Brake Position Determination System’s
User Guide

PRODUCT NAME: MONOSASHI-KUN WITH BRAKE

MODEL: CE2:MONOSASHI-KUN WITH BRAKE
CEU2:CONTROLLER

- Read this operation manual carefully to understand before installation and operation.
- Pay extra attention on the clause concerning the safety.
- Keep this operation manual available whenever necessary.

SMC CORPORATION
Read Before Use

1. General
 1-1. Features
 1-2. Position Control
 1-3. Positioning at Stroke End

2. System Configuration
 2-1. System Checking Flow Chart
 2-2. System Configuration
 2-3. Recommended Circuit Design

3. Specifications
 3-1. Cylinder Specifications
 3-2. Controller Specifications
 3-3. Sensor Specifications

4. Model
 4-1. Cylinder
 4-2. Controller
 4-3. Extension Cable

5. External Dimension Drawing
 5-1. Monosashi-kun with Brake
 5-2. Controller
 5-3. Extension Cable

6. Part Identification
 6-1. Monosashi-kun with brake
 6-2. Controller

7. Installation & Wiring
 7-1. Installation
 7-1-1 Installation of Cylinder
 7-1-2 Installation of Controller
 7-2. Wiring
 7-2-1 The connection of Power Supply
 7-2-2 The connection of Extension Cable
 7-3. Input Signal’s Wiring
 7-3-1 Input Signal Wiring Diagram
 7-3-2 Input Signal Content
 7-3-3 Input Signal Wiring
 7-3-4 OUTPUT Signal Wiring
 7-3-5 Solenoid Valve Wiring
 7-3-6 Sequencer

8. Timing Chart

9. Data Setting
 9-1. Preset Data Setting
 9-1-1 Data Classification & Content
 9-1-2 Input Method
 9-1-3 Confirmation of Set Data
9-2. Program Setting
 9-2-1 Input Method
 9-2-2 Confirmation of Input Data
 9-3. Selection of Dip Switch

10. Driving..44
 10-1. Setting of Origin Direction
 10-2. Adjustment of Air Balance

11. Error Messages & Countermeasures ...45
 11-1. Controller
 11-2. Brake Unit’s Life Span

12. Appendix...49
 12-1. Data Sheet

Specifications are subject to change without prior notice
Read before Use

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by label of “Caution”, “Warning”, or “Danger”. To ensure safety, follow the instructions below as well as ISO/IEC, JIS\(^1\) and other safety laws\(^2\).

Caution	Operator error could result in injury or equipment damage.
Warning	Operator error could result in serious injury or loss of life.
Danger	In extreme conditions, there is a possible result of serious injury or loss of life.

\(^1\) ISO 4414: Pneumatic fluid power - General rules relating to systems
ISO 10218-1: 2006: Robots for industrial environments - Safety requirements - Part 1: Robot
IEC 60204-1: Safety of machinery - Electrical equipment of machines - Part 1: General requirements
JIS B 8370: General Rules for Pneumatic systems
JIS B 9960-1: Safety of machinery - Electrical equipment of machines - Part 1: General requirements
JIS B 8433-1:2007: Robots for industrial environments - Safety requirements - Part 1: Robot

\(^2\) Labor Safety and Sanitation Law etc.

⚠️ Warning

1. The compatibility of pneumatic equipment is the responsibility of the person who designs the pneumatic system or decides its specifications. Since the products specified here are used in various operating conditions, their compatibility for the specific pneumatic system must be based on specifications or after analysis and/or tests to meet your specific requirements. Ensuring the initial performance and safety are the responsibility of the person who decides the compatibility of the pneumatic system. Pneumatic systems should be constructed after full review of the details of the products other than specifications and possibilities of failures by checking the latest product information.

2. Only trained personnel should operate pneumatically operated machinery and equipment. Assembly, handling, or repair of pneumatic systems should be performed by trained and experienced operators.

3. Do not service machinery/equipment or attempt to remove component until safety is confirmed.
 a. Inspection and maintenance of machinery/equipment should only be performed after confirmation of safe locked-out control positions.
 b. When equipment is to be removed, confirm the safety process as mentioned above. Cut the supply pressure for this equipment and exhaust all residual compressed air in the system.
 c. Before machinery/equipment is re-started, take measure to prevent shooting-out of cylinder piston rod etc.

4. Contact SMC and take necessary safety measures if the products are to be used in any of the following conditions:
 a. Conditions and environments beyond the given specifications, or if products are used outdoors.
 b. Installation on equipment in conjunction with atomic energy, railway, air navigation, vehicles, medical equipment, food and beverages, recreation equipment, emergency stop circuits, press applications, or safety equipment.
 c. An application which has the possibility of having negative effects on people, property, or animals, requiring special safety analysis.
 d. When used in an interlock circuit, dual interlock such as mechanical protection is necessary in case of accident. Periodical inspection is also necessary to confirm proper operation.
Operating and Storage Environments

⚠️ Warning

1. Environments to avoid
 Avoid using or storing the products in the following environments which may cause failures.
 If the products need to be used or stored in those environments, take necessary measures.
 a. Place where ambient temperature exceeds the range of 0°C to 60°C.
 b. Place where ambient humidity exceeds the range of 25% to 85% RH.
 c. Place where condensation occurs due to sudden temperature change.
 d. Place where atmosphere containing corrosive gas, flammable gas or organic solvent.
 e. Place where atmosphere containing con-ductive powder such as dust and iron chips, oil mist, salt, or organic solvent, or splashing cutting chips, dust and cutting oil (water, liquid) over the products.
 f. Place where the products are exposed to direct sunlight or radiated heat.
 g. Place where strong electromagnetic noise is generated (place where strong electric field, strong magnetic field or surge is generated).
 h. Place where static electricity is discharged or condition that the products have electrostatic discharge.
 i. Place where strong high frequency is gene-rated.
 j. Place where damages of thunder are expected.
 k. Place where vibration or impact is directly given to the products.
 l. Condition that the products are deformed by force or weight applied.

2. Do not close any objects which are affected by magnets.
 Since magnets are built in cylinders, do not close magnetic disks, magnetic cards or magnetic tapes. The data may be destroyed.

Precaution on Design

⚠️ Warning

1. There is a possibility of dangerous sudden action by cylinders if sliding parts of machinery are twisted due to external forces, etc.
 In such cases, human injury may occur; e.g., by catching hands or feet in the machinery, or damage to the machinery itself may occur.

2. Provide a cover to minimize the risk of human injury.
 When a driven object or moving parts of a cylinder may cause the risk of human injury, design a structure to avoid contact with human body.

3. Securely tighten all stationary parts and connected parts of cylinders so that they will not become loose.
 Tighten cylinders securely especially when they are used in high frequency or in locations where direct vibration or impact shock, etc. will be applied to the body of the cylinder.

4. Deceleration circuits or shock absorbers are needed in some cases.
 If a driven object travels at a high speed or is heavy, impact will not be sufficiently absorbed only with the cylinder cushion. In such cases, use a circuit to decelerate the cylinder speed before the cushion becomes effective or use external shock absorbers to reduce impact. At this time, take the rigidity of machinery into account.

5. Consider possible drop of pressure in circuit due to power outage.
 For cylinders used in clamping mechanism, a work may become loose due to less clamping force by pressure drop in circuit at the time of power outage. Install safety devices to prevent human injury and machinery damage. Measures should be taken to prevent drop of hanging or lifting equipment.

6. Consider possible loss of power sources.
 Measures should be taken to protect against human injury and machinery damage in the event that there is a loss of air pressure, electricity or hydraulic power.

