OPERATION MANUAL

PRODUCT NAME: Precision MONOSASHI-KUN

MODEL: CEP1

○ Read this operation manual carefully to understand before installation and operation.
○ Pay extra attention on the clause concerning the safety.
○ Keep this operation manual available whenever necessary.

SMC CORPORATION
Contents

Chapter 1: Read Before Use ... 1
Chapter 2: Product Summary .. 5
 2-1. System Configuration ... 5
 2-2. How to Order .. 5
 2-2-1. Precision MONOSASHI-KUN .. 5
 2-2-2. Applicable Auto-Switch Models 5
 2-2-3. Options .. 6
 2-3. Precautions on Selection ... 6
Chapter 3: Specifications
 3-1. Cylinder Specifications ... 7
 3-2. Sensor Specifications ... 7
Chapter 4: Wiring
 4-1. Connector Wiring Table .. 8
 4-2. Wiring for CEU5 .. 8
 4-3. Noise countermeasures .. 8
Chapter 5: Structure and Measuring Principle
 5-1. Structure ... 9
 5-2. Measuring Principle .. 10
 5-3. Relationship Between Pulse and Count 10
Chapter 6: Troubleshooting
 6-1. Troubleshooting for Measuring Function 11
 6-2. Troubleshooting for Cylinder Operation 12

Data:
 Outside dimensions of CEP1B12 .. 13
 Outside dimensions of CEP1B20 .. 14

Specifications are subject to change without prior notice.
Chapter 1: Read Before Use

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by label of “Caution”, “Warning” or “Danger”. To ensure safety, follow the below instructions as well as ISO4414\(^1\), JIS B8370\(^2\) and other safety instructions.

! Caution	Operator error could result in injury or equipment damage.
! Warning	Operator error could result in serious injury or loss of life.
! Danger	In extreme conditions, there is a possible result of serious injury or loss of life.

\(^1\)ISO 4414 Pneumatic fluid power—Recommendations for the application of equipment to transmission and control systems.

\(^2\)JIS B8370 GENERAL RULES for PNEUMATIC SYSTEMS

| ! Warning |

1. The compatibility of pneumatic equipment is the responsibility of the person who designs the pneumatic system or decides its specifications. Since the products specified here are used in various operating conditions, their compatibility for the specific pneumatic system must be based on specifications or after analysis and/or tests to meet your specific requirements. Ensuring the initial performance and safety are the responsibility of the person who decides the compatibility of pneumatic system. Pneumatic systems should be constructed after full review on the details of the products other than specifications and possibilities of failures by checking the latest product information.

2. Only trained personnel should operate pneumatically operated machinery and equipment.
 Assembly, handling or repair of pneumatic systems should be performed by trained and experienced operators.

3. Do not service machinery/equipment or attempt to remove component until safety is confirmed.
 Inspection and maintenance of machinery/equipment should only be performed after confirmation of safe locked-out control positions.
 When equipment is to be removed, confirm the safety process as mentioned above. Cut the supply pressure for this equipment and exhaust all residual compressed air in the system.
 Before machinery/equipment is re-started, take measures to prevent shooting-out of cylinder piton rod etc.

4. Contact SMC and take necessary safety measures if the products are to be used in any of the following conditions:
 Conditions and environments beyond the given specifications, or if products are used outdoors.
 Installation on equipment in conjunction with atomic energy, railway, air navigation, vehicles, medical equipment, food and beverage, recreation equipment, emergency stop circuits, press applications, or safety equipment.
 An application which has the possibility of having negative effects on people, property, or animals, requiring special safety analysis.
Operating and Storage Environments

⚠️ Warning

1. Environments to avoid
 Avoid using or storing the products in the following environments which may cause failures. If the products need to be used or stored in those environments, take necessary measures.
 a. Place where ambient temperature exceeds the range of 0°C to 50°C.
 b. Place where ambient humidity exceeds the range of 35% to 85% RH.
 c. Place where condensation occurs due to sudden temperature change.
 d. Place where atmosphere containing corrosive gas, flammable gas or organic solvent.
 e. Place where atmosphere containing conductive powder such as dust and iron chips, oil mist, salt, or organic solvent, or splashing cutting chips, dust and cutting oil (water, liquid) over the products.
 f. Place where the products are exposed to direct sunlight or radiated heat.
 g. Place where strong electromagnetic noise is generated (place where strong electric field, strong magnetic field or surge is generated).
 h. Place where static electricity is discharged or condition that the products have electrostatic discharge.
 i. Place where strong high frequency is generated.
 j. Place where damages of thunder are expected.
 k. Place where vibration or impact is directly given to the products.
 l. Condition that the products are deformed by force or weight applied.

