is curved shape.
Bellows		To be used when there is not enough space to install buffer or adsorption surface of work is slanted.
Oval		To be used when work has limited adsorption surface or long in length and work is required to locate precisely.

D 1.1	A 1' 1'
Pad shape	Application
Ball joint	To be used when adsorption surface of work is not horizontal.
Long stroke buffer	To be used when work height is not even or cushioning toward work is required.
Large	To be used when work is heavy weight.
Conductive	As one of the countermeasures against the static electricity, rubber material with reduced resistance is used. For antistatic measures

Vacuum Pad Material

- It is necessary to determine vacuum pad materials carefully taking into account the workpiece shape, adaptability in the operating environment, effect after being adsorbed, electrical conductivity, etc.
- Based on the work transfer example for each material, select after confirming the characteristics (adaptability) of rubber.

Vacuum Pad/Example of Work Transfer

Material

Material	Application
NBR	Transfer of general work, Corrugated board, Veneer plate, Iron plate and others
Silicone rubber	Semiconductor, Removing from die-casting, Thin work, Food processor
Urethane rubber	Corrugated board, Iron plate, Veneer plate
FKM	Chemical work
Conductive NBR	General work of semiconductor (Static electricity resistance)
Conductive silicone rubber	Semiconductor (Static electricity)

Rubber Material and Properties

	General name	NBR (Nitrile rubber)	Silicone rubber	Urethane rubber	FKM (Fluoro rubber)	CR (Chloroprene rubber)	EPR (Ethylene- propylene rubber)	Conductive NBR (Nitrile rubber)	Conductive silicone rubber	Conductive silicone sponge	Conductive CR sponge (Chloroprene sponge)
	Main features	Good oil resistance, abrasion resistance, and aging resistance	Excellent heat resistance, and cold resistance	Excellent mechanical strength	Best heat resistance, and chemical resistance	Well balanced weather resistance, ozone resistance, and chemical resistance	Good aging resistance, ozone resistance, and electrical properties	Good oil resistance, abrasion resistance, and aging resistance. Conductive	Very excellent heat resistance, and cold resistance. Conductive	Excellent heat insulation, and impact resilience	Excellent impact resilience, and sound insulation. Flame retardance
	gum property cific gravity)	1.00-1.20	0.95-0.98	1.00-1.30	1.80-1.82	1.15-1.25	0.86-0.87	1.00-1.20	0.95-0.98	0.4 g/cm ³	0.161 g/cm ³
	Impact resilience	0	0	0	Δ	0	0	0	0	X/△	X/△
툍	Abrasion resistance	0	×/△	0	0	0	0	0	×/△	×	×
d gr	Tear resistance	0	×/△	0	0	0	Δ	0	×/△	×	×
of blended gum	Flex crack resistance	0	X/O	0	0	0	0	0	X/O	×	×
of bi	Maximum operation temperature °C	120	200	60	250	150	150	100	200	180	120
ties	Minimum operation temperature °C	0	-30	0	0	-40	-20	0	-10	-30	-20
Physical properties	Volume resistivity (Ωcm)	_	_	_	_	_	_	10 ⁴ or less	10 ⁴ or less	4.8 x 10 ⁴	3.8 x 10 ⁴
alpr	Heat aging	0	0	Δ	0	0	0	0	0	Δ	Δ
ysic	Weather resistance	0	0	0	0	0	0	0	0	Δ	Δ
	Ozone resistance	Δ	0	0	0	0	0	Δ	0	Δ	Δ
	Gas permeability resistance	0	X/A	X/A	X/△	0	×/△	0	×/△	×	×
m	Gasoline/Gas oil	0	X/A	0	0	0	×	0	×/△	×	×
tance	Benzene/Toluene	×/△	×	×/△	0	×/△	×	×/△	×	×	×
cal resistar resistance	Alcohol	0	0	Δ	△/◎	0	0	0	0	Δ	Δ
cal r	Ether	×/△	×/△	×	×/△	×/△	0	×/△	×/△	×	×
Chemical resistance Oil resistance	Ketone (MEK)	×	0	×	×	Δ/Ο	0	×	0	×	×
Ō	Ethyl acetate	×/△	Δ	X/△	×	X/△	0	×/△	Δ	×	×
0	Water	0	0	Δ	0	0	0	0	0	0	0
ance	Organic acid	×/△	0	×	Δ/Ο	X/A	×	×/△	0	×	×
e resistano resistance	Organic acid of high concentration	Δ/Ο	Δ	×	0	0	0	Δ/Ο	Δ	×	×
ine r	Organic acid of low concentration	0	0	Δ	0	0	0	0	0	×	×
Alkaline resistance Acid resistance	Strong alkali	0	0	×	0	0	0	0	0	Δ	Δ
	Weak alkali	0	0	×	0	0	0	0	0	Δ	Δ

 $[\]bigcirc$ = Excellent --- Not affected at all, or almost no effect

Color and Identification

General name	NBR (Nitrile rubber)	Silicone rubber	Urethane rubber	FKM (Fluoro rubber)	CR (Chloroprene rubber)	(Ethylene-	Conductive NBR (Nitrile rubber)	Conductive silicone rubber	Conductive silicone sponge	Conductive CR sponge (Chloroprene sponge)
Color of rubber	Black	White	Brown	Black	Black	Black	Black	Black	Black	Black
Identification (Dot or stamp)	_	_	_	· Green 1 dot	·Red 1 dot	·E	·Silver 1 dot	· Silver 2 dots	_	_

O = Good --- Affected a little, but adequate resistance depending on conditions

 $[\]triangle$ = Better not to use if possible

 $[\]times$ = Unsuitable for usage. Severely affected.

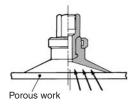
^{*} Properties, chemical resistance, and other values are not guaranteed. These values depend on the operating environment, so they cannot be guaranteed by SMC. Thorough research and confirmation are necessary before usage.

Buffer Attachment

• Use a buffer when there is a variation in the height of work pieces and fragile work pieces are adsorbed (cushioning is necessary). If it is necessary to further position the pad and the workpiece, use a non-rotating buffer.

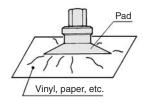
Unsteady Distance between Pad and Work

If the pad and the workpiece cannot be positioned properly, such as when picking a workpiece having an uneven height, use a built-in spring type pad with a buffer. This type of pad acts as a cushion between the pad and the workpiece. If it is necessary to further position the pad and the workpiece, use a non-rotating buffer.

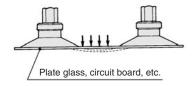


Pad Selection by Work Type

• Carefully select a pad for the following work pieces.

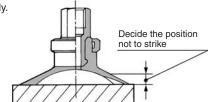

1. Porous Work

To pick a permeable workpiece such as paper, select a pad with a small diameter that is sufficient to lift the workpiece. Because a large amount of air leakage could reduce the pad's suction force, it may be necessary to increase the capacity of an ejector or vacuum pump or enlarge the conductance area of the piping passage.


3. Soft Work

If a soft workpiece such as vinyl, paper, or thin sheet is picked up, the vacuum pressure could cause the workpiece to deform or wrinkle. In such a case, it will be necessary to use a small pad or a ribbed pad and reduce the vacuum pressure.

2. Flat Plate Work


When a workpiece with a large surface area such as sheet glass or PCB is suspended, the workpiece could move in a wavelike motion if a large force is applied by wind pressure or by an impact. Therefore, it is necessary to ensure the proper allocation and size of pads.

4. Impact to Pad

When pushing a pad to a workpiece, make sure not to apply an impact or a large force which would lead to premature deformation, cracking, or wearing of the pad. The pad should be pushed against the workpiece to the extent that its skirt portion deforms or that its ribbed portion comes into slight contact with the workpiece.

Especially, when using a smaller diameter pad, make sure to locate it correctly.

Vacuum Pad Durability

- Need to be careful of the vacuum pad (rubber) deterioration.
- The vacuum pad's adsorption surface will be worn out when it is used for a certain period of time, and the outer diameter gradually becomes smaller. The lifting force becomes weaker as the pad diameter becomes smaller, but absorption is still possible.
- Since the vacuum pad replacement period greatly varies depending on the operating environment, it is extremely difficult to estimate the replacement period. Specify the period taking into account the actual operating conditions.

3 Selection of Vacuum Ejector and Vacuum Switching Valve

Calculating Vacuum Ejector and Switching Valve Size with the Formula

Average suction flow rate for achieving adsorption response time

V : Piping capacity (L)

 $Q = \frac{V \times 60}{T} + Q_{L}$

Q: Average suction flow rate L/min (ANR)

T. - 3 x T.

T₁: Arrival time to stable Pv 63% after adsorption (sec)

T2: Arrival time to stable Pv 95% after adsorption (sec)

QL: Leakage volume during work adsorption L/min (ANR) Note 1)

Max. suction flow rate -

Qmax = (2 to 3) x Q L/min (ANR)

<Selection Procedure>

Ejector

Select the ejector with the greater maximum suction flow rate from the Qmax indicated above.

Direct operation valve

Conductance C =
$$\frac{Qmax}{5 \times 11.1} [dm^3/(s \cdot bar)]$$

* Select a valve (solenoid valve) having a conductance that is greater than that of the conductance **C** formula given above from the related equipment (page 1278 in Best Pneumatics No. 4).

Note 1) QL: 0 when no leakage occurs during adsorbing a workpiece.

If there is leakage during adsorbing a workpiece, find the leakage volume based on "4. Leakage Volume during Work Adsorption."

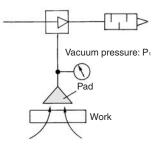
Note 2) Tube piping capacity can be found in "8. Data: Piping Capacity by Tube I.D. (Selection Graph (2))."

4 Leakage Volume during Work Adsorption

Air could be drawn in depending on the type of workpiece. As a result, the vacuum pressure in the pad becomes reduced and the amount of vacuum that is necessary for adsorption cannot be attained.

When this type of workpiece must be handled, it is necessary to select the proper size of the ejector and the vacuum switching valve by taking into consideration the amount of air that could leak through the workpiece.

Leakage Volume from Conductance of Work

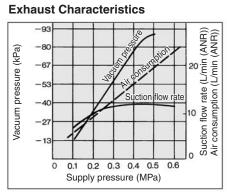

Leakage volume QL = 11.1 x 5 x CL

QL: Leakage volume L/min (ANR)

CL: Conductance between work and pad, and work opening area [dm³/(s·bar)]

● Leakage Volume from Adsorption Test

As described in the illustration below, pick up the workpiece with the ejector, using an ejector, pad and a vacuum gauge. At this time, read vacuum pressure P_1 , obtain the suction flow rate from the flow-rate characteristics graph for the ejector that is being used, and render this amount as the leakage of the workpiece.


Exercise: Using a supply pressure of 0.45 MPa, when the ejector (ZH07□S) picks up a workpiece that leaks air, the vacuum gauge indicated a pressure of −53 kPa. Calculate the leakage volume from the workpiece.

<Selection Procedure>

When obtaining the suction flow rate at a vacuum pressure of -53 kPa from the ZH07DS flow-rate characteristics graph, the suction flow rate is 5 L/min (ANR). ($\triangle \to B \to C$)

Leakage volume ≈ Suction flow rate 5 L/min (ANR)

ZH07BS, ZH07DS

Flow-rate Characteristics
Supply pressure (0.45 MPa)

-93

(eA)

-80

-67

-67

-67

-67

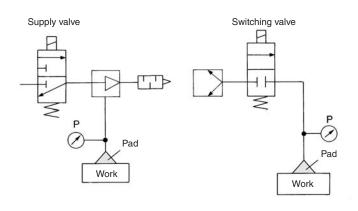
-67

-13

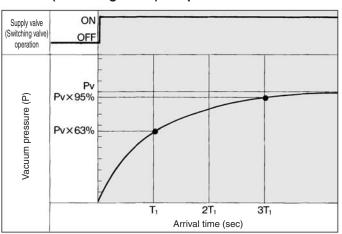
C

0 5 10 15

Suction flow rate (L/min (ANR))


5 Adsorption Response Time

When a vacuum pad is used for the adsorption transfer of a workpiece, the approximate adsorption response time can be obtained (the length of time it takes for the pad's internal vacuum pressure to reach the pressure that is required for adsorption after the supply valve {vacuum switching valve} has been operated). An approximate adsorption response time can be obtained through formulas and selection graphs.


Relationship between Vacuum Pressure and Response Time after Supply Valve (Switching Valve) is Operated

The relationship between vacuum pressure and response time after the supply valve (switching valve) is operated as shown below.

Vacuum System Circuit

Vacuum Pressure and Response Time after Supply Valve (Switching Valve) is Operated

Pv: Final vacuum pressure

 T_1 : Arrival time to 63% of final vacuum pressure Pv T_2 : Arrival time to 95% of final vacuum pressure Pv

● Calculating Adsorption Response Time with the Formula

Adsorption response times T₁ and T₂ can be obtained through the formulas given below.

Adsorption response time $T_1 = \frac{V \times 60}{Q}$

Adsorption response time $T_2 = 3 \times T_1$

Piping capacity

$$V = \frac{3.14}{4} D^2 \times L \times \frac{1}{1000} (L)$$

T₁: Arrival time to 63% of final vacuum pressure Pv (sec)

 \textbf{T}_{2} : Arrival time to 95% of final vacuum pressure Pv (sec)

Q₁: Average suction flow rate L/min (ANR)

(Calculation of average suction flow rate

Ejector

 $Q_1 = (1/2 \text{ to } 1/3) \text{ x Ejector max. suction flow rate L/min (ANR)}$

Vacuum pump

 $Q_1 = (1/2 \text{ to } 1/3) \text{ x } 11.1 \text{ x Conductance of vacuum pump } [dm^3/(s \cdot bar)]$

D: Piping diameter (mm)

L : Length from ejector and switch valve to pad (m)

V: Piping capacity from ejector and switching valve to pad (L)

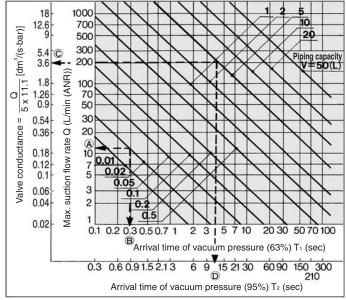
 Q_2 : Max. flow from ejector and switching valve to pad by piping system $Q_2 = S \times 11.1 \text{ L/min (ANR)}$

Q : Smaller one between the Q1 and Q2 L/min (ANR)

C: Conductance of piping [dm³/(s·bar)]

For the conductance, the equivalent conductance can be found in "8. Data: Conductance by Tube I.D. (Selection Graph (3))."

Adsorption Response Time from the Selection Graph


1. Tube Piping Capacity

Piping capacity from the ejector and switching valve at vacuum pump to the pad can be found in "8. Data: Piping Capacity by Tube I.D. (Selection Graph (2))."

2. Obtain the adsorption response times.

By operating the supply valve (switching valve) that controls the ejector (vacuum pump), the adsorption response times T_1 and T_2 that elapsed before the prescribed vacuum pressure is reached can be obtained from the Selection Graph (1).

Selection Graph (1) Adsorption Response Time

^{*} Conversely, the size of the ejector or the size of the switching valve of the vacuum pump system can be obtained from the adsorption response time.

How to read the graph

Example 1: For obtaining the adsorption response time until the pressure in the piping system with a piping capacity of 0.02 L is discharged to 63% (T_1) of the final vacuum pressure through the use of the vacuum ejector ZH07 \square S with a maximum suction flow rate of 12 L/min (ANR).

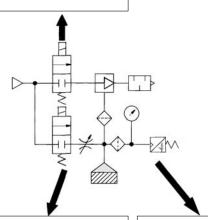
<Selection Procedure>

From the point at which the vacuum ejector's maximum vacuum suction flow rate of 12 L/min (ANR) and the piping capacity of 0.02 L intersect, the adsorption response time T_1 that elapses until 63% of the maximum vacuum pressure is reached can be obtained. (Sequence in Selection Graph (1), $\bigcirc \to \bigcirc$ $T_1 \approx 0.3$ seconds.

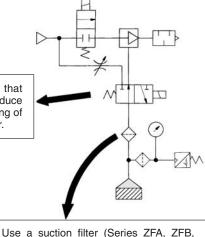
Example 2: For obtaining the discharge response time until the internal pressure in the 5 L tank is discharged to 95% (T₂) of the final vacuum pressure through the use of a valve with a conductance of 3.6 [dm³/(s·bar)].

<Selection Procedure>

From the point at which the valve's conductance of 3.6 [dm³/(s·bar)] and the piping capacity of 5 L intersect, the discharge response time (T₂) that elapses until 95% of the final vacuum pressure is reached can be obtained. (Sequence in Selection Graph (1), $\bigcirc \rightarrow \bigcirc$) T₂ \approx 12 seconds.

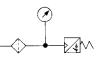

6 Precautions on Vacuum Equipment Selection and SMC's Proposal

Safety Measures


• Make sure to provide a safe design for a vacuum pressure drop due to a disruption of power supply, or a lack of supply air. Drop prevention measures must be taken in particular when dropping a workpiece presents some degree of danger.

Precautions on Vacuum Equipment Selection

As a countermeasure for power outages, select a supply valve that is normally open or one that is equipped with a self-holding function.



Select a vacuum switching valve that has a conductance that does not reduce the composite conductance consisting of the areas from the pad to the ejector.

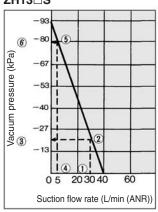
For the release valve, select a 2/3 port valve with a low vacuum specification. Also, use a needle valve to regulate the release flow rate.

- During the adsorption and transfer of a workpiece, verification of the vacuum switch is recommended.
- In addition, visually verify the vacuum gauge when handling a heavy or a hazardous item.
- The ZSP1 type is optimal for the adsorption and transfer of small parts using a suction nozzle with a small diameter.
- Install a filter (Series ZFA, ZFB, ZFC) before the pressure switch if the ambient air is of low quality.

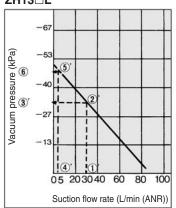
Use a suction filter (Series ZFA, ZFB, ZFB, ZFC) to protect the switching valve and to prevent the ejector from becoming clogged. Also, a suction filter must be used in a dusty environment. If only the unit's filter is used, it will become clogged quickly.

◆ Vacuum Ejector or Pump and Number of Vacuum Pads

Ejector and number of pads Vacuum pump and number of pads Vacuum line Vacuum source Tank Ideally, one pad should be When more than one pad is attached to a single Ideally, one pad should be When more than one pad is attached to a single used for each ejector. ejector, if one of the work pieces becomes used for each line. vacuum line, take the countermeasures listed below. detached, the vacuum pressure will drop, causing other work pieces to become detached. Therefore, · Adjust the needle valve to minimize the pressure fluctuation between adsorption and the countermeasures listed below must be taken. non-adsorption operation. · Adjust the needle valve to minimize the Include a tank and a vacuum pressure pressure fluctuation between adsorption and reduction valve (vacuum pressure regulator non-adsorption operations. valve) to stabilize the source pressure. Provide a vacuum switching valve to each Provide a vacuum switching valve to each individual pad to minimize the influences on individual pad to minimize the influences on other pads if an adsorption error occurs. other pads if an adsorption error occurs.


Vacuum Ejector Selection and Handling Precautions

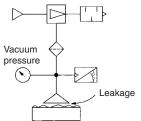
Ejector Selection


There are 2 types of ejector flow-rate characteristics: the high vacuum type (S type) and the high flow type (L type).

During the selection, pay particular attention to the vacuum pressure when adsorbing work pieces that leak.

High Vacuum Type Flow-rate Characteristics/ ZH13□S

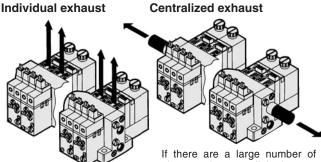
High Flow Type Flow-rate Characteristics/ ZH13□L



The vacuum pressure varies in accordance with the leakage volumes indicated in the above diagrams.

If the leakage volume is 30 L/min (ANR), the vacuum pressure of the S type is $-20 \text{ kPa} \ 1 \rightarrow 2 \rightarrow 3$, and for the L type it is $-33 \text{ kPa} \ 1 \rightarrow 2$ \rightarrow 3'. If the leakage volume is 5 L/min (ANR), the vacuum pressure of the S type is –80 kPa $4 \rightarrow 5 \rightarrow 6$, and for the L type it is –47 kPa $4 \rightarrow 5 \rightarrow 6$ \rightarrow 5' \rightarrow 6'. Thus, if the leakage volume is 30 L/min (ANR) the L type can attain a higher vacuum pressure, and if the leakage volume is 5 L/min (ANR), the S type can attain a higher vacuum pressure.

Thus, during the selection process, make sure to take the flow-rate characteristics of the high vacuum type (S type) and the high flow type (L type) into consideration in order to select the type that is optimal for your application.


Ejector Nozzle Diameter Selection

If a considerable amount of leakage occurs between the workpiece and the pad, resulting in incomplete adsorption, or to shorten the adsorption and transfer time, select an ejector nozzle with a larger diameter from the ZH, ZM, ZR, or ZL series.

Manifold Use

Individual exhaust

If there are a large number of ejectors that are linked on a manifold and operate simultaneously, use the builtin silencer type or the port exhaust type.

ejectors that are linked on a manifold, which exhaust collectively, install a silencer at both ends. If the exhaust must be discharged outdoors through piping, make sure that the diameter of the piping is large enough that its back pressure will not affect the operation of the eiectors.

• If the vacuum ejector makes an intermittent noise (abnormal noise) from exhaust at a certain supply pressure, the vacuum pressure will not be stable. It will not be any problem if the vacuum ejector is used under this condition. However, if the noise is disturbing or might affect the operation of the vacuum pressure switch, lower or raise supply pressure a little at a time, and use in an air pressure range that does not produce the intermittent noise.

Supply Pressure of Vacuum Ejector

• Use the vacuum ejector at the standard supply pressure.

The maximum vacuum pressure and suction flow rate can be obtained when the vacuum ejector is used at the standard supply pressure, and as a result, adsorption response time also improves. From the viewpoint of energy-saving, it is the most effective to use the ejector at the standard supply pressure. Since using it at the excessive supply pressure causes a decline in the ejector performance, do not use it at a supply pressure exceeding the standard supply.

Timing for Vacuum Generation and Suction Verification

A. Timing for Vacuum Generation

The time for opening/closing the valve will be counted if a vacuum is generated after the adsorption pad descends to adsorb a workpiece. Also, there is a timing delay risk for the generating vacuum since the operational pattern for the verification switch, which is used for detecting the descending vacuum pad, is not even.

To solve this issue, we recommend that vacuum be generated in advance, before the vacuum pad begins to descend to the workpiece. Adopt this method after confirming that there will be no misalignment resulting from the workpiece's light mass.

B. Suction Verification

When lifting the vacuum pad after absorbing a workpiece, confirm that there is a suction verification signal from the vacuum pressure switch, before the vacuum pad is lifted. If the vacuum pad is lifted, based on the timing of a timer, etc., there is a risk that the workpiece may be left behind.

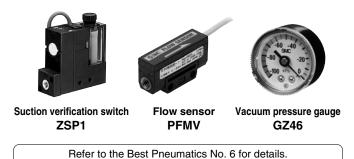
In general adsorption transfer, the time for adsorbing a workpiece is slightly different since the position of the vacuum pad and the workpiece are different after every operation. Therefore, program a sequence in which the suction completion is verified by a vacuum pressure switch, etc. before moving to the next operation.

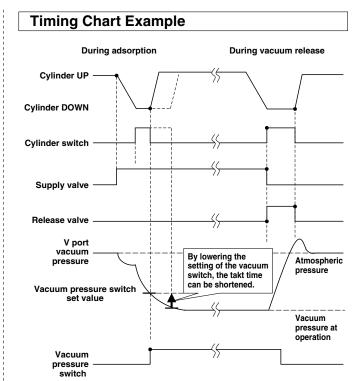
C. Set Pressure for Vacuum Pressure Switch

Set the optimum value after calculating the required vacuum pressure for lifting a workpiece.

If a higher pressure than required is set, there is a possibility of being unable to confirm the suction even though the workpiece is adsorbed. This will result in a suction error.

When setting vacuum pressure switch set values, you should set using a lower pressure, with which a workpiece can be adsorbed, only after considering the acceleration or vibration when a workpiece is transferred. The set value of the vacuum pressure switch shortens the time to lift a workpiece. Since the switch detects whether the workpiece is lifted or not, the pressure must be set high enough to detect it.


Vacuum Pressure Switch (Series ZS), Vacuum Pressure Gauge (Series GZ)


When adsorbing and transferring a workpiece, verify at the vacuum pressure switch as much as possible (In addition, visually verify the vacuum gauge, especially when handling a heavy or a hazardous item.).

Approx. ø1 adsorption nozzle

The difference in pressure between ON and OFF becomes small depending on the capacity of the ejector and vacuum pump. In such a case, it will be necessary to use ZSP1 that can detect a small hysteresis or a flow switch.

- Note) A vacuum generator with a large suction capacity will not be detected properly, so an ejector with an appropriate capacity must be selected.
 - Since the hysteresis is small, vacuum pressure must be stabilized.

Dust Handling of Vacuum Equipment

- When the vacuum equipment is used, not only the workpiece, but also dust in the surrounding environment is taken in the equipment. Preventing the intrusion of dust is required more than for any other pneumatic equipment. Some of SMC's vacuum equipment comes with a filter, but when there is a large amount of dust, an additional filter must be installed.
- When vaporized materials such as oil or adhesive are sucked into the equipment, they accumulate inside, which may cause problems.
- It is important to prevent dust from entering the vacuum equipment as much as possible.
 - (1) Make sure to keep the working environment and surrounding area of the workpiece clean so that dust will not be sucked in the equipment.
 - (2) Check the amount and types of dust before using the equipment and install a filter, etc., in the piping when necessary. In particular, equipment used to capture dust, such as a vacuum cleaner, require a special filter.
 - (3) Conduct a test and make sure that operating conditions are cleared before using the equipment.
- (4) Perform filter maintenance depending on the amount of dirt.
- (5) Filter clogging generates a pressure difference between the adsorption and ejector parts. This requires attention, since clogging can prevent proper adsorption from being achieved.

Air Suction Filter (Series ZFA, ZFB, ZFC)

- To protect the switching valve and the ejector from becoming clogged, a suction filter in the vacuum circuit is recommended.
- When using an ejector in a dusty environment, the unit's filter will become clogged quickly, so it is recommended that the ZFA, ZFB or ZFC series be used concurrently.

Vacuum Line Equipment Selection

Determine the volume of the suction filter and the conductance of the switching valve in accordance with the maximum suction flow rate of the ejector and the vacuum pump. Make sure that the conductance is greater than the value that has been obtained through the formula given below. (If the devices are connected in series in the vacuum line, their conductances must be combined.)

 $C = \frac{Qmax}{5 \times 11.1}$

C: Conductance [dm³/(s·bar)]

Qmax: Max. suction flow rate L/min (ANR)

Vacuum Equipment Selection Example

Transfer of Semiconductor Chips

Selection conditions:

(1) Workpiece: Semiconductor chips

Dimensions: 8 mm x 8 mm x 1 mm, Mass: 1 g

(2) Vacuum piping length: 1 m

(3) Adsorption response time: 300 msec or less

1. Vacuum Pad Selection

- (1) Based on the workpiece size, the pad diameter is 4 mm (1 pc.).
- (2) Using the formula on the front matter 13, confirm the lifting force.

According to the calculation, -3.0 kPa or more of vacuum pressure can adsorb the workpiece.

(3) Based on the work shape and type, select:

Pad type: Flat Pad material: Silicone

(4) According to the results above, select a vacuum pad part number ZPT04US- $\Box\Box$.

(Specify the vacuum entry port ($\Box\Box$) from the pad mounting status.)

2. Vacuum Ejector Selection

(1) Find the vacuum piping capacity.

Assuming that the tube I.D. is 2 mm, the piping capacity is as follows:

$$V = \pi/4 \times D^2 \times L \times 1/1000 = \pi/4 \times 2^2 \times 1 \times 1/1000$$

= 0.0031 L

(2) Assuming that leakage (QL) during adsorption is 0, find the average suction flow rate to meet the adsorption response time using the formula on the front matter 17.

$$Q = (V \times 60) / T_1 + Q_L = (0.0031 \times 60) / 0.3 + 0 = 0.62 L$$

From the formula on the front matter 17, the maximum suction flow rate Qmax is

$$Q_{max} = (2 \text{ to } 3) \times Q = (2 \text{ to } 3) \times 0.62$$

= 1.24 to 1.86 L/min (ANR)

According to the maximum suction flow rate of the vacuum ejector, a nozzle with a 0.5 diameter can be used.

If the vacuum ejector ZX series is used, representative model ZX105□ can be selected.

(Based on the operating conditions, specify the complete part number for the vacuum ejector used.)

3. Adsorption Response Time Confirmation

Confirm the adsorption response time based on the characteristics of the vacuum ejector selected.

(1) The maximum suction flow rate of the vacuum ejector ZX105□ is 5 L/min. From the formula on the front matter 18, the average suction flow rate **Q**₁ is as follows:

```
Q_1 = (1/2 \text{ to } 1/3) \text{ x Ejector's max. suction flow rate}
= (1/2 to 1/3) x 5 = 2.5 to 1.7 L/min
```

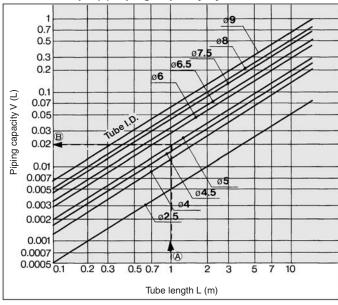
(2) Next, find the maximum flow rate **Q**₂ of the piping. The conductance **C** is 0.22 from the Selection Graph (3). From the formula on the front matter 18, the maximum flow rate is as follows:

(3) Since Q_2 is smaller than Q_1 , $Q = Q_1$.

Thus, from the formula on the front matter 18, the adsorption response time is as follows:

$$T = (V \times 60)/Q = (0.0031 \times 60)/1.7 = 0.109 \text{ second}$$

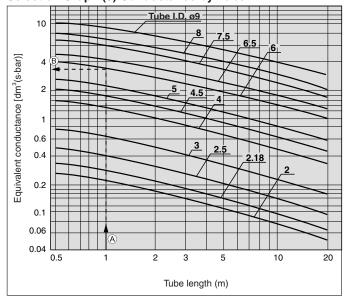
= 109 msec


It is possible to confirm that the calculation result satisfies the required specification of 300 msec.

8 Data

Selection Graph

Selection Graph (2) Piping Capacity by Tube I.D.


How to read the graph

Example: For obtaining the capacity of tube I.D. ø5 and 1 meter length < Selection Procedure>

By extending leftward from the point at which the 1 meter tube length on the horizontal axis intersects the line for a tube I.D. \emptyset 5, the piping capacity approximately equivalent to 0.02 L can be obtained on the vertical axis.

Piping capacity ≈ 0.02 L

Selection Graph (3) Conductance by Tube I.D.

How to read the graph

Example: Tube size Ø8/Ø6 and 1 meter length

<Selection Procedure>

By extending leftward from the point at which the 1 meter tube length on the horizontal axis intersects the line for a tube I.D. ø6, the equivalent conductance approximately 3.6 [dm³/(s·bar)] can be obtained on the vertical axis.

Equivalent conductance ≈ 3.6 [dm³/(s·bar)]

● Glossary of Terms

Terms	Description
(Max.) suction flow rate	Volume of air taken in by the ejector. The maximum value is the volume of air taken in without having anything connected to the vacuum port.
Maximum vacuum pressure	The maximum value of the vacuum pressure generated by the ejector
Air consumption	The compressed volume of air consumed by the ejector
Standard supply pressure	The optimal supply pressure for operating the ejector
Exhaust characteristics	The relationship between the vacuum pressure and the suction flow rate when the supply pressure to the ejector has been changed.
Flow-rate characteristics	The relationship between the vacuum pressure and the suction flow rate with the standard supply pressure supplied to the ejector.
Vacuum pressure switch	Pressure switch for verifying the adsorption of a workpiece
Suction verification switch	Switch, based on an air pressure bridge, for verifying the adsorption of a workpiece. It is used when the adsorption pad and the nozzle are extremely small.
(Air) supply valve	Valve for supplying compressed air to the ejector
(Vacuum) release valve	Valve for supplying positive pressure or air for breaking the vacuum state of the adsorption pad
Flow adjustment valve	Valve for adjusting the volume of air for breaking the vacuum
Release pressure	Pressure for breaking the vacuum
Pilot pressure	Pressure for operating the ejector valve
External release	The action of breaking the vacuum using externally supplied air instead of using the ejector unit
Vacuum port	Port for generating vacuum
Exhaust port	Port for exhausting air consumed by the ejector, and air taken in from the vacuum port.
Supply port	Port for supplying air to the ejector
Back pressure	Pressure inside the exhaust port
Leakage	The entry of air into the vacuum passage, such as from an area between a workpiece and a pad, or between a fitting and a tube. The vacuum pressure decreases when leakage occurs.
Response time	The time from the application of the rated voltage to the supply valve or release valve, until V port pressure reaches the specified pressure.
Average suction flow rate	The suction flow rate by the ejector or pump for calculating the response speed. It is $1/2$ to $1/3$ of the maximum suction flow rate.
Conductive pad	A low electrical resistance pad for electrostatic prevention measure
Vacuum pressure	Any pressure below the atmospheric pressure. When the atmospheric pressure is used as a reference, the pressure is presented by –kPa (G), and when the absolute pressure is used as a reference, the pressure is represented by kPa (abs). When referencing a piece of vacuum equipment such as an ejector, the pressure is generally represented by –kPa.
Ejector	A unit for generating vacuum by discharging the compressed air from a nozzle at a high speed, based on the phenomenon in which the pressure is reduced when the air around the nozzle is sucked.
Air suction filter	Vacuum filter provided in the vacuum passage for preventing the dust intrusion into the ejector, vacuum pump, or peripheral equipment

● Countermeasures for Vacuum Adsorption System Problems (Troubleshooting)

Condition & Description of improvement	Contributing factor	Countermeasure					
Initial adsorption problem (During trial operation)	Adsorption area is small. (Lifting force is lower than the workpiece mass.)	Reconfirm the relationship between workpiece mass and lifting force. • Use a vacuum pad with a large adsorption area. • Increase the quantity of vacuum pads.					
	Vacuum pressure is low. (Leakage from adsorption surface) (Air permeable workpiece)	Eliminate (reduce) leakage from adsorption surface. • Reconsider shape of vacuum pad. Confirm the relationship between suction flow rate and arrival pressure of vacuum ejector. • Use a vacuum ejector with a high suction flow rate. • Increase adsorption area.					
	Vacuum pressure is low. (Leakage from vacuum piping)	Repair leakage point.					
	Internal volume of vacuum circuit is large.	Confirm the relationship between internal volume of the vacuum circuit and suction flow rate of the vacuum ejector. Reduce internal volume of the vacuum circuit. Use a vacuum ejector with a high suction flow rate.					
	Pressure drop of vacuum piping is large.	Reconsider vacuum piping. • Use a shorter or larger tube (with appropriate diameter).					
	Inadequate supply pressure of vacuum ejector	Measure supply pressure in vacuum generation state. Use standard supply pressure. Reconsider compressed air circuit (line).					
	Clogging of nozzle or diffuser (Infiltration of foreign objects during piping)	Remove foreign objects.					
	Supply valve (switching valve) is not being activated.	Measure supply voltage at the solenoid valve with a tester. • Review electric circuits, wiring and connectors. • Use in the rated voltage range.					
	Workpiece deforms during adsorption.	Since a workpiece is thin, it deforms and leakage occurs. • Use a pad for adsorption of thin objects.					
Late vacuum achieving time (Shortening of response time)	Internal volume of vacuum circuit is large.	Confirm the relationship between internal volume of the vacuum circuit and suction flow rate of the vacuum ejector. Reduce internal volume of the vacuum circuit. Use a vacuum ejector with a high suction flow rate.					
	Pressure drop of vacuum piping is large.	Reconsider vacuum piping. • Use a shorter or larger tube (with appropriate diameter).					
	Using the product as close to the highest vacuum power in the specifications.	Set vacuum pressure to minimum necessary value by optimizing the pad diameter, etc. As the vacuum power of an ejector (venturi) rises, the vacuum flow actually lowers. When an ejector is used at its highest possible vacuum value, the vacuum flow will lower. Due to this, the amount of time needed to achieve adsorption is lengthened. One should consider an increase in the diameter of the ejector nozzle or an increase the size of the vacuum pad utilized in order to lower the required vacuum pressure, maximum the vacuum flow, and speed up the adsorption process.					
	Setting of vacuum pressure switch is too high.	Set to suitable setting pressure.					

Condition & Description of improvement	Contributing factor	Countermeasure				
Fluctuation in vacuum pressure	Fluctuation in supply pressure	Reconsider compressed air circuit (line). (Addition of a tank, etc.)				
Vacuum pressure may fluctuate under certain conditions due to ejector characteristics.		Lower or raise supply pressure a little at a time, and use in a supply pressure range where vacuum pressure does not fluctuate.				
Occurrence of abnormal noise (intermittent noise) from exhaust of vacuum ejector		Lower or raise supply pressure a little at a time, and use in a supply pressure range where the intermittent noise does not occur.				
Air leakage from vacuum port of manifold type vacuum ejector	Exhaust air from the ejector enters the vacuum port of another ejector that is stopped.	Use a vacuum ejector with a check valve. (Please contact SMC for the part no. of an ejector with a check valve.)				
Adsorption problem over time	Clogging of suction filter	Replace filters. Improve installation environment.				
(Adsorption was normal during trial operation.)	Clogging of sound absorbing material	Replace sound absorbing materials. Add a filter to supply (compressed) air circuit. Install an additional suction filter.				
Clogging of nozzle or diffuser		Remove foreign objects. Add a filter to supply (compressed) air circuit. Install an additional suction filter.				
	Vacuum pad (rubber) deterioration, cracking, etc.	Replace vacuum pads. Confirm compatibility of vacuum pad material and workpiece.				
Workpiece is not released.	Inadequate release flow rate	Open release flow adjustment needle.				
	Viscosity increase due to vacuum pad (rubber) wear	Replace vacuum pads. Confirm compatibility of vacuum pad material and workpiece.				
	Vacuum pressure is too high.	Set vacuum pressure to minimum necessary value.				
	Effects due to static electricity	Use a conductive pad.				

Non-conformance Examples

■ No problem occurred during the test, but adsorption becomes unstable after starting operation.

[Possible causes]

- Setting of the vacuum switch is not appropriate. Supply pressure is unstable. Vacuum pressure does not reach the set pressure.□
- There is leakage between the workpiece and the vacuum pad. □

[Remedy]

- Set the pressure for the vacuum equipment (supply pressure, if using an ejector) to the necessary vacuum pressure during the adsorption of the work pieces. And set the set pressure for the vacuum switch to the necessary vacuum pressure for adsorption.□
- 2) It is presumed that there was leakage during the test, but it was not serious enough to prevent adsorption. Revise the vacuum ejector and the shape, diameter, and material of the vacuum pad.□

 Revise the vacuum pad.□

■ Adsorption becomes unstable after replacing the pad.

[Possible causes]

- Initial setting conditions (vacuum pressure, vacuum switch setting, height of the pad) have changed. Settings have changed because the pad was worn out or had permanent setting due to the operating environment. □
- When the pad was replaced, leakage was generated from the screw connection part, or the engagement between the pad and the adapter. □

[Remedy]

- 1) Revise the operating conditions including vacuum pressure, the set pressure of the vacuum switch, and the height of the pad.□
- 2) Revise the engagement. \Box

■ Identical pads are used to adsorb identical work pieces, but some of the pads cannot adsorb the work pieces.

[Possible causes]

- There is leakage between the workpiece and the vacuum pad.□
- The supply circuit for the cylinder, the solenoid valve and the ejector is in the same pneumatic circuit system. The supply pressure decreases when they are used simultaneously. (Vacuum pressure does not increase)
- There is leakage from the screw connection part or the engagement between the pad and the adapter. \square

[Remedy]

- 1) Revise the pad diameter, shape, material, vacuum ejector (suction flow rate), etc.□
- 2) Revise the pneumatic circuit.
- 3) Revise the engagement.□
- * In principle, vacuum pads are molded using a die. Therefore, there is minimal variance in dimensions between products. \Box

■ The workpiece cannot be separated from the pad. The workpiece sticks to the rubber part of the bellows.

[Possible causes]

- The adhesiveness of the rubber material is high. Adhesiveness increases due to the operating environment (wearing of the pad, etc.).□
- Vacuum pressure is higher than necessary, so excessive force (adhesiveness of the rubber + vacuum pressure) is applied to the pad (rubber part).□

[Remedy]

- Revise the shape, material, and quantity of vacuum pads.
- 2) Reduce the vacuum pressure. If inadequate lifting force causes a problem in transferring the work pieces due to the reduction of vacuum pressure, increase the number of pads, or select pads with larger diameter.

■When mounted with the nut, sometimes the buffer operation is not smooth, or the buffer does not slide.

[Possible causes]

- The tightening torque of the nut for mounting the buffer is too high.
- Particles stuck to the sliding surface, or it is scratched.
- Lateral load applied to the piston rod, causing eccentric wearing.

[Remedy]

Tighten the nut to the recommended tightening torque.

The nut may become loose depending on the operating conditions and environment. Be sure to perform regular maintenance.

General Purpose

	Nut tightening torque		
Pad diameter	Product part no.	Mounting thread size	Nut tigritering torque
ø2 to ø16 2004 to 4010	ZP* (02 to 08) U, B* ZP* (10 to 16) UT, CT* ZP* (2004 to 4010) U*	M8 x 1	1.5 to 2.0 N⋅m
ø10 to ø32	ZP* (10 to 32) U, C, B, D* ZP* (10 to 16) F*	M10 x 1	2.5 to 3.5 N⋅m
ø 20 to ø 50	ZP* (40, 50) U, C, B, D* ZP* (20 to 50) F*	M14 x 1	6.5 to 7.5 N⋅m

Heavy-duty Pad

neavy daty i da						
	Pro	oduct speci	fications		Nut tightoning torque	
Pad diameter	Product part no.		Mounting thread size	Buffer body material	Nut tightening torque	
	ZP* (40/50) H*	7D:: (40/50) LI::		Aluminum alloy	9.5 to 10.5 N⋅m	
ø 40, ø 50	ZP* (40/50) HB*	JB *	M18 x 1.5	Brass	28 to 32 N·m	
	ZF* (40/30) HB*	JF		Steel	48 to 52 N⋅m	
7D:: (00/00) List		J		Aluminum alloy	9.5 to 10.5 N⋅m	
ø 63 , ø 80	ZP* (63/80) H* ZP* (63/80) HB*	JB *	M18 x 1.5	Brass	28 to 32 N·m	
		JF		Steel	48 to 52 N⋅m	
	7D:: (400(405) 11::			Aluminum alloy	9.5 to 10.5 N⋅m	
ø100, ø125		JB *	M22 x 1.5	Brass	45 to 50 N⋅m	
		JF		Steel	75 to 80 N⋅m	

Heavy-duty Ball Joint Pad

	Product specifications					
Pad diameter	Product part no.		Product part no. Mounting thread size		Buffer body material	Nut tightening torque
ø 40 , ø 50	ZP2-*F (40/50) H*	JB *	M18 x 1.5	Brass	28 to 32 N·m	
Ø 40 , Ø 30	ZP2-*F (40/50) HB*	JF	C.I X OI IVI	Steel	48 to 52 N⋅m	
ø 63 , ø 80	ZP2-*F (63/80) H*	JB *	M22 x 1.5	Brass	45 to 50 N⋅m	
Ø03, Ø00	ZP2-*F (63/80) HB*	JF *	C.1 X 22IVI	Steel	75 to 80 N⋅m	
ø100, ø125	ZP2-*F (100/125) H*	JB *	M00 v 1 E	Brass	45 to 50 N⋅m	
Ø 100 , Ø 125 ZP2-*F (100/125) HB* JF M22 x 1.5			Steel	75 to 80 N⋅m		

●Time of Replacement of Vacuum Pad

The vacuum pad is disposable. Replace it on a regular basis.

Continued use of the vacuum pad will cause wear and tear on the adsorption surface, and the exterior dimensions will gradually get smaller and smaller. As the pad diameter gets smaller, lifting force will decrease, though adsorption is possible.

It is extremely difficult to provide advice on the frequency of vacuum pad exchange. This is because there are numerous factors at work, including surface roughness, operationg environment (temperature, humidity, ozone, solvents, etc.), and operating conditions (vacuum pressure, workpiece weight, pressing force of the vacuum pad on the workpiece, presence or absence of a buffer, etc.).

Thus, the customer should decide when the vacuum pad should be exchanged, based on its condition at time of initial use.

The bolt may become loose depending on the operating conditions and environment. Be sure to perform regular maintenance.

Recommended Tightening Torque for Replacement of Heavy-duty Pad

of fically daty i du							
Р	Bolt tightening						
Pad diameter	diameter Product part no. Bolt						
ø 40 , ø 50	ZP (40/50) H* ZP (40/50) HB*	M3 x 8	0.7 to 0.9 N·m				
ø 63 , ø 80	ZP (63/80) H* ZP (63/80) HB*	M4 x 8	0.9 to 1.1 N·m				
ø100, ø125	ZP (100/125) H* ZP (100/125) HB*	M5 x 10	2.3 to 2.7 N·m				

Assemble parts with recommended tightening torque.

Compact Pad

Pad diameter $\emptyset 3$, $\emptyset 4$, $\emptyset 5$, $\emptyset 6$, $\emptyset 7$, $\emptyset 8$

Symbol/Type

U: Flat

C: Flat with rib

UT: Thin flat B: Bellows

■7 types of Ø3 to Ø8 are added.

■Applicable for the ZP series adapter

How to Order

ZP2-03 U N

Pad diameter

Symbol	Pad diameter	Blast type
03	ø3	_
B04	ø4	•
05	ø5	_
06	ø6	_
B06	ø6	•
07	ø7	_
B08	ø8	•

Pad unit

* Blast type: Work pieces can be removed easily.

Pad material

Symbol	Material				
Ν	NBR				
S	Silicone rubber				
U	Urethane rubber				
F	FKM				
GN	Conductive NBR				
GS	Conductive silicone rubber				

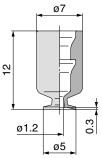
Pad type—Pad diameter

Pad diameter Pad type (Symbol)	03	B04	05	06	B06	07	B08
U (Flat)	•	•	_	_	_	_	_
C (Flat with rib)	_	_	_	_		•	
UT (Thin flat)	_	_	•		_	_	_
B (Bellows)	_	_	_	_	•	_	•

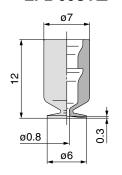
Dimensions: Pad Unit

ZP2-03U□

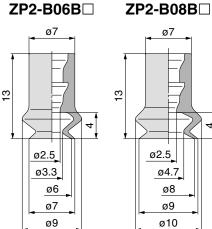
4


ø7

ZP2-B04U□

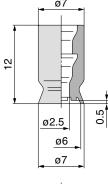

7 ø1.6 ø4

ø4.7

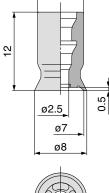

ZP2-05UT□ ø7

ZP2-06UT□

ZP2-B06B□

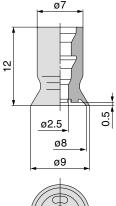


ZP2-B06C□

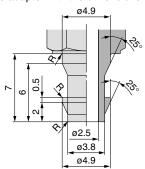

ø1.6

ø3.5

ø3



ZP2-07C□

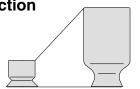

ZP2-B08C□

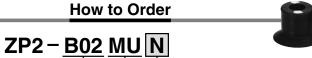
Adapter Mounting Dimensions

If an adapter will be made by the customer, design the adapter with the dimensions shown below.

Note) R part has to be smooth with no corners. * Refer to page 66 for adapter applicable to the ZP series.

Short-type Pad


Pad diameter Ø2, Ø3.5, Ø4, Ø5, Ø6, Ø8, Ø10, Ø15

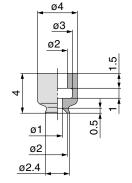

Pad unit

Symbol/Type

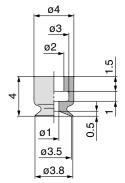
MU: Flat

■Space-saving in the height direction

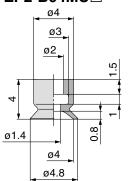
Pad diameter

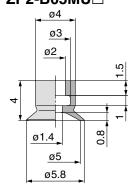

Symbol	Pad diameter	Blast type
B02	ø2	•
B035	ø3.5	•
B04	ø4	•
B05	ø5	•
B06	ø6	•
B08	ø8	•
B10	ø10	•
B15	ø15	•

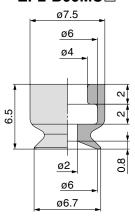
	Pad material					
		Symbol	Material			
ad type		N	NBR			
ool	Type	S	Silicone rubber			
J	Flat	U	Urethane rubber			
		F FKM				
		GN	Conductive NBR			
GS			Conductive silicone rubber			

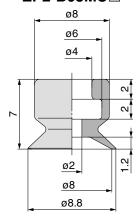

* Blast type: Work pieces can be removed easily.

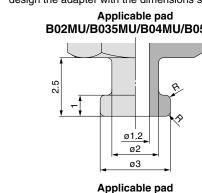
Dimensions: Pad Unit


ZP2-B02MU□

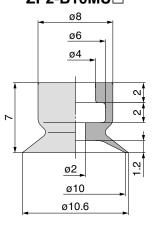

ZP2-B035MU□


ZP2-B04MU□

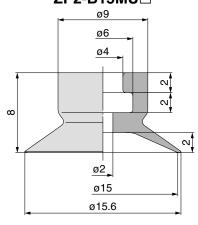

ZP2-B05MU□



ZP2-B06MU□

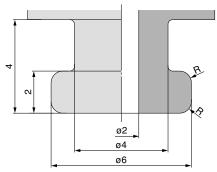


ZP2-B08MU□



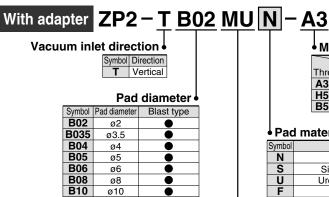
ZP2-B10MU□

ZP2-B15MU□


Adapter Mounting Dimensions

If an adapter will be made by the customer, design the adapter with the dimensions shown below.

B02MU/B035MU/B04MU/B05MU


B06MU/B08MU/B10MU/B15MU

Note) R part has to be smooth with no corners. * Refer to page 69 for adapter applicable to the ZP2 series.

How to Order

* Blast type: Work pieces can be removed easily.

> Pad type Symbol Type
> MU Flat

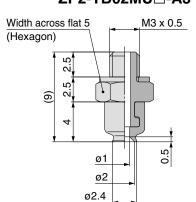
ø15

Mounting

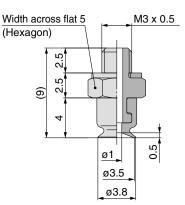
• Mounting								
Pad diameter (Symbol)	B02	B035	B04	B05	B06	B08	B10	B15
A3 (M3 x 0.5 Male thread)	•	•	•	•			_	_
H5 (M5 x 0.8 Male thread)	_	_	_	_		•		
B5 (M5 x 0.8 Female thread)	_	_	_	_		•		

Pad material

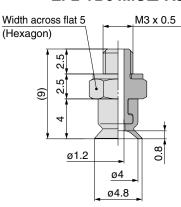
Symbol	Material					
N	N NBR					
S	S Silicone rubber					
U	U Urethane rubber					
F	F FKM					
	GN Conductive NBR					
GS	S Conductive silicone rubber					

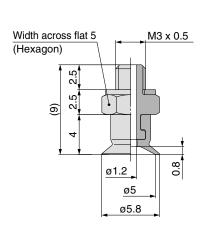

Replacement Part No.				
Model	Pad unit part no.	Adapter part no.		
ZP2-TB02MU□-A3	ZP2-B02MU□			
ZP2-TB035MU□-A3	ZP2-B035MU□	ZP2A-M01P		
ZP2-TB04MU□-A3	ZP2-B04MU□	ZFZA-WOTF		
ZP2-TB05MU□-A3	ZP2-B05MU□			
ZP2-TB06MU□-H5	ZP2-B06MU□			
ZP2-TB08MU□-H5	ZP2-B08MU□	ZP2A-M02P		
ZP2-TB10MU□-H5	ZP2-B10MU□	ZFZA-IVIUZF		
ZP2-TB15MU□-H5	ZP2-B15MU□			
ZP2-TB06MU□-B5	ZP2-B06MU□			
ZP2-TB08MU□-B5	ZP2-B08MU□	ZP2A-M04		
ZP2-TB10MU□-B5	ZP2-B10MU□	ZFZM-10104		
ZP2-TB15MU□-B5	ZP2-B15MU□			

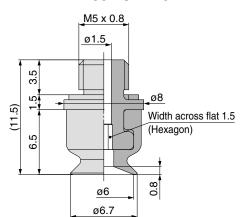
Note) \square in the table indicates the pad material.

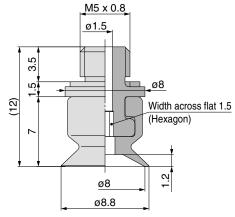

Dimensions: With Adapter

B15

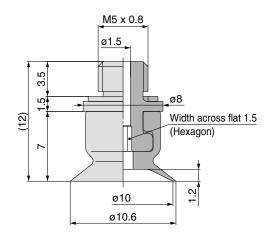

ZP2-TB02MU□-A3


ZP2-TB035MU□-A3

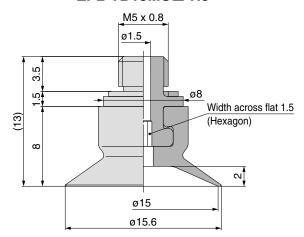

ZP2-TB04MU□-A3


ZP2-TB05MU□-A3

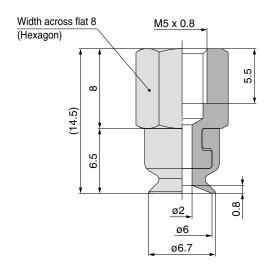
ZP2-TB06MU□-H5

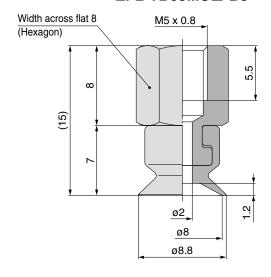


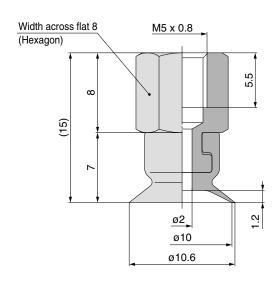
ZP2-TB08MU□-H5

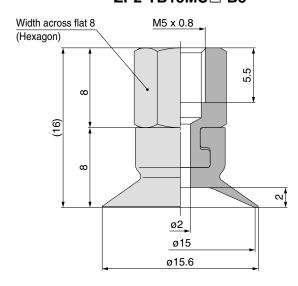


Dimensions: With Adapter


ZP2-TB10MU□-H5

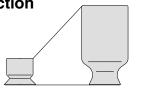

ZP2-TB15MU□-H5


ZP2-TB06MU□-B5


ZP2-TB08MU□-B5

ZP2-TB10MU□-B5

ZP2-TB15MU□-B5



Short-type Pad

Pad diameter $\emptyset 2$, $\emptyset 4$, $\emptyset 6$, $\emptyset 8$, $\emptyset 15$

EU: Flat

■Space-saving in the height direction

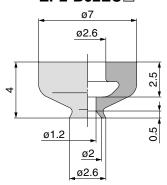
How to Order

Pad unit

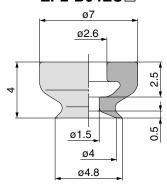
ZP2 - B02 EU N

Symbol	Pad diameter	Blast type
B02	ø2	•
B04	ø4	•
B06	ø6	•
08	ø8	_
15	ø15	_

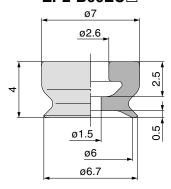
* Blast type: Work pieces can be removed easily.

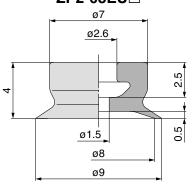

·	P	ad	materi	al
		- 1		

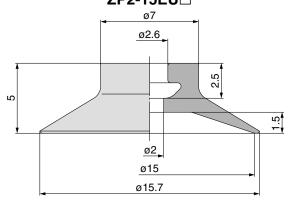
Symbol	Material
N	NBR
S Silicone rubber	
U Urethane rubber	
F FKM	
GN Conductive NBR	
GS	Conductive silicone rubber


Pad type
Symbol Type
Fill Flat

Dimensions: Pad Unit


ZP2-B02EU□


ZP2-B04EU□

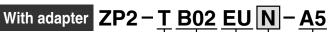

ZP2-B06EU□

ZP2-08EU□

ZP2-15EU□

Adapter Mounting Dimensions

If an adapter will be made by the customer, design the adapter with the dimensions shown below.


ø1.5

ø4.4

Note) R part has to be smooth with no corners.

* Refer to page 70 for adapter applicable to the ZP2 series.

How to Order

Pad diameter

Symbol	Pad diameter	Blast type
B02	ø2	•
B04	ø4	•
B 06	ø6	•
08	ø8	_
15	ø15	_

* Blast type: Work pieces can be removed easily.

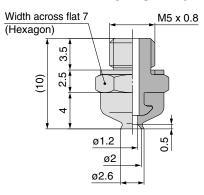
Pad type Symbol Type EU Flat

Mounting

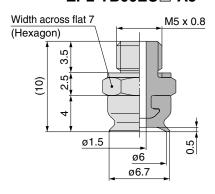
Symbol	Thread size	Adapter type
A5	M5 x 0.8	Hexagon O.D.
H5	M5 x 0.8	Hexagon socket head

Pad material

Symbol	Material	
N	NBR	
S	Silicone rubber	
U	U Urethane rubber	
F	FKM	
GN Conductive NBR		
GS	Conductive silicone rubber	

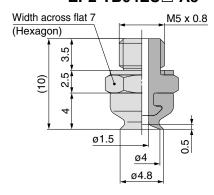

Replacement Part No.

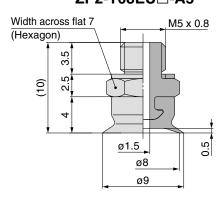
Pad unit part no.	Adapter part no.	
ZP2-B02EU□		
ZP2-B04EU□		
ZP2-B06EU□	ZP2A-Z01P	
ZP2-08EU□		
ZP2-15EU□		
ZP2-B02EU□		
ZP2-B04EU□		
ZP2-B06EU□	ZP2A-Z02P	
ZP2-08EU□		
ZP2-15EU□		
	ZP2-B02EU☐ ZP2-B04EU☐ ZP2-B06EU☐ ZP2-08EU☐ ZP2-15EU☐ ZP2-B02EU☐ ZP2-B04EU☐ ZP2-B06EU☐ ZP2-08EU☐	


Note) \square in the table indicates the pad material.

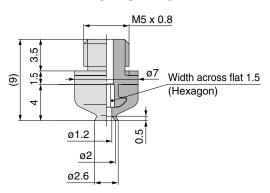
Dimensions: With Adapter

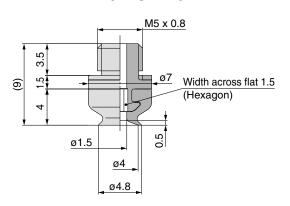
ZP2-TB02EU□-A5


ZP2-TB06EU□-A5

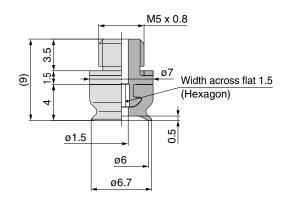

ZP2-T15EU□-A5

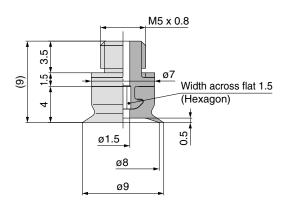
ZP2-TB04EU□-A5

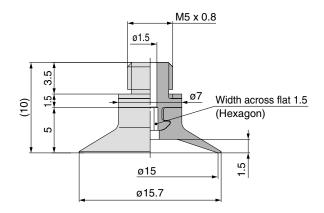

ZP2-T08EU□-A5


Series ZP2

Dimensions: With Adapter

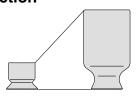

ZP2-TB02EU□-H5


ZP2-TB04EU□-H5


ZP2-TB06EU□-H5

ZP2-T08EU□-H5

ZP2-T15EU□-H5



Symbol/Type

AU: Flat

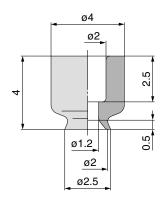
■Space-saving in the height direction

How to Order ZP2-02 AU N

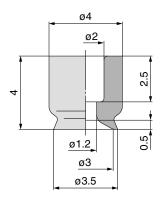
Pad diameter

Symbol	Pad diameter	Blast type	
02	ø2		
03	ø3	_	
04	ø4	_	
06	ø6	_	
B08	ø8	•	

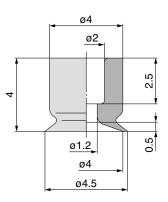
Pad unit

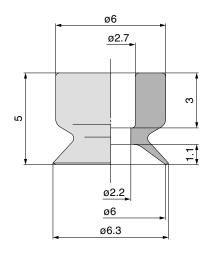

* Blast type: Work pieces can be removed easily.