7. Design circuit to prevent shooting out of a driven object.
 A driven object is quickly shot out when pressure is supplied from one side of the piston after air in the cylinder is exhausted in such cases that cylinder is actuated by exhaust center type of directional control valve or started after residual air is exhausted from the circuit. At this time, human injury may occur; e.g., by catching hands or feet in the machinery, or damage to the machinery itself may occur. Therefore, the machine should be designed and constructed to prevent shooting out.
8. Consider emergency stops.
 Design the machinery so that human injury and/or damage to machinery and equipment will not be caused when machinery is stopped by a safety device under abnormal conditions, a power outage or a manual emergency stop.

9. Consider actions when operation is restarted after an emergency stop or abnormal stop.
 Design the machinery so that human injury and/or damage to machinery and equipment will not be caused when machinery is stopped by a safety device under abnormal conditions, a power outage or a manual emergency stop.

10. Consider actions when operation is restarted after an emergency stop or abnormal stop.
 Design the machinery so that human injury or equipment damage will not occur upon restart of operation. When the cylinder is required to return to the initial position, provide the equipment with a safe override.

11. Construct the machinery so that moving objects and the moving parts of the cylinder with brake do not come into direct contact with the human body.

12. Use a balanced circuit in which lurching of the cylinder is prevented. When operation is locked in specified intermediate positions of the stroke, and air pressure is applied to only one side of the cylinder, the piston will lurch when the lock is released. This might cause injury or damage to machinery.

Selection

⚠️ Warning

1. Confirm the specifications.
 The product in this manual is designed to be used only in industrial compressed air system. The product should not be used with pressures or temperatures outside the range of the specifications, as this may cause damage or malfunction, etc.

2. Intermediate stop
 When cylinder piston is stopped intermediately by 3-position closed center type of directional control valve, intermediate stop positions may not be as precise and exact as hydraulic operation due to compressibility of air. Valves and cylinders are not guaranteed for zero air leakage, and stop position may not be held in a long period of time. Consult SMC for long term holding of stop positions.

3. When a cylinder is in a no-load and locked state, the holding force (maximum static load) is the lock’s ability to hold a static load that does not involve vibrations or shocks. To ensure braking force, the maximum load must be set as described below.
 ① For constant static loads, such as for drop prevention:

 - Maximum load for horizontal mounting: 70% or less of the holding force (Maximum static load for spring lock)
 - Maximum load for vertical mounting: 35% or less of the holding force (Maximum static load for spring lock)

 ② In a locked state, do not apply impact, strong vibrations or rotational forces. Any impact, strong vibrations or rotational forces from external sources could damage or shorten the life of the lock unit.

 ③ Although the cylinder can be locked in both directions, be aware that its holding force is smaller in one of the directions. Holding force at piston rod extended side is approx. 15% less.

⚠️ Caution

1. Mount speed controller and adjust cylinder operation speed gradually from low speed to a desired speed.

Air Supply

⚠️ Warning

1. Do not use the product out of the specified ranges for pressure and temperature to prevent equipment damage and malfunction.
1. Operating pressure:
 Actuating part: 0.1 – 1.0MPa
 Braking part: 0.3 – 0.5MPa

2. Fluid & ambient temperature: 0 to 60°C

2. Use clean air.
 Do not use the product with compressed air that includes chemicals, synthetic materials (including organic solvents), salinity, corrosive gases, etc., as this may cause damage or malfunction.

⚠️ Caution

1. Install air filter.
 Install air filter before and in vicinity of valve. The filter should be able to collect particles of 5 microns or smaller. A large quantity of drain may cause malfunction of pneumatic components.

2. Install after cooler, air dryer, auto drain, etc.
 Compressed air that includes excessive condensate may cause malfunction of valve and other pneumatic equipment. To prevent this, install after cooler, air dryer, auto drain, etc.

⚠️ Warning

1. Be certain to use a pneumatic circuit which will apply balanced pressure to both sides of the piston when in a locked stop. (Refer to Chapter 6 for recommended pneumatic circuit.)

 In order to prevent the cylinder lurching after a locked stop, use a circuit which applies balanced pressure to both sides of the piston when restarting or when manually releasing the lock, thereby canceling the force generated by the load in the direction of piston movement.

2. Use a solenoid valve for unlocking which has a larger effective area, as a rule 50% or more of the effective area of the cylinder drive solenoid valve. (Refer to Chapter 6 for recommended pneumatic components.)

 The larger the effective area is, the shorter the locking time will be, and stopping accuracy will be improved.

3. Place the solenoid for unlocking close to the cylinder, and no farther than the cylinder drive solenoid valve.

 The shorter the distance from the cylinder, the shorter the overrun amount will be, and stopping accuracy will be improved.

4. Allow at least 0.5 seconds from a locked stop (intermediate stop of the cylinder) until release of the lock.

 When the locked stop time is too short, the piston rod may lurch at a speed greater than the control speed of the speed controller.

5. When restarting, control the switching signal for the unlocking solenoid valve so that it acts before or at the same time as the cylinder drive solenoid valve.

 If the signal is delayed, the piston rod may lurch at a speed greater than the control speed of the speed controller.

Installation

⚠️ Warning

1. Connect the rod end and the load with the lock released.

2. Ensure that the equipment operates properly before the use.

3. Operation manual
 Do not install the products unless the safety instruction have been read and understood.
 Keep this operation manual on file for future reference.

⚠️ Caution

1. Maintenance space
 When installing the products, allow space for maintenance.

2. Installation of jigs
 When hardware and nuts are screwed into the piston rod end, the piston rod should be fully retracted.

 Use double nuts to fix a work since Precision MONOSASHI-KUN (Scale Reading Cylinder) does not have any parallel parts at the rod.

3. Do not give strong impact and/or excessive moment when work is mounted.

 External force other than allowable moment may cause rattle at guide part and/or increase in sliding resistance.

4. Use the product in such a condition that load is always applied in the axial direction of the piston rod.

 When load is applied in other directions than cylinder axial direction, regulate the load itself by the guide.

 Perform a complete centering when cylinder is mounted.

5. Be careful to avoid scratches or dents, etc. on the sliding sections of the piston rod.
Wiring

⚠️ Warning
1. Preparation for wiring
 Shut off the power before wiring (including insertion and removal of connectors). Mount a protective cover on the terminal block after wiring.
2. Check the power
 Make sure the power has sufficient capacity and voltages are within the specified range before wiring.
3. Grounding
 Ground terminal block F.G. (Frame Ground). Do not ground it with devices generating strong electromagnetic noise.
4. Check wiring
 Incorrect wiring may cause damage or malfunction of the products. Make sure the wiring is correct before operation.

⚠️ Caution
1. Separation of signal wires from power wire
 Avoid common or parallel wiring of signal and power wires to prevent malfunction due to noise.
2. Wiring arrangement and fixation
 Avoid bending cables sharply at connector part or electrical entry in wiring arrangement. Inproper arrangement may cause disconnection which in turn causes malfunction. Fix cables close enough not to give excessive force to the connector.

Piping

⚠️ Caution
1. Before piping
 Remove cutting chips, cutting oil, dust, etc. in piping by flushing or cleaning before piping. Care should be taken especially that any cutting chips, cutting oil, dust, etc. do not exist after a filter.
2. At piping
 ① Foreign matter should not enter. Entering of foreign matter will cause malfunction.
 ② Cutting chips and sealing materials at piping threads should not enter valves when piping and fittings are screwed in. Leave 1.5 to 2 threads when seal tape is used.

Lubrication

⚠️ Caution
1. Lubrication of cylinder
 ① This cylinder is pre-lubricated and can be used without lubrication.
 ② In case of lubrication, use a equivalent of the turbine oil type 1 ISO VG32. Once lubrication is performed, it should be continued since the initial lubricant flows out causing malfunction.

Adjustment

⚠️ Caution
1. The locks are manually disengaged when the cylinder is shipped from the factory. Be sure to change them to the locked state before using the cylinder.
2. Adjust the cylinder's air balance. In the state in which a load is attached to the cylinder, disengage the lock and adjust the air pressure on the rod side and the head side of the cylinder to obtain a load balance. By maintaining a proper air balance, the piston rod can be prevented from lurching when the lock is disengaged.
3. Adjust the mounting position of detection devices such as autoswitches.