2. Do not close any objects which are affected by magnets.
 Since magnets are built in cylinders, do not close magnetic disks, magnetic cards or magnetic tapes. The data may be destroyed.

Precautions on Design

⚠️ Warning

1. There is a possibility of dangerous sudden action by cylinders if sliding parts of machinery are twisted due to external forces, etc.
 In such cases, human injury may occur; e.g., by catching hands or feet in the machinery, or damage to the machinery itself may occur.

2. Provide a cover to minimize the risk of human injury.
 When a driven object or moving parts of a cylinder may cause the risk of human injury, design a structure to avoid contact with human body.

3. Securely tighten all stationary parts and connected parts of cylinders so that they will not become loose.
 Tighten cylinders securely especially when they are used in high frequency or in locations where direct vibration or impact shock, etc. will be applied to the body of the cylinder.

4. Deceleration circuits or shock absorbers are needed in some cases.
 If a driven object travels at a high speed or is heavy, impact will not be sufficiently absorbed only with the cylinder cushion. In such cases, use a circuit to decelerate the cylinder speed before the cushion becomes effective or use external shock absorbers to reduce impact. At this time, take the rigidity of machinery into account.

5. Consider possible drop of pressure in circuit due to power outage.
 For cylinders used in clamping mechanism, a work may become loose due to less clamping force by pressure drop in circuit at the time of power outage. Install safety devices to prevent human injury and machinery damage. Measures should be taken to prevent drop of hanging or lifting equipment.

6. Consider possible loss of power sources.
 Measures should be taken to protect against human injury and machinery damage in the event that there is a loss of air pressure, electricity or hydraulic power.

7. Design circuit to prevent shooting out of a driven object.
 A driven object is quickly shot out when pressure is supplied from one side of the piston after air in the cylinder is exhausted in such cases that cylinder is actuated by exhaust center type of directional control valve or started after residual air is exhausted from the circuit. At this time, human injury may occur; e.g., by catching hands or feet in the machinery, or damage to the machinery itself may occur. Therefore, the machine should be designed and constructed to prevent shooting out.

8. Consider emergency stops.
 Design the machinery so that human injury and/or damage to machinery and equipment will not be caused when machinery is stopped by a safety device under abnormal conditions, a power outage or a manual emergency stop.

9. Consider actions when operation is restarted after an emergency stop or abnormal stop.
 Design the machinery so that human injury or equipment damage will not occur upon restart of operation. When the cylinder is required to return to the initial position, provide the equipment with a safe override.
Selection

⚠️ Warning
1. Confirm the specifications.
 The product in this manual is designed to be used only in industrial compressed air system. The product should not be used with pressures or temperatures outside the range of the specifications, as this may cause damage or malfunction, etc.

2. Intermediate stop
 When cylinder piston is stopped intermediately by 3-position closed center type of directional control valve, intermediate stop positions may not be as precise and exact as hydraulic operation due to compressibility of air. Valves and cylinders are not guaranteed for zero air leakage, and stop position may not be held in a long period of time. Consult SMC for long term holding of stop positions.

⚠️ Caution
1. Mount speed controller and adjust cylinder operation speed gradually from low speed to a desired speed.

Air Supply

⚠️ Warning
1. Do not use the product out of the specified ranges for pressure and temperature to prevent equipment damage and malfunction.
 ① Operating pressure:
 - ∅12: 0.15 to 1.0 MPa
 - ∅20: 0.1 to 1.0 MPa
 ② Fluid & ambient temperature: 0 to 60°C

2. Use clean air.
 Do not use the product with compressed air includes chemicals, synthetic materials (including organic solvents), salinity, corrosive gases, etc., as this may cause damage or malfunction.

⚠️ Caution
1. Install air filter.
 Install air filter before and in vicinity of valve. The filter should be able to collect particles of 5 microns or smaller. A large quantity of drain may cause malfunction of pneumatic components.
2. Install after cooler, air dryer, auto drain, etc.
 Compressed air that includes excessive condensate may cause malfunction of valve and other pneumatic equipment. To prevent this, install after cooler, air dryer, auto drain, etc.