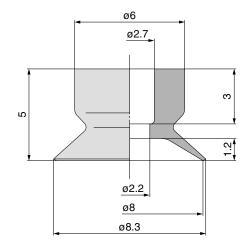
Pad material		
Symbol	Material	
N	NBR	
S Silicone rubber		
U	Urethane rubber	
F	FKM	
GN Conductive NBR		
GS	Conductive silicone rubber	


Pad type

Dimensions: Pad Unit


ZP2-02AU□


ZP2-03AU□


ZP2-04AU□

ZP2-06AU□

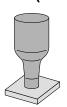
ZP2-B08AU□

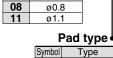
Nozzle Pad

Pad diameter \emptyset 0.8, \emptyset 1.1

Symbol/Type **AN: Nozzle**

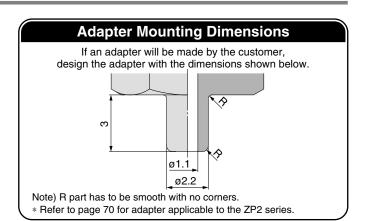
■For adsorption of small components (such as IC chips)




ZP2-08 AN N

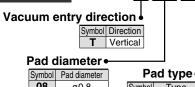
Nozzle

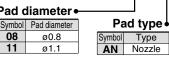

AN


Pad diameter Symbol Pad diameter

Dimensions: Pad Unit

 ∞

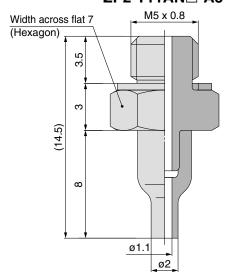




How to Order

Dimensions: With Adapter

Replacement Part No.


Model	Pad unit part no.	Adapter part no.
ZP2-T08AN□-A5	ZP2-08AN□	7P2A-721P
ZP2-T11AN□-A5	ZP2-11AN□	ZFZM-ZZIP

Note) \square in the table indicates the pad material.

ZP2-T08AN□-A5

M5 x 0.8 Width across flat 7 (Hexagon) ω ø0.8 ø1.6

ZP2-T11AN□-A5

Symbol/Type

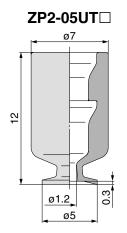
UT: Thin flat (Skirt)

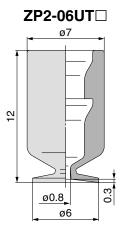
Pad diameter \emptyset 5, \emptyset 6, \emptyset 11, \emptyset 14, \emptyset 18, \emptyset 20

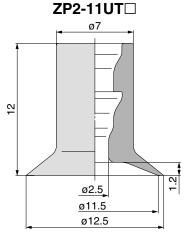
■For adsorption of soft work pieces such as thin sheets or vinyl. Wrinkling or deformation during adsorption is reduced.

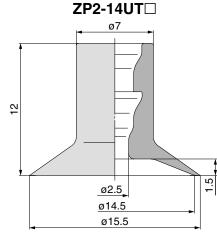
■Applicable for the ZP series adapter

How to Order

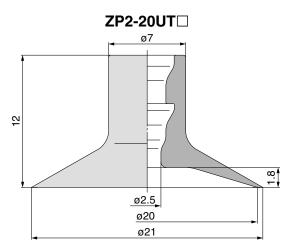

ZP2-11 UT N Pad unit

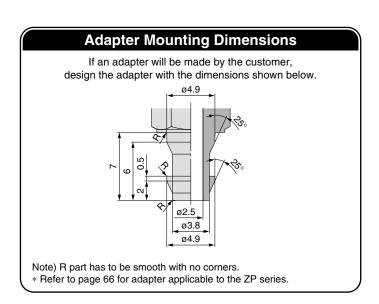

Pad diameter Symbol Pad diameter 05 ø5 06 ø11 14 ø14 ø18


	Pad type
Symbol	Type
UT	Thin flat (Skirt)

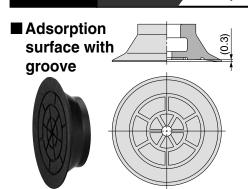

Pad material Material Symbol N NBR S U F Silicone rubber Urethane rubber FKM GN Conductive NBR GS | Conductive silicone rubber

Dimensions: Pad Unit





ZP2-18UT 7 7. ø2.5 ø18 ø19


MT: Thin flat

Flat Pad

Pad diameter \emptyset 10, \emptyset 15, \emptyset 20, \emptyset 25, \emptyset 30

(with groove)

How to Order

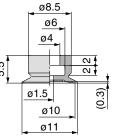
ZP2-B10 MT N Pad unit

Pad diameter	Blast type
ø10	•
ø15	•
ø20	•
ø25	•
ø30	•
	ø10 ø15 ø20 ø25

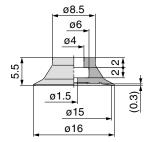
* Blast type: Work pieces can be removed easily.

Pad material

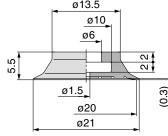
Symbol	Material
N	NBR
S	Silicone rubber
F	FKM
GN	Conductive NBR
GS	Conductive silicone rubber

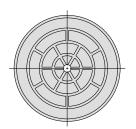

■ For adsorption of thin sheets or film Deformation of the flat surface during adsorption is reduced.

Note 1) Not suitable for transferring work pieces which apply a load.


Note 2) Wrinkling may be generated depending on the sheet thickness. Confirm the thickness before use.

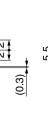
Dimensions: Pad Unit

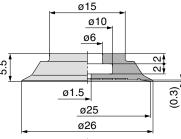

ZP2-B10MT□



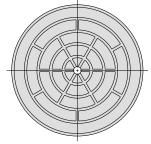
ZP2-B15MT□

ZP2-B20MT□

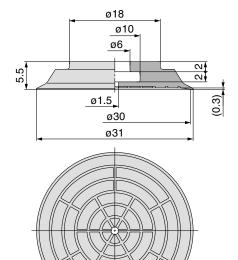



Symbol	Material
N	NBR
S	Silicone rubber
F	FKM
GN	Conductive NBR
GS	Conductive silicone rubber

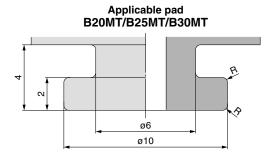
Pad type


Symbol		
MT	Thin flat (With groove)	

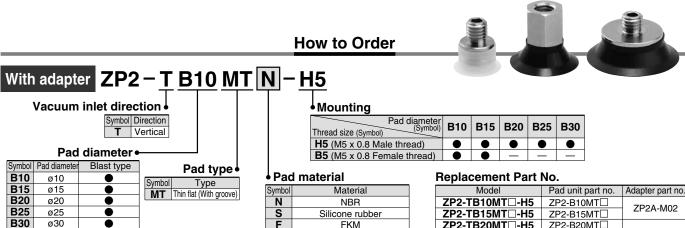
ø13.5



ZP2-B25MT□


ZP2-B30MT□

Adapter Mounting Dimensions


If an adapter will be made by the customer, design the adapter with the dimensions shown below.

Applicable pad B10MT/B15MT ø4 ø6

Note) R part has to be smooth with no corners.

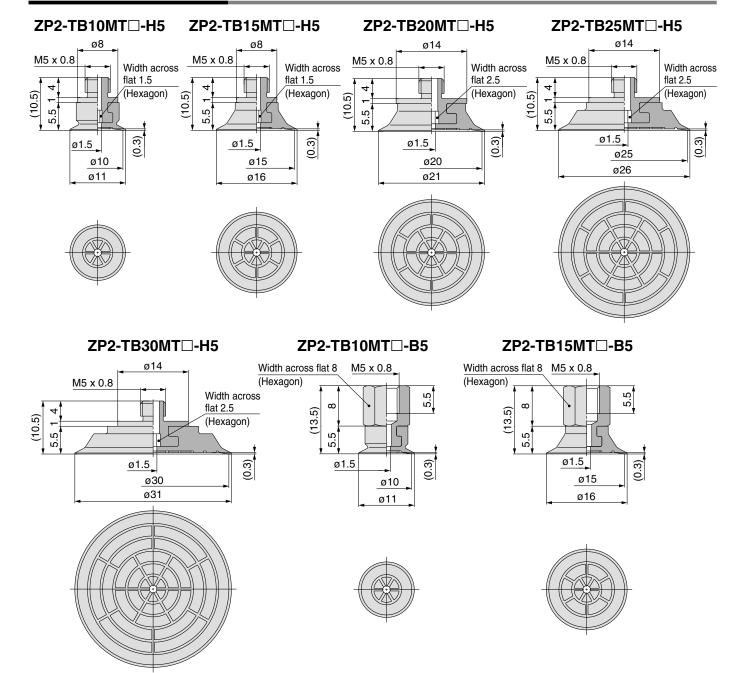
* Refer to page 69 for adapter applicable to the ZP2 series.

FKM

Conductive NBR

GS Conductive silicone rubber

GN


* Blast type: Work pieces can be removed easily.

ø30

Model	Pad unit part no.	Adapter part no.
ZP2-TB10MT□-H5	ZP2-B10MT□	ZP2A-M02
ZP2-TB15MT□-H5	ZP2-B15MT□	ZPZA-IVIUZ
ZP2-TB20MT□-H5	ZP2-B20MT□	
ZP2-TB25MT□-H5	ZP2-B25MT□	ZP2A-M03
ZP2-TB30MT□-H5	ZP2-B30MT□	
ZP2-TB10MT□-B5	ZP2-B10MT□	ZP2A-M04
ZP2-TB15MT□-B5	ZP2-B15MT□	ZPZA-IVIU4

Note) \square in the table indicates the pad material.

Dimensions: With Adapter

Bellows Pad

Symbol/Type

J: Bellows (Multistage type)

Pad diameter Ø6, Ø9, Ø10, Ø14, Ø15, Ø16, Ø25, Ø30

■For use where there is no space for the buffer (spring type)

■Work pieces with inclined adsorption surface

■Applicable for the **ZP** series adapter

How to Order

ZP2-06 J N-X19 Pad unit

Pad diameter

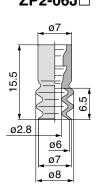
Symbol	Pad diameter	Blast type
06	ø6	
09	ø9	
B10	ø10	•
14	ø14	_
B15	ø15	•
16	ø16	_
B25	ø25	•
B30	ø30	•

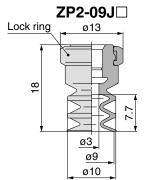
* Blast type: Work pieces can be removed easily.

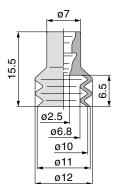
Symbol	Material	
N	NBR	
S	Silicone rubber	
U	Urethane rubber	
F	FKM	
GN	Conductive NBR	
GS	Conductive silicone rubber	

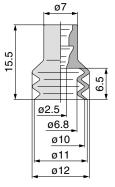
Pad type

Symbol	Туре
J	Bellows (Multistage type)

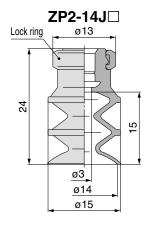

With/Without lock ring Nill With lock ring

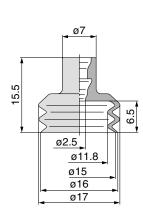

X19 Without lock ring Note Note) ø6, ø10, ø15 are


not available.


Dimensions: Pad Unit

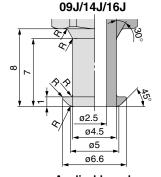
ZP2-06J□

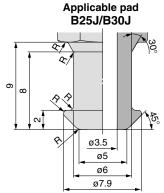




ZP2-B10J□

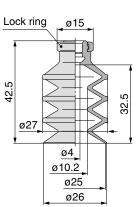
ZP2-B15J□

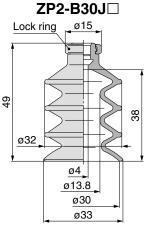

ø3.8 ø4.9 Applicable pad


ø2.5

Adapter Mounting Dimensions

If an adapter will be made by the customer, design the adapter with the dimensions shown below. Applicable pad 06J/B10J/B15J


ø4.9



Note) R part has to be smooth with no corners. * Refer to page 66 for adapter applicable to the ZP series.

ZP2-B25J□

Bellows Pad

MB: Bellows

Symbol/Type

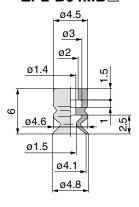
Pad diameter $\emptyset 4$, $\emptyset 6$, $\emptyset 8$, $\emptyset 10$, $\emptyset 15$, $\emptyset 20$

■For use where there is no space for the buffer (spring type)

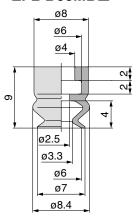
■Work pieces with inclined adsorption surface

How to Order

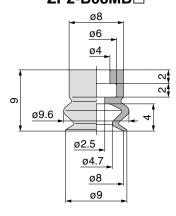
ZP2 – **B04 MB N** Pad unit

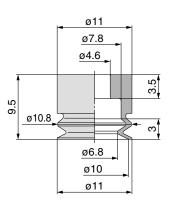

	Pac	d diameter •		」
Symbol	Pad diameter	Blast type	P	ad type
B04	ø4	•	Symbol	Type
B06	ø6	•	MB	Bellows
B08	ø8	•	IVID	Dellows
B10	ø10	•		
B15	ø15	•		
B20	ø20	•		

Pad material Symbol N NBR Silicone rubber U Urethane rubber FKM GN Conductive NBR GS Conductive silicone rubber

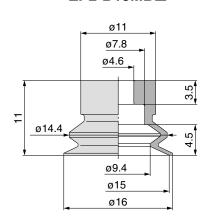

* Blast type: Work pieces can be removed easily.

Dimensions: Pad Unit

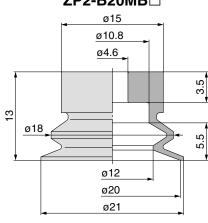

ZP2-B04MB□


ZP2-B06MB□

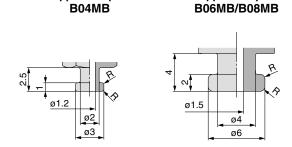
ZP2-B08MB□



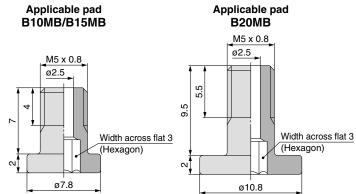
ZP2-B10MB□

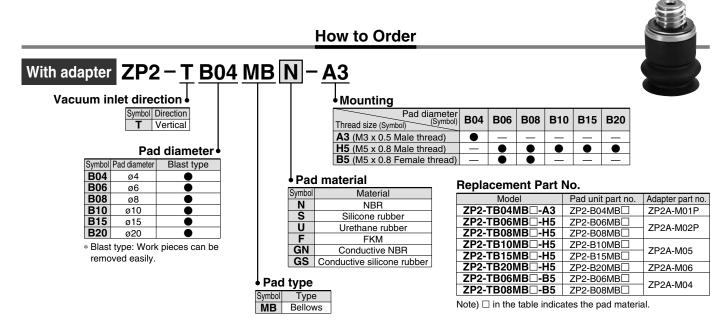

Applicable pad

ZP2-B15MB□

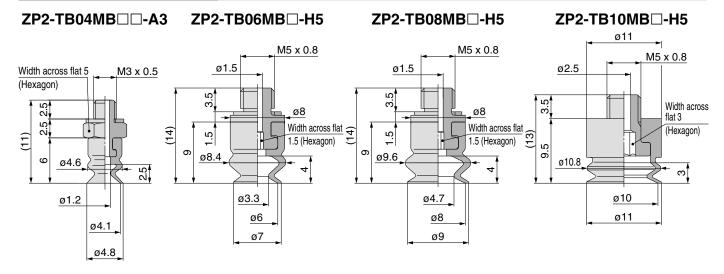

Applicable pad

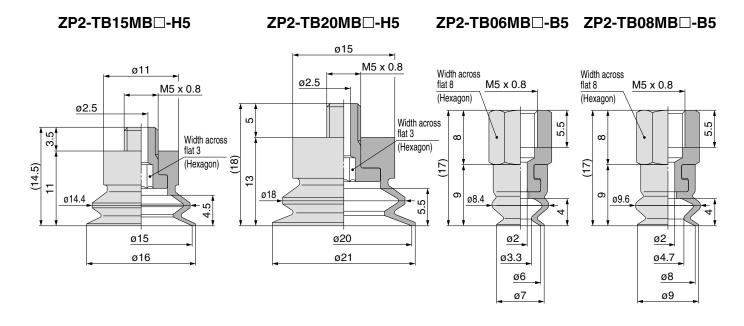
ZP2-B20MB□




Adapter Mounting Dimensions

If an adapter will be made by the customer, design the adapter with the dimensions shown below.

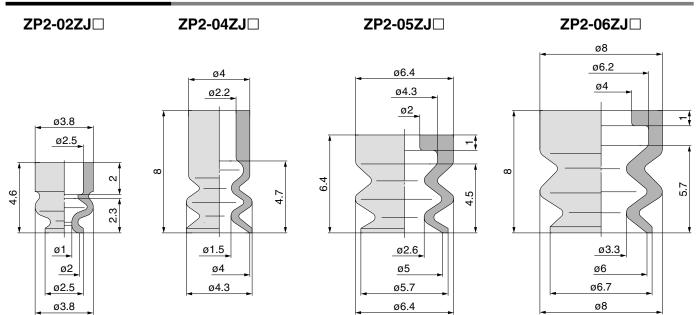


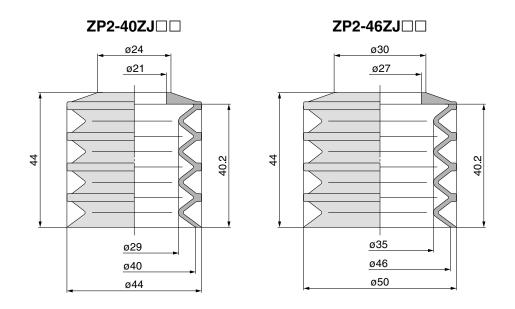

Note) R part has to be smooth with no corners. * Refer to pages 69 and 70 for adapter applicable to the ZP2 series.

Dimensions: With Adapter

Bellows Pad

Pad diameter $\emptyset 2$, $\emptyset 4$, $\emptyset 5$, $\emptyset 6$, $\emptyset 40$, $\emptyset 46$


ZJ: Bellows


■For use where there is no space for the buffer (spring type)

■Work pieces with inclined adsorption surface

Dimensions: Pad Unit

Oval Pad

Pad size

3.5 x 7 to 8 x 30

W: Oval

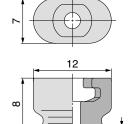
■For work pieces with limitations on the adsorption surface

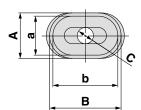
Pad unit

ZP2 – <u>3507</u> **W N**

Pad size

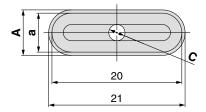
Symbol	Size	Symbol	Size
3507	3.5 x 7	6020	6 x 20
4010	4 x 10	8020	8 x 20
5010	5 x 10	4030	4 x 30
6010	6 x 10	5030	5 x 30
4020	4 x 20	6030	6 x 30
5020	5 x 20	8030	8 x 30


Pad material


Symbol	Material			
N	NBR			
S	Silicone rubber			
U	Urethane rubber			
F	FKM			
GN	GN Conductive NBR			
GS	Conductive silicone rubber			

Pad type

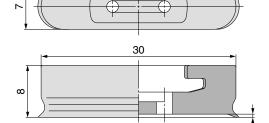
Dimensions: Pad Unit

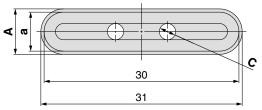


Dimensions

Model	а	Α	b	В	С	Υ
ZP2-3507W□	3.5	4.5	7	8	2 x 1.5	
ZP2-4010W □	4	5			2 X 1.5	0.5
ZP2-5010W□	5	6	10	11	2.5	0.5
ZP2-6010W □	6	7			2.5	

ZP2- 20 W □

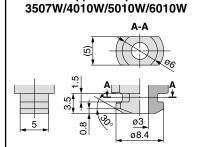




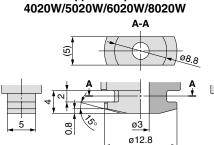
Dimensions

Model	а	Α	С	Υ
ZP2-4020W□	4	5	2 x 1.8	
ZP2-5020W □	5	6	2 x 2	0.5
ZP2-6020W□	6	7	2.5	
7P2-8020W□	8	9	3	0.8

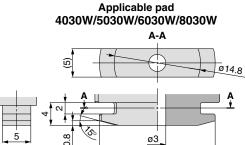
ZP2-30 W □



Dimensions

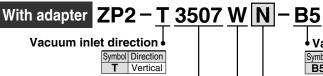

Model	а	Α	С	Υ
ZP2-4030W□	4	5	2 x 1.8	
ZP2-5030W □	5	6		0.5
ZP2-6030W□	6	7	2 x 2.5	
ZP2-8030W □	8	9		0.8

Adapter Mounting Dimensions


If an adapter will be made by the customer, design the adapter with the dimensions shown below.

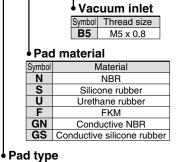
Applicable pad

Applicable pad



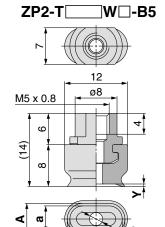
ø20.4

Note) R part has to be smooth with no corners. * Refer to page 69 for adapter applicable to the ZP2 series.



Pad size

			au Size
Symbol	Size	Symbol	Size
3507	3.5 x 7	6020	6 x 20
4010	4 x 10	8020	8 x 20
5010	5 x 10	4030	4 x 30
6010	6 x 10	5030	5 x 30
4020	4 x 20	6030	6 x 30
5020	5 x 20	8030	8 x 30

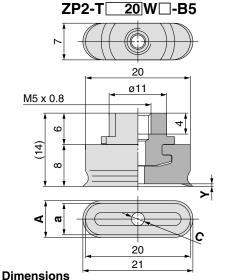


Replacement Part No.

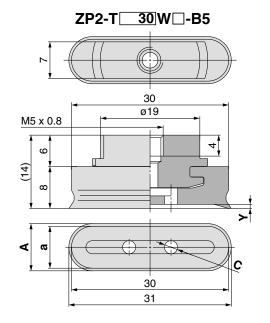
Model	Pad unit part no.	Adapter part no.
ZP2-T3507W□-B5	ZP2-3507W□	
ZP2-T4010W□-B5	ZP2-4010W□	ZP2A-001
ZP2-T5010W□-B5	ZP2-5010W□	ZFZA-001
ZP2-T6010W□-B5	ZP2-6010W□	
ZP2-T4020W□-B5	ZP2-4020W□	
ZP2-T5020W□-B5	ZP2-5020W□	ZP2A-002
ZP2-T6020W□-B5	ZP2-6020W□	ZFZA-00Z
ZP2-T8020W□-B5	ZP2-8020W□	
ZP2-T4030W□-B5	ZP2-4030W□	
ZP2-T5030W□-B5	ZP2-5030W□	ZP2A-003
ZP2-T6030W□-B5	ZP2-6030W□	ZFZA-003
ZP2-T8030W□-B5	ZP2-8030W□	

Note) \square in the table indicates the pad material.

Dimensions: With Adapter



Dimensions


Model	а	Α	b	В	С	Υ
ZP2-T3507W□-B5	3.5	4.5	7	8	2 x 1.5	
ZP2-T4010W□-B5	4	5			2 X 1.5	٥.
ZP2-T5010W□-B5	5	6	10	11	2.5	0.5
ZP2-T6010W□-B5	6	7	1		2.5	

b

В

Dillicitorio				
Model	а	Α	С	Υ
ZP2-T4020W□-B5	4	5	2 x 1.8	
ZP2-T5020W□-B5	5	6	2 x 2	0.5
ZP2-T6020W□-B5	6	7	2.5	
ZP2-T8020W□-B5	8	9	3	0.8

Model	а	Α	С	Υ
ZP2-T4030W□-B5	4	5	2 x 1.8	
ZP2-T5030W□-B5	5	6		0.5
ZP2-T6030W□-B5	6	7	2 x 2.5	
ZP2-T8030W□-B5	8	9		0.8

How to Order

Symbol	Size	Symbol	Size
3507	3.5 x 7	6020	6 x 20
4010	4 x 10	8020	8 x 20
5010	5 x 10	4030	4 x 30
6010	6 x 10	5030	5 x 30
4020	4 x 20	6030	6 x 30
5020	5 x 20	8030	8 x 30

Pad type | GS | Conductive silicone rubber Buffer specification Symbol Specification K Non-rotating

NBR Silicone rubber Urethane rubber

FKM

Conductive NBR

N

GN

Symbol Stroke 10 10 mm 20 20 mm 30 30 mm 40 40 mm 10 10 10 10 10 10 10	Buffer stroke (★)							
20 20 mm 30 30 mm 40 40 mm	Symbol	Stroke						
30 30 mm 40 40 mm	10	10 mm						
40 40 mm	20	20 mm						
	30	30 mm						
FO ===	40	40 mm						
50 50 mm	50	50 mm						

Vacuum inlet (■)

Symbol	Applicable tube O.D.
B 5	M5 x 0.8
04	ø4 one-touch fitting
06	ø6 one-touch fitting

Replacement Part No

ZP2-T

(Hexagon)

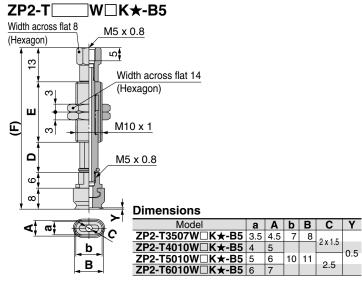
Width across flat 8

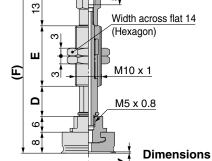
σį

	neplacement Fait No.									
	Model	Pad unit part no.	Adapter part no.	Buffer ass	embly pa	art no.				
	ZP2-T3507W□K★-■	ZP2-3507W□								
	ZP2-T4010W□K★-■	ZP2-4010W□	ZP2A-001	ZPB2K⊀	τ-■					
•	ZP2-T5010W□K★-■	ZP2-5010W□	ZFZA-001	7	T.,					
1	ZP2-T6010W□K★-■	ZP2-6010W□				uum inlet				
1	ZP2-T4020W□K★-■	ZP2-4020W□		Buffer stroke	Symbol	Applicable				
,	ZP2-T5020W□K★-■	ZP2-5020W□	7004 000	Symbol Stroke		tube O.D.				
	ZP2-T6020W□K★-■	ZP2-6020W□	ZP2A-002	10 10 mm	B5	M5 x 0.8				
	ZP2-T8020W□K★-■	ZP2-8020W□		20 20 mm	04	ø4 one-				
	ZP2-T4030W□K★-■	ZP2-4030W□		30 30 mm	04	touch fitting				
	ZP2-T5030W□K★-■	ZP2-5030W□	ZP2A-003	40 40 mm	06	ø6 one-				
	ZP2-T6030W□K★-■	ZP2-6030W□	ZPZA-003	50 50 mm	00	touch fitting				
	ZP2-T8030W□K★-■	ZP2-8030W□								
	Note 1) I in the table indice	too the ned meteri	ol Noto 2\ ■	in the table indi	notoo tho	voorum inlet				

Note 1) \square in the table indicates the pad material. Note 3) \blacksquare in the table indicates the vacuum inlet. Note 2) ★ in the table indicates the buffer stroke.

20W□K★-B5


ις,

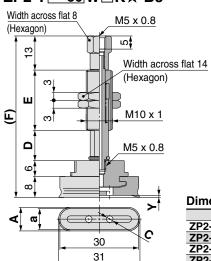

M5 x 0.8

Buffer Specifications

Stroke (mm)		10, 20, 30, 40, 50
Spring reactive		1.0
force	At buffer stroke (N)	3.0
Tightening torqu	3.0 N·m ±5%	

Dimensions: With Buffer

 Model
 a
 A
 C
 Y


 ZP2-T4020W□K★-B5
 4
 5
 2x1.8

 ZP2-T5020W□K★-B5
 5
 6
 2x2
 0.5

 ZP2-T6020W□K★-B5
 6
 7
 2.5

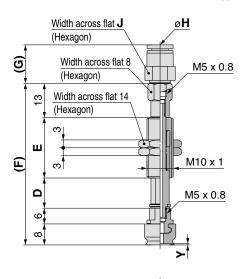
 ZP2-T8020W□K★-B5
 8
 9
 3
 0.8
 C 20 21

ZP2-T 30W□K★-B5

Stroke (*) D F F

three drawings

SHOKE (X)	ט		Г
10	11.5	23	61.5
20	21.5	51	99.5
30	31.5	51	109.5
40	41.5	77	145.5
50	51.5	//	155.5

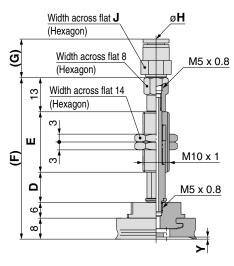

Dimensions common for all -

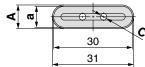
Dimensions (per buffer stroke)

Model	а	Α	С	Υ
ZP2-T4030W□K★-B5	4	5	2 x 1.8	
ZP2-T5030W□K★-B5	5	6		0.5
ZP2-T6030W□K★-B5	6	7	2 x 2.5	
ZP2-T8030W□K★-B5	8	9		0.8

Dimensions: With Buffer

ZP2-T W K ★-04

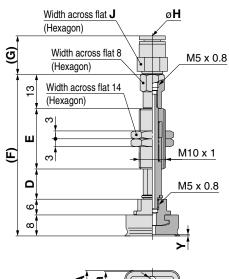


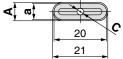


Dimensions

Model	а	Α	b	В	С	Υ
ZP2-T3507W□K★- ⁰⁴ ₀₆	3.5	4.5	7	8	2 x 1.5	
ZP2-T4010W□K★-04	4	5			2 X 1.5	0.5
ZP2-T5010W□K★-04	5	6	10	11	2.5	0.5
ZP2-T6010W□K★- ⁰⁴	6	7			2.5	

ZP2-T 30 W K ★-04 06



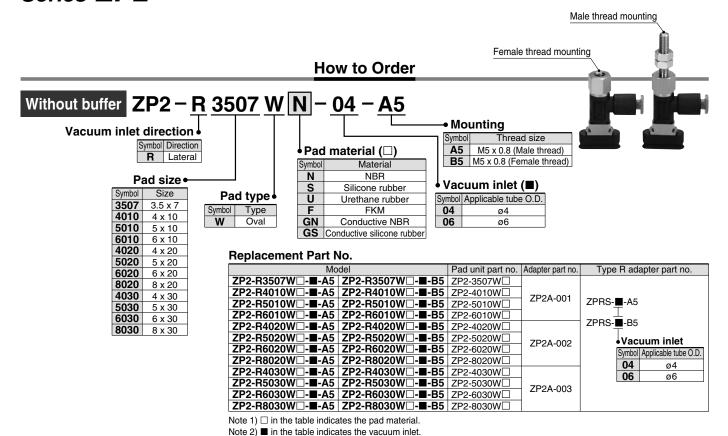


Dimensions

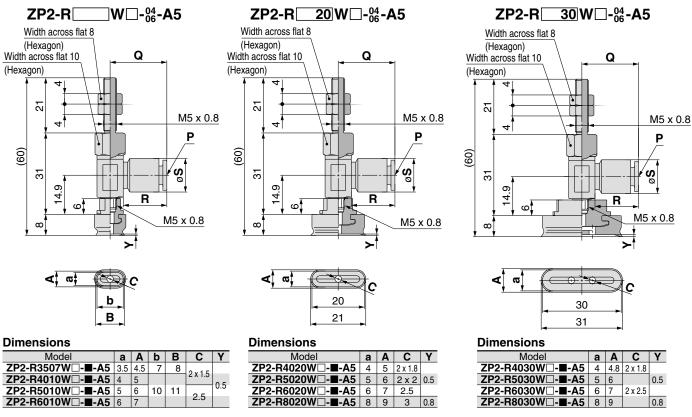
Model	а	Α	С	Υ
ZP2-T4030W□K★-04	4	5	2 x 1.8	
ZP2-T5030W□K★-04	5	6		0.5
ZP2-T6030W□K★-04	6	7	2 x 2.5	
ZP2-T8030W□K★- ⁰⁴	8	9		0.8

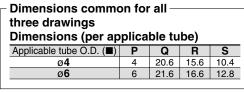
ZP2-T 20 W K ★-04

Dimensions

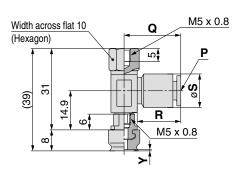

Model	а	Α	C	Υ
ZP2-T4020W□K★-04	4	5	2 x 1.8	
ZP2-T5020W□K★-04	5	6	2 x 2	0.5
ZP2-T6020W□K★-04	6	7	2.5	
ZP2-T8020W□K★- ⁰⁴ ₀₆	8	9	3	0.8

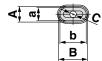
Dimensions common for all three drawings Dimensions (per buffer stroke)

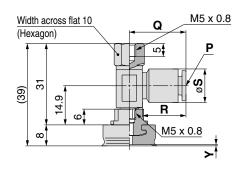

Stroke (★)	D	Е	_		H: ø4		H: ø6	
Sticke (*)	D		F	G	7	G	7	
10	11.5	23	61.5	13.9	8	14.7	10	
20	21.5	51	99.5					
30	31.5		109.5					
40	41.5	77	145.5					
50	51.5	-//	155.5					

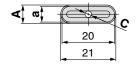


Series ZP2

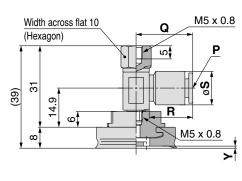

Dimensions: Without Buffer

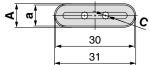



Dimensions: Without Buffer


ZP2-R W□-04-B5

ZP2-R 20 W -04-B5

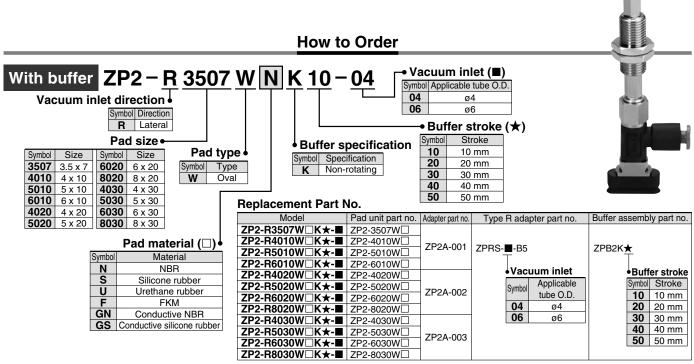

Dimensions


Model	а	Α	b	В	С	Υ
ZP2-R3507W□- ■ -B5	3.5	4.5	7	8	2 x 1.5	
ZP2-R4010W□- ■ -B5	4	5			2 X 1.5	0.5
ZP2-R5010W□-■-B5	5	6	10	11	2.5	0.5
ZP2-R6010W□-■-B5	6	7			2.5	

Dimensions

Model	а	Α	C	Υ
ZP2-R4020W□- ■ -B5	4	5	2 x 1.8	
ZP2-R5020W□- ■ -B5	5	6	2 x 2	0.5
ZP2-R6020W□- ■ -B5	6	7	2.5	
ZP2-R8020W□- ■ -B5	8	9	3	0.8

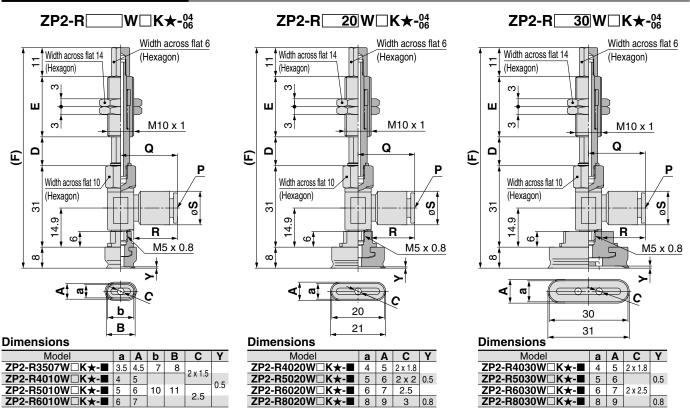
ZP2-R 30 W -04-05


Dimensions

Model	а	Α	С	Υ
ZP2-R4030W□- ■ -B5	4	5	2 x 1.8	
ZP2-R5030W□- ■ -B5	5	6		0.5
ZP2-R6030W□-■-B5	6	7	2 x 2.5	
ZP2-R8030W□- ■ -B5	8	9		0.8

Dimensions common for all three drawings Dimensions (per applicable tube)

Applicable tube O.D. (■)	Р	Q	R	S
ø 4	4	20.6	15.6	10.4
ø 6	6	21.6	16.6	12.8



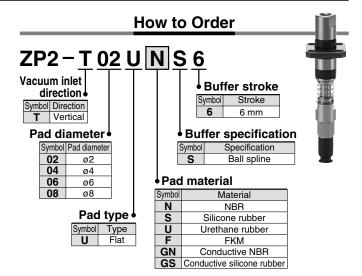
Note 1) □ in the table indicates the pad material. Note 3) ■ in the table indicates the vacuum inlet. Note 2) ★ in the table indicates the buffer stroke.

Buffer Specifications (Non-rotating)

Stroke (mm)		10, 20, 30, 40, 50
Spring reactive	At 0 stroke (N)	1.0
force	At buffer stroke (N)	3.0
Tightening torque		3.0 N·m ±5%

Dimensions: With Buffer

	Dimensions common for all three drawings												
[Dimensions (per stroke) Dimensions (per applicable tube)												
	Stroke (★)	D	E	F	Stroke (★)	D	Е	F	Applicable tube O.D. (■)	Р	Q	R	S
	10	11	23	84	30	31	51	132	ø 4	4	20.6	15.6	10.4
	20	21	51	122	40	41	77	168	ø 6	6	21.6	16.6	12.8
					50	51	//	178					


Pad with Ball Spline Buffer

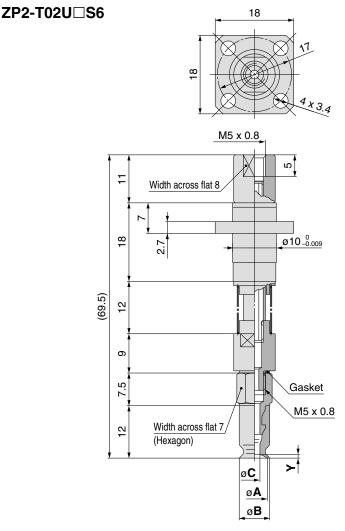
U: Flat

Symbol/Type

Pad diameter $\emptyset 2, \emptyset 4, \emptyset 6, \emptyset 8$

■Ball spline guide is used to the buffer.

Buffer Specifications

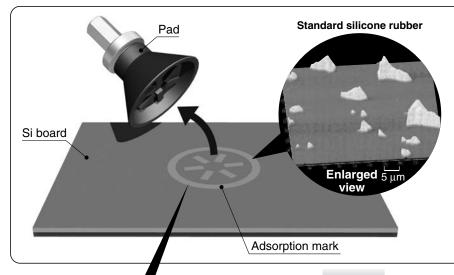

	Ball spline	
Stroke (mm)	6	
Spring reactive	At 0 stroke (N)	0.8
force	At buffer stroke (N)	1.1

Replacement Part No.

Model Pad unit part no.		Adapter part no.	Buffer assembly part no.		
ZP2-T02U□S6	ZP02U□				
ZP2-T04U□S6	ZP04U□	ZPT1-B5	7000 T000		
ZP2-T06U□S6	ZP06U□	ZPII-B5	ZP2B-T3S6		
ZP2-T08U□S6	ZP08U□				

Note) \square in the table indicates the pad material.

Dimensions



Model	Α	В	С	Υ
ZP2-T02U□S6	2	2.6	1.2	0.5
ZP2-T04U□S6	4	4.8	1.6	0.8
ZP2-T06U□S6	6	7	2.5	0.6
ZP2-T08U□S6	8	9	2.5	1

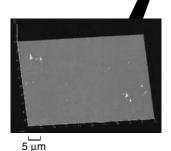
Mark-free Pad Series

Minimizes the transfer of rubber constituents to the workpiece.

Analysis equipment:

Scanning probe microscope

Measurement conditions:

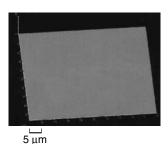

Measurement mode Atomic force microscope DFM mode

Sample conditions:

Press the vacuum pad to the Si board for 1 hour.

Monitoring location:

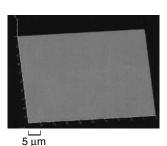
Monitored at a randomly selected location where adsorption marks were likely due to contact between the vacuum pad and Si board.


1 Mark-free NBR Pad

Minimizes the transfer of rubber constituents which is supposed to be the cause of adsorption.

Pad diameter: ø4 to ø125

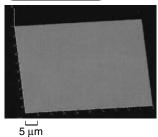
Heavy-duty type



2 Stuck Fluororesin Pad

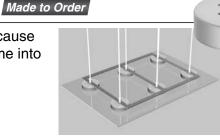
Fluororesin sheet is baked onto the pad adsorption surface. Prevents the transfer of rubber constituents.

Pad diameter: ø40 to ø125


3 Resin Attachment

PEEK material is used for the pad adsorption surface. Prevents the transfer of rubber constituents.

Pad diameter: ø6 to ø32



4 Cyclone Pad

No adsorption mark is left because the vacuum pad does not come into contact with the workpiece.

The above adsorption marks show sample data. Actual results will depend on the conditions.

Pad type adso (Part in		Material of the	P.	nark *1	Static *5		
		adsorption part (Part in contact with	Condition *2	(Initial value)	Operating temperature	friction	
		the workpiece)	Visual checking	Vapor method *3	range (°C)	ratio	
	Mark-free NBR pad	Mark-free NBR (Specially treated *4)	•	•	5 to 40	0.6	
s	Stuck	NBR + Stuck fluororesin	•	•	5 to 60	0.2	
ad Serie	fluororesin pad	Fluororubber + Stuck fluororesin	•		5 to 100	0.2	
Mark-free Pad Series	Resin	PEEK	•	•	5 to 40	0.2	
Σ	attachment	Conductive PEEK (Volume resistivity: 1 x 10 ⁶ Ωcm)			3 10 40	0.2	
Cyclone pad Made to Order		_	•		Standard: -5 to 60 (No freezing)	_	
Standard	Series ZP	NBR Fluororubber Conductive NBR/Silicone rubber	×	×	_		
Star	(Standard material)	Silicone rubber Urethane rubber		×	_	_	

Adsorption mark characteristics [●: Little or no influence ○: Can be used depending on the conditions. ×: Not suitable]

* The above table is for reference when selecting the pad.

Values and evaluation are reference data only. Preparatory testing under actual operating conditions is recommended.

*1 Adsorption mark — Indicates the transfer of rubber constituents from the pad.

*2 **Condition** — Visual evaluation of the adsorption mark

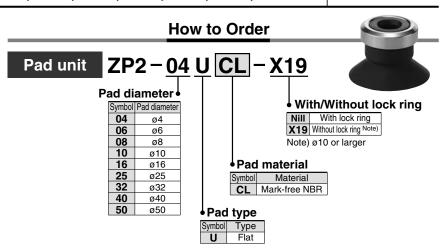
*3 Vapor method — Method of applying vapor to the workpiece to visually check for adsorption marks

*4 Specially treated — NBR is specially treated to modify and reduce the transfer of rubber constituents.

*5 **Static friction ratio**Static friction ratio when the workpiece (glass) is adsorbed by the pad. (NBR = 1 as a benchmark) When the cyclone pad is used, the pad does not come into contact with the workpiece (glass). The customer needs to install a guide for holding.

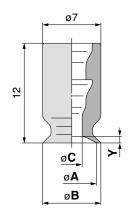
Cleaning method [Mark-free NBR pad/Stuck fluororesin pad/Resin attachment]

- Always clean the product before operation and when carrying out regular maintenance.
- 1) Hold the part other than the adsorption surface.
 - * Non particle-generating vinyl gloves are recommended.
- 2) Soak a non particle-generating cloth in 2-propanol (isopropyl alcohol) (purity > 99.5%).
 - * This solution is a recommendation. If not available, use a solution with high purity which does not affect the material properties.
- 3) Wipe the adsorption surface (pad/resin attachment) and the part that comes into contact with the workpiece.
- 4) Dry them with clean air blow. (Or, wipe again with a dry non particle-generating cloth.)


Mark-free Pad

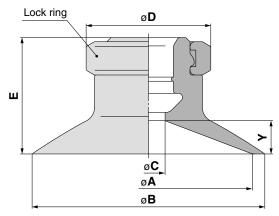
Pad diameter

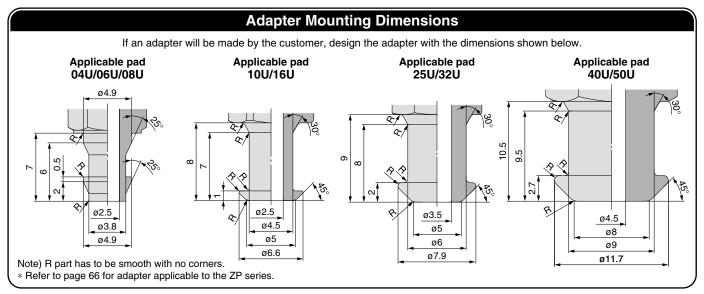
Ø4, Ø6, Ø8, Ø10, Ø16, Ø25, Ø32, Ø40, Ø50


U: Flat

- Pad which reduces the adsorption marks left on the workpiece by rubber
- The pad is made from markfree NBR, and the NBR is then specially treated to minimize the transfer of rubber constituents to the workpiece.
- Applicable for the ZP series adapter

Dimensions: Pad Unit

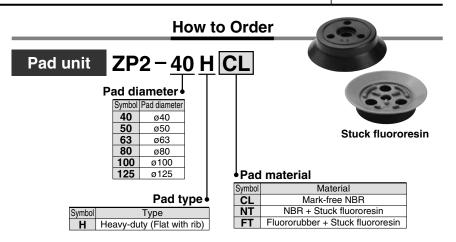

ZP2-04 to 08UCL


Dimensions

Model	Α	В	С	Υ
ZP2-04UCL	4	4.8	1.6	0.8
ZP2-06UCL	6	7	٥٦	0.6
ZP2-08UCL	8	9	2.5	1

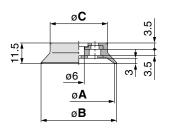
ZP2-10 to 50UCL

Model	Α	В	С	D	Е	Υ
ZP2-10UCL	10	12		13	12	3
ZP2-16UCL	16	18	4	13	12.5	3.5
ZP2-25UCL	25	28	4	4.5	14	4
ZP2-32UCL	32	35		15	14.5	4.5
ZP2-40UCL	40	43	7	18	18.5	6.5
ZP2-50UCL	50	53	_ ′	18	19.5	7.5

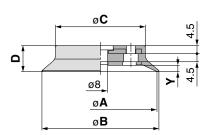

Mark-free Pad

Pad diameter

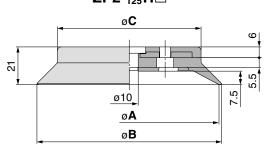
Ø40, Ø50, Ø63, Ø80, Ø100, Ø125

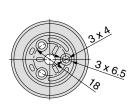

H: Heavy-duty (Flat with rib)

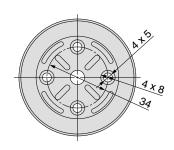
- Pad which reduces the adsorption marks left on the workpiece by rubber
- The pad is made from markfree NBR, and the NBR is then specially treated to minimize the transfer of rubber constituents to the workpiece.
- Prevents rubber constituents of the pad from transferring by baking the fluororesin sheet to the adsorption surface.

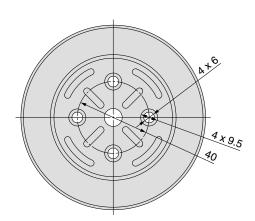


Dimensions: Pad Unit









ZP2-¹⁰⁰₁₂₅H□

Model	Α	В	С
ZP2-40H□	40	43	32
7P2-50H□	50	53	42

Dimensions

Model	Α	В	С	D	Υ
ZP2-63H□	63	65	50	14.5	3.5
ZP2-80H□	80	82	61	16.5	4.5

Dimensions

Model	Α	В	C
ZP2-100H□	100	103	80
ZP2-125H□	125	128	104

Resin Attachment

Pad diameter Ø6, Ø8, Ø10, Ø13, Ø16, Ø20, Ø25, Ø32

■ No adsorption marks (rubber constituents) are left on the workpiece.

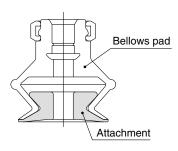
Avoids direct contact between the workpiece and the rubber by installing a PEEK attachment to the bellows pad to prevent the transfer of rubber constituents.

- Prevents sticking of the pad (rubber) and the workpiece.
- Ideal for the ZP series bellows pad (ø6 to ø32)

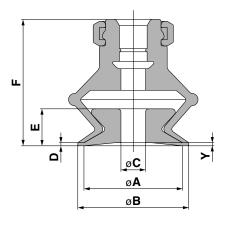
How to Order

ZP2-06 K P

Pad diameter


uu	ulullictel •
Symbol	Pad diameter
06	ZP06B□
80	ZP08B□
10	ZP10B□
13	ZP13B□
16	ZP16B□
20	ZP20B□
25	ZP25B□
32	ZP32B□

Symbol	Material
Р	PEEK
GP	Conductive PEEK


How to Order (When ordering with a pad)

- When ordering with a pad, put "*", below the part number of the pad as shown below. Note that the pad is not delivered with the attachment assembled.
- This attachment can only be assembled onto SMC's standard bellows pad.
- When the attachment is made of conductive PEEK, use conductive material for the pad.

Bellows pad part no. example * ZP2-06KP Resin attachment part no.

Dimensions

Dimensions

Model	Applicable pad	Α	В	С	D	E	F	Υ
ZP2-06K■	ZP06B□	6	7	1.6		_	10.5	
ZP2-08K■	ZP08B□	8	9	3		3	13.5	
ZP2-10K■	ZP10B□	10	12	3.5	0.5	3.5	16.5	0.5
ZP2-13K■	ZP13B□	13	15			5.5	19	
ZP2-16K■	ZP16B□	16	18	4		6	20.5	
ZP2-20K■	ZP20B□	20	22	8		0.5	24.5	
ZP2-25K■	ZP25B□	25	27	10	1	8.5	25	1
ZP2-32K■	ZP32B□	32	34	10		11.5	30	

Note 1) In the table indicates the attachment material.

Note 2) \square in the table indicates the pad material.

«Precautions»

Clean the product before using the attachment.

This product is not cleaned after machining. If the product is used in the condition in which it is shipped, residual material may be left on the work pieces. Clean before usage. If you have any questions, please contact

- If contact with hard material is a problem, do not use this product.
- PEEK material and cut parts fall under the security trade control.

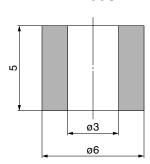
Sponge Pad

Symbol/Type

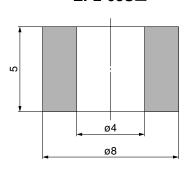
Pad diameter $\emptyset 4$, $\emptyset 6$, $\emptyset 8$, $\emptyset 10$, $\emptyset 15$

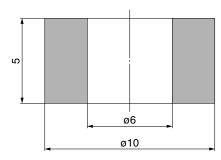
S: Sponge

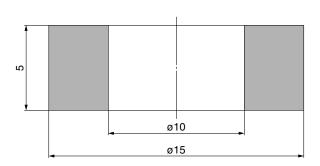
■ For adsorption of work pieces with bumps



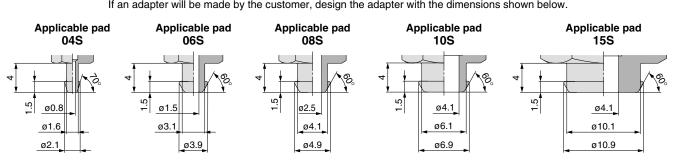
Dimensions: Pad Unit

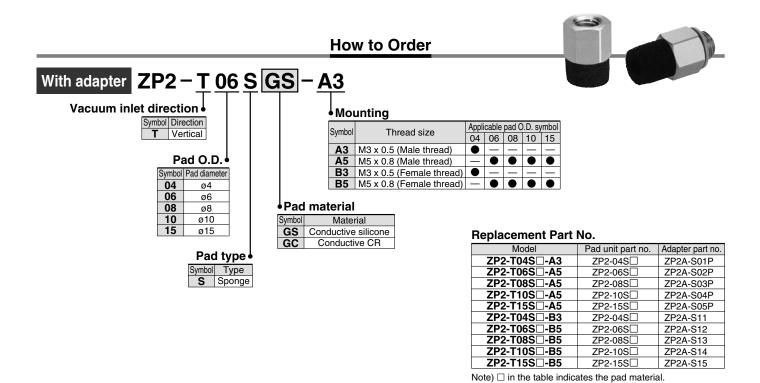


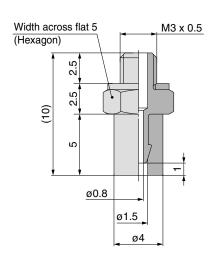


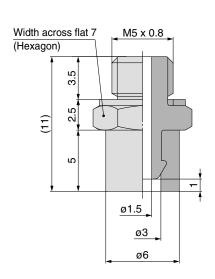

ZP2-08S□

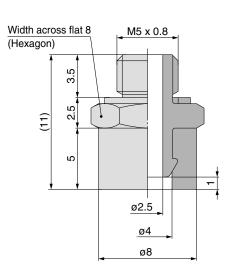
ZP2-10S□



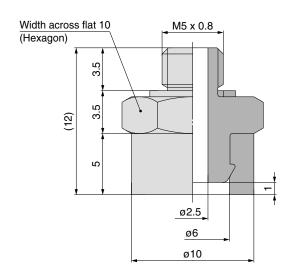

ZP2-15S□

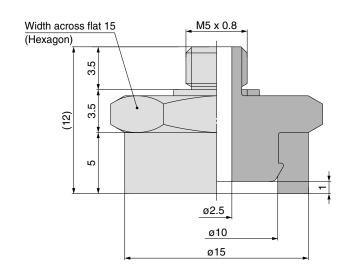

Adapter Mounting Dimensions


If an adapter will be made by the customer, design the adapter with the dimensions shown below.



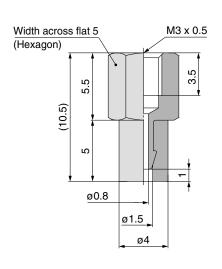
Dimensions: With Adapter

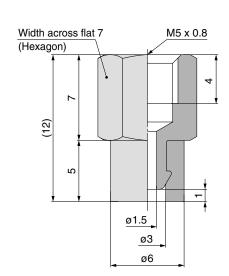


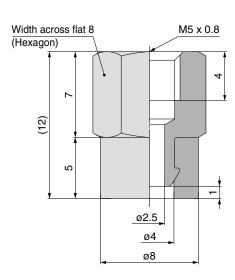


Dimensions: With Adapter

ZP2-T10S□-A5

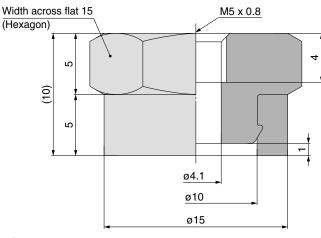

ZP2-T15S□-A5




ZP2-T04S□-B3

ZP2-T06S□-B5

ZP2-T08S□-**B5**



ZP2-T10S□-B5

ZP2-T15S□-B5

Heav Pad diamete

Heavy-duty Pad

Pad diameter Ø32, Ø150, Ø250, Ø300, Ø340

Symbol/Type

H: Heavy-duty (Flat with rib) HT: Heavy-duty

HT: Heavy-duty
(Thin flat with rib)

■ Reinforced pad to prevent deformation when transferring heavy or large work pieces

Pad unit

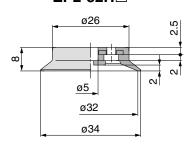
ZP2-32 H N

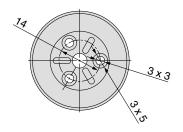
Pad diameter

	annotor -
Symbol	Pad diameter
32	ø32
150	ø150
250	ø250
300	ø300
340	ø340

Pad material

Symbol	Material
N	NBR
S	Silicone rubber
F	FKM
С	CR

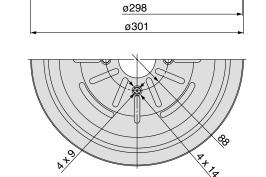

Note) Silicone rubber is only applicable to the ø32 pad.


Pad type—Pad diameter

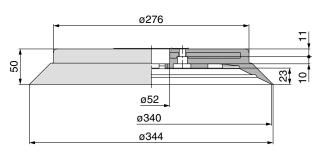
Pad diameter (Symbol)	32	150	250	300	340
H (Flat with rib)	•	_	_		
HT (Thin flat with rib)	_	•	•	_	_

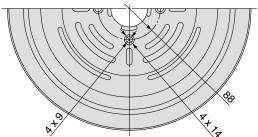
Dimensions: Pad Unit

ZP2-32H□



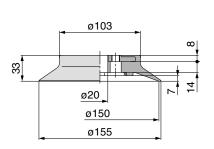
ZP2-300H□

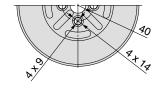

ø160

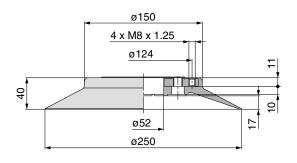

ø52

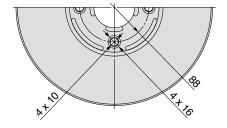
ø240 4 x M8 x 1.25

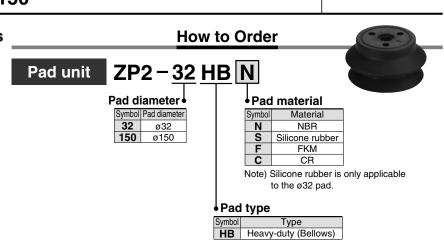
ZP2-340H□

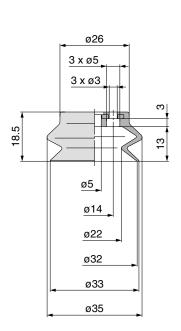




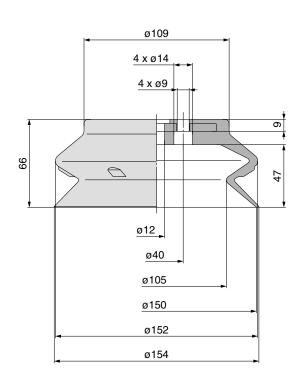

Dimensions

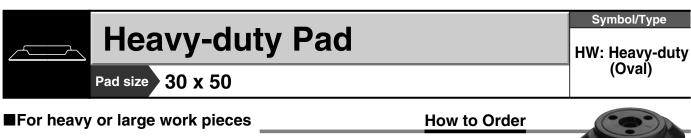

ZP2-150HT□

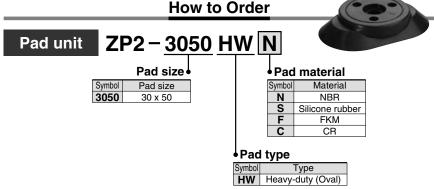

ZP2-250HT□



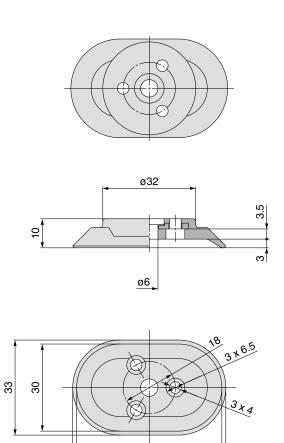
■For heavy or large work pieces




Dimensions: Pad Unit


ZP2-32HB□

ZP2-150HB□

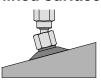


Dimensions: Pad Unit

ZP2-3050HW□

50

53


Heavy-duty Ball Joint Pad

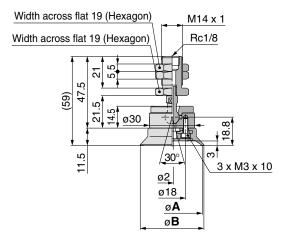
Symbol/Type

H: Heavy-duty (Flat with rib)

Pad diameter Ø40, Ø50, Ø63, Ø80, Ø100, Ø125

■ For adsorption of work pieces with inclined surface

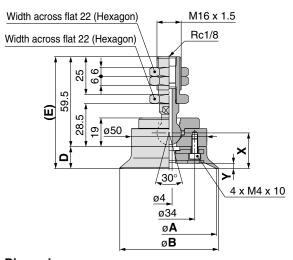
Replacement Part No.


Model	Pad unit part no.	Adapter assembly part no		
ZP2-TF40H□	ZP40H□	ZP2A-TF1	With three	
ZP2-TF50H□	ZP50H□	ZP2A-TFT	M3 bolts	
ZP2-TF63H□	ZP63H□	ZP2A-TF2	With four	
ZP2-TF80H□	ZP80H□	ZP2A-TF2	M4 bolts	
ZP2-TF100H□	ZP100H□	ZP2A-TF3	With four	
ZP2-TF125H□	ZP125H□	ZPZA-1F3	M5 bolts	

Note) \square in the table indicates the pad material.