Sensor unit

⚠️ Caution
1. Do not remove the sensor unit.
 The position and sensitivity of the sensor is adjusted properly before shipment. Removing or replacing the sensor may cause malfunction.
2. Operate the system with an external magnetic field of 14.5mT or less.
 Strong magnetic field in the vicinity may cause malfunction, since CE2 sensor is magnetic type. This is equivalent to a magnetic field of approximately 18cm in radius from a welding area using a welding current of almost 15,000 amperes. To use the system in a magnetic field that exceeds this value, use a magnetic material to shield the sensor unit.
3. Do not pull sensor cable strongly.
 Such action may cause failure.
4. Water shall be kept away from the sensor unit to avoid failure. (IP65 Protection)
5. Power supply line
 Do not mount any switch or relay to power supply line (12 VDC to 24 VDC).

Measurement

⚠️ Caution

SMC products are not intended for use as instruments for legal metrology.
Measurement instruments that SMC manufactures or sells have not been qualified by type approval tests relevant to the metrology (measurement) laws of each country. Therefore, SMC products cannot be used for business or certification ordained by the metrology (measurement) laws of each country.

Maintenance and Check

⚠️ Warning

1. Performing regular check
 Check regularly that the products do not operate with failures unsolved. Check should be done by trained and experienced operators.
2. Dismantling of product and supply/exhaust of compressed air.
 Before dismantling, ensure that drop preventing and runaway preventing treatments are properly provided, shut the power source of air supplied, and exhausts compressed air in the system. When starting operation again, operate the product with care after ensuring that a treatment for preventing extrusion is properly provided.
3. Prohibition of disassembly and modification
 To prevent accidents such as failures and electric shocks, do not remove the cover to perform disassembly or modification. If the cover has to be removed, shut off the power before removal.
4. Disposal
 Request a special agent for handling industrial waste to dispose the products.
1. General

1-1 Features
Controller (CEU2) is a special controller designed for Monosashi-kun with Brake. Upon the input, controller will stop the cylinder, smoothly and precisely at position as inputted. Stopping positions of Monosashi-kun with Brake are stored into “Step”, ranging from step 1 to 32. Steps will be grouped together and form as “Program”. CEU2 allows maximum storage of 16 programs.

<table>
<thead>
<tr>
<th>Program</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>...</th>
<th>P16</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td></td>
<td></td>
<td>S1</td>
</tr>
<tr>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td></td>
<td></td>
<td>S2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S32</td>
<td>S32</td>
<td>S32</td>
<td></td>
<td></td>
<td>S32</td>
</tr>
</tbody>
</table>

Following are CEU2’s special feature:

1. Predictive Control & Learning Function
 (Allow High Repeatability and Precision, ±0.5mm)
 With learning function, after every execution, brake point will be amended, according to the deviation of stopping position from setting position.

First Move (Predictive Control)

Second Move or above (Learning Function)

2. Equipped Function with Retries→If stopping position deviates from setting position’s tolerance, retries function will execute to revise the brake point.
3. Error Detector
 When System is found faulty, error detector will take action, detect and analyze error. Finally, error messages will be displayed. Thus, ease of debugging time.

4. DIN Rail installation is possible.

1-2 Position Control
 1. With controller, valve outputs to achieve precise positioning.
 2. For the situation whereby cylinder stopping position does not fall into the tolerance range, retries will be performed. First, it will retract (30mm), and then extend to achieve setting position.
 3. With learning ability, brake point will be recognized and thus lead to precise positioning with taking into the consideration of factors like loading & pressure condition, momentum & impact when stopping.
 4. Stopping method applied is through air balance and brake to lock the movement. While brake applies the combination of spring and pneumatic locking method.
 5. Position is determined when positioning falls on the setting tolerance range.
 6. Position determination will follow the sequence of selected program’s steps.
 7. Only programs are available for selection. Program steps are not selectable.

1-3 Positioning at Cylinder Rod End
 Do not use cylinder with cushion, if determined position falls at cylinder rod’s end (front or back). This is due to drastical change of speed occurring at the stroke end will lead to imprecision and easy occurring of learning error (Err 6).

2. System Configuration
 2-1 System Checking Flow Chart
 《CE2 (Monosashi - kun with brake) + CEU2 (Controller)》
 Refer to check Flow, showing at next page, to determine brake position, so as to reduce the possibility of occurring errors, which are mostly due to the stopping precision, caused by brake position.
Install driving and brake valve separately.

Continue on page 4
2-3 Recommended Circuit Design

Recommended Pneumatic Equipment

<table>
<thead>
<tr>
<th>Bore</th>
<th>Directional valve</th>
<th>Brake valve</th>
<th>Regulator</th>
<th>Tubing</th>
<th>Silencer</th>
<th>Speed Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ40</td>
<td>VFS24□0R</td>
<td>VFS21□0</td>
<td>AR425</td>
<td>Nylon φ8/6</td>
<td>AN200-02</td>
<td>AS4000-02</td>
</tr>
<tr>
<td>φ50</td>
<td>VFS24□0R</td>
<td>VFS21□0</td>
<td>AR425</td>
<td>Nylon φ10/7.5</td>
<td>AN200-02</td>
<td>AS4000-02</td>
</tr>
<tr>
<td>φ63</td>
<td>VFS34□0R</td>
<td>VFS21□0</td>
<td>AR425</td>
<td>Nylon φ12/9</td>
<td>AN300-03</td>
<td>AS4000-03</td>
</tr>
<tr>
<td>φ80</td>
<td>VFS44□0R</td>
<td>VFS31□0</td>
<td>AR425</td>
<td>Nylon φ12/9</td>
<td>AN300-03</td>
<td>AS420-03</td>
</tr>
<tr>
<td>φ100</td>
<td>VFS44□0R</td>
<td>VFS31□0</td>
<td>AR425</td>
<td>Nylon φ12/9</td>
<td>AN400-04</td>
<td>AS420-04</td>
</tr>
</tbody>
</table>