Installation

⚠️ Warning
1. Do not give torque to the piston rod.
 Giving torque to the piston rod may cause damage and malfunction.

2. Ensure that the equipment operates properly before the use.

3. Operation manual
 Do not install the products unless the safety instruction have been read and understood. Keep this operation manual on file for future reference.

⚠️ Caution
1. Maintenance space
 When installing the products, allow space for maintenance.

2. Installation of jigs
 When hardware and nuts are screwed into the piston rod end, the piston rod should be fully retracted. Use double nuts to fix a work since Precision MONOSASHI-KUN (Scale Reading Cylinder) does not have any parallel parts at the rod.

3. Do not give strong impact and/or excessive moment when work is mounted.
 External force other than allowable moment may cause rattle at guide part and/or increase in sliding resistance.

4. Use the product in such a condition that load is always applied in the axial direction of the piston rod.
 When load is applied in other directions than cylinder axial direction, regulate the load itself by the guide. Perform a complete centering when cylinder is mounted.

5. Avoid the use where torque is always applied to the piston rod or excessive impact acts on.

6. Do not give any damage and gouge on the sliding part of the piston rod.
Warning

1. Preparation for wiring
 Shut off the power before wiring (including insertion and removal of connectors). Mount a protective cover on the terminal block after wiring.

2. Check the power
 Make sure the power has sufficient capacity and voltages are within the specified range before wiring.

3. Grounding
 Ground terminal block F.G. (Frame Ground). Do not ground it with devices generating strong electromagnetic noise.

4. Check wiring
 Incorrect wiring may cause damage or malfunction of the products. Make sure the wiring is correct before operation.

Caution

1. Separation of signal wires from power wire
 Avoid common or parallel wiring of signal and power wires to prevent malfunction due to noise.

2. Wiring arrangement and fixation
 Avoid bending cables sharply at connector part or electrical entry in wiring arrangement. Improper arrangement may cause disconnection which in turn causes malfunction. Fix cables close enough not to give excessive force to the connector.

Piping

Caution

1. Before piping
 Remove cutting chips, cutting oil, dust, etc. in piping by flushing or cleaning before piping. Care should be taken especially that any cutting chips, cutting oil, dust, etc. do not exist after a filter.

2. At piping
 ① Foreign matter should not enter. Entering of foreign matter will cause malfunction.
 ② Cutting chips and sealing materials at piping threads should not enter valves when piping and fittings are screwed in. Leave 1.5 to 2 threads when seal tape is used.

Lubrication

Caution

1. Lubrication of cylinder
 ① This cylinder is pre-lubricated and can be used without lubrication.
 ② In case of lubrication, use a equivalent of the turbine oil type 1 ISO VG32. Once lubrication is performed, it should be continued since the initial lubricant flows out causing malfunction.

Sensor Unit

Caution

1. Do not remove the sensor unit.
 The position and sensitivity of the sensor is adjusted properly. Removing or replacing the sensor may cause malfunction.

2. External magnetic field should be 14.5mT or less.
 Strong magnetic field in the vicinity may cause malfunction since CEP1 sensor is magnetic type.

3. Do not pull sensor cable strongly.
 Such action may cause failure.

4. Power supply line
 Do not mount any switch or relay to power supply line (12 VDC to 24 VDC).

Measurement

SMC products are not intended for use as instruments for legal metrology.
Measurement instruments that SMC manufactures or sells have not been qualified by type approval tests relevant to the metrology (measurement) laws of each country. Therefore, SMC products cannot be used for business or certification ordained by the metrology (measurement) laws of each country.

Maintenance and Check

Caution

1. Performing regular check
 Check regularly that the products do not operate with failures unsolved. Check should be done by trained and experienced operators.

2. Dismantling of product and supply/exhaust of compressed air.
 Before dismantling, ensure that drop preventing and runaway preventing treatments are properly provided, shut the power source of air supplied, and exhausts compressed air in the system. When starting operation again, operate the product with care after ensuring that a treatment for preventing extrusion is properly provided.

3. Prohibition of disassembly and modification
 To prevent accidents such as failures and electric shocks, do not remove the cover to perform disassembly or modification. If the cover has to be removed, shut off the power before removal.

