
Composite Manifold

The unitization of devices allows for the whole unit to be made more compact. Expansion into a wide range of industries is now possible!

Required space reduced by 50%

Weight reduced by 70%

No piping work required

<lmage>

Features

Space saving

Reduction in piping volume, manifold can be designed to suit the space

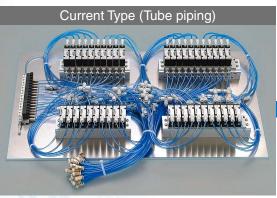
Flow passage style with high flexibility

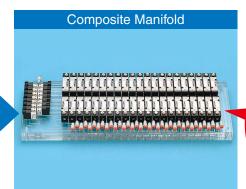
Three-dimensional flow passage that cannot be created by machining or injection molding

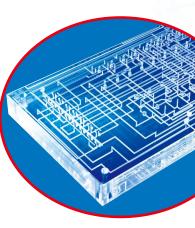
Lightweight

Weight reduced by using resin material

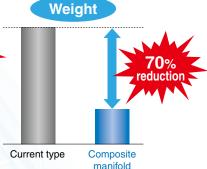
Reduced piping work


Reduction in piping work and wiring faults
Improved reliability against leakage


Reduced wiring

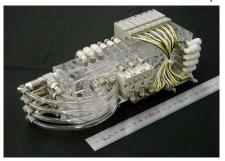

Wiring and wiring time reduced by integrating manifold and PCB

Transparent flow passage (Acrylic)

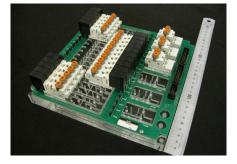

Easy visual detection of fluid

Piping work

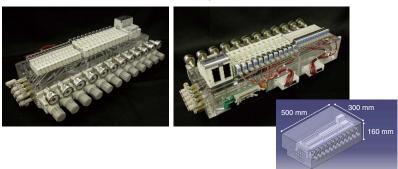
Applications


Reducing weight of device to be mounted on the moving part

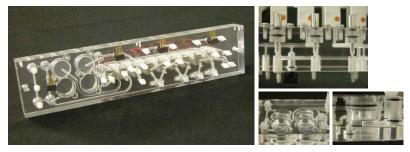
Lightweight unit mounted on the tip of a robot arm


Unitizing different valves and check valves

Achievement of fabrication within a limited space


Integrating a PCB and composite manifold

Reduction in required space and time required for air piping and electrical wiring


Unitizing valves, regulators, and pressure sensors

Achievement of fabrication within a limited space

Combining a tank and needle valves

Formation of a tank, valve elements, and a flow passage inside the manifold

Multiport compact dispenser

The flow passage is branched inside the manifold, so visual checking of the fluid flow is possible.

Manifold Materials

The manifold material can be selected depending on the environment of use.

<Guide>

Material		Acrylic PMMA	Polycarbonate PC	Vinyl chloride PVC	Polyetherimide (ULTEM*) PEI
Features		Transparency	Impact resistance	Chemical resistance	High temperature property
Continuous operating temperature		60°C	120°C	50°C	170°C
Impact resistance		0	0	0	0
Chemical resistance	Alcohol	×	0	0	0
	Acid	0	×	0	0
	Alkali	×	×	0	0

 $\bigcirc \ge \bigcirc \ge \times$ Very good Very poor