* Please install the silencer responding to it necessary.
3. SPECIFICATIONS

3-1 Cylinder Specifications

<table>
<thead>
<tr>
<th>Bore Size</th>
<th>φ40</th>
<th>φ50</th>
<th>φ63</th>
<th>φ80</th>
<th>φ100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Fluid</td>
<td>Air (Non-Lubricated)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proof Pressure</td>
<td>Drive Pressure: 1.5MPa, Brake Pressure: 0.75MPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Operating Pressure</td>
<td>Drive Pressure: 1.0MPa, Brake Pressure: 0.5MPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. Operating Pressure</td>
<td>Drive Pressure: 0.1MPa, Brake Pressure: 0.3MPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piston Speed</td>
<td>50~500mm/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient Temperature</td>
<td>0~60°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Stroke (Standard)</td>
<td>850mm</td>
<td>800mm</td>
<td>800mm</td>
<td>750mm</td>
<td>750mm</td>
</tr>
<tr>
<td>Brake Type</td>
<td>Integrated Pneumatic and Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor Cord Length & Type</td>
<td>φ7~500mm & Oil Resistant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware</td>
<td>JIS B0209</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3-2 Controller Specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>CEU2</th>
<th>CEU2P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Nomenclature</td>
<td>Controller</td>
<td></td>
</tr>
<tr>
<td>Mounting</td>
<td>Surface Mounting (Din Rail or Screw)</td>
<td></td>
</tr>
<tr>
<td>Operating Modes</td>
<td>PRESET • PROGRAM • RUN</td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td>Back lighted Display</td>
<td></td>
</tr>
<tr>
<td>Position Setting Capacity</td>
<td>1—16 Programs, Each Program 1—32 steps</td>
<td></td>
</tr>
<tr>
<td>Position Control Method</td>
<td>PTP(Point To Point)</td>
<td></td>
</tr>
<tr>
<td>Control Axes</td>
<td>One Axis</td>
<td></td>
</tr>
<tr>
<td>Position Setting Method</td>
<td>Key Input to Controller</td>
<td></td>
</tr>
<tr>
<td>Position Setting Range</td>
<td>9999.9mm</td>
<td></td>
</tr>
<tr>
<td>Min. Setting Range</td>
<td>0.1mm</td>
<td></td>
</tr>
<tr>
<td>Memory</td>
<td>8kbyte Static RAM (5-Year Battery Backup)</td>
<td></td>
</tr>
<tr>
<td>Min. Setting Interval</td>
<td>5mm and above</td>
<td></td>
</tr>
<tr>
<td>Input Signal</td>
<td>START, GOHOME, PROGRAM#, PAUSE, EMERG, STOP, SETHOME RESET, AUTO/MANUAL, IN/OUT(Manual mode only)</td>
<td></td>
</tr>
<tr>
<td>Output Signal</td>
<td>Move Completed, At Home, Program End, Error</td>
<td></td>
</tr>
<tr>
<td>Controlled Output</td>
<td>NPN Open Collector (DC30V, 50mA)</td>
<td>PNP Open Collector (DC30V, 50mA)</td>
</tr>
<tr>
<td>Power Supply</td>
<td>AC100V±15%, 50Hz/60Hz & DC24V±10%, 0.4A</td>
<td></td>
</tr>
<tr>
<td>Operating Temp. Range</td>
<td>0°C~50°C</td>
<td></td>
</tr>
<tr>
<td>Operating Humidity Range</td>
<td>25%~85%</td>
<td></td>
</tr>
<tr>
<td>Shock Resistance</td>
<td>10~55Hz, Amplitude 0.75mm Each Axis for 2 hours</td>
<td></td>
</tr>
<tr>
<td>Noise Resistance</td>
<td>Square Wave (1μs Pulse Width)</td>
<td></td>
</tr>
<tr>
<td>Impact Resistance</td>
<td>10G, 3 times at each axis</td>
<td></td>
</tr>
<tr>
<td>Proof Voltage</td>
<td>AC1500V, 1Min(less than 3mA), between Case & AC Line</td>
<td></td>
</tr>
<tr>
<td>Current Consumption</td>
<td>AC500V, 1Min(less than 3mA), between Case & 12VDC</td>
<td></td>
</tr>
<tr>
<td>Insulation Resistance</td>
<td>DC500V with Above 50MΩ, between Case & AC Line</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>690g</td>
<td></td>
</tr>
</tbody>
</table>
3-3 Sensor Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable</td>
<td>φ7, 6 Core Twisted Pair Shielded Wire (Oil, heat and flame resistance cable) (Connector : R03-R8M, Tajima Musen Denki Company)</td>
</tr>
<tr>
<td>Max. Transmission Distance</td>
<td>20m (6 core twisted pair shielded wire)</td>
</tr>
<tr>
<td>Position Detection Method</td>
<td>Magnetic Scaled Piston Rod & Detection Head (50cm Cable, Incremental Type)</td>
</tr>
<tr>
<td>Magnetive Field Resistance</td>
<td>14.5mT</td>
</tr>
<tr>
<td>Power Supply</td>
<td>DC12V〜24V±10% (ripple less than 1%)</td>
</tr>
<tr>
<td>Current Consumption</td>
<td>50mA(MAX.)</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.1mm/pulse</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±0.2mm</td>
</tr>
<tr>
<td>Output Type</td>
<td>Open Collector (26.4V, 35mA)</td>
</tr>
<tr>
<td>Output signal</td>
<td>Phase A & B with Differential Output</td>
</tr>
<tr>
<td>Max. Response Speed</td>
<td>500mm/s (Sensor : 1500mm/s)</td>
</tr>
<tr>
<td>Proof Voltage</td>
<td>DC500V, 1 min (Case to 12E)</td>
</tr>
<tr>
<td>Insulation Resistance</td>
<td>AC500V, above 50MΩ (Case to 12E)</td>
</tr>
<tr>
<td>Shock Resistance</td>
<td>33.3Hz6.8G, 2hours at X, Y and 4 hours at Z JIS D1061 as standard</td>
</tr>
<tr>
<td>Impact Resistance</td>
<td>30G, 3 times at each axis</td>
</tr>
<tr>
<td>Moisture Resistance</td>
<td>IP-65<IEC STD></td>
</tr>
<tr>
<td>Extension Cable</td>
<td>5m, 10m, 15m, 20m</td>
</tr>
<tr>
<td>(Option)</td>
<td>(Connector : R03-P8F, Tajima Musen Denki Company)</td>
</tr>
</tbody>
</table>
4. MODEL

4-1 Monosahi-kun with Brake

CE2

Mounting

- B Standard
- L Plate
- F Rod Flange
- G Head Flange
- C Single Clevis
- D Double Clevis
- T Center Trunnion

Tube Bore

- 40 40mm
- 50 50mm
- 63 63mm
- 80 80mm
- 100 100mm

Standard Stroke

<table>
<thead>
<tr>
<th>Tube Bore(mm)</th>
<th>Standard stroke (mm)</th>
<th>Range of manufacturable stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without Gaiter</td>
<td>With Gaiter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Without Gaiter</td>
</tr>
<tr>
<td>40</td>
<td>25~850</td>
<td>25~700</td>
</tr>
<tr>
<td>50</td>
<td>25~800</td>
<td>25~650</td>
</tr>
<tr>
<td>63</td>
<td>25~800</td>
<td>25~650</td>
</tr>
<tr>
<td>80</td>
<td>25~750</td>
<td>25~600</td>
</tr>
<tr>
<td>100</td>
<td>25~750</td>
<td>25~600</td>
</tr>
</tbody>
</table>

4-2 Controller

CEU2

No. of Auto switch

<table>
<thead>
<tr>
<th></th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>1</td>
</tr>
<tr>
<td>n</td>
<td>n</td>
</tr>
</tbody>
</table>

Auto switch's Type
(Refer to Catalog)

Cylinder Accessories

<table>
<thead>
<tr>
<th>Gaiter</th>
<th>J</th>
<th>Nylon Tarpaulin</th>
<th>K</th>
<th>Neoprene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cushion</td>
<td>None</td>
<td>Both Sides</td>
<td>N</td>
<td>None</td>
</tr>
<tr>
<td>R</td>
<td>Cushion at Rod side</td>
<td>H</td>
<td>Cushion at Head side</td>
<td></td>
</tr>
<tr>
<td>Connector</td>
<td>None</td>
<td>With connector</td>
<td>Z</td>
<td>None</td>
</tr>
</tbody>
</table>

Output Method

<table>
<thead>
<tr>
<th>None</th>
<th>NPN Open Collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>PNP Open Collector</td>
</tr>
</tbody>
</table>
4-3 Extension Cable

CE1-R

<table>
<thead>
<tr>
<th>Length of Cable</th>
<th>Postscript</th>
</tr>
</thead>
<tbody>
<tr>
<td>05 5m</td>
<td>None</td>
</tr>
<tr>
<td>10 10m</td>
<td>Extension Cable</td>
</tr>
<tr>
<td>15 15m</td>
<td>C</td>
</tr>
<tr>
<td>20 20m</td>
<td>Extension Cable + Connector</td>
</tr>
</tbody>
</table>

Connector’s Connection

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Core Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>White</td>
</tr>
<tr>
<td>B</td>
<td>Yellow</td>
</tr>
<tr>
<td>C, D</td>
<td>Brown, Blue</td>
</tr>
<tr>
<td>E</td>
<td>Red</td>
</tr>
<tr>
<td>F</td>
<td>Black</td>
</tr>
<tr>
<td>G</td>
<td>(Shield)</td>
</tr>
</tbody>
</table>
Table 1