4. Disposal
 Request a special agent for handling industrial
waste to dispose the products.
Chapter 2: Product Summary

Precision MONOSASHI-KUN is a cylinder that has a built-in linear encoder. The scale of the magnetic rod and magnetic sensor detects change in piston position, and pulse signal is outputted with A/B quadrature pulse (90° nominal phase relationship). Position detection in 0.01 mm resolution is possible by inputting this signal to Multi-counter CEU5.

2-1 System Configuration

2-2 How to Order

2-2-1 Precision MONOSASHI-KUN

Fluoro rubber packing: −XC22 (Ex.) CEP1B12−50−F9N−XC22

2-2-2 Applicable Auto-Switch Models

<table>
<thead>
<tr>
<th>Mark</th>
<th>Auto-Switch Model</th>
<th>Mark</th>
<th>Auto-Switch Model</th>
<th>Mark</th>
<th>Auto-Switch Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>A90</td>
<td>D-A90 M9N</td>
<td>M9N</td>
<td>D-M9N M9NW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A93</td>
<td>D-A93 M9P</td>
<td>M9P</td>
<td>D-M9P M9PW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A96</td>
<td>D-A96 M9B</td>
<td>M9B</td>
<td>D-M9B M9BW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A90V</td>
<td>D-A90V M9NV</td>
<td>M9NV</td>
<td>D-M9NV M9NWV</td>
<td></td>
<td>2-color</td>
</tr>
<tr>
<td>A93V</td>
<td>D-A93V M9PV</td>
<td>M9PV</td>
<td>D-M9PV M9PWV</td>
<td></td>
<td>Indication Solid State</td>
</tr>
<tr>
<td>A96V</td>
<td>D-A96V M9BV</td>
<td>M9BV</td>
<td>D-M9BV M9BWV</td>
<td></td>
<td>Auto-Switch</td>
</tr>
<tr>
<td>M9NA</td>
<td>Waterproof</td>
<td>M9PA</td>
<td>D-M9PA M9BA</td>
<td></td>
<td>Waterproof</td>
</tr>
<tr>
<td>M9NAV</td>
<td>Waterproof</td>
<td>M9PAV</td>
<td>D-M9PAV M9BAV</td>
<td></td>
<td>Waterproof</td>
</tr>
</tbody>
</table>

See separate catalog for the details of Auto-switch.
2-2-3 Options

Multi Counter

<table>
<thead>
<tr>
<th>Base part number</th>
<th>CEU5 ※※※</th>
</tr>
</thead>
</table>

Extension Cable

<table>
<thead>
<tr>
<th>Connector</th>
<th>CE1-R※※</th>
</tr>
</thead>
</table>

Supply voltage

<table>
<thead>
<tr>
<th>Nil</th>
<th>100 to 240 VAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>24VDC</td>
</tr>
</tbody>
</table>

Output to PC/PLC

<table>
<thead>
<tr>
<th>Nil</th>
<th>RS-232C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>RS-232C + BCD</td>
</tr>
</tbody>
</table>

Output transistor type

<table>
<thead>
<tr>
<th>Nil</th>
<th>NPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>PNP</td>
</tr>
</tbody>
</table>

Cable Length

<table>
<thead>
<tr>
<th>Q5</th>
<th>5m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1O</td>
<td>10m</td>
</tr>
<tr>
<td>15</td>
<td>15m</td>
</tr>
<tr>
<td>2O</td>
<td>20m</td>
</tr>
</tbody>
</table>

*1) Connector (Female) is mounted on one side of extension cable. Connector (Male) to be enclosed with the mark “C” is the same type as that mounted to standard CEP1.

2-3 Precautions on Selection

- Use Precision MONOSASHI-KUN CEP1 with Multi-Counter CEU5. Stroke position is not indicated correctly with 3-Point Preset Counter CEU1.
- For SMC CEP1 series and SMC CEU5 series, operation check was performed with SMC extension cable CE1-R※※ for the maximum wire length of 23m. Since operation check was not performed with other counters and cables, a system designer who selects equipment should check the operation. (See “Countermeasures for Noise” on page 8.)
- When CEP1 with connector is used, extension cable CE1-R※ is necessary. For this extension cable, receptacle connector (female) for CEP1 connector (male) is attached.
- When extension cable is connected to CEP1 without connector, it is necessary to mount male connector on cylinder side. Use CE1-R※C extension cable. For connector with mark “C”, one piece of cylinder side connector (male) is enclosed.
- CEP1 without connector can be directly connected to terminal block of counter.
Chapter 3: Specifications