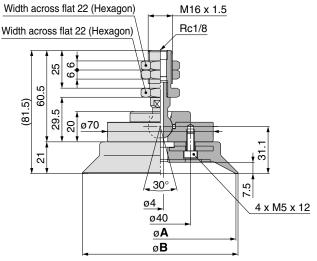
How to Order With adapter ZP2 - T F 40 H N Vacuum inlet direction Symbol Direction T Vertical Vacuum inlet direction Vertical Specification (mechanism) Symbol Specification Pad material (□) F Ball joint Pad diameter • N NBR Symbol Pad diameter Silicone rubber Pad type ⋅ 40 ø40 Urethane rubber 50 63 80 ø50 Heavy-duty ø63 (Flat with rib) ø80 100 ø100 ø125

Dimensions: With Adapter

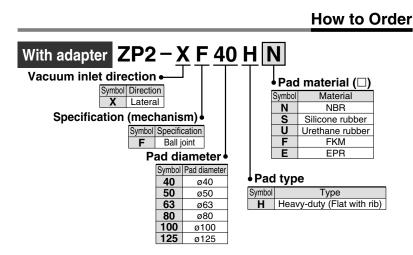

ZP2-TF⁴⁰₅₀H□

:		ns	:-	
 ш	ıe	ms.	ю	ш

Model	Α	В
ZP2-TF40H□	40	42
ZP2-TF50H□	50	52


ZP2-TF⁶³H□

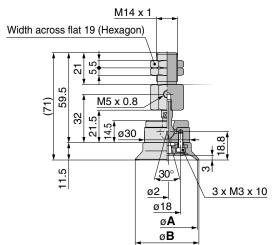
Dimensions


Model	Α	В	D	Е	Х	Υ
ZP2-TF63H□	63	65	14.5	74	23.6	3.5
ZP2-TF80H□	80	82	16.5	76	25.6	4.5

ZP2-TF¹⁰⁰₁₂₅H□

Model	Α	В
ZP2-TF100H□	100	103
ZP2-TF125H□	125	128

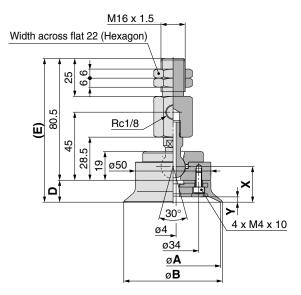
Vacuum inlet direction Lateral


Replacement Part No.

Model	Pad unit part no.	Adapter assembly part n		
ZP2-XF40H□	ZP40H□	ZP2A-XF1	With three	
ZP2-XF50H□	ZP50H□	ZPZA-XFI	M3 bolts	
ZP2-XF63H□	ZP63H□	7004 VE0	With four	
ZP2-XF80H□	ZP80H□	ZP2A-XF2	M4 bolts	
ZP2-XF100H□	ZP100H□	ZP2A-XF3	With four	
ZP2-XF125H□	ZP125H□	ZPZA-XF3	M5 bolts	

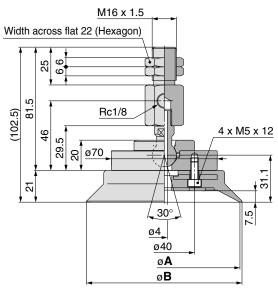
Note) \square in the table indicates the pad material.

Dimensions: With Adapter

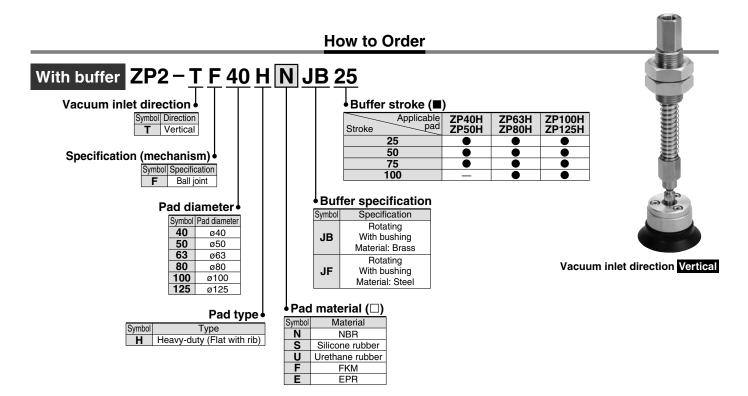

ZP2-XF⁴⁰₅₀H□

Di	m	۵r	a ci	in	10
וט		CI	13	ıvı	13

Model	Α	В
ZP2-XF40H□	40	42
ZP2-XF50H□	50	52


ZP2-XF⁶³₈₀H□

Dimensions


Model	Α	В	D	Е	X	Υ
ZP2-XF63H□	63	65	14.5	95	23.6	3.5
ZP2-XF80H□	80	82	16.5	97	25.6	4.5

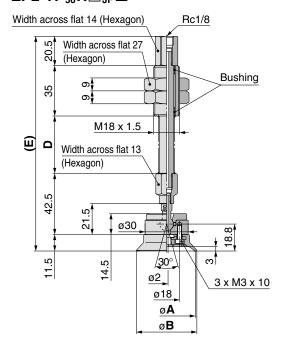
ZP2-XF¹⁰⁰₁₂₅H□

Model	Α	В
ZP2-XF100H□	100	103
ZP2-XF125H□	125	128

Replacement Part No.

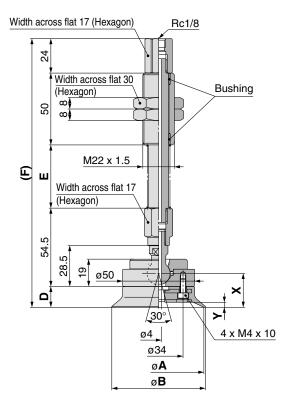
Replacement Part No.				
Model	Pad unit part no.	Buffer assembly part	no.	
ZP2-TF40H□(JB/JF)25		ZP2B-TF1(JB/JF)25		
ZP2-TF40H□(JB/JF)50	ZP40H□	ZP2B-TF1(JB/JF)50		
ZP2-TF40H□(JB/JF)75		ZP2B-TF1(JB/JF)75	With three	
ZP2-TF50H□(JB/JF)25		ZP2B-TF1(JB/JF)25	M3 bolts	
ZP2-TF50H□(JB/JF)50	ZP50H□	ZP2B-TF1(JB/JF)50		
ZP2-TF50H□(JB/JF)75		ZP2B-TF1(JB/JF)75		
ZP2-TF63H□(JB/JF)25		ZP2B-TF2(JB/JF)25		
ZP2-TF63H□(JB/JF)50	ZP63H□	ZP2B-TF2(JB/JF)50		
ZP2-TF63H□(JB/JF)75	ZF03⊓□	ZP2B-TF2(JB/JF)75	ĺ	
ZP2-TF63H□(JB/JF)100		ZP2B-TF2(JB/JF)100	With four	
ZP2-TF80H□(JB/JF)25		ZP2B-TF2(JB/JF)25	M4 bolts	
ZP2-TF80H□(JB/JF)50	ZP80H□	ZP2B-TF2(JB/JF)50		
ZP2-TF80H□(JB/JF)75	250011	ZP2B-TF2(JB/JF)75		
ZP2-TF80H□(JB/JF)100		ZP2B-TF2(JB/JF)100		
ZP2-TF100H□(JB/JF)25		ZP2B-TF3(JB/JF)25		
ZP2-TF100H□(JB/JF)50	ZP100H□	ZP2B-TF3(JB/JF)50		
ZP2-TF100H□(JB/JF)75	21 10011	ZP2B-TF3(JB/JF)75		
ZP2-TF100H□(JB/JF)100		ZP2B-TF3(JB/JF)100	With four	
ZP2-TF125H□(JB/JF)25		ZP2B-TF3(JB/JF)25	M5 bolts	
ZP2-TF125H□(JB/JF)50	ZP125H□	ZP2B-TF3(JB/JF)50		
ZP2-TF125H□(JB/JF)75	21 12311	ZP2B-TF3(JB/JF)75		
ZP2-TF125H□(JB/JF)100		ZP2B-TF3(JB/JF)100		

Note) \square in the table indicates the pad material.


Buffer Specifications

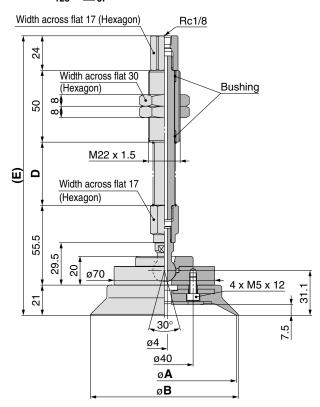
Pad dia	ameter	ø 40 , ø 50		
Stroke (mm)		25, 50, 75 25, 50, 75, 100		
Spring reactive force	At 0 stroke (N)	6.9	10	
Spring reactive force	At buffer stroke (N)	11.8	15	
	JB	Rotating With bushing Buffer body material: Brass		
Buffer specifications		Tightening torque: 30 N·m ±5%	Tightening torque: 45 N·m ±5%	
buller specifications	JF	Rotating With bushing Buffer body material: Steel		
		Tightening torque: 50 N·m ±5%	Tightening torque: 70 N·m ±5%	

Dimensions: With Buffer

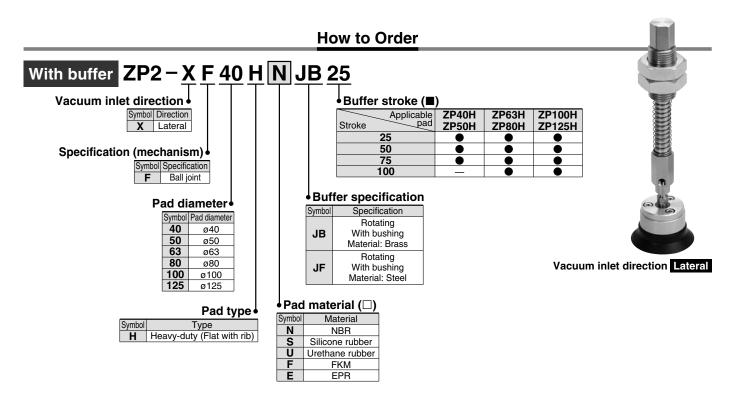

ZP2-TF⁴⁰₅₀H□^{JB}_{JF}■

Dimensions

Model		Α	В	D	Е
ZP2-TF40H□(JB				40	149.5
ZP2-TF40H□(JB	/JF)50	40	42	75	184.5
ZP2-TF40H□(JB	/JF)75			111	220.5
ZP2-TF50H□(JB	/JF)25			40	149.5
ZP2-TF50H□(JB	/JF)50	50	52	75	184.5
ZP2-TF50H□(JB	/JF)75			111	220.5


ZP2-TF⁶³H□JB■

Dimensions


Model	Α	В	D	Е	F	Х	Υ
ZP2-TF63H□(JB/JF)25				44	187		
ZP2-TF63H□(JB/JF)50	63	65	14.5	80	223	23.6	3.5
ZP2-TF63H□(JB/JF)75	63	00	14.5	120	263	23.6	3.5
ZP2-TF63H□(JB/JF)100				155	298		
ZP2-TF80H□(JB/JF)25				44	189		
ZP2-TF80H□(JB/JF)50	00	82	10.5	80	225	05.6	4.5
ZP2-TF80H□(JB/JF)75	80	02	16.5	120	265	25.6	4.5
ZP2-TF80H□(JB/JF)100				155	300		

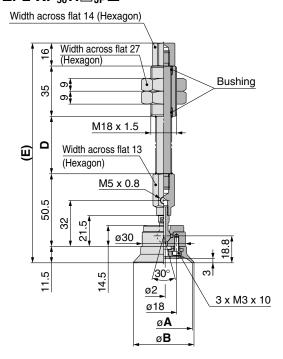
ZP2-TF¹⁰⁰₁₂₅**H**□ J^B_F■

Model	Α	В	D	E
ZP2-TF100H□(JB/JF)25			44	194.5
ZP2-TF100H□(JB/JF)50	100	103	80	230.5
ZP2-TF100H□(JB/JF)75	100	103	120	270.5
ZP2-TF100H□(JB/JF)100			155	305.5
ZP2-TF125H□(JB/JF)25			44	194.5
ZP2-TF125H□(JB/JF)50	105	100	80	230.5
ZP2-TF125H□(JB/JF)75	125	128	120	270.5
ZP2-TF125H□(JB/JF)100			155	305.5

Replacement Part No.

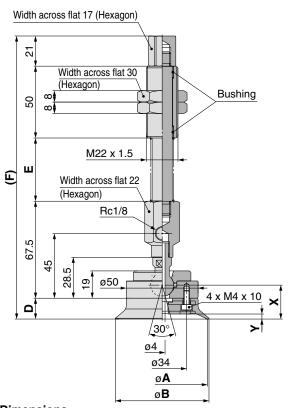
ZP2-XF50H□(JB/JF)25 ZP2B-XF1(JB/JF)25 M3 ZP2-XF50H□(JB/JF)50 ZP50H□ ZP2B-XF1(JB/JF)50 ZP2-XF50H□(JB/JF)75 ZP2B-XF1(JB/JF)75 ZP2B-XF1(JB/JF)75 ZP2-XF63H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF63H□(JB/JF)75 ZP2B-XF2(JB/JF)75 ZP2B-XF2(JB/JF)100 ZP2-XF80H□(JB/JF)25 ZP2B-XF2(JB/JF)100 Wittle P2B-XF2(JB/JF)100	
ZP2-XF40H□(JB/JF)50 ZP40H□ ZP2B-XF1(JB/JF)50 With ZP2-XF40H□(JB/JF)75 ZP2B-XF1(JB/JF)75 With ZP2-XF50H□(JB/JF)50 ZP2B-XF1(JB/JF)50 ZP2B-XF1(JB/JF)50 ZP2-XF50H□(JB/JF)75 ZP2B-XF1(JB/JF)75 ZP2B-XF2(JB/JF)50 ZP2-XF63H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF63H□(JB/JF)75 ZP2B-XF2(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF80H□(JB/JF)25 ZP2B-XF2(JB/JF)50 Witt ZP2-XF80H□(JB/JF)75 ZP2B-XF2(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF80H□(JB/JF)75 ZP2B-XF2(JB/JF)100 ZP2B-XF2(JB/JF)100 ZP2-XF80H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF80H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF80H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF80H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2B-XF2(JB/JF)50	_
ZP2-XF40H□(JBJJF)75 ZP2B-XF1(JB/JF)75 With ZP2-XF50H□(JB/JF)25 ZP2B-XF1(JB/JF)25 M3 ZP2-XF50H□(JB/JF)50 ZP2B-XF1(JB/JF)50 ZP2B-XF1(JB/JF)50 ZP2-XF63H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF63H□(JB/JF)75 ZP2B-XF2(JB/JF)50 ZP2B-XF2(JB/JF)100 ZP2-XF80H□(JB/JF)50 ZP2B-XF2(JB/JF)100 ZP2B-XF2(JB/JF)50 ZP2-XF80H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF80H□(JB/JF)50 ZP2B-XF2(JB/JF)100 ZP2B-XF2(JB/JF)100 ZP2-XF100H□(JB/JF)25 ZP2B-XF2(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF100H□(JB/JF)25 ZP2B-XF3(JB/JF)50 ZP2B-XF3(JB/JF)50 ZP2B-XF3(JB/JF)25 ZP2B-XF3(JB/JF)50 ZP2B-XF3(JB/JF)50	
ZP2-XF50H□(JB/JF)25 ZP2B-XF1(JB/JF)25 ZP2-XF50H□(JB/JF)50 ZP50H□ ZP2-XF50H□(JB/JF)50 ZP2B-XF1(JB/JF)50 ZP2-XF63H□(JB/JF)50 ZP2B-XF2(JB/JF)25 ZP2-XF63H□(JB/JF)75 ZP2B-XF2(JB/JF)50 ZP2-XF63H□(JB/JF)100 ZP2B-XF2(JB/JF)100 ZP2-XF80H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF80H□(JB/JF)75 ZP2B-XF2(JB/JF)50 ZP2-XF80H□(JB/JF)75 ZP2B-XF2(JB/JF)100 ZP2-XF80H□(JB/JF)50 ZP2B-XF2(JB/JF)100 ZP2-XF80H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF80H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2B-XF2(JB/JF)50	
ZP2-XF50H□(JB/JF)50 ZP50H□ ZP2B-XF1(JB/JF)50 ZP2-XF50H□(JB/JF)75 ZP2B-XF1(JB/JF)50 ZP2B-XF1(JB/JF)55 ZP2-XF63H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF63H□(JB/JF)100 ZP2B-XF2(JB/JF)100 ZP2B-XF2(JB/JF)100 ZP2-XF80H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF80H□(JB/JF)75 ZP2B-XF2(JB/JF)100 ZP2B-XF2(JB/JF)100 ZP2-XF80H□(JB/JF)50 ZP2B-XF2(JB/JF)100 ZP2B-XF2(JB/JF)100 ZP2-XF100H□(JB/JF)50 ZP2B-XF3(JB/JF)100 ZP2B-XF3(JB/JF)100 ZP2-XF100H□(JB/JF)50 ZP2B-XF3(JB/JF)100 ZP2B-XF3(JB/JF)100	three
ZP2-XF50H□(JB/JF)75 ZP2B-XF1(JB/JF)75 ZP2-XF63H□(JB/JF)25 ZP2B-XF2(JB/JF)25 ZP2-XF63H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF63H□(JB/JF)100 ZP2B-XF2(JB/JF)100 ZP2-XF80H□(JB/JF)50 ZP2B-XF2(JB/JF)25 ZP2-XF80H□(JB/JF)75 ZP2B-XF2(JB/JF)50 ZP2-XF80H□(JB/JF)100 ZP2B-XF2(JB/JF)100 ZP2-XF80H□(JB/JF)50 ZP2B-XF2(JB/JF)100 ZP2-XF100H□(JB/JF)50 ZP2B-XF2(JB/JF)100 ZP2-XF100H□(JB/JF)50 ZP2B-XF3(JB/JF)100	oolts
ZP2-XF63H□(JB/JF)25 ZP2B-XF2(JB/JF)25 ZP2-XF63H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF63H□(JB/JF)75 ZP2B-XF2(JB/JF)50 ZP2-XF80H□(JB/JF)25 ZP2B-XF2(JB/JF)25 ZP2-XF80H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF80H□(JB/JF)75 ZP2B-XF2(JB/JF)100 ZP2-XF80H□(JB/JF)100 ZP2B-XF2(JB/JF)100 ZP2-XF100H□(JB/JF)25 ZP2B-XF3(JB/JF)100 ZP2-XF100H□(JB/JF)50 ZP2B-XF3(JB/JF)100	
ZP2-XF63H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF63H□(JB/JF)75 ZP2B-XF2(JB/JF)75 ZP2-XF63H□(JB/JF)100 ZP2B-XF2(JB/JF)100 ZP2-XF80H□(JB/JF)25 ZP2B-XF2(JB/JF)25 ZP2-XF80H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF80H□(JB/JF)100 ZP2B-XF2(JB/JF)75 ZP2-XF100H□(JB/JF)25 ZP2B-XF3(JB/JF)25 ZP2-XF100H□(JB/JF)25 ZP2B-XF3(JB/JF)25	
ZP2-XF63H□(JB/JF)75 ZP2B-XF2(JB/JF)75 ZP2-XF63H□(JB/JF)100 ZP2B-XF2(JB/JF)100 ZP2-XF80H□(JB/JF)25 ZP2B-XF2(JB/JF)25 ZP2-XF80H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF80H□(JB/JF)75 ZP2B-XF2(JB/JF)75 ZP2-XF100H□(JB/JF)25 ZP2B-XF2(JB/JF)25 ZP2-XF100H□(JB/JF)25 ZP2B-XF3(JB/JF)25 ZP2-XF100H□(JB/JF)50 ZP2B-XF3(JB/JF)50	
ZP2-XF63H□(JB/JF)75 ZP2B-XF2(JB/JF)75 ZP2-XF63H□(JB/JF)100 ZP2B-XF2(JB/JF)100 ZP2-XF80H□(JB/JF)25 ZP2B-XF2(JB/JF)25 ZP2-XF80H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF80H□(JB/JF)100 ZP2B-XF2(JB/JF)100 ZP2-XF100H□(JB/JF)25 ZP2B-XF3(JB/JF)100 ZP2-XF100H□(JB/JF)50 ZP2B-XF3(JB/JF)25 ZP2B-XF3(JB/JF)50 ZP2B-XF3(JB/JF)50	With four M4 bolts
ZP2-XF80H□(JB/JF)25 ZP2B-XF2(JB/JF)25 Wtlt ZP2-XF80H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF80H□(JB/JF)75 ZP2B-XF2(JB/JF)75 ZP2B-XF2(JB/JF)100 ZP2-XF100H□(JB/JF)25 ZP2B-XF3(JB/JF)25 ZP2B-XF3(JB/JF)25 ZP2-XF100H□(JB/JF)50 ZP2B-XF3(JB/JF)50 ZP2B-XF3(JB/JF)50	
ZP2-XF80H□(JB/JF)25 ZP2B-XF2(JB/JF)25 M4 ZP2-XF80H□(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2B-XF2(JB/JF)50 ZP2-XF80H□(JB/JF)100 ZP2B-XF2(JB/JF)100 ZP2B-XF2(JB/JF)100 ZP2-XF100H□(JB/JF)25 ZP2B-XF3(JB/JF)25 ZP2B-XF3(JB/JF)25 ZP2-XF100H□(JB/JF)50 ZP2B-XF3(JB/JF)50 ZP2B-XF3(JB/JF)50	
ZP2-XF80H□(JB/JF)50 ZP80H□ ZP2B-XF2(JB/JF)50 ZP2-XF80H□(JB/JF)75 ZP2B-XF2(JB/JF)75 ZP2-XF80H□(JB/JF)100 ZP2B-XF2(JB/JF)100 ZP2-XF100H□(JB/JF)25 ZP2B-XF3(JB/JF)25 ZP2-XF100H□(JB/JF)50 ZP2B-XF3(JB/JF)50	
ZP2-XF80H□(JB/JF)75 ZP2B-XF2(JB/JF)75 ZP2-XF80H□(JB/JF)100 ZP2B-XF2(JB/JF)100 ZP2-XF100H□(JB/JF)25 ZP2B-XF3(JB/JF)25 ZP2-XF100H□(JB/JF)50 ZP2B-XF3(JB/JF)50	JOILS
ZP2-XF100H □(JB/JF)25 ZP2B-XF3(JB/JF)25 ZP2B-XF3(JB/JF)25 ZP2B-XF3(JB/JF)25 ZP2B-XF3(JB/JF)25	
7P2-YF100H□(.IB/.IF)50 7P2B-YF3(.IB/.IF)50	
ZP2-XF100H□(JB/JF)50 ZP2B-XF3(JB/JF)50	
ZP2-XF100H (JB/JF)/5 ZP2B-XF3(JB/JF)/5	
	four
2: 25 7: 0(05/0: /20	oolts
ZP2-XF125H□(JB/JF)50 ZP125H□ ZP2B-XF3(JB/JF)50 ZP125H□	
ZP2-XF125H □(JB/JF)/5 ZP2B-XF3(JB/JF)/5	
ZP2-XF125H □(JB/JF)100	

Note) \square in the table indicates the pad material.


Buffer Specifications

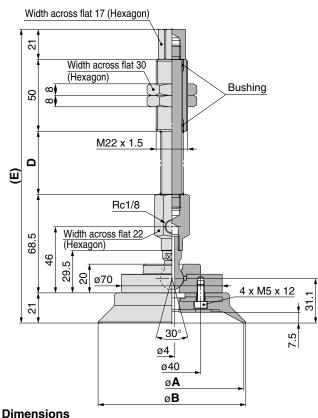
Pad dia	ameter	ø40, ø50 ø63, ø80, ø100, ø1		
Stroke (mm)		25, 50, 75 25, 50, 75, 100		
Spring reactive force	At 0 stroke (N)	6.9 10		
Spring reactive force	At buffer stroke (N)	11.8	15	
	JB	Rotating With bushing Buffer body material: Brass		
Buffer specifications		Tightening torque: 30 N⋅m ±5%	Tightening torque: 45 N·m ±5%	
JF		With b	ating ushing naterial: Steel	
		Tightening torque: 50 N⋅m ±5%	Tightening torque: 75 N⋅m ±5%	

Dimensions: With Buffer


ZP2-XF⁴⁰₅₀H□JB■

Dimensions

Model	Α	В	D	E
ZP2-XF40H□(JB/JF)25			40	153
ZP2-XF40H□(JB/JF)50	40	42	75	188
ZP2-XF40H□(JB/JF)75			111	224
ZP2-XF50H□(JB/JF)25			40	153
ZP2-XF50H□(JB/JF)50	50	52	75	188
ZP2-XF50H□(JB/JF)75			111	224


ZP2-XF⁶³H□J^B■

Dimensions

Model	Α	В	D	Е	F	Х	Υ
ZP2-XF63H□(JB/JF)25				44	197		
ZP2-XF63H□(JB/JF)50	60	65	14.5	80	233	23.6	3.5
ZP2-XF63H□(JB/JF)75	63	65	14.5	120	273	23.0	3.5
ZP2-XF63H□(JB/JF)100				155	308		
ZP2-XF80H□(JB/JF)25				44	199		
ZP2-XF80H□(JB/JF)50	00		16.5	80	235	05.6	4.5
ZP2-XF80H□(JB/JF)75	80	82	16.5	120	275	25.6	4.5
ZP2-XF80H□(JB/JF)100				155	310		

ZP2-XF¹⁰⁰₁₂₅**H**□^{JB}_{JF}■

Model	Α	В	D	Е
ZP2-XF100H□(JB/JF)25			44	204.5
ZP2-XF100H□(JB/JF)50	100	103	80	240.5
ZP2-XF100H□(JB/JF)75	100	103	120	280.5
ZP2-XF100H□(JB/JF)100			155	315.5
ZP2-XF125H□(JB/JF)25			44	204.5
ZP2-XF125H□(JB/JF)50	105	128	80	240.5
ZP2-XF125H□(JB/JF)75	125	128	120	280.5
ZP2-XF125H□(JB/JF)100			155	315.5

Heavy-duty Ball Joint Pad

Symbol/Type

HB: Heavy-duty (Bellows)

EPR

Pad diameter Ø40, Ø50, Ø63, Ø80, Ø100, Ø125

ø63

ø80 ø100

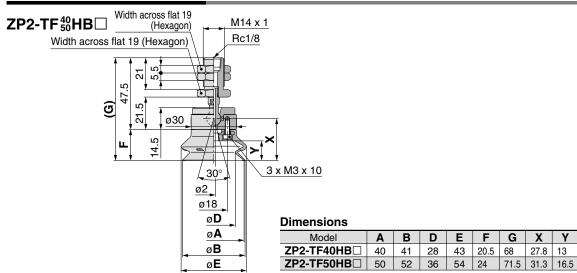
ø125

80

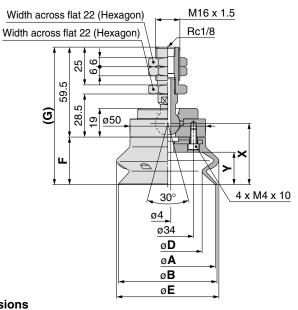
ΗВ

■ For adsorption of work pieces with inclined or curved surface

Replacement Part No.

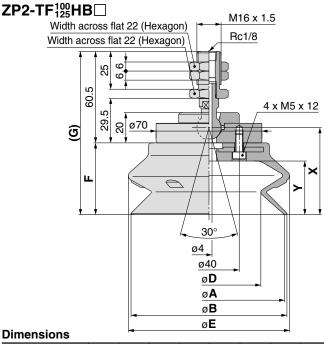

Model	Pad unit part no.	Adapter asser	nbly part no.		
ZP2-TF40HB□	ZP40HB□	ZP2A-TF1	With three		
ZP2-TF50HB□	ZP50HB□	ZFZA-IFI	M3 bolts		
ZP2-TF63HB□	ZP63HB□	ZP2A-TF2	With four		
ZP2-TF80HB□	ZP80HB□	ZFZA-1FZ	M4 bolts		
ZP2-TF100HB□	ZP100HB□	ZP2A-TF3	With four		
ZP2-TF125HB□	ZP125HB□	ZPZA-1F3	M5 bolts		

Note) \square in the table indicates the pad material.

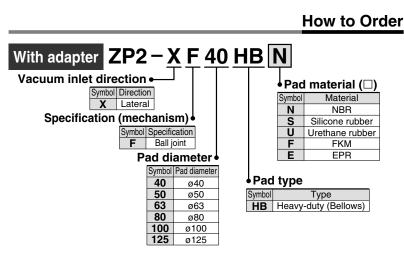

How to Order With adapter ZP2-T F 40 HB N Vacuum inlet direction Symbol Direction Vertical Specification (mechanism) Vacuum inlet direction Vertical Symbol Specification F Ball joint Pad material (□) Pad diameter Material Symbol Pad diameter NBR Pad type 40 Silicone rubber ø40 50 Symbol Type Urethane rubber ø50 63 Heavy-duty

(Bellows)

Dimensions: With Adapter



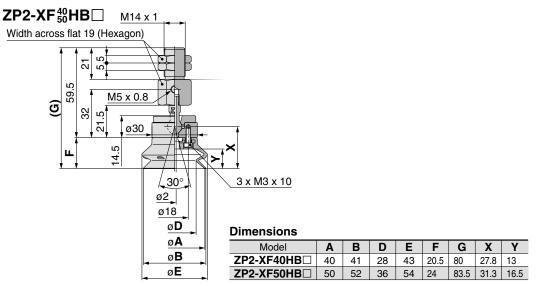
ZP2-TF⁶³HB□



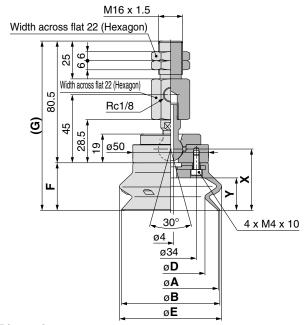
Dimensions

Model	Α	В	D	Е	F	G	Х	Υ
ZP2-TF63HB□	63	65	46	68	31.5	91	40.6	21
ZP2-TF80HB□	80	83	58	85	37	96.5	46.1	27.5

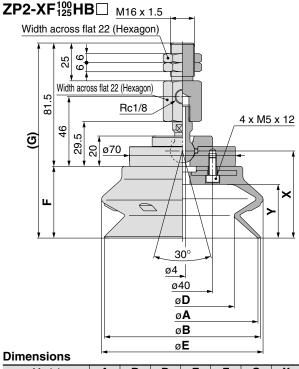
Model 35.5 ZP2-TF100HB□ 107 47.5 **ZP2-TF125HB**□ 125 129 89 135 56

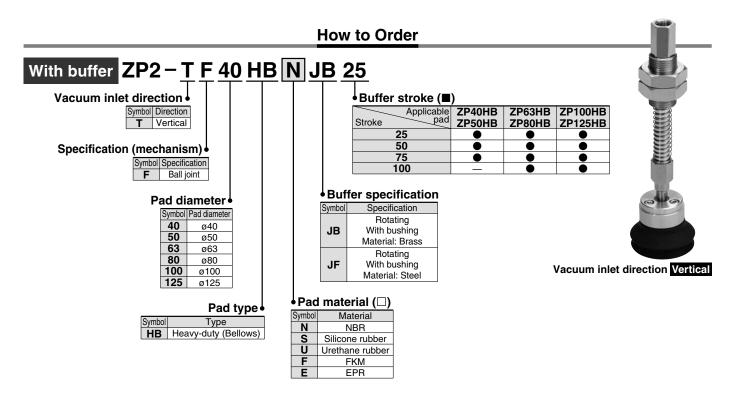

Vacuum inlet direction Lateral

Replacement Part No.


Pad unit part no.	Adapter asser	mbly part no.
ZP40HB□	7D04 VE1	With three
ZP50HB□	ZPZA-XFI	M3 bolts
ZP63HB□	ZDOA VEO	With four
ZP80HB□	ZFZA-AFZ	M4 bolts
ZP100HB□	7004 VE0	With four
ZP125HB□	ZPZA-XF3	M5 bolts
	ZP40HB□ ZP50HB□ ZP63HB□ ZP80HB□ ZP100HB□	ZP50HB□ ZP2A-XF1 ZP63HB□ ZP2A-XF2 ZP80HB□ ZP2A-XF2 ZP100HB□ ZP2A-XF2

Note) \square in the table indicates the pad material.


Dimensions: With Adapter


ZP2-XF⁶³HB□

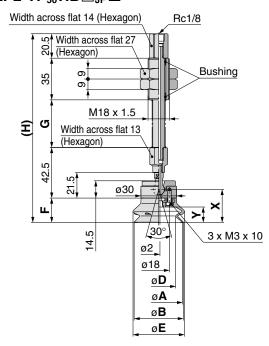
Model	Α	В	D	Е	F	G	Х	Υ
ZP2-XF63HB□	63	65	46	68	31.5	112	40.6	21.5
ZP2-XF80HB□	80	83	58	85	37	117.5	46.1	27.5

Model	Α	В	D	E	F	G	X	Υ
ZP2-XF100HB□	100	103	69	107	47.5	129	57.6	35.5
ZP2-XF125HB□	125	129	89	135	56	137.5	66.1	44

Replacement Part No.

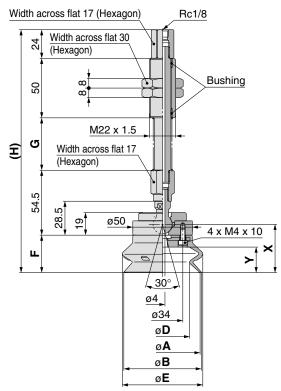
nepiaceilleilt Fait No.						
Model	Pad unit part no.	Buffer assembly part	no.			
ZP2-TF40HB□(JB/JF)25		ZP2B-TF1(JB/JF)25				
ZP2-TF40HB□(JB/JF)50	ZP40HB□	ZP2B-TF1(JB/JF)50				
ZP2-TF40HB□(JB/JF)75		ZP2B-TF1(JB/JF)75	With three			
ZP2-TF50HB□(JB/JF)25		ZP2B-TF1(JB/JF)25	M3 bolts			
ZP2-TF50HB□(JB/JF)50	ZP50HB□	ZP2B-TF1(JB/JF)50				
ZP2-TF50HB□(JB/JF)75		ZP2B-TF1(JB/JF)75]			
ZP2-TF63HB□(JB/JF)25		ZP2B-TF2(JB/JF)25				
ZP2-TF63HB□(JB/JF)50	ZP63HB□	ZP2B-TF2(JB/JF)50				
ZP2-TF63HB□(JB/JF)75	ZFOSHBL	ZP2B-TF2(JB/JF)75				
ZP2-TF63HB□(JB/JF)100		ZP2B-TF2(JB/JF)100	With four			
ZP2-TF80HB□(JB/JF)25		ZP2B-TF2(JB/JF)25	M4 bolts			
ZP2-TF80HB□(JB/JF)50	ZP80HB□	ZP2B-TF2(JB/JF)50				
ZP2-TF80HB□(JB/JF)75	21 001 ID	ZP2B-TF2(JB/JF)75				
ZP2-TF80HB□(JB/JF)100		ZP2B-TF2(JB/JF)100				
ZP2-TF100HB□(JB/JF)25		ZP2B-TF3(JB/JF)25				
ZP2-TF100HB□(JB/JF)50	ZP100HB□	ZP2B-TF3(JB/JF)50				
ZP2-TF100HB□(JB/JF)75	ZF 10011B	ZP2B-TF3(JB/JF)75				
ZP2-TF100HB□(JB/JF)100		ZP2B-TF3(JB/JF)100	With four			
ZP2-TF125HB□(JB/JF)25		ZP2B-TF3(JB/JF)25	M5 bolts			
ZP2-TF125HB□(JB/JF)50	ZP125HB□	ZP2B-TF3(JB/JF)50				
ZP2-TF125HB□(JB/JF)75	21 123110	ZP2B-TF3(JB/JF)75				
ZP2-TF125HB□(JB/JF)100		ZP2B-TF3(JB/JF)100				

Note) \square in the table indicates the pad material.


Buffer Specifications

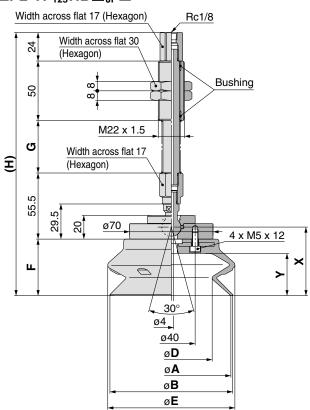
Pad dia	ameter	ø 40 , ø 50	ø 63 , ø 80 , ø 100 , ø 125		
Stroke (mm)		25, 50, 75	25, 50, 75, 100		
Spring reactive force	At 0 stroke (N) 6.9		10		
Spring reactive force	At buffer stroke (N)	At buffer stroke (N) 11.8			
Duffey and discations	JB	Buffer body m	ating ushing naterial: Brass Tightening torque: 45 N·m ±5%		
Buffer specifications	JF	Buffer body n	ating ushing naterial: Steel Tightening torque: 75 N·m ±5%		

Dimensions: With Buffer

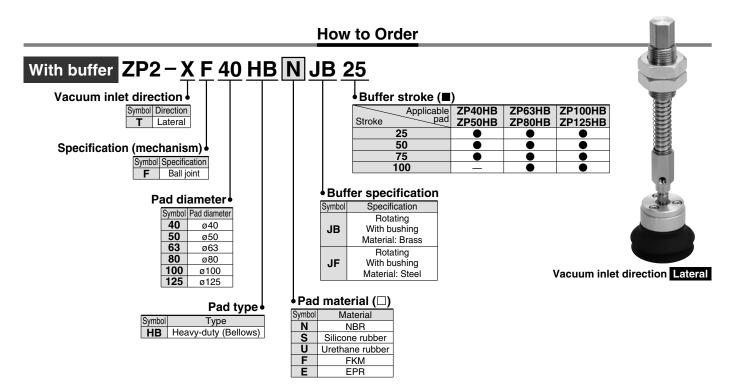

ZP2-TF⁴⁰HB□児■

Dimensions

Dilliciisions									
Model	Α	В	D	E	F	G	Н	Х	Υ
ZP2-TF40HB□(JB/JF)25						40	158.5		
ZP2-TF40HB□(JB/JF)50	40	42	28	43	20.5	75	193.5	27.8	13
ZP2-TF40HB□(JB/JF)75						111	229.5		
ZP2-TF50HB□(JB/JF)25						40	162		
ZP2-TF50HB□(JB/JF)50	50	52	36	54	24	75	197	31.3	16.5
ZP2-TF50HB□(JB/JF)75						111	233		


ZP2-TF₈₀HB□児■

Dimensions


Model	Α	В	D	Е	F	G	Н	Χ	Υ
ZP2-TF63HB□(JB/JF)25						44	204		
ZP2-TF63HB□(JB/JF)50	60	65	46	68	31.5	80	240	40.6	01.5
ZP2-TF63HB□(JB/JF)75	63	3 05	40	00	31.5	120	280	40.0	21.5
ZP2-TF63HB□(JB/JF)100						155	315		
ZP2-TF80HB□(JB/JF)25						44	209.5		
ZP2-TF80HB□(JB/JF)50	80	83	58	0.5	37	80	245.5	46.4	27.5
ZP2-TF80HB□(JB/JF)75	80	83	56	85	3/	120	285.5	46.1	27.5
ZP2-TF80HB□(JB/JF)100						155	320.5		

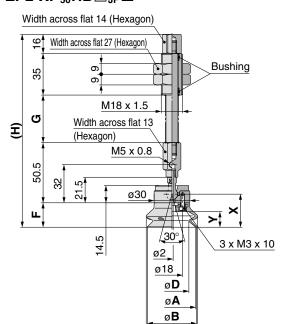
ZP2-TF¹⁰⁰₁₂₅HB□児■

Model	Α	В	D	Е	F	G	Н	Х	Υ
ZP2-TF100HB□(JB/JF)25						44	221		
ZP2-TF100HB□(JB/JF)50	100	103	69	107	47.5	80	257	57.6	35.5
ZP2-TF100HB□(JB/JF)75	100	103	09	107	47.5	120	297	57.0	35.5
ZP2-TF100HB□(JB/JF)100						155	332		
ZP2-TF125HB□(JB/JF)25						44	229.5		
ZP2-TF125HB□(JB/JF)50	125	129	00	135	56	80	265.5	66.1	44
ZP2-TF125HB□(JB/JF)75	125	129	89	135	90	120	305.5	00.1	44
ZP2-TF125HB□(JB/JF)100						155	340.5		

Replacement Part No.

neplacement Fait No.					
Model	Pad unit part no.	Buffer assembly par	no.		
ZP2-XF40HB□(JB/JF)25		ZP2B-XF1(JB/JF)25			
ZP2-XF40HB□(JB/JF)50	ZP40HB□	ZP2B-XF1(JB/JF)50			
ZP2-XF40HB□(JB/JF)75		ZP2B-XF1(JB/JF)75	With three		
ZP2-XF50HB□(JB/JF)25		ZP2B-XF1(JB/JF)25	M3 bolts		
ZP2-XF50HB□(JB/JF)50	ZP50HB□	ZP2B-XF1(JB/JF)50]		
ZP2-XF50HB□(JB/JF)75		ZP2B-XF1(JB/JF)75			
ZP2-XF63HB□(JB/JF)25		ZP2B-XF2(JB/JF)25			
ZP2-XF63HB□(JB/JF)50	ZP63HB□	ZP2B-XF2(JB/JF)50			
ZP2-XF63HB□(JB/JF)75		ZP2B-XF2(JB/JF)75			
ZP2-XF63HB□(JB/JF)100		ZP2B-XF2(JB/JF)100	With four		
ZP2-XF80HB□(JB/JF)25		ZP2B-XF2(JB/JF)25	M4 bolts		
ZP2-XF80HB□(JB/JF)50	ZP80HB□	ZP2B-XF2(JB/JF)50			
ZP2-XF80HB□(JB/JF)75		ZP2B-XF2(JB/JF)75			
ZP2-XF80HB□(JB/JF)100		ZP2B-XF2(JB/JF)100			
ZP2-XF100HB□(JB/JF)25		ZP2B-XF3(JB/JF)25			
ZP2-XF100HB□(JB/JF)50	ZP100HB□	ZP2B-XF3(JB/JF)50			
ZP2-XF100HB□(JB/JF)75		ZP2B-XF3(JB/JF)75]		
ZP2-XF100HB□(JB/JF)100		ZP2B-XF3(JB/JF)100	With four		
ZP2-XF125HB□(JB/JF)25		ZP2B-XF3(JB/JF)25	M5 bolts		
ZP2-XF125HB□(JB/JF)50	ZP125HB□	ZP2B-XF3(JB/JF)50]		
ZP2-XF125HB□(JB/JF)75	<u> </u>	ZP2B-XF3(JB/JF)75			
ZP2-XF125HB□(JB/JF)100		ZP2B-XF3(JB/JF)100			

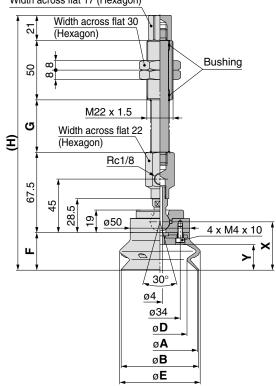
Note) \square in the table indicates the pad material.


Buffer Specifications

Pad dia	ameter	ø 40 , ø 50	ø63, ø80, ø100, ø125			
Stroke (mm)		25, 50, 75	25, 50, 75, 100			
Spring reactive force	At 0 stroke (N)	At 0 stroke (N) 6.9				
Spring reactive force	At buffer stroke (N)	11.8	15			
	JB	Rotating With bushing Buffer body material: Brass				
Buffer enseifications		Tightening torque: 30 N⋅m ±5%	Tightening torque: 45 N·m ±5%			
Buffer specifications JF			ating ushing naterial: Steel			
		Tightening torque: 50 N⋅m ±5%	Tightening torque: 75 N·m ±5%			

Dimensions: With Buffer

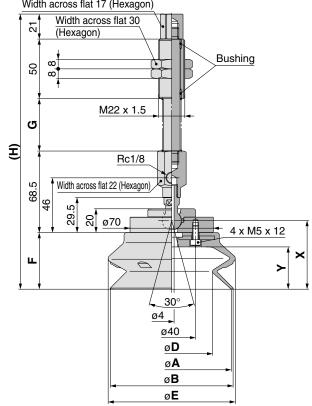
ZP2-XF⁴⁰₅₀HB□J^B_J■


øΕ

Dimensions

Model	Α	В	D	E	F	G	Н	Х	Υ
ZP2-XF40HB□(JB/JF)25						40	162		
ZP2-XF40HB□(JB/JF)50	40	42	28	43	20.5	75	197	27.8	13
ZP2-XF40HB□(JB/JF)75						111	233		
ZP2-XF50HB□(JB/JF)25						40	165.5		
ZP2-XF50HB□(JB/JF)50	50	52	36	54	24	75	200.5	31.3	16.5
ZP2-XF50HB□(JB/JF)75						111	236.5		

ZP2-XF₈₀HB□児■



Dimensions

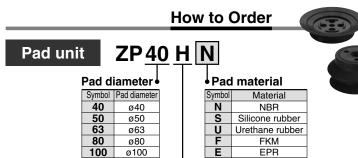
Model	Α	В	D	Е	F	G	Н	Х	Υ
ZP2-XF63HB□(JB/JF)25						44	214		
ZP2-XF63HB□(JB/JF)50	63	65	46	68	31.5	80	250	40.6	21.5
ZP2-XF63HB□(JB/JF)75	63	65	46	00	31.5	120	290	40.6	21.5
ZP2-XF63HB□(JB/JF)100						155	325		
ZP2-XF80HB□(JB/JF)25						44	219.5		
ZP2-XF80HB□(JB/JF)50	00	00	F0	0.5	37	80	255.5	46.4	27.5
ZP2-XF80HB□(JB/JF)75	80	83	58	85	3/	120	295.5	46.1	27.5
ZP2-XF80HB□(JB/JF)100						155	330.5		

ZP2-XF¹⁰⁰HB□児■

Width across flat 17 (Hexagon)

Model	Α	В	D	Е	F	G	Н	Х	Υ
ZP2-XF100HB□(JB/JF)25						44	231		
ZP2-XF100HB□(JB/JF)50	100	103	69	107	47.5	80	267	57.6	25.5
ZP2-XF100HB□(JB/JF)75	100	103	09	107	47.5	120	307	57.0	35.5
ZP2-XF100HB□(JB/JF)100						155	342		
ZP2-XF125HB□(JB/JF)25						44	239.5		
ZP2-XF125HB□(JB/JF)50	125	100	00	135	EC	80	275.5	66.1	44
ZP2-XF125HB□(JB/JF)75	125	129	89	133	56	120	315.5	00.1	44
ZP2-XF125HB□(JB/JF)100						155	350.5		

Heavy-duty Pad

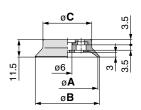

Pad diameter Ø40, Ø50, Ø63, Ø80, Ø100, Ø125

Symbol/Type

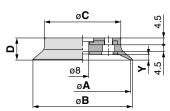
H: Heavy-duty (Flat with rib) HB: Heavy-duty

(Bellows)

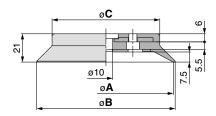
■ Reinforced pad prevents deformation when transferring heavy or large work pieces.

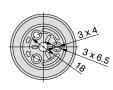


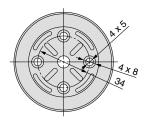
Pad type Symbol

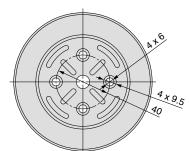

H Heavy-duty (Flat with rib) Heavy-duty (Bellows)

Dimensions: Pad Unit





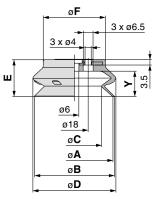




ZP¹⁰⁰₁₂₅ H□

Dimensions

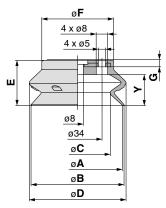
Model	Α	В	С
ZP40H□	40	42	32
7P50H□	50	52	42


Dimensions

	-				
Model	Α	В	С	D	Υ
ZP63H□	63	65	50	14.5	3.5
ZP80H□	80	82	61	16.5	4.5

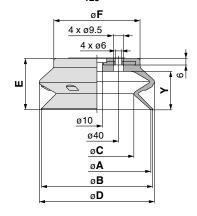
Dimensions

	-		
Model	Α	В	С
ZP100H□	100	103	80
ZP125H□	125	128	104


ZP⁴⁰₅₀HB□

Dimensions

Model	Α	В	С	D	Е	F	Υ
ZP40HB□	40	41	28	43	20.5	30	13
ZP50HB□	50	52	36	54	24	40.5	16.5


ZP⁶³₈₀HB□

Dimensions

Model	Α	В	С	D	E	F	G	Υ
ZP63HB□	63	65	46	68	31.5	50	4.5	21.5
ZP80HB□	80	83	58	85	37	64	5	27.5

ZP¹⁰⁰₁₂₅HB□

Model	Α	В	С	D	Е	F	Υ
ZP100HB□	100	103	69	107	47.5	80	35.5
ZP125HB□	125	129	89	135	56	105	44

How to Order

With adapter ZPT40 H N - A14

Pad diameter Symbol Pad diameter 40 ø40

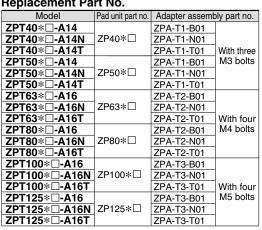
50 ø50 63 ø63 80 ø80 100 ø100 ø125

Pad type (*)

Symbol	Туре
Н	Heavy-duty (Flat with rib)
HB	Heavy-duty (Bellows)

Pad material (□) •

Material


NBR

Silicone rubber

Urethane rubber

FKM

Symbol

Mounti	na throad	oizo					
Mounting thread size		Symbol	Thread	Pad diameter			
(vacuu	m inlet)		Syllibol	size	ø 40 , ø 50	ø 63 , ø 80	ø100, ø125
			A14	Rc1/8	•	_	_
		M14 x 1	A14N	NPT1/8	•	_	_
	Male thread		A14T	NPTF1/8	•	_	_
	iviale lilieau		A16	Rc1/8	_	•	•
Mounting		M16 x 1.5	A16N	NPT1/8	_	•	•
Wiodriting			A16T	NPTF1/8	_	•	•
			B8	M8 x 1.25	•	•	_
	Female	throad	B10	M10 x 1.5	•	•	_
	i emale	illeau	B12	M12 x 1.75	_	•	•
			B16	M16 x 1.5	_	•	•

Vacuum inlet direction Vertic

Replacement Part No.

Model	Pad unit part no.	Adapter assembly part no	
ZPT40∗□-B8	7₽40∜□	ZPA-T1-B8	
ZPT40*□-B10	2F4Uホ□	ZPA-T1-B10	With three
ZPT50∗□-B8	7050.↓□	ZPA-T1-B8	M3 bolts
ZPT50*□-B10	ZF3U本□	ZPA-T1-B10	
ZPT63∗□-B8		ZPA-T2-B8	
ZPT63*□-B10	7062↓□	ZPA-T2-B10	
ZPT63*□-B12	21 00 ↑	ZPA-T2-B12	
ZPT63*□-B16		ZPA-T2-B16	With four
ZPT80∗□-B8		ZPA-T2-B8	M4 bolts
ZPT80*□-B10	7P80*□	ZPA-T2-B10	
ZPT80*□-B12	ZF00*	ZPA-T2-B12	
ZPT80*□-B16		ZPA-T2-B16	
ZPT100*□-B12	7P100∗□	ZPA-T3-B12	
ZPT100*□-B16	ZF 100*	ZPA-T3-B16	With four
ZPT125*□-B12	7D125∜□	ZPA-T3-B12	M5 bolts
ZPT125*□-B16	21 1234	ZPA-T3-B16	
	ZPT40* - B8 ZPT40* - B10 ZPT50* - B8 ZPT50* - B10 ZPT63* - B10 ZPT63* - B10 ZPT63* - B12 ZPT63* - B16 ZPT80* - B16 ZPT80* - B10 ZPT80* - B10 ZPT80* - B12 ZPT80* - B16 ZPT80* - B16 ZPT100* - B16 ZPT100* - B16 ZPT100* - B16 ZPT105* - B16	ZPT40* - B8 ZPT40* - B10 ZPT50* - B8 ZPT50* - B10 ZPT63* - B10 ZPT63* - B10 ZPT63* - B12 ZPT63* - B16 ZPT80* - B16 ZPT80* - B10 ZPT80* - B16 ZPT100* - B16 ZPT100* - B16 ZPT100* - B16 ZPT105* - B12 ZP105* - B10	ZPT40*□-B8 ZP40*□ ZPA-T1-B8 ZPT50*□-B8 ZP50*□ ZPA-T1-B10 ZPT50*□-B10 ZP50*□ ZPA-T1-B8 ZPT63*□-B8 ZPA-T1-B10 ZPA-T1-B10 ZP63*□-B10 ZPA-T2-B1 ZPA-T2-B10 ZPT63*□-B16 ZPA-T2-B12 ZPA-T2-B12 ZPT80*□-B10 ZPA-T2-B10 ZPA-T2-B10 ZPA-T2-B10 ZPA-T3-B12 ZPA-T3-B12 ZPT100*□-B12 ZPA-T3-B16 ZPA-T3-B12 ZPA-T3-B12 ZPA-T3-B12 ZPA-T3-B12

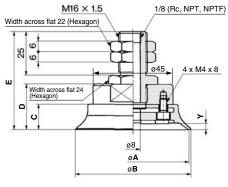
Note 1) * in the table indicates the pad type. Note 2) \square in the table indicates the pad material.

Dimensions: With Adapter

 $M14 \times 1$

25

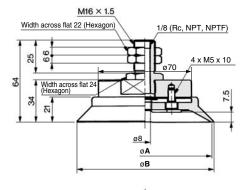
53

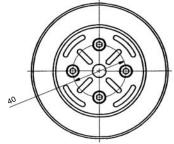

$ZPT_{50}^{40}H\Box$ -A14 (Male thread)

ø3

1/8 (Rc, NPT, NPTF)

3 x M3 x 8


ZPT⁶³₈₀H□-A16 (Male thread)



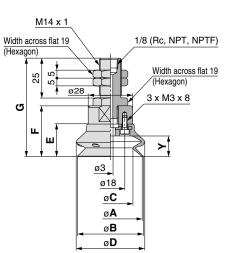
Dimensions

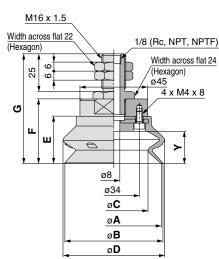
	Model	Α	В	С	D	Е	Υ
7	ZPT63H□-A16	63	65	14.5	26	56	3.5
7	ZPT80H□-A16	80	82	16.5	28	58	4.5

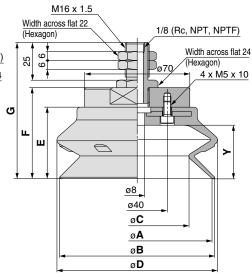
ZPT¹⁰⁰₁₂₅**H**□-**A**16 (Male thread)

Model	Α	В
ZPT100H□-A16	100	103
ZPT125H□-A16	125	128

Model	Α	В
ZPT40H□-A14	40	42
ZPT50H□-A14	50	52




Dimensions: With Adapter

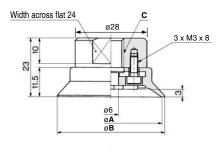

ZPT ⁴⁰₅₀HB □-A14 (Male thread)

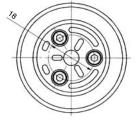
ZPT ⁶³₈₀HB□-A16 (Male thread)

ZPT¹⁰⁰₁₂₅HB□-A16 (Male thread)

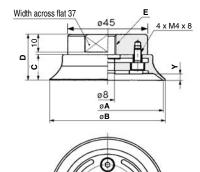
Dimensions

Model	Α	В	С	D
ZPT40HB□-A14	40	41	28	43
ZPT50HB□-A14	50	52	36	54
Model	E	F	G	Υ
Model ZPT40HB□-A14		F 32	G	Y


Dimensions


Model	Α	В	С	D
ZPT63HB□-A16	63	65	46	68
ZPT80HB□-A16	80	83	58	85
Model	E	F	G	Υ
Model ZPT63HB□-A16		F 43	G 73	Y 21.5

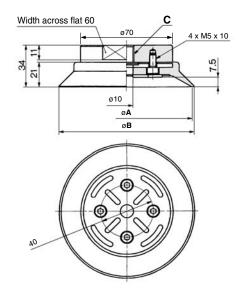
Dimensions


Model	Α	В	С	D
ZPT100HB□-A16	100	103	69	107
ZPT125HB□-A16	125	129	89	135
Model	E	F	G	Υ
Model ZPT100HB□-A16	E 47.5	F 60.5	G 90.5	Y 35.5

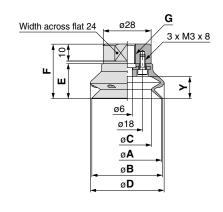
ZPT ⁴⁰₅₀H □-B (Female thread)

ZPT⁶³₈₀H□-B (Female thread)

Dimensions


Model	Α	В	С
ZPT40H□-B8	40	42	M8 x 1.25
ZPT40H□-B10	40	42	M10 x 1.5
ZPT50H□-B8	50	52	M8 x 1.25
ZPT50H□-B10	50	52	M10 x 1.5

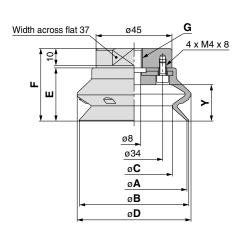
Model	Α	В	С	D	E	Υ
ZPT63H□-B8	63	65	14.5	26	M8 x 1.25	3.5
ZPT63H□-B10	63	65	14.5	26	M10 x 1.5	3.5
ZPT63H□-B12	63	65	14.5	26	M12 x 1.75	3.5
ZPT63H□-B16	63	65	14.5	26	M16 x 1.5	3.5
ZPT80H□-B8	80	82	16.5	28	M8 x 1.25	4.5
ZPT80H□-B10	80	82	16.5	28	M10 x 1.5	4.5
ZPT80H□-B12	80	82	16.5	28	M12 x 1.75	4.5
ZPT80H□-B16	80	82	16.5	28	M16 x 1.5	4.5



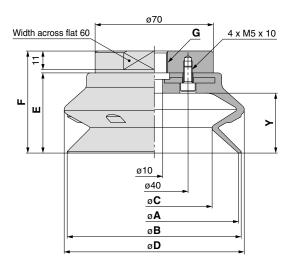
Dimensions: With Adapter

ZPT¹⁰⁰₁₂₅H□-B (Female thread)

ZPT⁴⁰₅₀H□-B (Female thread)


Dimensions

Model	Α	В	С
ZPT100H□-B12	100	103	M12 x 1.75
ZPT100H □- B16	100	103	M16 x 1.5
ZPT125H□-B12	125	128	M12 x 1.75
ZPT125H□-B16	125	128	M16 x 1.5


Dimensions

Model	Α	В	С	D	Е	F	G	Υ	
ZPT40HB□-B8	40	40 44	28	43	20.5	20	M8 x 1.25	13	
ZPT40HB□-B10	40	41	20	43	20.5	32	M10 x 1.5		
ZPT50HB□-B8	50	52	36	54	24	35.5	M8 x 1.25	10.5	
ZPT50HB□-B10	50	52	30	54	24	35.5	M10 x 1.5	16.5	

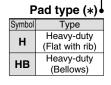
ZPT⁶³₈₀HB□-B (Female thread)

ZPT¹⁰⁰₁₂₅HB□-B (Female thread)

Dimensions

Model	Α	В	С	D	Е	F	G	Υ
ZPT63HB□-B8							M8 x 1.25	
ZPT63HB□-B10	63	65	46	68	31.5	43	M10 x 1.5	21.5
ZPT63HB□-B12		03					M12 x 1.75	
ZPT63HB□-B16							M16 x 1.5	
ZPT80HB□-B8							M8 x 1.25	
ZPT80HB□-B10	80	83	58	85	37	48.5	M10 x 1.5	27.5
ZPT80HB□-B12	80	63	50	65	31	40.5	M12 x 1.75	21.5
ZPT80HB□-B16							M16 x 1.5	

Model	Α	В	С	D	Е	F	G	Υ
ZPT100HB□-B12 ZPT100HB□-B16	100	103	69	107	17.5	60.5	M12 x 1.75	35.5
ZPT100HB□-B16	100	103	09	107	47.5	00.5	M16 x 1.5	33.3
ZPT125HB□-B12	125	129	89	135	EG	69	M12 x 1.75	44
ZPT125HB□-B16	125	129	09	133	50	09	M16 x 1.5	44



How to Order

Without buffer ZPX 40 H N - B01 - B8

Symbol	Pad diameter
40	ø40
50	ø50
63	ø63
80	ø80
100	ø100
125	ø125

Vacuum inlet thread size

| Symbol | Thread size | B01 | Rc1/8 | N01 | NPT1/8 | T01 | NPTF1/8 |

Vacuum inlet direction Lateral

Mounting thread size

Symbol	Thread size		Pad diameter					
Syllibol	Tilleau Size	ø 40 , ø 50	ø 63 , ø 80	ø100, ø125				
B8	M8 x 1.25	•	_	_				
B10	M10 x 1.5	•	•	•				
B12	M12 x 1.75	_		•				

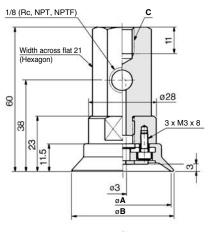
Pad material (□) •

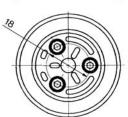
	,
Symbol	Material
N	NBR
S	Silicone rubber
U	Urethane rubber
F	FKM
E	EPR

Replacement Part No.