<table>
<thead>
<tr>
<th>Part No.</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE1-R05</td>
<td>5 1/2 m</td>
</tr>
<tr>
<td>CE1-R10</td>
<td>10 1/2 m</td>
</tr>
<tr>
<td>CE1-R15</td>
<td>15 1/2 m</td>
</tr>
<tr>
<td>CE1-R20</td>
<td>20 1/2 m</td>
</tr>
</tbody>
</table>

Specification
Connector
- Withstand Voltage (Voltage-proof): AC700V for 1 minute
- Insulation resistance: DC500V over 1000MΩ

Cable
- Withstand Voltage (Voltage-proof): AC1000V for 1 minute
- Insulation resistance: DC500V over 10MΩkm

Combinations of contact mark and core color

<table>
<thead>
<tr>
<th>Contact Mark</th>
<th>Core Color</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>White</td>
<td>Phase A</td>
</tr>
<tr>
<td>B</td>
<td>Yellow</td>
<td>Phase B</td>
</tr>
<tr>
<td>C</td>
<td>Brown</td>
<td>COM (OV)</td>
</tr>
<tr>
<td>D</td>
<td>Blue</td>
<td>COM (OV)</td>
</tr>
<tr>
<td>E</td>
<td>Red</td>
<td>±12V ±24V</td>
</tr>
<tr>
<td>F</td>
<td>Black</td>
<td>0V</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>Shield</td>
</tr>
</tbody>
</table>

Connector Pin Layout

5-3 Extension Cable
6. Part Identification
6-1 Monosashi-kun with Brake

① Piston Rod
② Cover
③ Pin Guide
④ Rod Cover
⑤ Sensor Cover
⑥ Cylinder Tube
⑦ Tie Rod
⑧ Head Cover
⑨ Cushion Valve
⑩ Connector
⑪ Cable

① External Input Terminal
② Sensor Input Terminal
③ AC Power Supply Input Terminal
④ Earth Terminal
⑤ DC Input Terminal
⑥ Valve Output Terminal
⑦ External Output Terminal
⑧ Mode Switch
⑨ Dip Switch for Condition Setting
⑩ LCD Display
⑪ Input Signal Monitor
⑫ Input Data Key
7. Installation & Wiring

7-1 Installation

7-1-1 Installation of Cylinder
1. During installation of metal fitting onto the end (screw thread) of piston rod, prevent from the induction of impact and unbalance loading acting upon it.
2. During mounting of cylinder and load, care should be taken not to give misalignment non twist. Please attach floating joint between the connection.
3. Make sure that pushing force of cylinder act on the centre of load.
4. Do not disassemble cylinder and dismantle sensor from cylinder.
5. Flushing of pipe should be done. Prevent dust & dirt entering into cylinder. Moreover, mist separator should be used to get rid of water vapor, oil and dirt from the utilized comprised air.
6. When oil is needed to be fed in, use turbine oil class 1 (ISO, VG32).
7. If there is a lot of dust at working environment, use gaiter. Besides that, please take note that operating temperature should be kept between 0 to 60°C.
8. The total length of air piping (from cylinder to solenoid valve) should be kept below 1m.

7-1-2 Installation of Controller
1. During installation of controller, use M4 bolt and DIN rail.
2. Prevent from direct shining of sun, high or low temperature’s environment.
 [Operating temperature range : 0℃~50℃]
3. Do not utilize it at high humidity’s environment.
 [Operating humidity range : 25%~85%]
4. Keep it within noise protection material and away from high voltage and power supply wire.
5. Prevent it from mounting in environment containing a lot of dust, salinity, ferrous, or flammable, corrosive gas.
6. Do not mount it at high vibration and impact environment.
 [Proof Vibration : 10～55Hz, range 0.75mm, x, y, z each axis for 2 hours]

7-2 Wiring

7-2-1 The Connection of Power Supply
Power Supply Specification : AC100V±15% (AC85V~AC115V), 50/60Hz
DC24V±10%, 0.4A
Use wire with 0.75mm² or more in the diameter of wire sectional area and twist it.
FG is meant for preventing lightening strike, use wire, 0.75mm² or more in the diameter of wire sectional area, to connect to earth.
If FG is not connected to earth, controller’s noise filter will not be able to function properly. Hence, noise will be generated and lead to misreading / disoperation of cylinder.

7-2-2 The Connection of Extension Cable
Use specified (SMC) extension cable. Cable length, 5m~20m, with interval of 5m. For distance more than 20m, use specified transmitter • Receiver box (Model : CE1-H0374)

* Example on cable Connection
* Note
1. Clamp and fix the connector and sensor connection to reduce tension acting on them.
2. Separate cable with power line to prevent from the occurring of noise.
3. When cable is necessary to have U bend, set the bending radius to be above 25mm.

Bending Ability: According to drawing shown below, life span 4 million cycles or more can be achieved.

Reciprocating with
Bending Speed, 100 times/sec
7-3 Input Signal Wiring
7-3-1 Input Signal Wiring Diagram
7-3-2 Input Signal Content

Start: Once started, setting position will be inputted. One step of movement per one shot
(above 50msec).

Note: Start signal (above 50msec’s signal) will be received and activated to carry out subsequence step, only if homing has been performed and origin signal has been fed back to controller.

Homing: When cylinder rod returns to origin, signal above 50msec will be inputted.

Auto / Man’l: When the terminal and COM are in open state, auto mode is on. Vise versa (short circuit), manual mode is on.

Auto mode: When start signal is inputted. Motion will be executed step by step.

Hand mode: Man’l 1 (terminal 11) or Man’l 2 (terminal 12) and COM is short circuit to control either moving forward or backward.

Motion direction depends on tubing and wiring.

Pause: During positioning, motion is stopped by this command. When the command is cancelled, positioning will be resumed from the stopped position.

Note: Please note that Err5 (operating error) will arise, if the stopping position after pausing is less than 5mm away from setting point.

Emergency Stop: During positioning, the input of this command will force immediate stoppage of executing motion. After signal inputs, controller will show error message, Err10.

Note: After emergency stop, homing will perform.

Program selection 1,2,3 & 4: Select program according to following table (Binary Cord):

<table>
<thead>
<tr>
<th>Program No.</th>
<th>N Terminal No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
</tr>
</tbody>
</table>

0: Open between IN6 ~ 9 and COM
1: Short Circuit between IN6 ~ 9 and COM

Set Home: When dip switch No.1 is set ON, origin’s signal is inputted. If dip switch No.1 is set to OFF, auto switch signal input is not required.

Man’l 1: Used at Manual Mode. When signal is inputted, cylinder rod either moves forward or backward.

Man’l 2: Used at Manual Mode. When signal is inputted, cylinder rod either moves forward or backward.

External Reset: The input of signal above 50msec will lead to reset of the system. When error occurs, execute RESET.
7-3-3 INPUT’s Wiring
Input signal consists of 13 signals. With +24V input, +5V is isolated by photo-coupler.
Signal’s name: Start, Homing, Man’l / Auto, Pause, Emergency Stop, Program selection #1,
Program selection #2, Program selection #3, Program selection #4, Set Home,
Man’l 1, Man’l 2 and External Reset.
Input internal circuit is shown below:

7-3-4 OUTPUT’s Wiring
Output signal consists of 4 signals. Together with +5V, photo-coupler is insulated from the 4 output.
Signal’s name: Position Detected, Origin Calculated, Program End, Error
Maximum terminal Voltage: DC +30V
Maximum Current: 50mA (0°C ~ 50°C)

Output Internal’s Circuit

<table>
<thead>
<tr>
<th>Model</th>
<th>Connection Method</th>
<th>Controller: CEU2</th>
<th>Controller: CEU2P</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEU2</td>
<td>NPN Output Transistor</td>
<td>OUT</td>
<td>Max DC +30V, 50mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COM</td>
<td></td>
</tr>
<tr>
<td>CEU2P</td>
<td>PNP Output Transistor</td>
<td>OUT</td>
<td>Max DC +30V, 50mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COM</td>
<td></td>
</tr>
</tbody>
</table>
7-3-5 Solenoid valve’s wiring

Solenoid valve Driving Output consists of 3 signals.
+5v together with photo-coupler is in isolation state.
Signal’s name: Brake, Driving A & B
Maximum terminal’s Voltage +24V DC
Maximum current 80mA (0℃~50℃)

Solenoid Output’s internal Circuit is shown below.