3-1 Cylinder Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>CEP1B12</th>
<th>CEP1B20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>Double acting, single rod (Non-rotating piston rod)</td>
<td></td>
</tr>
<tr>
<td>Fluid</td>
<td>Air</td>
<td></td>
</tr>
<tr>
<td>Proof pressure</td>
<td>1.5MPa</td>
<td></td>
</tr>
<tr>
<td>Max. operating pressure</td>
<td>1.0MPa</td>
<td></td>
</tr>
<tr>
<td>Min. operating pressure</td>
<td>0.15MPa</td>
<td>0.1MPa</td>
</tr>
<tr>
<td>Operating piston speed</td>
<td>50~300mm/s</td>
<td></td>
</tr>
<tr>
<td>Ambient & fluid temperature</td>
<td>0~60゜ (No freezing)</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>25~85%RH (No dew condensation)</td>
<td></td>
</tr>
<tr>
<td>Lubrication</td>
<td>Non-lube.</td>
<td></td>
</tr>
<tr>
<td>Stroke tolerance range</td>
<td>0~+1.0</td>
<td></td>
</tr>
<tr>
<td>Cushion</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Rod non-rotating accuracy</td>
<td>±2°</td>
<td>±3°</td>
</tr>
<tr>
<td>Mounting</td>
<td>Rod side tapping, rod cover through-hole</td>
<td></td>
</tr>
<tr>
<td>Thread tolerance</td>
<td>JIS B0209</td>
<td></td>
</tr>
</tbody>
</table>

3-2 Sensor Specifications

<table>
<thead>
<tr>
<th>Cable</th>
<th>φ7. 6-core twisted pair shielding wire (Heat resistance, oil resistance, flameproof) [Connector… TAJIMI MUSEN DENKI: R04-J8M7.3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum wire length</td>
<td>23m*1</td>
</tr>
<tr>
<td>Position detection method</td>
<td>Incremental encoder (rod with magnetic scale, magnetic sensor)</td>
</tr>
<tr>
<td>Magnetic field resistance</td>
<td>14.5mT</td>
</tr>
<tr>
<td>Power supply</td>
<td>12 VDC~24VDC (±10%) [Power ripple: 1% or less]</td>
</tr>
<tr>
<td>Current consumption</td>
<td>50mA</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.01mm (at four times multiplier)</td>
</tr>
<tr>
<td>Accuracy(20℃)</td>
<td>±0.02mm*2</td>
</tr>
<tr>
<td>Output type</td>
<td>NPN Open collector (Max. 24 VDC, 40 mA or less)</td>
</tr>
<tr>
<td>Output signal</td>
<td>A/B quadrature pulse (90° nominal phase relationship)</td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>500 VDC, 50MΩ or more (Case: Between 12E)</td>
</tr>
<tr>
<td>Vibration proof</td>
<td>33.3 Hz, 6.8G, two hours each in X and Y directions, four hours in Z direction, Conforming to JIS D1601</td>
</tr>
<tr>
<td>Impact resistance</td>
<td>30G, three times each in X, Y and Z directions</td>
</tr>
<tr>
<td>Enclosure</td>
<td>IP—67 (IEC standard)*3</td>
</tr>
</tbody>
</table>

*1) When SMC cable and SMC CEU5 counter are used.
*2) Including error due to digital indication at Counter CEU5.

The overall measurement accuracy after being mounted to the equipment may vary depending on the mounting state and environment. When accuracy of the equipment as a whole is required, calibration should be performed by the end users.

*3) Waterproof for that with cylinder except connector part.
Chapter 4: Wiring

4-1 Connector Wiring Table

The table below shows combinations of contact mark and wire core color. The connector pin layout shows the layout of CEP1 with connector.