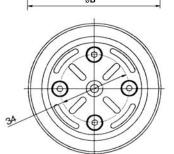
Model	Pad unit part no.	Adapter assembly	part no.	Model	Pad unit part no.	Adapter assembly	part no.
ZPX40*□-B01-B8		ZPA-X1-B01-B8		ZPX80*□-B01-B10		ZPA-X2-B01-B10	
ZPX40*□-N01-B8		ZPA-X1-N01-B8		ZPX80*□-N01-B10		ZPA-X2-N01-B10	
ZPX40*□-T01-B8	7D40-1-□	ZPA-X1-T01-B8	With three	ZPX80*□-T01-B10	ZP80*□	ZPA-X2-T01-B10	With four
ZPX40*□-B01-B10	ZP40∗□	ZPA-X1-B01-B10	M3 bolts	ZPX80*□-B01-B12		ZPA-X2-B01-B12	M4 bolts
ZPX40*□-N01-B10	1	ZPA-X1-N01-B10		ZPX80*□-N01-B12		ZPA-X2-N01-B12	
ZPX40*□-T01-B10		ZPA-X1-T01-B10		ZPX80*□-T01-B12		ZPA-X2-T01-B12	
ZPX50*□-B01-B8		ZPA-X1-B01-B8		ZPX100*□-B01-B10		ZPA-X3-B01-B10	
ZPX50*□-N01-B8		ZPA-X1-N01-B8		ZPX100*□-N01-B10		ZPA-X3-N01-B10	
ZPX50*□-T01-B8	ZP50*□	¬ ZPA-X1-T01-B8 With three ZPX100 *□- T01-B10	ZP100*□	ZPA-X3-T01-B10	With four		
ZPX50*□-B01-B10	21 30 11 11	ZPA-X1-B01-B10	M3 bolts	ZPX100*□-B01-B12		ZPA-X3-B01-B12	M5 bolts
ZPX50*□-N01-B10		ZPA-X1-N01-B10		ZPX100*□-N01-B12		ZPA-X3-N01-B12	
ZPX50*□-T01-B10		ZPA-X1-T01-B10		ZPX100*□-T01-B12		ZPA-X3-T01-B12	
ZPX63*□-B01-B10		ZPA-X2-B01-B10		ZPX125*□-B01-B10		ZPA-X3-B01-B10	
ZPX63*□-N01-B10		ZPA-X2-N01-B10		ZPX125*□-N01-B10		ZPA-X3-N01-B10	
ZPX63*□-T01-B10	ZP63*□	ZPA-X2-T01-B10	With four	ZPX125*□-T01-B10	ZP125*□	ZPA-X3-T01-B10	With four
ZPX63*□-B01-B12	2. 00	ZPA-X2-B01-B12	M4 bolts	ZPX125*□-B01-B12	2. 125.1.	ZPA-X3-B01-B12	M5 bolts
ZPX63*□-N01-B12		ZPA-X2-N01-B12		ZPX125*□-N01-B12		ZPA-X3-N01-B12	
ZPX63*□-T01-B12		ZPA-X2-T01-B12		ZPX125*□-T01-B12		ZPA-X3-T01-B12	

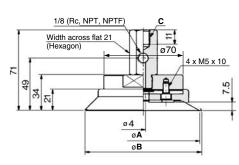
Note 1) $*$ in the table indicates the pad type.

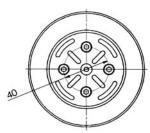

Note 2) \square in the table indicates the pad material.


Dimensions: Without Buffer

ZPX⁴⁰₅₀H□-**01**-^{B8}_{B10}


ZPX⁶³₈₀H□-**01**-^{B10}_{B12}


ZPX¹⁰⁰₁₂₅H□-**01**-^{B10}_{B12}



1/8 (Rc, NPT, NPTF) Width across flat 21 (Hexagon) 045 4 x M4 x 8

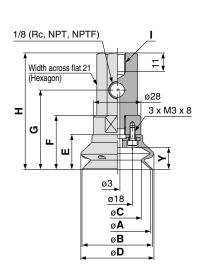
Dimensions

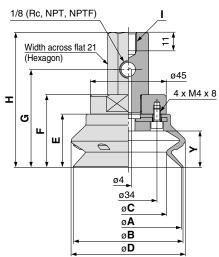
Model	Α	В	С
ZPX40H□01-B8	40	42	M8 x 1.25
ZPX40H□01-B10	40	42	M10 x 1.5
ZPX50H□01-B8	50	52	M8 x 1.25
7PX50H□-[01-B10	50	52	M10 x 1 5

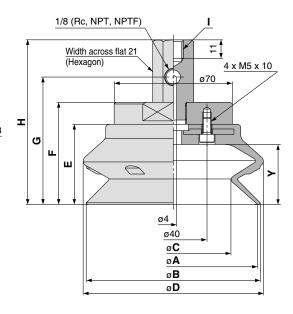
Dimensions

Model	Α	В	С	D	E	F	Υ	G
ZPX63H□01-B10	63	65	14.5	26	41	63	3.5	M10 x 1.5
ZPX63H□01-B12	63	65	14.5	26	41	63	3.5	M12 x 1.75
ZPX80H□01-B10	80	82	16.5	28	43	65	4.5	M10 x 1.5
ZPX80H□- 01-B12	80	82	16.5	28	43	65	4.5	M12 x 1.75

Model	Α	В	С
ZPX100H□01-B10	100	103	M10 x 1.5
ZPX100H - 01-B12	100	103	M12 x 1.75
ZPX125H□01-B10	125	128	M10 x 1.5
ZPX125H - 01-B12	125	128	M12 x 1 75




Dimensions: Without Buffer


ZPX⁴⁰₅₀HB□-**01**-^{B8}_{B10}

ZPX⁶³₈₀HB□-01-^{B10}_{B12}

ZPX¹⁰⁰₁₂₅HB□-**01**-^{B10}_{B12}

Dimensions

Model	Α	В	С	D	Е	F
ZPX40HB - 01-B8 ZPX40HB - 01-B10	40	41	28	43	20.5	32
ZPX50HB□-01-B8	50	52	36	54	24	35.5
ZPX50HB□01-B10						

Model	G	Н		Υ
ZPX40HB - 01-B8	47	69	M8 x 1.25	13
ZPX40HB - 01-B10	4/	69	M10 x 1.5	13
ZPX50HB - 01-B8	F0 F	72.5	M8 x 1.25	10 E
ZPX50HB 01-B10	50.5	12.5	M10 x 1.5	16.5

Dimensions

Model	Α	В	C	D	E	F
ZPX63HB - 01-B10 ZPX63HB - 01-B12	63	65	46	68	31.5	43
ZPX80HB - 01-B10 ZPX80HB - 01-B12	80	83	58	85	37	48.5
14 11	_					

Model	G	Н		Υ
ZPX63HB □- 01-B10	58	80	M10 x 1.5	21.5
ZPX63HB□- 01-B12	20	80	M12 x 1.75	21.5
ZPX80HB □- 01-B10	60 E	85.5	M10 x 1.5	07.5
ZPX80HB 01-B12	63.5	85.5	M12 x 1.75	27.5

Model	Α	В	С	D	E	F
ZPX100HB - 01-B10 ZPX100HB - 01-B12	100	103	69	107	47.5	60.5
ZPX125HB - 01-B10 ZPX125HB - 01-B12	125	129	89	135	56	69

Model	G	Н		Υ	
ZPX100HB □- 01-B10	75.5	97.5	M10 x 1.5	35.5	
ZPX100HB□01-B12	/5.5	97.5	M12 x 1.75	33.3	
ZPX125HB□01-B10	0.4	106	M10 x 1.5	44	
ZPX125HB□- 01-B12	84	106	M12 x 1.75	44	

How to Order

With buffer ZPT <u>40 H N J 25 - B01 - A18</u>

Pad type (*)					
Symbol	Type				
Н	Heavy-duty (Flat with rib)				
НВ	Heavy-duty (Bellows)				
	(200110)				

Pad material (□) •						
Symbol	Material		Buffer body			
N	NBR		material (★)			
S	Silicone rubber					
Ü	Urethane rubber	Symbol	Material			
F	FKM	J	Aluminum alloy			
Ė	EPR	JB	Brass + With bushing			
_	LI'II	JF	Steel + With bushing			

Buffer	stroke	(■)

					• • • • • • • •	· \-/
Stroke	ø 40	ø 50	ø 63	ø 80	ø100	ø 125
25	•	•		•		•
50	•	•	•	•	•	•
75		•				•
100		_	_	_		

Buffer Specifications (Rotating)

Pad diameter		ø40 to ø80	ø100, ø125	
Stroke (m	nm)	25, 50, 75	25, 50, 75, 100	
Spring reactive	At 0 stroke (N)	6.9	10	
force	At buffer stroke (N)	11.8	15	

Mounting thread size

Symbol	Thread size
A18	M18 x 1.5 (ø40 to ø80)
A22	M22 x 1.5 (ø100, ø125)

Vacuum inlet direction Vertical

Vacuum inlet thread size

Symbol	Thread size
B01	Rc1/8
N01	NPT1/8
T01	NPTF1/8

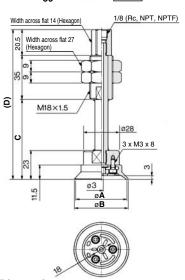
Tightening Torque

inginterining rorque (N·m)							
Buffer body Mounting material thread size	Aluminum alloy	Brass + With bushing	Steel + With bushing				
M18 x 1.5	10	30	50				
M22 x 1.5	10	45	75				

* Control value shall be ±5% of the tightening torque.

Replacement Part No.

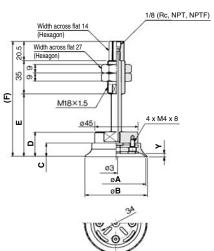
Model	Pad unit part no.	Buffer assembly part	no.	
ZPT40*□★25-(B/N/T)01-A18		ZPB-T1★25-(B/N/T)01		
ZPT40*□★50-(B/N/T)01-A18	ZP40*□	ZPB-T1★50-(B/N/T)01		
ZPT40*□★75-(B/N/T)01-A18		ZPB-T1★75-(B/N/T)01	With three	
ZPT50*□★25-(B/N/T)01-A18		ZPB-T1★25-(B/N/T)01	M3 bolts	
ZPT50*□★50-(B/N/T)01-A18	· -	ZPB-T1★50-(B/N/T)01		
ZPT50*□★75-(B/N/T)01-A18		ZPB-T1★75-(B/N/T)01		
ZPT63*□★25-(B/N/T)01-A18		ZPB-T2★25-(B/N/T)01		
ZPT63*□★50-(B/N/T)01-A18	ZP63*□	ZPB-T2★50-(B/N/T)01	With four M4 bolts	
ZPT63*□★75-(B/N/T)01-A18		ZPB-T2★75-(B/N/T)01		
ZPT80*□★25-(B/N/T)01-A18		ZPB-T2★25-(B/N/T)01		
ZPT80*□★50-(B/N/T)01-A18	ZP80*□	ZPB-T2★50-(B/N/T)01		
ZPT80*□★75-(B/N/T)01-A18		ZPB-T2★75-(B/N/T)01		
ZPT100*□★25-(B/N/T)01-A22		ZPB-T3★25-(B/N/T)01		
ZPT100*□★50-(B/N/T)01-A22	ZP100*□	ZPB-T3★50-(B/N/T)01]	
ZPT100*□★75-(B/N/T)01-A22	21 100	ZPB-T3★75-(B/N/T)01		
ZPT100*□★100-(B/N/T)01-A22		ZPB-T3★100-(B/N/T)01	With four	
ZPT125*□★25-(B/N/T)01-A22		ZPB-T3★25-(B/N/T)01	M5 bolts	
ZPT125*□★50-(B/N/T)01-A22	ZP125*□	ZPB-T3★50-(B/N/T)01		
ZPT125*□★75-(B/N/T)01-A22	ZP125*L	ZPB-T3★75-(B/N/T)01		
ZPT125*□★100-(B/N/T)01-A22		ZPB-T3★100-(B/N/T)01		
ZP1125* ★100-(B/N/1)01-A22		ZPB-13 100-(B/N/1)01		


Note 1) \ast in the table indicates the pad type.

Note 2) \square in the table indicates the pad material.

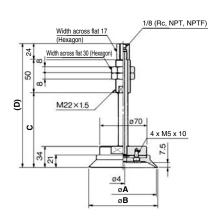
Note 3) ★ in the table indicates the buffer body material.

Dimensions: With Buffer


ZPT⁴⁰₅₀H□★■- 01-A18

Dimensions

Model	Α	В	С	D
ZPT40H□★2501-A18	40	42	63	118.5
ZPT40H□★50-01-A18	40	42	98	153.5
ZPT40H□★75-01-A18	40	42	134	189.5
ZPT50H□★2501-A18	50	52	63	118.5
ZPT50H□★50-01-A18	50	52	98	153.5
ZPT50H → 75- 01-Δ18	50	52	134	189.5

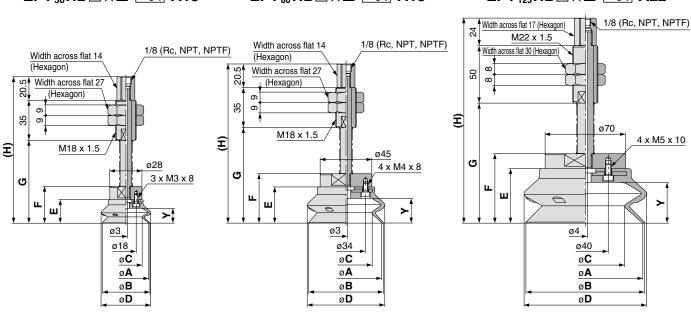

ZPT⁶³₈₀H□★■- 01-A18

Dimensions

Model	Α	В	С	D	Е	F	Υ
ZPT63H□★2501-A18	63	65	14.5	26	66	121.5	3.5
ZPT63H□★5001-A18	63	65	14.5	26	101	156.5	3.5
ZPT63H□★7501-A18	63	65	14.5	26	137	192.5	3.5
ZPT80H□★2501-A18	80	83	16.5	28	68	123.5	4.5
ZPT80H□★5001-A18	80	83	16.5	28	103	158.5	4.5
ZPT80H□ ★75- 01-Δ18	80	83	16.5	28	139	194 5	4.5

ZPT¹⁰⁰₁₂₅H□★■-01-A22

Α	В	C	D
100	103	78	152
100	103	114	188
100	103	154	228
100	103	189	263
125	128	78	152
125	128	114	188
125	128	154	228
125	128	189	263
	100 100 100 100 125 125 125	100 103 100 103 100 103 100 103 125 128 125 128 125 128	100 103 78 100 103 114 100 103 154 100 103 189 125 128 78 125 128 114 125 128 154



Dimensions: With Buffer

ZPT⁴⁰₅₀HB□★■-01-A18

ZPT⁶³₈₀HB□★■-**01**-A18

ZPT¹⁰⁰₁₂₅HB□★■-<u>01</u>-A22

Dimensions

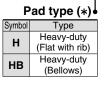
Model	Α	В	С	D	Е
ZPT40HB					
ZPT40HB → 50- 01-A18	40	41	28	43	20.5
ZPT40HB□★7501-A18					
ZPT50HB					
ZPT50HB → 50- 01-A18	50	52	36	54	24
ZPT50HB					

Model	F	G	Н	Υ
ZPT40HB		72	127.5	
ZPT40HB□★50-01-A18	32	107	162.5	13
ZPT40HB → 75- 01-A18		143	198.5	
ZPT50HB□★2501-A18		75.5	131	
ZPT50HB	35.5	110.5	166	16.5
ZPT50HB□★7501-A18		146.5	202	

Dimensions

			ט	
63	65	46	68	31.5
80	83	58	85	37

Model	F	G	Н	Υ
ZPT63HB□★2501-A18		83	138.5	
ZPT63HB□★5001-A18	43	118	173.5	21.5
ZPT63HB□★7501-A18		154	209.5	
ZPT80HB□★2501-A18		88.5	144	
ZPT80HB□★5001-A18	48.5	123.5	179	27.5
ZPT80HB□★7501-A18		159.5	215	


Model	Α	В	С	D	E
ZPT100HB					
ZPT100HB → 50- 01-A22	100	103	69	107	47.5
ZPT100HB → 75- 01-A22	100	103	09	107	47.5
ZPT100HB → 100- 01-A22					
ZPT125HB					
ZPT125HB	125	129	89	135	E6
ZPT125HB ★75- 01-A22	123	129	09	133	56
ZPT125HB□★100-01-A22					

Model	F	G	Н	Υ
ZPT100HB□★2501-A22	60.5	104.5	178.5	
ZPT100HB → 50- 01-A22		140.5	214.5	35.5
ZPT100HB → 75- 01-A22	00.5	180.5	254.5	33.3
ZPT100HB → 100- 01-A22		215.5	289.5	
ZPT125HB□★2501-A22		113	187	
ZPT125HB□★5001-A22	69	149	223	44
ZPT125HB□★7501-A22	09	189	263	44
ZPT125HB□★10001-A22		224	298	

How to Order

With buffer ZPX <u>40 H N J 25 - B01 - A18</u>

Pad material (□) •

Symbol	iviateriai
N	NBR
S	Silicone rubber
U	Urethane rubber
F	FKM
E	EPR

	Buffer body
	material (★)
Symbol	Material
J	Aluminum alloy
JB	Brass + With bushing
JF	Steel + With bushing

Buffer stroke (■)

Stroke	ø 40	ø 50	ø 63	ø 80	ø100	ø125
25	•	•	•	•	•	•
50	•	•	•	•	•	•
75	•	•	•	•	•	•
100	_	_	_	_	•	•

Buffer Specifications (Rotating)

Pad diameter		ø40 to ø80	ø100, ø125	
Stroke (m	nm)	25, 50, 75	25, 50, 75, 100	
Spring reactive	At 0 stroke (N)	6.9	10	
reactive force At buffer stroke (N)		11.8	15	

Mounting thread size

Symbol	Thread size
A18	M18 x 1.5 (ø40 to ø80)
A22	M22 x 1.5 (ø100, ø125)

Vacuum inlet direction Lateral

(N·m)

Vacuum inlet thread size

tili caa sizc						
Thread size						
Rc1/8						
NPT1/8						
NPTF1/8						

Tigh	tenin	g Tor	que
	Buffe	er body	Aluminum

Buffer body Mounting material thread size	Aluminum alloy	Brass + With bushing	Steel + With bushing
M18 x 1.5	10	30	50
M22 x 1.5	10	45	75

Control value shall be ±5% of the tightening torque.

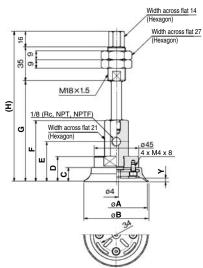
Replacement Part No.

Model	Pad unit part no.	Buffer assembly part	no.		
ZPX40*□★25-(B/N/T)01-A18	· ·	ZPB-X1★25-(B/N/T)01			
ZPX40*□★50-(B/N/T)01-A18	ZP40*□	ZPB-X1★50-(B/N/T)01	1		
ZPX40*□★75-(B/N/T)01-A18		ZPB-X1★75-(B/N/T)01	With three		
ZPX50*□★25-(B/N/T)01-A18		ZPB-X1★25-(B/N/T)01	M3 bolts		
ZPX50*□★50-(B/N/T)01-A18	ZP50*□	ZPB-X1★50-(B/N/T)01			
ZPX50*□★75-(B/N/T)01-A18		ZPB-X1★75-(B/N/T)01			
ZPX63*□★25-(B/N/T)01-A18		ZPB-X2★25-(B/N/T)01			
ZPX63*□★50-(B/N/T)01-A18	ZP63*□	ZPB-X2★50-(B/N/T)01	With four M4 bolts		
ZPX63*□★75-(B/N/T)01-A18		ZPB-X2★75-(B/N/T)01			
ZPX80*□★25-(B/N/T)01-A18	ZP80*□	ZPB-X2★25-(B/N/T)01			
ZPX80*□★50-(B/N/T)01-A18		ZPB-X2★50-(B/N/T)01			
ZPX80*□★75-(B/N/T)01-A18		ZPB-X2★75-(B/N/T)01			
ZPX100*□★25-(B/N/T)01-A22		ZPB-X3★25-(B/N/T)01			
ZPX100*□★50-(B/N/T)01-A22	ZP100*□	ZPB-X3★50-(B/N/T)01			
ZPX100*□★75-(B/N/T)01-A22	21 100 11	ZPB-X3★75-(B/N/T)01			
ZPX100*□★100-(B/N/T)01-A22		ZPB-X3★100-(B/N/T)01	With four		
ZPX125*□★25-(B/N/T)01-A22		ZPB-X3★25-(B/N/T)01	M5 bolts		
ZPX125*□★50-(B/N/T)01-A22	ZP125*□	ZPB-X3★50-(B/N/T)01			
ZPX125*□★75-(B/N/T)01-A22	225	ZPB-X3★75-(B/N/T)01			
ZPX125*□★100-(B/N/T)01-A22		ZPB-X3★100-(B/N/T)01			

Note 1) * in the table indicates the pad type.

Note 2) \square in the table indicates the pad material.

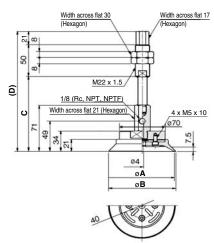
Note 3) \bigstar in the table indicates the buffer body material.


Dimensions: With Buffer

ZPX⁴⁰₅₀H□★■-[01-A18 Width across flat 14 M18×1.5 9 1/8 (Rc, NPT, NPTF) 3 x M3 x 8 øЗ

Dimensions

Model	Α	В	С	D
ZPX40H□★2501-A18	40	42	100	151
ZPX40H□★50-01-A18	40	42	135	186
ZPX40H□★75-01-A18	40	42	171	222
ZPX50H□★2501-A18	50	52	100	151
ZPX50H□★50-01-A18	50	52	135	186
7PX50H□ ±75- 01-Δ18	50	52	171	222


ZPX⁶³₈₀H□★■- 01-A18

Dimensions

Model	Α	В	С	D	E	F	G	Н	Υ
ZPX63H□★2501-A18	63	65	14.5	26	41	63	103	154	3.5
ZPX63H□★50-01-A18	63	65	14.5	26	41	63	136	189	3.5
ZPX63H□★75-01-A18	63	65	14.5	26	41	63	172	225	3.5
ZPX80H□★2501-A18	80	82	16.5	28	43	65	105	156	4.5
ZPX80H□★50-01-A18	80	82	16.5	28	43	65	138	191	4.5
ZPX80H□±75-[01]-Δ18	80	82	16.5	28	43	65	174	227	4.5

ZPX¹⁰⁰₁₂₅H□★■-01-A22

Model	Α	В	С	D
ZPX100H□★25- <u>01</u> -A22	100	103	115	186
ZPX100H□★50- <u>01</u> -A22	100	103	151	222
ZPX100H□★7501-A22	100	103	191	262
ZPX100H□★100-01-A22	100	103	226	297
ZPX125H□★25- <u>01</u> -A22	125	128	115	186
ZPX125H□★5001-A22	125	128	151	222
ZPX125H□★7501-A22	125	128	191	262
ZPX125H□★100-01-A22	125	128	226	297

Dimensions: With Buffer

ZPX ⁶³ HB □ ★ ■- 01 - A18 ZPX ⁴⁰₅₀HB □ ★ ■ - 01 - A18 Width across flat 17 1/8 (Rc, NPT, NPTF) (Hexagon) M22 x 1.5 Width across flat 14 1/8 (Rc, NPT, NPTF) Width across flat 14 (Hexagon) Width across flat 30 1/8 (Rc, NPT, NPTF) 20 (Hexagon) Width across flat 27 Width across flat 27 (Hexagon) (Hexagon) (Hexagon) 35 35 M18 x 1.5 Width across flat 21 3 M₁₈ x 1.5 (Hexagon) 4 x M5 x 10 Width across flat 21 E 3 Width across flat 21 (Hexagon) 4 x M4 x 8 (Hexagon) ø45 I ø28 G I ш G 3 x M3 x 8 G ш ш ш∱ ш **> >**‡ ø3 ø4 ø4_ ø18 ø34 ø40 øĈ øC øС øΑ øΑ øΑ øΒ øΒ øΒ

Dimensions

Model	Α	В	С	D	Е	F
ZPX40HB□★2501-A18						
ZPX40HB□★50-01-A18		41	28	43	20.5	32
ZPX40HB□★75-01-A18						
ZPX50HB□★2501-A18						
ZPX50HB□★5001-A18		52	36	54	24	35.5
ZPX50HB□★75-01-A18						

øD

Model	G	Н	_	J	Υ
ZPX40HB□★25-01-A18			109	160	
ZPX40HB → 50-01-A18	47	69	144	195	13
ZPX40HB → 75- 01-A18			180	231	
ZPX50HB → 25- 01-A18			112.5	163.5	
ZPX50HB	50.5	72.5	147.5	198.5	16.5
ZPX50HB → 75- 01-A18			183.5	234.5	

Dimensions

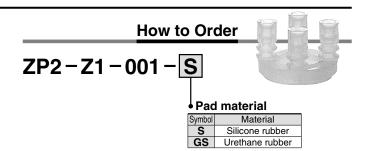
Dilliciisions						
Model	Α	В	С	D	E	F
ZPX63HB□★2501-A18						
ZPX63HB□★50-01-A18	63	65	46	68	31.5	43
ZPX63HB□★75-01-A18						
ZPX80HB□★2501-A18						
ZPX80HB → 50- 01-A18		83	58	85	37	48.5
ZPX80HB□★75-01-A18						

øΒ

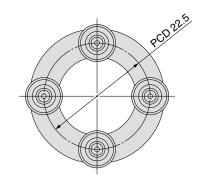
Model	G	Н		J	Υ
ZPX63HB			120	171	
ZPX63HB	58	80	155	206	21.5
ZPX63HB □ ★75- 01-A18			191	242	
ZPX80HB			125.5	176.5	
ZPX80HB	63.5	85.5	160.5	211.5	27.5
ZPX80HB → 75- 01-A18			196.5	247.5	

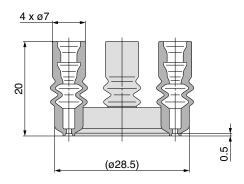
Dimensions

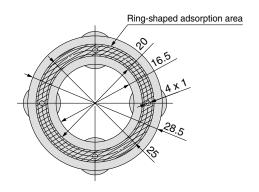
Dilliciisions						
Model	Α	В	С	D	Е	F
ZPX100HB□★2501-A22						
ZPX100HB□★50-01-A22	100	103	60	107	47 E	60 E
ZPX100HB → 75- 01-A22	100	103	09	107	47.5	00.5
ZPX100HB → 100- 01-A22						
ZPX125HB□★2501-A22						
ZPX125HB□★50-01-A22	105	129		105	EC	69
ZPX125HB□★75-01-A22	125	129	09	135	30	09
ZPX125HB□★100-01-A22						


øD

Model	G	Н	_	J	Υ
ZPX100HB□★25-01-A22			141.5	212.5	
ZPX100HB□★50-01-A22	75.5 97.5	07.5	177.5	248.5	35.5
ZPX100HB		217.5	288.5	33.3	
ZPX100HB → 100- 01-A22			252.5	323.5	
ZPX125HB□★2501-A22			150	221	
ZPX125HB□★50-01-A22	84	106	186	257	44
ZPX125HB□★7501-A22	04		226	297	44
ZPX125HB□★100-01-A22			261	332	

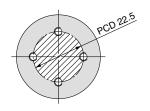

Vacuum Pad for Transferring Disks

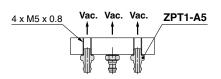

- ■For adsorbing and transferring disks of digital household electric appliances (CD, DVD)
 - For adsorbing circular components like CD and DVD
 - Bellows mechanism is realized in the pad to dampen the impact to the work.



Dimensions

ZP2-Z1-001-□□

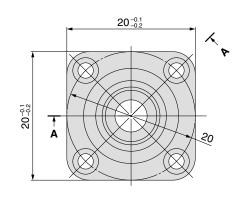


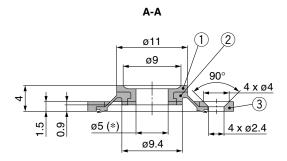


ZPT1-A5 is a recommended adapter. (Four adapters are necessary.)

See below for mounting. Refer to the Best Pneumatics No. 4 for details.

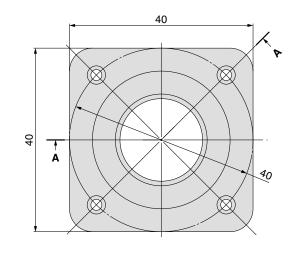
Example of attachment

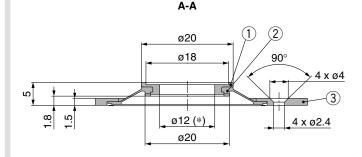

Vacuum Pad for Fixing Panel


- ■For adsorbing and fixing the stage of LCD panels, etc.
- ■Bellows mechanism allows complete contact with curved work surface.

Dimensions

ZP2-Z002

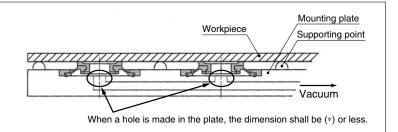




Component Parts

	No.	Part no.	Description	Material	Note
	1	ZP2-Z2A	Pad	PTFE	_
	2	ZP2-Z2B	Joint	FKM	_
	3	ZP2-Z2C	Mounting plate	Aluminum alloy	Clear anodized
- 1					

ZP2-Z003

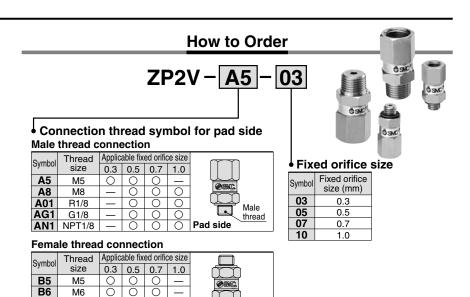

Component Parts

No.	Part no.	Description	Material	Note
1	ZP2-Z3A	Pad	PTFE	_
2	ZP2-Z3B	Joint	FKM	_
3	ZP2-Z3C	Mounting plate	Aluminum alloy	Clear anodized

How to use

The plate for air purging should be prepared by the customer. The plate needs to have supporting points.

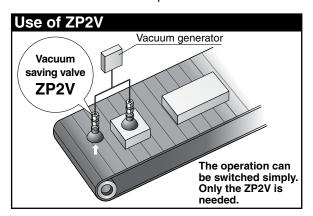
(Avoid applying the weight of the workpiece directly to the pad.) Place the workpiece on the pad horizontally.


Vacuum Saving Valve

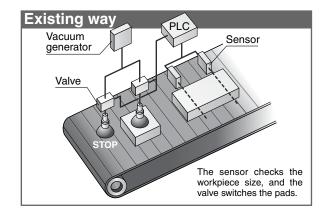
■ Can restrict the reduction of vacuum pressure even when there is no workpiece.

When multiple vacuum pads are operated by one vacuum generator, and some of them are not holding the workpiece, the reduction of vacuum pressure is restricted and the workpiece can remain held by the rest of pads.

Specifications


Rc1/8 G1/8 **BN1** NPT1/8

B01


Connection thread size for pad side	M5, M6 M8, R1/8, G1/8, NPT1/8				NPT1/8	
Fixed orifice size (mm)	0.3	0.5	0.7	0.5	0.7	1.0
Fluid			Α	ir		
Max. operating pressure range (MPa)	0 to 0.7					
Max. operating vacuum pressure range (kPa)			0 to	-100		
Ambient and fluid temperature (°C)		5 t	to 60 (N	o freezir	ng)	
Element nominal filtration rating (μm)	40					
Min. operating flow rate (L/min (ANR))	3	5	8	5	8	16

■No need for switching operation when changing work pieces

When the work pieces have different shapes, the control circuit can be simplified.

Model Selection

Select the quantity of vacuum saving valves that can be used with one vacuum generator.

Selection Conditions

Workpiece: No leakage and several sizes

Required vacuum pressure: -50 kPa or more of vacuum pressure per vacuum pad

Part number of vacuum saving valve used: ZP2V-A8-05

(Connection thread size for pad side: M8, Fixed orifice size: Ø0.5)

Check the flow-rate characteristics of the vacuum generator used.

From the flow-rate characteristics of the vacuum generator (Chart 1), calculate the suction flow rate (Q1) of the vacuum generator from the required vacuum pressure.

Vacuum pressure –50 kPa $(1)\rightarrow (2)\rightarrow (3)$ = Suction flow rate (Q1) \approx 31 L/min (ANR).

2 Calculate the quantity (N) of vacuum saving valves.

Find the minimum operating flow rate (Q2) and the suction flow rate (Q1) of the vacuum generator from the specifications table (page 61), and calculate the quantity (N) of vacuum saving valves that can be used with one vacuum generator.

Suction flow rate of vacuum generator (Q1) Quantity of vacuum saving valves (N) = Minimum operating flow rate (Q2)

Example) Vacuum saving valve used: ZP2V-A8-05 From Table 1, Q2 can be calculated as 5.0 L/min (ANR).

31 {L/min (ANR)} ≈ 6 (unit) 5 {L/min (ANR)}

Table 1. Relationship between Minimum Operating Flow Rate and Fixed Orifice Size

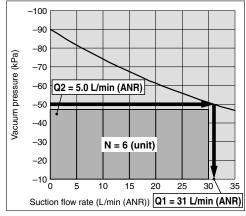

Connection thread size for pad side	M8
Fixed orifice size (mm)	0.5
Minimum operating flow rate (L/min (ANR)) Q2	5.0

Chart 1. Flow-rate Characteristics of Vacuum Generator -90 -80 -70 pressure -60 2 -50 -40 -30-20 -10

Chart 2. Selection Example by Min. Operating Flow Rate

10 20 30 40 50 60 70 80 90 100 110

Suction flow rate (L/min (ANR))

The above selection example is based on a general method under the given selection conditions, and may not always be applicable. A final decision on operating conditions should be made based on test results performed at the responsibility of the customer.

Specific Product Precautions

Be sure to read before handling. Refer to back cover for Safety Instructions, "Handling Precautions for SMC Products" I (M-E03-3) for Vacuum Equipment Precautions.

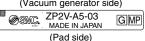

- 1. The product is not equipped with a vacuum holding function, and cannot be used for the purpose of holding vacuum.
- 2. Determine the quantity of products to be used by selection, and keep the recommended pad diameter per product shown in Table 1. Also, check the operation with the customer's machine sufficiently beforehand.

Table 1. Recommended Pad Diameter per Product

Connection thread symbol for pad side	A 5	B5	В6	A8	A01	B01	AG1	BG1	AN1	BN1
Thread size	M	15	M6	M8	R1	1/8	G.	1/8	NP	Γ1/8
Recommended pad diameter (mm)	25	25 or less				3	2 to 5	50		

- 3. Do not disassemble the product. Once the product is disassembled and reassembled, it will not be able to satisfy the original performance.
- pad side and vacuum generator side of the product the wrong way round. (Refer to Fig. 1.)

Enlarged view of name plate (Vacuum generator side)

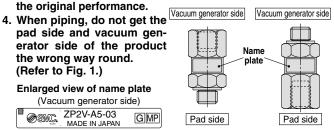
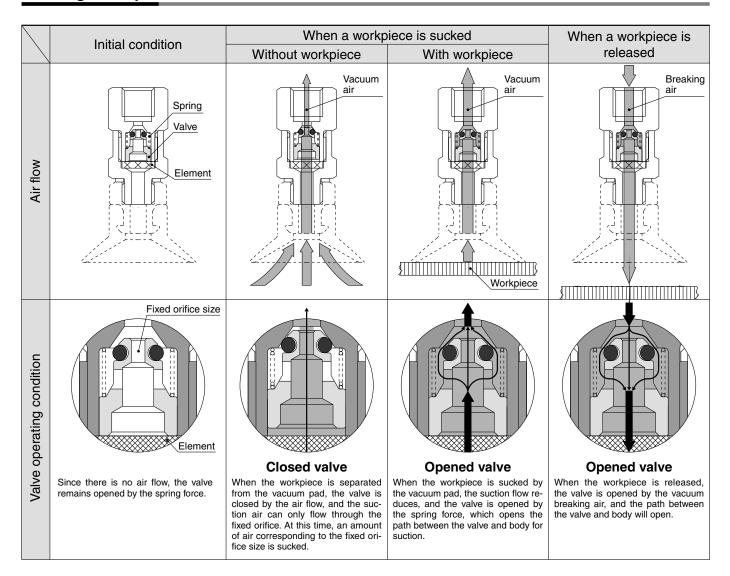
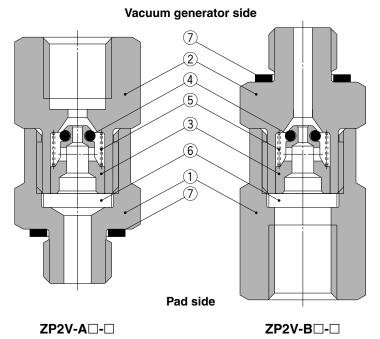


Fig. 1. Mounting direction

5. For mounting and removing the product, strictly follow the instructions below.


When mounting and removing the product, use the specified places shown in page 64 to apply tools. Also, when mounting, tighten to the specified torque shown in page 64. Excessive torque or applying a tool to places other than the specified place can cause damage or loss of original performance.

- 6. The reduction of the vacuum pressure while the work piece is sucked and released depends on the flow-rate characteristics of the vacuum generator. Check the flowrate characteristics of the vacuum generator before checking the operation with the customer's machine.
- 7. When the built-in element of the product gets clogged, replace the whole product.
- When verifying the suction using such as a pressure sensor, check the operation with the customer's machine sufficiently beforehand.
- 9. If there is leakage between the pad and a workpiece, for example if the workpiece is permeable, the quantity of products that can be used with one vacuum generator is reduced.

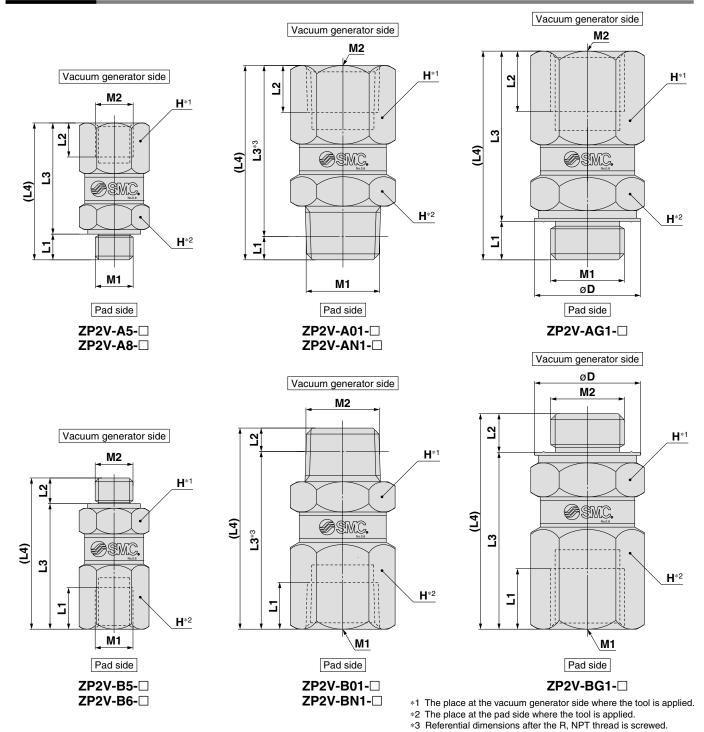

Take the leakage between the pad and workpiece into account and check the operation with the customer's machine sufficiently before using.

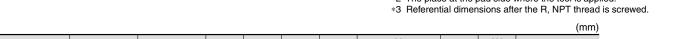
Working Principle

Construction

Vacuum generator side

Pad side


* For the mounting direction of the product, refer to 4 on page 62.


Component Parts

No.	Description	Material	Surface treatment
1	Body A	Brass	Electroless nickel plated
2	Body B	Brass	Electroless nickel plated
3	Valve	Aluminum	_
4	O-ring	HNBR	_
5	Spring	Stainless steel	_
6	Element	BC	_
7	Gasket	NBR + Stainless steel	_

Dimensions

										(11111)
Model	M1	M2	L1	L2	L3	L4	H (Width across flat)	ø D	W (g)	Tightening torque (N·m) Note)
ZP2V-A5-□	M5 x 0.8	M5 x 0.8	3.4	4.5	14.7	18.1	8	_	6	1.0 to 1.5
ZP2V-A8-□	M8 x 1.25	M8 x 1.25	5.9	8	20.1	26	12	_	18	5.5 to 6.0
ZP2V-A01- □	R1/8	Rc1/8	3.1	6.2	22.6	25.7	12	_	18	7.0 to 9.0
ZP2V-AG1-□	G1/8	G1/8	5.1	8	22.5	27.6	13	14	23	5.5 to 6.0
ZP2V-AN1-□	NPT1/8	NPT1/8	3.2	6.9	23.3	26.5	12	_	23	7.0 to 9.0
ZP2V-B5-□	M5 x 0.8	M5 x 0.8	5.5	3.4	16.6	20	8	_	7	1.0 to 1.5
ZP2V-B6-□	M6 x 1	M6 x 1	5	4.5	16.2	20.7	8	_	7	2.0 to 2.5
ZP2V-B01-□	Rc1/8	R1/8	6.2	3.1	23.5	26.6	12	_	19	7.0 to 9.0
ZP2V-BG1-□	G1/8	G1/8	8	5.1	23.4	28.5	13	14	24	5.5 to 6.0
ZP2V-BN1-□	NPT1/8	NPT1/8	6.9	3.2	24.2	27.4	12	_	20	7.0 to 9.0

Note) When mounting and removing the product, apply a wrench or torque wrench to the place shown in Figure. When mounting, tighten to the torque specified in the table.

Series ZP2/ZP

Adapter/Buffer Applicable Pad List

Series **ZP2** Mounting Adapter Part No.

	oter model	Applicable pad model Series ZP2	Page
ZP2A-001		ZP2-3507W□ ZP2-4010W□ ZP2-5010W□ ZP2-6010W□	P. 69
ZP2A-002		ZP2-4020W□ ZP2-5020W□ ZP2-6020W□ ZP2-8020W□	P. 69
ZP2A-003		ZP2-4030W□ ZP2-5030W□ ZP2-6030W□ ZP2-8030W□	P. 69
ZP2A-M01P		ZP2-B02MU□ ZP2-B035MU□ ZP2-B04MU□ ZP2-B05MU□ ZP2-B04MB□	P. 69
ZP2A-M02*		ZP2-B06MU□ ZP2-B08MU□ ZP2-B10MU□ ZP2-B15MU□ ZP2-B06MB□ ZP2-B08MB□ ZP2-B10MT□ ZP2-B15MT□	P. 69
ZP2A-M03*		ZP2-B20MT□ ZP2-B25MT□ ZP2-B30MT□	P. 69
ZP2A-M04		ZP2-B06MU□ ZP2-B08MU□ ZP2-B10MU□ ZP2-B15MU□ ZP2-B06MB□ ZP2-B08MB□ ZP2-B10MT□ ZP2-B15MT□	P. 69
ZP2A-M05		ZP2-B10MB□ ZP2-B15MB□	P. 69
ZP2A-M06		ZP2-B20MB□	P. 70

Adap	oter model	Applicable pad model Series ZP2	Page
ZP2A-Z01P		ZP2-B02EU□ ZP2-B04EU□ ZP2-B06EU□ ZP2-08EU□ ZP2-15EU□	P. 70
ZP2A-Z02P		ZP2-B02EU□ ZP2-B04EU□ ZP2-B06EU□ ZP2-08EU□ ZP2-15EU□	P. 70
ZP2A-Z21P		ZP2-08AN□ ZP2-11AN□	P. 70
ZP2A-S01P		ZP2-04S□	P. 70
ZP2A-S02P		ZP2-06S□	P. 70
ZP2A-S03P		ZP2-08S□	P. 70
ZP2A-S04P		ZP2-10S□	P. 70
ZP2A-S05P		ZP2-15S□	P. 71
ZP2A-S11		ZP2-04S□	P. 71
ZP2A-S12		ZP2-06S□	P. 71
ZP2A-S13		ZP2-08S□	P. 71
ZP2A-S14		ZP2-10S□	P. 71
ZP2A-S15		ZP2-15S□	P. 71

Series **ZP** Mounting Adapter Part No.

Adapter model		Applicable pad model		Page
Adapte	er modei	Series ZP	Series ZP2	Page
ZPT1-A5, A6 ZPT1-B4, B5		ZP (02, 04, 06, 08) U□ ZP (06, 08) B□ ZP (10, 13, 16) UT□ ZP (10, 13, 16) CT□ ZP2004U□ ZP3507U□ ZP4010U□	ZP2-03U□ ZP2-14UT□ ZP2-B04U□ ZP2-18UT□ ZP2-B06C□ ZP2-20UT□ ZP2-06J□ ZP2-B10J□ ZP2-B06B□ ZP2-B15J□ ZP2-B08B□ ZP2-04UCL ZP2-05UT□ ZP2-06UCL ZP2-06UT□ ZP2-08UCL ZP2-11UT□	P. 72
ZPT2-A5, A6 ZPT2-B5, B6 B01, N01 T01		ZP (10, 13, 16) U□ ZP (10, 13, 16) C□ ZP (10, 13, 16) B□ ZP (10, 16) D□	ZP2-09J□ ZP2-14J□ ZP2-16J□ ZP2-10UCL ZP2-16UCL	P. 72 P. 73
ZPT3-A6, A8 ZPT3-B5, B6, B8 B01, N01 T01		ZP (20, 25, 32) U□ ZP (20, 25, 32) C□ ZP (20, 25, 32) B□ ZP25D□	ZP2-B25J□ ZP2-B30J□ ZP2-25UCL ZP2-32UCL	P. 72 P. 73
ZPT4-A6, A8 ZPT4-B6, B8 B01, N01 T01		ZP (40, 50) U□ ZP (40, 50) C□ ZP (40, 50) B□ ZP40D□	ZP2-40UCL ZP2-50UCL	P. 72 P. 73

Adapter Assembly Part No. (For Heavy-duty Ball Joint)

rauptor recorns	ory runtinor (ron me	eavy-duty Ball Joint)		
Adapter as	sembly model	Applicable pad model Series ZP		Page
ZP2A-TF1		ZP40H□ ZP50H□	ZP40HB□ ZP50HB□	P. 74
ZP2A-TF2		ZP63H□ ZP80H□	ZP63HB□ ZP80HB□	P. 74
ZP2A-TF3		ZP100H□ ZP125H□	ZP100HB□ ZP125HB□	P. 74
ZP2A-XF1		ZP40H□ ZP50H□	ZP40HB□ ZP50HB□	P. 74
ZP2A-XF2		ZP63H□ ZP80H□	ZP63HB□ ZP80HB□	P. 74
ZP2A-XF3		ZP100H□ ZP125H□	ZP100HB□ ZP125HB□	P. 74

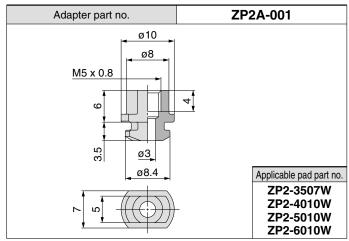
Series ZP2/ZP

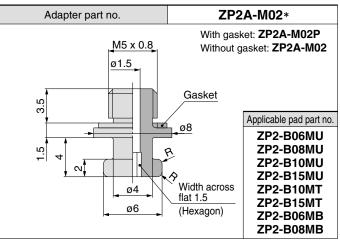
Adapter Assembly Part No. (for Heavy-duty)

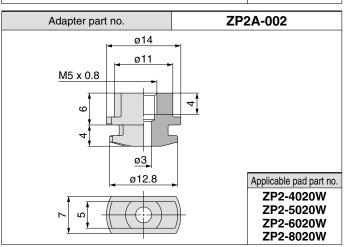
	ambly model	Applicable p	oad model	Dage
Adapter ass	sembly model	Series	s ZP	Page
ZPA-T1-B*		ZP40H□ ZP50H□	ZP40HB□ ZP50HB□	P. 75
ZPA-T2-B*		ZP63H□ ZP80H□	ZP63HB□ ZP80HB□	P. 75
ZPA-T3-B*		ZP100H□ ZP125H□	ZP100HB□ ZP125HB□	P. 75
ZPA-T1-*01		ZP40H□ ZP50H□	ZP40HB□ ZP50HB□	P. 75
ZPA-T2-*01		ZP63H□ ZP80H□	ZP63HB□ ZP80HB□	P. 75
ZPA-T3-*01		ZP100H□ ZP125H□	ZP100HB□ ZP125HB□	P. 75
ZPA-X1-*01-B*	r m	ZP40H□ ZP50H□	ZP40HB□ ZP50HB□	P. 76
ZPA-X2-*01-B*		ZP63H□ ZP80H□	ZP63HB□ ZP80HB□	P. 76
ZPA-X3-*01-B*		ZP100H□ ZP125H□	ZP100HB□ ZP125HB□	P. 76

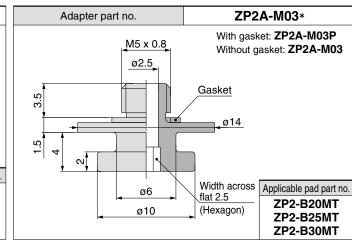
Buffer Assembly Part No. (for Ball Spline)

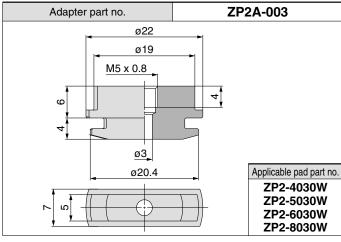
E	suffer assembly model	Applicable pad model Series ZP	Page
ZP2B-T3S6		ZP02U□ ZP04U□ ZP06U□ ZP08U□	P. 77

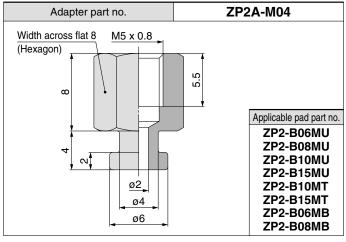

Buffer Assembly Part No. (for Heavy-duty Ball Joint)

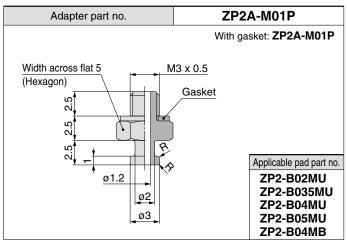

Buffer assembly model	Applicable pad model	Page
Build accomply incuci	Series ZP	. ago
ZP2B-TF1 (JB/JF)◆	ZP40H□ ZP50H□ ZP40HB□ ZP50HB□	P. 78
ZP2B-TF2 (JB/JF)◆	ZP63H□ ZP80H□ ZP63HB□ ZP80HB□	P. 78
ZP2B-TF3 (JB/JF)◆	ZP100H□ ZP125H□ ZP100HB□ ZP125HB□	P. 78
ZP2B-XF1 (JB/JF)◆	ZP40H□ ZP50H□ ZP40HB□ ZP50HB□	P. 79
ZP2B-XF2 (JB/JF)◆	ZP63H□ ZP80H□ ZP63HB□ ZP80HB□	P. 79
ZP2B-XF3 (JB/JF)◆	ZP100H□ ZP125H□ ZP100HB□ ZP125HB□	P. 79

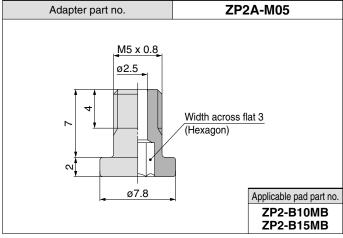

Buffer Assembly Part No. (for Heavy-duty)

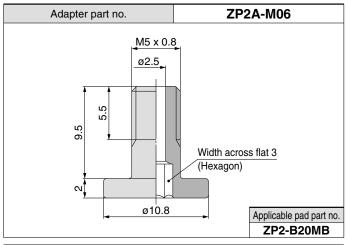

Bullet Assembly Part No. (101 Heavy-dut		
Buffer assembly model	Applicable pad model	Page
Build assembly model	Series ZP	l age
	ZP40H□	
ZPB-T1 (J/JB/JF) ♦ -∗01	ZP50H□	P. 80
ZPB-11 (J/JB/JF)\\ -*U1	ZP40HB□	P. 81
	ZP50HB□	
	ZP63H□	
ZPB-T2 (J/JB/JF)♦-∗01	ZP80H□	P. 80
ZPB-12 (0/06/0F)\\ -*01	ZP63HB□	P. 81
	ZP80HB□	
	ZP100H□	
ZPB-T3 (J/JB/JF)♦-∗01	ZP125H□	P. 80
2FB-13 (0/0B/01) \$\Pi^{\pi} \text{01}	ZP100HB□	P. 81
	ZP125HB□	
	ZP40H□	
ZPB-X1 (J/JB/JF) ♦ -∗01	ZP50H□	P. 82
2. 5 X1 (0/05/01/)	ZP40HB□	P. 83
	ZP50HB□	
	ZP63H□	
ZPB-X2 (J/JB/JF)♦-∗01	ZP80H□	P. 82
2. 5 X2 (6/65/61 / \$\display	ZP63HB□	P. 83
	ZP80HB□	
	ZP100H□	
ZPB-X3 (J/JB/JF)♦-∗01	ZP125H□	P. 82
	ZP100HB□	P. 83
	ZP125HB□	60

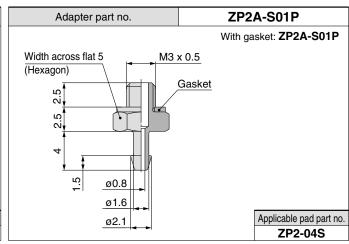

Mounting Adapter Part No.

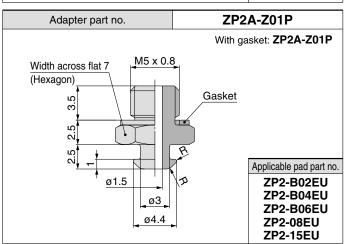


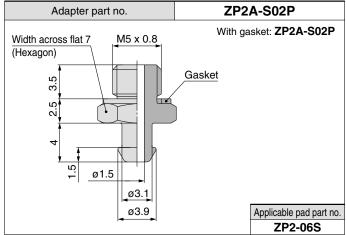


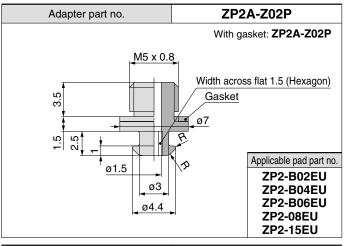


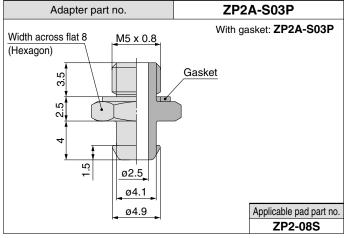


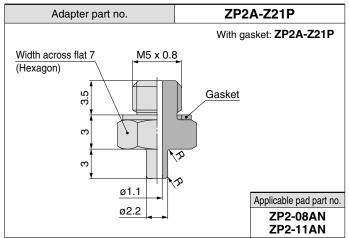


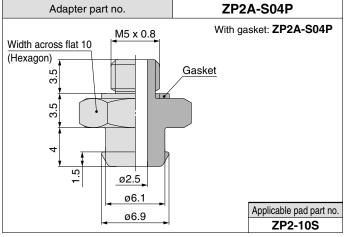


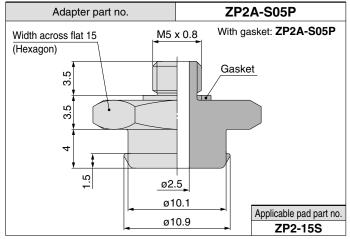


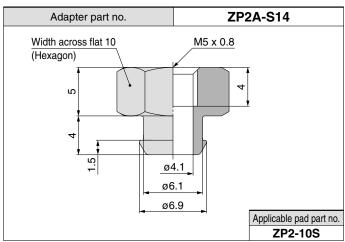

Mounting Adapter Part No. Series ZP2

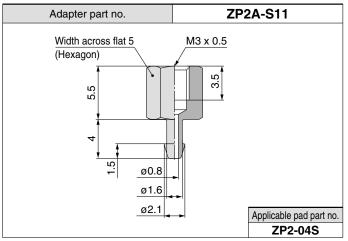


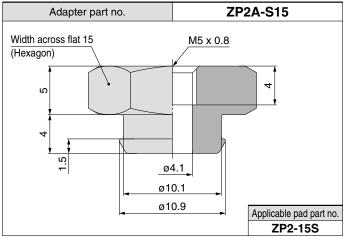


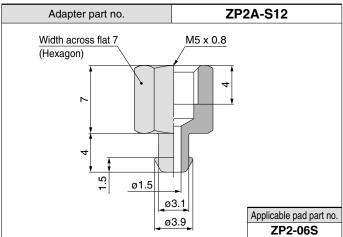


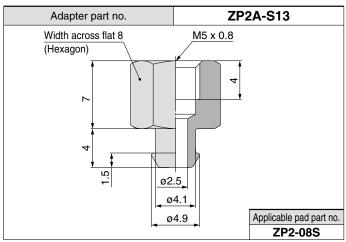


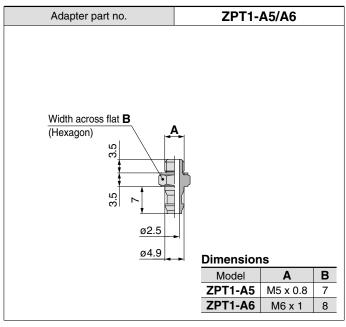


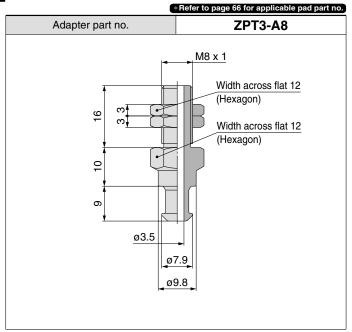


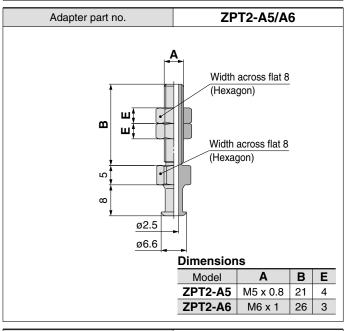


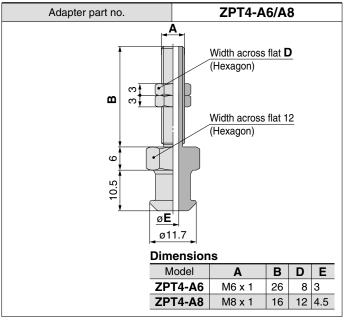


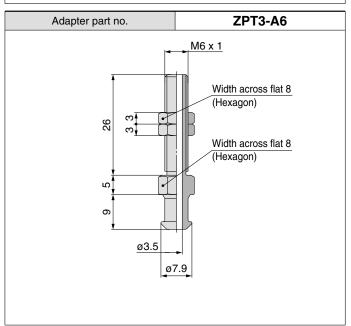


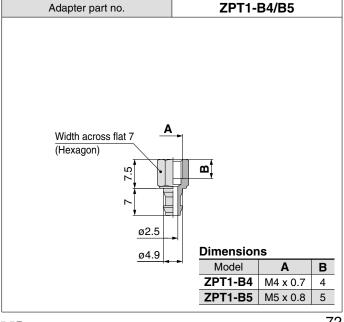


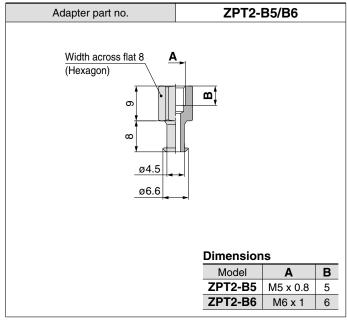


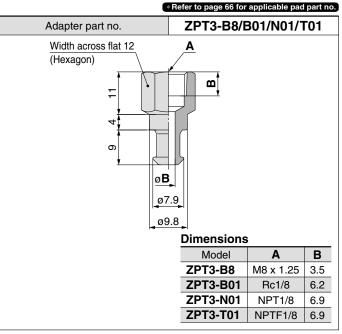


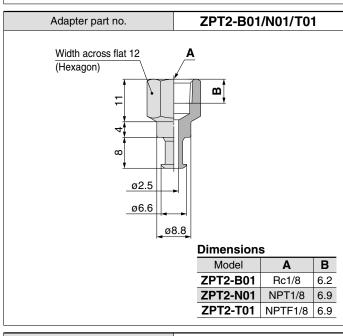


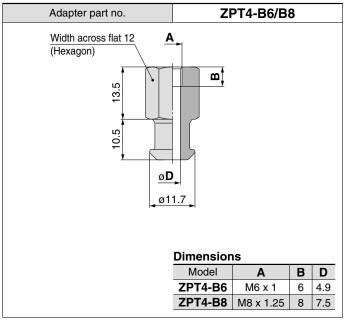

Mounting Adapter Part No.

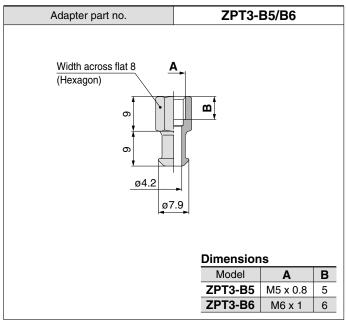


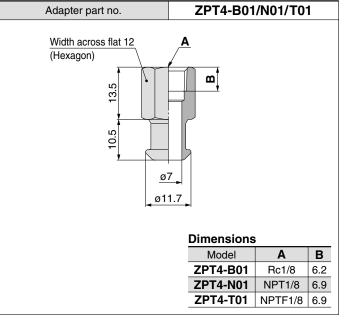


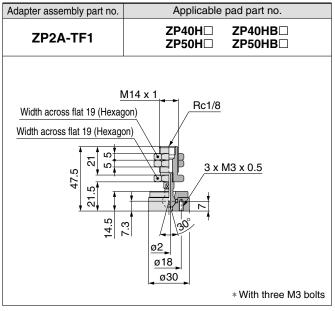


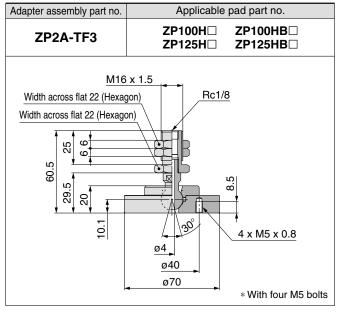




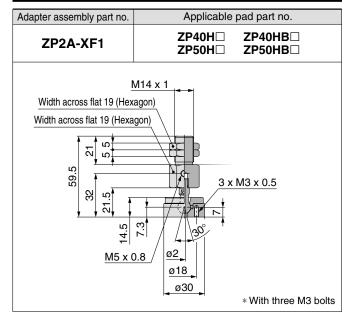


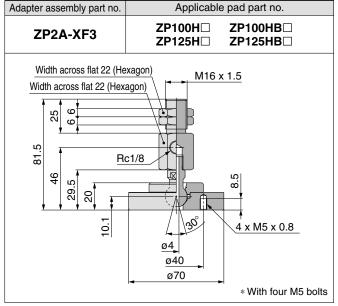




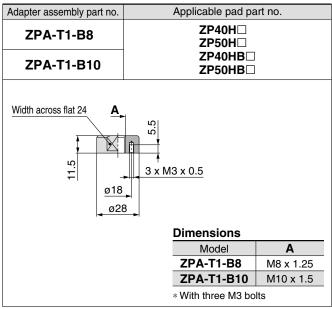


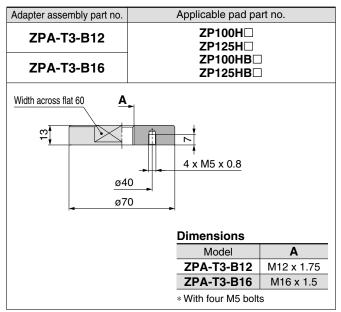
Adapter Assembly Part No.