7-3-6 Sequencer

Due to wiring between controller and sequencer, setting of pulse width to be 50msec in program does not ensure the output pulse width will take the same value, Hence, set the pulse width accordingly, so as to obtain pulse width of above 50msec, measured from controller.
8. Timing Chart
Homing Timing Chart

Note: Homing will be executed only on RUN mode and during automatic executing.

(*1) After resetting and re-supplying power, controller will need 2.0 sec (max) to resume operation.

(*2) Timing from stopping till output is the preset timing t₁ (preset data P7).

(*3) Refer to P.27 7-3-6 Sequencer.
Automatic Executing's Timing Chart

(1) Timing from stopping till output is 0.2sec (max).

(*2) Refer to P.27 7-3-6 Sequencer.
Note: If Manual mode or Run Mode is activated during Auto Mode, motion will stop.

(*1) Timing from stopping till output is 0.2sec (max).

(*2) Refer to P.27 7-3-6 Sequencer.
Manual Executing Timing Chart

<table>
<thead>
<tr>
<th>(Input)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SetHome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Man'l / Auto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program Selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Man'l (+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Man'l (-)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(Output)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Driving(+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driving(-)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin Determined</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position Determined</td>
<td></td>
<td></td>
<td></td>
<td>(*1)</td>
<td>(*1)</td>
</tr>
<tr>
<td>Program END</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder Movement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: During manual operation, Start signal is not effective.
Pressing Man'l (+) and Man'l (-) together will not take effect too.
Despite software determines origin, manual operation will be executed.

(*1) Timing from stopping till output is 0.2sec (max).
Pause during homing Timing Chart

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset</td>
<td></td>
</tr>
<tr>
<td>Homing</td>
<td></td>
</tr>
<tr>
<td>Set Home</td>
<td></td>
</tr>
<tr>
<td>Man'1 / Auto</td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td></td>
</tr>
<tr>
<td>Man’1 (+)</td>
<td></td>
</tr>
<tr>
<td>Man’1 (-)</td>
<td></td>
</tr>
<tr>
<td>Pause</td>
<td></td>
</tr>
<tr>
<td>Driving(+)</td>
<td></td>
</tr>
<tr>
<td>Driving(-)</td>
<td></td>
</tr>
<tr>
<td>Brake</td>
<td></td>
</tr>
<tr>
<td>Origin Determined</td>
<td></td>
</tr>
<tr>
<td>Position Determined</td>
<td></td>
</tr>
<tr>
<td>Program END</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td></td>
</tr>
<tr>
<td>Cylinder Movement</td>
<td></td>
</tr>
</tbody>
</table>

Note: Homing will be executed, only on RUN mode and during automatic executing.

(*1) Timing from stopping till output is the preset timing t1 (preset data P7).

(*2) Refer to P.27 7-3-6 Sequencer.
Pause during Automatic Execution Timing Chart

(Input)

Homing

SetHome

Man'l / Auto

Start

Program Selection

Man'l (+)

Man'l (-)

Pause

(Output)

Driving (+)

Driving (-)

Brake

Origin Determined

Position Determined (*1) (*1)

Program END (*1)

Error

Cylinder Movement

Origin

Note: During manual operation, Pause is effective less.

(*1)Timing from stopping till output is 0.2sec (max).
Note: When Emergency Stop is set to be ON, error will be also set ON. Vice versa. Therefore, the display of error does not really show that error output. Emergency Stop is also effective at Manual mode.

(*1) Timing from stopping till output is the preset timing t1 (preset data P7).
(*2) Timing from stopping till output is 0.2sec (max).
Data Error (Program free of error) Timing Chart

Program No.1 Data Error (or no)
Program No.2 Data Normal (or error)

(Input)
Reset
Homing
SetHome
Man'l/Auto
Start
Program Selection

(Output)
Driving(+)
Driving(-)
Brake
Origin Determined
Position Determined
Program END
Error
Cylinder Movement

Note: When LCD displays error ON, press ON to clear the error. Therefore, it is quite different from error output. Data error will be recognized while the first step is executed.

(*1) Timing from stopping till output is 0.2 sec (max).
(*2) Refer to P.27 7-3-6 Sequencer
9. Data Setting

9-1 Data Presetting

9-1-1 Data Classification & Content

- **P1—Cylinder Stroke** — Input stroke.
- **P2—Tolerance** — Input positioning tolerance range. Retries will assure the positioning within the tolerance range.
- **P3—Retries** — Input no. of retries. Maximum retries will be 9. Since Err9 (positioning error) will appear and the system will stop when positioning is not able to be set within the range, it is advisable to set the max. retries no.
- **P4—Bore Size** — Input cylinder bore size.
- **P5—Load Rate** — Input the load rate (the amount of correction for load against the movement of cylinder rod). Use formula as shown below:

 \[
 \text{Load(N)} \div \frac{\text{Bore size(m)} \times D^2 \times \pi \times \text{Operating Pressure(Pa)}}{4}
 \]

 \(<\text{Eg.}>\text{ Bore size: 40(}\Rightarrow 0.04\text{m)} \quad \text{Load: 200N (Allowable kinetic Energy)} \quad \text{Operating Pressure: 0.5MPa(}\Rightarrow 5\times 10^5\text{Pa})\)

 \[\frac{200}{\frac{0.04\times 0.04\times 3.14\times 5\times 10^5}{4}} \times 100 = 31.8 = 30\%
 \]

- **P6—No. of Brake operation**
- **P7—Origin Detection Time** — Set the Origin Detection time (t1).

 (10ms as 1 unit, maximum will be 9.99s)

 After inputting the homing (returning to origin)'s signal, if sensor does not receive any signal within t1 (situation whereby the cylinder stops), this reflects homing is achieved.

 Setting of response time should take into consideration of load, mounting condition, tubing length, etc. The response time should be re-calibrated. If the operating conditions change.

 When controller dip switch No.1, is set at ON, homing will be confirmed in addition that the auto switch is ON.

- **P8—Err12 (Operating Error) confirmation time, t2.**

 * Input Err12's decision time.
 * 10msec as 1 unit. Max. will be 9.99sec.
 * Within the time frame, if there is no signal feedback by sensor (cylinder stops) after inputting of start's signal. Err12 will be reported.
 * Setting of the detection time should take into the consideration of load, mounting condition, tubing length, etc. If the operating conditions change, re-calibrate the detection time.

9-1-2 Input Method

Turn the controller switching mode to RESET.
Press either READ or WRITE to proceed to the input condition for cylinder stroke setting. The first decimal point will start to blink.

Use LEFT and RIGHT buttons to select digit to be changed and set the digit to the desired setting through UP and DOWN buttons. With that, input desired cylinder stroke.

After setting of cylinder stroke, press WRITE to switch to the next input condition. The display will indicate PRG STEP P2 and the current tolerance setting. At the same time, the first decimal point will start blinking.

Next, enter the desired tolerance value as in above mentioned method.
The maximum possible input value is 9.9mm.

With input of tolerance, 1.0, any point fall between the set point ± 1.0 will be accepted. If the attempt falls outside the range, retries will perform to get into the required range.

If the required position is not achieved within the maximum retries, positioning error (Err9) will be shown.