<table>
<thead>
<tr>
<th>Contact Mark</th>
<th>Core Color</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>White</td>
<td>A-phase</td>
</tr>
<tr>
<td>B</td>
<td>Yellow</td>
<td>B-phase</td>
</tr>
<tr>
<td>C</td>
<td>Brown</td>
<td>COM(OV)</td>
</tr>
<tr>
<td>D</td>
<td>Blue</td>
<td>COM(OV)</td>
</tr>
<tr>
<td>E</td>
<td>Red</td>
<td>12 V DC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>~24 VDC</td>
</tr>
<tr>
<td>F</td>
<td>Black</td>
<td>0 V</td>
</tr>
<tr>
<td>G</td>
<td>Shield</td>
<td>Shield</td>
</tr>
<tr>
<td>H</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

4-2 Wiring for CEU5

The wiring for CEU5 and MONOSASHI-KUN uses three twisted-pair cables.

4-3 Noise countermeasures

Follow the instructions below to prevent malfunction due to noise.

1. Use SMC extension cable CE1-R** for wiring of MONOSASHI-KUN and CEU5.
2. Keep signal wires away from the power cables in wiring.
3. Mount a ferrite core to signal cables for possible radiated noise effects of cable.
4. Use stable power source for CEP1 power supply.
5. Mount a noise filter for possible noise effects of power source.

* EMC Directive is satisfied by connecting the multi-counter(CEU5**-D).

Please refer to the operation manual of the multi-counter for details.
Chapter 5: Structure and Measuring Principle

5-1 Structure

- A part of the piston rod has scale (magnetic scale). In order to maintain the relative position of the scale and the sensor head, ellipse piston is used to have a structure of non-rotating cylinder.

⚠️ Caution ⚠️ For the use of CEP1, care should be taken for the followings due to the structural characteristics.

- **Do not give torque to the piston rod.**
 Giving torque to the piston rod may cause sensor detection failure and cylinder malfunction.

- **Use the product in such a condition that load is always applied in the axial direction of the piston rod.**
 Offset load may cause abrasion of bearing and packing. In addition, measuring accuracy may deteriorate.

- **Do not remove the sensor.**
 The position and sensitivity of the sensor is adjusted properly. Removing or replacing the sensor may cause malfunction.

- **Do not pull sensor cable strongly.**
 Such action may cause detection failure and other failures.

- **External magnetic field should be 14.5mT or less.**
 Strong magnetic field in the vicinity may cause malfunction since CEP1 sensor is magnetic type.

 This is equivalent to a field in a radius of about 18 cm from a welding part using welding current of about 15000 amperes. When the product is used in stronger magnetic filed, take some measures for shield by covering the sensor part with magnetic material.
5-2 Measuring Principle

Precision MONOSASHI-KUN is an air cylinder that has a function to output piston stroke movement as pulse signal in 0.01 mm resolution (at four times multiplier). Measuring Principle is as follows.

(1) Piston rod has scale consisting of magnetism layer and non-magnetism layer in 0.8 mm pitch.
(2) Magnetic resistive element receives 2-phase signal (Signal①) of sin. and cos. by piston rod movement. For this waveform, 1 pitch (0.8 mm) is equal to one cycle.
(3) This is amplified and divided into 1/20. As a result, 90° phase difference pulse signal (Signal②) is outputted, which is 0.04 mm per pulse.
(4) By counting this pulse by counter with four-quadrant multiplier, piston position can be detected in 0.01 mm resolution.

5-3 Relationship Between Pulse and Count

CEP1 output is A/B quadrature pulse.

In rod extending direction, A-phase turns on first, then B-phase turns on with the delay of approximately 90° phase difference.

In rod retracting direction, B-phase turns on first, then A-phase turns on with the delay of approximately 90° phase difference. Counter performs addition in ①and does subtraction in ②. When addition in rod retracting direction is needed, switch wiring of A-phase with B-phase.
Chapter 6: Troubleshooting