Heavy-duty Ball Joint Adapter Assembly Part No. (Type T)

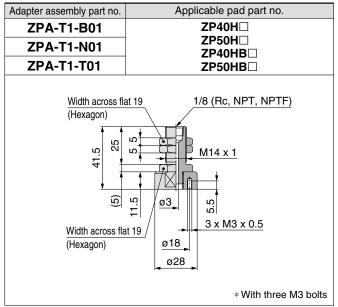

Adapter assembly part no.	Applicable pad part no.
ZP2A-TF2	ZP63H□ ZP63HB□ ZP80H□ ZP80HB□
Width across flat 22 (Hexagon Width across flat 22 (Hexagon Section 1) 15 (1) 1	3° 4 x M4 x 0.7
	ø34 ↓ ø50 ∗ With four M4 bolts

Heavy-duty Ball Joint Adapter Assembly Part No. (Type X)


Adapter assembly part no.	Applicable pad part no.
ZP2A-XF2	ZP63H□ ZP63HB□ ZP80H□ ZP80HB□
Width across flat 22 (Hexage 1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ivito x 1.5
	* With four M4 bolts



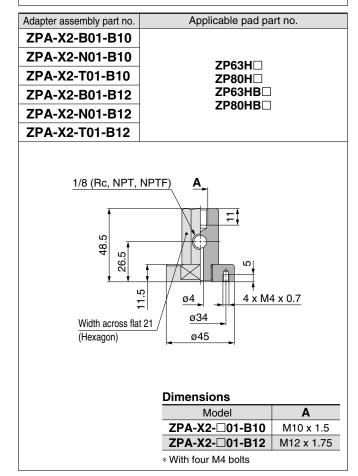
Adapter Assembly Part No.


Heavy-duty Adapter Assembly Part No. (Type T, Female thread)

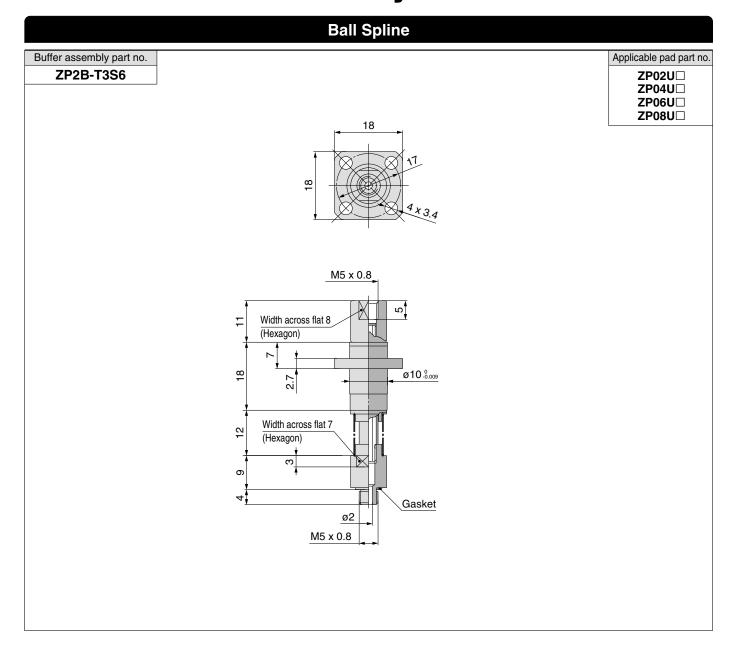
	A 11 11 1	
Adapter assembly part no.	Applicable pad pa	irt no.
ZPA-T2-B8	ZP 63H□	
ZPA-T2-B10	ZP80H□	
ZPA-T2-B12	ZP63HB□	
ZPA-T2-B16	ZP80HB□	
Width across flat 37 4 x M4 x 0.7 Dimensions Model A		Α
	ZPA-T2-B8	M8 x 1.25
	ZPA-T2-B10	M10 x 1.5
	ZPA-T2-B12	M12 x 1.75
	ZPA-T2-B16	M16 x 1.5
	* With four M4 bolt	S

Heavy-duty Adapter Assembly Part No. (Type T, Male thread)

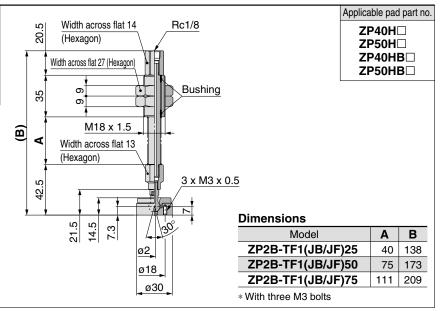
Adapter assembly part no.	Applicable pad part no.
ZPA-T2-B01	ZP63H□
ZPA-T2-N01	
ZPA-T2-T01	ZP63HB□ ZP80HB□
Width across flat (Hexagon) 12 Width across flat 24 (Hexagon)	1/8 (Rc, NPT, NPTF) M16 x 1.5 08 4 x M4 x 0.7 *With four M4 bolts


Adapter assembly part no.	Applicable pad part no.	
ZPA-T3-B01	ZP100H□	
ZPA-T3-N01	ZP125H□ ZP100HB□	
ZPA-T3-T01	ZP100HB□ ZP125HB□	
Width across flat 2 (Hexagon) Width across flat 24 (Hexagon)	1/8 (Rc, NPT, NPTF) M16 x 1.5 4 x M5 x 0.8	
	* With four M5 bolts	

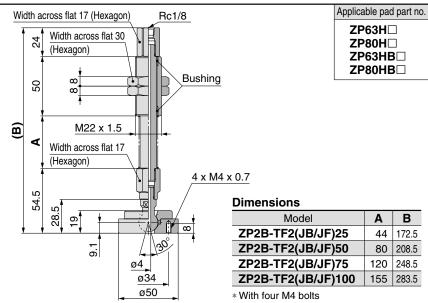
Heavy-duty Adapter Assembly Part No. (Type X, Female thread)


Adapter assembly part no.	Applicable pad pa	ırt no.			
ZPA-X1-B01-B8					
ZPA-X1-N01-B8					
ZPA-X1-T01-B8	ZP40H□				
	ZP50H□ ZP40HB□				
ZPA-X1-B01-B10	ZP50HB□				
ZPA-X1-N01-B10					
ZPA-X1-T01-B10					
1/8 (Rc, NPT,	3 x M3 x	<u>0.5</u>			
	Model	Α			
	ZPA-X1-□01-B8	M8 x 1.25			
	ZPA-X1-□01-B10	M10 x 1.5			
	* With three M3 bolts				

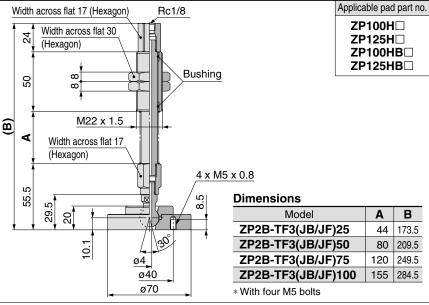
Adapter assembly part no.	Applicable pad part no.
ZPA-X3-B01-B10	
ZPA-X3-N01-B10	7 0400U□
ZPA-X3-T01-B10	ZP100H□ ZP125H□
ZPA-X3-B01-B12	ZP100HB□
ZPA-X3-N01-B12	ZP125HB□
ZPA-X3-T01-B12	
1/8 (Rc, NPT, N	Dimensions Model A ZPA-X3-□01-B10 M10 x 1.5
	ZPA-X3- □ 01-B12 M12 x 1.75
	* With four M5 bolts

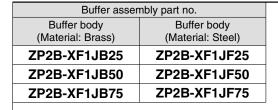


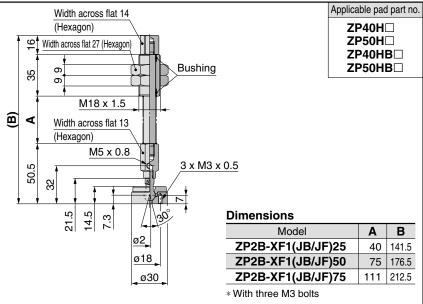
Buffer Assembly Part No.



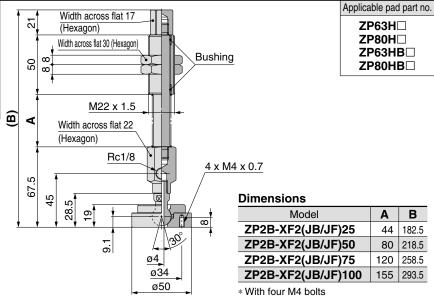
Heavy-duty Ball Joint Buffer Assembly Part No. (Type T)


Buffer assembly part no.			
Buffer body (Material: Brass)	Buffer body (Material: Steel)		
(ivialeriai. brass)			
ZP2B-TF1JB25	ZP2B-TF1JF25		
ZP2B-TF1JB50	ZP2B-TF1JF50		
ZP2B-TF1JB75	ZP2B-TF1JF75		


Buffer assembly part no.		
Buffer body	Buffer body	
(Material: Brass)	(Material: Steel)	
ZP2B-TF2JB25	ZP2B-TF2JF25	
ZP2B-TF2JB50	ZP2B-TF2JF50	
ZP2B-TF2JB75	ZP2B-TF2JF75	
ZP2B-TF2JB100	ZP2B-TF2JF100	

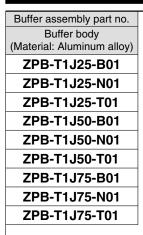


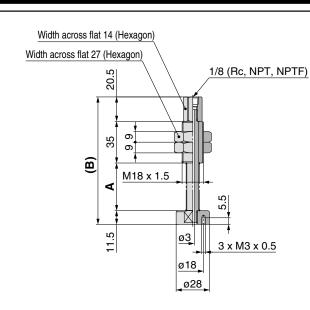
Buffer assembly part no.		
Buffer body	Buffer body	
(Material: Brass)	(Material: Steel)	
ZP2B-TF3JB25	ZP2B-TF3JF25	
ZP2B-TF3JB50	ZP2B-TF3JF50	
ZP2B-TF3JB75	ZP2B-TF3JF75	
ZP2B-TF3JB100	ZP2B-TF3JF100	



Heavy-duty Ball Joint Buffer Assembly Part No. (Type X)

Buffer assembly part no.		
Buffer body	Buffer body	
(Material: Brass)	(Material: Steel)	
ZP2B-XF2JB25	ZP2B-XF2JF25	
ZP2B-XF2JB50	ZP2B-XF2JF50	
ZP2B-XF2JB75	ZP2B-XF2JF75	
ZP2B-XF2JB100	ZP2B-XF2JF100	



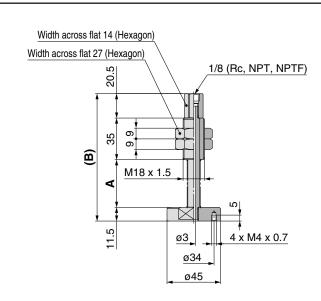

Buffer asser	nbly part no.	I	. 4	Width across flat 17	Арр	licable pa	d part no.
Buffer body (Material: Brass)	Buffer body (Material: Steel)		2	(Hexagon)		ZP100H ZP125H	
ZP2B-XF3JB25	ZP2B-XF3JF25		20	Bushing		ZP100H	
ZP2B-XF3JB50	ZP2B-XF3JF50		2	ω <u></u>		ZP125F	В⊔
ZP2B-XF3JB75	ZP2B-XF3JF75		1	Moonata			
ZP2B-XF3JB100	ZP2B-XF3JF100] @	∢	M22 x 1.5			
			68.5	A ri	√5 x 0.8 Dimensions		
		ļ	, ,	8 8 8	Model	Α	В
		1		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ZP2B-XF3(JB/JF)25	44	183.5
				- 	ZP2B-XF3(JB/JF)50	80	219.5
				<u>Ø4</u>	ZP2B-XF3(JB/JF)75	120	259.5
				<u>Ø40</u> →	ZP2B-XF3(JB/JF)10	155	294.5
				ø70 ▶	* With four M5 bolts		

Buffer Assembly Part No.

* Refer to the front matter 30 for nut tightening torque.

Heavy-duty Buffer Assembly Part No. (Type T)

ZP40H□ ZP50H□ ZP40HB□ ZP50HB□


Applicable pad part no.

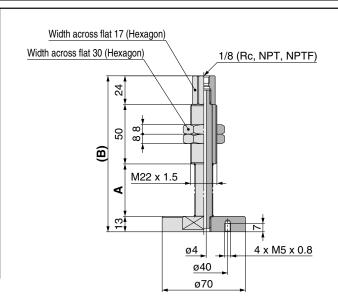
Dimensions

Α	В
40	107
75	142
111	178

* With three M3 bolts

Buffer assembly part no.
Buffer body
(Material: Aluminum alloy)
ZPB-T2J25-B01
ZPB-T2J25-N01
ZPB-T2J25-T01
ZPB-T2J50-B01
ZPB-T2J50-N01
ZPB-T2J50-T01
ZPB-T2J75-B01
ZPB-T2J75-N01
ZPB-T2J75-T01

ZP63H□
ZP80H□
ZP63HB□
ZP80HB□


Applicable pad part no.

Dimensions

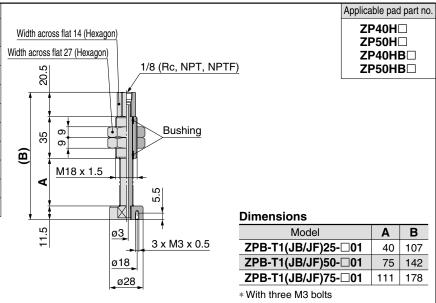
Model	Α	В
ZPB-T2J25-□01	40	107
ZPB-T2J50-□01	75	142
ZPB-T2J75-□01	111	178

* With four M4 bolts

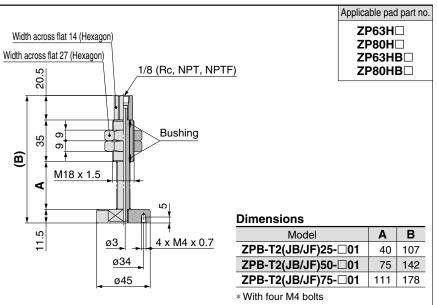
Buffer assembly part no.
Buffer body
(Material: Aluminum alloy)
ZPB-T3J25-B01
ZPB-T3J25-N01
ZPB-T3J25-T01
ZPB-T3J50-B01
ZPB-T3J50-N01
ZPB-T3J50-T01
ZPB-T3J75-B01
ZPB-T3J75-N01
ZPB-T3J75-T01
ZPB-T3J100-B01
ZPB-T3J100-N01
ZPB-T3J100-T01

ZP100H□ ZP125H□ ZP100HB□ ZP125HB□

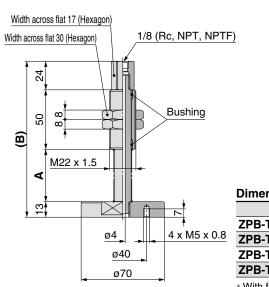
Applicable pad part no.


Dimensions

Model	Α	В
ZPB-T3J25-□01	44	131
ZPB-T3J50-□01	80	167
ZPB-T3J75-□01	120	207
ZPB-T3J100-□01	155	242


* With four M5 bolts

Heavy-duty Buffer Assembly Part No. (Type T)


Buffer assembly part no.		
Buffer body (Material: Brass)	Buffer body (Material: Steel)	
ZPB-T1JB25-B01	ZPB-T1JF25-B01	
ZPB-T1JB25-N01	ZPB-T1JF25-N01	
ZPB-T1JB25-T01	ZPB-T1JF25-T01	
ZPB-T1JB50-B01	ZPB-T1JF50-B01	
ZPB-T1JB50-N01	ZPB-T1JF50-N01	
ZPB-T1JB50-T01	ZPB-T1JF50-T01	
ZPB-T1JB75-B01	ZPB-T1JF75-B01	
ZPB-T1JB75-N01	ZPB-T1JF75-N01	
ZPB-T1JB75-T01	ZPB-T1JF75-T01	
	1	

Buffer assembly part no.		
Buffer body		
(Material: Steel)		
ZPB-T2JF25-B01		
ZPB-T2JF25-N01		
ZPB-T2JF25-T01		
ZPB-T2JF50-B01		
ZPB-T2JF50-N01		
ZPB-T2JF50-T01		
ZPB-T2JF75-B01		
ZPB-T2JF75-N01		
ZPB-T2JF75-T01		

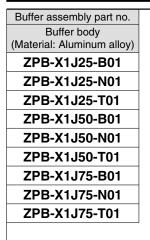
Buffer assembly part no.		
Buffer body (Material: Steel)		
ZPB-T3JF25-B01		
ZPB-T3JF25-N01		
ZPB-T3JF25-T01		
ZPB-T3JF50-B01		
ZPB-T3JF50-N01		
ZPB-T3JF50-T01		
ZPB-T3JF75-B01		
ZPB-T3JF75-N01		
ZPB-T3JF75-T01		
ZPB-T3JF100-B01		
ZPB-T3JF100-N01		
ZPB-T3JF100-T01		

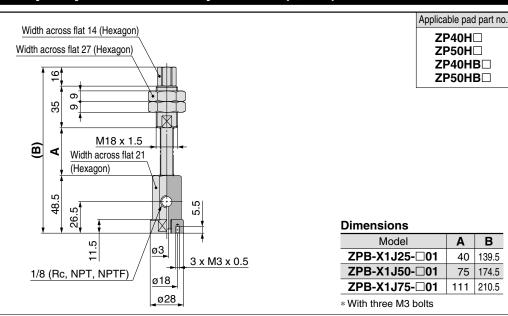
Applicable pad part no.

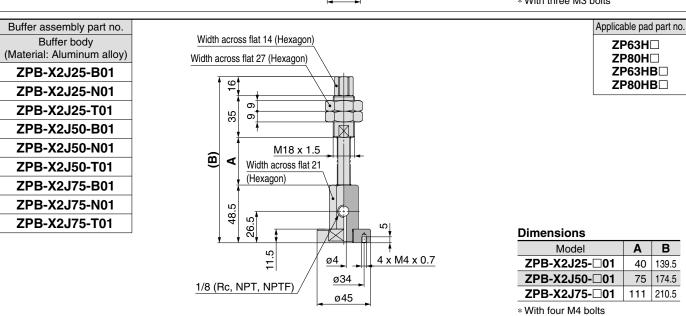
ZP100H□

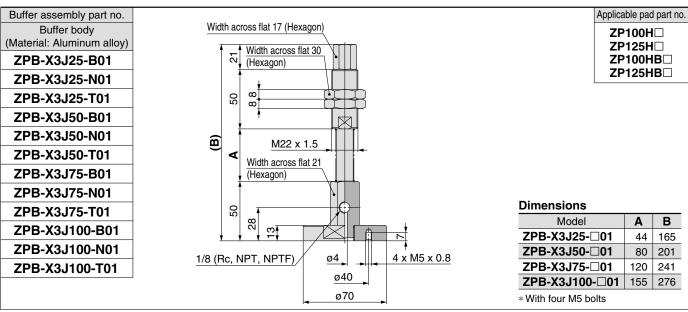
ZP125H□

ZP100HB□

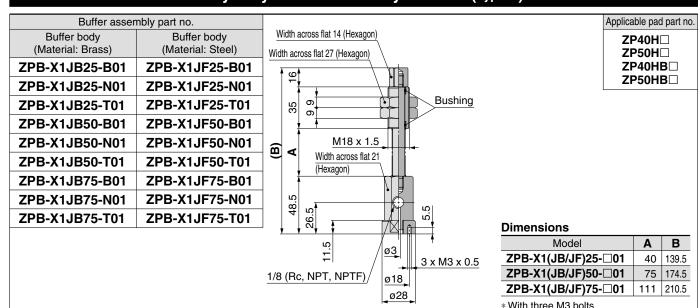

ZP125HB□

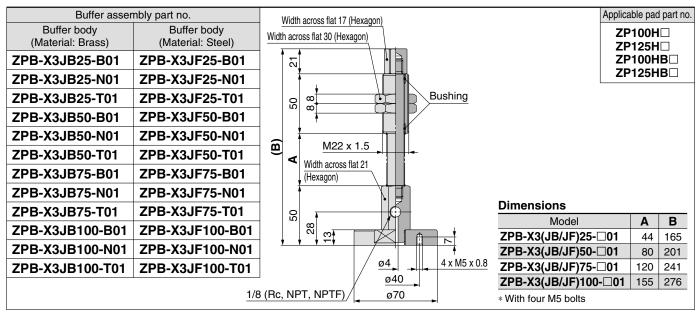

Dimensions


Model	Α	В
ZPB-T3(JB/JF)25-□01	44	131
ZPB-T3(JB/JF)50-□01	80	167
ZPB-T3(JB/JF)75-□01	120	207
ZPB-T3(JB/JF)100-□01	155	242


* With four M5 bolts

Heavy-duty Buffer Assembly Part No. (Type X)





Heavy-duty Buffer Assembly Part No. (Type X)

Buffer asser Buffer body (Material: Brass) ZPB-X2JB25-B01 ZPB-X2JB25-N01 ZPB-X2JB25-T01 ZPB-X2JB50-B01 ZPB-X2JB50-N01 ZPB-X2JB50-T01 ZPB-X2JB50-T01	Buffer body (Material: Steel) ZPB-X2JF25-B01 ZPB-X2JF25-N01 ZPB-X2JF50-B01 ZPB-X2JF50-N01 ZPB-X2JF50-T01 ZPB-X2JF75-B01	Bushing	Applicable pa ZP63H ZP80H ZP63H ZP80H	 B
ZPB-X2JB75-N01 ZPB-X2JB75-T01	ZPB-X2JF75-N01 ZPB-X2JF75-T01	Dimensions Model ZPB-X2(JB/JF)25 ZPB-X2(JB/JF)50 ZPB-X2(JB/JF)75 With four M4 bolts With four M4 bolts TPB-X2(JB/JF)50 TPB-X2(JB/JF)50)-□01 75	

Vacuum Equipment Precautions 1

Be sure to read this before handling.

Design/Selection

⚠ Warning

1. Confirm the specifications.

Products represented in this catalog are designed only for use in compressed air systems (including vacuum).

Do not operate at pressures or temperatures, etc., beyond the range of specifications, as this can cause damage or malfunction. (Refer to the specifications.)

Please contact SMC when using a fluid other than compressed air (including vacuum).

We do not guarantee against any damage if the product is used outside of the specification range.

Safe designs should be developed, which account for the possibility of accidents resulting from a drop in vacuum pressure due to power failure or trouble with the air supply, etc.

If vacuum pressure drops and there is a loss of vacuum pad adsorption force, work pieces being carried may fall, causing human injury or damage to machinery. Sufficient safety measures should be implemented, such as drop prevention, to avoid any accidents.

3. Follow vacuum specifications for vacuum switching valves and vacuum release valves.

If non-vacuum equipment is installed in a vacuum piping, vacuum leakage will occur. Therefore, select only equipment for vacuum specifications.

4. Select an ejector which has a suitable suction flow rate.

<When there is vacuum leakage from the workpiece or the piping>

If the ejector's suction flow rate is too low, the adsorption will be poor.

<When piping is long or the diameter is large>

The adsorption response time will delay due to the increased volume of the piping.

Select an ejector with a suitable suction flow rate by referring to the technical data.

5. If the suction flow rate is too high, setting of vacuum switch will become difficult.

Setting the vacuum switch when absorbing a small (few millimeter) workpiece will sometimes become difficult, if the selected ejector has a high suction rate and there is a small pressure difference when absorbing and releasing the workpiece.

6. When two or more pads are piped to one ejector, if one pad releases its workpiece, the other pads will also release.

When one pad releases its workpiece, there is a drop in vacuum pressure which causes the other pad to release its workpiece as well.

7. Do not disassemble the product or make any modifications, including additional machining.

It may cause human injury and/or an accident.

When disassembling or assembling the product for the purpose of replacing parts, etc., be certain to follow the operation manual or catalogs.

8. Check valve

SMC can issue no guarantees regarding the maintenance of workpiece adsorption when using check valves. Take separate safety measures to prevent work pieces from dropping in the case of an electrical power outage, etc.

Please consult with SMC when using check valves as a means of preventing interference caused by the exhaust from nearby ejectors.

⚠ Caution

1. Mounting the suction filter

Because the suction of vacuum equipment acts not only on work pieces but also on dust or water droplets in the surrounding atmosphere, steps must be taken to prevent their penetration into the equipment's interior.

Even when using equipment equipped with filters, if there is a considerable amount of dust in the environment, use a separately ordered large-size filter as well.

If there is a possibility of water droplets being sucked in by the vacuum, use a drain separator for vacuum.

2. The maximum vacuum pressure of the vacuum ejector is affected by the atmospheric pressure of the operating environment.

As atmospheric pressure changes based on altitude, climate, etc., the actual maximum vacuum pressure may not reach the value listed in the specifications.

- 3. For information on related items, such as directional control equipment and drive equipment, refer to the caution sections in each respective catalog.
- 4. Do not use the product in an environment that exposes it to vibration. If the product is used in such an environment, we can offer a lock nut type product to prevent it from loosening. Please contact SMC for model number.

Mounting

Marning

1. Operation manual

Install the products and operate them only after reading the operation manual carefully and understanding its contents. Also, keep the manual available whenever necessary.

2. Ensure sufficient space for maintenance activities.

When installing the products, allow access for maintenance.

Tighten threads with the proper tightening torque.

When installing the products, follow the listed torque specifications

4. Do not obstruct the exhaust port of the ejector.

If the exhaust port is obstructed when mounted, a vacuum will not be generated. Also, do not obstruct the exhaust port with the goal of removing the workpiece. It may cause damage to the equipment.

Vacuum Equipment Precautions 2

Be sure to read this before handling.

Piping

⚠ Caution

 Refer to the Fittings and Tubing Precautions (Best Pneumatics No. 6) for handling onetouch fittings.

2. Preparation before piping

Before piping is connected, it should be thoroughly blown out with air (flushing) or washed to remove chips, cutting oil and other debris from inside the pipe.

3. Wrapping of pipe tape

When screwing piping or fittings into ports, ensure that chips from the pipe threads or sealing material do not enter the piping. Also, if pipe tape is used, leave 1.5 to 2 thread ridges exposed at the end of the threads.

4. Use piping with an adequate conductance.

Select equipment and piping for the vacuum side which has an adequate conductance so that the ejector's maximum suction flow rate can be accommodated by the piping.

Also, make sure that there are no unnecessary restrictions or leaks, etc., along the course of the piping. Furthermore, design of the air supply should be performed while taking into consideration the ejector's maximum air consumption and the air consumption of other pneumatic circuits.

5. Avoid disorganized piping.

Piping which is direct and of the shortest possible length should be used for both the vacuum and supply sides. Disorganized piping should be avoided. Unnecessary length increases the piping volume, and thus increases the response time.

6. Use piping with a large conductance on the exhaust side of the ejector.

If the exhaust piping is restrictive, there will be a decline in the ejector's performance.

7. Be certain that there are no crushed areas in the piping due to damage or bending.

Air Supply

⚠ Warning

1. Type of fluids

Please consult with SMC when using the product in applications other than compressed air.

2. When there is a large amount of drainage.

Compressed air containing a large amount of drainage can cause malfunction of pneumatic equipment. An air dryer or water separator should be installed upstream from filters.

Air Supply

⚠ Warning

3. Drain flushing

If condensation in the water separator and drain bowl is not emptied on a regular basis, the bowl will overflow and allow the condensation to enter the compressed air lines. It causes malfunction of pneumatic equipment.

If the drain bowl is difficult to check and remove, installation of a drain bowl with an auto drain option is recommended. For compressed air quality, refer to SMC's Best Pneumatics catalog.

4. Use clean air.

Do not use compressed air that contains chemicals, synthetic oils including organic solvents, salt or corrosive gases, etc., as it can cause damage or malfunction.

Operating Environment

⚠ Warning

- Do not use in an atmosphere having corrosive gases, chemicals, sea water, water, water steam, or where there is direct contact with any of these.
- 2. Do not use in a place subject to heavy vibration and/or shock.
- 3. Do not use in an environment where flammable gas or explosive gas exists. Usage may cause a fire or explosion. The products do not have an explosion proof construction.
- 4. The valve should not be exposed to prolonged sunlight. Use a protective cover.
- 5. Remove any sources of excessive heat.
- 6. In locations where there is contact with spatter from water, oil, solder, etc., take suitable protective measures.
- 7. In cases where the vacuum unit is surrounded by other equipment, etc., or the unit is energized for an extended time, take measures to exhaust excess heat so that the temperature should be within specifications.

⚠ Caution

 Under certain conditions, the exhaust of the vacuum ejector may generate intermittent noises, and vacuum pressure may be uneven.

Using the ejector under these conditions will not result in decreased performance, but if the intermittent noise becomes a nuisance, or there is an adverse effect on the operation of the vacuum pressure switch, try lowering or raising the supply pressure of the vacuum ejector to find a supply pressure level at which the intermittent noise ceases.

Maintenance

⚠ Warning

Perform maintenance inspection according to the procedures indicated in the operation manual.

If handled improperly, malfunction and damage of machinery or equipment may occur.

2. Maintenance work

If handled improperly, compressed air can be dangerous. Assembly, handling, repair and element replacement of pneumatic systems should be performed by a knowledgeable and experienced person.

3. Drain flushing

Remove drainage regularly from the water separator, air filters, vacuum drain separator, etc.

4. Removal of equipment, and supply/exhaust of compressed air

When components are removed, first confirm that measures are in place to prevent workpieces from dropping, run-away equipment, etc. Then, cut off the supply pressure and electric power, and exhaust all compressed air from the system using the residual pressure release function.

When machinery is restarted after remounting or replacement, first confirm that measures are in place to prevent lurching of actuators, etc. Then, confirm that the equipment is operating normally.

5. Clean suction filters and silencers on a regular basis.

The performance of an ejector will deteriorate due to clogged filters and silencers. High flow filters should be used, especially in dusty locations.

^ Safety Instructions ■

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

Caution indicates a hazard with a low level of risk Caution: which, if not avoided, could result in minor or moderate injury.

Warning indicates a hazard with a medium level of Warning: risk which, if not avoided, could result in death or serious injury.

Danger indicates a hazard with a high level of risk Danger: which, if not avoided, will result in death or serious

*1) ISO 4414: Pneumatic fluid power - General rules relating to systems. ISO 4413: Hydraulic fluid power – General rules relating to systems. IEC 60204-1: Safety of machinery - Electrical equipment of machines. (Part 1: General requirements)

ISO 10218-1: Manipulating industrial robots - Safety.

⚠ Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications.

Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.

2. Only personnel with appropriate training should operate machinery and equipment.

The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.

- 3. Do not service or attempt to remove product and machinery/equipment until safety is confirmed.
 - 1. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
 - 2. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
 - 3. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
- 4. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
 - 1. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
 - 2. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
 - 3. An application which could have negative effects on people, property, or animals requiring special safety analysis.
 - 4. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.

⚠ Caution

1. The product is provided for use in manufacturing industries.

The product herein described is basically provided for peaceful use in manufacturing industries.

If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary. If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".

Read and accept them before using the product.

Limited warranty and Disclaimer

- 1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered.*2)
 - Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
- 2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided.
 - This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
- 3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
 - 2) Vacuum pads are excluded from this 1 year warranty

A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.

Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

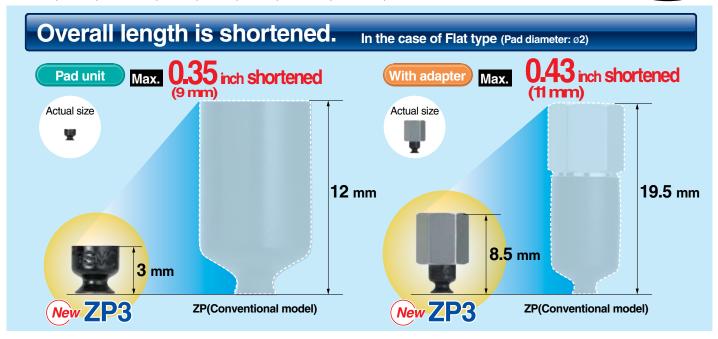
Compliance Requirements

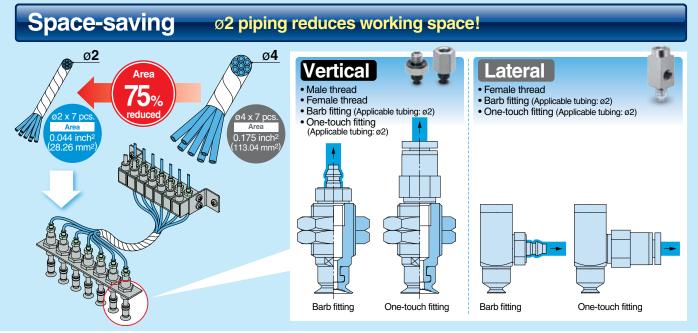
- 1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
- 2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

Safety Instructions Be sure to read "Handling Precautions for SMC Products" (M-E03-3) before using.

SMC Corporation

© 2011 SMC Corporation All Rights Reserved

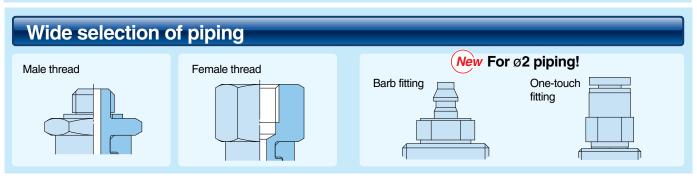

Akihabara UDX 15F 4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021, JAPAN Phone: 03-5207-8249 Fax: 03-5298-5362 http://www.smcworld.com


Vacuum Pad

Ø1.5, Ø2, Ø3.5, Ø4, Ø6, Ø8, Ø10, Ø13, Ø16

RoHS





Series Variations

Туре					d diameter					Material	
Flat For adsorption of general workpieces For adsorption of work pieces with flat and not deformed surface Flat with groove For a workpiece which is likely to deform	Ø1.5	Ø2	Ø3.5	Ø4	Ø6	Ø8	Ø10	Ø13	Ø16	NBR Silicone rubber Urethane rubber	Page
For releasing a workpiece certainly Bellows For adsorption of work pieces with inclined surface					•	•		•	•	FKM Conductive NBR Conductive silicone rubber	
Vacuum inlet direction	В	uffer	attach	iment				Vac	uum ir	nlet	Page
Vertical					-	e thre nale th			M3, I		
		Without buffer (with adapter)		Barl	b fittin	g		Soft ny	ethane tubing ø2 /lon/ ethane tubing ø4, ø6	P.3	
ZP3-T					One	e-touc	h fittin	ng	ø2, ø4, ø6		
Vertical		Stroke with buffer		Fen	nale th	nread		M3, M5			
		3 mm 6 mm 10 mm		Bar	b fittin	g		Soft ny	Polyurethane tubing ø2 Soft nylon/ Polyurethane tubing ø4, ø6		
ZP3-T		15 mm 20 mm		One	e-touc	h fittin	ng	ø2, ø4, ø6			
Lateral					Fen	nale th	nread		M3, I	M5	
	1	With	out bu	ffer					Polyur	ethane tubing ø2	
]-		adap		Bar	Barb fitting		Soft nylon/ Polyurethane tubing be ø4, ø6		P.25	
ZP3-Y				One	e-touc	h fittir	ng	ø2, ø4, ø6			
Lateral		Stroke with buffer		Fen	nale th	nread	ad M3, M5		M5		
			3 mm 6 mm						Polyur	ethane tubing ø2	
		1	0 mm 5 mm		Bar	b fittin	g		Soft nylon/ Polyurethane tubing ø4, ø6		P.31
ZP3-Y = - JB		20 mm		One	e-touc	h fittin	ng	ø2, ø4, ø6			

Construction P.41
Adapter Applicable Pad List P.42
Buffer Applicable Pad List P.43

Mounting Adapter Part No. P.47
Buffer Assembly Part No. P.49

Vacuum Pads Series ZP3/ZP2/ZP

★: New Series ZP3 **Pad Diameter List** : Series ZP2 : Series ZP Pad type 2 15 0.8 1.1 1.5 3 3.5 4 5 6 8 9 10 11 13 14 U \bigcirc Note Note) Note Note Note Note Note Note MU Flat Note Note Note Note ΑU Flat with rib C \bigcirc \bigcirc UM \star with groove Thin flat UT 0 \bigcirc Thin flat with rib \bigcirc \bigcirc CT В $\bigcirc \star$ J **Bellows** Note' Note Note MB ZJ Deep D 0 Nozzle pad AN Note Note) Flat pad MT 4 x 10 5 x 10 6 x 10 4 x 20 4 x 30 5 x 20 5 x 30 6 x 20 6 x 30 8 x 20 3.5 x 7 8 x 30 Oval 2 x 4 3.5 x 7 4 x 10 U \bigcirc \bigcirc Н HT Heavy-duty pad **HB** Bellows HW U Mark-free pad Н * Related pad Sponge pad S Resin K attachment Pad with ball U spline buffer Н Heavy-duty ball joint pad **HB** Note) The ZP2 series is blast type. * Cyclone pad (Non-contact pad)

Products other than above

Vacuum pad for transferring disks

Vacuum pad for f

Vacuum saving

The ZP3 series is available from Ø1.5 to Ø16. If you need other sizes or shapes, please Pad Diameter List choose from ZP or ZP2 series. * (): Refer to SMC website in Best Pneumatics No. SMC vacuum pad Search 4 for details of the ZP series. http://www.smcworld.com Catalogs Symbol **Pad diameter** 100 | 125 | 150 | 250 | 300 | 340 16 18 20 25 30 32 40 46 50 63 80 0 U MU EU AU \bigcirc C 0 \bigcirc \bigcirc \bigcirc \bigcirc 5 5 **UM** \bigcirc UT 0 \bigcirc CT 0 0 \bigcirc \bigcirc В 0 J #191 #185 #185 MB ZJ \bigcirc D AN Note) Note) Note MT U 0 0 \bigcirc \bigcirc \bigcirc \bigcirc \circ Н HT \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 0 HB 30 x 50 HW U Н S K

Н

HB

Related Products

Related Products Variations		Note		
Vacuum Flow ZH□-□-X185 Made to Order ■ A blow flow rate 4 times the supply air ■ A vacuum flow rate 3 times the supply air				
A discharge flow rate 4 times the supply air can be generated. Contributes to reduction in flow consumption if discharge requires flow rate. Supply air		_		
A suction flow rate 3 times the supply air can be generated. Contributes to reduction in flow consumption if suction requires flow rate. Suction 3 x Suction 3 x Supply air				
Vacuum Saving Valve ZP2V Can restrict the reduction of vacuum pressure even when there is no workpiece. No need for switching operation when changing workpieces. Multiple vacuum pads can be operated by one ejector.	oac oac	Connection thread size for pad side • M5 x 0.8 • Rc1/8 • M6 x 1 • G1/8 • M8 x 1.25 • NPT1/8 • R1/8		
Space Saving Vacuum Ejector/ Pump System ZQ Width: 10 mm Weight: 109 g (Single unit, with vacuum pressure switch and suction filter)		_		
Multistage Ejector ZL Suction flow rate increased by a 3 stage diffuser construction. (Max. 200 L/min (ANR))		_		
Air Suction Filter with One-touch Fittings/ In-line Type ZFC IN/OUT straight piping One-touch fittings for easy installation and remove Lightweight molded resin parts Cartridge type allows element replacement.		_		
SMC Design Support Software Ver.2.0 Model Selection Software Vacuum Adsorption Transfer System Selection Software Electric Actuator Selection Software SMC Draw Ver.1.0 Pneumatic Circuit Drawing Software Guide Cylinder Selection Software Energy Saving Software	SACRITERIO DE LA CONTROL DE LA	_		

Vacuum Equipment Model Selection

CONTENTS

1 Features and Precautions for Vacuum Adsorption

Front matter 2

2 Vacuum Pad Selection

Front matter 2

- Vacuum Pad Selection Procedures
- Points for Selecting Vacuum Pads
 - A. Theoretical Lifting Force
 - B. Shear Force and Moment Applied to Vacuum Pad
- Lifting Force and Vacuum Pad Diameter
 - 1. Theoretical Lifting Force
- Vacuum Pad Type
- Vacuum Pad Material
- Rubber Material and Properties
- Color and Identification
- Buffer Attachment
- Pad Selection by Workpiece Type
- Vacuum Pad Durability

3 Selection of Vacuum Ejector and Vacuum Switching Valve Front matter 8

• Calculating Vacuum Ejector and Switching Valve Size with the Formula

4 Leakage Volume during Workpiece Adsorption

Front matter 8

- Leakage Volume from Conductance of Workpiece
- Leakage Volume from Adsorption Test

5 Adsorption Response Time

Front matter 9

- Relationship between Vacuum Pressure and Response Time after Supply Valve (Switching Valve) is Operated
- Calculating Adsorption Response Time with the Formula
- Adsorption Response Time from the Selection Graph

6 Precautions on Vacuum Equipment Selection and SMC's Proposal Front matter 11

- Safety Measures
- Precautions on Vacuum Equipment Selection
- Vacuum Ejector or Pump and Number of Vacuum Pads
- Vacuum Ejector Selection and Handling Precautions
- Supply Pressure of Vacuum Ejector
- Timing for Vacuum Generation and Suction Verification
 - A. Timing for Vacuum Generation
 - **B.** Suction Verification
 - C. Set Pressure for Vacuum Pressure Switch
- Dust Handling of Vacuum Equipment

7 Vacuum Equipment Selection Example

Front matter 15

Front matter 16

Transfer of Semiconductor Chips

8 Data

Selection GraphGlossary of Terms

- Countermeasures for Vacuum Adsorption System Problems (Troubleshooting)
- Non-conformance Examples
- Time of Replacement of Vacuum Pad

Features and Precautions for Vacuum Adsorption

Vacuum adsorption system as a method to hold a workpiece has the following features. But it is also necessary to note some precautions.

Features and precautions of vacuum

Features	 Easy construction Compatible with any place where adsorption is possible. Compatible with soft and easily-deformed workpieces Available when the space around the workpiece is limited.
Precautions	Workpiece may drop under certain conditions since it is transferred being adsorbed. Liquid or foreign matter around the workpiece may be sucked into the equipment. Large adsorption area is necessary to get large gripping force. Vacuum pad (rubber) may deteriorate. Precise positioning is difficult.

Fully understand the features above and select the equipment that suits your operating conditions.

Vacuum Pad Selection

Vacuum Pad Selection Procedures

- 1) Fully taking into account the balance of a workpiece, identify the adsorption positioning, number of pads and applicable pad diameter (or pad area).
- 2) Find the theoretical lifting force from the identified adsorption area (pad area x number of pads) and vacuum pressure, and then find the lifting force considering actual lifting and safety factor of transfer condition.
- 3) Determine a pad diameter (or pad area) that is sufficient to ensure the lifting force is greater than the workpiece mass.
- 4) Determine the pad type and materials, and the necessity of buffer based on the operating environment, and the workpiece shape and materials.

The above shows selection procedures for general vacuum pads; thus, they will not be applicable for all pads. Customers are required to conduct a test on their own and to select applicable adsorption conditions and pads based on the test results.

Points for Selecting Vacuum Pads

A. Theoretical Lifting Force

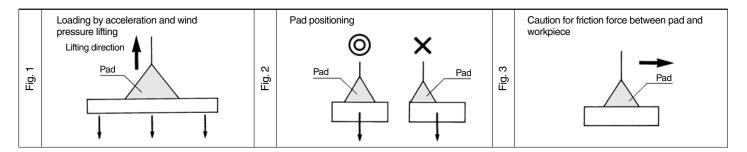
- The theoretical lifting force is determined by vacuum pressure and contact area of the vacuum pad.
- · Since the theoretical lifting force is the value measured at the static state, the safety factor responding to the actual operating conditions must be estimated in the actual operation.
- It is not necessarily true that higher vacuum pressure is better. Extremely high vacuum pressure may cause problems.
 - · When the vacuum pressure is unnecessarily high, pads are likely to be worn out quickly and cracked, which makes the pad service life shorter.
 - Doubling the vacuum pressure makes the theoretical lifting force double, while to doubling the pad diameter makes the theoretical lifting force quadruple.
 - · When the vacuum pressure (set pressure) is high, it makes not only response time longer, but also the necessary energy to generate a vacuum larger.

2 times

Example) Theoretical lifting force = Pressure x Area						
Pad diameter	Area (cm²)	Vacuum pressure [-40 kPa]	Vacuum pressure [-80 kPa]			
ø6	0.28	Theoretical lifting force 1.1 N	Theoretical lifting force 2.2 N			
ø16	2.01	Theoretical lifting force 8.0 N	Theoretical lifting force 16.1 N			

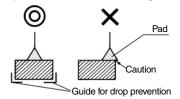
4 times

B. Shear Force and Moment Applied to Vacuum Pad

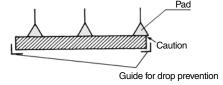

- · Vacuum pads are not resistant to shear force (parallel force with adsorption surface) and moment.
- Minimize the moment applied to the vacuum pad with the position of the workpiece center of gravity in mind.
- The acceleration rate of the movement must be as small as possible, and make sure to take into consideration the wind pressure and impact. If measures to slow down the acceleration rate are introduced, safety to prevent the workpiece from dropping will improve.
- Avoid lifting the workpiece by adsorbing the vertical side with a vacuum pad (vertical lifting) if possible. When it is unavoidable, a sufficient safety factor must be secured.

Lifting Force, Moment, Horizontal Force

To lift a workpiece vertically, make sure to take into consideration the acceleration rate, wind pressure, impact, etc., in addition to the mass of the workpiece. (Refer to Fig. 1)

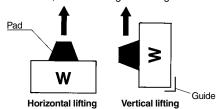

Because the pads are susceptible to moments, mount the pad so as not to allow the workpiece to create a moment. (Refer to Fig. 2)

When a workpiece that is suspended horizontally is moved laterally, the workpiece could shift depending on the extent of the acceleration rate or the size of the friction coefficient between the pad and the workpiece. Therefore, the acceleration rate of the lateral movement must be minimized. (Refer to Fig. 3)



Balance of Pad and Workpiece

Make sure that the pad's suction surface is not larger than the surface of the workpiece to prevent vacuum leakage and unstable picking.


If multiple pads are used for transferring a flat object with a large surface area, properly allocate the pads to maintain balance. Also make sure that the pads are aligned properly to prevent them from becoming disengaged along the edges.

Provide an auxiliary device (example: a guide for preventing the workpieces from dropping) as necessary.

Mounting Position

As a rule, the unit must be installed horizontally. Although a diagonal or a vertical installation should be avoided whenever possible, if the unit must be installed in such a manner, be certain to guarantee guide and absolute safety.

Lifting Force and Vacuum Pad Diameter

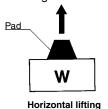
1. Theoretical Lifting Force

- Set the vacuum pressure below the pressure that has been stabilized after adsorption.
- However, when a workpiece is permeable or has a rough surface, note that the vacuum pressure drops since the workpiece takes air in. In such a case, carry out an adsorption test for confirmation.
- The vacuum pressure when using an ejector is approximately -60 kPa as a guide.

The theoretical lifting force of a pad can be found by calculation or from the theoretical lifting force table.

Calculation

 $W = P \times S \times 0.1 \times \frac{1}{t}$


W: Lifting force (N)

P: Vacuum pressure (kPa)

S: Pad area (cm²)

 ${f t}$: Safety factor Horizontal lifting: 4 or more

Vertical lifting: 8 or more

Vertical lifting

This type of application should basically be avoided.

Theoretical Lifting Force

The theoretical lifting force (not including the safety factor) is found from the pad diameter and vacuum pressure. The required lifting force is then found by dividing the theoretical lifting force by the safety factor **t**.

Lifting force = Theoretical lifting force \div t

(1) Theoretical Lifting Force (Theoretical lifting force = P x S x 0.1)

	(I	V)
ĺ	ā		Ī	

Pad diam	eter (mm)	ø 1.5	ø 2	ø 3.5	ø 4	ø 6	ø 8	ø10	ø 13	ø 16
Pad area	a S (cm ²)	0.02	0.03	0.10	0.13	0.28	0.50	0.79	1.33	2.01
	-85	0.15	0.27	0.82	1.07	2.4	4.2	6.6	11.3	17.1
	-80	0.14	0.25	0.77	1.00	2.2	4.0	6.2	10.6	16.1
	-75	0.13	0.24	0.72	0.94	2.1	3.7	5.8	10.0	15.1
\/a.a	-70	0.12	0.22	0.67	0.88	1.9	3.5	5.5	9.3	14.1
Vacuum pressure	-65	0.11	0.20	0.63	0.82	1.8	3.2	5.1	8.6	13.1
(kPa)	-60	0.11	0.19	0.58	0.75	1.7	3.0	4.7	8.0	12.1
(Ki a)	-55	0.10	0.17	0.53	0.69	1.5	2.7	4.3	7.3	11.1
	-50	0.09	0.16	0.48	0.63	1.4	2.5	3.9	6.7	10.0
	-45	0.08	0.14	0.43	0.57	1.2	2.2	3.5	6.0	9.0
	-40	0.07	0.13	0.38	0.50	1.1	2.0	3.1	5.3	8.0

● Vacuum Pad Type

• Flat type, flat with groove and bellows type are available in the ZP3 series. Select the appropriate shape to suit the workpiece and operating environment.

Pad Type

Pad type	Application
Flat	To be used when adsorption surface of a workpiece is flat and not deformed.
Flat with groove	To be used to ensure removal of a workpiece.
Bellows	To be used when there is not enough space to install a buffer or adsorption surface of a workpiece is inclined.

Vacuum Pad Material

- It is necessary to determine vacuum pad materials carefully taking into account the workpiece shape, adaptability in the operating environment, effect after being adsorbed, electrical conductivity, etc.
- Based on the workpiece transfer example for each material, select after confirming the characteristics (adaptability) of rubber.

Vacuum Pad/Example of Workpiece Transfer

Material

Material	Application	
NBR	Transfer of general workpieces, Corrugated board, Veneer plate, Iron plate and others	
Silicone rubber	Semiconductor, Removing from die-casting, Thin workpieces, Food processor	
Urethane rubber	Corrugated board, Iron plate, Veneer plate	
FKM	Chemical workpieces	
Conductive NBR	General workpieces of semiconductor (Static electricity resistance)	
Conductive silicone rubber	Semiconductor (Static electricity)	

Rubber Material and Properties

	General name	NBR (Nitrile rubber)	Silicone rubber	Urethane rubber	FKM (Fluoro rubber)	Conductive NBR (Nitrile rubber)	Conductive silicone rubber
	Main features	Good oil resistance, abrasion resistance, and aging resistance	Excellent heat resistance, and cold resistance	Excellent mechanical strength	Best heat resistance, and chemical resistance	Good oil resistance, abrasion resistance, and aging resistance. Conductive	Very excellent heat resistance, and cold resistance. Conductive
Pure	e gum property (specific rity)	1.00-1.20	0.95-0.98	1.00-1.30	1.80-1.82	1.00-1.20	0.95-0.98
	Impact resilience	0	0	0	Δ	0	0
٤	Abrasion resistance	0	×/△	0	0	0	×/△
lng p	Tear resistance	0	×/△	0	0	0	×/△
ndec	Flex crack resistance	0	×/O	0	0	0	×/O
f ble	Maximum operation temperature °C	120	200	60	250	100	200
es o	Minimum operation temperature °C	0	-30	0	0	0	-10
perti	Volume resistivity (Ωcm)	_	_	_	_	10 ⁴ or less	10 ⁴ or less
ll pro	Heat aging	0	0	Δ	0	0	0
Physical properties of blended gum	Weather resistance	0	0	0	0	0	0
P,	Ozone resistance	Δ	0	0	0	Δ	0
	Gas permeability resistance	0	×/△	×/△	×/△	0	×/△
	Gasoline/Gas oil	0	×/△	0	0	0	×/△
Chemical resistance Oil resistance	Benzene/Toluene	×/△	×	×/ <u></u>	0	×/ <u></u>	×
esist	Alcohol	0	0	Δ	∆/©	0	0
cal r	Ether	×/△	×/△	×	×/△	×/△	×/△
oil Oil	Ketone (MEK)	×	0	×	×	×	0
Ö	Ethyl acetate	×/△	Δ	×/△	×	×/△	Δ
	Water	0	0	Δ	0	0	0
ance	Organic acid	×/△	0	×	Δ/Ο	×/△	0
siste	Organic acid of high concentration	Δ/Ο	Δ	×	0	Δ/Ο	Δ
ne re resi	Organic acid of low concentration	0	0	Δ	0	0	0
Alkaline resistance Acid resistance	Strong alkali	0	0	×	0	0	0
<	Weak alkali	0	0	×	0	0	0

O = Excellent --- Not affected at all, or almost no effect

Color and Identification

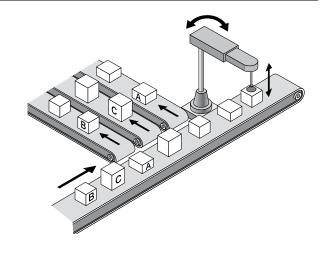
General name	NBR (Nitrile rubber)	Silicone rubber	Urethane rubber	FKM (Fluoro rubber)	Conductive NBR (Nitrile rubber)	Conductive silicone rubber
Color of rubber	Black	White	Brown	Black	Black	Black
Identification (Dot)	_	_	_	· Green 1 dot	· Silver 1 dot	· Pink 1 dot
Rubber hardness HS (±5°)	A60/S					

O = Good --- Affected a little, but adequate resistance depending on conditions

 $[\]triangle$ = Better not to use if possible

x = Unsuitable for usage. Severely affected.

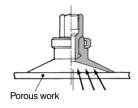
^{*} Properties, chemical resistance, and other values are not guaranteed. These values depend on the operating environment, so they cannot be guaranteed by SMC. Thorough research and confirmation are necessary before usage.


Buffer Attachment

• Choose buffer type when the workpieces are of varying heights, the workpieces are fragile, or you need to reduce the impact to the pad. If rotation needs to be limited, use non-rotating buffer.

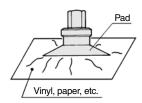
Unsteady Distance between Pad and Workpiece

When the workpieces are of varying heights, use the buffer type pad with built-in spring. The spring creates a cushion effect between the pad and the workpieces. If rotation needs to be limited further, use non-rotating buffer type.

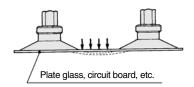


● Pad Selection by Workpiece Type

• Carefully select a pad for the following workpieces.

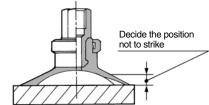

1. Porous Workpiece

To pick a permeable workpiece such as paper, select a pad with a small diameter that is sufficient to lift the workpiece. Because a large amount of air leakage could reduce the pad's suction force, it may be necessary to increase the capacity of an ejector or vacuum pump or enlarge the conductance area of the piping passage.


3. Soft Workpiece

If a soft workpiece such as vinyl, paper, or thin sheet is picked up, the vacuum pressure could cause the workpiece to deform or wrinkle. In such a case, it will be necessary to use a small pad or a ribbed pad and reduce the vacuum pressure.

2. Flat Plate Workpiece


When a workpiece with a large surface area such as sheet glass or PCB is suspended, the workpiece could move in a wavelike motion if a large force is applied by wind pressure or by an impact. Therefore, it is necessary to ensure the proper allocation and size of pads.

4. Impact to Pad

When pushing a pad to a workpiece, make sure not to apply an impact or a large force which would lead to premature deformation, cracking, or wearing of the pad. The pad should be pushed against the workpiece to the extent that its skirt portion deforms or that its ribbed portion comes into slight contact with the workpiece.

Especially, when using a smaller diameter pad, make sure to locate it correctly.

Vacuum Pad Durability

- Need to be careful of the vacuum pad (rubber) deterioration.
- The vacuum pad's adsorption surface will be worn out when it is used for a certain period of time, and the outer diameter gradually becomes smaller. The lifting force becomes weaker as the pad diameter becomes smaller, but absorption is still possible.
- Decide when to replace the vacuum pads, taking into account the customer's operating conditions, and signs of deterioration such as changes in the appearance due to wear, reduction in the vacuum pressure that is reached, and delay in the adsorption response time.

3 Selection of Vacuum Ejector and Vacuum Switching Valve

Calculating Vacuum Ejector and Switching Valve Size with the Formula

Average suction flow rate for achieving adsorption response time

 $Q = \frac{V \times 60}{T_1} + QL$ Q: Average suction flow rate L/min (ANR)
V: Piping capacity (L)

 $T_2 = 3 \times T_1$ T_1 : Arrival time to stable **Pv** 63% after adsorption (sec) T_2 : Arrival time to stable **Pv** 95% after adsorption (sec)

QL: Leakage volume during workpiece adsorption L/min (ANR) Note 1)

Max. suction flow rate

Qmax = (2 to 3) x Q L/min (ANR)

<Selection Procedure>

Ejector
 Select the ejector with the greater maximum suction flow rate from the Qmax indicated above.

• Direct operation valve

Conductance C =
$$\frac{Qmax}{55.5}$$
 [dm³/(s·bar)]

* Select a valve (solenoid valve) having a conductance that is greater than that of the conductance **C** formula given above from the related equipment (page 1278 in Best Pneumatics No. 4).

Note 1) QL: 0 when no leakage occurs during adsorbing a workpiece.

If there is leakage during adsorbing a workpiece, find the leakage volume based on "4. Leakage Volume during Workpiece Adsorption."

Note 2) Tube piping capacity can be found in "8. Data: Piping Capacity by Tube I.D. (Selection Graph (2))."

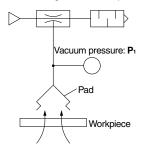
Leakage Volume during Workpiece Adsorption

Air could be drawn in depending on the type of workpiece. As a result, the vacuum pressure in the pad becomes reduced and the amount of vacuum that is necessary for adsorption cannot be attained.

When this type of workpiece must be handled, it is necessary to select the proper size of the ejector and the vacuum switching valve by taking into consideration the amount of air that could leak through the workpiece.

◆ Leakage Volume from Conductance of Workpiece

Leakage volume QL = 55.5 x CL

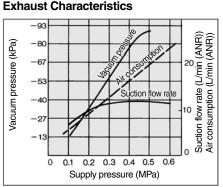

QL: Leakage volume L/min (ANR)

CL: Conductance between workpiece and pad, and workpiece opening area [dm³/(s·bar)]

■ Leakage Volume from Adsorption Test

As described in the illustration below, pick up the workpiece with the ejector, using an ejector, pad and a vacuum gauge.

At this time, read vacuum pressure P₁, obtain the suction flow rate from the flow-rate characteristics graph for the ejector that is being used, and render this amount as the leakage of the workpiece.


Exercise: Using a supply pressure of 0.45 MPa, when the ejector (ZH07□S) picks up a workpiece that leaks air, the vacuum gauge indicated a pressure of −53 kPa. Calculate the leakage volume from the workpiece.

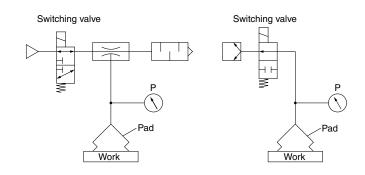
<Selection Procedure>

When obtaining the suction flow rate at a vacuum pressure of –53 kPa from the ZH07DS flow-rate characteristics graph, the suction flow rate is 5 L/min (ANR). $(\widehat{\mathbb{A}} \to \widehat{\mathbb{B}} \to \widehat{\mathbb{C}})$

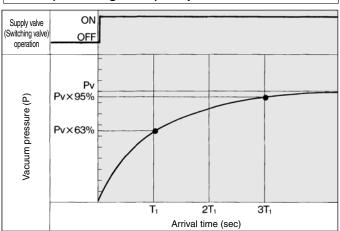
Leakage volume ≈ Suction flow rate 5 L/min (ANR)

ZH07BS, ZH07DS

Flow-rate Characteristics Supply pressure {0.45 MPa} -93 -80 -80 -67 -67 -67 -67 -13 -10 -15 Suction flow rate (L/min (ANR))


5 Adsorption Response Time

When a vacuum pad is used for the adsorption transfer of a workpiece, the approximate adsorption response time can be obtained (the length of time it takes for the pad's internal vacuum pressure to reach the pressure that is required for adsorption after the supply valve {vacuum switching valve} has been operated). An approximate adsorption response time can be obtained through formulas and selection graphs.


Relationship between Vacuum Pressure and Response Time after Supply Valve (Switching Valve) is Operated

The relationship between vacuum pressure and response time after the supply valve (switching valve) is operated as shown below.

Vacuum System Circuit

Vacuum Pressure and Response Time after Supply Valve (Switching Valve) is Operated

Pv: Final vacuum pressure

T₁: Arrival time to 63% of final vacuum pressure Pv

T₂: Arrival time to 95% of final vacuum pressure **Pv**

◆ Calculating Adsorption Response Time with the Formula

Adsorption response times T1 and T2 can be obtained through the formulas given below.