After setting of tolerance range, press WRITE to switch to the next input condition. The display will indicate PRG STEP P3 and the current maximum retries.

Next, enter desired maximum retries.
The maximum possible input value is 9.
During initial setup, predictive control is executing. Hence, it is suggested to set the maximum retries to 5 or above.

After setting of maximum retries, press WRITE to switch to the next input condition. The display will indicate PRG STEP P4 and the current cylinder bore size, which is blinking.

Next, enter appropriate cylinder bore size.

Setting value will vary as shown below.

<Calculation>
Load ÷ Cylinder Pushing Force × 100

After the above setting, press WRITE to switch to the next input condition. The display will indicate PRG STEP P6 and the current number of brake operation.

The display number shows the operation number of brake assembly that had been activated. 1 unit represents 10,000.

Setting is not required.

Note:
Change the brake assembly, when the counter reaches 300.0.
(refer to P.41 11-2)
After reviewing of number of brake operation, press WRITE to switch to next input operation. The display will indicate PRG STEP P7 and present origin detection time.

Next, enter desired origin detection time. The setting range is 0~9.99sec (1 unit as 10msec). Set the date with taking into the consideration of cylinder operating conditions.

After the above setting, press WRITE to switch to next input operation. The display will indicate PRG STEP P8 and present operating error detection time.

Next, enter desired operating error detection time. The setting range is 0~9.99sec (1 unit as 10msec). Set the data with taking into the consideration of cylinder operating conditions.

After the above setting, press WRITE to end the whole preset operation.

9-1-3 Confirmation of Set Data
Turn the controller switching mode to PRESET.

When P1 is blinking, use UP & DOWN key to reconfirm each and individual preset value.

When the input value is blinking, press READ once to shift the operation back to P1.
9-2 Program Setting
Input desired cylinder positions.

9-2-1 Input Method
Turn the controller switching mode to PROGRAM.

Note:
Step 0 for every program is END.
Program no. "1" will start blinking.

Set the program no. through UP & DOWN buttons.

Program No.
1 , 2 , ······················· 15 , 16

After above setting, press WRITE to end the operation. Step "0" starts to blink.
Next, press either READ or WRITE to proceed to next stage.

The display "End" will be replaced by "0000.0",
leading to the input STEP 1.

Input first setting position into STEP 1.

Then, press WRITE to proceed to STEP 2.
Set the following setting positions.
STEP by STEP.

After inputting the last data into last STEP, press WRITE, and then END to end the program setting.

Note:
Controller will show Err7 during operation, if END is not inputted at the end of program.

With above mentioned inputting steps, input program shown below:

```
PRG 1 STEP 0
End
```

```
PRG 1 STEP 1
0000.0
```

```
PRG 1 STEP 2
0000.0
```

With above mentioned inputting steps, input program shown below:
<Input example>

<table>
<thead>
<tr>
<th>Step</th>
<th>Program</th>
<th>P1</th>
<th>P8</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>50.0</td>
<td>68.0</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>300.0</td>
<td>30.5</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>30.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S0</td>
<td>End</td>
<td>End</td>
<td></td>
</tr>
</tbody>
</table>

Turn the controller switching mode to PROGRAM.

Press WRITE 2 times. The display “End” will be replaced by “0000.0”, leading to the input STEP 1.

Press LEFT 2 times. Blinking is shifted to “0”, the first decimal point.

Press UP 5 times to set value of 5.

Press WRITE one time. Press LEFT 3 times to shift the blinking cursor.

Press UP 3 times to set the value of 3.
Press WRITE one time.
Press LEFT 2 times to shift the blinking cursor.

Press UP 3 times to set the value of 3.

Press WRITE one time to enter into program STEP 4, which is the end of program 1.
Press END to end the program setting for program 1.

Program 1’s programming ends.

Set the program no. to 8 through UP to PRG “8”.

Press WRITE 2 times.
The display “End” will be replaced by “0000.0”, leading to input STEP 1.
First, press LEFT one time. Next, use DOWN to set the value of “8”.

Press LEFT one time. Then, use DOWN to set the value of “6”.

Press WRITE one time. Press UP 5 times to set the value of “5”.

Press LEFT 2 times. Press UP 3 times to set the value of “3”.

Press WRITE to enter input STEP 3, which is the end of program 8.
Press END to the program setting for program 8.

Program 8’s programming ends.

9-2-2 Confirmation of Input Data
Turn the controller switching mode to PROGRAM.

When PRG “1” is blinking, use UP & DOWN to select desired program to be checked. Next, press READ to proceed to the specified program's STEP “1”. Then, use UP & DOWN to check and confirm every step.
9-3 Selection of Dip Switch

No.1 · · · The Identification of Origin
OFF · · · · When cylinder stops, if there is no signal feedback from sensor within t1 (Preset data, P7), counter value will be reset to “0” and origin is obtained / recognized.
Generally, origin will be at the stroke end.
If origin is set within the stroke, install stopper with respect to the origin.
ON · · · · When the cylinder stops at origin, situated at the location where auto switch or limit switch is, and sensor signal is not feedback within t1, counter value will be reset to “0.0” and origin is obtained.
Install the origin wire to terminal 10.

No.2 · · · The Setting of Braking System
OFF · · · · In this state, ON means brake is activated. OFF means brake is in releasing state.
If power supply of controller is cut off, the brake will be in releasing state.
If cylinder is mounted horizontally and the air balance is not achieved, when power is cut off, the cylinder may keep moving in and out.
If cylinder is mounted vertically, when power is cut off, cylinder rod will fall to the bottom end, due to its own weight.
ON · · · · In this state, OFF means brake is activated, ON means brake is in releasing state.
If power supply of controller is cut off, the brake will be in clamping state.
Note: Please take note at piping, which may lead to opposite setting.

No.3 · · · The Change of Counter Direction
OFF · · · · The extend direction will be an increment on counter.
Retract End Extend
The origin is set to be at the retract end.

ON · · · · The retract direction will be an increment on counter.
Extend End Retract
The origin is set to be at the extend end.
Note: Please take note at wiring as it may result to opposite setting.

No.4 · · · Deletion of Memory: Delete all the input data, back to the initial state.
Generally, set the state to OFF. If input data is required to be deleted, set the state to ON. Next, reset the power supply through terminal 13. After achieving the initial state, set the state back to OFF.

10. Driving
10-1 Setting of Origin Direction
Location’s detection method used by Monosashi-kun with brake cylinder is incremental method. Please set the origin and reference accordingly.
Cylinder stroke end, either extend end or retract end, will be the origin. When dealing with cylinder with cushion, please do not over monitoring the cushion effect.
When stopper is used, please use shock absorber to prevent from the occurrence of impact and "spring back" effect.
10-2 Adjustment of Air Balance
Due to the stoppage precision, the rate of occurring of abnormal operation, etc. will be greatly affected by the stability of air flow. Please monitor closely to achieve air balancing of cylinder.

Adjustment
1. Manually operate the controller or directional valve & brake valve to shift the piston rod to the center of stroke.
2. Release the brake and carry out adjustment through pressure reducing valve. Remember, piston rod should not move during adjustment. Release the brake through brake valve or controller dip switch No.2.
3. After completion of the adjustment, manually operate brake valve to release and lock the brake system for a few times. If piston rod is moving during operation, redo the adjustment.
4. Lastly, check it with testing the attainment of desired location.
 If piston rod moves to the extreme end or with extraordinarily speed, redo the above adjustment.
 Note: If the braking assembly unit has been changed, reset the controller.

11. Error Messages & Countermeasures
11-1 Controller
Err1: Sub-CPU’s ROM, RAM Error
 Content: During power supply to sub-CPU is on, ROM or RAM is found faulty.
 Solution: Reset & Retry.
 Countermeasure: After resetting, if error occurs again, ROM. RAM may have faulty. Change ROM.RAM.