6-1 Troubleshooting for Measuring Function

<table>
<thead>
<tr>
<th>Failure</th>
<th>Cause</th>
<th>Countermeasure</th>
<th>Page of reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does not count.</td>
<td>Isn’t the wiring removed, or is it correct?</td>
<td>Check the wiring and connector loosening.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Is 12VDC or 24VDC supplied to the sensor?</td>
<td>Supply the rated power (12VDC-24VDC) to the sensor. Power other than the rated may cause failure.</td>
<td>8</td>
</tr>
<tr>
<td>(When CEU5 is used)</td>
<td>Is CEU5 in count mode?</td>
<td>Count values are indicated only in the count mode. Press the MODE key to change to the count mode.</td>
<td>See the CEU5 operation manual</td>
</tr>
<tr>
<td>(When other counter is used)</td>
<td>Counter setting is wrong.</td>
<td>If input mode switching is available with the counter, check the setting. Set the counter input to adding/subtraction mode, 2-phase input (90° phase difference input).</td>
<td>See the operation manual of the counter.</td>
</tr>
<tr>
<td></td>
<td>Short-circuit of the sensor due to entering of liquid or moisture.</td>
<td>Replacement of sensor unit is necessary if the circuit is corroded. In addition, take some countermeasures to prevent liquid or moisture from entering.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sensor output circuit will short-circuit if it is improperly wired and current larger than the rated is supplied.</td>
<td>If it failed, repair will be necessary. Consult SMC or the shop.</td>
<td>7, 8</td>
</tr>
<tr>
<td>Measured value does not have reproducibility.</td>
<td>Counting speed of the counter is slow or it does not meet the requirements of the input waveform. (Depending on counter, counting speed may slow down due to pulse rise speed and duty conditions.)</td>
<td>CEU5 is recommended. When a counter from other company is used, check the requirements on specifications.</td>
<td>10 and the operation manual of the counter.</td>
</tr>
<tr>
<td></td>
<td>Wiring distance is too long and signal is attenuated. (When counter and cable from other companies are used, wiring distance of 23 m is not guaranteed.)</td>
<td>If the wiring is longer than 23m, provide transducer of differential input/output.</td>
<td>10 and the operation manual of the counter.</td>
</tr>
<tr>
<td></td>
<td>Is there any noise source such as large motor, AC type solenoid valve, relay, inverter power and others in the vicinity?</td>
<td>Take appropriate measures by referring to “Countermeasures for Noise”.</td>
<td>8</td>
</tr>
<tr>
<td>Failure</td>
<td>Cause</td>
<td>Countermeasure</td>
<td>Page of reference</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Measured value does not have reproducibility.</td>
<td>Isn't cylinder speed out of the specified range? When cylinder speed is too fast, counting error may occur. Knocking or bounding may also cause temporal high speed.</td>
<td>Cylinder speed should be in the range of 50 mm/s to 300 mm/s. In addition, prevent knocking and bounding.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Is torque given to the piston rod? If the relative position of the sensor head and the scale is displaced, detection failure may be the result.</td>
<td>Do not give torque to the piston rod.</td>
<td>9</td>
</tr>
</tbody>
</table>

6-2 Troubleshooting for Cylinder Operation

<table>
<thead>
<tr>
<th>Failure</th>
<th>Cause</th>
<th>Countermeasure</th>
<th>Page of reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinder does not operate.</td>
<td>Is air piping correct?</td>
<td>Check the piping. Perform it after thoroughly reading the precautions in Chapter 1.</td>
<td>3, 4, 9</td>
</tr>
<tr>
<td></td>
<td>Isn't the orifice closed completely?</td>
<td>If the orifice is closed completely, open it gradually until it is adjusted properly.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Is torque given to the piston rod? It causes malfunction due to torsion of ellipse piston and the sliding face.</td>
<td>Do not give torque to the piston rod. When operation returns to normal, repair will be required.</td>
<td>3, 9</td>
</tr>
<tr>
<td>Knocking occurs.</td>
<td>Is cylinder speed within the specified range?</td>
<td>Cylinder speed should be in the range of 50 mm/s to 300 mm/s.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>When it is connected to the guide and other equipment, are they centered completely?</td>
<td>Perform centering completely for the connection of other equipment and jigs.</td>
<td>3, 9</td>
</tr>
<tr>
<td></td>
<td>Is torque given to the piston rod? It causes malfunction due to torsion of ellipse piston and the sliding face.</td>
<td>Do not give torque to the piston rod.</td>
<td>3, 9</td>
</tr>
<tr>
<td></td>
<td>Was lubrication once applied and stopped afterward?</td>
<td>Use the product without lubrication. Once lubrication is performed, it should be continued since the initial grease flows out.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Is the cylinder splashed with solvents and chemicals? Solvents and chemicals may make grease flow out and affect packing.</td>
<td>Do not use in an environment where the product is splashed with solvents and chemicals.</td>
<td>2, 3</td>
</tr>
</tbody>
</table>
Outside dimensions
CEP1B12 (Direct mount type)
Outside dimensions
CEP1B20 (Direct mount type)

![Diagram of CEP1B20](image)