Adsorption response time $T_1 = \frac{V \times 60}{Q}$

Adsorption response time $T_2 = 3 \times T_1$

Piping capacity

$$V = \frac{3.14}{4} D^2 \times L \times \frac{1}{1000} (L)$$

T₁: Arrival time to 63% of final vacuum pressure Pv (sec)

T2: Arrival time to 95% of final vacuum pressure Pv (sec)

Q1: Average suction flow rate L/min [ANR]

(Calculation of average suction flow rate

Ejector

 $Q_1 = (1/2 \text{ to } 1/3) \text{ x Ejector max. suction flow rate L/min [ANR]}$

Vacuum pump

 $Q_1 = (1/2 \text{ to } 1/3) \text{ x } 55.5 \text{ x Conductance of vacuum pump } [dm^3/(s \cdot bar)]$

D: Piping diameter (mm)

L: Length from ejector and switch valve to pad (m)

V : Piping capacity from ejector and switching valve to pad (L)

Q2: Max. flow from ejector and switching valve to pad by piping system

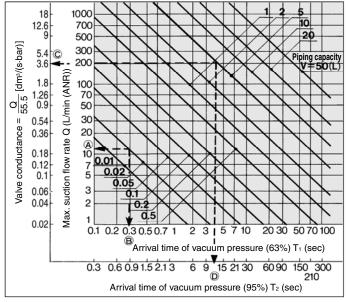
 $Q_2 = C \times 55.5 \text{ L/min} [ANR]$

Q: Smaller one between the Q1 and Q2 L/min [ANR]

C: Conductance of piping [dm³/(s·bar)]

For the conductance, the equivalent conductance can be found in "8. Data: Conductance by Tube I.D. (Selection Graph (3))."

Adsorption Response Time from the Selection Graph


1. Tube Piping Capacity

Piping capacity from the ejector and switching valve at vacuum pump to the pad can be found in "8. Data: Piping Capacity by Tube I.D. (Selection Graph (2))."

2. Obtain the adsorption response times.

By operating the supply valve (switching valve) that controls the ejector (vacuum pump), the adsorption response times T_1 and T_2 that elapsed before the prescribed vacuum pressure is reached can be obtained from the Selection Graph (1).

Selection Graph (1) Adsorption Response Time

^{*} Conversely, the size of the ejector or the size of the switching valve of the vacuum pump system can be obtained from the adsorption response time.

How to read the graph

Example 1: For obtaining the adsorption response time until the pressure in the piping system with a piping capacity of 0.02 L is discharged to 63% (T1) of the final vacuum pressure through the use of the vacuum ejector ZH07 S with a maximum suction flow rate of 12 L/min (ANR).

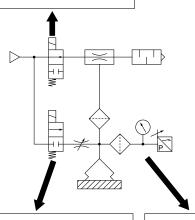
<Selection Procedure>

From the point at which the vacuum ejector's maximum vacuum suction flow rate of 12 L/min (ANR) and the piping capacity of 0.02 L intersect, the adsorption response time T_1 that elapses until 63% of the maximum vacuum pressure is reached can be obtained. (Sequence in Selection Graph (1), $\bigcirc \rightarrow \bigcirc$) $T_1 \approx 0.3$ seconds.

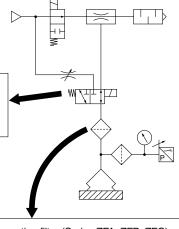
Example 2: For obtaining the discharge response time until the internal pressure in the 5 L tank is discharged to 95% (T2) of the final vacuum pressure through the use of a valve with a conductance of 3.6 [dm³/(s·bar)].

<Selection Procedure>

From the point at which the valve's conductance of 3.6 [dm³/(s·bar)] and the piping capacity of 5 L intersect, the discharge response time (T2) that elapses until 95% of the final vacuum pressure is reached can be obtained. (Sequence in Selection Graph (1), $\bigcirc \rightarrow \bigcirc$) $T_2 \approx 12$ seconds.


6 Precautions on Vacuum Equipment Selection and SMC's Proposal

Safety Measures


• Make sure to provide a safe design for a vacuum pressure drop due to a disruption of power supply, or a lack of supply air. Drop prevention measures must be taken in particular when dropping a workpiece presents some degree of danger.

Precautions on Vacuum Equipment Selection

As a countermeasure for power outages, select a supply valve that is normally open or one that is equipped with a self-holding function.

Select a vacuum switching valve that has a conductance that does not reduce the composite conductance consisting of the areas from the pad to the ejector.

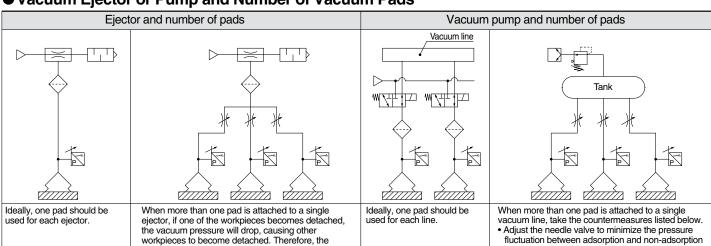
For the release valve, select a 2/3 port valve with a low vacuum specification. Also, use a needle valve to regulate the release flow rate.

- · During the adsorption and transfer of a workpiece, verification of the vacuum switch is recommended.
- In addition, visually verify the vacuum gauge when handling a heavy or a hazardous item.
- The ZSP1 type is optimal for the adsorption and transfer of small parts using a suction nozzle with a small diameter.
- Install a filter (Series ZFA, ZFB, ZFC) before the pressure switch if the ambient air is of low quality.

Use a suction filter (Series ZFA, ZFB, ZFC) to protect the switching valve and to prevent the ejector from becoming clogged. Also, a suction filter must be used in a dusty environment. If only the unit's filter is used, it will become clogged quickly.

Vacuum Ejector or Pump and Number of Vacuum Pads

countermeasures listed below must be taken.


adsorption error occurs.

Adjust the needle valve to minimize the pressure

fluctuation between adsorption and non-adsorption

Provide a vacuum switching valve to each individual

pad to minimize the influences on other pads if an

operation.

the source pressure.

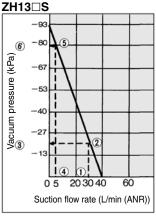
adsorption error occurs.

• Include a tank and a vacuum pressure reduction

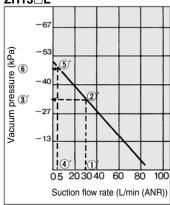
valve (vacuum pressure regulator valve) to stabilize

• Provide a vacuum switching valve to each individual

pad to minimize the influences on other pads if an


Vacuum Ejector Selection and Handling Precautions

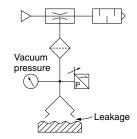
Ejector Selection


There are 2 types of ejector flow-rate characteristics: the high vacuum type (S type) and the high flow type (L type).

During the selection, pay particular attention to the vacuum pressure when adsorbing workpieces that leak.

High Vacuum Type Flow-rate Characteristics/

High Flow Type Flow-rate Characteristics/ ZH13□L

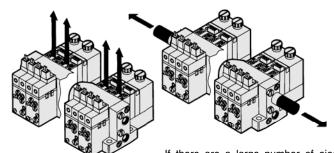


The vacuum pressure varies in accordance with the leakage volumes indicated in the above diagrams.

If the leakage volume is 30 L/min (ANR), the vacuum pressure of the S type is -20 kPa $1 \rightarrow 2 \rightarrow 3$, and for the L type it is -33 kPa $1 \rightarrow 2 \rightarrow 3$. If the leakage volume is 5 L/min (ANR), the vacuum pressure of the S type is -80 kPa $4 \rightarrow 5 \rightarrow 6$, and for the L type it is -47 kPa $4 \rightarrow 5 \rightarrow 6$. Thus, if the leakage volume is 30 L/min (ANR) the L type can attain a higher vacuum pressure, and if the leakage volume is 5 L/min (ANR), the S type can attain a higher vacuum pressure.

Thus, during the selection process, make sure to take the flow-rate characteristics of the high vacuum type (S type) and the high flow type (L type) into consideration in order to select the type that is optimal for your application.

Ejector Nozzle Diameter Selection



If a considerable amount of leakage occurs between the workpiece and the pad, resulting in incomplete adsorption, or to shorten the adsorption and transfer time, select an ejector nozzle with a larger diameter from the ZH, ZM, ZR, or ZL series.

Manifold Use

Individual exhaust

Centralized exhaust

If there are a large number of ejectors that are linked on a manifold and operate simultaneously, use the built-in silencer type or the port exhaust type.

If there are a large number of ejectors that are linked on a manifold, which exhaust collectively, install a silencer at both ends. If the exhaust must be discharged outdoors through piping, make sure that the diameter of the piping is large enough that its back pressure will not affect the operation of the ejectors.

• If the vacuum ejector makes an intermittent noise (abnormal noise) from exhaust at a certain supply pressure, the vacuum pressure will not be stable. It will not be any problem if the vacuum ejector is used under this condition. However, if the noise is disturbing or might affect the operation of the vacuum pressure switch, lower or raise supply pressure a little at a time, and use in an air pressure range that does not produce the intermittent noise.

Supply Pressure of Vacuum Ejector

• Use the vacuum ejector at the standard supply pressure.

The maximum vacuum pressure and suction flow rate can be obtained when the vacuum ejector is used at the standard supply pressure, and as a result, adsorption response time also improves. From the viewpoint of energy-saving, it is the most effective to use the ejector at the standard supply pressure. Since using it at the excessive supply pressure causes a decline in the ejector performance, do not use it at a supply pressure exceeding the standard supply.

● Timing for Vacuum Generation and Suction Verification

A. Timing for Vacuum Generation

The time for opening/closing the valve will be counted if a vacuum is generated after the adsorption pad descends to adsorb a workpiece. Also, there is a timing delay risk for the generating vacuum since the operational pattern for the verification switch, which is used for detecting the descending vacuum pad, is not even.

To solve this issue, we recommend that vacuum be generated in advance, before the vacuum pad begins to descend to the workpiece. Adopt this method after confirming that there will be no misalignment resulting from the workpiece's light mass.

B. Suction Verification

When lifting the vacuum pad after absorbing a workpiece, confirm that there is a suction verification signal from the vacuum pressure switch, before the vacuum pad is lifted. If the vacuum pad is lifted, based on the timing of a timer, etc., there is a risk that the workpiece may be left behind.

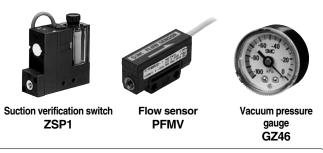
In general adsorption transfer, the time for adsorbing a workpiece is slightly different since the position of the vacuum pad and the workpiece are different after every operation. Therefore, program a sequence in which the suction completion is verified by a vacuum pressure switch, etc. before moving to the next operation.

C. Set Pressure for Vacuum Pressure Switch

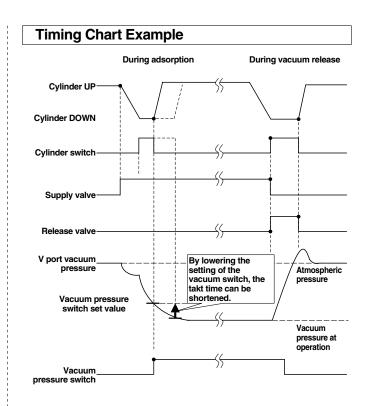
Set the optimum value after calculating the required vacuum pressure for lifting a workpiece.

If a higher pressure than required is set, there is a possibility of being unable to confirm the suction even though the workpiece is adsorbed. This will result in a suction error.

When setting vacuum pressure switch set values, you should set using a lower pressure, with which a workpiece can be adsorbed, only after considering the acceleration or vibration when a workpiece is transferred. The set value of the vacuum pressure switch shortens the time to lift a workpiece. Since the switch detects whether the workpiece is lifted or not, the pressure must be set high enough to detect it.


Vacuum Pressure Switch (Series ZS), Vacuum Pressure Gauge (Series GZ)

When adsorbing and transferring a workpiece, verify at the vacuum pressure switch as much as possible (In addition, visually verify the vacuum gauge, especially when handling a heavy or a hazardous item.).


Approx. Ø1 adsorption nozzle

The difference in pressure between ON and OFF becomes small depending on the capacity of the ejector and vacuum pump. In such a case, it will be necessary to use ZSP1 that can detect a small hysteresis or a flow switch.

- Note) A vacuum generator with a large suction capacity will not be detected properly, so an ejector with an appropriate capacity must be selected.
 - Since the hysteresis is small, vacuum pressure must be stabilized.

Refer to the Best Pneumatics No. 6 for details.

Dust Handling of Vacuum Equipment

- When the vacuum equipment is used, not only the workpiece, but also dust in the surrounding environment is taken in the equipment. Preventing the intrusion of dust is required more than for any other pneumatic equipment. Some of SMC's vacuum equipment comes with a filter, but when there is a large amount of dust, an additional filter must be installed.
- When vaporized materials such as oil or adhesive are sucked into the equipment, they accumulate inside, which may cause problems.
- It is important to prevent dust from entering the vacuum equipment as much as possible.
- (1) Make sure to keep the working environment and surrounding area of the workpiece clean so that dust will not be sucked in the equipment.
- (2) Check the amount and types of dust before using the equipment and install a filter, etc., in the piping when necessary. In particular, equipment used to capture dust, such as a vacuum cleaner, require a special filter.
- (3) Conduct a test and make sure that operating conditions are cleared before using the equipment.
- (4) Perform filter maintenance depending on the amount of dirt.
- (5) Filter clogging generates a pressure difference between the adsorption and ejector parts. This requires attention, since clogging can prevent proper adsorption from being achieved.

Air Suction Filter (Series ZFA, ZFB, ZFC)

- To protect the switching valve and the ejector from becoming clogged, a suction filter in the vacuum circuit is recommended.
- When using an ejector in a dusty environment, the unit's filter will become clogged quickly, so it is recommended that the ZFA, ZFB or ZFC series be used concurrently.

Vacuum Line Equipment Selection

Determine the volume of the suction filter and the conductance of the switching valve in accordance with the maximum suction flow rate of the ejector and the vacuum pump. Make sure that the conductance is greater than the value that has been obtained through the formula given below. (If the devices are connected in series in the vacuum line, their conductances must be combined.)

 $C = \frac{Q_{\text{max}}}{55.5}$

C: Conductance [dm³/(s⋅bar)]

Qmax: Max. suction flow rate L/min (ANR)

7 Vacuum Equipment Selection Example

Transfer of Semiconductor Chips

Selection conditions:

(1) Workpiece: Semiconductor chips

Dimensions: 8 mm x 8 mm x 1 mm, Mass: 1 g

(2) Vacuum piping length: 1 m

(3) Adsorption response time: 300 msec or less

1. Vacuum Pad Selection

- (1) Based on the workpiece size, the pad diameter is 4 mm (1 pc.).
- (2) Using the formula on the front matter 4, confirm the lifting force.

W = P x S x 0.1 x 1/tW = 1 g = 0.0098 N0.0098 = P x 0.13 x 0.1 x 1/4S =
$$\pi/4$$
 x (0.4)2 = 0.13 cm2P = 3.0 kPat = 4 (Horizontal lifting)

According to the calculation, -3.0 kPa or more of vacuum pressure can adsorb the workpiece.

(3) Based on the workpiece shape and type, select:

Pad type: Flat Pad material: Silicone

(4) According to the results above, select a vacuum pad part number ZP3-04US
(Specify the vacuum islet type (SS) from the pad maunting status.)

(Specify the vacuum inlet type ($\Box\Box$) from the pad mounting status.)

2. Vacuum Ejector Selection

(1) Find the vacuum piping capacity.

Assuming that the tube I.D. is 2 mm, the piping capacity is as follows:

$$V = \pi/4 \times D^2 \times L \times 1/1000 = \pi/4 \times 2^2 \times 1 \times 1/1000$$

= 0.0031 L

(2) Assuming that leakage (**Q**L) during adsorption is 0, find the average suction flow rate to meet the adsorption response time using the formula on the front matter 8.

$$Q = (V \times 60) / T_1 + Q_L = (0.0031 \times 60) / 0.3 + 0 = 0.62 L$$

From the formula on the front matter 8, the maximum suction flow rate Qmax is

$$Q_{max} = (2 \text{ to } 3) \times Q = (2 \text{ to } 3) \times 0.62$$

= 1.24 to 1.86 L/min (ANR)

According to the maximum suction flow rate of the vacuum ejector, a nozzle with a 0.5 diameter can be used.

If the vacuum ejector ZX series is used, representative model ZX105□ can be selected.

(Based on the operating conditions, specify the complete part number for the vacuum ejector used.)

3. Adsorption Response Time Confirmation

Confirm the adsorption response time based on the characteristics of the vacuum ejector selected.

(1) The maximum suction flow rate of the vacuum ejector ZX105□ is 5 L/min (ANR). From the formula on the front matter 9, the average suction flow rate **Q**₁ is as follows:

$$Q_1 = (1/2 \text{ to } 1/3) \text{ x Ejector max. suction flow rate}$$

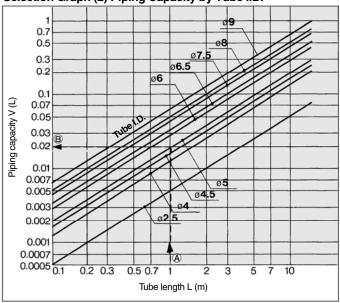
= $(1/2 \text{ to } 1/3) \text{ x } 5 = 2.5 \text{ to } 1.7 \text{ L/min (ANR)}$

(2) Next, find the maximum flow rate **Q**₂ of the piping. The conductance **C** is **0.22** from the Selection Graph (3). From the formula on the front matter 9, the maximum flow rate is as follows:

$$Q_2 = C \times 55.5 = 0.22 \times 55.5 = 12.2 \text{ L/min (ANR)}$$

(3) Since Q_2 is smaller than Q_1 , $Q = Q_1$.

Thus, from the formula on the front matter 9, the adsorption response time is as follows:


$$T = (V \times 60)/Q = (0.0031 \times 60)/1.7 = 0.109$$
 seconds
= 109 msec

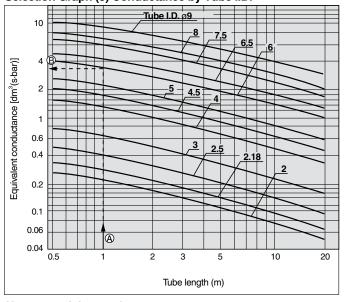
It is possible to confirm that the calculation result satisfies the required specification of 300 msec.

8 Data

Selection Graph

Selection Graph (2) Piping Capacity by Tube I.D.

How to read the graph


Example: For obtaining the capacity of tube I.D. ø5 and 1 meter length

<Selection Procedure>

By extending leftward from the point at which the 1 meter tube length on the horizontal axis intersects the line for a tube I.D. \emptyset 5, the piping capacity approximately equivalent to 0.02 L can be obtained on the vertical axis.

Piping capacity \approx 0.02 L

Selection Graph (3) Conductance by Tube I.D.

How to read the graph

Example: Tube size Ø8/Ø6 and 1 meter length

<Selection Procedure>

By extending leftward from the point at which the 1 meter tube length on the horizontal axis intersects the line for a tube I.D. ø6, the equivalent conductance approximately 3.6 [dm³/(s·bar)] can be obtained on the vertical axis.

Equivalent conductance = 3.6 [dm³/(s-bar)]

Glossary of Terms

Terms	Description
(Max.) suction flow rate	Volume of air taken in by the ejector. The maximum value is the volume of air taken in without having anything connected to the vacuum port.
Maximum vacuum pressure	The maximum value of the vacuum pressure generated by the ejector
Air consumption	The compressed volume of air consumed by the ejector
Standard supply pressure	The optimal supply pressure for operating the ejector
Exhaust characteristics	The relationship between the vacuum pressure and the suction flow rate when the supply pressure to the ejector has been changed.
Flow-rate characteristics	The relationship between the vacuum pressure and the suction flow rate with the standard supply pressure supplied to the ejector.
Vacuum pressure switch	Pressure switch for verifying the adsorption of a workpiece
Suction verification switch	Switch, based on an air pressure bridge, for verifying the adsorption of a workpiece. It is used when the adsorption pad and the nozzle are extremely small.
(Air) supply valve	Valve for supplying compressed air to the ejector
(Vacuum) release valve	Valve for supplying positive pressure or air for breaking the vacuum state of the adsorption pad
Flow adjustment valve	Valve for adjusting the volume of air for breaking the vacuum
Release pressure	Pressure for breaking the vacuum
Pilot pressure	Pressure for operating the ejector valve
External release	The action of breaking the vacuum using externally supplied air instead of using the ejector unit
Vacuum port	Port for generating vacuum
Exhaust port	Port for exhausting air consumed by the ejector, and air taken in from the vacuum port.
Supply port	Port for supplying air to the ejector
Back pressure	Pressure inside the exhaust port
Leakage	The entry of air into the vacuum passage, such as from an area between a workpiece and a pad, or between a fitting and a tube. The vacuum pressure decreases when leakage occurs.
Response time	The time from the application of the rated voltage to the supply valve or release valve,until V port pressure reaches the specified pressure.
Average suction flow rate	The suction flow rate by the ejector or pump for calculating the response speed. It is 1/2 to 1/3 of the maximum suction flow rate.
Conductive pad	A low electrical resistance pad for electrostatic prevention measure
Vacuum pressure	Any pressure below the atmospheric pressure. When the atmospheric pressure is used as a reference, the pressure is presented by –kPa (G), and when the absolute pressure is used as a reference, the pressure is represented by kPa (abs). When referencing a piece of vacuum equipment such as an ejector, the pressure is generally represented by –kPa.
Ejector	A unit for generating vacuum by discharging the compressed air from a nozzle at a high speed, based on the phenomenon in which the pressure is reduced when the air around the nozzle is sucked.
Air suction filter	Vacuum filter provided in the vacuum passage for preventing the dust intrusion into the ejector, vacuum pump, or peripheral equipment
	•

● Countermeasures for Vacuum Adsorption System Problems (Troubleshooting)

Condition & Description of improvement	Contributing factor	Countermeasure
Initial adsorption problem (During trial operation)	Adsorption area is small. (Lifting force is lower than the workpiece mass.)	Reconfirm the relationship between workpiece mass and lifting force. • Use a vacuum pad with a large adsorption area. • Increase the quantity of vacuum pads.
	Vacuum pressure is low. (Leakage from adsorption surface) (Air permeable workpiece)	Eliminate (reduce) leakage from adsorption surface. Reconsider shape of vacuum pad. Confirm the relationship between suction flow rate and arrival pressure of vacuum ejector. Use a vacuum ejector with a high suction flow rate. Increase adsorption area.
	Vacuum pressure is low. (Leakage from vacuum piping)	Repair leakage point.
	Internal volume of vacuum circuit is large.	Confirm the relationship between internal volume of the vacuum circuit and suction flow rate of the vacuum ejector. • Reduce internal volume of the vacuum circuit. • Use a vacuum ejector with a high suction flow rate.
	Pressure drop of vacuum piping is large.	Reconsider vacuum piping. • Use a shorter or larger tube (with appropriate diameter).
	Inadequate supply pressure of vacuum ejector	Measure supply pressure in vacuum generation state. • Use standard supply pressure. • Reconsider compressed air circuit (line).
	Clogging of nozzle or diffuser (Infiltration of foreign objects during piping)	Remove foreign objects.
	Supply valve (switching valve) is not being activated.	Measure supply voltage at the solenoid valve with a tester. Review electric circuits, wiring and connectors. Use in the rated voltage range.
	Workpiece deforms during adsorption.	Since a workpiece is thin, it deforms and leakage occurs. • Use a pad for adsorption of thin objects.
Late vacuum achieving time (Shortening of response time)	Internal volume of vacuum circuit is large.	Confirm the relationship between internal volume of the vacuum circuit and suction flow rate of the vacuum ejector. Reduce internal volume of the vacuum circuit. Use a vacuum ejector with a high suction flow rate.
	Pressure drop of vacuum piping is large.	Reconsider vacuum piping. • Use a shorter or larger tube (with appropriate diameter).
	Using the product as close to the highest vacuum power in the specifications.	Set vacuum pressure to minimum necessary value by optimizing the pad diameter, etc. As the vacuum power of an ejector (venturi) rises, the vacuum flow actually lowers. When an ejector is used at its highest possible vacuum value, the vacuum flow will lower. Due to this, the amount of time needed to achieve adsorption is lengthened. One should consider an increase in the diameter of the ejector nozzle or an increase the size of the vacuum pad utilized in order to lower the required vacuum pressure, maximum the vacuum flow, and speed up the adsorption process.
	Setting of vacuum pressure switch is too high.	Set to suitable setting pressure.

Condition & Description of improvement	Contributing factor	Countermeasure
Fluctuation in vacuum pressure	Fluctuation in supply pressure	Reconsider compressed air circuit (line). (Addition of a tank, etc.)
	Vacuum pressure may fluctuate under certain conditions due to ejector characteristics.	Lower or raise supply pressure a little at a time, and use in a supply pressure range where vacuum pressure does not fluctuate.
Occurrence of abnormal noise (intermittent noise) from exhaust of vacuum ejector	Intermittent noise may occur under certain conditions due to ejector characteristics.	Lower or raise supply pressure a little at a time, and use in a supply pressure range where the intermittent noise does not occur.
Air leakage from vacuum port of manifold type vacuum ejector	Exhaust air from the ejector enters the vacuum port of another ejector that is stopped.	Use a vacuum ejector with a check valve. (Please contact SMC for the part no. of an ejector with a check valve.)
Adsorption problem over time	Clogging of suction filter	Replace filters. Improve installation environment.
(Adsorption was normal during trial operation.)	Clogging of sound absorbing material	Replace sound absorbing materials. Add a filter to supply (compressed) air circuit. Install an additional suction filter.
	Clogging of nozzle or diffuser	Remove foreign objects. Add a filter to supply (compressed) air circuit. Install an additional suction filter.
	Vacuum pad (rubber) deterioration, cracking, etc.	Replace vacuum pads. Confirm compatibility of vacuum pad material and workpiece.
Workpiece is not released.	Inadequate release flow rate	Open release flow adjustment needle.
13.546561	Viscosity increase due to vacuum pad (rubber) wear	Replace vacuum pads. Confirm compatibility of vacuum pad material and workpiece.
	Vacuum pressure is too high.	Set vacuum pressure to minimum necessary value.
	Effects due to static electricity	Use a conductive pad.

●Non-conformance Examples

Phenomenon	Possible causes	Countermeasure
No problem occurred during the test, but adsorption becomes unstable after starting operation.	 Setting of the vacuum switch is not appropriate. Supply pressure is unstable. Vacuum pressure does not reach the set pressure. There is leakage between the workpiece and the vacuum pad. 	1) Set the pressure for the vacuum equipment (supply pressure, if using an ejector) to the necessary vacuum pressure during the adsorption of the workpieces. And set the set pressure for the vacuum switch to the necessary vacuum pressure for adsorption. 2) It is presumed that there was leakage during the test, but it was not serious enough to prevent adsorption. Revise the vacuum ejector and the shape, diameter, and material of the vacuum pad. Revise the vacuum pad.
Adsorption becomes unstable after replacing the pad.	 Initial setting conditions (vacuum pressure, vacuum switch setting, height of the pad) have changed. Settings have changed because the pad was worn out or had permanent setting due to the operating environment. When the pad was replaced, leakage was generated from the screw connection part, or the engagement between the pad and the adapter. 	Revise the operating conditions including vacuum pressure, the set pressure of the vacuum switch, and the height of the pad. Revise the engagement.
Identical pads are used to adsorb identical workpieces, but some of the pads cannot adsorb the workpieces.	There is leakage between the workpiece and the vacuum pad. The supply circuit for the cylinder, the solenoid valve and the ejector is in the same pneumatic circuit system. The supply pressure decreases when they are used simultaneously. (Vacuum pressure does not increase) There is leakage from the screw connection part or the engagement between the pad and the adapter.	Revise the pad diameter, shape, material, vacuum ejector (suction flow rate), etc. Revise the pneumatic circuit. Revise the engagement.
The workpiece cannot be separated from the pad. The workpiece sticks to the rubber part of the bellows.	The adhesiveness of the rubber material is high. Adhesiveness increases due to the operating environment (wearing of the pad, etc.). Vacuum pressure is higher than necessary, so excessive force (adhesiveness of the rubber + vacuum pressure) is applied to the pad (rubber part).	Revise the shape, material, and quantity of vacuum pads. Reduce the vacuum pressure. If inadequate lifting force causes a problem in transferring the workpieces due to the reduction of vacuum pressure, increase the number of pads, or select pads with larger diameter.

■ When mounted with the nut, sometimes the buffer operation is not smooth, or the buffer does not slide.

[Possible causes]

- The tightening torque of the nut for mounting the buffer is too high.
- Particles stuck to the sliding surface, or it is scratched.
- Lateral load applied to the piston rod, causing eccentric wearing.

[Remedy]

Tighten the nut to the recommended tightening torque.

The nut may become loose depending on the operating conditions and environment. Be sure to perform regular maintenance.

General Purpose

Product specifications			Nut tightening torque	
Pad diameter	Product part no.	Mounting thread size	Nut tigritering torque	
ø1.5 to ø3.5	7D2 */015 to 005) LI*	M6 x 0.75	1.5 to 1.8 N⋅m	
	ZP3-*(015 to 035) U*	M8 x 0.75	2.0 to 2.5 N⋅m	
ø 4 to ø 16	ZP3-*(04 to 16) UM, B* ZP3-*(10 to 16) UM, B*	M8 x 0.75	2.0 to 2.5 N⋅m	

●Time of Replacement of Vacuum Pad

The vacuum pad is disposable. Replace it on a regular basis.

Continued use of the vacuum pad will cause wear and tear on the adsorption surface, and the exterior dimensions will gradually get smaller and smaller. As the pad diameter gets smaller, lifting force will decrease, though adsorption is possible.

It is extremely difficult to provide advice on the frequency of vacuum pad exchange. This is because there are numerous factors at work, including surface roughness, operationg environment (temperature, humidity, ozone, solvents, etc.), and operating conditions (vacuum pressure, workpiece weight, pressing force of the vacuum pad on the workpiece, presence or absence of a buffer, etc.).

Thus, the customer should decide when the vacuum pad should be exchanged, based on its condition at time of initial use.

The bolt may become loose depending on the operating conditions and environment. Be sure to perform regular maintenance.

Compact Pad

Pad diameter Ø1.5, Ø2, Ø3.5, Ø4, Ø6, Ø8, Ø10, Ø13, Ø16

Symbol/Type

U: Flat

UM: Flat with groove

B: Bellows

How to Order

Pad unit

ZP3 – <u>015</u> <u>U</u> N

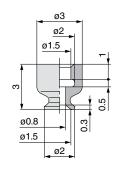
Pad diameter

Symbol	Pad diameter
015	ø1.5
02	ø2
035	ø3.5
04	ø4
06	ø6
08	ø8
10	ø10
13	ø13
16	ø16

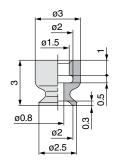
Pad material

Symbol	Material
N	NBR
S	Silicone rubber
U	Urethane rubber
F	FKM
GN	Conductive NBR
GS	Conductive silicone rubber

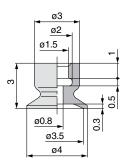
Pad diameter Pad type (Symbol)	015	02	035	04	06	08	10	13	16
U (Flat)	•	•	•	_	_	_	_	_	_
UM (Flat with groove)	_	_	_	•	•	•	•	•	•
B (Bellows)	_	l		•	•	•	•		


* Sales unit

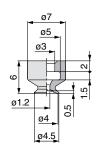
ø1.5 to ø8 : 10 pcs. ø10 to ø16 : 5 pcs.


Dimensions: Pad Unit

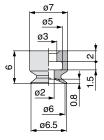
Flat


ZP3-015U [Weight: 0.1 g]

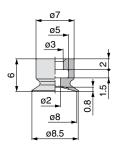
ZP3-02U [Weight: 0.1 g]



ZP3-035U [Weight: 0.1 g]

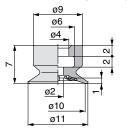


ZP3-04UM [Weight: 0.3 g]

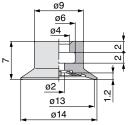


ZP3-06UM [Weight: 0.3 g]

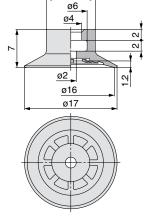
ZP3-08UM [Weight: 0.3 g]

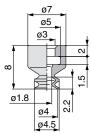


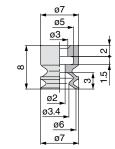
Dimensions: Pad Unit

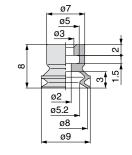

Bellows

ZP3-10UM [Weight: 0.6 g]

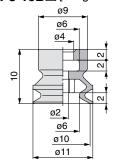

ZP3-13UM [Weight: 0.7 g]

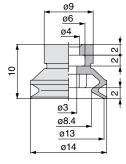

ZP3-06B [Weight: 0.3 g]


ZP3-16UM [Weight: 0.8 g] ø9

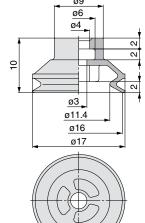

ZP3-08B [Weight: 0.4 g]

ZP3-04B [Weight: 0.3 g]

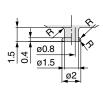


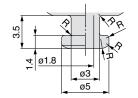


ZP3-13B [Weight: 1.0 g]

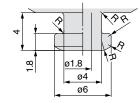

ZP3-10B [Weight: 0.8 g]

ZP3-16B [Weight: 1.1 g] ø9




Pad Mounting Dimensions

If an adapter will be made by the customer, design the adapter with the dimensions shown below.



Applicable pad 04UM/06UM/08UM/04B/06B/08B

Note) R part has to be smooth with no corners. *Refer to page 47 and 48 for applicable adapter.

How to Order

Vertical vacuum inlet/ With adapter

ZP3-T 015 U N - A6-B3

Vacuum inlet direction

Symbol	Direction
Т	Vertical

Pad diameter

Symbol	Pad diameter	Symbol	Pad diameter
015	ø1.5	08	ø8
02	ø2	10	ø10
035	ø3.5	13	ø13
04	ø4	16	ø16
06	αG		

Pad type - Pad diameter

	au ty	pe –	rau	alallic	siei •
Pad diameter (Symbol)	015	02	035	04	06
U (Flat)		•		_	_
UM (Flat with groove)	_	_	_	•	
B (Bellows)	_	_	_	•	

Pad diameter (Symbol)	08	10	13	16
U (Flat)	_	_	_	_
UM (Flat with groove)	•	•	•	•
B (Bellows)	•	•	•	•

Vacuum inlet (♦)

Symbol	\/	Moun	Mounting thread size		
Symbol	Vacuum inlet	A6	A10	A12	
B3	M3 x 0.5 female thread	•	_	_	
B5	M5 x 0.8 female thread	_	•		
U2	ø2 tubing/barb fitting *1	•	•	•	
U4	ø4 tubing/barb fitting *2	•	•	•	
U6	ø6 tubing/barb fitting *2	_	_		
02	ø2 tubing	•	•	•	
04	ø4 tubing	•	•	•	
06	ø6 tubing	_	_	•	
Nil	_	A3	/A5/B3/E	35	

- *1 Polyurethane tube piping
- *2 Soft nylon/Polyurethane tube piping

Mounting thread size

Pad material (□)			
Symbol	Material		
N	NBR		
S	Silicone rubber		
U	Urethane rubber		
F	FKM		
GN	Conductive NBR		

GS Conductive silicone rubber

	Symbol	Mounting	ø1.5	ø 4	ø10
	Syrribor	Thread size	to ø3.5	to ø8	to ø16
	A3*	M3 x 0.5	•	_	_
Male	A5*	M5 x 0.8	_	•	
thread	A6	M6 x 0.75	•	_	_
	A10	M10 x 1	_	•	_
	A12	M12 x 1	_	_	
Female	B3*	M3 x 0.5			_
thread	B5*	M5 x 0.8	_		

^{*} indicates vacuum inlet symbol is "Nil".

Replacement Part No.

Pad diameter: Ø1.5 to Ø3.5

Model	Pad unit part no.	Adapter part no.
ZP3-T (015/02/035) U□-A3		ZP3A-T1-A3
ZP3-T (015/02/035) U□-B3	ZP3-(015/02/035)U□	ZP3A-T1-B3
ZP3-T (015/02/035) U□-A6-♦		ZP3A-T1-A6-B3

Note 1) \square in the table indicates the pad material.

Note 2) \diamondsuit in the table indicates the vacuum inlet.

Note 3) Fitting is ordered separately.

Suffix of how to order (\diamondsuit) U2: M-3AU-2, U4: M-3AU-4-X83 02: KJH02-M3, 04: KJH04-M3-X83

Pad diameter: Ø4 to Ø8

Model	Pad unit part no.	Adapter part no.	
ZP3-T (04/06/08) UM□-A5	ZP3- (04/06/08) UM□	ZP3A-T2-A5	
ZP3-T (04/06/08) B□-A5	ZP3- (04/06/08) B□	ZP3A-12-A5	
ZP3-T (04/06/08) UM □ -B5 ZP3- (04/06/08) UM□		ZP3A-T2-B5	
ZP3-T (04/06/08) B□-B5	ZP3- (04/06/08) B□	ZP3A-12-D3	
ZP3-T (04/06/08) UM □ -A10- ♦ ZP3- (04/06/08) UM□		ZP3A-T2-A10-B5	
ZP3-T (04/06/08) B□-A10-◇	ZP3- (04/06/08) B□	ZP3A-12-A10-D3	
ZP3-T (04/06/08) UM□-A10-04 ZP3- (04/06/08) UM□		7D04 T0 440 04	
ZP3-T (04/06/08) B□-A10-04	ZP3- (04/06/08) B□	ZP3A-T2-A10-04	

Note 1) \square in the table indicates the pad material.

Note 2) \diamondsuit in the table indicates the vacuum inlet.

Note 3) Fitting is ordered separately.

Suffix of how to order (\diamondsuit) U2: M-5AU-2, U4: M-5AU-4-X83,

02: KJH02-M5

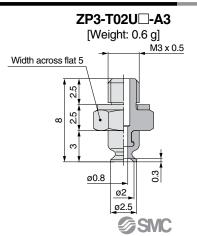
Pad diameter: Ø10 to Ø16

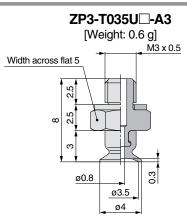
Model	Pad unit part no.	Adapter part no.	
ZP3-T (10/13/16) UM□-A5	ZP3- (10/13/16) UM□	ZP3A-T3-A5	
ZP3-T (10/13/16) B□-A5	ZP3- (10/13/16) B□	ZP3A-13-A5	
ZP3-T (10/13/16) UM□-B5	ZP3- (10/13/16) UM□	ZP3A-T3-B5	
ZP3-T (10/13/16) B□-B5	ZP3- (10/13/16) B□	ZF3A-13-D3	
ZP3-T (10/13/16) UM□-A12-♦	ZP3- (10/13/16) UM□	ZP3A-T3-A12-B5	
ZP3-T (10/13/16) B□-A12-♦	ZP3- (10/13/16) B□		
ZP3-T (10/13/16) UM□-A12-04	ZP3- (10/13/16) UM□	7D04 T0 440 04	
ZP3-T (10/13/16) B□-A12-04	ZP3- (10/13/16) B□	ZP3A-T3-A12-04	
ZP3-T (10/13/16) UM□-A12-06	ZP3- (10/13/16) UM□	ZP3A-T3-A12-06	
ZP3-T (10/13/16) B□-A12-06	ZP3- (10/13/16) B□	ZP3A-13-A12-06	

Note 1) \square in the table indicates the pad material.

Note 2) \diamondsuit in the table indicates the vacuum inlet.

Note 3) Fitting is ordered separately


Suffix of how to order (<>) U2: M-5AU-2, U4: M-5AU-4-X83

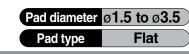

U6: M-5AU-6-X83, 02: KJH02-M5

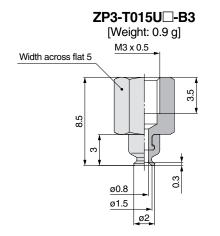
Dimensions/With Adapter: Vacuum Inlet Vertical

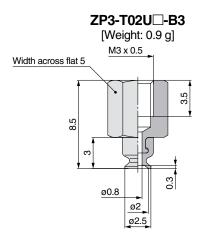
ZP3-T015U□-A3 [Weight: 0.6 g] M3 x 0.5 Width across flat 5 ø0.8 ø1.5

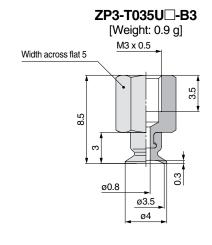
Lateral With Adapter: Vacuum Inlet

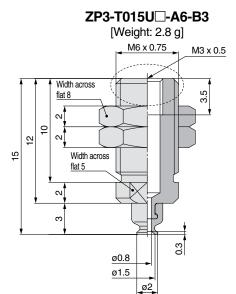
With Buffer: Vacuum Inlet

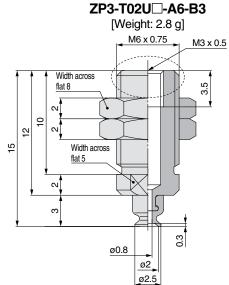

Construction

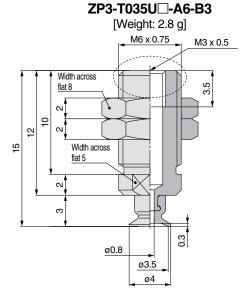

Adapter Applicable Pad List Buffer Applicable Pad List

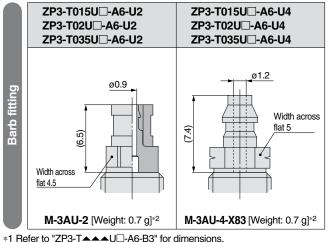

Mounting Adapter Part No.

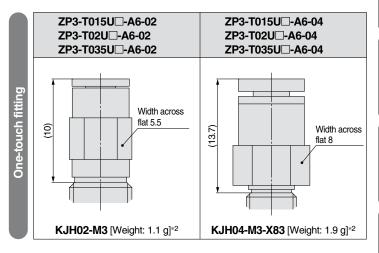

Buffer Assembly Part No.


Dimensions/With Adapter: Vacuum Inlet Vertical



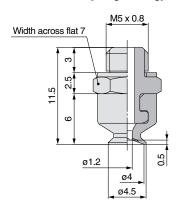




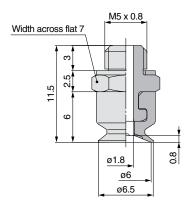


Vacuum Inlet Dimensions

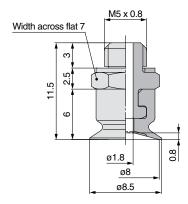
^{*2} When calculating the weight, add the weight of the fitting to "ZP3-TAAAU -A6-B3".


Dimensions/With Adapter: Vacuum Inlet Vertical

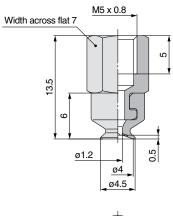
ZP3-T04UM□-A5


[Weight: 1.7 g]

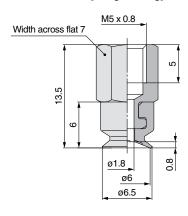
ZP3-T06UM□-A5


[Weight: 1.7 g]

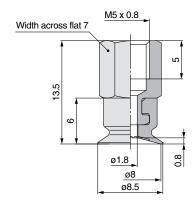
ZP3-T08UM□-**A**5


[Weight: 1.7 g]

ZP3-T04UM□-B5

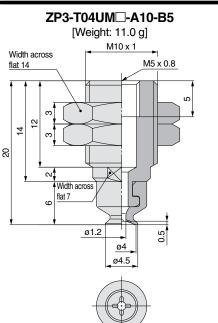

[Weight: 2.3 g]

ZP3-T06UM□-B5

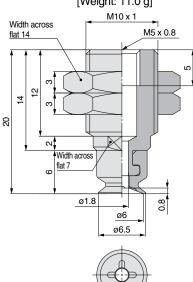

[Weight: 2.3 g]

ZP3-T08UM□-B5

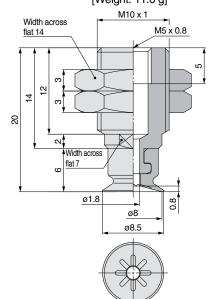
[Weight: 2.3 g]

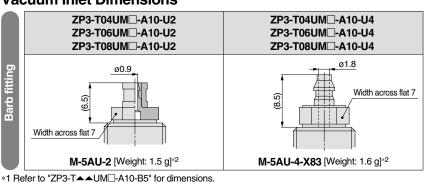

Pad diameter

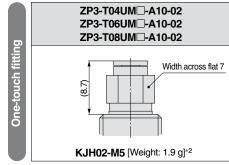
Pad type


Buffer Assembly Part No.

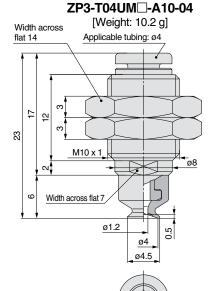
Dimensions/With Adapter: Vacuum Inlet Vertical

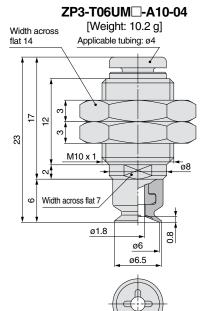


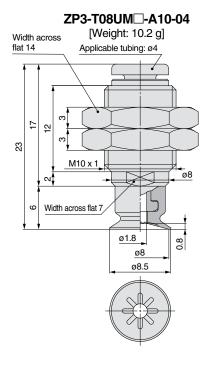

ZP3-T06UM□-A10-B5 [Weight: 11.0 g] M10 x 1



ZP3-T08UM□-**A10-B5** [Weight: 11.0 g]

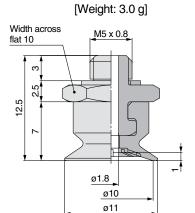



Vacuum Inlet Dimensions

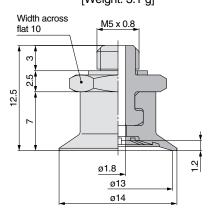


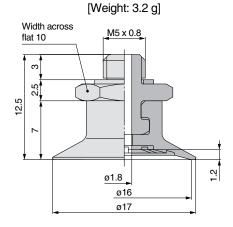
- *2 When calculating the weight, add the weight of the fitting to "ZP3-T▲▲UM□-A10-B5".

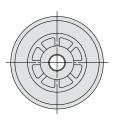
SMC

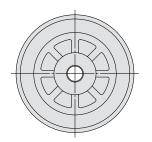


Dimensions/With adapter: Vacuum inlet Vertical

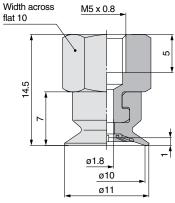


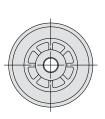

ZP3-T10UM□-A5

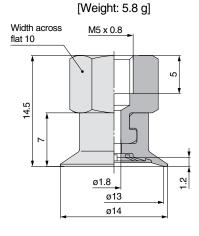


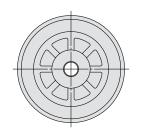

ZP3-T13UM□-A5 [Weight: 3.1 g]

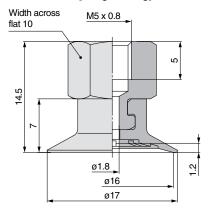
ZP3-T16UM□-A5

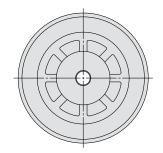





ZP3-T10UM□-B5

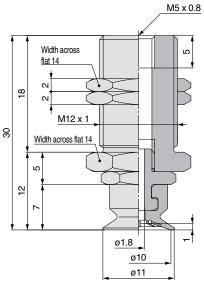

[Weight: 5.7 g] M5 x 0.8


ZP3-T13UM□-B5

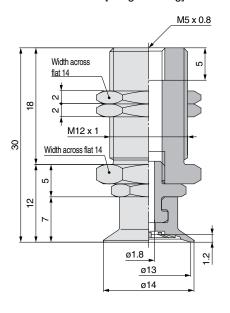


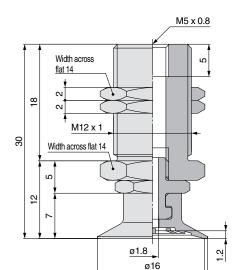
ZP3-T16UM□-B5

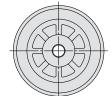
[Weight: 5.9 g]

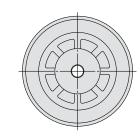


Buffer Assembly Part No.

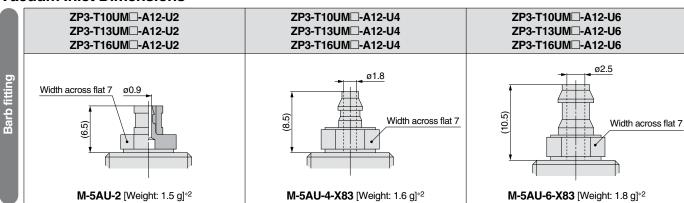

Dimensions/With Adapter: Vacuum Inlet Vertical

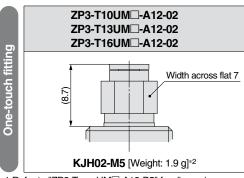



ZP3-T13UM□-**A12-B5** [Weight: 18.9 g]

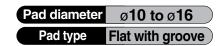


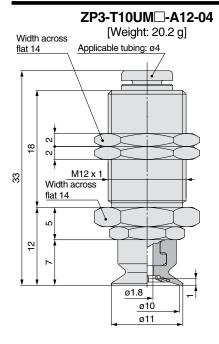
ZP3-T16UM□-**A12-B5** [Weight: 19.0 g]

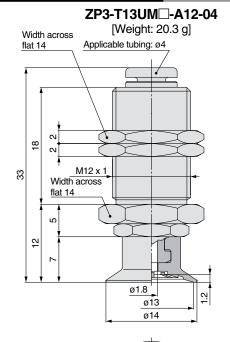


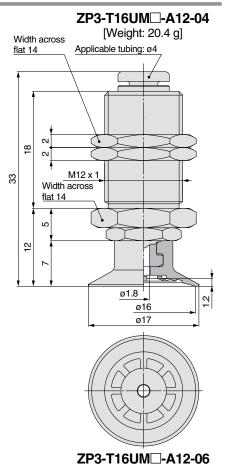


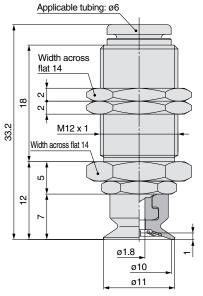
ø17

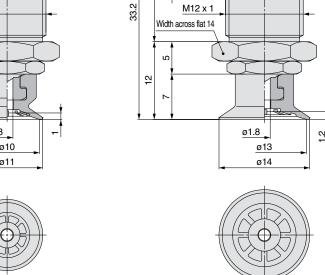


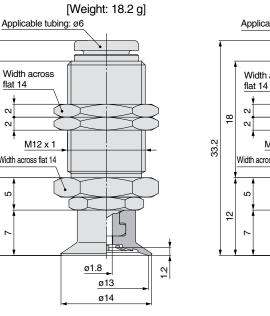

- *1 Refer to "ZP3-T▲▲UM□-A12-B5" for dimensions.
- *2 When calculating the weight, add the weight of the fitting to "ZP3-T▲▲UM□-A12-B5".



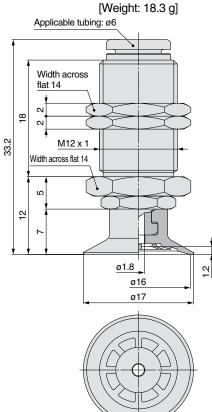

Dimensions/With Adapter: Vacuum Inlet Vertical



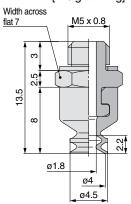


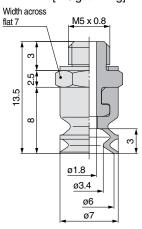


ZP3-T10UM□-A12-06 [Weight: 18.1 g]

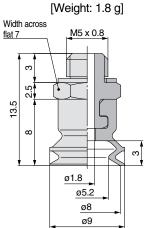


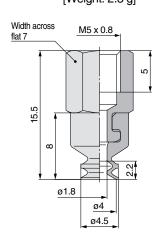
8


ZP3-T13UM□-A12-06

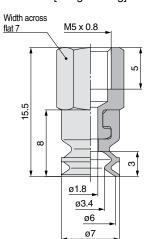

Vertical **Dimensions/With Adapter: Vacuum Inlet**

Pad diameter ø4 to ø8 **Bellows** Pad type

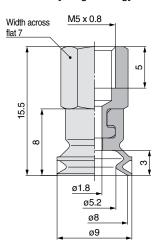

ZP3-T04B□-**A5** [Weight: 1.7 g]


ZP3-T06B□-**A5** [Weight: 1.7 g]

ZP3-T08B□-**A5**

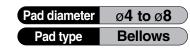


ZP3-T04B□-**B5** [Weight: 2.3 g]

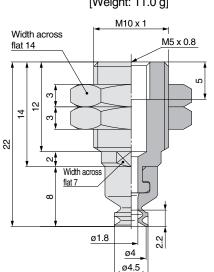


ZP3-T06B□-B5

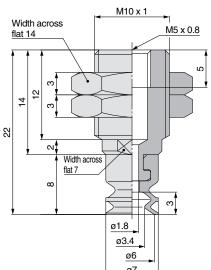
[Weight: 2.3 g]

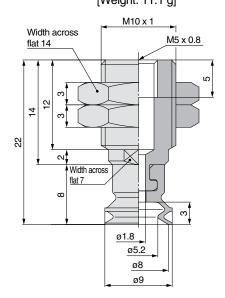


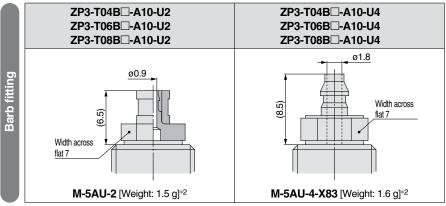
ZP3-T08B□-**B5** [Weight: 2.4 g]



Dimensions/With Adapter: Vacuum Inlet Vertical

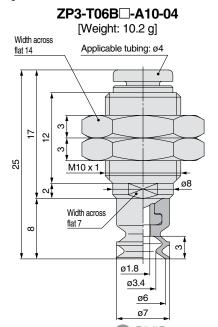



ZP3-T04B□-A10-B5 [Weight: 11.0 g]


ZP3-T06B□-A10-B5 [Weight: 11.0 g]

ZP3-T08B□-A10-B5 [Weight: 11.1 g]

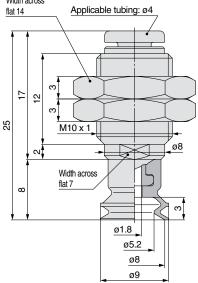
Vacuum Inlet Dimensions


*2 When calculating the weight, add the weight of the fitting to "ZP3-T▲▲B■-A10-B5".

ZP3-T04B□-A10-04 [Weight: 10.2 g] Width across Applicable tubing: ø4 flat 14 1 7 25 M10 x 1 ø8 Width across flat 7

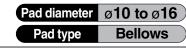
ø1.8

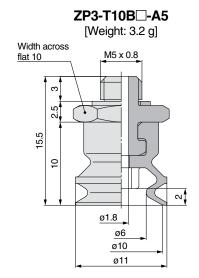
ø4

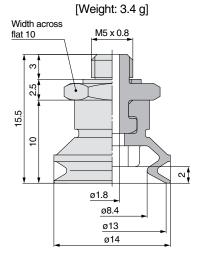

ø4.5

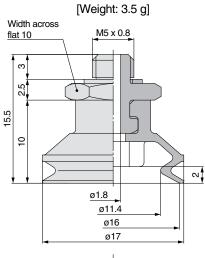
ZP3-T04B□-A10-02 ZP3-T06B□-A10-02 ZP3-T08B□-A10-02 One-touch fitting Width across flat 7 (8.7) KJH02-M5 [Weight: 1.8 g]*2

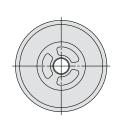
[Weight: 10.3 g] Width across Applicable tubing: ø4

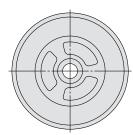

ZP3-T08B□-A10-04

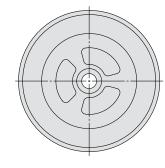

Dimensions/With Adapter: Vacuum Inlet Vertical

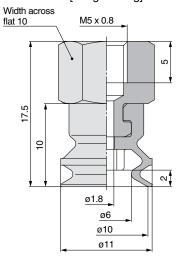


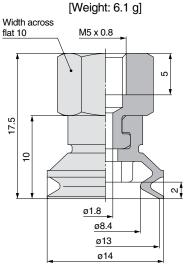

ZP3-T13B□-**A5**

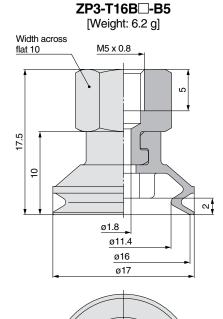


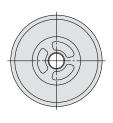

ZP3-T16B□-**A5**

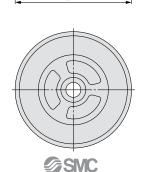


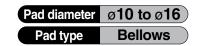


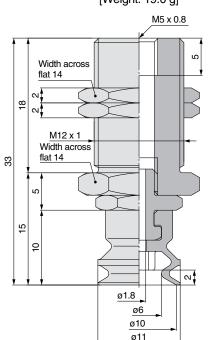



ZP3-T13B□-B5

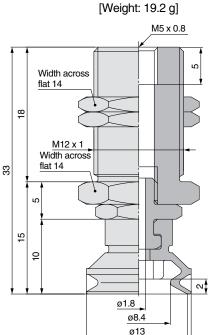


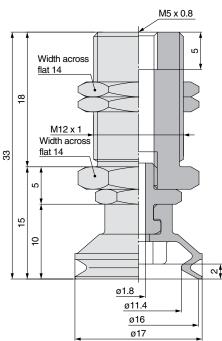


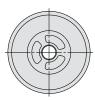


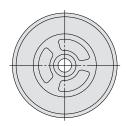


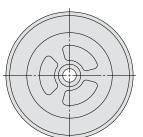
Dimensions/With Adapter: Vacuum Inlet



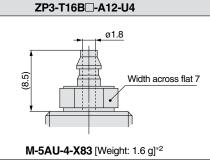


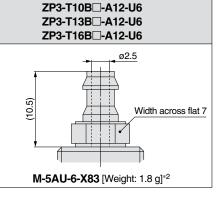

ZP3-T13B□-**A12-B5**

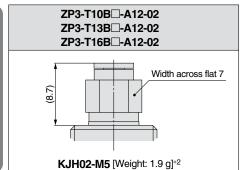



ZP3-T16B□-A12-B5

[Weight: 19.3 g]

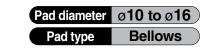



Vacuum Inlet Dimensions ZP3-T10B□-A12-U2


l	ZP3-T13B□-A12-U2 ZP3-T16B□-A12-U2					
	Width across flat 7 Ø0.9					
	M-5AU-2 [Weight: 1.5 g]* ²					

ZP3-T10B□-A12-U4

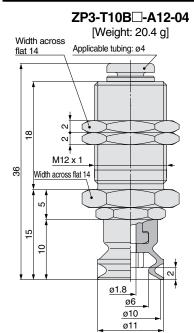
ZP3-T13B□-A12-U4


^{* 1} Refer to "ZP3-T▲▲B□-A12-B5" for dimensions.

One-touch fitting

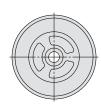
Width across

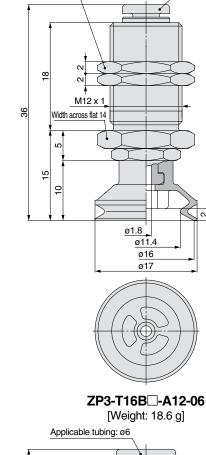
flat 14


Dimensions/With Adapter: Vacuum Inlet Vertical

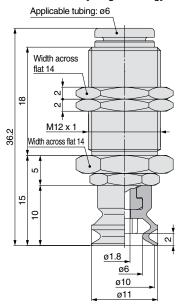
Applicable tubing: ø4

ZP3-T16B□-A12-04

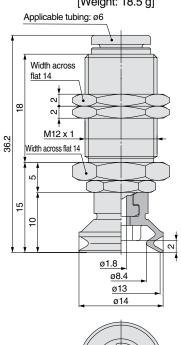

[Weight: 20.7 g]

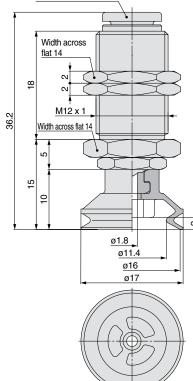


[Weight: 20.6 g] Width across Applicable tubing: ø4 flat 14 8 M12 x 1 ဗ္တ Width across flat 14 9 ø1.8 ø8.4 ø13 ø14


ZP3-T13B□-A12-04

ZP3-T10B□-A12-06


[Weight: 18.3 g]



ZP3-T13B□-A12-06

[Weight: 18.5 g]

How to Order

Vertical vacuum inlet/ With buffer

ZP3-T 015 U N J 3-B3

Symbol Direction Vertical

Pad diameter

rau ulailletei 🛡					
Symbol	Pad diameter				
015	ø1.5				
02	ø2				
035	ø3.5				
04	ø4				
06	ø6				
08	ø8				
10	ø10				
13	ø13				
16	ø16				

Pad type - Pad diameter

Pad diameter (Symbol)	015	02	035	04	06
U (Flat)	•	•		_	_
UM (Flat with groove)	_	_	_	•	•
B (Bellows)	_	_	_	•	•

Pad diameter (Symbol)	08	10	13	16
U (Flat)	_	_	_	_
UM (Flat with groove)	•	•	•	•
B (Bellows)	•	•		

Pad material (□)

Symbol	Material		
N NBR			
S	Silicone rubber		
U	Urethane rubber		
F	FKM		
GN Conductive NBR GS Conductive silicone rubb			

♦ Vacuum inlet (△)

		(< /			
	Symbol	Connection	ø1.5 to ø3.5	ø4 to ø8	ø10 to ø16
Female	B3	M3 x 0.5	•	_	_
thread	B5	M5 x 0.8	_	•	•
Desite	U2	ø2 tubing *1	•	•	•
Barb	U4	ø4 tubing *2		•	•
fitting	U6	ø6 tubing?*2	_		•
One-touch	02	ø2 tubing		•	•
fitting	04	ø4 tubing	•	•	•
illurig	06	ø6 tubing	_		•

- *1 Polyurethane tube piping
- *2 Soft nylon/Polyurethane tube piping

Stroke	ø1.5 to ø3.5		ø4 to ø16		
Stroke	J	K	J	JB	K
3	•	•	•	_	•
6	•			_	•
10	_	_	•	_	•
15	_	_	_	•	•
20	_	_	_	•	•

^{*}Refer to the "Specifications" below, for applicable stroke.