Err2: Main-CPU’s ROM, RAM Error
 Content: During power supply to sub-CPU is on, ROM or RAM is found faulty.
 Solution: Reset & Retry.
 Countermeasure: After resetting, if error occurs again, ROM. RAM may have faulty. Change ROM.RAM.

Err3: Battery Error
 Content: During initial checkout, battery voltage less than 3.2V.
 Input data can only be retained within 2 hours after the error detection.
 Battery’s life is 5 years from the purchasing data.
 Solution: Press ON (UP & DOWN).
 Countermeasure: Change battery. After changing, verify input data. If data has been deleted, re-input. After resetting, operation of cylinder is still possible.
 However, during operation. LCD display will show that “PRG” is blinking. With the power supply ON, data can be retained as long as 2 hours, after the error massage appears. Therefore, do not cut off power supply, even during interchanging of battery.

[Replacement in Japan]
The part No. of the replacement battery assembly is CEU2-H0125.
Please refer to the Battery assembly replacement procedure CE*-OMM0038-* for replacement. Or please prepare a battery equivalent to the following conditions and purchase a replacement battery holder assembly (Part No.: CEU2-H0446) from SMC. Please refer to the Battery assembly replacement procedure CE*-OMU0014-* for replacement.

[Replacement outside Japan]
Please prepare a battery equivalent to the following conditions and purchase a replacement battery holder assembly (Part No.: CEU2-H0446) from SMC. Please refer to the Battery assembly replacement procedure CE*-OMU0017-* for replacement.

Battery specifications
- Type: Lithium thionyl chloride battery
- Nominal voltage: 3.6 V - Capacity: 2600 mAh
- Size: Refer to the figure on the right.

<Example>
SAFT lithium battery part number LS14500
Err4: Backup Error
Content: After power supply is on or Reset signal is inputted, backup checking is conducted, error is detected during output. Each and individual data is checked through backup checking. Once, error is detected, clear the error and at the same time, data will be deleted too.

Err41: Preset Data Error
When this error appears, input data will be deleted. Re-input is required.

Err42: Program Data Error
When this error appears, input position's data will be deleted. Re-input is required.

Err43: Learning Data Error
When this error appears, learning data will be deleted and lead to the operation of predictive control (retries will perform again).

Solution: Press ON (UP or DOWN).

Countermeasure: Check below 5 points and execute accordingly.

1. Check whether reset is executed during the execution of controller or during motion.
2. Check whether AC100V's deviation is within the tolerance level, ±15% (AC85~115V).
3. Verify the power supply (AC100V) has been toggled within 20ms.
4. Check whether controller’s FG (frame ground) is being connected to earth.
5. Verify that there is no moving signal feedback from sensor while the power is being cut off.

Err5: Data Error
Content: 1. During presetting of data, over stating the cylinder's stroke, or under stating the moving distance of cylinder (less than 5mm), error will be shown.
2. During operation, error will also appear, when moving distance is less than 5mm. However, if the stop position is still within the tolerance of next setting point, stop point will be determined and accepted.

<Example>

Cylinder Stopping Position 53.1

Solution: During programming, press ON (UP or DOWN).

Countermeasure: If situation 1 and 2 occur, please change the program accordingly.

Err6: Learning Error
Content: The stopping position is before the braking position.
There is no braking point within the moving distance.

Solution: Reset or re-providing power supply.

Countermeasure: Verify air balancing.
Verify whether there is any impact or momentum acting upon cylinder during positioning. Verify that there is no entanglement or twisting.
Due to the momentum at the stroke end, setting of “0.0” as origin will lead to high occurrence of errors.
Therefore, set the origin within “1.0～5.0”. Besides that, it is advisable to make sure that cylinder rod should return to origin at the end of operation.
For cylinder with cushion, due to drastically change of speed within the stroke, learning error may arise.
Therefore, for the case of stopping position within 30mm from stroke end is required, it is advisable not to utilize cylinder with cushion.

Err7: No Program

Content: There is no program being selected.
Program NO., which does not have any contents, is selected.

Solution: Press ON or Reselect program.

Countermeasure: Verify input.
Verify selected program, wiring or sequence of program inputted.
After the occurring of Err42, program will be deleted.
Please re-enter program.

Err8: Homing Error

Content: When dip switch No.1 is set ON, error will show if homing is not performed.
When cylinder stops and limit switch at origin is still ON, homing will be detected.

Solution: Reset or Retry.

Countermeasure: Ensure the origin detection switch is functioning (switch is on when cylinder rod is at origin).
Ensure wiring is connected properly.
Ensure input signal sent by auto switch is fed to terminal 10 through input monitor (red LED).
Ensure there is no twist at guide.
During the movement of cylinder rod, ensure that it will not stop within origin detection time.

Err9: Positioning Error

Content: Accurate positioning was not performed within specified preset retries (Preset Data, P3) or preset tolerance (Preset Data, P2).
When Err9 occurs, there are 2 possibilities of errors.
First error due to Err9. Secondly, it may due to abnormal stoppage position.
Recognize the errors, so as to execute accurate remedy.
Solution: Press either ON or RESET.
When ON is used to remedy situation, next program step will be executed.
However, Err5 will occur if the stopping position when Err9 occurs, is less than
5mm away from the next program step’s specified value. In this case, homing
should be done. Restart the program.
When RESET is used, homing will be performed and operation will go back to
initial state, program step No.1 and restart.

Countermeasure: Ensure there is no variation on load or pressure.
Ensure air balance state. Ensure there is no twist at guide.
Ensure there is no momentum and impact acting on cylinder while positioning
is performed.

Err10: Emergency Stop
Content: Display shows emergency stop.
Solution: Disable the emergency stop signal.

Err11: Processing Error
Content: Processing error by Sub-CPU is detected.
Solution: Reset or Retry.
Countermeasure: If error re-occurs, change the controller.

Err12: Operating Error
Solution: Press either ON or RESET.
Countermeasure: Ensure there is no twist at guide.
During the movement of cylinder rod, ensure that it will not stop within
operating error detection’s time. Re-adjust operating error detection’s time.

11-2 Brake Unit’s Life Span
Change the brake unit, when life span of 2 million cycles has been achieved. Check its life span
through the following method:
- a Check the lock pin’s check gap dimension.
- b Check through controller preset data (P6), which records the brake’s operation cycle No.

*Check the lock pin. When check gap, L, is 1mm or less, change brake unit

*Check the controller. When the value of 200.0 is reached, change brake unit.

PRG STEP P6

200.0

The 2 million cycle life span assumes following conditions:
a Piston speed : 300mm/sec
b 50% load or less when horizontally mounted.
c 35% or less when vertically mounted.
(Within allowable kinetic energy range.)
12. Appendix

12-1 Data Sheet

Parameter

<table>
<thead>
<tr>
<th>No.</th>
<th>Data Name</th>
<th>Dip Switch Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No. Setting</td>
</tr>
<tr>
<td>P1</td>
<td>Cylinder Stroke</td>
<td>No.1 OFF ON</td>
</tr>
<tr>
<td>P2</td>
<td>Tolerance</td>
<td>No.2 OFF ON</td>
</tr>
<tr>
<td>P3</td>
<td>Retries</td>
<td>No.3 OFF ON</td>
</tr>
<tr>
<td>P4</td>
<td>Bore Size</td>
<td>No.4 OFF ON</td>
</tr>
<tr>
<td>P5</td>
<td>Load Rate</td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td>No. of Brake Operation</td>
<td></td>
</tr>
<tr>
<td>P7</td>
<td>Origin Confirmation Time</td>
<td></td>
</tr>
<tr>
<td>P8</td>
<td>Err12's Confirmation Time</td>
<td></td>
</tr>
</tbody>
</table>

Program Data (Determined Position Data)

<table>
<thead>
<tr>
<th>Program Step</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>