Buffer specifications (☆)

· Duii	ci opcomoduono (A)
J	Rotating
JB	Rotating, With bushing
K	Non-rotating

Specifications

Pad diameter	Buffer	Stroke	Buffer Stroke Tightening torque Mounting	Spring reactive force		
rau diametei	specifications	(mm)	lbf-ft (N-m)	Mounting	At 0 stroke lbf (N)	At full stroke lbf (N)
ø1.5 to ø3.5	J	2.0	1.1 to 1.33 (1.5 to 1.8)	M6 x 0.75		0.09 (0.4)
01.5 10 05.5	K	3, 6				
	J	3, 6, 10	1.48 to 1.84	M8 x 0.75	0.045 (0.2)	0.11 (0.5)
ø4 to ø16	JB	15, 20	(2.0 to 2.5)	IVIO X 0.75		0.11 (0.5)
	K	3, 6, 10, 15, 20				

Replacement Part No.

Pad diameter: Ø1.5 to Ø3.5

Model	Pad unit part no.	Buffer assembly part no. Note 3)
ZP3-T(015/02/035)U□(J/K)3-♦	ZP3-(015/02/035)U□	ZP3B-T1(J/K)3-B3
ZP3-T(015/02/035)U□(J/K)6-♦	21 0 (013/02/003/00	ZP3B-T1(J/K)6-B3

Note 1) \square in the table indicates the pad material.

Note 2) \diamondsuit in the table indicates the vacuum inlet.

Note 3) Fitting is ordered separately. Suffix of how to order (<>)

U2: M-3AU-2, U4: M-3AU-4-X83

02: KJH02-M3, 04: KJH04-M3-X83

U2: M-5AU-2, U4: M-5AU-4-X83

02: KJH02-M5, 04: KJH04-M5

Pad diameter: Ø4 to Ø8

Model	Pad unit part no.	Buffer assembly part no. Note 3)
ZP3-T(04/06/08)UM□(J/K)3-◇	ZP3-(04/06/08)UM	ZP3B-T2A(J/K)3-B5
ZP3-T(04/06/08)B□(J/K)3-♦	ZP3-(04/06/08)B□	2. 62 12 (6/11/6 26
ZP3-T(04/06/08)UM□(J/K)6-◇	ZP3-(04/06/08)UM	ZP3B-T2A(J/K)6-B5
ZP3-T(04/06/08)B□(J/K)6-♦	ZP3-(04/06/08)B□	2. 62 12 (6/11)6 26
ZP3-T(04/06/08)UM□(J/K)10-♦	ZP3-(04/06/08)UM	ZP3B-T2A(J/K)10-B5
ZP3-T(04/06/08)B□(J/K)10-♦	ZP3-(04/06/08)B□	2. 62 12 (6/11) 16 26
ZP3-T(04/06/08)UM□(JB/K)15-♦	ZP3-(04/06/08)UM	ZP3B-T2A(JB/K)15-B5
ZP3-T(04/06/08)B□(JB/K)15-♦	ZP3-(04/06/08)B□	2. 05 .2. (05/11) 10 50
ZP3-T(04/06/08)UM+(JB/K)20-	ZP3-(04/06/08)UM	ZP3B-T2A(JB/K)20-B5
ZP3-T(04/06/08)B□(JB/K)20-♦	ZP3-(04/06/08)B□	2. 32 .2. (02/11)20 20

Note 1) \square in the table indicates the pad material.

Note 3) Fitting is ordered separately.

Suffix of how to order (\diamondsuit)

Note 2) \diamondsuit in the table indicates the vacuum inlet.

Pad diameter: Ø10 to Ø16					
Model	Pad unit part no.	Buffer assembly part no. Note 3)			
ZP3-T(10/13/16)UM□(J/K)3-♦	ZP3-(10/13/16)UM□	ZP3B-T2B(J/K)3-B5			
ZP3-T(10/13/16)B□(J/K)3-♦	ZP3-(10/13/16)B□	ZF3B-12B(J/K)3-B3			
ZP3-T(10/13/16)UM□(J/K)6-♦	ZP3-(10/13/16)UM□	ZP3B-T2B(J/K)6-B5			
ZP3-T(10/13/16)B□(J/K)6-♦	ZP3-(10/13/16)B□	ZF3B-12B(J/K)0-B3			
ZP3-T(10/13/16)UM□(J/K)10-♦	ZP3-(10/13/16)UM□	ZP3B-T2B(J/K)10-B5			
ZP3-T(10/13/16)B□(J/K)10-♦	ZP3-(10/13/16)B□	ZP3B-12B(J/K)10-B5			
ZP3-T(10/13/16)UM□(JB/K)15-♦	ZP3-(10/13/16)UM□	ZP3B-T2B(JB/K)15-B5			
ZP3-T(10/13/16)B□(JB/K)15-♦	ZP3-(10/13/16)B□	ZP3B-12B(JB/K)15-B5			
ZP3-T(10/13/16)UM□(JB/K)20-♦	ZP3-(10/13/16)UM□	ZP3B-T2B(JB/K)20-B5			
ZP3-T(10/13/16)B+(JB/K)20-	ZP3-(10/13/16)B□	ZF3B-12B(JB/K)2U-B3			

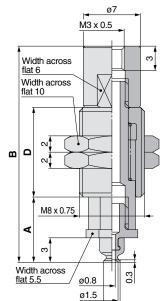
Note 1) \square in the table indicates the pad material.

Note 2) \diamondsuit in the table indicates the vacuum inlet.

Note 3) Fitting is ordered separately.

Suffix of how to order (\diamondsuit) U2: M-5AU-2, U4: M-5AU-4-X83 U6: M-5AU-6-X83, 02: KJH02-M5

04: KJH04-M5, 06: KJH06-M5

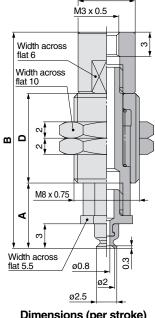

ZP3-T02U□**K■**-**B3**

ø7

Buffer Assembly Part No.

Dimensions/With Buffer: Vacuum Inlet Vertical

ZP3-T015U□**J■**-**B3** ø5 M3 x 0.5 Width across flat 4 Width across flat 8 B M6 x 0.75 \boxtimes 0.3 ø0.8 <u>ø1.</u>5



<u>ø</u>1.5

ZP3-T015U□**K■**-**B3**

ø5 M3 x 0.5 Width across flat 4 Width across flat 8 B M6 x 0.75 \boxtimes က ø0.8 ø2 ø2.5

ZP3-T02U□J■-B3

Dimensions (per stroke)

Model	Α	В	D	Weight (g)
ZP3-T015U□J3-B3	7	24	10	3.4
ZP3-T015U□J6-B3	10	31	14	4.4

ø2

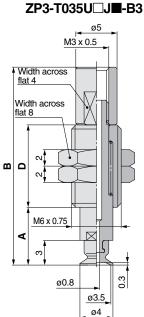
Note) ☐ in the table indicates the pad material "N, S, U, F, GN, GS."

Dimensions (per stroke)

Model	Α	В	D	Weight (g)
ZP3-T015U□K3-B3				
ZP3-T015U□K6-B3	11	33	14.5	8.2

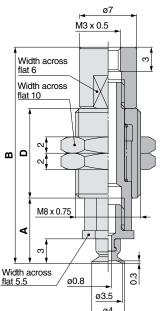
Note) ☐ in the table indicates the pad material "N, S, U, F, GN, GS."

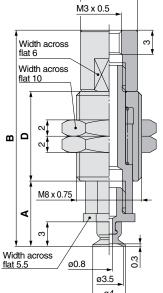
Dimensions (per stroke)


Model	Α	В	D	Weight (g)
ZP3-T02U□J3-B3	7	24	10	3.4
ZP3-T02U□J6-B3	10	31	14	4.4

Note) in the table indicates the pad material "N, S, U, F, GN, GS.

Dimensions (per stroke)


Model	Α	В	D	Weight (g)
ZP3-T02U□K3-B3	8	26.5	11	6.8
ZP3-T02U□K6-B3	11	33	14.5	8.2


Note) ☐ in the table indicates the pad material "N, S, U, F, GN, GS."

ZP3-T035U□**K■**-**B3**

Dimensions (per stroke)

Model	Α	В	D	Weight (g)
ZP3-T035U□J3-B3	7	24	10	3.4
ZP3-T035U□J6-B3	10	31	14	4.4

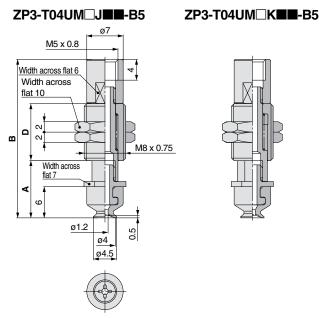
Note) ☐ in the table indicates the pad material "N, S, U, F, GN, GS."

Dimensions (per stroke)

Model	Α	В	D	Weight (g)
ZP3-T035U□K3-B3	8	26.5	11	6.8
ZP3-T035U□K6-B3	11	33	14.5	8.2

Note) \square in the table indicates the pad material "N, S, U, F, GN, GS."

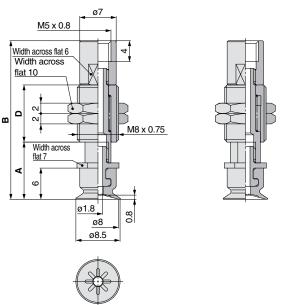
vacuum iniet Dimensio) iis
Barb fitting	One-touch fitting
ZP3-T015U□☆■-U2 ZP3-T02U□☆■-U2 ZP3-T035U□☆■-U2	ZP3-T015U□☆■-02 ZP3-T02U□☆■-02 ZP3-T035U□☆■-02
©0.9 Width across flat 4.5 M-3AU-2 [Weight: 0.7 g]*2	Width across flat 5.5 KJH02-M3 [Weight: 1.1 g]*2
ZP3-T015U□☆■-U4 ZP3-T02U□☆■-U4 ZP3-T035U□☆■-U4	ZP3-T015U□☆■-04 ZP3-T02U□☆■-04 ZP3-T035U□☆■-04
width across flat 5	Width across flat 8
M-3AU-4-X83 [Weight: 0.7 g]*2	KJH04-M3-X83 [Weight: 1.9 g]*2


^{*1} Refer to "ZP3-T▲▲▲U□☆■-B3" for dimensions.

^{*2} When calculating the weight, add the weight of the fitting to "ZP3-T▲▲▲U□☆■-B3".

Dimensions/With Buffer: Vacuum Inlet Vertical

Pad diameter ø4 to ø8 Flat with groove Pad type 3, 6, 10 mm **Stroke**



Dimensions (per stroke)

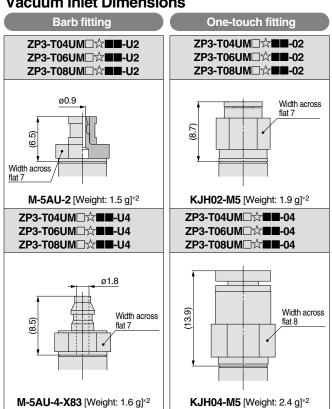
				Weight (g)		
Model	Α	В	D	Non-rotating	Rotating	
				(J)	(K)	
ZP3-T04UM□☆3-B5	11	30.5	11	7.4	7.3	
ZP3-T04UM□☆6-B5	14	37	14.5	8.6	8.6	
ZP3-T04UM□☆10-B5	18	47	20.5	10.5	10.5	

Note 1) ☐ in the table indicates the pad material "N, S, U, F, GN, GS." Note 2) The symbol "☆" indicates buffer type "J" or "K".

ZP3-T08UM□J**■■**-B5 ZP3-T08UM□K■■-B5

Dimensions (per stroke)

				Weigh	nt (g)
Model	Α	В	D	Non-rotating	Rotating
				(J)	(K)
ZP3-T08UM□☆3-B5	11	30.5	11	7.4	7.3
ZP3-T08UM□☆6-B5	14	37	14.5	8.6	8.6
7D3-T08HM□√210-R5	18	47	20.5	10.5	10.5


Note 1) ☐ in the table indicates the pad material "N, S, U, F, GN, GS." Note 2) The symbol "%" indicates buffer type "J" or "K".

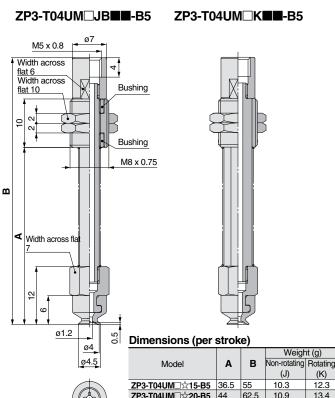
ZP3-T06UM□J**■■**-B5 ZP3-T06UM□K■■-B5 M5 x 0.8 Width across flat 6 Width across flat 10 m M8 x 0.75 Width across flat 7 ø1.8 ø6 ø6.5

Dimensions (per stroke)

				Weight (g)		
Model	Α	В	D	Non-rotating	Rotating	
				(J)	(K)	
ZP3-T06UM□☆3-B5	11	30.5	11	7.4	7.3	
ZP3-T06UM□☆6-B5	14	37	14.5	8.6	8.6	
ZP3-T06UM□☆10-B5	18	47	20.5	10.5	10.5	

Note 1) ☐ in the table indicates the pad material "N, S, U, F, GN, GS." Note 2) The symbol "☆" indicates buffer type "J" or "K".

^{*1} Refer to "ZP3-T▲▲UM□☆■■-B5" for dimensions.


^{*2} When calculating the weight, add the weight of the fitting to "ZP3-T▲▲UM□☆■■-B5".

ZP3-T06UM□K**■■**-B5

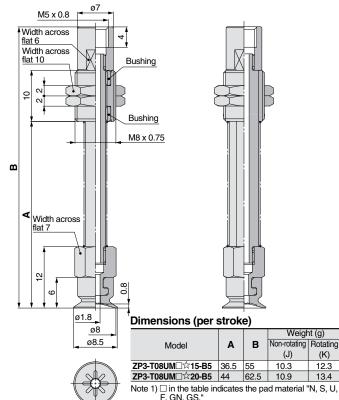
Stroke

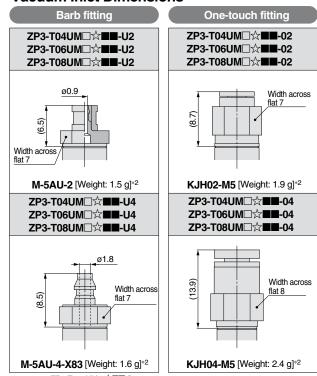
ZP3-T06UM□JB■■-B5

Dimensions/With Buffer: Vacuum Inlet Vertical

Non-rotating Rotating (K) **ZP3-T04UM**□☆**20-B5** 44 62.5 10.9 13.4 Note 1) ☐ in the table indicates the pad material "N, S, U, F, GN, GS."

Note 2) The symbol "\$\times\" indicates buffer type "JB" or "K".


Note 2) The symbol "%" indicates buffer type "JB" or "K".

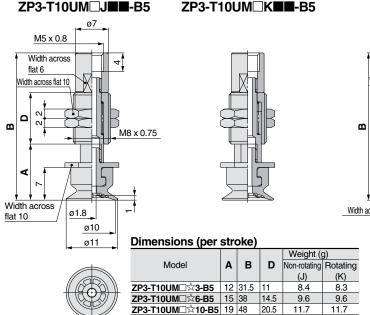

Width across Width across flat 10 Bushing 0 Bushing M8 x 0.75 m ▼ | Width across flat 2 ယ ø1.8 Dimensions (per stroke) ø6 Weight (g) **B** Non-rotating Rotating ø6.5 (J) **ZP3-T06UM**□☆**15-B5** 36.5 55 **ZP3-T06UM**□☆**20-B5** 44 62. 10.3 12.3 62.5 10.9 13.4 Note 1) \square in the table indicates the pad material "N, S,

Note 2) The symbol "\$\pm\$" indicates buffer type "JB" or "K".

U.F. GN GS

ZP3-T08UM□JB**■■**-B5 ZP3-T08UM K

- *1 Refer to "ZP3-T▲▲UM□☆■■-B5" for dimensions.
- *2 When calculating the weight, add the weight of the fitting to "ZP3-T▲▲UM□☆■■-B5".


Dimensions/With Buffer: Vacuum Inlet

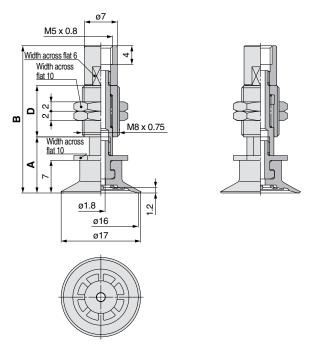
Pad diameter ø10 to ø16 Flat with groove Pad type 3. 6. 10 mm **Stroke**

ZP3-T13UM□K■■-B5

ZP3-T10UM□J**■■**-B5 ZP3-T10UM□K■■-B5 ZP3-T13UM□J**■■**-B5

Note 1) \square in the table indicates the pad material "N, S, U, F, GN, GS."

Note 2) The symbol "☆" indicates buffer type "J" or "K".

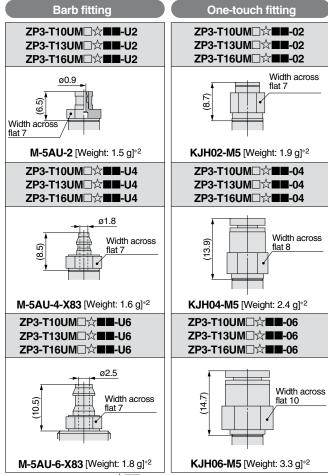

M5 x 0.8 Width across flat 6 Width across flat 10 M8 x 0.75 Width across flat 10 ø1 8 Ŋ ø13 **Dimensions (per stroke)** Weight (g) Non-rotating Rotating Model В D (J) (K) **ZP3-T13UM**□☆**3-B5** 12 31.5 11 8.5 8.4

ZP3-T13UM□☆**6-B5** 15 38 14.5 9.7 9.7 **ZP3-T13UM**□☆**10-B5** 19 48 20.5 11.8 11.8

Note 1) \square in the table indicates the pad material "N, S, U, F, GN, GS."

Note 2) The symbol "%" indicates buffer type "J" or "K".

ZP3-T16UM□J■■-B5 ZP3-T16UM□K■■-B5


Dimensions (per stroke)

							Weight (g)		
Model	Α	В	D	Non-rotating	Rotating				
				(J)	(K)				
ZP3-T16UM□☆3-B5	12	31.5	11	8.6	8.5				
ZP3-T16UM□☆6-B5	15	38	14.5	9.8	9.8				
ZP3-T16UM□☆10-B5	19	48	20.5	11.9	11.9				

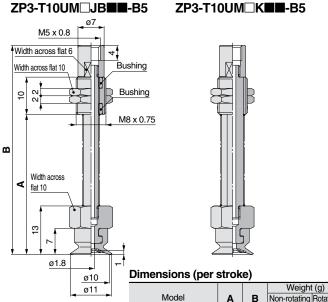
Note 1) \square in the table indicates the pad material "N, S, U, F, GN, GS."

Note 2) The symbol "*\[\indicates buffer type "J" or "K".

Vacuum Inlet Dimensions

*1 Refer to "ZP3-T▲▲UM□☆■■-B5" for dimensions.

*2 When calculating the weight, add the weight of the fitting to "ZP3-T▲▲UM□☆■■-B5".


Pad diameter ø10 to ø16

Flat with groove Pad type

15, 20 mm Stroke

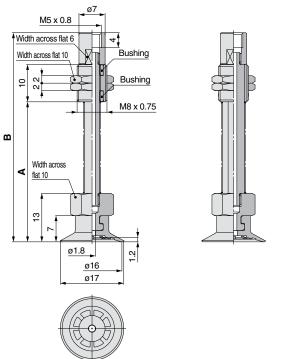
Dimensions/With Buffer: Vacuum Inlet

Vertical

Non-rotating Rotating (J) (K) **ZP3-T10UM**□☆**15-B5** 37.5 56 15.1 13.1 **ZP3-T10UM**□☆**20-B5** 45 63.5 16.2 16.2

Note 1) \square in the table indicates the pad material "N, S, U, F, GN, GS."

Note 2) The symbol "" indicates buffer type "JB" or "K".

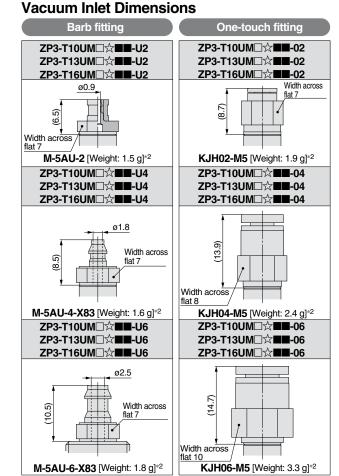

ZP3-T13UM□JB■■-B5 ZP3-T13UM□K■■-B5 M5 x 0.8 Width across flat 6 Width across flat 10 Bushing M8 x 0.75 m Width across ⋖ <u>flat 10</u> 5 ø1.8 Dimensions (per stroke) ø13 Weight (g) a14 В

Model

Non-rotating Rotating (J) ZP3-T13UM□☆15-B5 37.5 56 15.2 13.2 **ZP3-T13UM**□☆**20-B5** 45 63.5 16.3 16.3 Note 1) \square in the table indicates the pad material "N, S, U,

Note 2) The symbol "☆" indicates buffer type "JB" or "K".

ZP3-T16UM□JB■■-B5



Dimensions (per stroke)

			Weight	
Model	Α	В	Non-rotating	Rotating
			(J)	(K)
ZP3-T16UM□☆15-B5	37.5	56	13.3	15.3
ZP3-T16UM□☆20-B5	45	63.5	16.4	16.4

Note 1) \square in the table indicates the pad material "N, S, U, F, GN, GS. Note 2) The symbol "%" indicates buffer type "JB" or "K".

ZP3-T16UM□K■■-B5

*1 Refer to "ZP3-T▲▲UM□☆■■-B5" for dimensions.

*2 When calculating the weight, add the weight of the fitting to "ZP3-T▲▲UM□☆■■-B5".

Pad Unit

Vertical With Adapter: Vacuum Inlet

Vertical

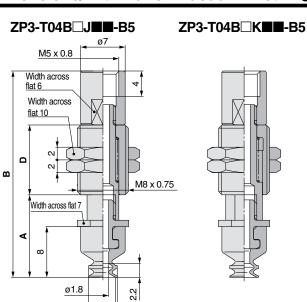
With Adapter: Vacuum Inlet

Construction

Adapter Applicable Pad List

Buffer Applicable Pad List

Mounting Adapter Part No. Buffer Assembly Part No.


Dimensions/With Buffer: Vacuum Inlet

Vertical

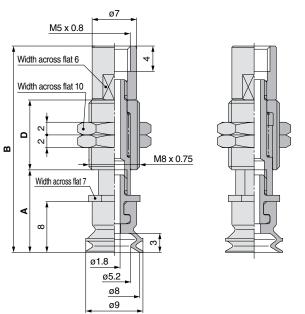
Pad diameter Ø4 to Ø8

Pad type Bellows

Stroke 3, 6, 10 mm

Dimensions (per stroke)

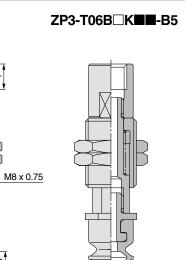
Mandal	Α	В	_ n	D Weight (g)		
Model	_ ^	В	_ U	Non-rotating (J)	Rotating (K)	
ZP3-T04B□☆3-B5	13	32.5	11	7.4	7.3	
ZP3-T04B□☆6-B5	16	39	14.5	8.6	8.6	
ZP3-T04B□☆10-B5	20	49	20.5	10.5	10.5	


Note 1) \square in the table indicates the pad material "N, S, U, F, GN, GS." Note 2) The symbol " $\cancel{\sim}$ " indicates buffer type "J" or "K".

ø4

ø4.5

ZP3-T08B□J**■■**-B5

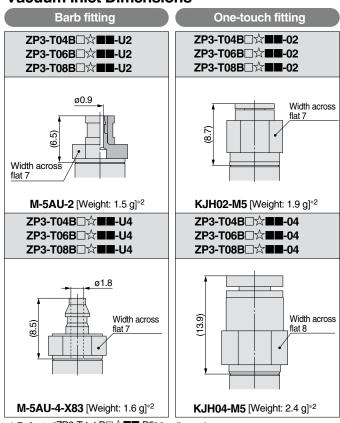


Dimensions (per stroke)

Zimenere (per en ene)									
NAI-I	_	В	_	Weigl	ht (g)				
Model	A	В	D	Non-rotating (J)	Rotating (K)				
ZP3-T08B□☆3-B5	13	32.5	11	7.5	7.4				
ZP3-T08B□☆6-B5	16	39	14.5	8.7	8.7				
ZP3-T08B□☆10-B5	20	49	20.5	10.6	10.6				

Note 1) \square in the table indicates the pad material "N, S, U, F, GN, GS." Note 2) The symbol " $\not\simeq$ " indicates buffer type "J" or "K".

ZP3-T06B□J**■■**-B5 Z



M5 x 0.8 Width across flat 6 Width across flat 10 M8 x 0.75

Dimensions (per stroke)

Madal	A B		D	Weight (g)			
Model	A	-	ט	Non-rotating (J)	Rotating (K)		
ZP3-T06B□☆3-B5	13	32.5	11	7.4	7.3		
ZP3-T06B□☆6-B5	16	39	14.5	8.6	8.6		
ZP3-T06B□☆10-B5	20	49	20.5	10.5	10.5		

Note 1) ☐ in the table indicates the pad material "N, S, U, F, GN, GS." Note 2) The symbol "☆" indicates buffer type "J" or "K".

^{*1} Refer to "ZP3-T▲▲B□☆■■-B5" for dimensions.

^{*2} When calculating the weight, add the weight of the fitting to "ZP3-T▲▲B□☆■■-B5".

ø4 to ø8 Pad diameter Pad type **Bellows** 15, 20 mm Stroke

Pad Unit

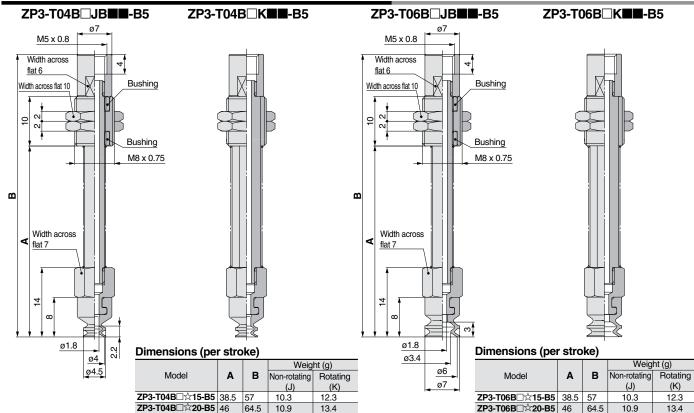
Vertical

With Adapter: Vacuum Inlet

ertical/

With Adapter

/acuum Inlet With Buffer:


Construction

Adapter Applicable Pad List

Buffer Applicable Pad List

Mounting Adapter Part No.

Dimensions/With Buffer: Vacuum Inlet Vertical

Rotating

(K)

SMC

12.4

13.5

(J)

10.4

64.5 11.0

Note 1) in the table indicates the pad material "N, S, U, F,

Note 2) The symbol "\$\pm\$" indicates buffer type "JB" or "K".

Note 1) \square in the table indicates the pad material "N, S, U, F, Note 2) The symbol "\$\frac{1}{2}" indicates buffer type "JB" or "K". ZP3-T08B□K**■■**-B5

Note 2) The symbol "%" indicates buffer type "JB" or "K".

Note 1) in the table indicates the pad material "N, S, U, F,

M5 x 0.8 Width across flat 6 Bushing Width across flat 10 9 Bushing M8 x 0.75 B Width across ⋖ flat 7 4 m Dimensions (per stroke) ø1.8 ø5.2 Weight (g) Non-rotating Model ø8

ZP3-T08B□☆**15-B5** 38.5 57

ZP3-T08B□☆20-B5 46

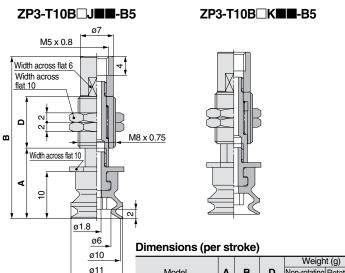
GN, GS

ZP3-T08B JB B-B5

ø9

ZP3-T06B□☆**■■**-U2

Vacuum Inlet Dimensions



*1 Refer to "ZP3-T▲▲B□☆■■-B5" for dimensions.

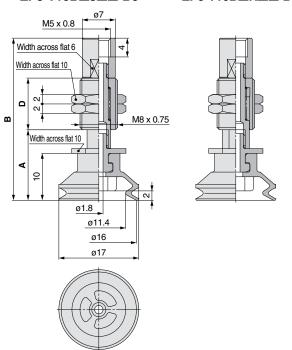
*2 When calculating the weight, add the weight of the fitting to "ZP3-T▲▲B□☆■■-B5".

Dimensions/With Buffer: Vacuum Inlet Vertical

Pad diameter Ø10 to Ø16 Pad type **Bellows** Stroke 3, 6, 10 mm

				vvcigrit (g)		
Model		A B		Non-rotating	Rotating	
				(J)	(K)	
ZP3-T10B□☆3-B5	15	34.5	11	8.6	8.5	
ZP3-T10B□☆6-B5	18	41	14.5	9.7	9.7	
ZP3-T10B□☆10-B5	22	51	20.5	11.7	11.7	

Note 1) \square in the table indicates the pad material "N, S, U, F, Note 2) The symbol " $\stackrel{\wedge}{\bowtie}$ " indicates buffer type "J" or "K".

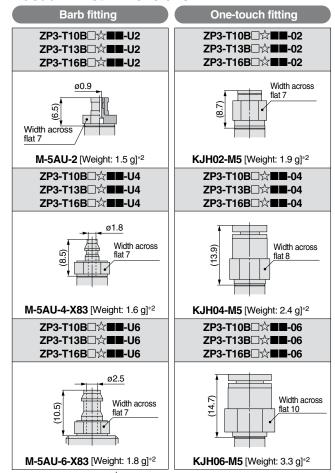

ZP3-T13B□**J■■-**B5 **ZP3-T13B**□**K■■-B5** M5 x 0.8 Width across flat 6 Width across flat 10 ۵ m M8 x 0.75 Width across flat 10 ⋖ 9 ø1.8 ø8.4 Dimensions (per stroke) ø13 Weight (g) ø14 Model В D Non-rotating Rotating (J) (K) ZP3-T13B□☆3-B5 15 34.5 11 8.7 8.6 ZP3-T13B□☆6-B5 18 41 14.5 9.8 9.8 118

ZP3-T13B□☆**10-B5** 22 51 20.5 11.8 Note 1) \square in the table indicates the pad material "N, S, U, F. GN. GS.

Note 2) The symbol "\$\frac{1}{2}" indicates buffer type "J" or "K".

ZP3-T16B□J■■-B5

ZP3-T16B□K**■■**-B5

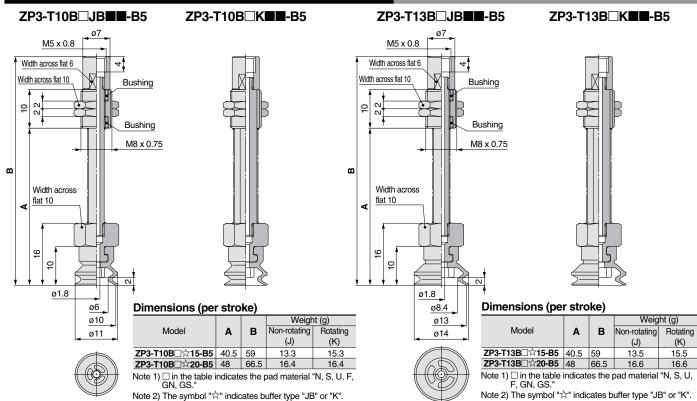


Dimensions (per stroke)

			Wei	ght (g)				
Model	Α	В	D	Non-rotating	Rotating			
				(J)	(K)			
ZP3-T16B□☆3-B5	15	34.5	11	8.8	8.7			
ZP3-T16B□☆6-B5	18	41	14.5	9.9	9.9			
ZP3-T16B□☆10-B5	22	51	20.5	11.9	11.9			

Note 1) \square in the table indicates the pad material "N, S, U, F,

Note 2) The symbol "☆" indicates buffer type "J" or "K".



- *1 Refer to "ZP3-T▲▲B□☆■■-B5" for dimensions.
- *2 When calculating the weight, add the weight of the fitting to "ZP3-T▲▲B□☆■■-B5".

Buffer Assembly Part No.

Dimensions/With Buffer: Vacuum Inlet Vertical

ZP3-T16B□JB■■-B5 **ZP3-T16B**□**K**■■-B5

Weight (g) Model В Non-rotating (J) (K) ZP3-T16B□☆15-B5 40.5 59 13.6 15.6

Note 1) ☐ in the table indicates the pad material "N, S, U, F, GN, GS."

16.7

ZP3-T16B□**☆20-B5** 48 66.5

Note 2) The symbol "%" indicates buffer type "JB" or "K".

/acuum Inlet Dimensions					
Barb fitting	One-touch fitting				
ZP3-T10B□☆■■-U2 ZP3-T13B□☆■■-U2 ZP3-T16B□☆■■-U2	ZP3-T10B□☆■■-02 ZP3-T13B□☆■■-02 ZP3-T16B□☆■■-02				
width across	Width across flat 7				
M-5AU-2 [Weight: 1.5 g]*2	KJH02-M5 [Weight: 1.9 g]*2				
ZP3-T10B□☆■■-U4 ZP3-T13B□☆■■-U4 ZP3-T16B□☆■■-U4	ZP3-T10B□☆■■-04 ZP3-T13B□☆■■-04 ZP3-T16B□☆■■-04				
Ø1.8 Width across flat 7	Width across flat 8				
M-5AU-4-X83 [Weight: 1.6 g]*2	KJH04-M5 [Weight: 2.4 g]*2				
ZP3-T10B□☆■■-U6 ZP3-T13B□☆■■-U6 ZP3-T16B□☆■■-U6	ZP3-T10B□☆■■-06 ZP3-T13B□☆■■-06 ZP3-T16B□☆■■-06				
©2.5 Width across flat 7	Width across flat 10				
M-5AU-6-X83 [Weight: 1.8 g]*2	KJH06-M5 [Weight: 3.3 g]*2				

- *1 Refer to "ZP3-T▲▲B□☆■■-B5" for dimensions.
- *2 When calculating the weight, add the weight of the fitting to "ZP3-T▲▲B□☆■■-B5".

16.7

How to Order

Lateral vacuum inlet/ With adapter

ZP3 - Y 015 U N - B3 - B3

Vacuum inlet direction

Pad diameter

aa alamotoi •						
Symbol	Pad diameter					
015	ø1.5					
02	ø2					
035	ø3.5					
04	ø4					
06	ø6					
08	ø8					
10	ø10					
13	ø13					
16	ø16					

♦ Vacuum inlet (♦)

	Symbol	Connection	ø1.5 to ø3.5	ø4 to ø8	ø10 to ø16				
Female	B3	M3 x 0.5	•	_	_				
thread	B5	M5 x 0.8	_	•	•				
Dest	U2	ø2 tubing *1	•	•	•				
Barb	U4	ø4 tubing *2	•	•					
fitting	U6	ø6 tubing *2	_	_	•				
One-touch	02	ø2	•	•	•				
fitting	04	ø4	•	•					
nung	06	ø6	_	_					

*1 Polyurethane tube piping

*2 Soft nylon/Polyurethane tube piping

Mounting thread size

	Symbol	Thread size	ø1.5 to ø3.5	ø4 to ø16
Female	B3	M3 x 0.5	•	_
thread	B5	M5 x 0.8	_	•

Symbol	Material					
N	NBR					
S Silicone rubber						
U	Urethane rubber					
F	FKM					
GN Conductive NBR						
GS Conductive silicone rubbe						

Pad diameter (Symbol)	015	02	035	04	06	08	10	13	16
U (Flat)				_	_	_	_	_	_
UM (Flat with groove)	_	_	_	•	•	•	•	•	•
B (Bellows)	_	_	_	•	•	•	•	•	•

Specifications

Pad diameter: Ø1.5 to Ø3.5

Model	Pad unit part no.	Adapter part no.
ZP3-Y(015/02/035)U□-B3-◇	ZP3-(015/02/035)U□	ZP3A-Y1-B3

Note 1) • in the table indicates the pad material.

Note 2) • in the table indicates the vacuum inlet.

Note 3) Fitting is ordered separately.

Suffix of how to order (*) U2: M-3AU-2, U4: M-3AU-4-X83

02: KJH02-M3, 04: KJH04-M3-X83

Pad diameter: Ø4 to Ø8

ı	Model	Pad unit part no.	Adapter part no.	
ſ	ZP3-Y(04/06/08)UM□-B5-◇	ZP3-(04/06/08)UM□	ZP3A-Y2-B5	
	ZP3-Y(04/06/08)B□-B5-♦	ZP3-(04/06/08)B□	ZF3A-12-D3	

Note 1) \square in the table indicates the pad material.

Note 2) \diamondsuit in the table indicates the vacuum inlet.

Note 3) Fitting is ordered separately.

Suffix of how to order (\diamondsuit) U2: M-5AU-2, U4: M-5AU-4-X83

02: KJH02-M5, 04: KJH04-M5

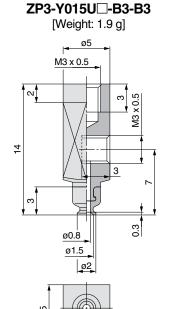
Pad diameter: Ø10 to Ø16

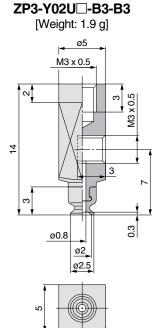
Model	Pad unit part no.	Adapter part no.
ZP3-Y (10/13/16)UM□-B5-♦	ZP3-(10/13/16)UM◆	7004 V0 DE
ZP3-Y (10/13/16)B□-B5-♦	ZP3-(10/13/16)B◆	ZP3A-Y3-B5

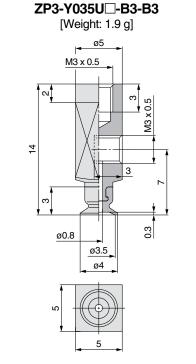
Note 1) ◆ in the table indicates the pad material.

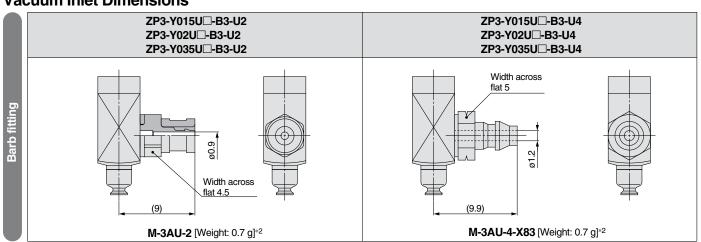
Note 2) • in the table indicates the vacuum inlet.

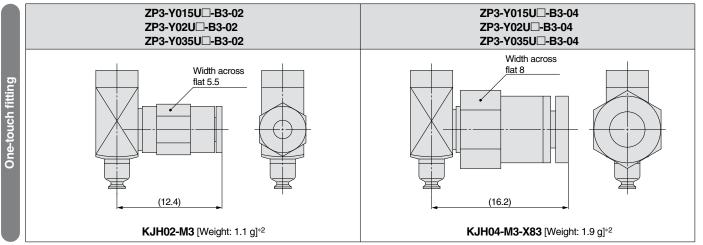
Note 3) Fitting is ordered separately.


Suffix of how to order (◆) U2: M-5AU-2, U4: M-5AU-4-X83

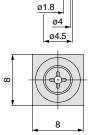

U6: M-5AU-6-X83, 02: KJH02-M5 04: KJH04-M5, 06: KJH06-M5


Dimensions/With Adapter: Vacuum Inlet Lateral

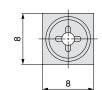




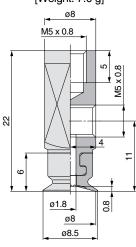
Vacuum Inlet Dimensions


*1 Refer to "ZP3-Y 📤 U -B3-B3" for dimensions. *2 When calculating the weight, add the weight of the fitting to "ZP3-Y 📥 U-B3-B3".

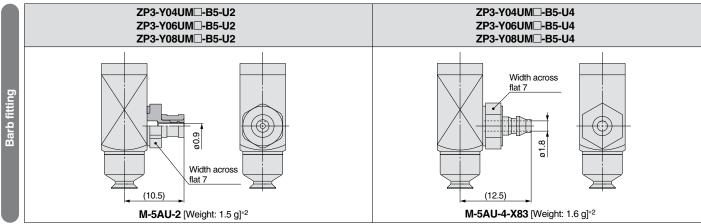
Dimensions/With Adapter: Vacuum Inlet Lateral

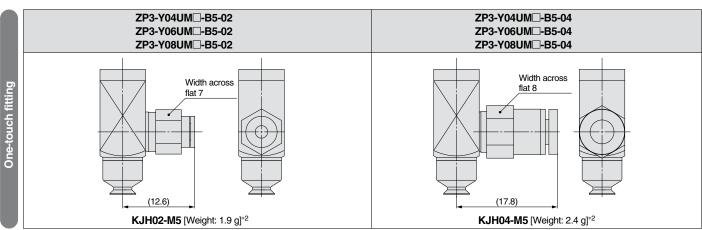

Pad diameter ø4 to ø8 Pad type Flat with groove

ZP3-Y04UM□-B5-B5 [Weight: 7.0 g] M5 x 0.8 22 ø1.2


ZP3-Y06UM□-B5-B5

[Weight: 7.0 g] ø8 M5 x 0.8 22 ø1.8 ø6 ø6.5




ZP3-Y08UM□-B5-B5

[Weight: 7.0 g]

^{*1} Refer to "ZP3-Y▲▲UM□-B5-B5" for dimensions.

^{*2} When calculating the weight, add the weight of the fitting to "ZP3-Y \blacktriangle UM \square -B5-B5".

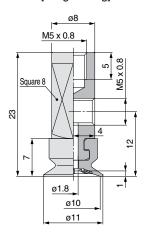
With Buffer: Vacuum Inlet

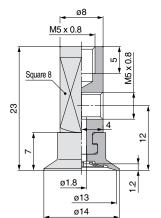
Adapter Applicable Construction

Buffer Applicable Pad List

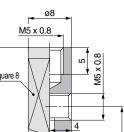
Mounting Adapter Part No.

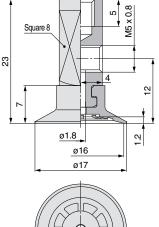
Buffer Assembly Part No.

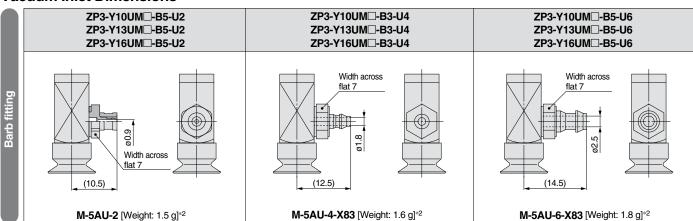

Dimensions/With Adapter: Vacuum Inlet Lateral

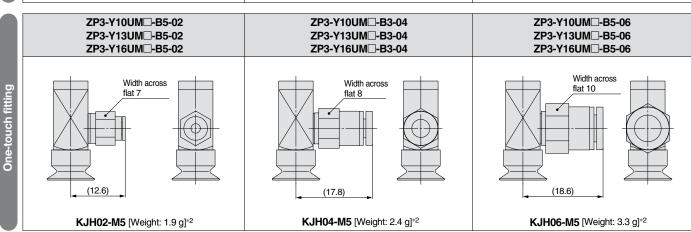

ZP3-Y13UM□-B5-B5

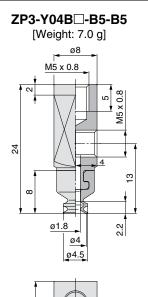
[Weight: 7.8 g]

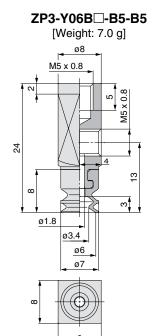


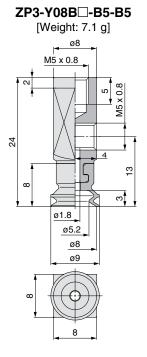

ZP3-Y10UM□-B5-B5 [Weight: 7.7 g]

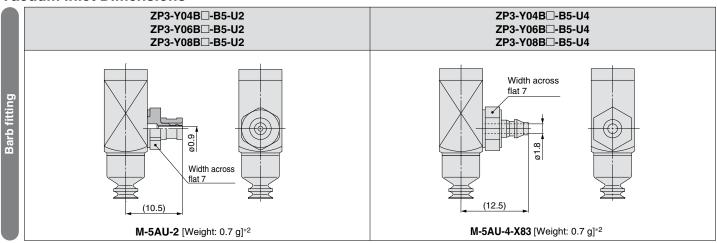


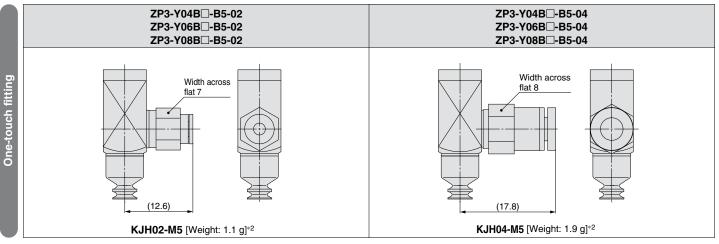

ZP3-Y16UM□-B5-B5 [Weight: 7.9 g]

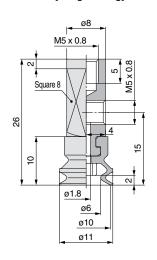

^{*1} Refer to "ZP3-Y▲▲UM□-B5-B5" for dimensions.


^{*2} When calculating the weight, add the weight of the fitting to "ZP3-Y▲▲UM□-B5-B5".

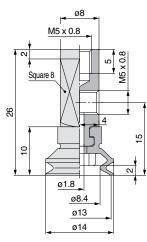



Dimensions/With Adapter: Vacuum Inlet Lateral

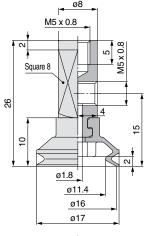

Pad diameter ø4 to ø8 Pad type **Bellows**

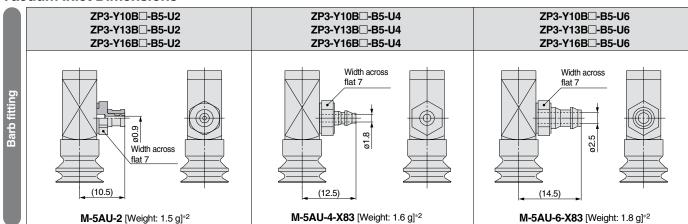

- *1 Refer to "ZP3-Y▲▲B□-B5-B5" for dimensions.
- *2 When calculating the weight, add the weight of the fitting to "ZP3-Y▲▲B□-B5-B5".

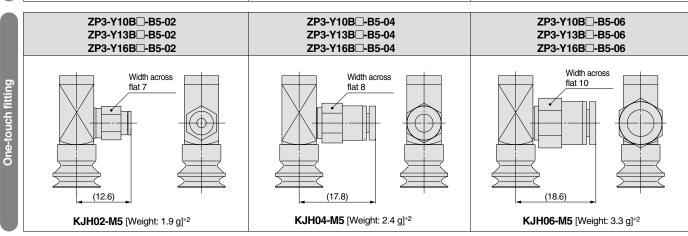
Dimensions/With Adapter: Vacuum Inlet Lateral



Pad type **Bellows**


ZP3-Y10B□-B5-B5 [Weight: 7.9 g]


ZP3-Y13B□-B5-B5 [Weight: 8.1 g]



ZP3-Y16B□-B5-B5 [Weight: 8.2 g]

^{*1} Refer to "ZP3-Y▲▲B□-B5-B5" for dimensions.

^{*2} When calculating the weight, add the weight of the fitting to "ZP3-Y▲▲B□-B5-B5".

How to Order

Lateral vacuum inlet/ With buffer

ZP3-Y015UNJ3-B3

Vacuum inlet direction

Pad diameter

ad diameter •			
Symbol	Pad diameter		
015	ø1.5		
02	ø2		
035	ø3.5		
04	ø4		
06	ø6		
08	ø8		
10	ø10		
13	ø13		
16	ø16		

Pad type - Pad diameter

Pad diameter (Symbol)	015	02	035	04	06
U (Flat)				_	_
UM (Flat with groove)	_	_	_	•	
B (Bellows)	_	_	_		
Pad diameter					1
Pad diameter Pad type (Symbol)	08	10	13	16	
	08	10	13	16	
Pad type (Symbol)	08 	10	13 	16 	

♦ Vacuum inlet (♦)

	Symbol	Connection	ø1.5 to ø3.5	ø4 to ø8	ø10 to ø16
Female	B3	M3 x 0.5		-	_
thread	B5	M5 x 0.8	_	•	
Doub	U2	ø2 tubing *1	•	•	•
Barb	U4	ø4 tubing *2		•	
fitting	U6	ø6 tubing *2	_	1	
One-touch	02	ø2 tubing		•	
fitting	04	ø4 tubing			
nung	06	ø6 tubing			

- *1 Polyurethane tube piping
- *2 Soft nylon/Polyurethane tube piping

◆Stroke (■)—Buffer specifications

Stroke	ø1.5 to ø3.5		ø4 to ø16		
Slicke	J	K	J	JB	K
3	•	•	•	_	•
6	•	•		_	•
10	_	_	•	_	•
15	_	_	_	•	•
20	_	_	_		

Pad material (□)

T da matoriai (□)				
Symbol	Material			
N	NBR			
S Silicone rubber				
U	Urethane rubber			
F	FKM			
GN	Conductive NBR			
GS	Conductive silicone rubber			

→ Buffer specifications (☆)

J	Non-rotating
JB	Non-rotating, With bushing
K	Rotating

Specifications

Dad diameter	Buffer	Stroke	Tightening torque	Mounting		active force
Pad diameter	specifications	(mm)	lbf⋅ft (N⋅m)	Mounting	At 0 stroke lbf (N)	At full stroke lbf (N)
ø1.5 to ø3.5	J	3, 6	1.1 to 1.33 (1.5 to 1.8)	M6 x 0.75	0.045 (0.2)	0.09 (0.4)
Ø 1.5 to Ø 5.5	K		1.48 to 1.84 (2.0 to 2.5)	M8 x 0.75		0.11 (0.5)
	7	3, 6, 10		M8 x 0.75	0.045 (0.2)	0.11 (0.5)
ø4 to ø16	JB	15, 20	1.48 to 1.84			
	K	3, 6, 10, 15, 20	(2.0 to 2.5)			

Replacement Part No.

Pad diameter: Ø1.5 to Ø3.5

Model	Pad unit part no.	Buffer assembly part no. Note 3)
ZP3-Y(015/02/035)U□(J/K)3-◇	ZP3-(015/02/035)U+	ZP3B-Y1(J/K)3-B3
ZP3-Y(015/02/035)U□(J/K)6-♦	ZF3-(013/02/033)0+	ZP3B-Y1(J/K)6-B3

Note 1) \square in the table indicates the pad material.

Note 2) \diamondsuit in the table indicates the vacuum inlet.

Note 3) Fitting is ordered separately.

Suffix of how to order (<>) U2: M-3AU-2, U4: M-3AU-4-X83

02: KJH02-M3, 04: KJH04-M3-X83

Pad diameter: Ø4 to Ø8

Model	Pad unit part no.	Buffer assembly part no. Note 3)	
ZP3-Y(04/06/08)UM□(J/K)3-◇	ZP3-(04/06/08)UM□	ZP3B-Y2A(J/K)3-B5	
ZP3-Y(04/06/08)B□(J/K)3-♦	ZP3-(04/06/08)B□	ZF3D-12A(J/N)3-D3	
ZP3-Y(04/06/08)UM□(J/K)6-◇	ZP3-(04/06/08)UM□	ZP3B-Y2A(J/K)6-B5	
ZP3-Y(04/06/08)B□(J/K)6-♦	ZP3-(04/06/08)B□	ZF3D-12A(J/N)0-D3	
ZP3-Y(04/06/08)UM□(J/K)10-♦	ZP3-(04/06/08)UM□	ZP3B-Y2A(J/K)10-B5	
ZP3-Y(04/06/08)B□(J/K)10-♦	ZP3-(04/06/08)B□	ZF3D-12A(0/K)10-D3	
ZP3-Y(04/06/08)UM□(JB/K)15-◇	ZP3-(04/06/08)UM□	ZP3B-Y2A(JB/K)15-B5	
ZP3-Y(04/06/08)B□(JB/K)15-♦	ZP3-(04/06/08)B□	ZP3D-YZA(JD/K) 13-D	
ZP3-Y(04/06/08)UM\(\subseteq\)(JB/K)20-\(\sigma\)	ZP3-(04/06/08)UM□	ZP3B-Y2A(JB/K)20-B5	
ZP3-Y(04/06/08)B□(JB/K)20-♦	ZP3-(04/06/08)B□	ZF 3D-1 ZA(JD/N)ZU-D3	

Note 1) \square in the table indicates the pad material.

Note 2) \diamondsuit in the table indicates the vacuum inlet.

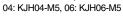
Note 3) Fitting is ordered separately.

Suffix of how to order (♦)

U2: M-5AU-2, U4: M-5AU-4-X83 02: KJH02-M5, 04: KJH04-M5

Pad diameter: Ø10 to Ø16

Model	Pad unit part no.	Buffer assembly part no. Note 3)
ZP3-Y(10/13/16)UM□(J/K)3-♦	ZP3-(10/13/16)UM□	ZP3B-Y2B(J/K)3-B5
ZP3-Y(10/13/16)B□(J/K)3-♦	ZP3-(10/13/16)B□	ZF3D-12D(0/N)3-D3
ZP3-Y(10/13/16)UM□(J/K)6-♦	ZP3-(10/13/16)UM□	ZP3B-Y2B(J/K)6-B5
ZP3-Y(10/13/16)B□(J/K)6-♦	ZP3-(10/13/16)B□	ZF3D-12D(3/R)0-D3
ZP3-Y(10/13/16)UM□(J/K)10-♦	ZP3-(10/13/16)UM□	ZP3B-Y2B(J/K)10-B5
ZP3-Y(10/13/16)B□(J/K)10-♦	ZP3-(10/13/16)B□	ZF3D-12D(J/K)10-D3
ZP3-Y(10/13/16)UM□(JB/K)15-◇	ZP3-(10/13/16)UM□	ZP3B-Y2B(JB/K)15-B5
ZP3-Y(10/13/16)B□(JB/K)15-♦	ZP3-(10/13/16)B□	ZF 3D-12D(3D/K) 13-D3
ZP3-Y(10/13/16)UM□(JB/K)20-♦	ZP3-(10/13/16)UM□	ZP3B-Y2B(JB/K)20-B5
ZP3-Y(10/13/16)B□(JB/K)20-♦	ZP3-(10/13/16)B□	ZF3D-1ZD(JD/N)ZU-D3

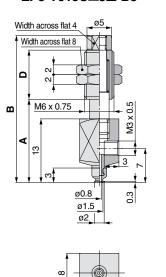

Note 1) \square in the table indicates the pad material.

Note 2) \diamondsuit in the table indicates the vacuum inlet.

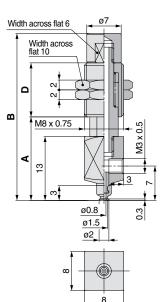
Note 3) Fitting is ordered separately.

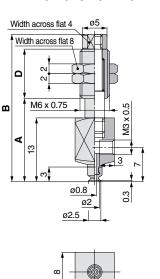
Suffix of how to order (\diamondsuit)

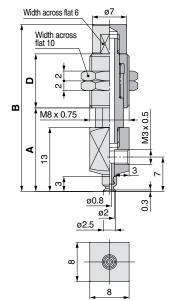
U2: M-5AU-2, U4: M-5AU-4-X83 U6: M-5AU-6-X83, 02: KJH02-M5


Pad diameter $\emptyset 1.5$ to $\emptyset 3.5$

Flat Pad type **Stroke** 3, 6 mm


Dimensions/With Buffer: Vacuum Inlet Lateral


ZP3-Y015U□J**■**-B3


ZP3-Y015U□K**■**-B3

ZP3-Y02U□J**■**-B3

ZP3-Y02U□K**■**-B3

Dimensions (per stroke)

			•	
Model	Α	В	D	Weight (g
ZP3-Y015U□J3-B3	17	30	10	7.7
ZP3-Y015U□J6-B3	20	37	14	8.6

Note) ☐ in the table indicates the pad material "N, S, U, F, GN, GS."

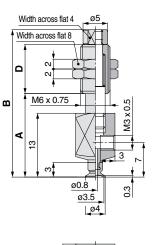
Dimensions (per stroke)

Model	Α	В	D	Weight (g
ZP3-Y015U□K3-B3	17	34	11	11.0
ZP3-Y015U□K6-B3	20	40.5	14.5	12.2

Note) ☐ in the table indicates the pad material "N, S, U, F, GN, GS."

Dimensions (per stroke)

Model	Α	В	D	Weight (g)
ZP3-Y02U□J3-B3	17	30	10	7.7
ZP3-Y02U□J6-B3	20	37	14	8.6

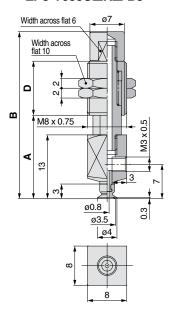

Note) ☐ in the table indicates the pad material "N, S, U, F, GN, GS."

Dimensions (per stroke)

Model	Α	В	D	Weight (g)	
ZP3-Y02U□K3-B3	17	34	11	11.0	
ZP3-Y02U□K6-B3	20	40.5	14.5	12.2	

Note) ☐ in the table indicates the pad material "N, S, U, F, GN, GS."

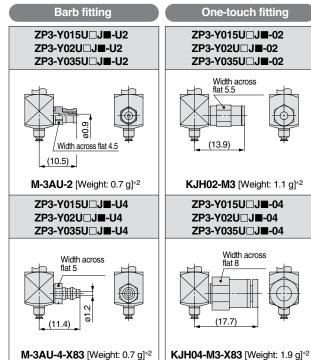
ZP3-Y035U□**J■-B3**



Dimensions (per stroke)

Model	Α	В	D	Weight (g)		
ZP3-Y035U□J3-B3	17	30	10	7.7		
ZP3-Y035U□J6-B3	20	37	14	8.6		

Note) ☐ in the table indicates the pad material "N. S. U. F. GN. GS."


ZP3-Y035U□**K■-B3**

Dimensions (per stroke)

			,	
Model	Α	В	D	Weight (g)
ZP3-Y035U□K3-B3	17	34	11	11.0
ZP3-Y035U□K6-B3	20	40.5	14.5	12.2

Note) ☐ in the table indicates the pad material "N, S, U, F, GN, GS."

- * 1 Refer to "ZP3-Y▲▲▲U□☆■-B3" for dimensions.
- * 2 When calculating the weight, add the weight of the fitting to "ZP3-Y▲▲▲U□☆■ -B3".

ø1.2

ø1.8

ZP3-Y08UM□J**■■**-B5

ø1.8 ø8

ø8.5

8

Width across flat 6
Width across flat 10

M8 x 0.75

۵

⋖ 8

œ

ø4 ø4.5

Pad diameter ø4 to ø8 Flat with groove Pad type 3, 6, 10 mm Stroke

(K)

122

13.4

15.4

Dimensions/With Buffer: Vacuum Inlet Lateral ZP3-Y04UM□J**■■**-B5 ZP3-Y04UM□K**■■**-B5 ZP3-Y06UM J ZP3-Y06UM□K**■■**-B5 Width across flat 6 Width across flat 6 Width across flat 10 Width across flat 10 M8 x 0.75 M8 x 0.75 m $M5 \times 0.8$ M5 x 0. ⋖ ⋖

8

Weight (g)

(K)

122

13.4

15.4

Dimensions (per stroke)

Model B D Non-rotating Rotating (J) ZP3-Y04UM□☆3-B5 22.5 40 11 12.8 ZP3-Y04UM□☆6-B5 25 | 46 | 14.5 | 14.2 **ZP3-Y04UM**□**☆10-B5** 29 56 20.5 16.6

Note 1) \square in the table indicates the pad material "N, S, U, F, GN, GS."

Note 2) The symbol " $\stackrel{\wedge}{\succsim}$ " indicates buffer type "J" or "K".

25 46 14.5

ZP3-Y08UM□**☆10-B5** 29 56 20.5

type "J" or "K".

Note 1) ☐ in the table indicates the pad material "N, S, U, F, GN, GS." Note 2) The symbol "☆" indicates buffer

14.2

ø1.8 ø6 ø6.5 Dimensions (per stroke) Weight (g) Model A B D Non-rotating Rotating **ZP3-Y06UM**□**☆3-B5** 22.5 40 11 128 **ZP3-Y06UM**□**☆6-B5** 25 46 14.5 14.2 **ZP3-Y06UM**□**☆10-B5** 29 56 20.5 16.6 Note 1) \square in the table indicates the pad material "N, S,

Note 2) The symbol "☆" indicates buffer type "J" or "K".

(12.6)

One-touch fitting

ZP3-Y04UM□☆■■-02

ZP3-Y06UM□☆■■-02

ZP3-Y08UM□☆■■-02

Width across flat 7

KJH02-M5 [Weight: 1.9 g]*2

ZP3-Y04UM□☆■■-04

ZP3-Y06UM□☆■■-04 **ZP3-Y08UM**□☆■■-04

(17.8)

KJH04-M5 [Weight: 2.4 g]*2

Vacuum Inlet Dimensions

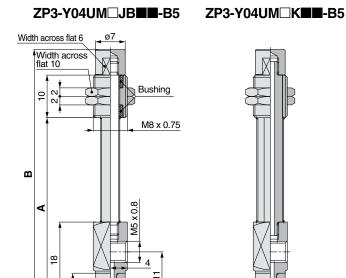
Barb fitting ZP3-Y08UM K ZP3-Y04UM□☆■■-U2 ZP3-Y06UM□☆■■-U2 **ZP3-Y08UM**□☆■■-U2 Width across flat 7 (10.5) M-5AU-2 [Weight: 1.5 g]*2 ZP3-Y04UM□☆■■-U4 ZP3-Y06UM□☆■■-U4 **ZP3-Y08UM**□☆■■-U4 Width across flat 7 **Dimensions (per stroke)** ø1.8 Weight (g) В D Non-rotating (J) Model Rotating (K) (12.5)ZP3-Y08UM□☆3-B5 22.5 40 11 12.8 12.2 ZP3-Y08UM□☆6-B5

M-5AU-4-X83 [Weight: 1.6 g]*2

13.4

15.4

^{*1} Refer to "ZP3-Y▲▲UM□☆■■-B5" for dimensions.


^{*2} When calculating the weight, add the weight of the fitting to "ZP3-Y▲▲UM□☆■■-B5".

Pad diameter

Stroke

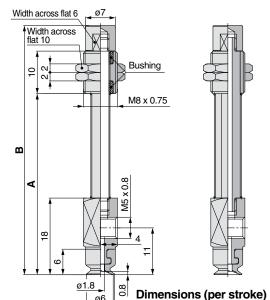
Dimensions/With Buffer: Vacuum Inlet Lateral

ø1.8 Dimensions (per stroke) ø4 ø4.5

Model **ZP3-Y04UM**□**☆15-B5** 42.5 59 **ZP3-Y04UM**□**☆20-B5** 50

Note 1) in the table indicates the pad material "N, S, U. F. GN. GS. Note 2) The symbol "☆" indicates buffer type "JB" or "K".

Weight (g)

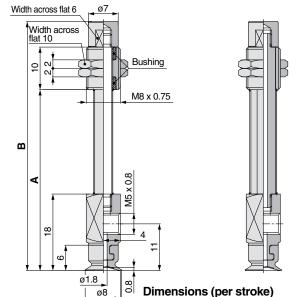

Rotating (K)

15.5

Non-rotating

14.3

ZP3-Y06UM□JB**■■**-B5 ZP3-Y06UM K

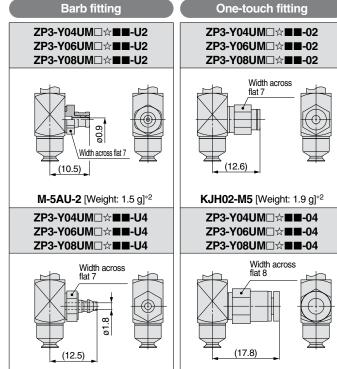

8

ø6

ø6.5

Weight (g) Model В Non-rotating Rotating **ZP3-Y06UM**□**☆15-B5** 42.5 59 14.3 15.5 **ZP3-Y06UM**□**☆20-B5** 50 66.5

ZP3-Y08UM JB ZP3-Y08UM□K■■-B5


ø8.5

Dimensions (per stroke) Weight (g) Model В Non-rotating Rotating (J) (K) **ZP3-Y08UM**□**☆15-B5** 42.5 59 14.3 15.5 **ZP3-Y08UM**□**☆20-B5** 50 66.5 15.1

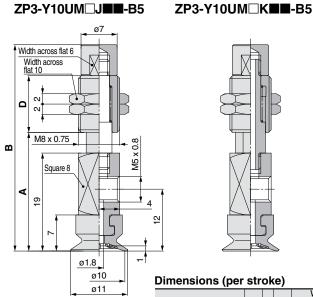
Note 1) \square in the table indicates the pad material "N, S, U, F, GN, GS.

Note 2) The symbol "" indicates buffer type "JB" or "K".

Vacuum Inlet Dimensions

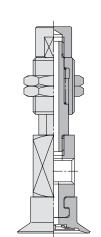
*1 Refer to "ZP3-Y▲▲UM□☆■■-B5" for dimensions.

M-5AU-4-X83 [Weight: 1.6 g]*2


*2 When calculating the weight, add the weight of the fitting to "ZP3-Y▲▲UM□☆■■ -B5".

KJH04-M5 [Weight: 2.4 g]*2

Pad diameter ø10 to ø16 Flat with groove Pad type 3, 6, 10 mm **Stroke**


ZP3-Y13UM□K■■-B5

Dimensions/With Buffer: Vacuum Inlet Lateral

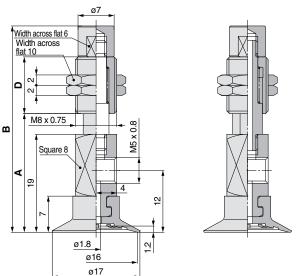
Width across flat 6 Width across M8 x 0.75 $M5 \times 0.8$ B Square 8 ⋖ <u>6</u>

ZP3-Y13UM□J**■■**-B5

ø1.8 Ŋ ø13 ø14

Dimensions (per stroke) Weight (g) Model A B D Non-rotating Rotating **ZP3-Y13UM**□**☆3-B5** 23.5 41 11 **ZP3-Y13UM**□☆6-B5 26 47 14.5 15.0 14.3 **ZP3-Y13UM**□**☆10 -B5** 30 57 20.5 17.4 16.2

Note 1) \square in the table indicates the pad material "N, S, U, F, GN, GS."


Note 2) The symbol "☆" indicates buffer type "J" or "K".

				Weight	(g)
Model	Α	В	D	Non-rotating (J)	Rotating (K)
ZP3-Y10UM□☆3-B5	23.5	41	11	13.6	13.0
ZP3-Y10UM□☆6-B5	26	47	14.5	14.9	14.2
ZP3-Y10UM□☆10-B5	30	57	20.5	17.3	16.1

Note 1) \square in the table indicates the pad material "N, S, U, F, GN, GS."

Note 2) The symbol "☆" indicates buffer type "J" or "K".

ZP3-Y16UM□J**■■**-B5 ZP3-Y16UM□K■■-B5

	Γ Z71 II
π	
	//

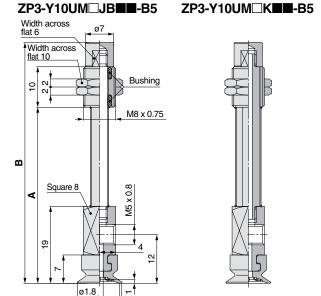
Dimensions (per stroke)

				Weight	(g)		
Model	Α	В	D	Non-rotating (J)	Rotating (K)		
ZP3-Y16UM□☆3-B5	23.5	41	11	13.8	13.2		
ZP3-Y16UM□☆6 -B5	26	47	14.5	15.1	14.4		
ZP3-Y16UM□☆10-B5	30	57	20.5	17.5	16.3		
Note 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							

Note 1) \square in the table indicates the pad material "N, S, U, F, GN, GS." Note 2) The symbol "☆" indicates buffer type "J" or "K".

Barb fitting	One-touch fitting
ZP3-Y10UM□☆■■-U2 ZP3-Y13UM□☆■■-U2 ZP3-Y16UM□☆■■-U2	ZP3-Y10UM□☆■■-02 ZP3-Y13UM□☆■■-02 ZP3-Y16UM□☆■■-02
(10.5) Width across flat 7	Width across flat 7
M-5AU-2 [Weight: 1.5 g]*2	KJH02-M5 [Weight: 1.9 g]*2
ZP3-Y10UM□☆■■-U4 ZP3-Y13UM□☆■■-U4 ZP3-Y16UM□☆■■-U4	ZP3-Y10UM□☆■■-04 ZP3-Y13UM□☆■■-04 ZP3-Y16UM□☆■■-04
Width across flat 7	Width across flat 8
M-5AU-4-X83 [Weight: 1.6 g]*2	KJH04-M5 [Weight: 2.4 g]*2
ZP3-Y10UM□☆■■-U6 ZP3-Y13UM□☆■■-U6 ZP3-Y16UM□☆■■-U6	ZP3-Y10UM□☆■■-06 ZP3-Y13UM□☆■■-06 ZP3-Y16UM□☆■■-06
Width across flat 7	Width across flat 10
M-5AU-6-X83 [Weight: 1.8 g]*2	KJH06-M5 [Weight: 3.3 g]*2

- *1 Refer to "ZP3-Y▲▲UM□☆■■-B5" for dimensions.
- *2 When calculating the weight, add the weight of the fitting to "ZP3-Y▲▲UM□☆■■-B5".

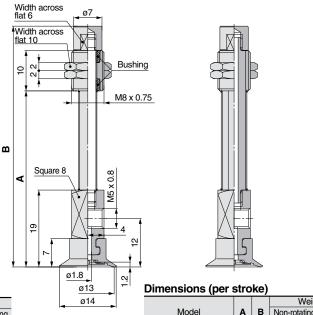

Pad type

Stroke

Dimensions/With Buffer: Vacuum Inlet Lateral

ZP3-Y13UM□JB■■-B5

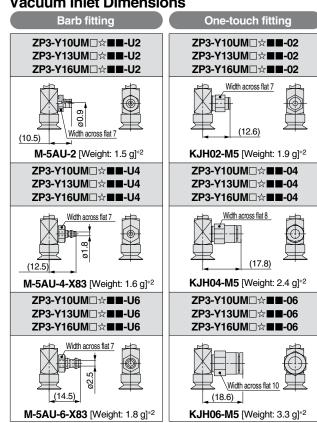
ZP3-Y13UM□K■■-B5


ø10

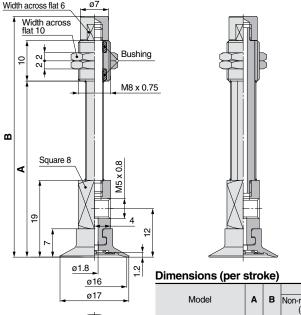
ø11

Dimensions (per stroke) Weight (g) Non-rotating Rotating Model В 15.0 16.2

ZP3-Y10UM□**☆15-B5** 43.5 60 **ZP3-Y10UM**□**☆20-B5** 51 67.5 Note 1) \square in the table indicates the pad material "N, S, U,


F. GN. GS. Note 2) The symbol "" indicates buffer type "JB" or "K".

Weight (g) Non-rotating Rotating **ZP3-Y13UM**□**☆15-B5** 43.5 60 15.1 16.3 **ZP3-Y13UM**□**☆20-B5** 51 67.5 17.4 Note 1) \square in the table indicates the pad material "N, S, U,


Note 2) The symbol "%" indicates buffer type "JB" or "K".

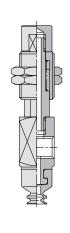
Vacuum Inlet Dimensions

- *1 Refer to "ZP3-Y▲▲UM□☆■■-B5" for dimensions.
 - *2 When calculating the weight, add the weight of the fitting to "ZP3-Y▲▲UM□☆■■ -B5".

ZP3-Y16UM□JB■■-B5 ZP3-Y16UM□K**■■**-B5

Weight (g) Non-rotating Rotating **ZP3-Y16UM**□**☆15-B5** 43.5 60 15.2 16.4 **ZP3-Y16UM**□**☆20-B5** 51 67.5 16.0 17.5

Note 1) \square in the table indicates the pad material "N, S, U, F. GN. GS.


Note 2) The symbol "☆" indicates buffer type "JB" or "K".

Pad diameter	ø 4 to ø 8
Pad type	Bellows
Stroke	3, 6, 10 mm

Dimensions/With Buffer: Vacuum Inlet Lateral

Width across Width across flat 10 Ω M8 x 0.75 M5 x 0.8 ω ⋖ 20 ø1.8 ø4.5

ZP3-Y04B□J**■■**-B5

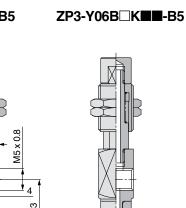
ZP3-Y04B□K**■■**-B5

ZP3-Y06B□J**■■**-B5 Width across flat 6

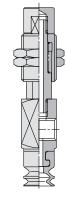
Width across

M8 x 0.75

flat 10


۵

⋖


20

ω

m

ø1.8 ø3.4 ø6 ø7

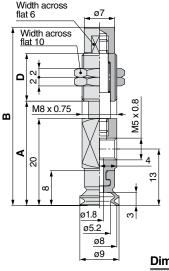
Dimensions (per stroke)

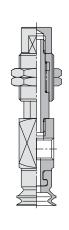
		Weight (g			(g)
Model	Α	В	D	Non-rotating (J)	Rotating (K)
ZP3-Y04B□☆3-B5	24.5	42	11	12.8	12.2
ZP3-Y04B□☆6-B5	27	48	14.5	14.2	13.4
ZP3-Y04B □ ☆10-B5	31	58	20.5	16.6	15.4

Note 1) \square in the table indicates the pad material "N, S, U, F, GN, GS."

Note 2) The symbol "%" indicates buffer type "J" or "K".

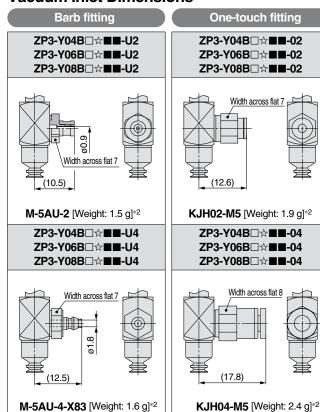
Dimensions (per stroke)


				Weight (g)			
Model	Α	В	D	Non-rotating (J)	Rotating (K)		
ZP3-Y06B□☆3-B5	24.5	42	11	12.8	12.2		
ZP3-Y06B□☆6-B5	27	48	14.5	14.2	13.4		
ZP3-Y06B□☆10-B5	31	58	20.5	16.6	15.4		


Note 1) ☐ in the table indicates the pad material "N, S, U, F, GN, GS."

Note 2) The symbol "☆" indicates buffer type "J" or "K".

ZP3-Y08B J BB-B5



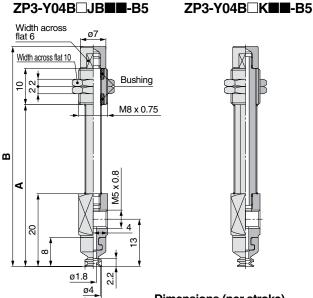
Dimensions (per stroke)

					Weight (g)	
Model	Α	В	D	Non-rotating	Rotating	
				(J)	(K)	
ZP3-Y08B□☆3-B5	24.5	42	11	12.9	12.3	
ZP3-Y08B □ ☆6-B5	27	48	14.5	14.3	13.5	
ZP3-Y08B□☆10-B5	31	58	20.5	16.7	15.5	

Note 1) \square in the table indicates the pad material "N, S, U, F, GN, GS.

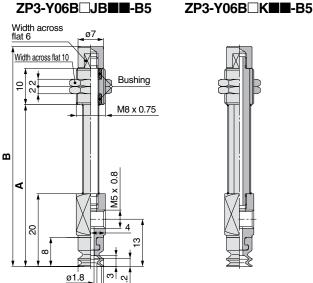
Note 2) The symbol "☆" indicates buffer type "J" or "K".

^{*1} Refer to "ZP3-Y▲▲B□☆■■-B5" for dimensions.


^{*2} When calculating the weight, add the weight of the fitting to "ZP3-Y \triangle B \Box $\not\simeq$ B=-B5".

With Buffer: Vacuum Inlet Lateral Series ZP3

Dimensions/With Buffer: Vacuum Inlet Lateral

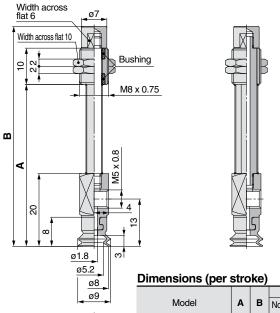


Dimensions (per stroke)

			Weight	(g)	
Model	Α	В	Non-rotating	(K)	
			(J)	(K)	
ZP3-Y04B □ ☆15-B5	44.5	61	14.3	15.5	
ZP3-Y04B □ ☆20-B5	52	68.5	15.1	16.6	

Note 1) \square in the table indicates the pad material "N, S, U, F, GN, GS." Note 2) The symbol "☆" indicates buffer type "JB" or "K".

ZP3-Y06B□JB**■■**-B5



Dimensions (per stroke)

			vvcigiti (g)	
Model	Α	В	Non-rotating (J)	Rotating (K)
ZP3-Y06B □ ☆15-B5	44.5	61	14.3	15.5
ZP3-Y06B □ ☆20-B5	52	68.5	15.1	16.6
Niete d\ \ \ io the telefe io	-1: 4	41-		LINI O

Note 1) \square in the table indicates the pad material "N, S, U, F, GN, GS. Note 2) The symbol " $\not\propto$ " indicates buffer type "JB" or "K".

ZP3-Y08B□**K■■-B5** ZP3-Y08B□JB**■■**-B5

Billionolone (per ou olic)						
			Weight (g)			
Model	Α	В	Non-rotating (J)	Rotating (K)		
ZP3-Y08B □ ☆15-B5	44.5	61	14.4	15.6		
ZP3-Y08B□☆20-B5	52	68.5	15.2	16.7		
Note 1) ☐ in the table indicates the pad material "N_S						

U, F, GN, GS."

Note 2) The symbol "☆" indicates buffer type "JB" or "K".

Vacuum Inlet Dimensions

8

ø3.4

ø6 ø7

vacuum iniet Dimensions						
Barb fitting	One-touch fitting					
ZP3-Y04B□☆■■-U2 ZP3-Y06B□☆■■-U2 ZP3-Y08B□☆■■-U2	ZP3-Y04B□☆■■-02 ZP3-Y06B□☆■■-02 ZP3-Y08B□☆■■-02					
Width across flat 7 (10.5) M-5AU-2 [Weight: 1.5 g]*2	Width across flat 7 (12.6) KJH02-M5 [Weight: 1.9 g]*2					
ZP3-Y04B□☆■■-U4	ZP3-Y04B□☆■■-04					
ZP3-Y06B□☆■■-04	ZP3-Y06B□☆■■-04					
ZP3-Y08B□☆■■-U4	ZP3-Y08B□☆■■-04					
Width across flat 7	Width across flat 8					
M-5AU-4-X83 [Weight: 1.6 g]*2	KJH04-M5 [Weight: 2.4 g]*2					

*1 Refer to "ZP3-Y▲▲B□☆■■-B5" for dimensions.

*2 When calculating the weight, add the weight of the fitting to "ZP3-Y▲▲B□☆■■-B5".

Pad diameter ø10 to ø16 Pad type **Bellows** 3, 6, 10 mm **Stroke**

Dimensions/With Buffer: Vacuum Inlet Lateral

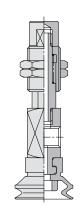
ZP3-Y10B□**J**■**B-B5** ZP3-Y10B□K■■-B5 Width across flat 6 Width across flat 10 Δ M5 x 0.8 M8 x 0.75 B Square 8 22 9 ø1.8 ø6 Dimensions (per stroke) ø10 ø11 B D Model

ZP3-Y10B□**☆6-B5** 29 50 14.5 15.1 14.2 **ZP3-Y10B**□**☆10-B5** | 33 | 60 | 20.5 | 17.5 16.3 Note 1) \square in the table indicates the pad material "N, S, U, F, GN, GS."

ZP3-Y10B□**☆3-B5** 26.5 44 11

Weight (g)

13.2

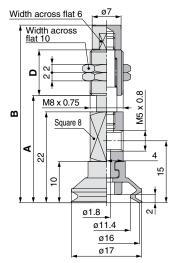

(J)

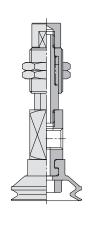
13.8

Note 2) The symbol "☆" indicates buffer type "J" or "K".

ZP3-Y13B□**J**■**B-B5** Width across Width across flat 10 ۵ M8 x 0.75 Ш Square 8 ⋖ <u>†</u> 4 22 9 ø1.8 ø8.4 ø13 Non-rotating Rotating ø14

ZP3-Y13B□**K**■■-B5

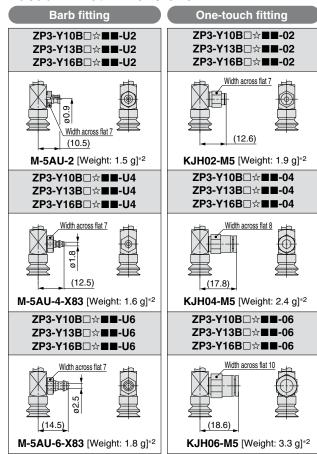

Dimensions (per stroke)


				Weight	: (g)
Model	Α	В	D	Non-rotating (J)	Rotating (K)
ZP3-Y13B□☆3-B5	26.5	44	11	14.0	13.4
ZP3-Y13B□☆6-B5	29	50	14.5	15.3	14.4
ZP3-Y13B□☆10-B5	33	60	20.5	17.7	16.5

Note 1) \square in the table indicates the pad material "N, S, U, F, GN, GS

Note 2) The symbol "☆" indicates buffer type "J" or "K".

ZP3-Y16B□**J**■**B-B5** ZP3-Y16B□K■■-B5



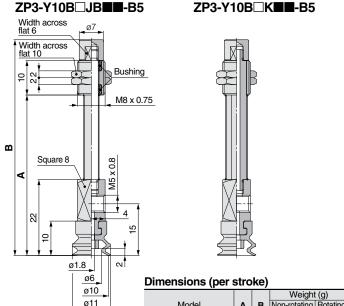
Dimensions (per stroke)

	АВ	Weight (g)			
Model		В	D	Non-rotating (J)	Rotating (K)
ZP3-Y16B□☆3-B5	26.5	44	11	14.1	13.5
ZP3-Y16B□☆6-B5	29	50	14.5	15.4	14.5
ZP3-Y16B□☆10-B5	33	60	20.5	17.8	16.6

Note 1) \square in the table indicates the pad material "N, S, U, F, GN, GS."

Note 2) The symbol "☆" indicates buffer type "J" or "K".

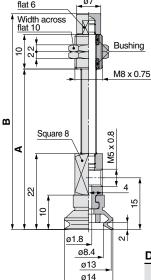
- *1 Refer to "ZP3-Y▲▲B□☆■■-B5" for dimensions.
- *2 When calculating the weight, add the weight of the fitting to "ZP3-Y▲▲B□☆■■-B5".

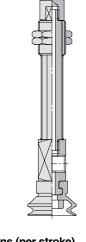

Weight (g)

Pad diameter Ø10 to Ø16 Pad type **Bellows** 15, 20 mm Stroke

ZP3-Y13B□**K**■■-**B**5

Dimensions/With Buffer: Vacuum Inlet Lateral

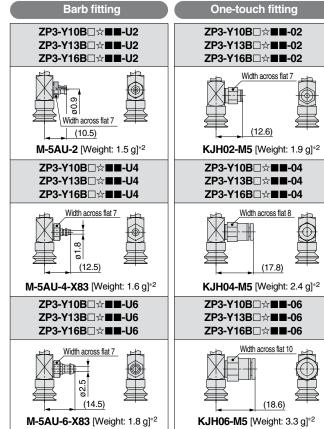

				(3)
Model	Α	В	Non-rotating	Rotating
			(J)	(K)
ZP3-Y10B□☆15-B5	46.5	63	15.2	16.4
ZP3-Y10B□☆20-B5	54	70.5	16.0	17.5

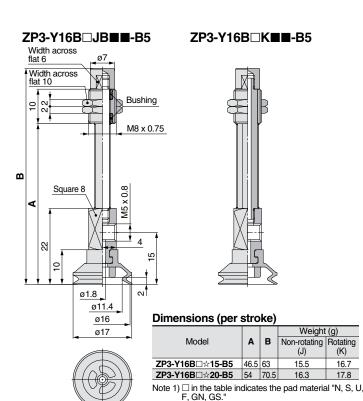

Note 1) \square in the table indicates the pad material "N, S, U, F, GN, GS.

Note 2) The symbol "☆" indicates buffer type "JB" or "K".

Note 2) The symbol "☆" indicates buffer type "JB" or "K".

ZP3-Y13B□JB■■-B5 Width across

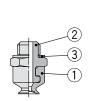


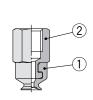

Dimensions (per stroke)

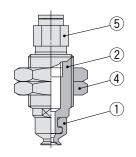
			1.0.9		
Model	Α	В	Non-rotating	Rotating	
			(J)	(K)	
ZP3-Y13B□☆15-B5	46.5	63	15.4	16.6	
ZP3-Y13B□☆20-B5	54	70.5	16.2	17.7	
Note 1) I in the table indicates the ned meterial "N. C. I					

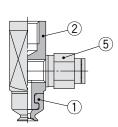
Note 1) \square in the table indicates the pad material "N, S, U, F, GN, GS." Note 2) The symbol "" indicates buffer type "JB" or "K".

- *1 Refer to "ZP3-Y▲▲B□☆■■-B5" for dimensions.
- *2 When calculating the weight, add the weight of the fitting to "ZP3-Y▲▲B□☆■■-B5".

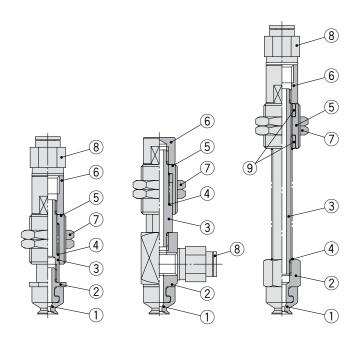


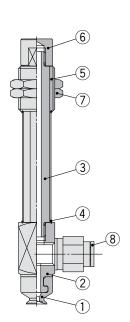



Series ZP3 Construction


Component Parts List

Pad with adapter





Component Parts

No.	Description	n Material (Surface treatment)			
1	Pad	NBR/Silicone rubber Urethane rubber/FKM Conductive NBR/Conductive silicone rubber			
2	Adapter Brass(Electroless nickel plated)				
3	Gasket	Stainless steel 304/NBR			
4	Nut	Structural steel(Trivalent chromated)	M6 x 0.75 M8 x 0.75 M12 x 1		
		Brass(Nickel plated)	M10 x 1		
5	Fitting	_			

Pad with buffer

Component Parts

No.	Description	Material (Surface treatment)	Note
1	Pad	NBR/Silicone rubber Urethane rubber/FKM Conductive NBR/Conductive silicone rubber	
2	Adapter	Brass(Electroless nickel plated)	
3	Piston rod	Stainless steel	
4	Return spring	Stainless steel	
5	Buffer body	Brass(Electroless nickel plated)	
6	Buffer adapter	Brass(Electroless nickel plated)	
7	Nut	Structural steel(Trivalent chromated)	
8	Fitting		
9	Bushing		

Series ZP3

Adapter Applicable Pad List

Series ZP3 Mounting Adapter Part No.

Adapte	r part no.	Applicable pad part no. Series ZP3	Page
ZP3A-T1-A3		ZP3-015U□ ZP3-02U□ ZP3-035U□	P.47
ZP3A-T1-B3	1	ZP3-015U□ ZP3-02U□ ZP3-035U□	P.47
ZP3A-T1-A6-B3		ZP3-015U□ ZP3-02U□ ZP3-035U□	P.47
ZP3A-T2-A5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.47
ZP3A-T2-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.47
ZP3A-T2-A10-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.47
ZP3A-T2-A10-04		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.47
ZP3A-T3-A5		ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.47
ZP3A-T3-B5		ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.48

Adapte	r part no.	Applicable pad part no. Series ZP3	Page
ZP3A-T3-A12-B5		ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.48
ZP3A-T3-A12-04		ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.48
ZP3A-T3-A12-06		ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.48
ZP3A-Y1-B3		ZP3-015U□ ZP3-02U□ ZP3-035U□	P.48
ZP3A-Y2-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.48
ZP3A-Y3-B5		ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.48

Series **ZP3**

Buffer Applicable Pad List

Buffer Assembly Part No.

Buffer assen		Applicable pad part no. Series ZP3	Page
ZP3B-T1J3-B3		ZP3-015U□ ZP3-02U□ ZP3-035U□	P.49
ZP3B-T1J6-B3		ZP3-015U□ ZP3-02U□ ZP3-035U□	P.49
ZP3B-T1K3-B3		ZP3-015U□ ZP3-02U□ ZP3-035U□	P.49
ZP3B-T1K6-B3		ZP3-015U□ ZP3-02U□ ZP3-035U□	P.49
ZP3B-T2AJ3-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.49
ZP3B-T2AJ6-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.49
ZP3B-T2AJ10-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.49

Buffer assem	bly part no.	Applicable pad part no. Series ZP3	Page
ZP3B-T2AK3-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.49
ZP3B-T2AK6-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.49
ZP3B-T2AK10-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.49
ZP3B-T2AJB15-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.49
ZP3B-T2AJB20-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.49
ZP3B-T2AK15-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.49
ZP3B-T2AK20-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.49

Buffer Applicable Pad List $Series\ ZP3$

Buffer Assembly Part No.

Butter Assemb	ny rait ivo.		
Buffer assem	nbly part no.	Applicable pad part no. Series ZP3	Page
ZP3B-T2BJ3-B5	e e	ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.50
ZP3B-T2BJ6-B5		ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.50
ZP3B-T2BJ10-B5	•	ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.50
ZP3B-T2BK3-B5	8	ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.50
ZP3B-T2BK6-B5		ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.50
ZP3B-T2BK10-B5	***************************************	ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.50
ZP3B-T2BJB15-B5		ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.50
ZP3B-T2BJB20-B5		ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.50

Buffer assembly part no.		Applicable pad part no. Series ZP3	Page
ZP3B-T2BK15-B5		ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.50
ZP3B-T2BK20-B5		ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.50
ZP3B-Y1J3-B3		ZP3-015U□ ZP3-02U□ ZP3-035U□	P.51
ZP3B-Y1J6-B3		ZP3-015U□ ZP3-02U□ ZP3-035U□	P.51
ZP3B-Y1K3-B3		ZP3-015U□ ZP3-02U□ ZP3-035U□	P.51
ZP3B-Y1K6-B3		ZP3-015U□ ZP3-02U□ ZP3-035U□	P.51

Buffer Assembly Part No.

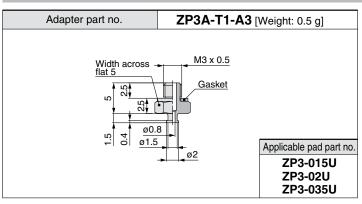
Buffer assem	nbly part no.	Applicable pad part no. Series ZP3	Page
ZP3B-Y2AJ3-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.51
ZP3B-Y2AJ6-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.51
ZP3B-Y2AJ10-B5	H	ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.51
ZP3B-Y2AK3-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.51
ZP3B-Y2AK6-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.51
ZP3B-Y2AK10-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.51

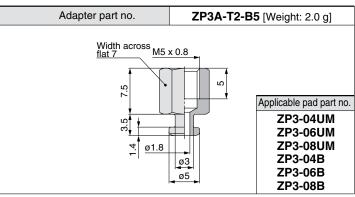
Buffer assem	bly part no.	Applicable pad part no. Series ZP3	Page
ZP3B-Y2AJB15-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.51
ZP3B-Y2AJB20-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.51
ZP3B-Y2AK15-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.51
ZP3B-Y2AK20-B5		ZP3-04UM□ ZP3-06UM□ ZP3-08UM□ ZP3-04B□ ZP3-06B□ ZP3-08B□	P.51

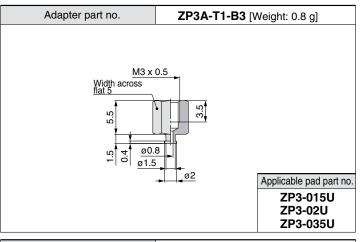
Buffer Assembly Part No.

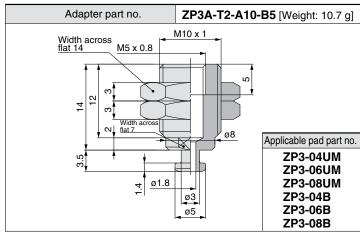
Buller Assembly Part No.			
Buffer assem	nbly part no.	Applicable pad part no. Series ZP3	Page
ZP3B-Y2BJ3-B5		ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.52
ZP3B-Y2BJ6-B5		ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.52
ZP3B-Y2BJ10-B5		ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.52
ZP3B-Y2BK3-B5	0	ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.52
ZP3B-Y2BK6-B5		ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.52
ZP3B-Y2BK10-B5		ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.52

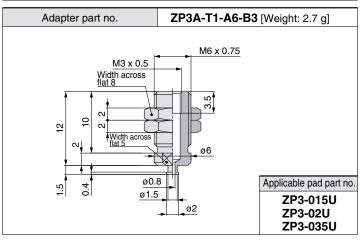

Buffer assem	bly part no.	Applicable pad part no. Series ZP3	Page
ZP3B-Y2BJB15-B5		ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.52
ZP3B-Y2BJB20-B5		ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.52
ZP3B-Y2BK15-B5		ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.52
ZP3B-Y2BK20-B5		ZP3-10UM□ ZP3-13UM□ ZP3-16UM□ ZP3-10B□ ZP3-13B□ ZP3-16B□	P.52

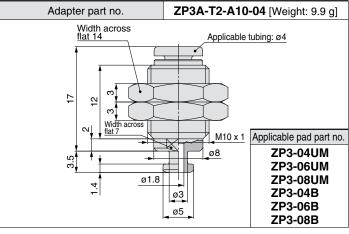


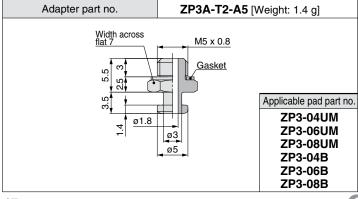


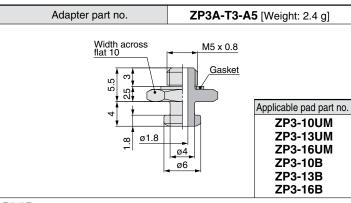


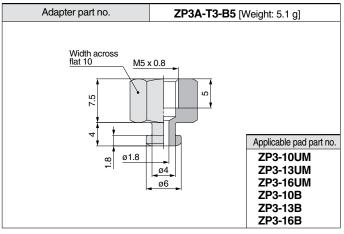

Mounting Adapter Part No.

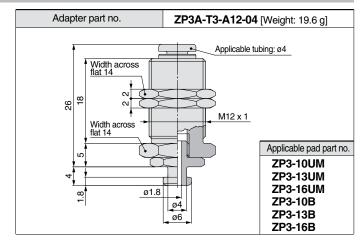

Vacuum Inlet Direction Vertical

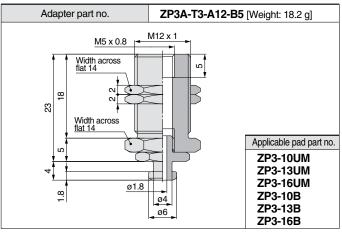


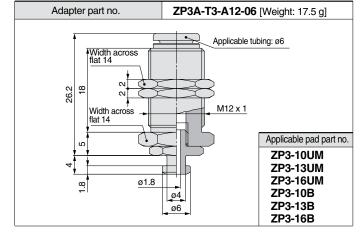




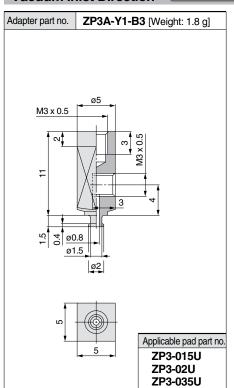


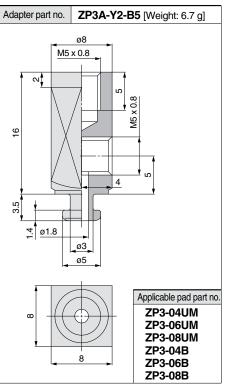


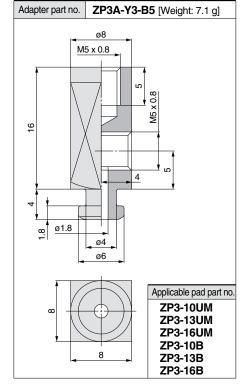




Vertical Vacuum Inlet Direction







Lateral **Vacuum Inlet Direction**

SMC

Pad Unit

Vertical

With Adapter: Vacuum Inlet

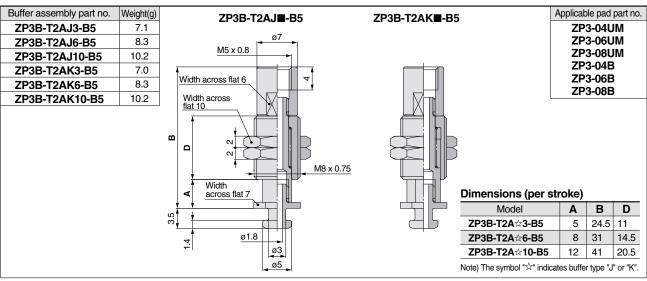
Vertical

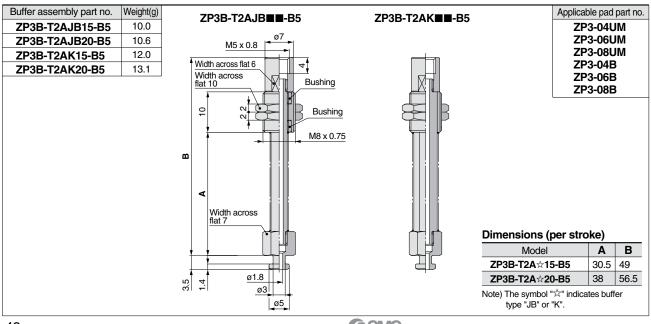
With Buffer: Vacuum Inlet

With Buffer: Vacuum Inlet Construction

Adapter Applicable Pad List

Buffer Applicable Pad List


Buffer Assembly Part No.


Buffer Assembly Part No.

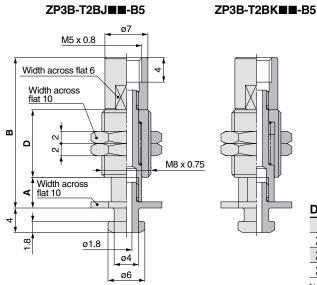
Vertical **Vacuum Inlet Direction** Buffer assembly part no. Applicable pad part no. Weight(g) ZP3B-T1J■-B3 ZP3B-T1K■-B3 **ZP3B-T1J3-B3** 3.5 ZP3-015U 4.3 **ZP3-02U ZP3B-T1J6-B3 ZP3-035U** 6.7 M3 x 0.5 **ZP3B-T1K3-B3** M3 x 0.5 **ZP3B-T1K6-B3** 8.1 Width across flat 4 Width across Width across flat 8 Width across flat 10 Ш $\mathbf{\omega}$ ۵ Ω M6 x 0.75 M8 x 0.75 ø0.8 0.4 **Dimensions (per stroke) Dimensions (per stroke)** ø1.5 ø0.8 Model Α В D Model В D ø2 ø1.5 Width across **ZP3B-T1J3-B3** ZP3B-T1K3-B3 4 21 10 5 23.5 11 ø2 | |

ZP3B-T1K6-B3

8 30

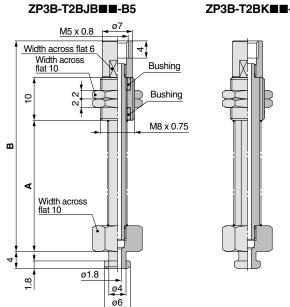
ZP3B-T1J6-B3

28


14

Buffer Assembly Part No. Series ZP3

* Refer to the front matter 25 for nut tightening torque.


Vertical **Vacuum Inlet Direction**

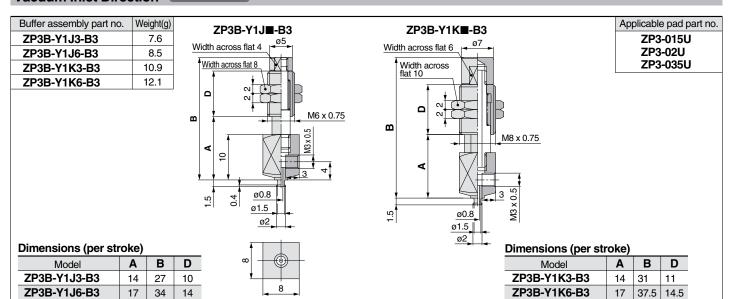
Buffer assembly part no.	Weight(g)
ZP3B-T2BJ3-B5	7.8
ZP3B-T2BJ6-B5	8.9
ZP3B-T2BJ10-B5	10.9
ZP3B-T2BK3-B5	7.7
ZP3B-T2BK6-B5	8.9
ZP3B-T2BK10-B5	10.9

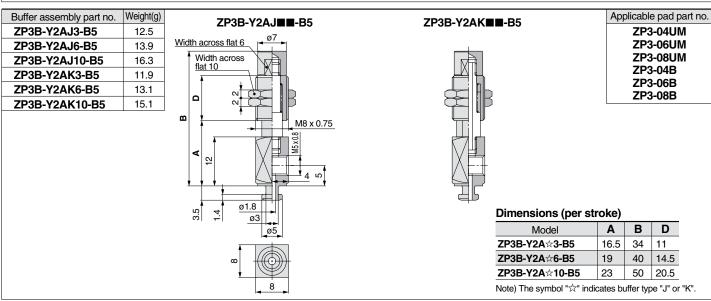
Applicable pad part no. **ZP3-10UM ZP3-13UM ZP3-16UM ZP3-10B ZP3-13B ZP3-16B** Dimensions (per stroke) D Model В ZP3B-T2B ☆3-B5 5 24.5 11 ZP3B-T2B☆6-B5 31 14.5 8 ZP3B-T2B ☆10-B5 12 41 20.5

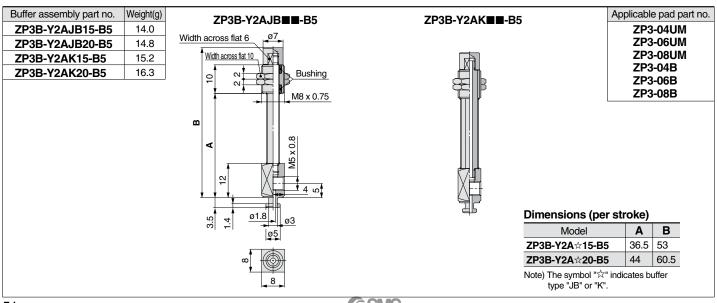
Buffer assembly part no.	Weight(g)
ZP3B-T2BJB15-B5	12.5
ZP3B-T2BJB20-B5	15.6
ZP3B-T2BK15-B5	14.5
ZP3B-T2BK20-B5	15.6

ZP3-10UM ZP3-13UM ZP3-16UM ZP3-10B ZP3-13B ZP3-16B	B-T2BK ■■ -B5	Applicable pad part no	
ZP3-16UM ZP3-10B ZP3-13B			
ZP3-13B		ZP3-16UM	

Note) The symbol "☆" indicates buffer type "J" or "K".

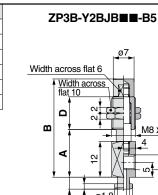

Dimensions (per stroke)

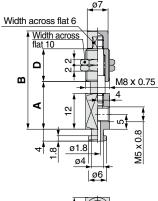

Dimensione (per enem)			
Model	Α	В	
ZP3B-T2B☆15-B5	30.5	49	
ZP3B-T2B☆20-B5	38	56.5	

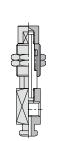

Note) The symbol "🌣" indicates buffer type "JB" or "K".

Vacuum Inlet Direction

Lateral

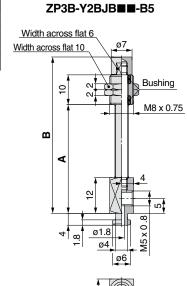


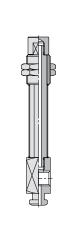

Vertical


Buffer Assembly Part No. Series ZP3 * Refer to the front matter 25 for nut tightening torque.

Vacuum Inlet Direction Lateral

Buffer assembly part no.	Weight(g)
ZP3B-Y2BJ3-B5	13.0
ZP3B-Y2BJ6-B5	14.3
ZP3B-Y2BJ10-B5	16.7
ZP3B-Y2BK3-B5	12.4
ZP3B-Y2BK6-B5	13.6
ZP3B-Y2BK10-B5	15.5


ZP3B-Y2BK■■-B5


Applicable pad part no. **ZP3-10UM ZP3-13UM ZP3-16UM ZP3-10B ZP3-13B ZP3-16B**

Dimensions (per stroke)

Model	Α	В	D
ZP3B-Y2B☆3-B5	16.5	34	11
ZP3B-Y2B☆6-B5	19	40	14.5
ZP3B-Y2B☆10-B5	23	50	20.5
Note) The symbol "5/5" indicates buffer type " I" or "K"			

Buffer assembly part no. Weight(g) ZP3B-Y2BJB15-B5 14.4 ZP3B-Y2BJB20-B5 15.2 **ZP3B-Y2BK15-B5** 15.6 ZP3B-Y2BK20-B5 16.7

ZP3B-Y2BK■■-B5

ZP3-13UM ZP3-16UM ZP3-10B ZP3-13B ZP3-16B

Applicable pad part no.

ZP3-10UM

Dimensions (per stroke)

Model	Α	В
ZP3B-Y2B☆15-B5	36.5	53
ZP3B-Y2B☆20-B5	44	60.5

Note) The symbol "☆" indicates buffer type "JB" or "K".

Vacuum Equipment Precautions 1

Be sure to read this before handling.

Design/Selection

⚠ Warning

1. Confirm the specifications.

Products represented in this catalog are designed only for use in compressed air systems (including vacuum).

Do not operate at pressures or temperatures, etc., beyond the range of specifications, as this can cause damage or malfunction.

(Refer to the specifications.)

Please contact SMC when using a fluid other than compressed air (including vacuum).

We do not guarantee against any damage if the product is used outside of the specification range.

Safe designs should be developed, which account for the possibility of accidents resulting from a drop in vacuum pressure due to power failure or trouble with the air supply, etc.

If vacuum pressure drops and there is a loss of vacuum pad adsorption force, workpieces being carried may fall, causing human injury or damage to machinery.

Sufficient safety measures should be implemented, such as drop prevention, to avoid any accidents.

3. Follow vacuum specifications for vacuum switching valves and vacuum release valves.

If non-vacuum equipment is installed in a vacuum piping, vacuum leakage will occur. Therefore, select only equipment for vacuum specifications.

4. Select an ejector which has a suitable suction flow rate.

<When there is vacuum leakage from the workpiece or the piping>

If the ejector's suction flow rate is too low, the adsorption will be poor.

<When piping is long or the diameter is large>

The adsorption response time will delay due to the increased volume of the piping.

Select an ejector with a suitable suction flow rate by referring to the technical data

5. If the suction flow rate is too high, setting of vacuum switch will become difficult.

Setting the vacuum switch when absorbing a small (few millimeter) workpiece will sometimes become difficult, if the selected ejector has a high suction rate and there is a small pressure difference when absorbing and releasing the workpiece.

When two or more pads are piped to one ejector, if one pad releases its workpiece, the other pads will also release.

When one pad releases its workpiece, there is a drop in vacuum pressure which causes the other pad to release its workpiece as well.

7. When separating the pad from the workpiece, break the vacuum and confirm that the pressure is atmospheric pressure.

Do not separate them forcibly while vacuum pressure exists between them. This may cause cracking, tearing, or distortion of the pad, or cause the pad to come off the adapter.

8. Do not apply lateral load (force) such as rotation or sliding force of the workpiece to the adsorption surface of the pad during adsorption of the workpiece.

This may cause deformation, cracking, tearing, or distortion of the pad, or cause the pad to come off the adapter.

9. Do not disassemble the product or make any modifications, including additional machining.

It may cause human injury and/or an accident.

When disassembling or assembling the product for the purpose of replacing parts, etc., be certain to follow the operation manual or catalogs.

10. Check valve

SMC can issue no guarantees regarding the maintenance of workpiece adsorption when using check valves. Take separate safety measures to prevent workpieces from dropping in the case of an electrical power outage, etc.

Please consult with SMC when using check valves as a means of preventing interference caused by the exhaust from nearby ejectors.

1. Mounting the suction filter

Because the suction of vacuum equipment acts not only on workpieces but also on dust or water droplets in the surrounding atmosphere, steps must be taken to prevent their penetration into the equipment's interior.

Even when using equipment equipped with filters, if there is a considerable amount of dust in the environment, use a separately ordered large-size filter as well

If there is a possibility of water droplets being sucked in by the vacuum, use a drain separator for vacuum.

2. The maximum vacuum pressure of the vacuum ejector is affected by the atmospheric pressure of the operating environment.

As atmospheric pressure changes based on altitude, climate, etc., the actual maximum vacuum pressure may not reach the value listed in the specifications.

- 3. For information on related items, such as directional control equipment and drive equipment, refer to the caution sections in each respective catalog.
- 4. Do not use the product in an environment that exposes it to vibration. If the product is used in such an environment, we can offer a lock nut type product to prevent it from loosening. Please contact SMC for model number.

Mounting

Marning

1. Operation manual

Install the products and operate them only after reading the operation manual carefully and understanding its contents.

Also, keep the manual available whenever necessary.

2. Ensure sufficient space for maintenance activities.

When installing the products, allow access for maintenance.

3. Tighten threads with the proper tightening torque.

When installing the products, follow the listed torque specifications.

4. Do not obstruct the exhaust port of the ejector.

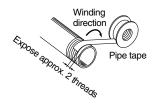
If the exhaust port is obstructed when mounted, a vacuum will not be generated. Also, do not obstruct the exhaust port with the goal of removing the workpiece. It may cause damage to the equipment.

Vacuum Equipment Precautions 2

Be sure to read this before handling.

Piping

⚠ Caution


1. Refer to the Fittings and Tubing Precautions (Best Pneumatics No. 6) for handling onetouch fittings.

2. Preparation before piping

Before piping is connected, it should be thoroughly blown out with air (flushing) or washed to remove chips, cutting oil and other debris from inside the pipe.

3. Wrapping of pipe tape

When screwing piping or fittings into ports, ensure that chips from the pipe threads or sealing material do not enter the piping. Also, if pipe tape is used, leave 1.5 to 2 thread ridges exposed at the end of the threads.

4. Use piping with an adequate conductance.

Select equipment and piping for the vacuum side which has an adequate conductance so that the ejector's maximum suction flow rate can be accommodated by the piping.

Also, make sure that there are no unnecessary restrictions or leaks, etc., along the course of the piping. Furthermore, design of the air supply should be performed while taking into consideration the ejector's maximum air consumption and the air consumption of other pneumatic circuits.

5. Avoid disorganized piping.

Piping which is direct and of the shortest possible length should be used for both the vacuum and supply sides.

Disorganized piping should be avoided. Unnecessary length increases the piping volume, and thus increases the response time.

6. Use piping with a large conductance on the exhaust side of the ejector.

If the exhaust piping is restrictive, there will be a decline in the ejector's performance.

7. Be certain that there are no crushed areas in the piping due to damage or bending.

Air Supply

∆Warning

1. Type of fluids

Please consult with SMC when using the product in applications other than compressed air.

2. When there is a large amount of drainage.

Compressed air containing a large amount of drainage can cause malfunction of pneumatic equipment. An air dryer or water separator should be installed upstream from filters.

Air Supply

△Warning

3. Drain flushing

If condensation in the water separator and drain bowl is not emptied on a regular basis, the bowl will overflow and allow the condensation to enter the compressed air lines. It causes malfunction of pneumatic equipment.

If the drain bowl is difficult to check and remove, installation of a drain bowl with an auto drain option is recommended.

For compressed air quality, refer to SMC's Best Pneumatics catalog.

4. Use clean air.

Do not use compressed air that contains chemicals, synthetic oils including organic solvents, salt or corrosive gases, etc., as it can cause damage or malfunction.

Operating Environment

A Warning

- 1. Do not use in an atmosphere having corrosive gases, chemicals, sea water, water, water steam, or where there is direct contact with any of these.
- Do not use in a place subject to heavy vibration and/or shock.
- 3. Do not use in an environment where flammable gas or explosive gas exists. Usage may cause a fire or explosion. The products do not have an explosion proof construction.
- 4. The valve should not be exposed to prolonged sunlight. Use a protective cover.
- 5. Remove any sources of excessive heat.
- 6. In locations where there is contact with spatter from water, oil, solder, etc., take suitable protective measures.
- 7. In cases where the vacuum unit is surrounded by other equipment, etc., or the unit is energized for an extended time, take measures to exhaust excess heat so that the temperature should be within specifications.

∧ Caution

1. Under certain conditions, the exhaust of the vacuum ejector may generate intermittent noises, and vacuum pressure may be uneven.

Using the ejector under these conditions will not result in decreased performance, but if the intermittent noise becomes a nuisance, or there is an adverse effect on the operation of the vacuum pressure switch, try lowering or raising the supply pressure of the vacuum ejector to find a supply pressure level at which the intermittent noise ceases.

Vacuum Equipment Precautions 3

Be sure to read this before handling.

Maintenance

⚠ Warning

Perform maintenance inspection according to the procedures indicated in the operation manual.

If handled improperly, malfunction and damage of machinery or equipment may occur.

2. Maintenance work

If handled improperly, compressed air can be dangerous. Assembly, handling, repair and element replacement of pneumatic systems should be performed by a knowledgeable and experienced person.

3. Drain flushing

Remove drainage regularly from the water separator, air filters, vacuum drain separator, etc.

Removal of equipment, and supply/exhaust of compressed air

When components are removed, first confirm that measures are in place to prevent workpieces from dropping, run-away equipment, etc. Then, cut off the supply pressure and electric power, and exhaust all compressed air from the system using the residual pressure release function.

When machinery is restarted after remounting or replacement, first confirm that measures are in place to prevent lurching of actuators, etc. Then, confirm that the equipment is operating normally.

5. Clean suction filters and silencers on a regular basis.

The performance of an ejector will deteriorate due to clogged filters and silencers. High flow filters should be used, especially in dusty locations.

⚠ Safety Instructions

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

т.

etc.

Caution indicates a hazard with a low level of risk Caution: which, if not avoided, could result in minor or moderate injury

Warning indicates a hazard with a medium level of Marning: risk which, if not avoided, could result in death or serious injury.

Danger indicates a hazard with a high level of risk ⚠ Danger: which, if not avoided, will result in death or serious injury.

*1) ISO 4414: Pneumatic fluid power - General rules relating to systems. ISO 4413: Hydraulic fluid power – General rules relating to systems. IEC 60204-1: Safety of machinery – Electrical equipment of machines. (Part 1: General requirements) ISO 10218-1: Manipulating industrial robots - Safety.

⚠Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications. Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the

Only personnel with appropriate training should operate machinery and equipment.

The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.

- 3. Do not service or attempt to remove product and machinery/equipment until safety is confirmed.
 - 1. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
 - 2. When the product is to be removed, confirm that the safety measures as $\overset{\cdot}{\text{above}}$ are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant
 - 3. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
- 4. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions
 - 1. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
 - 2. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
 - 3. An application which could have negative effects on people, property, or animals requiring special safety analysis.
 - 4. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.

⚠ Caution

1. The product is provided for use in manufacturing industries.

The product herein described is basically provided for peaceful use in manufacturing industries.

If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary.

If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ **Compliance Requirements**

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".

Read and accept them before using the product.

Limited warranty and Disclaimer

- 1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered.*2)
 - Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
- 2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided.
 - This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
- 3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
 - *2) Vacuum pads are excluded from this 1 year warranty.

A vacuum pad is a consumable part, so it is warranted for a year after it is delivered. Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty

Compliance Requirements

- 1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
- 2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

Be sure to read "Handling Precautions for SMC Products" (M-E03-3) before using.

Global Manufacturing, Distribution and Service Network

Worldwide Subsidiaries

North & South America

- U.S.A. SMC Corporation of America
- CANADA SMC Pneumatics (Canada) Ltd.
- MEXICO SMC Corporation(México), S.A. de C.V.
- BRAZIL SMC Pneumaticos do Brasil Ltda.
- CHILE SMC Pneumatics (Chile) S.A.
- COLOMBIA SMC Colombia Sucursal de SMC Chile S.A.
- ARGENTINA SMC Argentina S.A.
- BOLIVIA SMC Pneumatics Bolivia S.r.I.
- VENEZUELA SMC Neumatica Venezuela S.A.
- PERU (Distributor) IMPECO Automatización Industrial S.A.C.
- ECUADOR (Distributor) ASSISTECH CIA. LTDA.

Asia/Oceania

- CHINA SMC(China)Co.,Ltd.
- CHINA SMC Pneumatics (Guangzhou) Ltd.
- HONG KONG SMC Pneumatics(Hong Kong)Ltd.
- TAIWAN SMC Pneumatics(Taiwan)Co.,Ltd.
- KOREA SMC Pneumatics Korea Co., Ltd.
- SINGAPORE SMC Pneumatics(S.E.A.)Pte.Ltd.
- MALAYSIA SMC Pneumatics(S.E.A.)Sdn.Bhd.
- THAILAND SMC (Thailand) Ltd.
- PHILIPPINES Shoketsu SMC Corporation
- INDIA SMC Pneumatics(India)Pvt.Ltd.
- ISRAEL (Distributor) Baccara Geva A.C.S. Ltd.
- INDONESIA (Distributor) PT. Sinar Mutiara Cemerlang
- VIETNAM (Distributor) Dy Dan Trading Co.,Ltd.
- PAKISTAN (Distributor) Jubilee Corporation

Asia/Oceania

- SRI LANKA (Distributor) Electro-Serv(Pvt.)Ltd.
- IRAN (Distributor) Abzarchian Co. Ltd.
- U.A.E. (Distributor) Machinery People Trading Co. L.L.C.
- KUWAIT (Distributor) Esco Kuwait Equip & Petroleum App. Est.
- SAUDI ARABIA (Distributor) Assaggaff Trading Est.
- BAHRAIN (Distributor) Mohammed Jalal & Sons W.L.L. Technical & Automative Services
- SYRIA (Distributor) Miak Corporation
- JORDAN (Distributor) Atafawok Trading Est.
- BANGLADESH (Distributor) Chemie International
- AUSTRALIA SMC Pneumatics(Australia)Pty.Ltd.
- NEW ZEALAND SMC Pneumatics(N.Z.)Ltd.
- JAPAN SMC Corporation

Europe/Africa

- GERMANY SMC Pneumatik GmbH
- SWITZERLAND SMC Pneumatik AG
- U.K. SMC Pneumatics (U.K.) Ltd.
- FRANCE SMC Pneumatique SA
- SPAIN / PORTUGAL SMC España S.A.
- ITALY SMC Italia S.p.A.
- GREECE SMC HELLAS E.P.E
- IRELAND SMC Pneumatics (Ireland) Ltd.
- NETHERLANDS (Associated company) SMC Pneumatics BV
- BELGIUM (Associated company) SMC Pneumatics N.V./S.A.
- DENMARK SMC Pneumatik A/S
- AUSTRIA SMC Pneumatik GmbH (Austria)

Europe/Africa

- CZECH REPUBLIC SMC Industrial Automation CZ s.r.o.
- HUNGARY SMC Hungary Ipari Automatizálási Kft.
- POLAND SMC Industrial Automation Polska Sp. z o.o.
- SLOVAKIA SMC Priemyselná Automatizácia Spol s.r.o.
- SLOVENIA SMC Industrijska Avtomatika d.o.o. **BULGARIA SMC Industrial Automation Bulgaria EOOD**
- CROATIA SMC Industriiska Automatika d.o.o.
- BOSNIA AND HERZEGOVINA(Distributor) A.M. Pneumatik d.o.o.
- SERBIA(Distributor) Best Pneumatics d.o.o.
- UKRAINE(Distributor) PNEUMOTEC Corp.
- FINLAND SMC Pneumatics Finland Oy
- NORWAY SMC Pneumatics Norway AS
- SWEDEN SMC Pneumatics Sweden AB
- ESTONIA SMC Pneumatics Estonia Oü
- LATVIA SMC Pneumatics Latvia SIA
- LITHUANIA(LIFTUVA) UAB "SMC Pneumatics"
- ROMANIA SMC Romania S.r.I.
- RUSSIA SMC Pneumatik LLC.
- KAZAKHSTAN SMC Kazakhstan, LLC.
- TURKEY (Distributor) Entek Pnömatik Sanayi ve. Ticaret Sirketi
- MOROCCO (Distributor) Soraflex
- TUNISIA (Distributor) Byms
 - EGYPT (Distributor) Saadani Trading & Industrial Services
- NIGERIA (Distributor) Faraday Engineering Company Ltd.
 - SOUTH AFRICA (Distributor) Hyflo Southern Africa (Pty.) Ltd.

U.S. & Canadian Sales Offices

Austin

Dallas Los Angeles

Phoenix Portland

San Francisco

Vancouver

CENTRAL

Chicago Cincinnati

Cleveland

Detroit Indianapolis

Milwaukee

Minneapolis St. Louis **Toronto** Windsor

© 2012 SMC Corporation of America, All Rights Reserved

EAST

Atlanta **Birmingham**

Boston Charlotte

Nashville

New Jersey Richmond

Rochester

Tampa Montreal

Vancouver Montreal Livermore Atlanta Sales Branches Regional Distribution Centers Austin Central warehouse

SMC Corporation of America

10100 SMC Blvd., Noblesville, IN 46060

www.smcusa.com

SMC Pneumatics (Canada) Ltd. www.smcpneumatics.ca

(800) SMC.SMC1 (762-7621)

e-mail: sales@smcusa.com

For International inquiries: www.smcworld.com

